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Abstract The interpretation of virtual gluons as ghosts in
the non-linear gluonic structure of QCD permits the for-
mulation and realization of a manifestly gauge-invariant
and Lorentz covariant theory of interacting quarks/anti-
quarks, for all values of coupling. The simplest example
of quark/anti-quark scattering in a high-energy, quenched,
eikonal model at large coupling is shown to be expressible as
a set of finite, local integrals which may be evaluated numer-
ically; and before evaluation, it is clear that the result will be
dependent only on, and is damped by increasing momentum
transfer, while displaying a physically-reasonable color de-
pendence in a manner underlying the MIT Bag Model and
an effective, asymptotic freedom. Similar but more compli-
cated integrals will result from all possible gluonic-radiative
corrections to this simplest eikonal model. Our results are
compatible with an earlier, field-strength analysis of Rein-
hardt et al.

1 Introduction

There has long been a strong-coupling framework in Abe-
lian QFT, whose lowest-order approximation is the Eiko-nal
Model; and, with due attention to color indices and their dis-
ruptive effects on the coherence of Abelian eikonalization,
these techniques can be extended to QCD [1]. In this spirit,
we would like to call attention to a novel, manifestly gauge-
invariant (MGI) method of calculating the sum of all virtual-
gluon exchange graphs in QCD, including—and, in fact,
made possible by—cubic and quartic gluon interactions. We
illustrate this technique by its application to quark–quark
(QQ) or quark–anti-quark (QQ̄) scattering in an eikonal-
style, quenched approximation; in effect, we concentrate on
the summation of all possible gluon exchanges with color

a e-mail: ymsheu@mailaps.org, ymsheu@gmail.com

coupling constant g treated as an averaged, or constant quan-
tity, neglecting its renormalization, along with quark mass
and propagator renormalizations.

By ‘eikonal model’ we mean one specific restriction: that
all virtual-gluon 4-momenta emitted or absorbed by the scat-
tering quarks are small compared with the incident and fi-
nal 4-momenta of the quarks in their center of mass (CM).
Corrections to such an eikonal model were defined years
ago [2], and in principle may be adjoined to the present dis-
cussion; but that is outside the present analysis. In Abelian
physics, this assumption leads to coherent scalar or Neu-
tral Vector Meson (NVM) exchanges; in QCD specific color
fluctuations are introduced which can destroy such coher-
ence. These color techniques were first introduced [3] as an
intelligent, quasi-Abelian (QA) approximation to a theory
of simple non-Abelian exchanges; but, in the present pa-
per, with its emphasis on MGI and a concurrent summation
over all cubic and quartic gluon interactions, such approxi-
mations become exact.

We treat the quarks as effectively asymptotic particles,
since it takes only two or three in combination to make
an asymptotic hadron. One can continue to retain gluons
in the formalism, and if needed, introduce Faddeev–Popov
ghosts [4] to insure that, when the such gauge-dependent
gluon propagators are renormalized, expected properties are
maintained. But in this paper such considerations are sup-
pressed, for we are concerned only with the enumeration and
summation of all virtual-gluon exchanges; and it is for these
exchanges that the MGI properties hold. It should also be
mentioned, and will be noted below at an appropriate point,
that all possible gluon-exchange corrections to the relatively
simple forms presented below will possess the MGI prop-
erty.

Perhaps the most frequently-used way of introducing
gauge invariance in QCD is by the use of the functional in-
tegral (FI)
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Z[j, η, η̄]

= N
∫

d[A] δ[F (A)
]

det[δF /δω] · exp

[
− i

4

∫
F2

]

× exp

[
i

∫
η̄ · Gc[A] · η + L[A] + i

∫
j · A

]
, (1)

where

Gc[A] = [
m + γ · (∂ − igA · λ)

]−1
,

L[A] = Tr ln [1 − igγ · A · λSc],

and where ja
μ, ημ, and η̄μ are gluon and quark sources,

respectively, the delta-functional of F [A] defines the par-
ticular gauge adopted, and the det[δF /δωa] guarantees the
color-gauge invariance of the FI when a change of gauge
is made by the variation of a relevant function ωa(x).
N is a normalization constant which is chosen such that
Z[0,0,0] = 1, and the FIs over quark coordinates have al-
ready been performed. The enumeration of gluonic degrees
of freedom in this formalism is muted, but perturbative ex-
pansions of (1) are equivalent to those obtained immediately
below.

There is another, independent method of arriving at the
equivalent of (1) in which one starts from Schwinger’s ac-
tion principle [5], where the enumeration of proper degrees
of freedom is paramount, while gauge invariance takes a
secondary and circuitous path. There, as in QED, one im-
mediately finds that the equal-time-commutation-relations
(ETCRs) of the gluon field operators lead to proper quan-
tization in the Coulomb gauge; but because of the micro-
causality of the fields, [Aa

i ,A
b
j ]|x0=y0 = 0, the more com-

plicated, canonically-conjugate field momentum operator
πa

i (x) may be replaced by ∂0A
a
i for purposes of calculating

relevant propagators in a variety of gauges.
Schwinger’s formalism is the one that we shall initially

adopt, beginning with the choice of a relativistic gauge (e.g.,
one of standard gauges used in QED, or an axial gauge) for
the free gluon generating functional (GF), expressing the
full GF as a well-defined action operator acting upon the
free GF for gluons and quarks, and then employing a con-
venient rearrangement of the functional operations in terms
of an equivalent but conceptually-simpler linkage operator.
For specific processes, in that selected gauge, with the aid of
Halpern and Fradkin/eikonal representations, one sums over
ALL virtual, gluonic fluctuations, including those due to cu-
bic and quartic gluon interactions; and one then trusts that
subsequent events provide the necessary gauge invariance,
at least for all physical processes, and renormalizations, as
in QED.

In this presentation, we begin as above; but before all glu-
onic fluctuations are performed, we observe that, in QCD,
unlike QED, there is one special way of insuring MGI. This

simple step corresponds to treating virtual gluons as ghost
gluons, with the result that all of the initial, gauge-dependent
gluon propagators cancel away; this is gauge invariance with
a vengeance! With one small exception—which will be dis-
cussed and justified in Sect. 2—the form of this result has
previously been found in field-strength analyses, e.g., that
of Reinhardt et al. [6], with the difference that our result is
gauge independent, while that of Ref. [6] allows the choice
of an arbitrary gauge; this difference is discussed follow-
ing (29) of the present paper. It may also be of interest to
note that the analysis of Ref. [6] is in Euclidean space, while
ours is directly in Minkowski space. And in the context of an
eikonal model, the ‘local’ simplifications obtained are suffi-
cient to reduce all the FIs (used in the Fradkin representation
of Gc[A] and L[A]) to ordinary integrals, susceptible to nu-
merical integration.

These ideas, and their application to eikonal models of
hadronic scattering (built out of eikonal models for the un-
derlying quarks), should be of use to phenomenologists and
experimentalists, who must translate pure QCD theory into
practical predictions and require a separate analysis of bind-
ing, and that topic is not covered in this paper. Rather, we
confine ourselves to the basic properties of quark scatter-
ing by the multiple gluon exchanges noted above, and ob-
serve qualitative results depending upon the impact parame-
ter, which are reminiscent of the MIT Bag Model, and of
asymptotic freedom.

One of the common features of QED is that MGI is in-
compatible with manifest Lorentz covariance (MLC); that
is, one must choose, and has always chosen, a gauge-
dependent formulation as the price of MLC. The reasons are
well known, stemming from the effective balancing act of
constraints vs. true degrees of photonic freedom. Tradition-
ally, it has been most convenient to choose a gauge depen-
dence for the covariant photon propagator, assure oneself
of the gauge independence of radiative corrections to that
photon propagator (by means of rigorous fermion-charge
conservation), and accept the necessity of gauge-dependent
photon propagators as long as all properly-defined S-matrix
elements of the theory can be shown to be independent of
gauge [7]. In QED, as Schwinger has shown [8], Green’s
functions of operators calculated in the Coulomb gauge can
be transformed into Green’s functions in conventional rela-
tivistic gauges by adjoining an operator gauge transforma-
tion to the original operator, and so retain the basic quantum
formalism without the need for indefinite metric quantiza-
tion.

The same, basic formalism may be followed in analytic
treatments of perturbative QCD. An additional, additive fea-
ture has been the apparent necessity of adjoining “ghost”
fields to the theory, in order to produce a conventional rep-
resentation of the gluon propagator with its proper degrees
of freedom [4]. As shown in this note, there exists a sim-
ple, ‘virtual-gluon–ghost’ interpretation which can be used
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to ‘spark’ a MGI and MLC formulation of quark/anti-quark
interactions; and in this formulation, the non-perturbative,
mathematical representation of physical processes is ex-
pressed by an FI over the position and color coordinates of
a single, anti-symmetric color tensor, χa

μν(x). This integral,
which, long ago, was suggested by Halpern [9, 10], begins
life in the definition of an FI; but due to the ghost nature of
the virtual gluons, is reduced to a single n-fold integral over
‘local’ position and color coordinates. One advantage of the
present method is that it is accessible to couplings of any
size; and, in fact, the calculations appear to simplify consid-
erably in the limit of strong coupling.

As possibly the simplest, non-trivial illustration, we set
up the calculation of a high-energy Q and/or Q̄ eikonal
scattering amplitude, in quenched approximation, and at
large coupling, using recent eikonal techniques for non-
Abelian interactions [2]. At the end of this model calcu-
lation, one can see that Halpern’s integral describes an ef-
fective, ‘almost-contact’ interaction between the Q’s and/or
Q̄’s, replacing the conventional, boson-propagator ‘action-
at-a-distance’ Abelian eikonal result. As in QED, or any
Abelian theory [11–20], a logarithmic growth of a total
cross section will require at least a partial lifting of the
quenched approximation; in this simplest model invoking
quenching, one finds a scattering amplitude dependent only
upon momentum transfer (or impact parameter), with rea-
sonable color structure.

One simplification employed below should be stressed,
for although the model we present resembles an eikonal
calculation, certain rather complicated normalization factors
have, for convenience, been omitted, as noted at the appro-
priate place. The thrust of this presentation is therefore lim-
ited to display the method of virtual-gluon exchanges; and
to show, in a scattering context, how dependence upon mo-
mentum transfer or impact parameter controls the disruptive
effects of color fluctuations on otherwise-coherent, eikonal-
like exchanges. To put this calculation into a strict eikonal
framework, as in Appendix B of the QA reference [3],
one need calculate the neglected normalization factors; and
hence when we refer to the ‘scattering amplitude’ we mean
an unrenormalized, MGI and MLC quantity whose magni-
tude we can only compare for different impact parameters.

A list of abbreviations of frequently-used phrases has
been added as Appendix D.

2 Formulation

Begin with QED, and its free-photon Lagrangian,

L0 = −1

4
f2
μν = −1

4
(∂μAν − ∂νAμ)2. (2)

Its action integral may be rewritten as
∫

d4x L0 = −1

2

∫
(∂νAμ)2 + 1

2

∫
(∂μAμ)2

= −1

2

∫
Aμ

(−∂2)Aμ + 1

2

∫
(∂μAμ)2, (3)

and the difficulty of maintaining both MGI and MLC ap-
pears at this stage. What has typically been done since the
original days of Fermi, who simply neglected the inconve-
nient (∂μAμ)2 term, is to use the latter to define a relativis-
tic gauge in which all calculations retain MLC, while rely-
ing upon strict charge conservation to maintain an effective
gauge invariance of the theory.

The choice of relativistic gauge can be arranged in var-
ious ways; and what shall be done here, in the context of
the preceding paragraphs, is to multiply this inconvenient
term by the real parameter λ, and transfer it into an effec-
tive ‘interaction’ term. For definiteness, begin with the free-
field, (λ = 0, Feynman) propagator D(0)

c,μν = δμνDc, where
(−∂2)Dc = 1, and the free-field Generating Functional (GF)

Z (0)
0 [j ] = e

i
2

∫
j ·D(0)

c ·j , (4)

and operate upon it by the ‘interaction’ λ-term, to produce a
new, free-field GF

Z (ζ )
0 [j ] = e

i
2 λ

∫
(∂μAμ)2 ∣∣

A→ 1
i

δ
δj

·e i
2

∫
j ·D(0)

c ·j

= e
i
2

∫
j ·D(ζ )

c ·j · e− 1
2 Tr ln [1−λ ∂∂

∂2 ]
, (5)

where D(ζ )
c,μν = (δμν − ζ∂μ∂ν/∂

2)Dc , with ζ = λ/(λ − 1).
The functional operation of (5) is fully equivalent to a
bosonic, Gaussian, FI; and such ‘linkage operation’ state-
ments are frequently more convenient than the standard FI
representations, since they do not require specification of in-
finite normalization constants.

The Tr-Log term is an infinite phase factor, represent-
ing the sum of the vacuum energies generated by longitu-
dinal and time-like photons, with a weight λ arbitrarily in-
serted; this quantity could have been removed by an appro-
priate version of normal ordering, but can more simply be
absorbed into an overall normalization constant.

Again starting from the D(0)
c,μν of a Feynman propagator,

and including the usual fermion interaction Lint = igψ̄γ ·
Aψ , and the gauge ‘interaction’ 1

2λ(∂μAμ)2, it is also easy
to show that one generates the standard, Schwinger func-
tional solution in the gauge ζ ,

Z (ζ )
QED[j, η, η̄]
= N ei

∫
η̄·Gc[A]·η+L[A]+ i

2 λ
∫
(∂μAμ)2 ∣∣

A→ 1
i

δ
δj

· e i
2

∫
j ·D(0)

c ·j , (6)
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where the phase factor of (5) has been absorbed into N . It
will be convenient to rearrange (6) using the easily-proven
identity

F
[

1

i

δ

δj

]
· e i

2

∫
j ·D(ζ )

c ·j

≡ e
i
2

∫
j ·D(ζ )

c ·j · eD
(ζ )
A · F [A]∣∣

A=∫
D

(ζ)
c ·j , (7)

where D
(ζ )
A = − i

2

∫
δ

δA
· D(ζ )

c · δ
δA

, so that (6) now reads

Z (ζ )
QED[j, η, η̄]

= N e
i
2

∫
j ·D(ζ )

c ·j · eD
(ζ )
A · ei

∫
η̄·Gc[A]·η+L[A]∣∣

A=∫
D

(ζ)
c ·j .

(8)

This is the functional QED we know, and have used for a
half-century.

We now come to QCD, with

L = −1

4
F2

μν − ψ̄[m + γ · ∂ − igγ · A · λ]ψ, (9)

and Fa
μν = ∂μAa

ν − ∂νA
a
μ + gf abcAb

μAc
ν ≡ faμν +

gf abcAb
μAc

ν . Since ‘proper’ quantization in the Coulomb
gauge, for the free and interacting theories yield the same
ETCRs for QCD as for QED (with an extra δab color fac-
tor appearing in all relevant equations); and since at g = 0,
QCD is the same free-field theory as QED (except for ad-
ditional color indices); and since QED in any of the con-
ventional relativistic gauges can be obtained by treating the
i
2λ

∫
(∂μAμ)2 as an ‘interaction’ (as above); and therefore,

rather than re-invent the wheel, we set up QCD in the form
used above for QED.

As a final preliminary step, we write

−1

4

∫
F2 = −1

4

∫
f2 − 1

4

∫ (
F2 − f2)

≡ −1

4

∫
f2 +

∫
L′[A], (10)

with faμν = ∂μAa
ν − ∂νA

a
μ and L′[A] = − 1

4 (2faμν +
gf abcAb

μAc
ν)(gf

adeAd
μAe

ν); and for subsequent usage, after
an integration-by-parts, we note the exact relation

−1

4

∫
F2 = −1

2

∫
Aa

μ

(−∂2)Aa
μ

+ 1

2

∫ (
∂μAa

μ

)2 +
∫

L′[A]. (11)

(In the next few paragraphs, for simplicity, we suppress the
quark variables, which will be re-inserted at the end of this
gluon argument.)

To choose a particular relativistic gauge, multiply the 2nd
RHS term of (11) by λ, and include this term as part of the

interaction, to obtain the familiar QCD generating functional
(GF) in the relativistic gauge specified by ζ = λ/(λ − 1)

Z (ζ )
QCD[j ] = N e

i
∫

L′[ 1
i

δ
δj

] · e i
2 λ

∫
δ

δjμ
∂μ∂ν

δ
δjν

· e i
2

∫
j ·D(0)

c ·j , (12)

or after rearrangement

Z (ζ )
QCD[j ] = N e

i
∫

L′[ 1
i

δ
δj

] · e i
2

∫
j ·D(ζ )

c ·j , (13)

with the determinantal phase factor of (5) included in the
normalization N , and a δab associated with each free-gluon
propagator D(ζ )ab

c,μν .
After re-inserting the quark variables, and after re-

arrangement, expansion of (13) in powers of g generates the
conventional Feynman graphs of perturbation theory in the
gauge ζ . If one wishes to have a conventional form for the
renormalized gluon propagators, one can insert Faddeev–
Popov ghosts into the Lagrangian. But it is clear that all
choices of λ are possible except λ = 1, for that choice leads
to ζ → ∞ and an undefined gluon propagator. This is an
unfortunate situation because the choice λ = 1 is precisely
the one which corresponds to MGI in QCD, as is clear
from (11).

But there is a very simple, alternate way of writing (13),
by replacing the

∫
L′ of that equation by the relation given

by the exact (11),
∫

L′[A] = −1

4

∫
F2 + 1

2

∫
Aa

μ

(−∂2)Aa
μ − 1

2

∫ (
∂μAa

μ

)2
,

(14)

which (continuing to suppress the quark variables) yields

Z (ζ )
QCD[j ]
= N e− i

4

∫
F2− i

2 (1−λ)
∫

(∂μAa
μ)2+ i

2

∫
Aa

μ(−∂2)Aa
μ
∣∣
A→ 1

i
δ
δj

· e i
2

∫
j ·D(0)

c ·j . (15)

It is now obvious that the choice λ = 1 can be made. It
will become clear below that, in the form (15), these opera-
tions are exactly equivalent to the introduction of a gluonic
ghost field; and it is this ‘ghost property’ for virtual-gluon
exchanges that generates an exceedingly simple, MGI and
MLC result for the present eikonal model—and for all sub-
sequent radiative corrections to this model that can be writ-
ten. This ghost mechanism occurs because the ghost gluon
has been introduced by the Feynman propagator assumption

which leads to the factor exp [ i
2

∫
j · D(0)

c · j ] of (15), while
the term exp [ i

2

∫
Aa

μ(−∂2)Aa
μ]|

A→ 1
i

δ
δj

is that functional op-

erator which will remove every such propagator from the
sum of all virtual processes of every n-point function of the
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theory, without exception. In effect, the gluon ghost acts as
a ‘spark plug’ to generate the MGI and MLC interactions of
the theory, which then take on a remarkably simple form.

If one argues that because no color gluons can ever be as-
ymptotic, it is then reasonable to suppress the leading RHS
factor exp [ i

2

∫
j · D(0)

c · j ] of the rearranged GF; or, if one
wishes to retain the specification of individual gluons, that
factor may be retained, and standard Faddeev–Popov ghosts
inserted to guarantee its proper perturbative renormalization.
In the example to be given shortly, this factor plays no role
and will therefore be omitted.

After rearrangement, and after re-inserting the quark
variables, (15) becomes

Z (ζ )
QCD[j, η, η̄]

= N e− i
2

∫
δ

δA
·D(0)

c · δ
δA · e− i

4

∫
F2+ i

2

∫
Aa

μ(−∂2)Aa
μ

· ei
∫

η̄·Gc[A]·η+L[A]∣∣
A=∫

D(0)
c ·j , (16)

and we next invoke the representation suggested by
Halpern [9],

e− i
4

∫
F2 = N ′

∫
d[χ] e i

4

∫
(χa

μν)2+ i
2

∫
χa

μνFa
μν , (17)

where
∫

d[χ] = ∏
i

∏
a

∏
μ>ν

∫
dχa

μν(wi), so that (17) rep-
resents a functional integral over the anti-symmetric tensor
χa

μν(w). Here, all space-time is broken up into small regions
of size δ4 about each point wi and N ′ is a normalization
constant so chosen that the RHS of (17) becomes equal to
unity as Fa

μν → 0. In this way, the GF may be rewritten as
(N ′ · N = N ′′ → N )

ZQCD[j, η, η̄]

= N
∫

d[χ]e i
4

∫
(χa

μν)2 · eD
(0)
A · e i

2

∫
χ ·F+ i

2

∫
Aa

μ(−∂2)Aa
μ

· ei
∫

η̄·Gc[A]·η+L[A]∣∣
A=∫

D(0)
c ·j , (18)

where D
(0)
A = − i

2

∫
δ

δA
· D(0)

c · δ
δA

.
As noted above, we treat the quarks and anti-quarks

as stable entities during the scattering; and then must cal-
culate functional derivatives with respect to the sources
η̄(x1), η(y1), η̄(x2), and η(y2), which bring down factors
of GI

c(x1, y1 | A) and GI
c(x2, y2 | A), where the superscripts

I and I refer to the scattering fermions. With standard mass-
shell amputation, we pass to the small-momentum-transfer
limit of the eikonal model [3], derived in detail in Appendix
B of this reference for the specific case of QQ scattering,
and using the conventional, FI approach in an axial gauge.
(The discussion of Appendix B of Ref. [3] contains the full
QCD, with cubic and quartic gluon interactions.)

The quark scattering amplitude is given by the familiar
eikonal form [3],

T(s, t) = is

2m2

∫
d2b eiq·b[

1 − eiX(s,b)
]
,

s = −(p1 + p2)
2, (19)

t = −(p1 − p′
1)

2 = −q2 CM−−→ −q2,

while the exponential of the eikonal function, E = exp [iX],
is obtained in this quenched formalism by the appro-
priately normalized (as in (B.32) of this reference) ac-
tion of the linkage operator: exp [− i

2

∫
δ

δA
· D(0)

c · δ
δA

] upon
exp [ i

2

∫
χ · F + i

2

∫
Aa

μ(−∂2)Aa
μ] · OE{p1,p

′
1,p2,p

′
2} in

the limit A → 0, where the factors denoted by OE{· · · } are
the ordered exponentials contributed by the Green’s func-
tions corresponding to the incident and outgoing particles, as
noted below. As remarked in the previous section, for sim-
plicity of presentation, certain normalization factors shall
be suppressed; and therefore our result is only a qualita-
tive expression of the scattering amplitude, or rather, of the
eikonal exponential E = exp[iX], in its dependence upon
impact parameter. But from this qualitative result it will be
possible—by means of two numerical integrations—to ob-
tain a qualitative picture of the effective interaction potential
between a pair of quarks or of a quark and an anti-quark.

In QED each such Green’s function Gc[A] would con-
tribute an exponential factor exp [ig ∫

d4w Rμ(w)Aμ(w)]
with

Rμ(w) = pμ

∫ 0

−∞
ds δ(w − y + sp)

+ p′
μ

∫ ∞

0
ds δ(w − y + sp′)

� pμ

∫ +∞

−∞
ds δ(w − y + sp), (20)

but in QCD it will generate an ordered exponential (OE) of
form
(

exp

[
igpμ

∫ +∞

−∞
dsAa

μ(y − sp)λa

])
+
. (21)

In order to extract the A-dependence from such OE, we
rewrite (21) as
∫

d[α] δ[αa(s) − gpμAa
μ(y − sp)

]

· (ei
∫ +∞
−∞ dsλaαa(s)

)
+, (22)

where
∫

d[α] is a functional integral defined over all values
of the mesh coordinates −∞ ≤ si ≤ +∞. One then writes a
representation for the δ-functional of (22), so that the OE of
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(21) becomes

N ′
∫

d[α]
∫

d[Ω]

· e−i
∫ +∞
−∞ ds Ωa(s)[αa(s)−gpμAa

μ(y−sp)]

· (ei
∫ +∞
−∞ ds λaαa(s)

)
+, (23)

where N ′ = ( Δ
2π

)n|n→∞, a normalization constant for the
functional integral over the ‘proper time’ s values, with the
width of each mesh given by Δ (of dimension (length)2),
Δ � δ2. These operations have become routine in eikonal
analysis [1, 3].

In our present QCD eikonal scattering amplitude, each Q,
or Q̄, is described by a Green’s function Gc(xi, yi | A), and
each has an OE of the form expressed by (23), with cor-
responding pi , yi , and Ωc

μ(si) variables. In QCD eikonal
models, only the interaction corresponding to multiple gluon
exchanges between the scattering QQ̄ are retained, and the
functions contributing to the eikonal amplitude will contain
those pair-wise-interaction variables in the manner of (36),
below.

There is another A-dependence contribution to Gc[A],
the OE denoted by
(

exp

[
g

∫ +∞

−∞
ds σμνFa

μν(y − sp)λa

])
+
, (24)

where this OE is again defined by its s-value. However, in
the present virtual-ghost–gluon calculation, a simple scal-
ing argument shows that these spin-sensitive terms do not
appear.

We retain the basic idea of an eikonal model, concerned
with the interaction of a Q, or Q̄, each treated as a particle
of renormalized mass m and color charge g; and to effect
this statement, we suppress all self-energy structure of each
Q, or Q̄. We also suppress the L[A]-dependence, as in a
quenched approximation, where the scattering is assumed
to occur so quickly that charge renormalization effects and
any change in the fundamental vacuum structure have insuf-
ficient time to react. As shown in the original calculation of
Cheng and Wu [11–17, 20], contributions from L[A] are es-
sential for the increase of total cross sections with scattering
energy; and such effects will be missing in the simple model
here described.

From (18) and (23), our eikonal exponential function E =
eiX will be proportional to
∫

d[χ] e i
4

∫
χ2 · e− i

2

∫
δ

δA
·D(0)

c · δ
δA

· e i
2

∫
Aa

μ Kab
μνAb

ν+i
∫

Qa
μAa

μ
∣∣
A→0, (25)

where

Kab
μν = gf abcχc

μν + δμνδ
ab

(−∂2),

Qa
μ = −∂νχ

a
μν + g

[
Ra

Iμ + Ra
Iμ

]
,

(f · χ)ab
μν = f abcχc

μν.

The linkage operation is again Gaussian, and yields

e− 1
2 Tr ln(1−K·D(0)

c ) · e
i
2

∫
Q·[D(0)

c
1

1−K·D(0)
c

]·Q
, (26)

and here is where the ‘ghost-magic’ appears, since

1 − K · D(0)
c = 1 − [

gf · χ + (−∂2)]D(0)
c

= −g(f · χ)D(0)
c . (27)

The Q-dependence of (26) is then just

i

2

∫
Q · D(0)

c

[−g(f · χ)D(0)
c

]−1 · Q

= i

2

∫
Q · D(0)

c

[
D(0)

c

]−1[−g(f · χ)
]−1 · Q

= − i

2g

∫
Q · (f · χ)−1 · Q, (28)

with all D(0)
c propagators canceling away, leaving an integral

over a single space-time variable, w,

− i

2g

∫
d4w Qa

μ(w)
[
f · χ(w)

]−1∣∣ab

μν
Qb

ν(w). (29)

Precisely this form of effective interaction was previously
found in an instanton approximation to a QCD field-strength
formalism [6] with the difference that our (29) does not con-
tain a gauge-fixing term of form δ[ga(x)] of (17) of that
paper (using the notation of that paper, where the original
gauge-fixing dependence of the Aa

μ variables was replaced
by a simpler gauge fixing of the Fa

μν , and then transferred
to the χa

μν field). We consider this an unphysical difference
because of the following argument.

Different gauges are traditionally chosen in order to sim-
plify calculations of different processes; for example, in the
calculation of infrared effects in QED, the Yennie gauge,
ζ = −2, is to be preferred over that of any other ζ value be-
cause it simplifies the analysis. Gauge A is chosen to calcu-
late process A because gauge B or C would entail a great
deal of unnecessary work; but because the Physics is in-
dependent of gauge, if no errors are made, then the use of
gauge B or C or any other gauge must give exactly the same
results as does the use of gauge A. Instead of using gauge A
to calculate any process, we could use the average of gauge
A and of gauge B, or take the average over all possible
gauges; the physical answer must be the same. In the lan-
guage of reference [6], the choice of ga(x) is arbitrary; and
so we suppose that we may average over an arbitrary num-
ber of such ga(x); and if there are a continuous number of
such functions, as can surely be imagined and constructed,
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then instead of using a particular ga(x), we may simply cal-
culate

∫
d[g], δ[g(x)] over the complete functional space of

such functions, and divide by the (infinite) volume of such a
space, which latter quantity may be absorbed into an overall
normalization constant. The result of this last summation,
taken under the

∫
d[χ] integrals, is just unity, which is the

form of our (29).
Just as an average over all paths is path independent, so

an average over all possible gauge choices is gauge inde-
pendent; our result is gauge invariant1 because the prop-
erty of gauge independence was forced by the ghost mech-
anism, which automatically removes the gluon propagators
carrying any arbitrary choice of initial gauge. The restric-
tion initially made for the use of the Feynman gauge for D(0)

c

was only for simplicity of presentation; the entire discussion
could have been carried through by adding and subtracting
another gauge-fixing term to the Lagrangian, adding it to L0

and subtracting it from L′. Again expressing the interaction
in terms of Halpern’s integral, one finds exactly the same
cancellations, except that it is a propagator in an arbitrary
gauge that is removed; the details are in Appendix C.

At this point it may be useful to digress into just how
ghost enter QFT, especially in the context of a linkage op-
eration. For immediate relevance, consider a bosonic ghost,
which might be introduced in order to have an intuitive rep-
resentation of a determinantal factor exp [− 1

2 Tr ln B], where
B is any desired quantity, or operator. Consider the operation

e− i
2

∫
δ

δA
·Dc· δ

δA · e i
2

∫
A·K·A

= e
i
2

∫
A·[K· 1

1−Dc ·K ]·A · e− 1
2 Tr ln (1−Dc·K), (30)

with the choice K = D−1
c + B. Then, because Dc · D−1

c = 1,
1 − Dc · K = −Dc · B, and Dc(−B · Dc)

−1 = −B−1, so that
(30) becomes

e− i
2

∫
A·[(Dc·B·Dc)

−1+D−1
c ]·A

· e− 1
2 Tr ln B · e− 1

2 Tr ln (−Dc). (31)

Setting A = 0, and treating exp[− 1
2 Tr ln (−Dc)] as an

unimportant, if divergent, normalization constant, the re-
mainder is just the desired term. Of course, (31) is com-
pletely equivalent to the Gaussian functional integral

N
∫

d[φ] e i
2

∫
φ·B·φ, (32)

with an appropriate normalization N . But the ghost mech-
anism is not simply just the Gaussian integral (32), for in
the linkage operator formalism one sees the removal of all

1Oliver Rosten has pointed out to us that MGInvariance and MGInde-
pendence need not correspond to the same properties, at least in the
context of an exact RG analysis; see, for example, [21]. In the present
case, as suggested by the above argument, they are the same thing.

Dc from the internal, virtual structure of the theory. It is in
this sense that our virtual QCD formalism corresponds to
the use of a gluon ghost, which has been forced upon us by
the requirement of MGI; and that requirement is then rigor-
ously satisfied by the removal of all gauge-dependent gluon
propagators.

It should be emphasized that this ghost removal will
occur automatically for every correction, quenched or un-
quenched, to the simplified limits of this example. For ex-
ample, the L[A] terms neglected in this quenched calcu-
lation can be retained by a straightforward expansion of
exp {L[A]} in powers of L’s; and every L[A] so included
may be expressed in terms of an exact Fradkin represen-
tation [5, 22], which is itself not more complicated than a
sequence of operations upon an exponential of linear and
quadratic A-dependence. The totality of such radiative cor-
rections, exactly or in any form of approximation, will al-
ways retain the same form as in (29) or (31) above, with K
and Q having added terms; but the removal of all Dc propa-
gators must again occur, as MGI is maintained.

The question then arises: If the gluon propagators are to
disappear, what is going to replace them as the ‘carriers’ of
interactions from one Q, or Q̄, to another? And the answer
is that the Halpern field χa

μν takes on a new and physical
significance as the carrier of the totality of virtual-gluon in-
teractions, in the form (as seen below) of an ‘almost con-
tact’ interaction. And it is this novel interpretation which
has the ability, in one succinct if complicated representa-
tion, to display the effective QCD interaction for all values
of the coupling, large or small. To the associated question
of a possible phase change for large values of the coupling,
we, in this paper, make no prediction, for the answer to that
question demands an evaluation of our results for small g,
and comparison with simple QCD perturbation theory. Our
final Halpern integral is much simpler to evaluate for large
coupling, rather than small; and in the interests of simplicity
of presentation, that question has been left unanswered. An-
other untouched question is whether color-charge renormal-
ization in this formalism will require additional Faddeev–
Popov ghosts, which could certainly be inserted, if desired.

Returning to (25) and (26), now written in the form

N
∫

d[χ] e i
4

∫
χ2

· [det (gf · χ)
]− 1

2 · e− i
2g

∫
Q·[f ·χ]−1·Q

. (33)

We first drop the self-energy parts of the Q-dependence, re-
taining for the exponential factor

− ig2
∫

Ra
Iμ · (gf · χ)−1

∣∣∣∣
ab

μν

·Rb
Iν

− i

2

(
∂λχ

a
μλ

) · (gf · χ)−1
∣∣∣∣
ab

μν

· (∂σ χb
νσ

)
, (34)
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and then, for simplicity, discard all but the largest
g-dependence of (34),

−ig2
∫

Ra
Iμ · (gf · χ)−1

∣∣∣∣
ab

μν

·Rb
Iν. (35)

Inserting the eikonal representations of Ra
Iμ and Rb

Iν
, in the

CM of the scattering quarks, we need to evaluate

−ig

∫ +∞

−∞
ds1

∫ +∞

−∞
ds2 p1μp2ν

× Ωa
I (s1) ·

∫
d4w

[
f · χ(w)

]−1
∣∣∣∣
ab

μν

· Ωb
I
(s2)

× δ(4)(w − y1 + s1p1) · δ(4)(w − y2 + s2p2). (36)

Here, p1, p2, y1 and y2 are the relevant 4-momenta and
space-time coordinates appearing in each Q/Q̄ Green’s
function, and they are evaluated in the CM of the scatter-
ing Q/Q̄, which are (initially) assumed to have zero relative
transverse momentum. In this way,

p1,4 = p2,4 = iE, p1,3 = −p2,3 = p,

p1,1 = p1,2 = p2,1 = p2,2 = 0, z = y1 − y2, (37)

(f · χ)−1
∣∣ab

34= i(f · χ)−1
∣∣ab

30 , s± = 1

2

[
zL

p
± z0

E

]
,

so that the product of the two delta-functions of (36) be-
comes

δ(2)(y1,⊥ − y2,⊥) · δ(s1 − s+) · δ(s2 − s−)

· δ(2)(w⊥ − y⊥) · δ
(

wL − 1

2
(y1,L + y2,L)

)

· δ
(

w0 − y1,0 + E

p
y1,L

)
· 1

2pE
, (38)

where y⊥ = y1,⊥ = −y2,⊥ ≡ 1
2 b, and the zero of CM time

is chosen when both particles are at their distance of clos-
est approach, when y1,0 = y2,0 = 0; then, for all times,
z0 = y1,0 −y2,0 = 0. Hence, s1 = s2; and since y1,0 = γms1,
s1 = y1,0/(γm), and for large γ and any reasonable duration
of the scattering, s1 ≈ 0 ≈ s2. Also, y1,0 + y2,0 ≡ 2y0, and
y1,L + y2,L = 0, and the entire (36) may be written as

igδ(2)(b)Ωa
I (0)

[
f · χ(w)

]−1∣∣ab

30Ωb
I
(0), (39)

where the expected anti-symmetry of the μ, ν variables of
[f · χ]−1 has been used, together with the p1,μ, p2,ν val-
ues appropriate to the CM. Note that the w variable of
[f · χ]−1 is a fixed 4-vector, given by w

(0)
μ = (y⊥,0L;y0)

for E/p ≈ 1.
This last restriction immediately means that only this

w
(0)
μ , of all the possible w-values of the original Halpern rep-

resentation, is relevant to this interaction; and all of the other

wμ-terms of that functional integral, with their normaliza-
tion factors, are effectively removed from the computation
in the form of an uninteresting, convergent, normalization
factor,

N ′
∫

d[χ] e i
4

∫
χ2

√
det (gf · χ)−1, (40)

which separates itself from the b-dependent part of the cal-
culation. The latter, in contrast, is now given by

∏
a

∏
μ>ν

[
Δ

(2π)2

]∫ +∞

−∞
dχa

μν

(
w(0)

)

×
√

det (gf · χ)−1e
i
4 Δ2(χa

μν(w(0)))2

× eigδ(2)(b)Ωa
I (0)[f ·χ(w)]−1|ab

30Ωb
I
(0), (41)

where Δ = δ2, and δ refers to the small distance, in each of
four space-time directions surrounding the point w(0). For a
later purpose, we shall borrow a divergent factor from one
of the normalization terms, and so insert a Δ, multiplying
χ , into the determinant of (41). Henceforth, we suppress
the w(0) symbol, with the understanding that the integral
of (41) refers to the summation over all possible values of
the quantity χa

μν(w
(0)); and we write the measure of (41) as∏

μ>ν

∫
dnχμν , where n refers to the number of independent

color contributions of SU(N).
The next step is to rescale the Δ-dependence of (41),

defining χ̄a
μν = Δχa

μν and so obtain

(2π)−2
∏
μ>ν

∫
dnχ̄μνe

i
4 χ̄2

√
det (gf · χ̄ )−1

× eig[Δδ(2)(b)]Ωa
I (0)[f ·χ̄]−1|ab

30Ωb
I
(0), (42)

and we must then interpret the quantity Δδ(2)(b). For this,
first write a Fourier representation

δ(2)(b) = (2π)2
∫

d2k⊥ eik⊥·b, (43)

and realize that this integral requires a specification of
all k⊥. But is this reasonable in an eikonal model of quarks,
where we understand that such quarks can never be mea-
sured in isolation, with precise values of momenta? Rather,
we must extend this eikonal model to allow for unmea-
surable transverse momenta exchanged between quarks of
the same hadron, before any quarks in different hadrons
can be imagined to interact with each other, as is the con-
ceptual situation of this calculation. That transverse mo-
menta, which can be treated as an average quantity even
though it can never be measured with precision, will cer-
tainly be smaller than the CM momenta, or the CM en-
ergy, of the hadrons which are actually scattering; and it
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will be on the same order of magnitude as the transverse
momenta defining the δ-function above. In other words, tak-
ing into account that we are talking about quark scattering,
rather than particle scattering, the magnitude of the trans-
verse momenta inside

∫
d2k⊥ must be limited; and the nat-

ural parameter which sets the scale for high-energy scatter-
ing, in which eikonal models are most relevant, is the CM
scattering energy of the hadrons. We therefore insert under
the integral of

∫
d2k⊥ a limiting factor for its transverse

momenta; this can be done in many, physically-equivalent
ways, but perhaps the simplest is to use exp [−k⊥2/M2],
with M on the order of the CM scattering energy. This
replaces δ(2)(b) by a more realistic Gaussian distribution
(M2/4π) · exp [−M2b2/4], and has the further advantage
that the product Δδ(2)(b) is now proportional to the dimen-
sionless quantity ΔM2. Since it was our eikonal model that,
in part, defined Δ, it is reasonable to choose the product
ΔM2 ≡ ξ as a number ∼O(1), thereby replacing the orig-
inal Δδ(2)(b) by ϕ(b) = ξ

4π
exp [−M2b2/4]. Equation (42)

then becomes

(2π)−2
∏
μ>ν

∫
dnχ̄μν

√
det (gf · χ̄)−1

× e
i
4 χ̄2+igϕ(b)Ωa

I (0)[f ·χ̄ ]−1|ab
30Ωb

I
(0). (44)

3 Evaluation

We next turn to the evaluation of (44), which is to be inserted
under the normalized functional integrals

N ′′
∫

d[ΩI]
∫

d[ΩI]

× exp

[
−i

∫ +∞

−∞
ds

(
αa

I (s)Ωa
I (s) + αb

I
(s)Ωb

I
(s)

)]
. (45)

But the b-dependence of (44) is associated with ΩI(0) and
ΩI(0); and this means that all of the other si values, si �=
0, of the

∫
d[ΩI] and

∫
d[ΩI] may be integrated immedi-

ately, with all yielding factors of δ(αI(si)) and δ(αI(sj )),
si �= 0 �= sj . Only the normalized contributions of each func-
tional integral with s = 0 are relevant here. In the Quasi-
Abelian model of reference [3], this was suggested as an
intelligent approximation for the SU(2) eikonal model con-
sidered there; but here, for SU(3), it is an almost automatic
consequence of the ‘locality’ of the gluon-ghost mechanism.
And it has the extremely convenient effect of transforming
the remaining OE integrations over (exp [−i

∫
αI · λI])+ and

(exp [−i
∫

αI · λI])+ into ordinary integrals over unordered

quantities,

(
Δ

2π

)n ∫
dnαI e

−iΔαI(0)·λI

×
(

Δ

2π

)n ∫
dnαI e−iΔαI(0)·λI , (46)

with the result that all that remains of the color dynamics are
the tedious but straightforward, ordinary integrals

(2π)−2n

∫
dnαI

∫
dnαI

∫
dnΩI

∫
dnΩI

× eigϕΩa
I [f ·χ]−1|ab

30Ωb
I · e−iαI·ΩI−iαI·ΩI

× e−iαI·λI · e−iαI·λI , (47)

where we have rescaled the αI,I variables, and suppressed
their now useless (0) notation, as well as the notational
change: χ̄ → χ , for the remaining χ integration.

To evaluate (47) one needs a representation of the inverse
of the doubly anti-symmetric matrix, [f · χ]−1|ab

μν . If there
exist n color and 4 space-time coordinates, there are then
3n(n − 1) independent quantities comprising this quantity,
and the simplest, compatible assumption is to write

[f · χ]−1
∣∣ab

μν
= Gab · Hμν, (48)

where we expect Gab and Hμν each to be anti-symmetric. If
(48) is true, there then follows the necessary condition

δabδμν =
∑
c,λ

(f · χ)|ac
μλG

cb · Hλν, (49)

which can be used to provide implicit representations for
both G and H , as follows. Set a = b in (49) and sum over
all color coordinates to obtain

δμν =
∑
λ

[
1

n

∑
b,c

(f · χ)|bc
μλG

cb

]
· Hλν, (50)

from which it follows that

(
H−1)

μν
= 1

n

∑
b,c

(f · χ)|bc
μνG

cb. (51)

Similarly, set μ = ν and sum over space-time indices to ob-
tain

(
G−1)ab = 1

4

∑
μ,λ

(f · χ)|ab
μλHλμ. (52)

It will be convenient to define

Qμν = 1

n

∑
b,c

f bceGcbχe
μν ≡

∑
e

qeχe
μν, (53)
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so that (51) and its inverse can be expressed as

(
H−1)

μν
= Qμν, Hμν = (

Q−1)
μν

. (54)

The general statement of the inverse of an anti-symmetric,
4 × 4 matrix can be used to represent Q−1 as

(
Q−1)

μν
= 1

2

εμναβQαβ√
detQ

, (55)

but it will be most useful to note that only one of the six,
independent Hμν , H30, is multiplied by the factor gϕ in the
exponential of (44); and for small b and large g, this contri-
bution will be large. Does this carry the implication that, for
all color indices, the χc

30 will typically be larger than the χc
αβ

of the other Lorentz indices? Not necessarily, but in the in-
terest of simplifying the computations we shall assume that
only χ30 and χ12 are of interest. (In order to prevent det [Q]
from vanishing, it is necessary to retain one other χαβ in ad-
dition to χ30.) With this approximation, det [Q] → Q2

12Q
2
30,

and

(
Q−1)

μν
= δμ3δν0Q12 + δμ1δν2Q30

Q12Q30
, (56)

so that

H30 = (
Q−1)

30 = 1

Q30
, (57)

and

(
G−1)ab = 1

2

∑
d

f abd

{
χd

30

Q30
+ χd

12

Q12

}
, (58)

with Gab given by the inverse of (58).
Does the inverse of G−1 exist? The inverse of an anti-

symmetric matrix Mab of eight rows and columns is given
by

(
M−1)ab = 1

48
[detM]− 1

2 εabcdefghMcdMef Mgh, (59)

where εabcdefgh is the unit anti-symmetric tensor of eight
dimensions. However, if Mab = ∑

c f abcV c ≡ (f · V )ab ,
calculation shows2 that det [f · V ] = 0, for any and every
value of the color vector V c . In general, inverses of such Lie-
valued sums do not exist, and it might appear that this MGI
calculation must grind to a halt. However, what is relevant
is the combination of G with H , not G alone; and therefore
let us give a physicist’s redefinition of the problem. We shall
define the determinant of a matrix M as: det [M]+λ2, where
λ → 0 as a subsequent condition. It is also understood that
the elements of M are dimensionless.

2We thank Marcus Spradlin for his kind and most efficient help with
Mathematica.

Rewriting (52) in the form (G−1)ab = (f · V )ab , where
V c = 1

4

∑
μλ χc

μλHλμ, the corresponding Gab may be ex-

pressed as Gab = Ḡab/λ, where Ḡab is defined by (1/48)

multiplying the corresponding numerator of (59), with
Mab = (f · V )ab . From (53) the quantities Qμν and qe may
be written as Qμν = Q̄μν/λ, qe = q̄e/λ, where Q̄ and q̄ are
defined in terms of the finite Ḡ. Then, from (54) one may
write Hμν = λ(Q̄−1)μν ≡ λH̄μν ; and in this way the product
Gab ·Hμν of (48) becomes Ḡab · H̄μν , and is independent of
λ. Only Ḡab quantities are needed in the subsequent analysis
of color dynamics; although one finds a factor of det[G−1]
required at one point in the calculation, it is immediately
followed by a factor det [G]; and the product of two such de-
terminants is unity. But were there a divergent contribution
of any form associated with the original (f · χ)−1, which
we have represented by the product from G · H , there exist
separate arguments to show that such divergences have no
effect on the physics; one of those arguments appears in the
paper by Reinhardt et al. [6], and an independent proof is
given in Appendix A of the present paper. Perhaps the sim-
plest argument is to observe that any singularity of (f ·χ)−1

will cause the exponent of (44) to oscillate infinitely rapidly,
and make no contribution to the integral.

Finally, in the special limit of small impact parameter,
the eikonal exponential E[χ] will reduce to a finite set of
possible terms—all considerably smaller than that of the
large impact parameter result—involving the magnitude of
the diagonalized components of G. In this way, because the
color coordinates are coupled to space-time, the procedure is
well defined and yields qualitative results in agreement with
QCD intuition. We shall find that for large impact parame-
ters the scattering is coherent, with the quarks retaining their
original color, while for smaller impact parameters, color
fluctuations reduce the magnitude of the amplitude.

4 Estimation

If the Halpern variable χa
μν is written as zaμνrμν , where zaμν

represents the color-projection of a ‘magnitude’ rμν , in-
spection of the original inter-relations of G and H shows
that G is independent of the ‘magnitudes’ r , and depends
only upon the z; and we shall assume the same dependence
for H̄ and Ḡ. In contrast, H̄ , while dependent upon the z,
varies as the inverse of the r variables; and it is this lat-
ter r-dependence which appears to be most relevant to the
overall color properties of the amplitude. We shall therefore
treat the z-dependence as producing relatively unimportant
averages which are to be relegated to later numerical integra-
tions, and concentrate in what follows on the output of the
r-integrals. Since the gϕ-dependence of (47) is associated
with the dependence of H30, integration over χ12 variables
can be moved into a separate, uninteresting normalization
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constant; and we suppress the (30)-subscripts of the remain-
ing χ30 variables.

The gϕ-dependent exponential factor of (47) is then

exp
[
igϕΩa

I ḠabΩb
I
/r

]
(60)

and we first consider the integral

(2π)−n

∫
dnΩI e

−iαa
I Ωa

I eigϕΩa
I ḠabΩb

I
/r

=
(

r

gϕ

)n

δ(n)

(
ḠabΩb

I
−

(
r

gϕ

)
αa

I

)
. (61)

Now define Ωb
I

≡ (Ḡ−1)bcΩ̄c
I
, so that (61) becomes

(
r

gϕ

)n

δ(n)

(
Ω̄a

I
−

(
r

gϕ

)
αa

I

)
(62)

and
∫

dnΩI yields

(
r

gϕ

)n

det
[
Ḡ−1] e

−iαa
I
(Ḡ−1)abαb

I ( r
gϕ

)
. (63)

Since i
4 χ̄2 ⇒ i

4

∑
c [(χc

12)
2 − (χc

30)
2], after removing the

χc
12-dependence, there remain the gϕ-dependent integrals

(2π)−n

∫
dnαI e

−iλI·αI

∫
dnαI e−iλI·αI

× det
[
Ḡ−1] ·

∫
dnχ e−ir2/4

(
r

gϕ

)n

× e
−i( r

gϕ
)αa

I
(Ḡ−1)abαb

I , (64)

where χc
30 ≡ χc = rzc ,

∫
dnχ ≡

∏
c

∫ +∞

−∞
dχc

=
∏
c

∫ +∞

−∞
dχc

∫ ∞

0
dr2 δ

(
r2 −

∑
a

(
χa

)2

)
; (65)

and with dχc = rdzc ,

∫
dnχ → 2

∏
c

∫ +1

−1
dz

c δ

(
1 −

∑
a

(
z
a
)2

)∫ ∞

0
dr rn−1.

(66)

Then, (64) may be rewritten as

(2π)−n2
∏
c

∫ +1

−1
dz

c δ

(
1 −

∑
a

(
z
a
)2

)

× det
[
Ḡ−1] ∫ ∞

0
dr rn−1

(
r

gϕ

)n

e−ir2/4

×
∫

dnαI e
−iλI·αI

∫
dnαI e−iλI·αI

× e
−i( r

gϕ
)αa

I
(Ḡ−1)abαb

I . (67)

For clarity of presentation, in the passage from (44) and
(45) to (62), we have suppressed the factor of√

det(gf · χ)−1 of (44). From the discussion of Sect. 3 and
that of Appendix A, this omitted term will contribute a fac-
tor of r−1/2 to the integrand of (67), which will have no
bearing on the qualitative conclusions of Sects. 4 and 5.

It will now be most convenient to isolate the αI,I factors
from the λI,I factors, by writing

e−iλI·αI = (2π)−n

∫
dnv

∫
dnΩ eiΩ·(v−αI) · e−iv·λI,

e−iλI·αI = (2π)−n

∫
dnw

∫
dnΩ̄ eiΩ̄·(w−αI) · e−iw·λI ,

(68)

so that integration over the αI,I may be performed,
∫

dnαI

∫
dnαI e−iαI·Ω−iαI·Ω̄ · e−iαa

I (Ḡ−1)abαb
I
/α

= (2π)nαn

∫
dnαI e−iαI·Ω̄δ

(
αΩa − (

Ḡ−1)ab
αb

I

)
, (69)

where α = gϕ/r . With the variable change: αb
I

= Ḡbcβc ,
this becomes

(2π)nαn det
[
Ḡ

] ∫
dnβ e−iΩ̄·Ḡ·βδ(β − αΩ)

= (2π)nαne−iαΩ̄·Ḡ·Ω, (70)

and one notes that the determinantal factor of (70) combines
with that of (67) to produce a factor of unity.

At this point is useful to perform the remaining v, w in-
tegrals written in the form
∫

dnΩ

∫
dnΩ̄ e−iαΩ̄·Ḡ·ΩJI(Ω)JI

(
Ω̄

)
, (71)

where

JI(Ω) = (2π)−n

∫
dnv e−iv·λI · eiv·Ω, (72)

and

JI

(
Ω̄

) = (2π)−n

∫
dnw e−iw·λI · eiw·Ω̄ . (73)

Clearly, for gϕ(b) → 0, (71) reduces to a constant, indepen-
dent of color factors, so that in this limit the initial and fi-
nal quark colors must remain the same; but for large gϕ(b),
there will be oscillations involving changing color coordi-
nates away from that constant, so that the magnitude of the
b-dependent amplitude will be reduced.
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We have carried out a simple estimation of this effect
for the simplest case of SU(2) in Appendix B, and find
that the expectations described in the above paragraph hold
true: Color fluctuations at small impact parameter diminish
the coherent scattering produced at larger impact parame-
ter. This non-perturbative and gauge-invariant statement can
form the conceptual basis of quark scattering and binding, as
well as asymptotic freedom. A more precise statement must
await a careful program of numerical integration, which we
are not able to perform. But there can be little doubt of the
qualitative nature of the output of such a detailed calcula-
tion; and for this reason, we believe that the methods de-
scribed in this paper open a door to the realistic estimation
and calculation of detailed QCD processes, properly gauge
invariant, and containing all orders of coupling.

5 Summary and expectations

The above sections have described a new method of calcu-
lating a particular scattering process in QCD, to all orders of
the coupling and with GI and LC assured. We have made a
number of approximations for ease of presentation, as well
as for our inability of performing certain relatively unim-
portant integrations which must be left for subsequent nu-
merical integration. Our result is a qualitative expression of
the eikonal exponential function E = exp [iX], given as a
function of the square of the impact parameter between the
scattering particles. And from this quantity, by a process re-
quiring numerical integrations, it is, in principle, possible to
obtain a qualitative idea of the effective interaction potential
between a pair of quarks or of a quark and an anti-quark.

To see this, return for a moment to the simple, poten-
tial theory problem of a particle scattering from an exter-
nal potential V (|r|). There, the corresponding function E
is given by the exponential of a simple kinematical factor
multiplying the two-dimensional expression of that poten-
tial, obtained—as a result of a relevant, eikonal-calculation
prescription—by calculating the three-dimensional Fourier
transform of that potential, Ṽ (|k|), and setting the longitu-
dinal component of that 3-momentum equal to zero, to ob-
tain Ṽ (|k⊥|).

In all previous field theory models, or approximate calcu-
lations of subsets of Feynman graphs, which yield eikonals,
χ(b), dependent upon the square of the impact parameter,
the two-dimensional Fourier transform of that eikonal gen-
erates an effective Ṽ (|k⊥|); and the simple ‘extension’ of
|k⊥| to the full, three-dimensional |k|, produces the Fourier
transform of the original potential Ṽ (|r|). The same process
may be considered for the log of the function E we have ob-
tained, with its built-in, qualitative approximations. Because
of the relative complexity of our result, the Fourier trans-
form over its b-dependence must be done numerically; but

that is certainly possible, in principle; and it will generate
a qualitative Ṽ (|k⊥|). Then, the simple enlargement of that
argument, from |k⊥| to the full |k|, produces Ṽ (|k|); and a
subsequent Fourier transform, again performed numerically,
will yield a qualitative form for the effective potential V (|r|)
between quarks and/or anti-quarks.

Of course, the potential will, in SU(3), involve Gell-
Mann color matrices, as in SU(2) it involves Pauli matrices;
but these can be included, in principle, in a perhaps tedious
but straightforward way (as in (3.8) and the following para-
graph of reference [3]). Improvements to our qualitative E
can surely be made, by numerical integration over the r- and
z-factors, at different stages. But here is a method of analyt-
ically producing a qualitative, effective V (|r|)—as well as
an associated scattering amplitude—which includes contri-
butions from every single QCD Feynman graph relevant to
the process.

Of course, we have left out, again for simplicity of pre-
sentation, those parts of the physics dealing with charge
renormalization, and with the production of particles in the
scattering process, inelastic effects which have such a unitar-
ity importance to a scattering amplitude. But, as explained
in the text, these effects can be systematically included in
the MGI/MLC calculations. They may not be able to be cal-
culated exactly, but it will surely be possible to understand
their qualitative features.

The qualitative results seen above for the scattering
amplitude—coherent, multiple gluon exchange at larger im-
pact parameters, with color fluctuations destroying that co-
herence at smaller distances—are intuitively in agreement
with the MIT Bag Model, where quarks are ‘free’ when
close together but are subject to a confining potential, and
tend to bind as they move apart; for example, a pion as
a bound state of a Q and Q̄, with the distance between
them continuously oscillating as they remain bound. An-
other expected example would be the simple vertex function,
where the impact parameter of the present calculation be-
comes the conjugate Fourier variable of momentum transfer,
so that larger momentum transfers correspond to induced
color fluctuations and a decrease of the effective coupling
strength; this is just what would be expected of a theory
with ‘true’ asymptotic freedom, arising from the exchanges
of an infinite number of gluons.

Finally, one must comment on the obvious fact that scat-
tering experiments are performed with hadrons, and not with
individual quarks; each hadron will involve integrals over
the transverse momentum or spatial distributions of individ-
ual quark wave functions. What we have estimated is the
idealized case of two quark/anti-quark scattering, suppress-
ing the fact that each is bound within its own hadron, and
it must be possible to take into account that binding. The
proper way is to carry out those integrations over the quark
coordinates; but a simple, physical argument can serve to
modify our idealized calculation, as follows.
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Binding suggests that the scale of individual transverse
distances, or of the difference between those distances of
two interacting quarks is controlled by the wave functions,
such that 〈b〉 is never appreciably less than 1/μ, where μ

may be taken as on the order of the hadron mass. But our
b = B−b, where B refers to the difference of transverse po-
sitions of the two hadrons, while b denotes the difference of
transverse positions of each quark within its hadron. Physi-
cally, one expects |B| � |b|, and the smallest b-values would
be controlled by the largest k⊥ values of

∫
d2k⊥, which are

surely limited, in any eikonal model, by the requirement that
all transverse momenta associated with, or arising from the
exchange of gluons must be less than the corresponding lon-
gitudinal momenta of the quarks, i.e., |k⊥| � M ∼ O(E).

But there is another question, related to large transverse
separations, when the hadron amplitude is expected to van-
ish, because we are fundamentally dealing with short range
nuclear forces. How large can the B values become, or how
small can the hadronic momentum transfer become, before
some form of screening sets in and reduces the hadronic am-
plitude to zero? In this case, the needed screening must arise
from an interplay of the integrals over quark wave func-
tions such that for sufficiently large b, there is effectively
no scattering, and a ‘short-range’ force has been achieved;
the quark wave functions modify that form of the overall,
hadronic, eikonal amplitude, such that screening sets in for
distances larger than 1/μ—giving a Yukawa effect between
hadrons—while there remains an overall, non-zero and co-
herent scattering for distances less than 1/μ. But from a
quark point of view, the essential and interesting aspect of
our result is that when b becomes so small that b < 1/M ,
color fluctuations begin, and destroy that coherence.

Finally, one may contrast the qualitative output of such
MGI/MLC estimations with other, traditional methods of
‘summing’ Feynman graphs, such as the use of a Bethe–
Salpeter equation, whose kernel is only known in a low-
order perturbative approximation; or a renormalization
group argument, set up to represent the sum of all perturba-
tive effects, but whose beta function is then estimated by a
few orders of perturbation theory; or by the sum of ‘leading-
order’ perturbative terms, which then omit whole classes
of Feynman graphs. In contrast, we believe that the present
method holds great hope for generating at least qualitative
descriptions of field-theory physics which include, or can be
systematically made to include, every virtual exchange.
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Appendix A: Zero eigenvalues of [f ·χ]−1

In this appendix, one wishes to get some insight into the
role of the operator [f · χ]−1’s possible zero eigenvalues.

One then focuses on the expression (44), here rewritten as

N2−1∏
a=1

∫
dχa

30 det[gf · χ]− 1
2 e

i
4 χ2

30+igϕ(b)Ωa
I [f ·χ]−1|ab

30Ωb
I

(A.1)

which is a part of the larger expression

(2π)−2n

∫
dnαI e

−iαa
I λa

∫
dnαI e−iαa

I
λa

×
∫

dnΩI

∫
dnΩI e−iαI·ΩIe−iαI·ΩI

× (2π)−2
∏
a

∫
dχa

30 det[gf · χ]− 1
2

× e
i
4 χ2

30+igϕ(b)Ωa
I .[f ·χ]−1|ab

30Ωb
I (A.2)

and where n, as in the main text, is a shortcut for N2 − 1.
One has the relation

χ2
30 =

N2−1∑
a=1

(
χa

30

)2 = 1

N
tr
(
χa

30λ
a
)2

,

(A.3)
tr
(
λaλb

) = Nδab,

where the λa’s are the n traceless generators of the SU(N)
Lie algebra, taken in its n×n-dimensional adjoint represen-
tation with (λa)bc = −if abc .

Being symmetric under the combined exchange a ↔ b,
3 ↔ 0 the operator [f · χ30] can be diagonalized and has
real eigenvalues. Note that this property applies to [f · χμν]
and can be deduced from (33) with Qa

μ, the current given
after (25). In the form (A.1), though, this property is not
transparent. With the pi,μ, at i = 1,2, given after (36), this
is because (A.1) results from a re-arrangement of an original
expression

gϕ(b) × · · · × (p1,3 p2,0 − p1,0 p2,3)Ω
a
I Ωb

I
[f · χ]−1

∣∣ab

30 ,

(A.4)

on which that symmetry can be read off easily.
The O[χ30] orthogonal matrix that effects the diagonal-

ization of [f · χ]−1 can be used to re-define the integrations
on Ωa

I and Ωb
I

. With this re-definition, the two Jacobians
will compensate one another, so that keeping the same sym-
bol for the re-defined Ω’s, under the integration over Ωa

I
and Ωb

I
, one can proceed to the replacement

igϕΩa
I

([f · χ]−1)ab

30Ωb
I

−→ igϕΩa
I
δab

ξa

Ωb
I
, (A.5)

where the ξa’s are the N2 − 1 eigenvalues of the matrix
[f · χ30], some of them, possibly zero.
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Now, relying on Theorem 3.2 in Ref. [23], and taking
(A.3) and (A.5) into account, it is possible to re-write (A.1)
as

1

N

∫ +∞

−∞
dξ1 · · ·dξn δ

(
n∑
1

ξi

)

×
∏

1≤i<j≤n

|ξi − ξj |e
i

4N

∑n
a=1 ξ2

a√
ξ1 · · · ξn

e
igϕΩa

I
δab

ξa
Ωb

I , (A.6)

where the delta-function accounts for the traceless property
of any [f · χ] matrix, and where N is the normalization
constant

N =
∫ +∞

−∞
dξ1 · · ·dξn δ

(
n∑
1

ξi

)

×
∏

1≤i<j≤n

|ξi − ξj |e i
4N

∑n
a=1 ξ2

a . (A.7)

Of course, calculations can be continued further [24], but
in (A.6) it already appears that the possible occurrence of
vanishing eigenvalues is not a problem, and that they should
not contribute significantly.

Appendix B: Estimation in SU(2)

The quantities
∏n

c=1

∫ +1
−1 dzcδ(1 − ∑

a (za)2) used repeat-
edly in the text are simply solid angle factors, as can be seen
immediately for n = 3 of SU(2). There, one can make a vari-
able change from z1, z2, z3 to λ, θ , φ, where −1 ≤ λ ≤ +1,
z1 = λ sin θ cosφ, z2 = λ sin θ sinφ, z3 = λ cos θ . The Jaco-
bian of the transformation dz1 dz2 dz3 = J dλdθ dφ is simple
to obtain, J = λ2 sin θ , so that

3∏
c=1

∫ +1

−1
dz

c δ

(
1 −

∑
a

(
z
a
)2

)

=
∫ +1

−1
dλ

∫ π

0
dθ

∫ 2π

0
dφ δ

(
1 − λ2)λ2 sin θ

=
∫ π

0
dθ

∫ 2π

0
dφ sin θ, (B.1)

as expected.
To illustrate how color fluctuations can reduce a coherent

amplitude, consider the simplest SU(2) case of (71), where

J (Ω) = (2π)−3
∫

d3v e−iv·σ · eiv·Ω. (B.2)

Upon performing the angular integrations, and then integra-
tion over the magnitude of v, one obtains

J (Ω) = − 1

4π

[
1

Ω

∂

∂Ω
+ σ · ∂

∂Ω

]
δ(1 − Ω)

Ω
. (B.3)

The integral
∫

d3ΩJI(Ω)eiαΩ·Ḡ·Ω̄ then becomes

1

4π

3∏
c=1

∫ +1

−1
dz

c δ
(
1 − (

z
c
)2)

× [
1 + iα

(
σ I

i + z
i
)
Ḡij Ω̄j

]
eiα

∑
ab zaḠabΩ̄b

, (B.4)

and performing the final
∫

d3Ω̄ JI(Ω̄) on the result of (B.4)
produces for the SU(2) form of (71) the result

(
1

4π

)2 3∏
c=1

∫ +1

−1
dz

c δ

(
1 −

∑
a

(
z
a
)2

)

·
3∏

d=1

∫ +1

−1
dz̄

d δ

(
1 −

∑
b

(
z̄
b
)2

)
· eiαz·Ḡ·z̄

· {1 + iαξ1
(
σ I · Ḡ · σ I

) + iαξ2
(
σ I · Ḡ · z̄ + z · Ḡ · σ I

)

+ iαξ3
(
z · Ḡ · z̄) + (iα)2ξ4

(
σ I · Ḡ · z̄)(z · Ḡ · σ I

)

+ (iα)2ξ5
(
z · Ḡ · z̄)2}

, (B.5)

where ξ1, . . . , ξ5 are numerical constants. The Ḡab are gi-
ven by that numerator function of (59), where the Mab de-
pend upon the zc-components of χc

30, as given by (58); and
those zc-components have been suppressed, for they require
a separate, numerical integration. In SU(2), only the diago-
nal σ

I,I
3 spin matrices can contribute to matrix elements be-

tween unchanged isotropic (i.e., color) states, whereas for
SU(3) there would be two such matrices, λ

I,I
3 and λ

I,I
8 .

Let us estimate the α �= 0 effect by evaluating the ‘1’
term of the curly bracket of (B.5); and for this it is most
convenient to consider an orthogonal transformation to dia-
gonalize the real, anti-symmetric Ḡab , by simultaneously
transforming to a new set of variables z′a , z̄′b . Under such a
transformation, the measures and form of the ‘1’ terms con-
tributing to (B.5) are unchanged, but the exponential factor
z′ · Ḡ′ · z̄′ is simplified because Ḡ′ is diagonal. After convert-
ing to angular coordinates, let us simplify even further by
suppressing the φ′-, φ̄′-dependence of that exponential, and
merely calculate the θ ′, θ̄ ′ integrals, using z′ = cos θ ′ and
z̄′ = cos θ̄ ′,

I (a) =
∫ +1

−1
dz

′
∫ +1

−1
dz̄

′ eiaz′z̄′
, (B.6)

where a = gϕ(b)Ḡ′
33/r , and we assume that Ḡ′

33 �= 0. These
integrals are elementary and yield

I (a) = 4

a

∫ a

0
dx

sinx

x
. (B.7)

For large values of a, corresponding to small impact para-
meter, I (a) � 2π/a, and is damped in comparison to the
corresponding integrals one finds for a → 0, I (0) = 4. This
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sort of damping is naturally to be expected when color fluc-
tuations destroy the large impact parameter coherence, as
stated in the text at the end of Sect. 4.

Appendix C: Gauge independence

The QCD Lagrangian can be expressed as

LQCD = Lgluon + Lquark + Lint

= −1

4
Fa

μνFa
μν − ψ̄

[
m + γμ

(
∂μ − igAa

μλa
)]

ψ, (C.1)

where Aa
μ are gauge fields, Fa

μν is the field strength with

Fa
μν = ∂μAa

ν − ∂νA
a
μ + gf abcAb

μAc
ν, (C.2)

and λa are the color matrices of SU(3). Separate the gluon
sector of Lagrangian into two parts as [25]

Lgluon = −1

4
Fa

μνFa
μν

= −1

4

[
faμνfaμν + (

Fa
μνFa

μν − faμνfaμν

)]
, (C.3)

where faμν = ∂μAa
ν −∂νA

a
μ as defined in (10). Thus, Lgluon =

L(0)
gluon + L′

gluon with

L(0)
gluon = −1

4
faμνfaμν, (C.4)

L′
gluon = −1

4

(
Fa

μνFa
μν − faμνfaμν

)
. (C.5)

One can add and subtract a ‘gauge-fixing’ term to the gluon
Lagrangian, which does not change its overall gauge invari-
ance.

L(0)
gluon = −1

4
faμνfaμν − 1

2ζ

(
∂μAa

μ

)2
, (C.6)

L′
gluon = Lgluon − L(0)

gluon

= −1

4

(
Fa

μνFa
μν − faμνfaμν

) + 1

2ζ

(
∂μAa

μ

)2
. (C.7)

The QCD Lagrangian can then be written in terms of free
L(0)

QCD and interacting L′
QCD parts as LQCD = L(0)

QCD + L′
QCD,

where the free and interacting parts are

L(0)
QCD = Lquark + L(0)

gluon

= −ψ̄[m + γμ · ∂μ]ψ − 1

4
faμνfaμν − 1

2ζ

(
∂μAa

μ

)2
,

(C.8)

L′
QCD = Lint + L′

gluon

= +igψ̄
(
γμ · Aa

μλa
)
ψ − 1

4

(
Fa

μνFa
μν − faμνfaμν

)

+ 1

2ζ

(
∂μAa

μ

)2
, (C.9)

respectively.
The generating functional of QCD is

Z{j, η̄, η}

= 1

〈S〉 exp

[
i

∫
L′

QCD

{
1

i

δ

δj
,

1

i

δ

δη̄
,
−1

i

δ

δη

}]

· Z0{j, η̄, η}, (C.10)

where ja
μ, ημ, and η̄μ are gluon, quark and anti-quark

sources, respectively. Following the conventional approach,
either functional integral or Schwinger’s action principle [7],

the free generating functional with L(0)
QCD = L(0)

gluon + Lquark

is

Z0{j, η̄, η} = exp

{
i

2

∫
j · D(ζ )

c · j + i

∫
η̄ · Sc · η

}
, (C.11)

where the gauge field propagator is now defined by the
gauge condition with a gauge parameter ζ as

i

∫
L(0)

gluon = − i

4

∫
faμνfaμν − i

2ζ

∫ (
∂μAa

μ

)2

= + i

2

∫
Aa

μδab

[
δμν∂

2 +
(

1

ζ
− 1

)
∂μ∂ν

]
Ab

ν

= − i

2

∫
Aa

μ

(
D(ζ )

c
−1)ab

μν
Ab

ν (C.12)

and

(
D(ζ )

c
−1)ab

μν
= −δab

[
δμν∂

2 +
(

1

ζ
− 1

)
∂μ∂ν

]
. (C.13)

After rearrangement, one finds

Z{j, η̄, η} = 1

〈S〉e
i
2

∫
j ·D(ζ )

c ·j · e− i
2

∫
δ

δA
·D(ζ )

c · δ
δA

· ei
∫

L′
QCD[A, 1

i
δ
δη̄

, −1
i

δ
δη

] · ei
∫

η̄·Sc·η

= e
i
2

∫
j ·D(ζ )

c ·j · e− i
2

∫
δ

δA
·D(ζ )

c · δ
δA

· ei
∫

L′
gluon[A] · ei

∫
η̄·Gc[A]·η · eL[A]

〈S〉 , (C.14)

where Aa
μ(x) = ∫

dy D(ζ )ab
cμν (x − y) jb

ν (y). The exponential
factor involving L′

gluon can be cast into the form
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e
i
∫

L′
gluon[A]

= exp

{
− i

4

∫ (
Fa

μνFa
μν − faμνfaμν

) + i

2ζ

∫ (
∂μAa

μ

)2
}

= N ′
∫

d[χ] e i
4

∫
χa

μνχa
μν+ i

2

∫
χa

μνFa
μν

· e+ i
4

∫
faμν faμν+ i

2ζ

∫
(∂μAa

μ)2
, (C.15)

where (17) is used. The χa
μν -independent factor becomes

+ i

4

∫
faμνfaμν + i

2ζ

∫ (
∂μAa

μ

)2

= − i

2

∫
Aa

μδab

[
δμν∂

2 +
(

1

ζ
− 1

)
∂μ∂ν

]
Ab

ν

= + i

2

∫
Aa

μ

(
D(ζ )

c
−1)ab

μν
Ab

ν. (C.16)

The generating function of QCD becomes

Z{j, η̄, η}
= e

i
2

∫
j ·D(ζ )

c ·j · e− i
2

∫
δ

δA
·D(ζ )

c · δ
δA

× N ′
∫

d[χ] e i
4

∫
χ2+ i

2

∫
χ ·[f+gf AA]

· e+ i
2

∫
A·D(ζ )

c
−1·A · ei

∫
η̄·Gc[A]·η · eL[A]

〈S〉 . (C.17)

Except for the expansion of the closed-fermion-functional
L[A], the gauge field dependence in the exponent is at most
quadratic; however, an expansion in powers of L[A], using
a modified Fradkin representation for each L[A] and Gc[A],
generates a totally quadratic A-dependence.

For the QQ or QQ̄ scattering, one will encounter

e− i
2

∫
δ

δA
·D(ζ )

c · δ
δA

· [GI
c[A]GI

c[A]eL[A] (C.18)

· e+ i
2

∫
χ ·[f+gf AA]+ i

2

∫
A·D(ζ )

c
−1·A]∣∣

A→0. (C.19)

Under the eikonal and quenched approximations, the co-
efficients of linear and quadratic Aa

μ-dependent terms are
(cf. (25))

Qa
μ = g

(
Ra

Iμ + Ra
Iμ

) − ∂νχ
a
μν, (C.20)

and

Kab
μν = gf abcχc

μν + (
D(ζ )

c
−1)ab

μν
, (C.21)

respectively, and where Ra
Iν and Ra

Iν
come from the eikonal

approximation of the Green’s function of the quarks or anti-
quarks. The linkage operation can be worked out as

e− i
2

∫
δ

δA
·D(ζ )

c · δ
δA · e+ i

2

∫
A·K·A+i

∫
A·Q∣∣

A→0

= e− 1
2 Tr ln (1−D(ζ )

c ·K) · e i
2

∫
Q·[D(ζ )

c ·(1−K·D(ζ )
c )−1]·Q. (C.22)

The kernel in the quadratic term of Qa
μ is

Dζ
c · (1 − K · Dζ

c

)−1

= Dζ
c · (1 − [

gf · χ + Dζ
c
−1] · Dζ

c

)−1

= −(gf · χ)−1. (C.23)

The result is independent of the gluon (gauge field) propa-
gator. The derivation is valid for arbitrary relativistic gauge
conditions.

Appendix D: List of Abbreviations

The following abbreviations have been used freely through-
out the text.

CM Center of Mass
ETCRs Equal-time Commutation Relations
FI Functional Integral
GF Generating Functional
GI Gauge-Invariant
LC Lorentz Covariant
MGI Manifestly Gauge Invariant
MLC Manifestly Lorentz Covariant
NVM Neutral Vector Meson
OE Ordered Exponential
Q Quark
Q̄ Anti-quark
QA Quasi-Abelian
QFT Quantum Field Theory
RHS Right Hand Side
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