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Summary. We present an elementary introduction to compactifications with un-
broken supersymmetry. After explaining how this requirement leads to internal
spaces of special holonomy we describe Calabi-Yau manifolds in detail. We also
discuss orbifolds as examples of solvable string compactifications.

1 Introduction

The need to study string compactification is a consequence of the fact that a
quantum relativistic (super)string cannot propagate in any space-time back-
ground. The dynamics of a string propagating in a background geometry
defined by the metric GMN is governed by the Polyakov action

SP = − 1
4πα′

∫

Σ

d2σ
√
−hhαβ∂αX

M∂βX
NGMN (X) . (1.1)

Here σα, α = 0, 1, are local coordinates on the string world-sheet Σ, hαβ is
a metric on Σ with h = dethαβ , and XM , M = 0, . . . , D − 1, are functions
Σ ↪→ space-time M with metric GMN (X). α′ is a constant of dimension
(length)2. SP is the action of a two-dimensional non-linear σ-model with
target space M, coupled to two-dimensional gravity (hαβ) where the D-
dimensional metric GMN appears as a coupling function (which generalizes
the notion of a coupling constant). For flat space-time with metric GMN =
ηMN the two-dimensional field theory is a free theory. The action (1.1) is
invariant under local scale (Weyl) transformations hαβ → e2ωhαβ , X

M →
XM . One of the central principles of string theory is that when we quantize
the two-dimensional field theory we must not loose this local scale invariance.
In the path-integral quantization this means that it is not sufficient if the
action is invariant because the integration measure might receive a non-trivial
Jacobian which destroys the classical symmetry. Indeed, for the Polyakov
action anomalies occur and produce a non-vanishing beta function β

(G)
MN ≡

α′RMN +O(α′2). Requiring β(G)
MN = 0 to maintain Weyl invariance gives the

Einstein equations for the background metric: only their solutions are viable
(perturbative) string backgrounds. But there are more restrictions.

Besides the metric, in the Polyakov action (1.1) other background fields
can appear as coupling functions: an antisymmetric tensor-field BMN (X)
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and a scalar, the dilaton φ(X).1 The background value of the dilaton de-
termines the string coupling constant, i.e. the strength with which strings
interact with each other. Taking into account the fermionic partners (under
world-sheet supersymmetry) of XM and hαβ gives beta functions for BMN

and φ that vanish for constant dilaton and zero antisymmetric field only if
D = 10. This defines the critical dimension of the supersymmetric string
theories. We thus have to require that the background space-time M10 is a
ten-dimensional Ricci-flat manifold with Lorentzian signature. Here we have
ignored the O(α′2) corrections, to which we will briefly return later. The
bosonic string which has critical dimension 26 is less interesting as it has no
fermions in its excitation spectrum.

The idea of compactification arises naturally to resolve the discrepancy be-
tween the critical dimension D = 10 and the number of observed dimensions
d = 4. SinceM10 is dynamical, there can be solutions, consistent with the re-
quirements imposed by local scale invariance on the world-sheet, which make
the world appear four-dimensional. The simplest possibility is to have a back-
ground metric such that space-time takes the product form M10 =M4×K6

where e.g. M4 is four-dimensional Minkowski space and K6 is a compact
space which admits a Ricci-flat metric. Moreover, to have escaped detection,
K6 must have dimensions of size smaller than the length scales already probed
by particle accelerators. The type of theory observed in M4 will depend on
properties of the compact space. For instance, in the classic analysis of su-
perstring compactification of [2], it was found that when K6 is a Calabi-Yau
manifold, the resulting four-dimensional theory has a minimal number of su-
persymmetries [2]. One example of Calabi-Yau space discussed in [2] was the
Z-manifold obtained by resolving the singularities of a T6/Z3 orbifold. It was
soon noticed that string propagation on the singular orbifold was perfectly
consistent and moreover exactly solvable [3]. These lectures provide an intro-
duction to string compactifications on Calabi-Yau manifolds and orbifolds.

The outline is as follows. In Sect. 2 we give a short review of compacti-
fication à la Kaluza-Klein. Our aim is to explain how a particular choice of
compact manifold imprints itself on the four-dimensional theory. We also dis-
cuss how the requirement of minimal supersymmetry singles out Calabi-Yau
manifolds. In Sect. 3 we introduce some mathematical background: complex
manifolds, Kähler manifolds, cohomology on complex manifolds. We then
give a definition of Calabi-Yau manifolds and state Yau’s theorem. Next we
present the cohomology of Calabi-Yau manifolds and discuss their moduli
1 There are other p-form fields, but their coupling to the world-sheet cannot be

incorporated into the Polyakov action. The general statement is that the massless
string states in the (NS,NS) sector, which are the metric, the anti-symmetric
tensor and the dilaton, can be added to the Polyakov action. The massless p-
forms in the (R,R) sector cannot. This can only be done within the so-called
Green-Schwarz formalism and its extensions by Siegel and Berkovits; for review
see [1].
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spaces. As an application we work out the massless content of type II super-
strings compactified on Calabi-Yau manifolds. In Sect. 4 we study orbifolds,
first explaining some basic properties needed to describe string compactifi-
cation on such spaces. We systematically compute the spectrum of string
states starting from the partition function. The techniques are next applied
to compactify type II strings on T2n/ZN orbifolds that are shown to allow un-
broken supersymmetries. These toroidal Abelian orbifolds are in fact simple
examples of spaces of special holonomy and the resulting lower-dimensional
supersymmetric theories belong to the class obtained upon compactification
on Calabi-Yau n-folds. We end with a quick look at recent progress. In Ap-
pendix A we fix our conventions and recall a few basic notions about spinors
and Riemannian geometry. Two technical results which will be needed in the
text are derived in Appendices B and C.

In these notes we review well known principles that have been applied
in string theory for many years. There are several important developments
which build on the material presented here which will not be discussed: mirror
symmetry, D-branes and open strings, string dualities, compactification on
manifolds with G2 holonomy, etc. The lectures were intended for an audience
of beginners in the field and we hope that they will be of use as preparation
for advanced applications. We assume that the reader is already familiar with
basic concepts in string theory that are well covered in textbooks [4, 5, 6].
But most of Sects. 2 and 3 do not use string theory at all. We have included
many exercises whose solutions will eventually appear on [7].

2 Kaluza-Klein Fundamentals

Kaluza and Klein unified gravity and electromagnetism in four dimensions by
deriving both interactions from pure gravity in five dimensions. Generalizing
this, one might attempt to explain all known elementary particles and their
interactions from a simple higher dimensional theory. String theory naturally
lives in ten dimensions and so lends itself to the Kaluza-Klein program.

The discussion in this section is relevant for the field theory limit of string
theory, where its massive excitation modes can be neglected. The dynamics of
the massless modes is then described in terms of a low-energy effective action
whose form is fixed by the requirement that it reproduces the scattering
amplitudes as computed from string theory. However, when we compactify
a string theory rather than a field theory, there are interesting additional
features to which we return in Sect. 4.

In the following we explain some basic results in Kaluza-Klein compact-
ifications of field theories. For a comprehensive review see for instance [8]
which cites the original literature. The basic material is well covered in [4]
which also discusses the string theory aspects.
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2.1 Dimensional Reduction

Given a theory in D dimensions we want to derive the theory that results
upon compactifying D − d coordinates on an internal manifold KD−d. As a
simple example consider a real massless scalar in D=5 with action

S0 = −1
2

∫

d5x ∂Mϕ∂Mϕ , (2.1)

where ∂M = ηMN∂N with ηMN = ηMN = diag(−,+, · · · ,+), M,N =
0, · · · , 4. The flat metric is consistent with the five-dimensional spaceM5 hav-
ing product form M5 = M4 × S1, where M4 is four-dimensional Minkowski
space and S1 is a circle of radius R. We denote xM = (xµ, y), µ = 0, · · · , 3,
so that y ∈ [0, 2πR]. The field ϕ satisfies the equation of motion

�ϕ = 0 ⇒ ∂µ∂
µϕ+ ∂2

yϕ = 0 . (2.2)

Now, since ϕ(x, y) = ϕ(x, y + 2πR), we can write the Fourier expansion

ϕ(x, y) =
1√
2πR

∞∑

n=−∞
ϕn(x)einy/R . (2.3)

Notice that Yn(y) ≡ 1√
2πR

einy/R are the orthonormalized eigenfunctions of
∂2

y on S1. Substituting (2.3) in (2.2) gives

∂µ∂
µϕn −

n2

R2
ϕn = 0 . (2.4)

This clearly means that ϕn(x) are 4-dimensional scalar fields with masses
n/R. This can also be seen at the level of the action. Substituting (2.3) in
(2.1) and integrating over y (using orthonormality of the Yn) gives

S0 = −
∞∑

n=−∞

1
2

∫

d4x

[

∂µϕn ∂
µϕ∗

n +
n2

R2
ϕ∗

nϕn

]

. (2.5)

This again shows that in four dimensions there is one massless scalar ϕ0

plus an infinite tower of massive scalars ϕn with masses n/R. We are usually
interested in the limit R → 0 in which only ϕ0 remains light while the ϕn,
n �= 0, become very heavy and are discarded. We refer to this limit in which
only the zero mode ϕ0 is kept as dimensional reduction because we could
obtain the same results demanding that ϕ(xM ) be independent of y. More
generally, dimensional reduction in this restricted sense is compactification on
a torus TD−d, discarding massive modes, i.e. all states which carry momentum
along the directions of the torus.

The important concept of zero modes generalizes to the case of curved
internal compact spaces. However, it is only in the case of torus compactifi-
cation that all zero modes are independent of the internal coordinates. This
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guarantees the consistency of the procedure of discarding the heavy modes
in the sense that a solution of the lower-dimensional equations of motion is
also a solution of the full higher-dimensional ones.

In D dimensions we can have other fields transforming in various repre-
sentations of the Lorentz group SO(1,D−1). We then need to consider how
they decompose under the Lorentz group in the lower dimensions. Tech-
nically, we need to decompose the representations of SO(1,D− 1) under
SO(1, d− 1) × SO(D− d) associated to Md × KD−d. For example, for a
vector AM transforming in the fundamental representation D we have the
branching D = (d,1) + (1,D − d). This just means that AM splits into Aµ,
µ = 0, · · · , d−1 and Am, m = d, · · · ,D− 1. Aµ is a vector under SO(1, d−1)
whereas Am, for each m, is a singlet, i.e. the Am appear as (D − d) scalars
in d dimensions. Similarly, a two-index antisymmetric tensor BMN decom-
poses into Bµν , Bµm and Bmn, i.e. into an antisymmetric tensor, vectors and
scalars in d dimensions.

Exercise 2.1: Perform the dimensional reduction of:

– Maxwell electrodynamics.

S1 = −1
4

∫

d4+nxFMNF
MN , FMN = ∂MAN − ∂NAM . (2.6)

– Action for a 2-form gauge field BMN .

S2 = − 1
12

∫

d4+nxHMNPH
MNP , HMNP = ∂MBNP + cyclic . (2.7)

We also need to consider fields that transform as spinors under the Lorentz
group. Here and below we will always assume that the manifolds considered
are spin manifolds, so that spinor fields can be defined. As reviewed in Appen-
dix A, inD dimensions, the Dirac matrices ΓM are 2[D/2]×2[D/2]-dimensional
([D/2] denotes the integer part of D/2). The Γµ and Γm, used to build the
generators of SO(1, d−1) and SO(D−d), respectively, then act on all 2[D/2]

spinor components. This means that an SO(1,D−1) spinor transforms as
a spinor under both SO(1, d−1) and SO(D−d). For example, a Majorana
spinor ψ in D=11 decomposes under SO(1, 3)×SO(7) as 32 = (4, 8), where
4 and 8 are respectively Majorana spinors of SO(1, 3) and SO(7). Hence,
dimensional reduction of ψ gives rise to eight Majorana spinors in d = 4.

We are mainly interested in compactification of supersymmetric theories
that have a set of conserved spinorial charges QI , I = 1, · · · ,N . Fields orga-
nize into supermultiplets containing both fermions and bosons that transform
into each other by the action of the generators QI [9]. In each supermultiplet
the numbers of on-shell bosonic and fermionic degrees of freedom do match
and the masses of all fields are equal. Furthermore, the action that deter-
mines the dynamics of the fields is highly constrained by the requirement of
invariance under supersymmetry transformations. For instance, for D= 11,
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N =1, there is a unique theory, namely eleven-dimensional supergravity. For
D=10, N =2 there are two different theories, non-chiral IIA (Q1 and Q2 are
Majorana-Weyl spinors of opposite chirality) and chiral IIB supergravity (Q1

and Q2 of same chirality). For D= 10, N = 1, a supergravity multiplet can
be coupled to a non-Abelian super Yang-Mills multiplet provided that the
gauge group is E8 × E8 or SO(32) to guarantee absence of quantum anom-
alies. The above theories describe the dynamics of M-theory and the various
string theories at low energies.

One way to obtain four-dimensional supersymmetric theories is to start
in D= 11 or D= 10 and perform dimensional reduction, i.e. compactify on
a torus. For example, we have just explained that dimensional reduction of
a D = 11 Majorana spinor produces eight Majorana spinors in d = 4. This
means that starting with D=11, N =1, in which Q is Majorana, gives a d=4,
N = 8 theory upon dimensional reduction. As another interesting example,
consider D=10, N =1 in which Q is a Majorana-Weyl spinor. The 16 Weyl
representation of SO(1, 9) decomposes under SO(1, 3)× SO(6) as

16 = (2L, 4̄) + (2R,4) , (2.8)

where 4, 4̄ are Weyl spinors of SO(6) and 2L,R are Weyl spinors of SO(1, 3)
that are conjugate to each other. If we further impose the Majorana condition
inD=10, then dimensional reduction of Q gives rise to four Majorana spinors
in d = 4. Thus, N = 1, 2 supersymmetric theories in D = 10 yield N = 4, 8
supersymmetric theories in d=4 upon dimensional reduction.

Toroidal compactification of superstrings gives theories with too many su-
persymmetries that are unrealistic because they are non-chiral, they cannot
have the chiral gauge interactions observed in nature. Supersymmetric ex-
tensions of the Standard Model require d=4, N =1. Such models have been
extensively studied over the last 25 years (for a recent review, see [10]). One
reason is that supersymmetry, even if it is broken at low energies, can explain
why the mass of the Higgs boson does not receive large radiative corrections.
Moreover, the additional particles and particular couplings required by su-
persymmetry lead to distinct experimental signatures that could be detected
in future high energy experiments.

To obtain more interesting theories we must go beyond toroidal com-
pactification. As a guiding principle we demand that some supersymmetry
is preserved. As we will see, this allows a more precise characterization of
the internal manifold. Supersymmetric string compactifications are moreover
stable, in contrast to non-supersymmetric vacua that can be destabilized by
tachyons or tadpoles. Now, we know that in the real world supersymmetry
must be broken since otherwise the superpartner of e.g. the electron would
have been observed. Supersymmetry breaking in string theory is still an open
problem.



Introduction to String Compactification 107

2.2 Compactification, Supersymmetry
and Calabi-Yau Manifolds

Up to now we have not included gravity. When a metric field GMN is present,
the fact that space-time MD has a product form Md × KD−d, with KD−d

compact, must follow from the dynamics. If the equations of motion have
such a solution, we say that the system admits spontaneous compactification.
The vacuum expectation value (vev) of GMN then satisfies

〈GMN (x, y)〉 =
(
ḡµν(x) 0

0 ḡmn(y)

)

, (2.9)

where xµ and ym are the coordinates of Md and KD−d respectively. Note
that with this Ansatz there are no non-zero components of the Christoffel
symbols and the Riemann tensor which carry both Latin and Greek indices.
An interesting generalization of (2.9) is to keep the product form but with
the metric components on Md replaced by e2A(y)ḡµν(x), where A(y) is a so-
called “warp factor” [11]. This still allows maximal space-time symmetry in
Md. For instance 〈Gµν(x, y)〉 = e2A(y)ηµν is compatible with d-dimensional
Poincaré symmetry. In these notes we do not consider such warped product
metrics.

We are mostly interested in D-dimensional supergravity theories and we
will search for compactifications that preserve some degree of supersymme-
try. Instead of analyzing whether the equations of motion, which are highly
nonlinear, admit solutions of the form (2.9), it is then more convenient to
demand (2.9) and require unbroken supersymmetries in Md. A posteriori it
can be checked that the vevs obtained for all fields are compatible with the
equations of motion.

We thus require that the vacuum satisfies ε̄Q|0〉 = 0 where ε(xM ) para-
metrizes the supersymmetry transformation which is generated by Q, both
Q and ε being spinors of SO(1,D−1). This, together with δεΦ = [ε̄Q, Φ],
means that 〈δεΦ〉 ≡ 〈0|[ε̄Q, Φ]|0〉 = 0 for every field generically denoted by
Φ. Below we will be interested in the case where Md is Minkowski space.
Then, with the exception of a vev for the metric ḡµν = ηµν and a d-form
F̄µ1...µd

= εµ1...µd
, a non-zero background value of any field which is not a

SO(1, d−1) scalar, would reduce the symmetries of Minkowski space. In par-
ticular, since fermionic fields are spinors that transform non-trivially under
SO(1, d−1), 〈ΦFermi〉 = 0. Hence, 〈δεΦBose〉 ∼ 〈ΦFermi〉 = 0 and we only need
to worry about 〈δεΦFermi〉. Now, among the ΦFermi in supergravity there is
always the gravitino ψM (or N gravitini if there are N supersymmetries in
higher dimensions) that transforms as

δεψM = ∇M ε+ · · · , (2.10)

where ∇M is the covariant derivative defined in Appendix A. The . . . stand
for terms which contain other bosonic fields (dilaton, BMN and p-form fields)
whose vevs are taken to be zero. Then, 〈δεψM 〉 = 0 gives
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〈∇M ε〉 ≡ ∇̄M ε = 0 ⇒ ∇̄mε = 0 and ∇̄µε = 0 . (2.11)

Notice that in ∇̄M there appears the vev of the spin connection ω̄. Spinor
fields ε, which satisfy (2.11) are covariantly constant (in the vev metric); they
are also called Killing spinors.

The existence of Killing spinors, which is a necessary requirement for a
supersymmetric compactification, restricts the class of manifolds on which
we may compactify. To see this explicitly, we iterate (2.11) to obtain the
integrability condition (since the manipulations until (2.14) are completely
general, we drop the bar)

[∇m,∇n]ε =
1
4
Rmn

abΓabε =
1
4
RmnpqΓ

pqε = 0 , (2.12)

where Γab = 1
2 [Γa, Γb] and Rmnpq is the Riemann tensor on KD−d.

Exercise 2.2: Verify (2.12) using (A.12).

Next we multiply by Γn and use the Γ property

ΓnΓ pq = Γnpq + gnpΓ q − gnqΓ p , (2.13)

where Γnpq is defined in (A.2). The Bianchi identity

Rmnpq +Rmqnp +Rmpqn = 0 (2.14)

implies that ΓnpqRmnpq = 0. In this way we arrive at

R̄mqΓ̄
q ε = 0 . (2.15)

From the linear independence of the Γ q ε it follows that a necessary condition
for the existence of a Killing spinor on a Riemannian manifold is the vanishing
of its Ricci tensor:

R̄mq = 0 . (2.16)

Hence, the internal KD−d is a compact Ricci-flat manifold. This is the same
condition as that obtained from the requirement of Weyl invariance at the
level of the string world-sheet and it is also the equation of motion derived
from the supergravity action if all fields except the metric are set to zero.

One allowed solution is KD−d = TD−d, i.e. a (D−d) torus that is compact
and flat. This means that dimensional reduction is always possible and, since
ε is constant because in this case ∇̄m ε = ∂mε = 0, it gives the maximum
number of supersymmetries in the lower dimensions. The fact that supersym-
metry requires KD−d to be Ricci-flat is a very powerful result. For example,
it is known that Ricci-flat compact manifolds do not admit Killing vectors
other than those associated with tori. Equivalently, the Betti number b1 only
gets contributions from non-trivial cycles associated to tori factors in KD−d.
The fact that the internal manifold must have Killing spinors encodes much
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more information. To analyze this in more detail below we specialize to a
six-dimensional internal K6 which is the case of interest for string compacti-
fications from D=10 to d=4.

Before doing this we need to introduce the concept of holonomy group H
[12, 13]. Upon parallel transport along a closed curve on an m-dimensional
manifold, a vector v is rotated into Uv. The set of matrices obtained in this
way forms H. The U ’s are necessarily matrices in O(m) which is the tangent
group of the Riemannian Km. HenceH ⊆ O(m). For manifolds with an orien-
tation the stronger condition H ⊆ SO(m) holds. Now, from (A.14) it follows
that for a simply-connected manifold to have non-trivial holonomy it has to
have curvature. Indeed, the Riemann tensor (and its covariant derivatives),
when viewed as a Lie-algebra valued two-form, generate H. If the manifold
is not simply connected, the Riemann tensor and its covariant derivatives
only generate the identity component of the holonomy group, called the re-
stricted holonomy group H0 for which H0 ⊆ SO(m). Non-simply connected
manifolds can have non-trivial H without curvature, as exemplified in the
following exercise.

Exercise 2.3: Consider the manifold S1 ⊗ Rn endowed with the metric

ds2 = R2dθ2 + (dxi +Ωi
jx

jdθ)2 , (2.17)

where Ωi
j is a constant anti-symmetric matrix, i.e. a generator of the rotation

group SO(n) and R is the radius of S1. Show that this metric has vanishing
curvature but that nevertheless a vector, when parallel transported around
the circle, is rotated by an element of SO(n).

Under parallel transport along a loop in K6, spinors are also rotated by
elements ofH. But a covariantly constant spinor such as ε remains unchanged.
This means that ε is a singlet under H. But ε is an SO(6) spinor and hence it
has right- and left-chirality pieces that transform respectively as 4 and 4̄ of
SO(6) $ SU(4). How can ε be anH-singlet? Suppose thatH = SU(3). Under
SU(3) the 4 decomposes into a triplet and a singlet: 4SU(4) = (3 + 1)SU(3).
Thus, if H = SU(3) there is one covariantly constant spinor of positive and
one of negative chirality, which we denote ε±. If H were SU(2) there would
be two right-handed and two left-handed covariantly constant spinors since
under SU(2) the 4 decomposes into a doublet and two singlets. There could
be as many as four covariantly constant spinors of each chirality as occurs
when K6 = T6 and H0 is trivial since the torus is flat.

Let us now pause to show that if K6 has SU(3) holonomy, the resulting
theory in d = 4 has precisely N = 1 supersymmetry if it had N = 1 in
D = 10. Taking into account the decomposition (2.8) and the discussion in
the previous paragraph, we see that the allowed supersymmetry parameter
takes the form

ε = εR ⊗ ε+ + εL ⊗ ε− . (2.18)

Since ε is also Majorana it must be that εR = ε∗L and hence εR and εL
form just a single Majorana spinor, associated to a single supersymmetry
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generator. Similarly, if K6 has SU(2) holonomy the resulting d = 4 theory
will have N =2 supersymmetry. Obviously, the number of supersymmetries
in d=4 is doubled if we start from N =2 in D=10.

2n-dimensional compact Riemannian manifolds with SU(n) ⊂ SO(2n)
holonomy are Calabi-Yau manifolds CYn. We have just seen that they admit
covariantly constant spinors and that they are Ricci-flat. We will learn much
more about Calabi-Yau manifolds in the course of these lectures and we will
also make the definition more precise. For n = 1 there is only one CY1,
namely the torus T2. The only CY2 is the K3 manifold. For n ≥ 3 there is
a huge number. We will give simple examples of CY3 in Sect. 3. Many more
can be found in [14]. We want to remark that except for the trivial case n = 1
no metric with SU(n) holonomy on any CYn is known explicitly. Existence
and uniqueness have, however, been shown (cf. Sect. 3).

Calabi-Yau manifolds are a class of manifolds with special holonomy.
Generically on an oriented manifold one has H $ SO(m). Then the following
question arises: which subgroups G ⊂ SO(m) do occur as holonomy groups
of Riemannian manifolds? For the case of simply connected manifolds which
are neither symmetric nor locally a product of lower dimensional manifolds,
this question was answered by Berger. His classification along with many of
the properties of the manifolds is discussed at length in [12, 13]. All types of
manifolds with special holonomy do occur in the context of string compacti-
fication, either as the manifold on which we compactify or as moduli spaces
(cf. Sect. 3.6).

Exercise 2.4: Use simple group theory to work out the condition on the
holonomy group of seven- and eight-dimensional manifolds which gives the
minimal amount of supersymmetry if one compactifies eleven-dimensional
supergravity to four or three dimensions or ten-dimensional supergravity to
d = 3 and d = 2, respectively.

Going back to the important case, N =1, D=10, d=4, and the require-
ment of unbroken supersymmetry we find the following possibilities. The
internal K6 can be a torus T6 with trivial holonomy and hence ε leads to
d=4, N =4 supersymmetry. K6 can also be a product K3× T2 with SU(2)
holonomy and ε leads to N = 2 in d = 4. Finally, K6 can be a CY3 that
has SU(3) holonomy so that ε gives d=4, N =1 supersymmetry. These are
the results for heterotic and type I strings. For type II strings the number
of supersymmetries in the lower dimensions is doubled since we start from
N =2 in D=10.

Let us also consider compactifications from N = 1, D = 10 to d = 6. In
this case unbroken supersymmetry requires K4 to be the flat torus T4 or
the K3 manifold with SU(2) holonomy. Toroidal compactification does not
reduce the number of real supercharges (16 in N = 1, D = 10), thus when
the internal manifold is T4 the theory in d= 6 has N = 2, or rather (1,1),
supersymmetry. Here the notation indicates that one supercharge is a left-
handed and the other a right-handed Weyl spinor. The SO(1, 5) Weyl spinors
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are complex since a Majorana-Weyl condition cannot be imposed in d= 6.
Compactification on K3 gives d= 6, N = 1, or rather (1,0), supersymmetry.
This can be understood from the decomposition of the 16 Weyl representation
of SO(1, 9) under SO(1, 5)× SO(4),

16 = (4L,2) + (4R,2′) , (2.19)

where 4L,R and 2, 2′ are Weyl spinors of SO(1, 5) and SO(4). In both groups
each Weyl representation is its own conjugate. Since the supersymmetry pa-
rameter ε in D= 10 is Majorana-Weyl, its (4L,2) piece has only eight real
components which form only one complex 4L and likewise for (4R,2′). Then,
if the holonomy is trivial, ε gives one 4L plus one 4R supersymmetry in d=6.
Instead, if the holonomy is SU(2) ⊂ SO(4) $ SU(2)×SU(2), only one SO(4)
spinor, say 2, is covariantly constant and then ε gives only one 4L supersym-
metry. Starting from N = 2 in D = 10 there are the following possibilities.
Compactification on T4 gives (2,2) supersymmetry for both the non-chiral
IIA and the chiral IIB superstrings. However, compactification on K3 gives
(1,1) supersymmetry for IIA but (2,0) supersymmetry for IIB.

From the number of unbroken supersymmetries in the lower dimensions
we can already observe hints of string dualities, i.e. equivalences of the com-
pactifications of various string theories. For example, in d= 6, the type IIA
string on K3 is dual to the heterotic string on T4 and in d = 4, type IIA
on CY3 is dual to heterotic on K3 × T2. On the heterotic side non-Abelian
gauge groups are perturbative but on the type IIA side they arise from non-
perturbative effects, namely D-branes wrapping homology cycles inside the
K3 surface. We will not discuss string dualities in these lectures. For a ped-
agogical introduction, see [6].

2.3 Zero Modes

We now wish to discuss Kaluza-Klein reduction when compactifying on
curved internal spaces. Our aim is to determine the resulting theory in d di-
mensions. To begin we expand all D-dimensional fields, generically denoted
Φmn···

µν··· (x, y), around their vacuum expectation values

Φmn···
µν··· (x, y) = 〈Φmn···

µν··· (x, y)〉+ ϕmn···
µν··· (x, y) . (2.20)

We next substitute in the D-dimensional equations of motion and use the
splitting (2.9) of the metric. Keeping only linear terms, and possibly fixing
gauge, gives generic equations

Odϕ
mn···
µν··· +Ointϕ

mn···
µν··· = 0 , (2.21)

where Od, Oint are differential operators of order p (p = 2 for bosons and
p = 1 for fermions) that depend on the specific field.

We next expand ϕmn···
µν··· in terms of eigenfunctions Y mn···

a (y) of Oint in
KD−d. This is
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ϕmn···
µν··· (x, y) =

∑

a

ϕaµν···(x) Y mn···
a (y) . (2.22)

Since OintY
mn···
a (y) = λaY

mn···
a (y), from (2.21) we see that the eigenvalues λa

determine the masses of the d-dimensional fields ϕaµν···(x). With R a typical
dimension of KD−d, λa ∼ 1/Rp. We again find that in the limit R → 0 only
the zero modes of Oint correspond to massless fields ϕ0µν···(x).

To obtain the effective d-dimensional action for the massless fields ϕ0 in
general it is not consistent to simply set the massive fields, i.e. the coefficients
of the higher harmonics, to zero [8]. The problem with such a truncation is
that the heavy fields, denoted ϕh, might induce interactions of the ϕ0 that are
not suppressed by inverse powers of the heavy mass. This occurs for instance
when there are cubic couplings ϕ0 ϕ0 ϕh. When the zero modes Y0(y) are
constant or covariantly constant a product of them is also a zero mode and
then by orthogonality of the Ya(y) terms linear in ϕh cannot appear after
integrating over the extra dimensions, otherwise they might be present and
generate corrections to quartic and higher order couplings of the ϕ0. Even
when the heavy fields cannot be discarded it might be possible to consistently
determine the effective action for the massless fields [15].

We have already seen that for scalar fields Oint is the Laplacian ∆. On
a compact manifold ∆ has only one scalar zero mode, namely a constant
and hence a scalar in D dimensions produces just one massless scalar in
d dimensions. An important and interesting case is that of Dirac fields in
which both Od and Oint are Dirac operators Γ · ∇. The number of zero
modes of ∇/ ≡ Γm∇m happen to depend only on topological properties of
the internal manifold KD−d and can be determined using index theorems [4].
When the internal manifold is Calabi-Yau we can also exploit the existence
of covariantly constant spinors. For instance, from the formula ∇/ 2 = ∇m∇m,
which is valid on a Ricci-flat manifold, it follows that when K6 is a CY3, the
Dirac operator has only two zero modes, namely the covariantly constant ε+
and ε−.

Among the massless higher dimensional fields there are usually p-form
gauge fields A(p) with field strength F (p+1) = dA(p) and action

Sp = − 1
2(p+ 1)!

∫

MD

F (p+1) ∧ ∗F (p+1) . (2.23)

After fixing the gauge freedom A(p) → A(p)+dΛ(p−1) by imposing d∗A(p) = 0,
the equations of motion are

∆DA
(p) = 0 , ∆D = dd∗ + d∗d . (2.24)

If the metric splits into a d-dimensional and a (D − d)-dimensional part, as
in (2.9), the Laplacian ∆D also splits ∆D = ∆d + ∆D−d. Then, Oint is the
Laplacian ∆D−d. The number of massless d-dimensional fields is thus given
by the number of zero modes of the internal Laplacian. This is a cohomology
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problem, as we will see in detail in Sect. 3. In particular, the numbers of zero
modes are given by Betti numbers br. For example, there is a 2-form that
decomposes BMN → Bµν⊕Bµm⊕Bmn. Each term is an n-form with respect
to the internal manifold, where n is easily read from the decomposition. Thus,
from Bµν we obtain only one zero mode since b0 = 1, from Bµm we obtain b1
modes that are vectors in d dimensions and from Bmn we obtain b2 modes
that are scalars in d dimensions. In general, from a p-form in D dimensions
we obtain bn massless fields, n = 0, · · · , p, that correspond to (p − n)-forms
in d dimensions.

Let us now consider zero modes of the metric that decomposes gMN →
gµν ⊕ gµm ⊕ gmn. From gµν there is only one zero mode, namely the lower
dimensional graviton. Massless modes coming from gµm, that would behave
as gauge bosons in d dimensions, can appear only when b1 �= 0 and the
internal manifold has continuous isometries. Massless modes arising from
gmn correspond to scalars in d dimensions. To analyze these modes we write
gmn = ḡmn + hmn. We know that a necessary condition for the fluctuations
hmn not to break supersymmetry is Rmn(ḡ+h) = 0 just as Rmn(ḡ) = 0. Thus,
the hmn are degeneracies of the vacuum, they preserve the Ricci-flatness.

The hmn are usually called moduli. They are free parameters in the com-
pactification which change the size and shape of the manifold but not its
topology. For instance, a circle S1 has one modulus, namely its radius R.
The fact that any value of R is allowed manifests itself in the space-time
theory as a massless scalar field with vanishing potential. The 2-torus, that
has one Kähler modulus and one complex structure modulus, is another in-
structive example. To explain its moduli we define T2 by identifications in a
lattice Λ. This means T2 = R2/Λ. We denote the lattice vectors e1, e2 and
define a metric Gmn = em · en. The Kähler modulus is just the area

√
detG.

If there is an antisymmetric field Bmn then it is natural to introduce the
complex Kähler modulus T via

T =
√

detG+ iB12 . (2.25)

The complex structure modulus, denoted U , is

U = −i |e2|
|e1|

eiϕ(e1,e2) =
1
G11

(
√

detG− iG12) . (2.26)

U is related to the usual modular parameter by τ = iU . τ can be writ-
ten as a ratio of periods of the holomorphic 1-form Ω = dz. Specifically,
τ =
∫

γ2
dz/
∫

γ1
dz, where γ1, γ2 are the two non-trivial one-cycles (associ-

ated to e1, e2). While all tori are diffeomorphic as real manifolds, there is no
holomorphic map between two tori with complex structures τ and τ ′ unless
they are related by a SL(2,Z) modular transformation, cf. (4.28). This is
a consequence of the geometric freedom to make integral changes of lattice
basis, as long as the volume of the unit cell does not change (see e.g. [16]).
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Furthermore, in string theory compactification there is a T -duality symme-
try, absent in field theory, that in circle compactification identifies R and
R′ = α′/R, whereas in T2 compactification identifies all values of T related
by an SL(2,Z)T transformation (for review, see e.g. [17]). Compactification
on a torus will thus lead to two massless fields, also denoted U and T , with
completely arbitrary vevs but whose couplings to other fields are restricted by
invariance of the low-energy effective action under SL(2,Z)U and SL(2,Z)T .

The metric moduli of CY 3-folds are also divided into Kähler moduli and
complex structure moduli. This will be explained in Sect. 3.6.

Our discussion of compactification so far has been almost entirely in terms
of field theory, rather than string theory. Of course, what we have learned
about compactification is also relevant for string theory, since at low energies,
where the excitation of massive string modes can be ignored, the dynamics of
the massless modes is described by a supergravity theory in ten dimensions
(for type II strings) coupled to supersymmetric Yang-Mills theory (for type
I and heterotic strings).

But there are striking differences between compactifications of field the-
ories and string theories. When dealing with strings, it is not the classical
geometry (or even topology) of the space-time manifold M which is relevant.
One dimensional objects, such as strings, probe M differently from point
particles. Much of the attraction of string theory relies on the hope that the
modification of the concept of classical geometry to “string geometry” at dis-
tances smaller than the string scale ls =

√
α′ (which is of the order of the

Planck length2, i.e. ∼ 10−33cm) will lead to interesting effects and eventu-
ally to an understanding of physics in this distance range. At distances large
compared to ls a description in terms of point particles should be valid and
one should recover classical geometry.

One particular property of string compactification as compared to point
particles is that there might be more than one manifold Km which leads to
identical theories. This resembles the situation of point particles on so-called
isospectral manifolds. However, in string theory the invariance is more fun-
damental, as no experiment can be performed to distinguish between the
manifolds. This is an example of a duality, of which many are known. T -
duality of the torus compactification is one simple example which was al-
ready mentioned. A particularly interesting example which arose from the
study of Calabi-Yau compactifications is mirror symmetry . It states that
for any Calabi-Yau manifold X there exists a mirror manifold X̂, such that
IIA(X) = IIB(X̂). Here the notation IIA(X) means the full type IIA string
theory, including all perturbative and non-perturbative effects, compactified
onX. For the heterotic string with standard embedding of the spin connection
2 This is fixed by the identification of one of the massless excitation modes of

the closed string with the graviton and comparing its self-interactions, as com-
puted from string theory, with general relativity. This leads to a relation between
Newton’s constant and α′.
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in the gauge connection [2] mirror symmetry means het(X) = het(X̂). The
manifolds comprising a mirror pair are very different, e.g. in terms of their
Euler numbers χ(X) = −χ(X̂). The two-dimensional torus, which we dis-
cussed above, is its own mirror manifold, but mirror symmetry exchanges
the two types of moduli: U ↔ T . In compactifications on Calabi-Yau 3-folds,
mirror symmetry also exchanges complex structure and Kähler moduli be-
tween X and X̂.

Mirror symmetry in string compactification is a rather trivial consequence
of its formulation in the language of two-dimensional conformal field theory.
However, when cast in the geometric language, it becomes highly non-trivial
and has lead to surprising predictions in algebraic geometry. Except for a few
additional comments at the end of Sect. 3.6 we will not discuss mirror symme-
try in these lectures. An up-to-date extensive coverage of most mathematical
and physical aspects of mirror symmetry has recently appeared [18].

3 Complex Manifolds, Kähler Manifolds,
Calabi-Yau Manifolds

3.1 Complex Manifolds

In the previous chapter we have seen how string compactifications which pre-
serve supersymmetry directly lead to manifolds with SU(3) holonomy. These
manifolds have very special properties which we will discuss in this chapter. In
particular they can be shown to be complex manifolds. We begin this chapter
with a review of complex manifolds and of some of the mathematics necessary
for the discussion of CY manifolds. Throughout we assume some familiarity
with real manifolds and Riemannian geometry. None of the results collected
in this chapter are new, but some of the details we present are not readily
available in the (physics) literature. Useful references are [4, 19, 20, 21, 22]
(physics), [12, 23, 24, 25, 26, 27] (mathematics) and, in particular, [28]. In
this section we use Greek indices for the (real) coordinates on the compacti-
fication manifold, which we will generically call M .

A complex manifold M is a differentiable manifold admitting an open
cover {Ua}a∈A and coordinate maps za : Ua → Cn such that za ◦ z−1

b is
holomorphic on zb(Ua ∩Ub) ⊂ Cn for all a, b. za = (z1

a, . . . , z
n
a ) are local holo-

morphic coordinates and on overlaps Ua ∩ Ub, zi
a = f i

ab(zb) are holomorphic
functions, i.e. they do not depend on z̄i

b. (When considering local coordinates
we will often drop the subscript which refers to a particular patch.) A complex
manifold thus looks locally like Cn. Transition functions from one coordinate
patch to another are holomorphic functions. An atlas {Ua, za}a∈A with the
above properties defines a complex structure on M . If the union of two such
atlases has again the same properties, they are said to define the same com-
plex structure; cf. differential structure in the real case, which is defined by
(equivalence classes) of C∞ atlases. n is called the complex dimension of M :
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Fig. 1. Coordinate maps on complex manifolds

n = dimC(M). Clearly, a complex manifold can be viewed as a real manifold
with even (real) dimension, i.e. m = 2n. Not all real manifolds of even di-
mension can be endowed with a complex structure. For instance, among the
even-dimensional spheres S2n, only S2 admits a complex structure. However,
direct products of odd-dimensional spheres always admit a complex structure
([24], p.4).

Example 3.1: Cn is a complex manifold which requires only one single
coordinate patch. We can consider Cn as a real manifold if we identify it
with R2n in the usual way by decomposing the complex coordinates into
their real and imaginary parts (i =

√
−1):

zj = xj + iyj , z̄j = xj − iyj , j = 1 . . . , n . (3.1)

We will sometimes use the notation xn+j ≡ yj . For later use we give the
decomposition of the partial derivatives

∂j ≡
∂

∂zj
=

1
2

(
∂

∂xj
− i ∂

∂yj

)

, ∂̄j ≡
∂

∂z̄j
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)

. (3.2)

and the differentials

dzj = dxj + idyj , dz̄j = dxj − idyj . (3.3)

Locally, on any complex manifold, we can always choose real coordinates as
the real and imaginary parts of the holomorphic coordinates. A complex man-
ifold is thus also a real analytic manifold. Moreover, since det ∂(x1

a,...,x2n
a )

∂(x1
b ,...,x2n

b )
=

∣
∣
∣det ∂(zi

a,...,zn
a )

∂(z1
b ,...,∂zn

b )

∣
∣
∣
2

> 0 on Ua ∩ Ub, any complex manifold is orientable.

Example 3.2: A very important example, for reasons we will learn mo-
mentarily, is n-dimensional complex projective space CPn, or, simply, Pn.
Pn is defined as the set of (complex) lines through the origin of Cn+1. A
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line through the origin can be specified by a single point and two points
z and w define the same line iff there exists λ ∈ C∗ ≡ C − {0} such that
z = (z0, z1 . . . , zn) = (λw0, λw1, . . . , λwn) ≡ λ · w. We thus have

Pn =
Cn+1 − {0}

C∗ (3.4)

The coordinates z0, . . . , zn are called homogeneous coordinates on Pn. Often
we write [z] = [z0 : z1 : · · · : zn]. Pn can be covered by n+1 coordinate patches
Ui = {[z] : zi �= 0}, i.e. Ui consists of those lines through the origin which do
not lie in the hyperplane zi = 0. (Hyperplanes in Pn are n − 1-dimensional
submanifolds, or, more generally, codimension-one submanifolds.) In Ui we
can choose local coordinates as ξk

i = zk

zi . They are well defined on Ui and
satisfy

ξk
i =

zk

zi
=
zk

zj

/ zi

zj
=
ξk
j

ξi
j

(3.5)

which is holomorphic on Ui ∩ Uj where ξi
j �= 0. Pn is thus a complex mani-

fold. The coordinates ξi = (ξ1i , . . . , ξ
n
i ) are called inhomogeneous coordinates.

Alternatively to (3.4) we can also define Pn as Pn = S2n+1/U(1), where U(1)
acts as z → eiφz. This shows that Pn is compact.

Exercise 3.1: Show that P1 $ S2 by examining transition functions between
the two coordinate patches that one obtains after stereographically projecting
the sphere onto C ∪ {∞}.

A complex submanifold X of a complex manifold Mn is a set X ⊂ Mn

which is given locally as the zeroes of a collection f1, . . . , fk of holomorphic
functions such that rank(J) ≡ rank

(
∂(f1,...,fk)
∂(z1,...,zn)

)
= k. X is a complex mani-

fold of dimension n − k, or, equivalently, X has codimension k in Mn. The
easiest way to show that X is indeed a complex manifold is to choose local
coordinates on M such that X is given by z1 = z2 = · · · = zk = 0. It is then
clear that if M is a complex manifold so is X. More generally, if we drop the
condition on the rank, we get the definition of an analytic subvariety. A point
p ∈ X is a smooth point if rank(J(p)) = k. Otherwise p is called a singular
point. For instance, for k = 1, at a smooth point there is no simultaneous
solution of p = 0 and dp = 0.

The importance of projective space, or more generally, of weighted projec-
tive space which we will encounter later, lies in the following result: there are
no compact complex submanifolds of Cn. This is an immediate consequence
of the fact that any global holomorphic function on a compact complex man-
ifold is constant, applied to the coordinate functions (for details, see [25],
p.10). This is strikingly different from the real analytic case: any real ana-
lytic compact or non-compact manifold can be embedded, by a real analytic
embedding, into RN for sufficiently large N (Grauert-Morrey theorem).
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An algebraic variety X ⊂ Pn is the zero locus in Pn of a collection of
homogeneous polynomials {pα(z0, . . . , zn)}. (A function f(z) is homogeneous
of degree d if it satisfies f(λz) = λdf(z). Taking the derivative w.r.t. λ and
setting λ = 1 at the end, leads to the Euler relation

∑
zi∂if(z) = d · f(z).)

More generally one would consider analytic varieties, which are defined
in terms of holomorphic functions rather than polynomials. However by the
theorem of Chow every analytic subvariety of Pn is in fact algebraic. In more
sophisticated mathematical language this means that every analytic subva-
riety of Pn is the zero section of some positive power of the universal line
bundle over Pn, cf. e.g. [23].

An example of an algebraic submanifold of P4 is the quintic hypersurface
which is defined as the zero of the polynomial p(z) =

∑4
i=0(z

i)5 in P4. We
will see later that this is a three-dimensional Calabi-Yau manifold, and in fact
(essentially) the only one that can be written as a hypersurface in P4, i.e. X =
{[z0 : · · · : z4] ∈ P4|p(z) = 0}. We can get others by looking at hypersurfaces
in products of projective spaces or as complete intersections of more than
one hypersurface in higher-dimensional projective spaces and/or products of
several projective spaces (here we need several polynomials, homogeneous
w.r.t. each Pn). The more interesting generalization is however to enlarge the
class of ambient spaces and look at weighted projective spaces.

A weighted projective space is defined much in the same way as a projec-
tive space, but with the generalized C∗ action on the homogeneous coordi-
nates

λ · z = λ · (z0, . . . , zn) = (λw0z0, . . . , λwnzn) (3.6)

where, as before, λ ∈ C∗ and the non-zero integer wi is called the weight of
the homogeneous coordinate zi. We will consider cases where all weights are
positive. However, when one is interested in non-compact situations, one also
allows for negative weights. We write Pn[w0, . . . , wn] ≡ Pn[w].

Different sets of weights may give isomorphic spaces. A simple example
is Pn[kw] $ Pn[w]. One may show that one covers all isomorphism classes if
one restricts to so-called well-formed spaces [29]. Among the n+1 weights of
a well-formed space no set of n weights has a common factor. E.g. P2[1, 2, 2]
is not well formed whereas P2[1, 1, 2] is.

Weighted projective spaces are singular, which is most easily demon-
strated by means of an example. Consider P2[1, 1, 2], i.e. (z0, z1, z2) and
(λz0, λz2, λ2z2) denote the same point. For λ = −1 the point [0 : 0 : z2] ≡
[0 : 0 : 1] is fixed but λ acts non-trivially on its neighborhood: we have a Z2

orbifold singularity at this point. This singularity has locally the form C2/Z2,
where Z2 acts on the coordinates (x1, x2) of C2 as Z2 : (x1, x2) �→ −(x1, x2).
In general there is a fixed point for every weight greater than one, a fixed
curve for every pair of weights with a common factor greater than one and
so on.



Introduction to String Compactification 119

A hypersurface Xd[w] in weighted projective space is defined as the van-
ishing locus of a quasi-homogeneous polynomial, p(λ · z) = λdp(z), where d is
the degree of p(z), i.e.

Xd[w] =
{

[z0 : · · · : zb] ∈ Pn[w]
∣
∣
∣ p(z) = 0

}
(3.7)

In this case the Euler relation generalizes to
∑
wiz

i∂ip(z) = d · p(z).
Exercise 3.2: Of how many points consist the following “hypersurfaces”? (1):
(z0)2 + (z1)2 = 0 in P1; (2): (z0)3 + (z1)2 = 0 in P1[2, 3]. The number of
points is equal to the Euler number (the Euler number of a smooth point
is one, as can be seen from the Euler formula χ = #vertices − #edges +
#two dimensional faces∓ . . . of a triangulated space. This also follows from
the familiar fact that after removing two points from a sphere with Euler
number two one obtains a cylinder whose Euler number is zero).

It can happen that the hypersurface does not pass through the singular-
ities of the ambient space. Take again the example P2[1, 1, 2] and consider
the quartic hypersurface. At the fixed point [0 : 0 : z2] only the monomial
(z2)2 survives and the hypersurface constraint would require that z2 = 0.
But the point z0 = z1 = z2 = 0 is not in P2[1, 1, 2]. As a second example
consider P3[1, 1, 2, 2]. We now find a singular curve rather than a singular
point, namely z0 = z1 = 0 and a generic hypersurface will intersect this
curve in isolated points. To obtain a smooth manifold one has to resolve the
singularity, which in this example is a Z2 singularity. We will not discuss the
process of resolution of the singularities but it is mathematically well defined
and under control and most efficiently described within the language of toric
geometry [30, 31].

Weighted projective spaces are still not the most general ambient spaces
one considers in actual string compactifications, in particular when one con-
siders mirror symmetry (see below). The more general concept is that of a
toric variety. Toric varieties have some very simple features which allow one
to reduce many calculations to combinatorics. Weighted projective spaces are
a small subclass of toric varieties. For details we refer to Chap. 7 of [18] and
to [31, 32].

We have seen that any complex manifold M can be viewed as a real
(analytic) manifold. The tangent space at a point p is denoted by Tp(M)
and the tangent bundle by T (M). The complexified tangent bundle TC(M) =
T (M)⊗C consists of all tangent vectors of M with complex coefficients, i.e.
v =
∑2n

j=1 v
j ∂

∂xj with vi ∈ C. With the help of (3.2) we can write this as

v =
2n∑

j=1

vj ∂

∂xj
=

n∑

j=1

(vj + ivn+j)∂j +
n∑

j=1

(vj − ivn+j)∂̄j

≡ v1,0 + v0,1 (3.8)
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We have thus a decomposition

TC(M) = T 1,0(M)⊕ T 0,1(M) (3.9)

into vectors of type (1, 0) and of type (0, 1): T 1,0(M) is spanned by {∂i} and
T 0,1(M) by {∂̄i}. Note that T 0,1

p (M) = T 1,0
p (M) and that the splitting into

the two subspaces is preserved under holomorphic coordinate changes. The
transition functions of T 1,0(M) are holomorphic, and we therefore call it the
holomorphic tangent bundle. A holomorphic section of T 1,0(M) is called a
holomorphic vector field; its component functions are holomorphic.

T 1,0(M) is just one particular example of a holomorphic vector bundle
E

π−→M . Holomorphic vector bundles of rank k are characterized by their
holomorphic transition functions which are elements of Gl(k,C) (rather than
Gl(n,R) as in the real case) with holomorphic matrix elements.

In the same way as in (3.9) we decompose the dual space, the space of
one-forms:

T ∗
C
(M) = T ∗1,0(M)⊕ T ∗0,1(M) . (3.10)

T ∗1,0(M) and T ∗0,1(M) are spanned by {dzi} and {dz̄i}, respectively. By
taking tensor products we can define differential forms of type (p, q) as sec-

tions of
p
∧T ∗1,0(M)

q
∧T ∗0,1(M). The space of (p, q)-forms will be denoted by

Ap,q. Clearly Ap,q = Aq,p. If we denote the space of sections of
r
∧T ∗

C
(M) by

Ar, we have the decomposition

Ar =
⊕

p+q=r

Ap,q . (3.11)

This decomposition is independent of the choice of local coordinate system.
Using the underlying real analytic structure we can define the exterior

derivative d. If ω ∈ Ap,q, then

dω ∈ Ap+1,q ⊕Ap,q+1 . (3.12)

We write dω = ∂ω+ ∂̄ω with ∂ω ∈ Ap+1,q and ∂̄ω ∈ Ap,q+1. This defines the
two operators

∂ : Ap,q → Ap+1,q , ∂̄ : Ap,q → Ap,q+1 , (3.13)

and
d = ∂ + ∂̄ . (3.14)

The following results are easy to verify:

d2 = (∂ + ∂̄)2 ≡ 0 ⇒ ∂2 = 0 , ∂̄2 = 0 , ∂∂̄ + ∂̄∂ = 0 . (3.15)

Here we used that ∂2 : Ap,q → Ap+2,q, ∂̄2 : Ap,q → Ap,q+2, (∂∂̄ + ∂̄∂) :
Ap,q → Ap+1,q+1, i.e. that the three operators map to three different spaces.
They must thus vanish separately.
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Equation (3.14) is not true on an almost complex manifold. Alternative
to the way we have defined complex structures we could have started with an
almost complex structure – a differentiable isomorphism J : T (M) → T (M)
with J2 = −� – such that the splitting (3.9) of T (M) is into eigenspaces of J
with eigenvalues +i and −i, respectively. Then (3.12) would be replaced by
dω ∈ Ap+2,q−1 ⊕ Ap+1,q ⊕ Ap,q+1 ⊕ Ap−1,q+2 and (3.14) by d = ∂ + ∂̄ + . . . .
Only if the almost complex structure satisfies an integrability condition – the
vanishing of the Nijenhuis tensor – do (3.12) and (3.14) hold. A theorem of
Newlander and Nierenberg then guarantees that we can construct on M an
atlas of holomorphic charts and M is a complex manifold in the sense of the
definition that we have given, see e.g. [13, 25].

ω is called a holomorphic p-form if it is of type (p, 0) and ∂̄ω = 0, i.e. if it
has holomorphic coefficient functions. Likewise ω̄ of type (0, q) with ∂̄ω̄ = 0
is called anti-holomorphic. Ωp(M) denotes the vector-space of holomorphic
p-forms. We leave it as an exercise to write down the explicit expressions, in
terms of coefficients, of ∂ω, etc.

3.2 Kähler Manifolds

The next step is to introduce additional structures on a complex manifold: a
hermitian metric and a hermitian connection.

A hermitian metric is a covariant tensor field of the form
∑n

i,j=1 gīdz
i ⊗

dz̄j , where gī = gī(z) (here the notation is not to indicate that the compo-
nents are holomorphic functions; they are not!) such that gjı̄(z) = gī(z) and
gī(z) is a positive definite matrix, that is, for any {vi} ∈ Cn, vigīv̄

̄ ≥ 0 with
equality only if all vi = 0. To any hermitian metric we associate a (1, 1)-form

ω = i

n∑

i,j=1

gīdz
i ∧ dz̄j . (3.16)

ω is called the fundamental form associated with the hermitian metric g.

Exercise 3.3: Show that ω is a real (1, 1)-form, i.e. that ω = ω̄.

One can introduce a hermitian metric on any complex manifold (see e.g. [26],
p. 145).

Exercise 3.4: Show that

ωn

n!
= (i)ng(z)dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

= (i)n(−1)n(n−1)/2g(z)dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

= 2ng(z)dx1 ∧ · · · ∧ dx2n (3.17)

where ωn = ω ∧ · · · ∧ ω︸ ︷︷ ︸
n factors

and g = det(gī) > 0. ωn is thus a good volume

form on M . This shows once more that complex manifolds always possess an
orientation.
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The inverse of the hermitian metric is gī which satisfies gjı̄gjk̄ = δı̄
k̄

and
gīg

k̄ = δk
i (summation convention used). We use the metric to raise and

lower indices, whereby they change their type. Note that under holomorphic
coordinate changes, the index structure of the metric is preserved, as is that
of any other tensor field.

A hermitian metric g whose associated fundamental form ω is closed,
i.e. dω = 0, is called a Kähler metric. A complex manifold endowed with a
Kähler metric is called a Kähler manifold. ω is the Kähler form. An immediate
consequence of dω = 0 ⇒ ∂ω = ∂̄ω = 0 is

∂igjk̄ = ∂jgik̄ , ∂̄igjk̄ = ∂̄kgjı̄ (Kähler condition) . (3.18)

From this one finds immediately that the only non-zero coefficients of the
Riemannian connection are

Γ k
ij = gkl̄∂igjl̄ , Γ k̄

ı̄̄ = glk̄∂̄ı̄gl̄ . (3.19)

The vanishing of the connection coefficients with mixed indices is a necessary
and sufficient condition that under parallel transport the holomorphic and
the anti-holomorphic tangent spaces do not mix (see below).

Note that while all complex manifolds admit a hermitian metric, this does
not hold for Kähler metrics. Counterexamples are quaternionic manifolds
which appear as moduli spaces of type II compactifications on Calabi-Yau
manifolds. Another example is S2p+1⊗S2q+1, q > 1. A complex submanifold
X of a Kähler manifold M is again a Kähler manifold, with the induced
Kähler metric. This follows easily if one goes to local coordinates on M where
X is given by z1 = · · · = zk = 0.

From (3.18) we also infer the local existence of a real Kähler potential K
in terms of which the Kähler metric can be written as

gī = ∂i∂̄jK (3.20)

or, equivalently, ω = i∂∂̄K. The Kähler potential is not uniquely defined:
K(z, z̄) and K(z, z̄) + f(z) + f̄(z̄) lead to the same metric if f and f̄ are
holomorphic and anti-holomorphic functions (on the patch on which K is
defined), respectively.

From now on, unless stated otherwise, we will restrict ourselves to Kähler
manifolds; some of the results are, however, true for arbitrary complex man-
ifolds. Also, if in doubt, assume that the manifold is compact.

Exercise 3.5: Determine a hermitian connection by the two requirements: (1)
The only non-vanishing coefficients are Γ i

jk and Γ ı̄
̄k̄

and (2) ∇igjk̄ = 0. Show
that the connection is torsionfree, i.e. T k

ij ≡ Γ k
ij − Γ k

ji = 0 if g is a Kähler
metric. Check that the connection so obtained is precisely the Riemannian
connection, i.e. the hermitian and the Riemannian structures on a Kähler
manifold are compatible.
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Exercise 3.6: Derive the components of the Riemann tensor on a Kähler man-
ifold. Show that the only non-vanishing components of the Riemann tensor
are those with the index structure Rīkl̄ and those related by symmetries. In
particular the components of the type Rij∗∗ are zero. Show that the non-
vanishing components are

Rīkl̄ = −∂i∂̄̄gkl̄ + gmn̄(∂igkn̄)(∂̄̄gml̄) . (3.21)

Here the sign conventions are such that [∇i,∇̄]Vk = −Rīk
lVl.

Exercise 3.7: The Ricci tensor is defined as Rī ≡ gkl̄Rīkl̄. Prove that

Rī = −∂i∂̄̄(log det g) . (3.22)

Show that this is the same (up to a sign) as Riµ̄
µ = Riµ̄νg

µν , µ = (k, k̄).

One also defines the Ricci-form (of type (1, 1)) as

R = iRjk̄dz
j ∧ dz̄k = −i∂∂̄ log(det g) (3.23)

which satisfies dR = 0. Note that log(det g) is not a globally defined function
since det g transforms as a density under change of coordinates. R is however
globally defined (why?).

We learn from (3.23) that the Ricci form depends only on the volume
form of the Kähler metric and on the complex structure (through ∂ and ∂̄).
Under a change of metric, g → g′, the Ricci form changes as

R(g′) = R(g)− i∂∂̄ log
(

det(g′
kl̄

)
det(gkl̄)

)

, (3.24)

where the ratio of the two determinants is a globally defined non-vanishing
function on M .

Example 3.3: Complex projective space. To demonstrate that it is a Kähler
manifold we give an explicit metric, the so called Fubini-Study metric. Recall
that Pn = {[z0 : · · · : zn]; 0 �= (z0 : · · · : zn) ∈ Cn+1} and U0 = {[1, z1 : · · · :
zn]} $ Cn is an open subset of Pn. Set

gī = ∂i∂̄ log(1 + |z1|2 + · · ·+ |zn|2) ≡ ∂i∂̄ ln(1 + |z|2) (3.25)

or, equivalently,

ω = i∂∂̄ log(1 + |z|2) = i

(
dzi ∧ dz̄i

1 + |z|2 − z̄idzi ∧ zjdz̄j

(1 + |z|2)2
)

(3.26)

Closure of ω is obvious if one uses (3.15). From (3.25) we also immediately
read off the Kähler potential of the Fubini-Study metric (cf. (3.20)) on U0.
Clearly this is only defined locally.
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Exercise 3.8: Show that for any non-zero vector u, uigīū
̄ ≥ 0 to prove

positive definiteness of the Fubini-Study metric.

On the other hand, ω is globally defined on Pn. To see this, let U1 =
{(w0, 1, w2, . . . , wn)} ⊂ Pn and check what happens to ω on the overlap
U0 ∩ U1 = {[1 : z1 : · · · : zn] = [w0 : 1 : w2 : · · · : wn]}, where zi = wi

w0 , for all
i �= 1 and z1 = 1

w0 . Then

ω = i∂∂̄ log(1 + |z1|2 + · · ·+ |zn|2) = i∂∂̄ log

(

1 +
1

|w0|2 +
n∑

i=2

|wi|2
|w0|2

)

= i
(
∂∂̄ log(1 + |w|2)− ∂∂̄ log(|w0|2)

)
= i∂∂̄ log(1 + |w|2) (3.27)

since w0 is holomorphic on U0∩U1. So ω and the corresponding Kähler metric
are globally defined. Complex projective space is thus a Kähler manifold and
so is every complex submanifold. With3

det(gī) =
1

(1 + |z|2)n+1
(3.28)

one finds

Rī = −∂i∂̄̄ log
(

1
(1 + |z|2)n+1

)

= (n+ 1)gī (3.29)

which shows that the Fubini-Study metric is a Kähler-Einstein metric and
Pn a Kähler-Einstein manifold.

3.3 Holonomy Group of Kähler Manifolds

The next topic we want to discuss is the holonomy group of Kähler man-
ifolds. Recall that the holonomy group of a Riemannian manifold of (real)
dimension m is a subgroup of O(m). It follows immediately from the index
structure of the connection coefficients of a Kähler manifold that under par-
allel transport elements of T 1,0(M) and T 0,1(M) do not mix. Since the length
of a vector does not change under parallel transport, the holonomy group of
a Kähler manifold is a subgroup of U(n) where n is the complex dimension
of the manifold.4 In particular, elements of T 1,0(M) transform as n and el-
ements of T 0,1(M) as n of U(n). Consider now parallel transport around an
infinitesimal loop in the (µ, ν)-plane with area δaµν = −δaνµ. Under parallel
transport around this loop a vector V changes by an amount δV given in
(A.14). In complex coordinates this is δV i = −δakl̄Rkl̄

i
jV

j . From what we

3 To show this, use det(δij−viv̄) = exp (tr log(δij − viv̄)) = exp
(
log(1 − |v|2)

)
=

(1 − |v|2).
4 The unitary group U(n) is the set of all complex n × n matrices which leave

invariant a hermitian metric gī = gjı̄, i.e. UgU† = g. For the choice gī = δij

one obtains the familiar condition UU† = �.
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said above it follows that on a Kähler manifold the matrix −δakl̄Rkl̄i
j must

be an element of the Lie algebra u(n). The trace of this matrix, which is pro-
portional to the Ricci tensor, generates the u(1) part in the decomposition
u(n) $ su(n) ⊕ u(1). We thus learn that the holonomy group of a Ricci-
flat Kähler manifold is a subgroup of SU(n). Conversely, one can show that
any 2n-dimensional manifold with U(n) holonomy admits a Kähler metric
and if it has SU(n) holonomy it admits a Ricci-flat Kähler metric. This uses
the fact that holomorphic and anti-holomorphic indices do not mix, which
implies that all connection coefficients with mixed indices must vanish. One
then proceeds with the explicitly construction of an almost complex structure
with vanishing Nijenhuis tensor. Details can be found in [4, 28].

We should mention that strictly speaking the last argument is only valid
for the restricted holonomy group H0 (which is generated by parallel trans-
port around contractible loops). Also, in general only the holonomy around
infinitesimal loops is generated by the Riemann tensor. For finite (but still
contractible) loops, derivatives of the Riemann tensor of arbitrary order will
appear [12]. For Kähler manifolds we do however have the U(n) invariant split
of the indices µ = (i, ı̄) and U(n) is a maximal compact subgroup of SO(2n).
Thus the restricted holonomy group is not bigger than U(n) For simply con-
nected manifolds the restricted holonomy group is already the full holonomy
group. For non-simply connected manifolds the full holonomy group and the
restricted holonomy group may differ. Their quotient is countable and the
restricted holonomy group is the identity component of the full holonomy
group, i.e. for a generic Riemannian manifold it is SO(m) (cf. [12]).

3.4 Cohomology of Kähler Manifolds

Before turning to the next subject, homology and cohomology on complex
manifolds, we will give a very brief and incomplete summary of these concepts
in the real situation, which, of course, also applies to complex manifolds, if
they are viewed as real analytic manifolds.

On a smooth, connected manifold M one defines p-chains ap as formal
sums ap =

∑
i ciNi of p-dimensional oriented submanifolds on M . If the co-

efficients ci are real (complex, integer), one speaks of real (complex, integral)
chains. Define ∂ as the operation of taking the boundary with the induced
orientation. ∂a ≡

∑
ci∂Ni is then a p − 1-chain. Let Zp = {ap|∂ap = ∅} be

the set of cycles, i.e. the set of chains without boundary and let Bp = {∂ap+1}
be the set of boundaries. Since ∂∂ap = ∅, Bp ⊂ Zp. The p-th homology group
of M is defined as

Hp = Zp/Bp . (3.30)

Depending on the coefficient group one gets Hp(M,R), Hp(M,C), Hp(M,Z),
etc. Elements of Hp are equivalence classes of cycles zp $ zp + ∂ap+1, called
homology classes and denoted by [zp].
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One version of Poincaré duality is the following isomorphism between
homology groups, valid on orientable connected smooth manifolds of real
dimension m:

Hr(M,R) $ Hm−r(M,R) . (3.31)

One defines the r-th Betti number br as

br = dim(Hr(M,R)) . (3.32)

They are toplogical invariants of M . As a consequence of Poincaré duality,

br(M) = bm−r(M) . (3.33)

We now turn to de Rham cohomology, which is defined with the exterior
derivative operator d : Ar → Ar+1. Let Zp be the set of closed p-forms, i.e.
Zp = {ωp|dωp = 0} and let Bp be the set of exact p-forms Bp = {dωp−1}.
The de Rham cohomology groups Hp are defined as the quotients

Hp
D.R. = Zp/Bp . (3.34)

Elements ofHp are equivalence classes of closed forms ωp $ ωp+dαp−1, called
cohomology classes and denoted by [ωp]. Each equivalence class possesses one
harmonic representative, i.e. a zero mode of the Laplacian ∆ = dd∗ + d∗d.
The action of ∆ on p-forms is

∆ωµ1···µp
= −∇ν∇νωµ1···µp

−pRν[µ1ω
ν

µ2···µp]−
1
2
p(p−1)Rνρ[µ1µ2ω

νρ
µ3···µp] .

(3.35)
Since the number of (normalizable) harmonic forms on a compact manifold
is finite, the Betti numbers are all finite.

Exercise 3.9: Derive (3.35).

Given both the homology and the cohomology classes, we can define an
inner product

π(zp, ωp) =
∫

zp

ωp , (3.36)

where π(zp, ωp) is called a period (of ωp). We speak of an integral cohomology
class [ωp] ∈ HD.R.(M,Z) if the period over any integral cycle is integer.

Exercise 3.10: Prove, using Stoke’s theorem, that the integral does not depend
on which representatives of the two classes are chosen.

A theorem of de Rham ensures that the above inner product between
homology and cohomology classes is bilinear and non-degenerate, thus estab-
lishing an isomorphism between homology and cohomology. The following
two facts are consequences of de Rham’s theorem:
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(1) Given a basis {zi} for Hp and any set of periods νi, i = 1, . . . , bp, there
exists a closed p-from ω such that π(zi, ω) = νi.

(2) If all periods of a p-form vanish, ω is exact.

Another consequence of de Rham’s theorem is the following important result:
Given any p-cycle z there exists a closed (m− p)-form α, called the Poincaré
dual of z such that for any closed p-form ω

∫

z

ω =
∫

M

α ∧ ω . (3.37)

Since ω is closed, α is only defined up to an exact form. In terms of their
Poincaré duals α and β we can define the intersection number A ·B between
a p-cycle A and an (m− p)-cycle B as

A ·B =
∫

M

α ∧ β . (3.38)

This notion is familiar from Riemann surfaces.
So much for the collection of some facts about homology and cohomology

on real manifolds. They are also valid on complex manifolds if one views
them as real analytic manifolds. However one can use the complex structure
to define (among several others) the so-called Dolbeault cohomology or ∂̄-
cohomology. As the (second) name already indicates, it is defined w.r.t. the
operator ∂̄ : Ap,q(M) → Ap,q+1(M). A (p, q)-form α is ∂̄-closed if ∂̄α = 0. The
space of ∂̄-closed (p, q)-forms is denoted by Zp,q

∂̄
. A (p, q)-form β is ∂̄-exact if it

is of the form β = ∂̄γ for γ ∈ Ap,q−1. Since ∂̄2 = 0, ∂̄(Ap,q(M)) ⊂ Zp,q+1

∂̄
(M).

The Dolbeault cohomology groups are then defined as

Hp,q

∂̄
(M) =

Zp,q

∂̄
(M)

∂̄(Ap,q−1(M))
. (3.39)

There is a lemma (by Dolbeault) analogous to the Poincaré-lemma, which
ensures that the Dolbeault cohomology groups (for q ≥ 1) are locally5 trivial.
This is also referred to as the ∂̄-Poincaré lemma.

The dimensions of the (p, q) cohomology groups are called Hodge numbers

hp,q(M) = dimC(Hp,q

∂̄
(M)) . (3.40)

They are finite for compact, complex manifolds [23]. The Hodge numbers of
a Kähler manifold are often arranged in the Hodge diamond:
5 More precisely, on polydiscs Pr = {z ∈ C

n|zi| < r, for all i = 1, . . . , n}.
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h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

(3.41)

which we have displayed here for a three complex dimensional Kähler mani-
fold. We will later show that for a Calabi-Yau manifold of the same dimension
the only independent Hodge numbers are h1,1 and h2,1.

We can now define a scalar product between two forms, ϕ and ψ, of type
(p, q):6

ψ =
1
p!q!

ψi1...ip ̄1...̄q
(z)dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq (3.42)

and likewise for ϕ. First define

(ϕ,ψ)(z) =
1
p!q!

ϕi1...ip ̄1...̄q
(z)ψ̄i1...ip ̄1...̄q (z) (3.43)

where

ψ̄i1...ip ̄1...̄q (z) = gi1k̄1 · · · gipk̄pgl1 ̄1 · · · glq ̄qψk1...kp l̄1...l̄q (z) . (3.44)

Later we will also need the definition

ψ̄ =
1
p!q!

ψi1...ip ̄1...̄q
dzi1 ∧ · · · ∧ dz̄jq =

1
p!q!

ψ̄ji...jq ı̄1...̄ıp
dzj1 ∧ · · · ∧ dz̄ip ,

(3.45)
where

ψk1...kp l̄1...l̄q = (−1)pqψ̄l1...lq k̄1...k̄p
. (3.46)

The inner product ( , ) : Ap,q ×Ap,q → C is then

(ϕ,ψ) =
∫

M

(ϕ,ψ)(z)
ωn

n!
. (3.47)

The following two properties are easy to verify:

(ψ,ϕ) = (ϕ,ψ) ,
(ϕ,ϕ) ≥ 0 with equality only for ϕ = 0 . (3.48)

6 A good and detailed reference for the following discussion is the third chapter of
[26].
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We define the Hodge-∗ operator ∗ : Ap,q → An−q,n−p, ψ �→ ∗ψ by requiring7

(ϕ,ψ)(z)
ωn

n!
= ϕ(z) ∧ ∗ψ̄(z) . (3.49)

Exercise 3.11: Show that for ψ ∈ Ap,q,

∗ ψ = (i)n(−1)n(n−1)/2+np

p!q!(n−p)!(n−q)! gεm1...mp
̄1...̄n−p

εn̄1...n̄q
l1...ln−q

(3.50)

·ψm1...mpn̄1...n̄q
dzl1 ∧ · · · ∧ dzln−q ∧ dz̄j1 ∧ · · · ∧ dz̄jn−p ∈ An−q,n−p .

Here we defined εi1...in
= ±1 and its indices are raised with the metric, as

usual; i.e. ε̄1...̄n = ±g−1.
Exercise 3.12: Prove the following properties of the ∗-operator:

∗ ψ̄ = ∗ψ ,

∗∗ψ = (−1)p+q ψ , ψ ∈ Ap,q . (3.51)

Exercise 3.13: For ω the fundamental form and α an arbitrary real (1, 1)-
form, derive the following two identities, valid on a three-dimensional Kähler
manifold:

∗ α =
1
2
(ω, α)(z)ω ∧ ω − α ∧ ω ,

∗ ω =
1
2
ω ∧ ω . (3.52)

Exercise 3.14: Show that on a three-dimensional complex manifold for Ω ∈
A3,0 and α ∈ A2,1,

∗Ω = −iΩ ,

∗ α = iα . (3.53)

Given the scalar product (3.47), we can define the adjoint of the ∂̄ oper-
ator, ∂̄∗ : Ap,q(M) → Ap,q−1(M) via

(∂̄∗ψ,ϕ) = (ψ, ∂̄ϕ) , ∀ϕ ∈ Ap,q−1(M) . (3.54)

Exercise 3.15: Show that on M compact,

∂̄∗ = − ∗ ∂ ∗ . (3.55)

Exercise 3.16: Show that, given a (p, q)-form ψ,

(∂̄∗ψ)i1...ip ̄2...̄q
= (−1)p+1∇̄1ψi1...ip ̄1...̄q

. (3.56)

We now define the ∂̄-Laplacian as
7 Note that there are several differing notations in the literature; e.g. Griffiths and

Harris define an operator ∗GH : Ap,q → An−p,n−q. What they call ∗GH ψ we have
called ∗ψ̄.
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∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ , ∆∂̄ : Ap,q(M) → Ap,q(M) (3.57)

and call ψ a (∂̄−)harmonic form if it satisfies

∆∂̄ψ = 0 . (3.58)

The space of harmonic (p, q)-forms on M is denoted by Hp,q(M).

Exercise 3.17: Show that on a compact manifold, ψ is harmonic iff ∂̄ψ =
∂̄∗ψ = 0, i.e. a harmonic form has zero curl and zero divergence with respect
to its anti-holomorphic indices. Show furthermore that a harmonic form is
orthogonal to any exact form and is therefore never exact.

In analogy to de Rham cohomology, one has the (complex version of the)
Hodge Theorem: Ap,q has a unique orthogonal decomposition

Ap,q = Hp,q ⊕ ∂̄Ap,q−1 ⊕ ∂̄∗Ap,q+1 . (3.59)

In other words, every ϕ ∈ Ap,q has a unique decomposition

ϕ = h+ ∂̄ψ + ∂̄∗η (3.60)

where h ∈ Hp,q, ψ ∈ Ap,q−1 and η ∈ Ap,q+1. If ∂̄ϕ = 0 then ∂̄∗η = 0,8 i.e. we
have the unique decomposition of ∂̄-closed forms

Zp,q

∂̄
= Hp,q ⊕ ∂̄Ap,q−1 (3.61)

With reference to (3.39) we have thus shown that

Hp,q

∂̄
(M) $ Hp,q(M) (3.62)

or, in words, every ∂̄-cohomology class of (p, q)-forms has a unique harmonic
representative ∈ Hp,q. Conversely, every harmonic form defines a cohomology
class.

The Kähler class of a Kähler form ω is the set of Kähler forms belonging
to the cohomology class [ω] of ω.

Exercise 3.18: Prove that the Kähler form is harmonic.

In addition to the ∂̄-Laplacian ∆∂̄ , one defines two further Laplacians on a
complex manifold: ∆∂ = ∂∂∗ + ∂∗∂ and the familiar ∆d = dd∗ + d∗d. The
importance of the Kähler condition is manifest in the following result which
is valid on Kähler manifolds but not generally on complex manifolds:

∆∂̄ = ∆∂ =
1
2
∆d (3.63)

i.e. the ∂̄−, ∂− and d−harmonic forms coincide. An elementary proof of
(3.63) proceeds by working out the three Laplacians in terms of covariant
8 From ∂̄ϕ = ∂̄∂̄∗η it follows that (∂̄ϕ, η) = (∂̄∂̄∗η, η) = (∂̄∗η, ∂̄∗η).
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derivatives and Riemann tensors on a Kähler manifold. For other proofs, see
e.g. [23].

One immediate consequence of (3.63) is that∆d does not change the index
type of a form. Another important consequence is that on Kähler manifolds
every holomorphic p-form is harmonic and vice-versa, every harmonic (p, 0)
form is holomorphic. Indeed, if α ∈ Ωp ⊂ Ap,0, ∂̄α = 0 and ∂̄∗α = 0. The
latter is true since ∂̄∗ : Ap,q → Ap,q−1 and can also be seen directly from
(3.56). Conversely, ∆α = 0 implies ∂̄α = 0 which, for α ∈ Hp,0, means
α ∈ Ωp.

It follows from (3.63) that on Kähler manifolds
∑

p+q=r

hp,q = br ,

∑

p,q

(−1)p+qhp,q =
∑

r

(−1)rbr = χ(M) , (3.64)

where χ(M) is the Euler number of M . The decomposition of the Betti num-
bers into Hodge numbers corresponds to the U(n) invariant decomposition
µ = (i, ı̄). The second relation also holds in the non-Kähler case where the
first relation is replaced by an inequality (≥); i.e. the decomposition of forms
(3.11) does not generally carry over to cohomology. Note that (3.64) relates
real and complex dimensions.

In general, the Hodge numbers depend on the complex structure. On com-
pact manifolds which admit a Kähler metric, these numbers do however not
change under continuous deformations of the complex structure. They also
do not depend on the metric. What does depend on the metric is the har-
monic representative of each class, but the difference between such harmonic
representatives is always an exact form.

The Hodge numbers of Kähler manifolds are not all independent. From
Ap,q = Aq,p we learn

hp,q = hq,p . (3.65)

This symmetry ensures that all odd Betti numbers of Kähler manifolds are
even (possibly zero). Furthermore, since [∆d, ∗] = 0 and since ∗ : Ap,q →
An−q,n−p we conclude

The existence of a closed (1, 1)-form, the Kähler form ω (which is in fact
harmonic, cf. Exercise 3.18), ensures that

hp,p > 0 for p = 0, . . . , n . (3.67)

Indeed, ωp ∈ Hp,p(M) is obviously closed. If it were exact for some p, then
ωn were also exact. But this is impossible since ωn is a volume form. h0,0 = 1
if the manifold is connected. The elements of H0,0(M,C) are the complex

hp,q = hn−q,n−p (3.65)
= hn−p,n−q . (3.66)
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constants. One can show that on Pn the Kähler form generates the whole
cohomology, i.e. hp,p(Pn) = 1 for p = 0, . . . n, with all other Hodge numbers
vanishing.

For instance, on a connected three-dimensional Kähler manifold, these
symmetries leave only five independent Hodge numbers, e.g. h1,0, h2,0, h1,1,
h2,1 and h3,0. For Ricci-flat Kähler manifolds, which we will consider in detail
below, we will establish three additional restrictions on its Hodge numbers.

We have already encountered one important cohomology class on Kähler
manifolds: from (3.23) we learn that R ∈ H1,1(M,C) and from (3.24) that
under change of metric R varies within a given cohomology class. In fact, one
can show that, if properly normalized, the Ricci form defines an element on
H1,1(M,Z). This leads us directly to a discussion of Chern classes.

Given a Kähler metric, we can define a matrix valued 2-form Θ of type
(1, 1) by

Θj
i = gjp̄Rip̄kl̄dzk ∧ dz̄l . (3.68)

One defines the Chern form

c(M) = 1+
∑

i

ci(M) = det
(

� +
it

2π
Θ

)

|t=1 = (1+tφ1(g)+t2φ2(g)+. . . )|t=1

(3.69)
which has the following properties (cf. e.g. [12, 27]):

• dφi(g) = 0 and [φi] ∈ Hi,i(M,C) ∩H2i(M,R),
• [φi(g)] is independent of g,
• ci(M) is represented by φi(g).

ci(M) is the ith Chern class of the manifold M . In these lectures we only
need c1(M) which is expressed in terms of the Ricci form:

φ1(g) =
i

2π
Θi

i =
i

2π
Rkl̄dz

k ∧ dz̄l =
1
2π
R = − i

2π
∂∂̄ log det(gkl̄) .

For c1(M), the first two properties have been proven in (3.23) and (3.24).
Moreover, if

dv = vdz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

is any volume form on M , we can represent c1(M) by

c1(M) = −
[
i

2π
∂∂̄ log(v)

]

. (3.70)

This is so since v = f det(g) for a non-vanishing positive function f on M .

Example 3.4: Let M = Pn, endowed with the Fubini-Study metric. We then
have (cf. (3.29)) R = (n+ 1)ω, i.e. c1(Pn) = 1

2π (n+ 1)[ω].

We say that c1(M) > 0 (< 0) if c1(M) can be represented by a positive
(negative) form. In local coordinates this means
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φ1 = iφkl̄dz
k ∧ dz̄l , (3.71)

where φkl̄ is a positive (negative) definite matrix. We say that c1(M) = 0 if
the first Chern class is cohomologous to zero. Clearly c1(Pn) > 0. Note that,
e.g. a c1(M) > 0 means that

∫
C c1 > 0 for any curve C in M .

3.5 Calabi-Yau Manifolds

We are now prepared to give a definition of a Calabi-Yau manifold:
A Calabi-Yau manifold is a compact Kähler manifold with vanishing first

Chern class.
While it is obvious that any Ricci-flat Kähler manifold has vanishing first

Chern class, the opposite is far from trivial. This problem was first considered
by Calabi in a more general context. He asked the question whether any
representative of c1(M) is the Ricci-form of some Kähler metric. (One can
show that any two such representatives differ by a term of the form ∂∂̄f where
f ∈ C∞(M,R). This is the content of the ∂∂̄-Lemma, cf. [12], 2.110.) Calabi
also showed that if such a Kähler metric exists, then it must be unique. Yau
provided the proof that such a metric always exists if M is compact.

The precise statement of Yau’s theorem is: let M be a compact Kähler
manifold, ω its Kähler form, c1(M) its first Chern class. Any closed real two-
form of type (1,1) belonging to 2πc1(M) is the Ricci form of one and only
one Kähler metric in the class of ω.

For vanishing first Chern class, which is the case we are interested in,
this means that given any Kähler metric g with associated Kähler form ω,
one can always find a unique Ricci-flat Kähler metric g′ with Kähler form ω′

such that [ω] = [ω′], i.e. a Kähler manifold with c1(M) = 0 admits a unique
Ricci-flat Kähler form in each Kähler class.

Since the first Chern class is represented by the Ricci form and since
the latter changes under change of metric by an exact form, i.e. R(g′) =
R(g) + dα (cf. (3.24)), vanishing of the first Chern class is necessary for
having a Ricci-flat metric. This is the easy part of the theorem. To prove
that this is also sufficient is the hard part. Yau’s proof is an existence proof.
In fact no Calabi-Yau metric has ever been constructed explicitly. In the
non-compact case the situation in this respect is better; examples are the
Eguchi-Hanson metrics, see e.g. [28], and the metric on the deformed and
the resolved conifold [33]. They play a rôle in the resolution of singularities
(orbifold and conifold singularities, respectively) which can occur in compact
CY manifolds at special points in their moduli space.

The compact Kähler manifolds with zero first Chern class are thus pre-
cisely those which admit a Kähler metric with zero Ricci curvature, or
equivalently, with restricted holonomy group contained in SU(n). Following
common practice we will talk about Calabi-Yau manifolds if the holonomy
group is precisely SU(n). This excludes tori and direct product spaces.
We want to mention in passing that any compact Kähler manifold with
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c1(M) = c2(M) = 0 is flat, i.e. M = Cn/Γ . This shows that while Ricci-
flatness is characterized by the first Chern class, flatness is characterized by
the second Chern class.

We should mention that the analysis that we sketched in the introduction,
which led to considering Ricci-flat manifolds, was based on a perturbative
string theory analysis which was further restricted to lowest order in α′. If
one includes α′-corrections, both the beta-function equations and the super-
symmetry transformations will be corrected and the Ricci-flatness condition
is also modified. One finds the requirement Rī + α′3(R4)ī = 0, where (R4)
is a certain tensor composed of four powers of the curvature. It has been
shown that the α′-corrections to the Ricci-flat metric, which one has at low-
est order, do not change the cohomology class. They are always of the form
∂∂̄(...) and are thus cohomologically trivial [34]. In other words, supersym-
metry preserving string compactifications require manifolds which admit a
Ricci-flat Kähler metric but the actual background configuration might have
a metric with non-vanishing Ricci tensor.

One often defines Calabi-Yau manifolds as those compact complex Kähler
manifolds with trivial canonical bundle. We now want to digress to explain
the meaning of this statement and to demonstrate that it is equivalent to the
definition given above. Chern classes can be defined for any complex vector
bundle over M . By ci(M) as defined above we mean the Chern classes of the
tangent bundle. Given a connection on the vector bundle, the Chern classes
can be expressed by the curvature of the connection in the same way as for
the tangent bundle with the hermitian connection.

Exercise 3.19: Show that c1(T ∗M) = −c1(TM).

A central property of Chern classes is that they do not depend on the
choice of connection. They are topological cohomology classes in the base
space of the vector bundle (see e.g. [25], p.90). An important class of vector
bundles over a complex manifold are those with fibers of (complex) dimension
one, the so called line bundles with fiber C (complex vector bundles of rank
one). Holomorphic line bundles have holomorphic transition functions and a
holomorphic section is given in terms of local holomorphic functions. Each
holomorphic section defines a local holomorphic frame (which is, of course,
one-dimensional for a line-bundle). One important and canonically defined
line bundle is the canonical line bundle K(M) =

n
∧T ∗1,0(M) whose sections

are forms of type (n, 0), where n = dimC(M). It is straightforward to verify
that [∇i,∇̄]ωi1...,in

= −Rīωi1...in
, i.e. its curvature form is the negative of

the Ricci form of the Kähler metric. This shows that c1(M) = −c1(K(M))
and if c1(M) = 0 the first Chern class of the canonical bundle also vanishes.
For a line bundle this means that it is trivial. Consequently there must exist
a globally defined nowhere vanishing section, i.e. globally defined nowhere
vanishing holomorphic n-form onM . One finds from (3.35) that on a compact
Ricci-flat Kähler manifold any holomorphic p-form is covariantly constant.
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This means that the holonomy groupH of a Calabi-Yau manifold is contained
in SU(n).

Example 3.5: In this example we consider complex hypersurfaces in Pn

which are expressed as the zero set of a homogeneous polynomial. We already
know that they are Kähler. We want to compute c1 of the hypersurface as a
function of the degree d of the polynomial and of n. From this we can read
off the condition for the hypersurface to be a Calabi-Yau manifold. This can
be done with the tools we have developed so far, even though more advanced
and shorter derivations of the result can be found in the literature, see e.g.
[23] or [12]. Later we will encounter another way to see that d = n+1 means
c1(X) = 0 by explicitly constructing the unique holomorphic n-form which,
as we will see, must exist on a Calabi-Yau n-fold. The calculation is presented
in Appendix C. The result we find there is

2πc1(X) = (n+ 1− d)[ω] . (3.72)

It follows that the first Chern class c1(X) is positive, zero or negative accord-
ing to d < n+ 1, d = n+ 1 and d > n+ 1, respectively.

We have thus found an easy way to construct Calabi-Yau manifolds. For
one-folds, a cubic hypersurface in P2 is a 2-torus and for two-folds, a quartic
hypersurface in P3 is a K3. If we are interested in three-folds, we have to
choose the quintic hypersurface in P4. This is in fact the simplest example,
which we will study further below.

The Calabi-Yau condition on the degree generalizes to the case of hy-
persurfaces in weighted projective spaces. Given a weighted projective space
Pn[w] and a hypersurface X specified by the vanishing locus of a quasi-
homogeneous polynomial of degree d, we find

c1(X) = 0 ⇔ d =
n∑

i=1

wi . (3.73)

The condition on the degrees and weights can also be easily written down for
complete intersections in products of weighted projective spaces.

As we have discussed before, in the generic case the hypersurface will
be singular. To get a smooth Calabi-Yau manifold one has to resolve the
singularities in such a way that the canonical bundle remains trivial.

Example 3.6: An example of a CY3 hypersurface in weighted projective
space where no resolution is necessary is the sextic in P4[1, 1, 1, 1, 2]. The em-
bedding space has only isolated singular points which are avoided by a generic
hypersurface. On the other hand, the octic hypersurface in P4[1, 1, 2, 2, 2] can-
not avoid the singular Z2 surface of the embedding space and has thus itself
a singular Z2 curve which must be “repaired” in order to obtain a smooth
CY manifold.
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We should mention that the construction of the first Chern class that we
present in Appendix C does not provide the Ricci-flat metric. In fact, the
Ricci-flat metric is never the induced metric. As we have mentioned once be-
fore, a Ricci-flat Kähler metric on a compact Kähler manifold has never been
constructed explicitly. Interesting examples of non-compact Ricci-flat Kähler
manifolds, which are of potential interest for M -theory and the AdS/CFT
correspondence, are the cotangent bundles of spheres of any dimension and
the complex cotangent bundle on Pn for any n. The latter are hyper-Kähler
manifolds, which are always Ricci-flat. For these manifolds Ricci-flat metrics
are known explicitly. For instance, T ∗S3 is the deformed conifold.

Let us come back to the fact that a compact Kähler manifold with SU(n)
holonomy always possesses a nowhere vanishing covariantly constant (n, 0)-
form Ω, called a complex volume form which is in fact unique (up to multi-
plication by a constant). Locally it can always be written as

Ωi1...in
= f(z)εi1...in

(3.74)

with f a non-vanishing holomorphic function in a given coordinate patch and
εi1...in

= ±1. Before proving this we want to derive two simple corollaries:
(1) Ω is holomorphic. Indeed, ∂̄ı̄Ωj1...jn

= ∇ı̄Ωj1...jn
= 0, because Ω is co-

variantly constant.
(2) Ω is harmonic. To show this we still have to demonstrate ∂̄∗Ω = 0. But
this obvious since ∂̄∗ = − ∗ ∂∗ and ∗ : An,0 → An,0 and ∂An,0 = 0.

A simple argument that Ω always exists is the following [12, 35]. Start
at any point p in M and define Ωp = dz1 ∧ · · · ∧ dzn, where {zi} are local
coordinates. Then parallel transport Ω to every other point on M . This
is independent of the path taken, since when transported around a closed
path (starting and ending at p), Ω is a singlet under SU(n) and is thus
unchanged. This defines Ω everywhere on M . Ω can also be constructed
explicitly with the help of the covariantly constant spinor: Ωijk = εTγijkε.
Here γijk is the antisymmetrized product of three γ-matrices which satisfy
{γi, γj} = {γı̄, γ̄} = 0, {γi, γ̄} = 2gī. The proof that Ω thus defined satisfies
all the necessary properties is not difficult. It can be found in [4, 28].

We now show that Ω is essentially unique. Assume that given Ω there
were a Ω′ with the same properties. Then, since Ω is a form of the top degree,
we must have Ω′ = fΩ where f is a non-singular function. Since we require
∂̄Ω′ = 0, f must in fact be holomorphic. On a compact manifold this implies
that f is constant.

Conversely, the existence of Ω implies c1 = 0. Indeed, with (3.74), we can
write the Ricci form as

R = i∂∂̄ log det(gkl̄) = −i∂∂̄ log
(
Ωi1...in

Ω̄̄1...̄n
gi1 ̄1 · · · gin ̄n

)
. (3.75)

The argument of the logarithm is a globally defined function and the Ricci
form is thus trivial in cohomology, implying c1 = 0.
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For hypersurfaces in weighted projective spaces one can explicitly con-
struct Ω by extending the construction of holomorphic differentials on a Rie-
mann surface (see e.g. [23]). Once constructed we know that Ω is essentially
unique (up to a multiplicative constant on the hypersurface).

Consider first the torus defined as a hypersurface in P2 specified by the
vanishing locus of a cubic polynomial, f(x, y, z) = 0. This satisfies (3.72).
The unique holomorphic differential (written in a patch with z = 1) is ω =
−dy/(∂f/∂x) = dx/(∂f/∂y) = dx/(2y). The first equality follows from df =
0 along the hypersurface and the second equality if the hypersurface is defined
by an equation of the form f = zy2−p(x, z), e.g. the Weierstrass and Legendre
normal forms. An interesting observation is that ω can be represented as a
residue: ω = 1

2πi

∫
γ

dx∧dy
f(x,y) . The integrand is a two-form in the embedding

space with a first order pole on the hypersurface f = 0 and the contour γ
surrounds the hypersurface. Changing coordinates (x, y) → (x, f) and using
1

2πi

∫
γ

df
f = 1 we arrive at ω as given above.

The above construction of the holomorphic differential for a cubic hyper-
surface in P2 can be generalized to obtain the holomorphic three-form on
a Calabi-Yau manifold realized as a hypersurface p = 0 in weighted P4[w]
[36, 37]. Concretely,

Ω =
∫

γ

µ

p
, (3.76)

where

µ =
4∑

i=0

(−1)iwiz
idz0 ∧ · · · ∧ d̂zi ∧ · · · ∧ dz5 , (3.77)

and the term under the ̂ is omitted. The contour γ now surrounds the
hypersurface p = 0 inside the weighted projective space. Note that the nu-
merator and the denominator in µ/p scale in the same way under (3.6). In
the patch Ui where zi = const, only one term in the sum survives. One can
perform the integration by replacing one of the coordinates, say zj , by p and
using
∫

γ
dp
p = 2πi. In this way one gets an expression for Ω directly on the

embedded hypersurface. For instance in the patch U0 one finds (no sum on
(i, j, k) implied)

Ω =
w0z

0dzi ∧ dzj ∧ dzk

∆ijk
0

, (3.78)

where ∆ijk
0 = ∂(zi,zj ,zk,p)

∂(z1,z2,z3,z4) . From our derivation it is clear that this repre-
sentation of Ω is independent of the choice of {i, j, k} ⊂ {1, 2, 3, 4} and of
the choice of coordinate patch. Furthermore, it is everywhere non-vanishing
and well defined at every non-singular point of the hypersurface. A direct
verification of these properties can be found in [4, 38].

The existence of a holomorphic n-form then means that the holonomy
group H (and not just H0) is contained in SU(n).
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Let us now complete the discussion of Hodge numbers of Calabi-Yau mani-
folds. We have just established the existence of a unique harmonic (n, 0)-form,
Ω, and thus

hn,0 = h0,n = 1 . (3.79)

With the help of Ω we can establish one further relation between the Hodge
numbers. Given a holomorphic and hence harmonic (p, 0)-form, we can, via
contraction with Ω, construct a (0, n − p)-form, which can be shown to be
again harmonic, as follows. Given

α = αi1...ip
dzi1 ∧ · · · ∧ dzip , ∂̄α = 0 , (3.80)

α being (∆∂)-harmonic means

∂ α = 0 ⇔ ∇[ji
αj2...jp+1] = 0 ,

∂∗α = 0 ⇔ ∇i1αi1...ip
= 0 . (3.81)

We then define the (0, n− p)-form

β̄p+1...̄n
=

1
p!
Ω̄̄1...̄n

ᾱ1...̄p . (3.82)

This can be inverted to give (use (3.74))

ᾱ1...̄p =
1
||Ω||2Ω

̄1...̄p ̄p+1...̄nβ̄p+1...̄n
, (3.83)

where we have defined

||Ω||2 =
1
n!
Ωi1...in

Ωi1...in . (3.84)

From this we derive

∇̄p+1β̄p+1...̄n
=

1
p!
Ω̄̄1...̄n

∇̄p+1ᾱ1...̄p = 0 , (3.85)

using (3.81)1. Similarly

∇j̄1α
̄1...̄p =

1
||Ω||2Ω

̄1...̄p ̄p+1...̄n∇̄1β̄p+1...̄n
= 0 (3.86)

by virtue of (3.81)2. It follows that β is also harmonic.
We have thus shown the following relation between Hodge numbers

hp,0 = h0,n−p = hn−p,0 . (3.87)

Let us finally look at hp,0. For this we need the Laplacian on p-forms. Speci-
fying (3.35) for a harmonic (p, 0) form on a Ricci-flat Kähler manifold where
Rī = Rijk̄l̄ ≡ 0, we find ∇ν∇νωi1···ip

= 0. On a compact manifold this means
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that ω is parallel, i.e. ∇jωi1···ip
= 0, ∂̄̄ωi1···ip

= 0, the latter equality already
being a consequence of harmonicity. But this means that ω transforms as a
singlet under the holonomy group. We now assume that the holonomy group
is exactly SU(n), i.e. not a proper subgroup of it.9 Since ωi1···ip

transforms
in the ∧pn of SU(n), the singlet only appears in the decomposition if p = 0
or p = n. We thus learn that on Calabi-Yau manifolds with holonomy group
SU(n)

hp,0 = 0 for 0 < p < n . (3.88)

Exercise 3.20: Show that h1,0(M) = 0 implies that there are no continuous
isometries on M .

If we collect the results on the Hodge numbers of Calabi-Yau manifolds
for the case n = 3, we find that the only independent Hodge numbers are
h1,1 ≥ 1 and h2,1 ≥ 0 and the Hodge diamond for Calabi-Yau three-folds is

h30 = 1 h21 h12 = h21 h03 = 1

X

X

Hodge ∗
duality

h20 = 0 h11

h22 = h11

h02 = 0

h31 = 0 h13 = 0

h10 = 0 h01 = 0

h32 = 0 h23 = 0

h00 = 1

h33 = 1

X

X̂

mirror
symmetry

X X
complex conjugation

(3.89)

The Euler number of a Calabi-Yau three-fold is then (cf. (3.64))

χ(M3) = 2(h1,1 − h1,2) . (3.90)

In higher dimensions there are more independent Hodge numbers, but this
will not be covered here. For the case of CY four-folds, see [39]. The signifi-
cance of h1,1 and h2,1 for Calabi-Yau three-folds will be explained in Sect. 3.6.

In (3.89) we have indicated operations which relate Hodge numbers to
each other. In addition to complex conjugation (3.65) and the Hodge ∗-
operation (3.66), which act on the Hodge numbers of a given CY manifold,
9 In Chap. 4 we discuss orbifolds with discrete holonomy groups. There the con-

dition will be that it is not contained in any continuous subgroup of SU(n).
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we have also shown the action of mirror symmetry: given a CY manifold X,
there exists a mirror manifold X̂ such that hp,q(X) = h3−p,q(X̂). This in
particular means that the two non-trivial Hodge numbers h1,1 and h2,1 are
interchanged between X and X̂ and that χ(X) = −χ(X̂). Within the class of
Calabi-Yau manifolds constructed as hypersurfaces in toric varieties (which
we have not discussed) they manifestly come in mirror pairs [40]. So-called
rigid manifolds, for which h2,1(X) = 0, and consequently h1,1(X̂) = 0, are
discussed in [41]. The Z-manifold described in example 4.4 is rigid.

As we have already mentioned at the end of Chap. 2, mirror symmetry
is a much stronger statement than the mere existence of mirror pairs of CY
manifolds. Its far-reaching consequences for both string theory and algebraic
geometry are thoroughly covered in [18].

3.6 Calabi-Yau Moduli Space

In this section we will only treat three dimensional Calabi-Yau manifolds.
References are [4, 21, 38, 42, 43]. The generalization to higher dimensions of
most the issues discussed here is straightforward. The two-dimensional case
(K3) is described in [44] in great detail.

In view of Yau’s theorem, the parameter space of CY manifolds is that
of Ricci-flat Kähler metrics. We thus ask the following question: given a
Ricci-flat Riemannian metric gµν on a manifold M , what are the allowed
infinitesimal variations gµν + δgµν such that

Rµν(g) = 0 ⇒ Rµν(g + δg) = 0 ? (3.91)

Clearly, if g is a Ricci-flat metric, then so is any metric which is related to g by
a diffeomorphism (coordinate transformation). We are not interested in those
δg which are generated by a change of coordinates. To eliminate them we
have to fix the diffeomorphism invariance and impose a coordinate condition.
This is analogous to fixing a gauge in electromagnetism. The appropriate
choice is to demand that ∇µδgµν = 0 (see e.g. [12], 4.62). Any δgµν which
satisfies this condition also satisfies

∫
M

√
gδgµν(∇µξν + ∇νξµ)ddx = 0, and

is thus orthogonal to any change of the metric induced by a diffeomorphism
generated by the vector field ξµ. Then, expanding (3.91) to first order in δg
and using Rµν(g) = 0 and the coordinate condition, one finds

∇ρ∇ρδgµν − 2Rµ
ρ

ν
σδgρσ = 0 . (3.92)

Exercise 3.21: Derive (3.92). Useful expansions of the curvature can be found
in [45]. One needs to use that M is compact to eliminate a term ∇µ∇νtr(δg).

We now want to analyze (3.92) if (M, g) is a Kähler manifold. Given the
index structure of the metric and the Riemann tensor on Kähler manifolds,
one immediately finds that the conditions imposed on the components δgī
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and δgij decouple and can thus be studied separately. This is what we now
do in turn.

(1) δgī : With the help of (3.35) it is easy to see that the condition
(3.92), which now reads ∇µ∇µδgī − 2Ri

k
̄
l̄δgkl̄ = 0, µ=(k, k̄), is equivalent

to (∆δg)ī = 0. Here we view δgī as the components of a (1, 1)-form. We see
that harmonic (1, 1)-forms correspond to the metric variations of the form
δgī and to cohomologically non-trivial changes of the Kähler form. Of course,
we already knew from Yau’s theorem that for any [ω + δω] there is again a
Ricci-flat Kähler metric. Expanding δgī in a basis of real (1, 1)-forms, which
we will denote by bα, α = 1, . . . , h1,1, we obtain the following general form
of the deformations of the Kähler structure of the Ricci flat metric:

δgī =
h1,1
∑

α=1

t̃αbαī , t̃α ∈ R . (3.93)

Using (3.56) one may check that these δg satisfy the coordinate condition.
For g+ δg to be a Kähler metric, the Kähler moduli t̃α have to be chosen

such that the deformed metric is still positive definite. Positive definiteness
of a metric g with associated Kähler form ω is equivalent to the condition

∫

C

ω > 0 ,
∫

S

ω2 > 0 ,
∫

M

ω3 > 0 (3.94)

for all curves C and surfaces S on the Calabi-Yau manifold M . The subset
in Rh1,1 spanned by the parameters t̃α such that (3.94) is satisfied, is called
the Kähler cone.

Exercise 3.22: Verify that this is indeed a cone.

(2) δgij : Now (3.92) reads ∇µ∇µδgij − 2Ri
k

j
lδgkl = 0. With little work

this can be shown to be equivalent to

∆∂̄δg
i = (∂̄∂̄∗ + ∂̄∗∂̄)δgi = 0 (3.95)

where
δgi = δgi

̄dz̄
̄ , δgi

̄ = gik̄δgk̄̄ (3.96)

is a (0, 1)-form with values in T 1,0(M). We conclude that (3.95) implies that
δgi ∈ H

(0,1)

∂̄
(M,T 1,0). Again one may verify that these deformations of the

metric satisfy the coordinate condition.

Exercise 3.23: Fill in the steps of the above argument.

What is the significance of these metric deformations? For the new met-
ric to be again Kähler, there must be a coordinate system in which it has
only mixed components. Since holomorphic coordinate transformations do
not change the type of index, it is clear that δgij can only be removed by
a non-holomorphic transformation. But this means that the new metric is
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Kähler with respect to a different complex structure compared to the origi-
nal metric. (Of course, this new metric cannot be obtained from the original
undeformed metric by a diffeomorphism as they have been fixed by the co-
ordinate condition. So while removing δgij , the non-holomorphic change of
coordinates generates a δgī).

With the help of the unique holomorphic (3, 0) form we can now define an
isomorphism between H0,1

∂̄
(M,T 1,0) and H2,1

∂̄
(M) by defining the complex

(2,1)-forms
Ωijkδg

k
l̄ dz

i ∧ dzj ∧ z̄ l̄ . (3.97)

which are harmonic if (3.92) is satisfied. These complex structure deforma-
tions can be expanded in a basis ba

ijk̄
, a = 1, . . . , h2,1, of harmonic (2, 1)-

forms:

Ωijkδg
k
l̄ =

h2,1
∑

a=1

tabaijl̄ (3.98)

where the complex parameters ta are called complex structure moduli.10

If we were geometers we would only be interested in the deformations of
the metric and the number of real deformation parameters (moduli) would
be h1,1 + 2h1,2. However, in string theory compactified on Calabi-Yau mani-
folds we have additional massless scalar degrees of freedom from the internal
components of the antisymmetric tensor field in the (NS,NS) sector of the
type II string. Its equations of motion in the gauge d∗B = 0 are ∆B = 0,
i.e. excitations of the B-field above the background where it vanishes are
harmonic two-forms on the Calabi-Yau manifold. We can now combine these
with the Kähler deformations of the metric and form

(iδgī + δBī)dzi ∧ dz̄̄ =
h1,1
∑

α=1

t̃αbα (3.99)

where the parameters t̃α are now complex, their imaginary part still restricted
by the condition discussed before. This is referred to as the complexification
of the Kähler cone.

To summarize, there is a moduli space associated with the different
Kähler and complex structures which are compatible with the Calabi-Yau
condition. The former are parametrized by H1,1

∂̄
(M) and the latter by of

H0,1

∂̄
(M,T 1,0) $ H2,1

∂̄
(M). The moduli space of Ricci-flat Kähler metrics is

parametrized by the harmonic representatives of these cohomology groups.
10 Our discussion of complex structure moduli is not complete. We have only con-

sidered the linearized deformation equation. It still needs to be shown that they
can be integrated to finite deformations. That this is indeed the case for Calabi-
Yau manifolds has been proven by Tian [46] and by Todorov [47]. For a general
complex manifold the number of complex structure deformations is less than
h2,1.
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Let us now exemplify this discussion by the quintic in P4. Here we have
h1,1 = 1: this is simply the Kähler form induced from the ambient space P4.
(The metric induced from the Fubini-study metric is not the Ricci-flat one.)
As shown in [26] and by more elementary means in [38], the complex structure
parameters appear as coefficients in the most general quintic polynomial.
One easily finds that there are 126 coefficients. However, polynomials which
are related by a linear change of the homogeneous coordinates of P4 should
not be counted as different. These are parametrized by dimC(GL(5,C)) =
25 coefficients. We therefore conclude that there are 101 complex structure
moduli on the quintic hypersurface, i.e. h2,1 = 101. For special values of these
coefficients the hypersurface is singular, i.e. there are solutions of p = dp = 0.
With (3.90) we find that the Euler number of the quintic is −200.

The situation for hypersurfaces in weighted projective spaces is more com-
plicated. If the hypersurface passes through the singular loci of the embedding
space, they have to be “repaired”. Care has to be taken that in doing this
the Calabi-Yau condition c1 = 0 is maintained. This introduces additional
elements in the cohomology, so that in general h1,1 > 1. Also h2,1 can no
longer be counted as the number of coefficients in the defining polynomial:
this counting falls short of the actual number of complex structure moduli.
There are methods to compute the Hodge numbers of these manifolds. The
most systematic and general one is by viewing them as hypersurfaces in toric
varieties [40].

We will not address questions of global properties of the moduli space
of string compactifications on Calabi-Yau manifolds, except for mentioning
a few aspects. Mirror symmetry, which connects topologically distinct man-
ifolds, is certainly relevant. Another issue is that of transitions among topo-
logically different manifolds, the prime example being the conifold transition
[33]. While one encounters singular geometries in the process, string theory is
well behaved and the transition is smooth. Indeed, it has been speculated that
the moduli space of all Calabi-Yau compactifications is smoothly connected
[48].

3.7 Compactification of Type II Supergravities
on a CY Three-Fold

Now that we know the meaning of the Hodge numbers h1,1 and h2,1, we can,
following our general discussion in Sect. 2.3, examine the relevance of the ex-
istence of harmonic forms on Calabi-Yau manifolds for the massless spectrum
of the compactified theory. We will consider the two ten-dimensional type II
supergravities that are the field theory limits of type II strings. The discussion
is thus also relevant for string compactification, as long as the restriction to
the massless modes is justified, i.e. for energies E2α′ ( 1. However, there are
string effects which are absent in field theory compactifications, such as topo-
logical non-trivial embeddings of the string world-sheet into the CY manifold.
These stringy effects (world-sheet instantons) which are non-perturbative in
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α′, have an action which scales as R2/α′, where R is the typical size of the
manifold. They are suppressed as e−Sinst ∼ e−R2/α′

and are small for a large
internal manifold but relevant for R ∼

√
α′.

Type IIA supergravity is a non-chiral N = 2 theory with just a gravity
multiplet whose field content is:

GIIA(10) =
{
GMN , ψ

(+)
M , ψ

(−)
M , ψ(+), ψ(−), BMN , AMNP , VM , φ

}
. (3.100)

These fields correspond to the massless states of the type IIA string. The
fermionic fields arise in the two Neveu-Schwarz-Ramond sectors, i.e. (NS,R)
plus (R,NS), they are the two Majorana-Weyl gravitini of opposite chirality
ψ

(±)
M , M,N = 0, · · · , 9, and the two Majorana-Weyl dilatini ψ(±). The met-

ric GMN , the antisymmetric tensor BMN and the dilaton φ come from the
(NS,NS) sector. The remaining bosonic fields, the vector VM and the 3-index
antisymmetric tensor AMNP , appear in the (R,R) sector.

Exercise 3.24: Show that (3.100) results upon circle compactification of the
fields {GMN , ψM , AMNP }, with ψM Majorana. This is the field content of
D=11 supergravity which is the low-energy limit of M-theory.

Type IIB supergravity has also N =2 supersymmetry but it is chiral, i.e.
the two gravitini have the same chirality. The gravity multiplet has content:

GIIB(10) =
{
GMN , ψ

(+)
M , ψ̃

(+)
M , ψ(+), ψ̃(+)BMN , B̃MN , AMNPQ, φ, a

}
.

(3.101)
Now the bosonic fields from the (R,R) sector are the axion a, B̃MN and
AMNPQ which is completely antisymmetric and has self-dual field strength.

It is known that type IIA and type IIB strings compactified on a circle are
related by T -duality [49]. Therefore, whenever the internal manifold contains
a circle, type IIA and type IIB give T -dual theories that clearly must have
the same supersymmetric structure. In particular, compactification on T4

gives maximal (2,2) supersymmetry in d = 6, compactification on T6 gives
maximal N = 8 supersymmetry in d = 4 and compactification on K3 × T2

gives d = 4, N = 4 supersymmetry with 22 U(1) vector multiplets. Below
we examine compactification on CY3 in some more detail. Our purpose is to
determine the resulting massless fields by looking at the zero modes of the ten-
dimensional multiplets given above. In the lower dimensions we will obtain
a theory with a number of supersymmetries that depends on the internal
manifold. Clearly, the zero modes must organize into appropriate multiplets
whose structure is known beforehand.

Compactification of type IIA supergravity on a CY3 was considered first
in [50] and to greater extent in [51]. The resulting theory in d=4 has N =2
supersymmetry. The massless fields belong to the gravity multiplet plus hy-
permultiplets and vector multiplets, which are the three possible irreducible
representations with spins less or equal to two, cf. (4.65). To describe how the
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massless fields arise we split the ten-dimensional indices in a SU(3) covariant
way, M = (µ, i, ı̄)11 and then use the known results for the number of har-
monic (p, q) forms on the Calabi-Yau manifold. The zero modes of Gµν , ψ(+)

µ ,
ψ

(−)
µ and the graviphoton Vµ form the gravity multiplet. Both ψ(±)

µ have an
expansion of the form (2.18) so that we obtain two Majorana gravitini in four
dimensions. For the remaining fields and components it is simpler to analyze
the bosonic states. The fermions are most easily determined via N =2 space-
time supersymmetry and the known field content of the various multiplets.
Of course they can also be obtained by a zero mode analysis. Altogether one
finds for the bosons, in addition to those in the gravity multiplet,

Aα
µ , t

a, t̃α, Ca, S, C , (3.102)

where Aα
µ arises from Aµī and the remaining fields are all complex scalars

as follows. The t̃α correspond to Gī and Bī
12, the ta to Gij , Ca to the Aijk̄

modes, S to φ and Bµν (which can be dualized to a pseudoscalar) and C to
the Aijk mode. We now group these fields into supermultiplets. Aα

µ and t̃α

combine to h1,1 vector multiplets, whereas ta and Ca to h2,1 hypermultiplets.
The two complex scalars S and C form an additional hypermultiplet, so there
are (h2,1 + 1) hypermultiplets.

In the type IIB compactification the gravity multiplet is formed by the
zero modes of Gµν , ψ(+)

µ , ψ̃(+)
µ and Aµijk. From the rest of the fields we obtain

Aa
µ, t

a, t̃α, Cα, S, C . (3.103)

Here the fields Aa
µ arise from Aµijk̄ and ta from Gij ; (t̃α, Cα) correspond to

Gī, Bī, B̃ī and Aµνī; (S,C) to φ, a, Bµν and B̃µν . The fields arising from
the four-form are real, due to the self-duality constraint of its field-strength.
Altogether the fields combine to (h1,1 + 1) hypermultiplets and h2,1 vector
multiplets. Notice that this is the same result as in the type IIA case upon
exchanging h1,1 and h1,2. Indeed, it has been shown that compactification of
type IIB strings on a CY three-fold X gives the same 4-dimensional theory
that appears upon compactification of type IIA strings on the mirror X̂
[50, 52].

The moduli of the Calabi-Yau manifold give rise to neutral massless
scalars that will appear in the low-energy effective action of the string theory.
Supersymmetry imposes stringent restrictions on the action and consequently
on the geometry of the moduli spaces. In particular, the moduli fields have no
potential and hence their vevs are free parameters. Moreover, in the kinetic
terms scalars in vector multiplets do not mix with scalars in hypermultiplets.
In fact, the interaction of vector multiplets and hypermultiplets consistent
11 From now on we only use indices (i, j, . . . , ı̄, ̄, . . . ) for the internal space and µ

for the four uncompactified space-time dimensions.
12 Supersymmetry thus requires the complexification of the Kähler cone.
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with N =2 supergravity is a non-linear σ-model with a target-space geome-
try which is locally of the form [53, 54, 55]

MSK ×Q (3.104)

where MSK is a (special) Kähler manifold (to be defined later) for the vector
multiplets [53] and Q a quaternionic manifold for the hypermultiplets [53,
54, 55].13 The manifolds MSK and Q are parametrized by the scalar fields
inside the vector and hypermultiplets, respectively. The product structure is
only respected for the gauge-neutral part of the theory. Nonabelian gauge
symmetries and charged fields appear if we take non-perturbative effects into
account, e.g. by wrapping branes around appropriate cycles. But this will not
be considered in these lectures.

For the perturbative type IIA and IIB theories we thus have

MA = MA
h1,1 ×QA

h2,1+1 ,

MB = MB
h2,1 ×QB

h1,1+1 . (3.105)

The indices give the complex and quaternionic dimensions, respectively. It is
worth mentioning that while MSK contains only moduli fields, Q is obtained
by combining moduli scalars with non-moduli scalars which, in string theory,
come from the (R,R) sector of the left-right superconformal algebra.

The quaternionic dimension of the hypermultiplet moduli spaces is always
≥ 1. In both type II theories, there is at least the universal hypermultiplet
with scalars (S,C). Its component fields are not related to the cohomology
of a Calabi-Yau manifold. Most importantly, it contains the dilaton φ which
organizes the string perturbation theory. This means that the hypermultiplet
moduli space receives (perturbative and non-perturbative) stringy corrections
in type IIA and IIB. In contrast to this, the vector multiplet moduli space
is exact at string tree level. In types IIB and IIA this concerns the complex
structure moduli and Kähler moduli, respectively. The metric of the Kähler
moduli space of type IIA receives a perturbative correction at order (α′/R2)3

[56] and non-perturbative corrections, powers of e−R2/α′
, from world-sheet

instantons, i.e. topologically non-trivial embeddings of the world-sheet into
the Calabi-Yau manifold. In contrast, the metric of the complex structure
moduli space of type IIB is exact at both, string and world-sheet σ-model,
tree level. It is thus determined by classical geometry. The vector multiplet
moduli space of the type IIA theory, on the other hand, is not determined
by classical geometry, but rather by “string geometry”. The string effects are
suppressed at large distances, i.e. when the Calabi-Yau manifold on which
we compactify becomes large. At small distances, of the order of the string
scale ls = 1/

√
α′, the intuition derived from classical geometry fails.

13 A quaternionic manifold is a complex manifold of real dimension 4m and
holonomy group Sp(1) × Sp(m).
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It thus looks hopeless to compute the vector multiplet moduli space of the
type IIA theory. Here mirror symmetry comes to rescue as was first shown,
for the case of the quintic in P4, in [56]. It relates, via the mirror map, the
vector multiplet moduli space of the type IIA theory on X to the vector
multiplet moduli space of the type IIB theory on the mirror X̂. Thus, with
the help of mirror symmetry the structure of the vector multiplet moduli
space of both type II theories is understood, as long as the conditions which
lead to (3.104) are met. Due to lack of space we have to refer to the literature
for any details [18, 21, 32].

One obtains the moduli space of the heterotic string by setting the (R,R)
fields to zero. This gives

Mhet =
SU(1, 1)
U(1)

×Mh1,1 ×Mh2,1 (3.106)

where the second and third factors are special-Kähler manifolds. (3.106),
which was derived in [48, 50, 55, 57, 58], is only valid at string tree level. The
loop corrections which destroy the product structure have been computed in
[59].

We will now briefly explain the notion of a special Kähler manifold which
arises in the construction of N = 2 supersymmetric couplings of vector mul-
tiplets to supergravity. It was found that the entire Lagrangian can be locally
encoded in a holomorphic function F (t), where ta are (so-called special) coor-
dinates on the space spanned by the scalar fields inside the vector multiplets.
For instance, in type IIB compactification on a CY3, this is the complex
structure moduli space and a = 1, . . . , h2,1. Supersymmetry requires that this
space is Kähler and furthermore, that its Kähler potential can be expressed
through F via

K = − lnY
Y = 2(F − F )− (ta − t̄a)(Fa + F̄a) (3.107)

where Fa = ∂aF . For this reason F is called the (holomorphic) prepotential.
If we introduce projective coordinates z via ta = za/z0 and define F(z) =
(z0)2F (t) we find that the Kähler potential (3.107) can be written, up to a
Kähler transformation, as

K = ln
(
z̄aFa − zaF̄a

)
(3.108)

where now a = 0, . . . , h2,1, and Fa = ∂F
∂za . Supersymmetry requires further-

more that F is a homogeneous function of degree two.
We will now show how these features are encoded in the CY geometry.

We begin by introducing a basis of H3(X,Z) with generators αa and βb

(a, b = 0, . . . , h2,1(X)) which are (Poincaré) dual to a canonical homology
basis (Ba, A

b) of H3(X,Z) with intersection numbers Aa · Ab = Ba · Bb =
0, Aa ·Bb = δa

b . Then
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∫

Ab

αa =
∫

X

αa ∧ βb = −
∫

Ba

βb = δb
a . (3.109)

All other pairings vanish. This basis is unique up to Sp(2h2,1 + 2,Z) trans-
formations.

Following [60, 61], one can show that the A-periods of the holomorphic
(3,0)-form Ω, i.e. za =

∫
Aa Ω are local projective coordinates on the complex

structure moduli space. We then have for the B-periods Fa =
∫

Ba
Ω = Fa(z).

Note that Ω = zaαa−Faβ
a. Furthermore, under a change of complex struc-

ture Ω, which was pure (3, 0) to start with, becomes a mixture of (3, 0) and
(2, 1) (because dz in the old complex structure becomes a linear combination
of dz and dz̄ w.r.t. to the new complex structure): ∂

∂zaΩ ∈ H(3,0)⊕H(2,1). In
fact [27, 38, 42] ∂Ω

∂za = kaΩ+ ba where ba ∈ H(2,1)(X) and ka is a function of
the moduli but independent of the coordinates on X (since Ω is unique). One
immediate consequence is that

∫
Ω∧ ∂Ω

∂za = 0. Inserting the expansion for Ω in
the αa, β

a basis into this equation, one finds Fa = 1
2

∂
∂za (zbFb), or Fa = ∂F

∂za

with F = 1
2z

aFa, F(λz) = λ2F(z). We thus identify za with the special coor-
dinates of supergravity and F with the prepotential. It is easy to verify that
the Kähler potential in the form (3.108) can be written as K = − ln

∫
Ω∧ Ω̄.

In fact, F can be explicitly computed for the complex structure moduli space
of type IIB theory in terms of the periods of the holomorphic three-form. This
is a calculation in classical geometry. The Kähler moduli space of type IIA
theory is also characterized by a prepotential. However its direct calculation is
very difficult since it receives contributions from world-sheet instantons. Mir-
ror symmetry relates FKahler(X) to the prepotential of the complex structure
moduli space on the mirror manifold Fcomplex(X̂) which can be computed
and mapped, via the mirror map, to FKahler(X) (see e.g. [21] for a review).
In any case, it follows from this discussion that the metric on the Kähler part
of the moduli space of type II Calabi-Yau compactifications can be computed
explicitly.

In supergravity and superstring compactifications many other properties
of special Kähler manifolds are relevant e.g. in the explicit construction of
the mirror map, the computation of Yukawa couplings in heterotic compacti-
fications, etc. All these details can be found in the cited references. Reference
[62] discusses some subtle issues involving the existence of a prepotential (but
see also [63] for their irrelevance in string compactification on CY manifolds
once world-sheet instanton effects are included).

While, as we have seen, a great deal is known about the (local) geometry
of the vector multiplet moduli space, the question about the structure of the
hypermultiplet moduli space, except that it is a quaternionic manifold, is still
largely unanswered and a subject of ongoing research. The difficulty comes,
of course, from the fact that it receives perturbative and non-perturbative
quantum corrections. Some partial results have been obtained e.g. in [64, 65].
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4 Strings on Orbifolds

We now want to consider string compactifications in which the internal space
belongs to a class of toroidal orbifolds that are analogous to Calabi-Yau
spaces in that their holonomy group is contained in SU(n) and therefore the
theory in the lower dimensions has unbroken supersymmetry. Even though
these orbifolds are singular, we will see that string propagation is perfectly
consistent provided that twisted sectors are included. Moreover, since toroidal
orbifolds are flat except at fixed points, the theory is exactly solvable. Indeed,
the fields on the world-sheet satisfy free equations of motion with appropriate
boundary conditions.

In this section we will first discuss some basic properties of orbifolds.
We next describe in some detail the compactification of strings on orbifolds,
introducing in the process the important concepts of partition function and
modular invariance. Finally the general results are applied to type II theories.
In appendix C we collect some useful results about the partition function of
T6/ZN orbifolds.

The standard references for strings on orbifolds are the original papers
[3]. A concise review that also discusses conformal field theory aspects is [66].

4.1 Orbifold Geometry

In general, an orbifold O is obtained by taking the quotient of a manifold
M by the action of a discrete group G that preserves the metric of M. This
means:

O = M/G . (4.1)

For g ∈ G and x ∈ M, the points x and gx are equivalent in the quotient.
Each point is identified with its orbit under G, hence the name orbifold. The
fixed points of M under G are singular points of O.

Perhaps the simplest example of an orbifold is the torus TD defined as

TD = RD/Λ , (4.2)

where Λ is a D-dimensional lattice. Hence, in TD the points x and x + V ,
V ∈ Λ, are identified. In the following we denote the basis of the torus lattice
by ea, a = 1, · · · ,D. Figure 2 shows the case of T2. Since the group of
translations by lattice vectors acts freely, the torus has no singular points.
However, when the discrete group leaves fixed points, the orbifold has singular
points. A simple example is the cone obtained by taking the quotient of
C $ R2 by ZN generated by multiplication by e2iπ/N . This is shown in
Fig. 3. Notice that the origin, left fixed by ZN , is a singular point at which
there is a deficit angle 2π(N − 1)/N .

Since we want compact spaces we are led to consider toroidal orbifolds
TD/GP , where the so called point group GP ⊂ SO(D) is a discrete group
that acts crystallographically on the torus lattice Λ. The elements of GP are
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Fig. 2. T2 = R
2/Λ

Fig. 3. C/ZN

rotations denoted generically θ. Alternatively, toroidal orbifolds can be ex-
pressed as RD/S, where S is the so-called space group that contains rotations
and translations in Λ.

The point group is the holonomy group of the toroidal orbifold [3]. To
show this, take two points x and y, distinct on the torus but such that
y = θx + V . Then, x and y are identified on the orbifold and moreover the
tangent vectors at x are identified with the tangent vectors at y rotated by θ.
Next parallel-transport some vector along a path from x to y which is closed
on the orbifold. The torus is flat and hence this vector remains constant
but since the tangent basis is rotated by θ, the final vector is rotated by θ
with respect to the initial vector. The loop from x to y necessarily encloses
a singular point since otherwise there would be no curvature to cause the
non-trivial holonomy.

In the following we will mostly consider point groups GP = ZN . Then
θN = � and θ has eigenvalues e±2iπvi , where vi = ki/N for some integers
ki, i = 1, · · · ,D/2 (we take D even). As we mentioned before, GP must act
crystallographically on the torus lattice. This means that for V ∈ Λ and
θ ∈ GP , θV ∈ Λ. Now, since V = naea, with integer coefficients na, in the
lattice basis θ must be a matrix of integers. Hence, the quantities

Tr θ =
D/2∑

i=1

2 cos 2πvi

χ(θ) = det(1− θ) =
D/2∏

i=1

4 sin2 πvi (4.3)

must be integers. Indeed, from Lefschetz fixed point theorem, χ(θ) is the
number of fixed points of θ. The upshot is that the requirement of crystal-
lographic action is very restrictive. For instance, it is easy to find that for
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D = 2 only N = 2, 3, 4, 6 are allowed. In Table 1 we collect the irreducible
possibilities for the vi’s when D = 2, 4, 6 [67]. By irreducible we mean that
the corresponding θ cannot be written in a block form. Notice that the case
D = 2, v1 = 1

2 is reducible since already in a one dimensional lattice a Z2

(only) is allowed.

Table 1. Irreducible crystallographic actions

D = 2 D = 4 D = 6

(v1) (v1, v2) (v1, v2, v3)

1
3
(1) 1

5
(1, 2) 1

7
(1, 2, 3)

1
4
(1) 1

8
(1, 3) 1

9
(1, 2, 4)

1
6
(1) 1

10
(1, 3) 1

14
(1, 3, 5)

1
12

(1, 5) 1
18

(1, 5, 7)

Given the vi’s there remains the question of finding a concrete lattice Λ
that has θn, n = 1, · · · , N , as automorphisms. We refer the reader to [67, 68]
for a discussion of these issues. Here we will mostly consider products of two-
dimensional sub-lattices and for order two and order four rotations we take
the SO(4) root lattice whereas for order three and order six rotations we take
the SU(3) root lattice.

Let us now consider some examples.

Example 4.1: T2(SO(4))/Z2. Here Z2 has elements {�, θ}, where θ is a
rotation by π. As Λ we take the root lattice of SO(4) with basis e1 = (1, 0)
and e2 = (0, 1). In T2, Z2 has four fixed points:

f0 = (0, 0) ; f1 =
(

1
2
, 0
)

; f2 =
(

0,
1
2

)

; f3 =
(

1
2
,
1
2

)

. (4.4)

It is convenient to use a complex coordinate z = x+iy so that f0 = 0, f1 = 1
2 ,

f2 = i
2 , f3 = 1+i

2 .
The steps to construct the orbifold are shown in Fig. 4. To start, we

take a fundamental cell defined by vertices (0, 0), (1, 0), (0, 1), (1, 1). Given
the identification x ≡ θnx + V , we observe that it is actually enough to
retain half of the fundamental cell, for instance the rectangle with vertices at
f0, f1, i and 1

2 + i. Furthermore, since the edges are identified as indicated in
Fig. 4 we must fold by the line joining f2 and f3. The resulting orbifold has
singular points precisely at the fi, each with a deficit angle of π.

Example 4.2: T2(SU(3))/Z3. Here Z3 has elements {�, θ, θ2}, where θ is a
rotation by 2π/3. As Λ we take the root lattice of SU(3) with basis e1 = (1, 0)
and e2 = (− 1

2 ,
√

3
2 ). The fixed points of θ are
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Fig. 4. T2/Z2

f0 = (0, 0) ; f1 =
(

1
2
,

1
2
√

3

)

; f2 =
(

0,
1√
3

)

. (4.5)

In terms of the complex coordinate z, θ acts by multiplication by e2iπ/3 and
the fixed points are located at 0, 1√

3
eiπ/6, i√

3
. The element θ2 = θ−1 obviously

has the same fixed points. In this case the resulting orbifold has singularities
at the three fixed points, each with deficit angle 4π/3.

In examples 4.1 and 4.2 the total deficit angle is 4π, i.e. the orbifold is topo-
logically an S2, as it is also clear from Fig. 4.

Example 4.3: T4(SO(4)2)/Z2. We take T4 = T2×T2 and Λ the product of
two 2-dimensional square SO(4) root lattices. The Z2 action is just a rotation
by π degrees in each square sub-lattice. In terms of zj = xj + iyj this means

Z2 : (z1, z2) → (−z1,−z2) . (4.6)

In each sub-lattice there are four fixed points with complex coordinates
0, 1

2 ,
i
2 ,

1+i
2 . Altogether the orbifold has then sixteen singular points.

Notice that there are no Z2 invariant (1, 0) harmonic forms and only one
invariant (2, 0) harmonic form, namely dz1 ∧ dz2. This is an indication that
the holonomy group of the orbifold is a subgroup of SU(2). It turns out that
the orbifold singularities at the fixed points can be “repaired” or “blown up”
to produce a smooth manifold of SU(2) holonomy, namely a smooth K3 [69].
Roughly, the idea is to excise the singular points and replace them by plugs
that patch the holes smoothly. More precisely, the plugs are asymptotically
Euclidean spaces (ALE) with metrics of SU(2) holonomy that happen to be
Eguchi-Hanson spaces. The claim that the resulting space is a smooth K3
manifold can be supported by a computation of the Hodge numbers of K3
in the orbifold picture. Firstly, the orbifold inherits the forms of T4 that are
invariant under Z2. Thus, the following are also harmonic forms on T4/Z2:

1 , dzi ∧ dz̄j , dz1 ∧ dz2 , dz̄1 ∧ dz̄2 , dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 . (4.7)

Secondly, the blowing up process gives a contribution of sixteen to h1,1, one
from the Eguchi-Hanson Kähler form at each fixed point. Then, altogether
h0,0 = h2,0 = h0,2 = h2,2 = 1 and h1,1 = 20.

Example 4.4: T6(SU(3)3)/Z3. We take T6 = T2 × T2 × T2 and Λ the
product of three SU(3) root lattices. The Z3 group is generated by an order
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three rotation in each sub-lattice. In terms of complex coordinates the Z3

action is
(z1, z2, z3) →

(
e2iπ/3z1, e2iπ/3z2, e−4iπ/3z3

)
. (4.8)

In each sub-lattice there are three fixed points located at 0, 1√
3
eiπ/6, i√

3
. The

full orbifold has thus 27 singular points.
The singular points can be repaired to obtain a smooth manifold, the so-

called Z-manifold that is a CY3 [2]. The (3,0) harmonic form that must exist
in every CY3 is simply dz1 ∧ dz2 ∧ dz3 that is Z3 invariant. The interesting
Hodge numbers are computed as follows. Clearly, the nine dzi ∧ dz̄j forms
are Z3 invariant. There are no (1,2) invariant forms on T6. The blowing up
process adds 27 (1,1) harmonic forms. Then, h1,1 = 9 + 27, h1,2 = 0 and
χ = 72.

To end this section we would like to address the question whether string
compactification on a given orbifold can give a supersymmetric theory in
the lower dimensions. We consider D = 6, the results for D = 2, 4 come
as by-products. According to our discussion in Sect. 2.2, supersymmetry re-
quires the existence of covariantly constant spinors. This means that there
must exist spinors ε such that θε = ε. In our case θ is an SO(6) rotation
with eigenvalues e±2iπvi acting on the vector representation that has weights
(±1, 0, 0), (0,±1, 0) and (0, 0,±1). In fact, we can write θ as

θ = exp (2πi(v1J12 + v2J34 + v3J56)) , (4.9)

where the J2i−1,2i are the generators of the Cartan subalgebra. Now, since
spinor weights of SO(6) are (± 1

2 ,±
1
2 ,±

1
2 ), in this representation θ has eigen-

values eiπ(±v1±v2±v3). Hence, to have invariant spinors we need

±v1 ± v2 ± v3 = 0mod 2 (4.10)

for some choice of signs. This condition guarantees that the holonomy group
is contained in SU(3). The additional condition N(v1 + v2 + v3) = 0 mod
2, which follows from modular invariance, is derived in Appendix C. When
v3 = 0, from Table 1 we find that the only solutions are v1 = −v2 = 1/N ,
N = 2, 3, 4, 6. The case N = 2 is example 4.3 above, for other N ’s the
corresponding orbifolds of T4 are also singular limits of K3. For orbifolds of
T6, we can again use the data in Table 1 together with (4.10) to obtain all the
allowed inequivalent solutions shown in Table 2 that were first found in [3].
The resulting T6/ZN orbifolds are generalizations of Calabi-Yau three-folds.
In all cases it can be proved that the singular points can be resolved to obtain
smooth manifolds of SU(3) holonomy [68, 71].

4.2 Orbifold Hilbert Space

In this section we wish to discuss some general aspects of the propagation of
closed strings on orbifolds [3]. We will explain how to determine the states
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Table 2. Supersymmetric ZN actions

Z3
1
3
(1, 1,−2) Z

′
6

1
6
(1,−3, 2) Z

′
8

1
8
(1,−3, 2)

Z4
1
4
(1, 1,−2) Z7

1
7
(1, 2,−3) Z12

1
12

(1,−5, 4)

Z6
1
6
(1, 1,−2) Z8

1
8
(1, 3,−4) Z

′
12

1
12

(1, 5,−6)

belonging to the physical Hilbert space, taking into account a projection on
states invariant under the orbifold group, as well as including twisted sectors.

Let Xm(σ0, σ1), m = 1, · · · D, be bosonic coordinates depending on the
world-sheet time and space coordinates σ0 and σ1. Since the string is closed,
σ1 is periodic, we take its length to be 2π. We assume that M is flat so that
before taking the quotient to obtain the orbifold, Xm satisfies the free wave
equation

(∂2
0 − ∂2

1)Xm = 0 . (4.11)

Furthermore, there are boundary conditions

Xm(σ0, σ1 + 2π) = Xm(σ0, σ1) . (4.12)

The equations of motion follow from the action

S =
∫

d2σL = − 1
4πα′

∫

d2σηαβ∂αX
m∂βXm . (4.13)

This is the Polyakov action (1.1) in flat space-time and in conformal gauge
hαβ = ηαβ = diag(−1, 1). The canonical conjugate momentum is Πm =
∂L/∂(∂0X

m). In the following we will drop the index m to simplify notation.
The generator of translations in X is P =

∫ 2π

0
dσ1Π.

Now, in the orbifold we know that each point is identified with its orbit
under g ∈ G. Hence, as physical states we should consider only the sub-space
invariant under the action of g. The appropriate projection operator is

P =
1
|G|
∑

g∈G

ḡ , (4.14)

where ḡ is the realization of g on the string states.

Exercise 4.1: Show that P2 = P.

For example, consider the quotient of RD by translations in a lattice Λ to
obtain TD. Since the generator of space-time translations is the momentum
P , to each W ∈ Λ the operator acting on states is e2πiP ·W (the factor of
2π is for convenience). Then, the sub-space of invariant states contains only
strings whose center of mass momentum (the eigenvalue of P ) belongs to the
dual lattice Λ∗. Indeed, notice that

∑
W∈Λ e2πiP ·W vanishes unless P ∈ Λ∗.

Recall that Λ∗ is the set of all vectors that have integer scalar product with
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any vector in Λ. In this case |G| is equal to the volume Vol(Λ) of the unit
cell of Λ. It can be shown that Vol(Λ)Vol(Λ∗) = 1.

In the orbifoldized theory there appear naturally twisted sectors in which
X closes up to a transformation h ∈ G. This is:

X(σ0, σ1 + 2π) = hX(σ0, σ1) . (4.15)

The untwisted sector has h = �. In the example of TD, the twisted sectors
have boundary conditions

X(σ0, σ1 + 2π) = X(σ0, σ1) + 2πW , W ∈ Λ . (4.16)

Thus, the twisted sectors are just the winding sectors in which the string
wraps around the torus cycles.

The twisted states must be included in order to ensure modular invariance.
It is instructive to see this in the TD compactification. To begin, consider the
solution to (4.11) together with (4.16). Left and right moving modes are
independent so that X = XL +XR, with expansions

XL(σ0, σ1) = xL + PL(σ0 + σ1) + i
∑

n�=0

αn

n
e−in(σ0+σ1)

XR(σ0, σ1) = xR + PR(σ0 − σ1) + i
∑

n�=0

α̃n

n
e−in(σ0−σ1) , (4.17)

where

(PL, PR) =
(

P +
W

2
, P − W

2

)

, P ∈ Λ∗ , W ∈ Λ . (4.18)

For simplicity we are setting α′ = 2 everywhere. The Fourier coefficients
αn and α̃n are commonly called oscillator modes. Quantization proceeds in
the standard way by promoting the expansion coefficients to operators and
imposing equal time canonical commutation relations that imply [αm, αn] =
mδm,−n, [α̃m, α̃n] = mδm,−n. Furthermore, [xL, PL] = i and [xR, PR] = i. It
is convenient to introduce the occupation number operators

NL =
∞∑

n=1

α−n αn , NR =
∞∑

n=1

α̃−n α̃n . (4.19)

The vacuum state |0, 0, kL, kR〉 is defined to be annihilated by αn, α̃n,
n > 0, and to be an eigenvector of the momenta (PL, PR) with eigenval-
ues (kL, kR) of the form (4.18). Acting on the vacuum with creation op-
erators α−n, α̃−n, n > 0, gives states |NL, NR, kL, kR〉 that have generic
eigenvalues NL and NR of the occupation number operators. For instance,
(α−n1)

�1 (α̃−n2)
�2 |0, 0, kL, kR〉 has NL = n1�1 and NR = n2�2.
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The Hamiltonian is

H =
∫ 2π

0

dσ1(Π · ∂0X − L) =
1
8π

∫ 2π

0

dσ1
[
(∂0X)2 + (∂1X)2

]
. (4.20)

Substituting the expansions (4.17) then gives

H =
P 2

L

2
+
P 2

R

2
+NL +NR −

D
12

. (4.21)

The constant term comes from normal ordering all annihilation operators
to the right and using the analytical continuation of the zeta function to
regularize the sum

∑∞
n=1 n = ζ(−1) = −1/12. The Hamiltonian is the gen-

erator of translations in σ0, meaning that [H,X] = −i∂0X. The generator of
translations in σ1 is

Pσ =
∫ 2π

0

dσ1Π · ∂1X =
P 2

L

2
− P 2

R

2
+NL −NR . (4.22)

Both H and Pσ can be written in terms of left and right moving Virasoro
generators as

H = L0 + L̃0 , Pσ = L0 − L̃0 . (4.23)

Then,

L0 =
P 2

L

2
+NL −

D
24

; L̃0 =
P 2

R

2
+NR −

D
24

. (4.24)

Since D free bosons have central charge c = D, the constant term is the
expected −c/24. The eigenvalue of L0 (L̃0) is the squared mass m2

L (m2
R) of

the given state. Invariance under translations along the closed string requires
that Pσ vanishes acting on states. This implies the level-matching condition
m2

R = m2
L.

We next consider the partition function defined as

Z(τ, τ̄) = Tr qL0 q̄L̃0 ; q ≡ e2iπτ ; τ ∈ C , (4.25)

where the trace is taken over the states |NL, NR, kL, kR〉. Knowing the spec-
trum we can simply compute Z(τ, τ̄) by counting the number of states at
each level of L0, L̃0. For the toroidal compactification one finds

Z(τ, τ̄) =
1

|η(τ)|2D
∑

P∈Λ∗

∑

W∈Λ

q
1
2 (P+ W

2 )2 q̄
1
2 (P−W

2 )2 . (4.26)

The Dedekind eta function,

η(τ) = q
1
24

∞∏

k=1

(1− qk) , (4.27)

arises from the contribution of the oscillator modes.
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Exercise 4.2: Show (4.26).

The partition function (4.26) has the remarkable property of being invari-
ant under the modular transformations

τ → aτ + b

cτ + d
; a, b, c, d ∈ Z ; ad− bc = 1 . (4.28)

The SL(2,Z) modular group is generated by the transformations T : τ →
τ +1 and S : τ → −1/τ . Invariance of (4.26) under T follows simply because
2P ·W = even. Invariance under S arises only because the partition function
includes a sum over windings.

Exercise 4.3: Prove invariance of (4.26) under S using the property
η(−1/τ) =

√
−iτη(τ) and the Poisson resummation formula

∑

W∈Λ

e−πa(W+U)2 e2iπY ·(W+U) =
1

Vol(Λ) aD/2

∑

P∈Λ∗

e−
π
a (P+Y )2 e−2iπP ·U ,

(4.29)
where U and Y are arbitrary vectors and a is a positive constant.

Physically, the partition function Z(τ, τ̄) corresponds to the vacuum to
vacuum string amplitude at one-loop. In this case the world-sheet surface
is a torus T2 that has precisely τ as modular parameter. From the brief
discussion after (2.26) recall that T2 with modular parameter τ = τ1+iτ2 can
be defined by identifications in a lattice with basis e1 = (1, 0), e2 = (τ1, τ2).
We can picture the T2 as formed by a cylinder of length τ2 in which we
identify the string at the initial end with the string at the final end after
translating by τ1. Indeed, using (4.23) we find

Z(τ, τ̄) = Tr e−2πτ2H e2iπτ1Pσ . (4.30)

The first term in the trace is precisely what we expect of a partition function
for a system propagating for Euclidean time 2πτ2. The second term reflects a
translation by 2πτ1 in the coordinate σ1 along the string. Now, the modular
transformations (4.28) just correspond to an integral change of basis in the
T2 lattice. For example, Fig. 5 shows three equivalent lattices for T2. All tori
with τ ’s related by modular transformations are conformally equivalent and
the partition function must therefore remain invariant.

Fig. 5. Three equivalent T2 lattices
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In the example of toroidal compactification, the partition function is mod-
ular invariant only because the winding sectors are included. Indeed, S basi-
cally exchanges σ0 and σ1 so it transforms quantized momenta into windings.
In general, the partition function for orbifold compactification is modular in-
variant only if twisted sectors are included. To see this, we start with the
untwisted sector and implement the projection on invariant states according
to (4.14). The partition function in the untwisted sector then becomes

Z�(τ, τ̄) = Tr
(
P qL0(�) q̄L̃0(�)

)
=

1
|G|
∑

g∈G

Tr
(
ḡ qL0(�) q̄L̃0(�)

)
. (4.31)

Due to the insertion of ḡ, the traces in the sum above are over states that
satisfy not only the untwisted boundary condition (4.12) but also

X(σ0 + 2πτ2, σ1 + 2πτ1) = gX(σ0, σ1) . (4.32)

We can then write schematically

Z�(τ, τ̄) =
1
|G|
∑

g∈G

Z(�, g) , (4.33)

where Z(h, g) means partition function with boundary conditions (4.15) in
σ1 and (4.32) in σ0. Now, under modular transformations the boundary con-
ditions do change. For instance, under T : τ → τ + 1, (h, g) → (h, gh), and
under T ST : τ → τ/(τ + 1), (h, g) → (gh, g), as implied by the change of
basis depicted in Fig. 5. Then, under S : τ → −1/τ , (h, g) → (g, h−1) and
in particular S transforms the untwisted sector into a twisted sector. To ob-
tain a modular invariant partition function we must include all sectors. More
precisely, for Abelian G the full partition function has the form

Z(τ, τ̄) =
1
|G|
∑

h∈G

∑

g∈G

Z(h, g)

=
∑

h∈G



 1
|G|
∑

g∈G

Tr (ḡ qL0(h) q̄L̃0(h))



 . (4.34)

The sum over h is a sum over twisted sectors while the sum over g implements
the orbifold projection in each sector. For non-Abelian G we only sum over h
and g such that [h, g] = 0 since otherwise (4.15) and (4.32) are incompatible.

4.3 Bosons on TD/ZN

We now wish to derive the partition function for bosonic coordinates com-
pactified on TD/ZN , with ZN generated by θ as described in Sect. 4.1, and
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torus lattice Λ. We consider symmetric orbifolds in which θ acts equally on left
and right movers. As we have explained, we need to include sectors twisted
by θk, k = 0, · · · , N − 1, in which the boundary conditions are

X(σ0, σ1 + 2π) = θkX(σ0, σ1) + 2πV ; V ∈ Λ . (4.35)

The X’s still satisfy the free equations of motion (4.11) so they have mode
expansions of the form

X(σ0, σ1) = X0 + 2Pσ0 +Wσ1 + oscillators . (4.36)

To simplify the analysis we will assume that θk leaves no invariant directions
so that the boundary conditions generically do not allow quantized momenta
nor windings in the expansion. For the center of mass coordinate X0 we find
that it must satisfy (1 − θk)X0 = 0 modulo 2πΛ which just means that X0

is a fixed point of θk.
To find out the effect on the oscillator modes it is useful to define complex

coordinates zj = 1√
2
(X2j−1+iX2j), j = 1, · · · ,D/2, such that θzj = e2iπvjzj

as we have seen in Sect. 4.1. Next write the zj expansion as

zj(σ0, σ1) = zj
0 + i
∑

t

αj
t

t
e−it(σ0+σ1) + i

∑

s

α̃j
s

s
e−is(σ0−σ1) , (4.37)

where the frequencies t and s are to be determined by imposing the boundary
condition (4.35). In this way we obtain e−2iπt = e2iπkvj and then t = n −
kvj , with n integer. Likewise, s = n + kvj . For the complex conjugate z̄j

there is an analogous expansion with coefficients ᾱj
n+kvj

and ¯̃αj
n−kvj

. Let

us focus on the left-movers. After quantization, [ᾱi
m+kvi

, αj
n−kvj

] = (m +
kvj)δi,jδm,−n, with other commutators vanishing. There are now several Fock
vacua |f, 0〉k, where f = 1, · · · , χ(θk), is the fixed point label. Each vacuum is
annihilated by all positive-frequency modes. The creation operators are thus
αj
−kvj

, αj
−1−kvj

, · · · and ᾱj
−1+kvj

, ᾱj
−2+kvj

, · · · (assuming 0 < kvj < 1). The
occupation number operator is

NL =
∞∑

n=−∞
: αj

−n−kvj
ᾱj

n+kvj
: , (4.38)

where :: means normal ordering, i.e. all positive-frequency modes to the right.
For right-movers the results are analogous.

We now construct the partition function that according to (4.34) has the
form

Z =
1
N

N−1∑

k=0

N−1∑

�=0

Z(θk, θ�) ,

Z(θk, θ�) = Tr (θ� qL0(θ
k) q̄L̃0(θ

k)) . (4.39)



160 A. Font and S. Theisen

The strategy is to start with the untwisted sector (k = 0) in which the
Virasoro operators L0(�) and L̃0(�) are those given in (4.24). In particular,
Z(�,�) is just (4.26). For � �= 0 we need to evaluate the trace with the
θ� insertion. Since we are assuming that θ� leaves no unrotated directions,
neither quantized momenta nor windings survive the trace. We only need
to consider states obtained from the Fock vacuum by acting with creation
operators which for the complex coordinates are eigenvectors of θ�. The Fock
vacuum, denoted |0〉0, is defined to be invariant under θ. Then, for instance,
for the left movers in zj we find the contribution

Tr
(
θ� qLj

0(�)
)

= q−1/12
(
1 + qe2iπ�vj + qe−2iπ�vj + · · ·

)
. (4.40)

The first term comes from |0〉0, the next two from states with αj
−1 and ᾱj

−1

acting on |0〉0, and so on. In fact, the whole expansion can be cast as

Tr
(
θ� qLj

0(�)
)

= q−1/12
∞∏

n=1

(1− qne2iπ�vj )−1 (1− qne−2iπ�vj )−1 . (4.41)

This result can be conveniently written by using Jacobi ϑ functions that have
the product representation

ϑ[ δ
ϕ ](τ)

η(τ)
= e2iπδϕ q

1
2 δ2− 1

24

∞∏

n=1

(1+qn+δ− 1
2 e2iπϕ) (1+qn−δ− 1

2 e−2iπϕ) . (4.42)

Then,

Tr
(
θ� qLj

0(�)
)

= −2 sin �πvj
η(τ)

ϑ
[

1
2

1
2+�vj

]
(τ)

. (4.43)

Notice that for � = 0, (4.41) becomes 1/η2, as it should. Taking into account
left and right movers for all coordinates we obtain

Z(�, θ�) = χ(θ�)

∣
∣
∣
∣
∣
∣

D/2∏

j=1

η

ϑ
[

1
2

1
2+�vj

]

∣
∣
∣
∣
∣
∣

2

, (4.44)

where χ(θ�) =
∏D/2

j=1 4 sin2 π�vj is the number of fixed points of θ�, cf. (4.3).
We remark, as it is clear from (4.41), that the coefficient of the first term in
the expansion in (4.44) is actually one. This means that in the full untwisted
sector, i.e. fixing k = 0 and summing over �, the untwisted vacuum appears
with the correct multiplicity one.

To obtain other pieces Z(θk, θ�) we take advantage of modular invariance.
For example, Z(θk,�) simply follows applying τ → −1/τ to (4.44). Using the
modular properties of ϑ functions given in (C.4) gives
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Z(θk,�) = χ(θk)

∣
∣
∣
∣
∣
∣

D/2∏

j=1

η

ϑ
[

1
2+kvj

1
2

]

∣
∣
∣
∣
∣
∣

2

(4.45)

= χ(θk) (qq̄)−
D
24+Ek

∣
∣
∣
∣
∣
∣

D/2∏

j=1

∞∏

n=1

(1− qn−1+kvj )−1 (1− qn−kvj )−1

∣
∣
∣
∣
∣
∣

2

,

where Ek is the twisted oscillator contribution to the zero point energy given
by

Ek =
D/2∑

j=1

1
2
kvj(1− kvj) . (4.46)

When kvj > 1 we must substitute kvj → (kvj − 1) in (4.46).

Exercise 4.4: Derive (4.45).

The lowest order term in the expansion (4.45) does have coefficient χ(θk)
in agreement with the fact that in the θk sector the center of mass coordinate
can be any fixed point. The q expansion also shows the contribution of the
states created by operators αj

−kvj
, αj

−1−kvj
, · · · and ᾱj

−1+kvj
, ᾱj

−2+kvj
, · · · .

In fact, from the exponents of q we can read off the eigenvalues of L0(θk),
i.e. the squared masses m2

L(θk). The general result can be written as

m2
L(θk) = NL + Ek −

D
24

. (4.47)

Here NL is the occupation number of the left-moving oscillators. For example,
αj
−kvj

|0〉k and ᾱj
−1+kvj

|0〉k have NL = kvj and NL = 1 − kvj , respectively.
In the untwisted sector, or more generically in sectors in which quantized
momenta or windings are allowed, m2

L also includes a term of the form 1
2P

2
L.

For particular shapes of the torus, 1
2P

2
L can precisely lead to extra massless

states that signal enhanced symmetries as in the well known example of
circle compactification at the self-dual radius. In these notes we will assume
a generic point in the torus moduli space so that 1

2P
2
L does not produce new

massless states. For right movers, m2
R(θk) is completely analogous to (4.47).

Notice that the level-matching condition becomes NL = NR.
We can continue generating pieces of the partition function by employing

modular transformations. For example, applying τ → τ + 1 to (4.45) gives
Z(θk, θk). The general result can be written as

Z(θk, θ�) = χ(θk, θ�)

∣
∣
∣
∣
∣
∣

D/2∏

j=1

η

ϑ
[

1
2+kvj
1
2+�vj

]

∣
∣
∣
∣
∣
∣

2

, (4.48)

where χ(θk, θ�) is the number of simultaneous fixed points of θk and θ�. This
formula is valid when θk leaves no fixed directions, otherwise a sum over
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momenta and windings could appear. This is important when determining
the ZN -invariant states [67]. The correct result can be found by carefully
determining the untwisted sector pieces and then performing modular trans-
formations.

Exercise 4.5: Use (C.4) to show that (4.48) has the correct modular trans-
formations, i.e. Z(θk, θ�) transforms into Z(θk, θk+�) under T and into
Z(θ�, θ−k) under S.

Let us now describe the spectrum in a θk twisted sector. States are chains
of left and right moving creation operators acting on the vacuum. Schemati-
cally this is

α · · · ᾱ · · · α̃ · · · ¯̃α · · · |f, 0〉k . (4.49)

Level-matching NL = NR must be satisfied. States are further characterized
by their transformation under a ZN element, say θ�. The oscillator piece is
just multiplied by an overall phase e2iπ�ρ, where ρ = ρL +ρR. In turn ρL (ρR)
is found by adding the phases of all left (right) modes in (4.49). Concretely,
each left-moving oscillator αj

−kvj
, αj

−1−kvj
, · · · (coming from zj) adds vj to

ρL, whereas each ᾱj
−1+kvj

, ᾱj
−2+kvj

, · · · (coming from z̄j) contributes −vj to

ρL. For right-movers, each mode ¯̃αj
−kvj

, ¯̃αj
−1−kvj

, · · · , contributes −vj to ρR

and each α̃j
−1+kvj

, α̃j
−2+kvj

, · · · adds vj to ρR. Finally, the action on the fixed
points must be θ�|f, 0〉k = |f ′, 0〉k, where f ′ is also a fixed point of θk.

Only states invariant under the full ZN action survive in the spectrum. For
example, in the untwisted sector (k = 0), both α1

−1α̃
1
−1|0〉0 and ᾱ1

−1α̃
1
−1|0〉0

have NL = NR = 1 but the first is not invariant because it picks up a phase
e4iπv1 under θ. For k �= 0 there is a richer structure because states sit at
fixed points. In the θ sector, χ(θ, θ�) = χ(θ), i.e. all θ� leave the fixed points
of θ invariant. Hence, |f, 0〉1 and chain states (4.49) with ρL + ρR = 0 are
invariant ∀f , meaning that there is one such state at each fixed point of θ.
For N odd, χ(θk, θ�) = χ(θk) = χ(θ), so that all twisted sectors are like the
θ sector.

For N even, in general χ(θk, θ�), k �= 1, N−1, depends on �. For example,
take a T2/Z4 with square SO(4) lattice (cf. Example 4.1) and θ a π/2 rotation
(v1 = 1/4). Then, θ2 has the four fixed points in (4.4): f0 and f3 that are also
fixed by θ, plus f1 and f2 that are exchanged by θ. Thus, in the θ2 sector,
there are three invariant vacua, namely |f0, 0〉2, |f3, 0〉2 and [|f1, 0〉2+|f2, 0〉2].
Likewise, any level-matched chain, e.g. ᾱ− 1

2
α̃− 1

2
, with ρL + ρR = 0, acting

on the three vacua gives states that also survive in the spectrum. There are
also invariant states of the form α− 1

2
α̃− 1

2
[|f1, 0〉2 − |f2, 0〉2].

Conventionally, we drop the fixed point dependence and speak of states
labeled by (NL, ρL;NR, ρR), with NL = NR determining the mass level, and
having a degeneracy factor Fk(NL, ρL;NR, ρR) that might be zero when the
state is not invariant. In the T2/Z4 example above, there are e.g. states
|0〉2 and ᾱ− 1

2
α̃− 1

2
|0〉2 with F2 = 3, α− 1

2
α̃− 1

2
|0〉2 with F2 = 1, and so on.
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A systematic way to determine the degeneracy factor is to implement the
orbifold projection by performing the sum 1

N

∑N−1
�=1 Z(θk, θ�). Using (4.48)

and (4.42) we obtain

Fk(NL, ρL;NR, ρR) =
1
N

N−1∑

�=0

χ̃(θk, θ�) e2iπ�(ρL+ρR) . (4.50)

Here χ̃(θk, θ�) is a numerical factor that counts the fixed point multiplicity.
More concretely, χ̃(1, θ�) = 1, so that in the untwisted sector F0 projects
out precisely the states non-invariant under θ that have ρL + ρR not integer.
In twisted sectors χ̃(θk, θ�) is the number of simultaneous fixed points of
θk and θ� in the sub-lattice effectively rotated by θk. χ̃(θk, θ�) differs from
χ(θk, θl) because when kvj = integer, the expansion of ϑ[

1
2+kvj
1
2+�vj

]/η has a
prefactor (−2 sinπ�vj), as follows using (4.42). Thus, the actual coefficient in
the expansion of (4.48) is χ̃(θk, θl) = χ(θk, θl)/

∏
j,kvj∈Z

4 sin2 π�vj .

4.4 Type II Strings on Toroidal ZN Symmetric Orbifolds

The new ingredient is the presence of world-sheet fermions with boundary
conditions

Ψ(σ0, σ1 + 2π) = −e2πiαθkΨ(σ0, σ1) ,
Ψ(σ0 + 2πτ2, σ1 + 2πτ1) = −e2πiβθ�Ψ(σ0, σ1) , (4.51)

where α, β = 0, 1
2 are the spin structures. The full partition function has the

form (4.39). Each contribution to the sum is explicitly evaluated as

Z(θk, θ�) = Tr (NS⊕R)(NS⊕R)

{
PGSO θ

� qL0(θ
k) q̄L̃0(θ

k)
}
. (4.52)

The trace is over left and right Neveu-Schwarz (NS) and Ramond (R) sectors
for the fermions. This is equivalent to summing over α = 0, 1

2 . Similarly, the
GSO (Gliozzi-Scherk-Olive) projection is equivalent to summing over β = 0, 1

2
[4, 5, 6].

To find Z(θk, θ�) we again start from the untwisted sector in which the
Virasoro operators are known and then use modular invariance. The explicit
form of Z(θk, θ�) can be found in [70] and will be presented in Appendix C.
It follows that the eigenvalues of L0(θk) are

m2
L(θk) = NL +

1
2

(r + k v)2 + Ek −
1
2
. (4.53)

Most terms in this formula arise as in the purely bosonic case of last section.
In particular, Ek is given in (4.46). Notice that NL and NR also receive
(integer) contributions from the fermionic degrees of freedom. The vector r
is an SO(8) weight as explained in Appendix C. The vector v is (0, v1, v2, v3),
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with the vi specifying the ZN action. When r belongs to the scalar or vector
class, r takes the form (n0, n1, n2, n3), with na integer. This is the Neveu-
Schwarz sector in which left-movers are space-time bosons. When r belongs
to a spinorial class it takes the form (n0+ 1

2 , n1+ 1
2 , n2+ 1

2 , n3+ 1
2 ). This is the

Ramond sector in which left-movers are space-time fermions. For example,
the weights of the fundamental vector and spinor representations are:

8v =
(
±1, 0, 0, 0

)
; 8s = ±

(

−1
2
,
1
2
,
1
2
,
1
2

)

,

8c =
{(

1
2
,
1
2
,−1

2
,−1

2

)

,±
(

1
2
,
1
2
,
1
2
,
1
2

)}

, (4.54)

where underlining means permutations. As explained in Appendix C, the
GSO projection turns out to be

∑
ra = odd. Thus, in the untwisted sector,

massless states must have r2 = 1 and the possible solutions are 8v and 8s.
For type II strings the mass formula for right-movers is completely anal-

ogous to (4.53):

m2
R

(
θk
)

= NR +
1
2

(p+ k v)2 + Ek −
1
2
, (4.55)

where p is an SO(8) weight as well. In type IIB the GSO projection is also∑
pa = odd in both NS and R sectors. In type IIA one has instead

∑
pa =

even in the R sector. In the untwisted sector the spinor weights are then those
of 8c. Notice that upon combining left and right movers, states in (NS,NS)
and (R,R) are space-time bosons, whereas states in (NS,R) and (R,NR) are
space-time fermions.

States in a θk-twisted sector are characterized by (NL, ρL, r;NR, ρR, p)
such that the level-matching condition m2

L = m2
R is satisfied. Here ρL and

ρR are due only to the internal bosonic oscillators as we explained in the pre-
vious section. The degeneracy factor of these states follows from the orbifold
projection. Using the results in Sect. 4.3 and Appendix C we find

F(NL, ρL, r;NR, ρR, p) =
1
N

N−1∑

�=0

χ̃
(
θk, θ�
)
∆(k, �) , (4.56)

where the phase ∆ is

∆(k, �) = exp{2π i[(r + kv) · �v − (p+ kv) · �v + �(ρL + ρR)]} . (4.57)

The factor χ̃(θk, θ�) that takes into account the fixed point multiplicity was
already introduced in (4.50).

Below we will consider examples of compactifications to six and four di-
mensions. We will find that, as expected, one obtains results similar to those
found in K3 and CY3 compactifications.
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Six Dimensions

We first consider type IIA on T4/Z3. As torus lattice we take the product of
two SU(3) root lattices. The Z3 action has v = (0, 0, 1

3 ,−
1
3 ). The resulting

theory in six dimensions has (1,1) supersymmetry that has gravity and vector
multiplets with structure

G11(6) =
{
gµν , ψ

(+)
µ , ψ(−)

µ , ψ(+), ψ(−), Bµν , V
a
µ , φ
}

; a = 1, · · · 4 ,

V11(6) = {Aµ, λ
(+), λ(−), ϕa} , (4.58)

where λ(±) are Weyl spinors and the ϕa real scalars. Below we will see how
the orbifold massless states fit into (1,1) supermultiplets.

In the untwisted sector, candidate massless states allowed by the orbifold
projection (4.56) must have r ·v = p ·v = 0,±1/3. With r ·v = p ·v = 0 there
are

r p(
±1, 0, 0, 0

) (
±1, 0, 0, 0

)

±
(
− 1

2 ,
1
2 ,

1
2 ,

1
2

)
±
(

1
2 ,

1
2 ,

1
2 ,

1
2

)

±
(

1
2 ,

1
2 ,−

1
2 ,−

1
2

)

. (4.59)

The first two entries in r and p, corresponding to the non-compact coordi-
nates, indicate the Lorentz representation under the little group SO(4) $
SU(2) × SU(2). The vector (±1, 0) of SO(4) is the (1

2 ,
1
2 ) representation of

SU(2) × SU(2), whereas the spinors (1
2 ,−

1
2 ) and ±( 1

2 ,
1
2 ) are the (1

2 , 0) and
(0, 1

2 ) representations respectively. In (4.59) we thus have the product
[(

1
2
,
1
2

)

⊕ 2
(

1
2
, 0
)]

left

⊗
[(

1
2
,
1
2

)

⊕ 2
(

0,
1
2

)]

right

. (4.60)

It is simple to check that the product gives rise to the representations that
make up the gravity supermultiplet G11(6) in (4.58).

In the untwisted sector with r · v = p · v = 1/3 we find

r p
(0, 0, 1, 0) (0, 0, 1, 0)

(0, 0, 0,−1) (0, 0, 0,−1)(
−1

2 ,−
1
2 ,

1
2 ,−

1
2

) (
− 1

2 ,
1
2 ,

1
2 ,−

1
2

)

(
1
2 ,

1
2 ,

1
2 ,−

1
2

) (
1
2 ,−

1
2 ,

1
2 ,−

1
2

)

. (4.61)

In terms of little group representations we have the product
[

2 (0, 0)⊕
(

0,
1
2

)]

left

⊗
[

2 (0, 0)⊕
(

1
2
, 0
)]

right

. (4.62)

In this way we obtain the representations that fill a vector multiplet V11(6).
For r · v = p · v = −1/3 one also obtains a vector multiplet. In both cases the
group is U(1).
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Let us now turn to the θ-twisted sector. Plugging v and E1 = 2/9 we find
that m2

R = m2
L = 0 implies the same r, p given in (4.61). Taking into account

the fixed point multiplicity gives then 9 vector multiplets. In the θ2 sector
we find the same result.

In conclusion, type IIA compactification on T4/Z3 yields a (1,1) super-
symmetric theory in six dimensions with one gravity multiplet and twenty
vector multiplets. Other T4/ZN orbifolds give exactly the same result which
is also obtained in type IIA compactification on a smooth K3 manifold.

Compactification of type IIB on T4/ZN follows in a similar way. We
can obtain the results from the type IIA case noting that the different GSO
projection for left-moving spinors simply amounts to changing the little group
representation. For example, in the untwisted sector instead of (4.60) we have

[(
1
2
,
1
2

)

⊕ 2
(

1
2
, 0
)]

left

⊗
[(

1
2
,
1
2

)

⊕ 2
(

1
2
, 0
)]

right

. (4.63)

In the product there are now two gravitini of the same chirality so that the
resulting theory in six dimensions has (2, 0) supersymmetry with gravity and
tensor multiplets having the field content

G20(6) = {gµν , ψ
a(+)
µ , BI(+)

µν } ; a = 1, 2 ; I = 1, · · · 5 ,
T20(6) = {B(−)

µν , ψ
a(−), ϕI} , (4.64)

where the superscript (+) or (−) on the antisymmetric tensors indicates
whether they have self-dual or anti-self-dual field strength. Altogether the
product (4.63) gives a gravity multiplet G20(6) together with a tensor mul-
tiplet T20(6). Other states from the untwisted sector and the twisted sectors
give rise to 20 tensor multiplets. In conclusion, compactification of type IIB
on T4/ZN gives (2, 0) supergravity with 21 tensor multiplets, exactly what
is found in the compactification on K3 [72].

Four Dimensions

The resulting theory has N = 2 supersymmetry. The massless fields must
belong to the gravity multiplet or to hypermultiplets and vector multiplets.
Schematically, the content of these multiplets is

G2(4) = {gµν , ψ
a
µ, Vµ} ; a, b = 1, 2 ,

H2(4) = {ψa, ϕab} , (4.65)
V2(4) = {Aµ, λ

a, ϕa} .

Note that G2(4) contains the so-called graviphoton Vµ. Below we will group
the orbifold massless states into these supermultiplets. We study type IIB on
T6/Z3. The torus lattice is the product of three SU(3) root lattices. The Z3

action has v = (0, 1
3 ,

1
3 ,−

2
3 ).
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Now the massless states are classified by the little group SO(2), i.e. by
helicity λ. For a given state, λ = λr − λp where λr can be read from the
first component of the SO(8) weight r, and likewise for λp. In the untwisted
sector, candidate massless states allowed by the orbifold projection must have
r · v = p · v = 0,±1/3. With r · v = p · v = 0 we find

r p
(±1, 0, 0, 0) (±1, 0, 0, 0)

±
(
−1

2 ,
1
2 ,

1
2 ,

1
2

)
±
(
− 1

2 ,
1
2 ,

1
2 ,

1
2

) . (4.66)

Considering all possible combinations in (4.66) we find the helicities
{

±2, 2×
(

±3
2

)

,±1
}

⊕
{

2×
(

±1
2

)

, 4× (0)
}

. (4.67)

Comparing with the structure of the N = 2 supersymmetric multiplets in
four dimensions, cf. (4.65), we observe that (4.67) includes a gravity multiplet
G2(4) plus a hypermultipletH2(4). The four real scalars in the hypermultiplet
are the dilaton, the axion dual to Bµν , both arising from (NS,NS) (both r, p
vectorial), plus a 0-form and another axion dual to B̃µν , both arising from
(R,R) (both r, p spinorial).

In the untwisted sector with r · v = p · v = ±1/3 we have

r p
r · v = 1

3 (0, 1, 0, 0) (0, 1, 0, 0)(
− 1

2 ,
1
2 ,−

1
2 ,−

1
2

) (
− 1

2 ,
1
2 ,−

1
2 ,−

1
2

)

r · v = − 1
3

(
0,−1, 0, 0

) (
0,−1, 0, 0

)

(
1
2 ,

1
2 ,−

1
2 ,

1
2

) (
1
2 ,

1
2 ,−

1
2 ,

1
2

)

. (4.68)

Evaluating the helicities of all allowed combinations we find precisely nine
hypermultiplets.

Consider now the θ-twisted sector. Plugging v and E1 = 1/3 we find that
m2

R = m2
L = 0 has solutions r, p = (0, 0, 0, 1), (− 1

2 ,−
1
2 ,−

1
2 ,

1
2 ). In the θ−1

sector the solutions are r, p = (0, 0, 0,−1), (1
2 ,

1
2 ,

1
2 ,−

1
2 ). According to the

orbifold projection we can then combine the following

r p
θ (0, 0, 0, 1) (0, , 0, 0, 1)(

− 1
2 ,−

1
2 ,−

1
2 ,

1
2

) (
− 1

2 ,−
1
2 ,−

1
2 ,

1
2

)

θ−1 (0, 0, 0,−1) (0, 0, 0,−1)(
1
2 ,

1
2 ,

1
2 ,−

1
2

) (
1
2 ,

1
2 ,

1
2 ,−

1
2

)

. (4.69)

Altogether we find the degrees of freedom of one hypermultiplet. Taking into
account the fixed point multiplicity shows that 27 hypermultiplets originate
in the twisted sectors.
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In conclusion, compactification of type IIB on T6/Z3 has massless content
summarized by

G2(4) +H2(4) + 36H2(4) . (4.70)

This result agrees with the general result for type IIB compactification on a
CY3 manifold. In fact, as we explained in Sect. 4.1, the T6/Z3 orbifold has
h1,1 = 36 and h1,2 = 0.

Compactification of type IIA on T6/Z3 is completely analogous. The re-
sults are easily obtained changing the left-moving spinor helicities appropri-
ately. In the untwisted sector with r ·v = p ·v = 0 there are no changes. In the
untwisted sector with r · v = p · v = ±1/3, as well as in the twisted sectors,
instead of hypermultiplets there appear vector multiplets. Hence, type IIA
on T6/Z3 has massless multiplets

G2(4) +H2(4) + 36V2(4) . (4.71)

This agrees with the result for compactification on a CY3.

5 Recent Developments

We have discussed basic aspects of supersymmetry preserving string compact-
ifications. The main simplifying assumption was that the only background
field allowed to have a non-trivial vacuum expectation value (vev) was the
metric, for which the Ansatz (2.9) was made, and a constant dilaton φ0

that fixes the string coupling constant as gs = eφ0 . When we considered the
complexification of the Kähler cone we also allowed a vev for the (NS,NS) an-
tisymmetric tensor BMN , but limited to vanishing field strength so that the
equations of motion do not change. Restricting to these backgrounds means
exploring only a small subspace of the moduli space of supersymmetric string
compactifications. Type II string theory has several other massless bosonic
excitations, the dilaton φ and the (R,R) p-form fields A(p) with p even for
type IIB and p odd for type IIA, which could get non-vanishing vevs. The
interesting situation is when the vevs for the field strengths H = dB and
F (p+1) = dA(p) lead to non-vanishing fluxes through non-trivial homology
cycles in the internal manifold. It is clearly important to examine the im-
plications of these fluxes. One interesting result to date is that fluxes can
generate a potential for moduli scalars [73]. This provides a mechanism for
lifting flat directions in moduli space.

If the additional background fields are non-trivial they will have in gen-
eral a non-zero energy-momentum tensor TMN that will back-react on the
geometry and distort it away from the Ricci-flat Calabi-Yau metric. At the
level of the low-energy effective action this means that the lowest order (in α′)
equation of motion for the metric is no longer the vacuum Einstein equation
RMN = 0 but rather RMN = TMN . We also have to satisfy the equations
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of motion of the other background fields (setting them to zero is one solu-
tion, but we are interested in less trivial ones) and the Bianchi identities of
their field strengths. Again, a practical way to proceed is to require unbro-
ken supersymmetry, i.e. to impose that the fermionic fields have vanishing
supersymmetric transformations which are now modified by the presence of
additional background fields, cf. (2.10). It must then be checked that the
Bianchi identities and the equations of motion are satisfied.

The effect of H flux was studied early on [74] and has lately attracted
renewed attention. The upshot is that the supersymmetry preserving back-
grounds are, in general, not Calabi-Yau manifolds. The analysis of these so-
lutions is a current research subject. For recent papers that give references
to the previous literature see e.g. [75].

The presence of (R,R) fluxes leads to an even richer zoo of possible type II
string compactifications. One simple and well-studied example is the AdS5×
S5 solution of type IIB supergravity which has, in addition to the metric,
a non-trivial five-form field strength F (5) background. A general analysis of
type IIB compactifications to four dimensions, including backgrounds for all
bosonic fields as well as D-brane and orientifold plane sources, was given in
[76]. Conditions forN =1 supersymmetry of such configurations were found in
[77]. These results have been applied in recent attempts to construct realistic
models with moduli stabilization [78].

Compactification of M -theory, or its low-energy effective field theory,
eleven-dimensional supergravity, on manifolds ofG2 holonomy, have also been
much explored lately. These compactifications lead to N =1 supersymmetry
in four dimensions and are interesting in their own right and also in relation
with various string dualities, such as compactification of M -theory on a man-
ifold with G2 holonomy and of the heterotic string on a Calabi-Yau manifold.
See [79] for a recent review.

There are many other aspects which one could mention in the context
of string compactifications. It is a vast and still growing subject with many
applications in physics and mathematics. We hope that our lecture notes will
be of use for those who are just entering this interesting and fascinating field.

Appendix A: Conventions and Definitions

A.1: Spinors

The Dirac matrices ΓA, A = 0, · · · ,D − 1, satisfy the Clifford algebra

{ΓA, ΓB} ≡ ΓAΓB + ΓBΓA = 2ηAB , (A.1)

where ηAB = diag(−1,+1, . . . ,+1). The smallest realization of (A.1) is
2[D/2] × 2[D/2]-dimensional ([D/2] denotes the integer part of D/2). One
often uses antisymmetrized products
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ΓA1···Ap ≡ Γ [A1 · · ·ΓAp] ≡ 1
p!
(
ΓA1 · · ·ΓAp ± permutations

)
, (A.2)

with + (−) sign for even (odd) permutations.
The generators of SO(1,D−1) in the spinor representation are

TAB≡− i
2
ΓAB≡− i

4
[ΓA, ΓB ] . (A.3)

Spinor representations are necessary to describe space-time fermions. Strictly
speaking, when discussing spinors we should go to the covering group, the
spin group. We will not make this distinction here but it is always implied.

Exercise A.1: Verify that TAB ≡− i
2Γ

AB are generators of SO(1,D−1) in
the spinor representation, i.e.

i[TAB , TCD] = ηACTBD − ηADTBC − ηBCTAD + ηBDTAC . (A.4)

Dirac spinors have then dimension 2[D/2]. For D even the Dirac repre-
sentation is reducible since there exists a matrix that commutes with all
generators. This is

ΓD+1 ≡ e−iπ(D−2)/4Γ 0 . . . ΓD−1 . (A.5)

For D odd, ΓD+1 ∝ �.

Exercise A.2: Show that Γ 2
D+1 = �, {ΓD+1, Γ

A} = 0, and [ΓD+1, Γ
AB ] = 0.

With the help of ΓD+1 we can define the irreducible inequivalent Weyl
representations: if ψ is a Dirac spinor, the left and right Weyl spinors are

ψL =
1
2
(1− ΓD+1)ψ , ψR =

1
2
(1 + ΓD+1)ψ . (A.6)

Note that ΓD+1ψR = ψR and ΓD+1ψL = −ψL.
Dirac and Weyl spinors are complex but in some cases a Majorana

condition of the form ψ∗ = Bψ with B a matrix such that BB∗ = �

is consistent with the Lorentz transformations δψ = iωMNT
MNψ, i.e. B

must satisfy T ∗MN = −BTMNB−1. The Majorana condition is allowed for
D = 0, 1, 2, 3, 4 mod 8. Majorana-Weyl spinors can be shown to exist only in
D = 2 mod 8 [6].

SO(D) spinors have analogous properties. For D even, there are
two inequivalent irreducible Weyl representations of dimension 2D/2−1. A
Majorana-Weyl condition can be imposed only for D = 0 mod 8.

A.2: Differential Geometry

We use A,B, . . . to denote flat tangent indices (raised and lowered with
ηAB and ηAB) which are related to the curved indices M,N, . . . (raised and
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lowered with GMN and GMN ) via the D-bein: e.g. ΓA = eA
MΓM and the

inverse D-bein, e.g. ΓM = eM
A ΓA, where GMN = eA

MeB
NηAB and eA

MeM
B = δA

B ,
eA

MeN
A = δN

M , ηABηBC = δA
C . The ΓM satisfy {ΓM , ΓN} = 2GMN .

A Riemannian connection ΓP
MN is defined by imposing

∇PGMN ≡ ∂pGMN − ΓQ
PMGQN − ΓQ

PNGMQ = 0 (metricity)
ΓP

MN = ΓP
NM (no torsion) . (A.7)

One finds for the Christoffel symbols

ΓP
MN =

1
2
GPQ (∂MGQN + ∂NGMQ − ∂QGMN ) . (A.8)

The Riemann tensor is

[∇M ,∇N ]VP = −RMNP
QVQ . (A.9)

The Ricci tensor and the Ricci scalar are RMN = GPQRMPNQ and R =
GMNRMN . The spin connection is defined via the condition

∇MeA
N = ∂MeA

N − ΓP
MNe

A
P + ωM

A
Be

B
N = 0 (A.10)

which leads to the following explicit expression for its components

ωAB
M =

1
2

(ΩMNR −ΩNRM +ΩRMN ) eNAeRB (A.11)

where
ΩMNR =

(
∂MeA

N − ∂Ne
A
M

)
eAR .

In terms of ωAB
M the components of the Lie-algebra valued curvature 2-form

are

RMN
AB = eAP eBQRMNPQ = ∂MωAB

N − ∂Nω
AB
M +ωAC

M ωNC
B −ωAC

N ωMC
B .

(A.12)
The covariant derivative, acting on an object with only tangent-space indices,
is generically

∇M = ∂M +
i

2
ωAB

M TAB , (A.13)

where TAB is a generator of the tangent space group SO(1,D−1). For exam-
ple, i(TAB)C

D = ηACδ
D
B − ηBCδ

D
A for vectors and iTAB = 1

2ΓAB for spinors
(spinor indices are suppressed).

Under infinitesimal parallel transport a vector V changes as δV M =
−ΓM

NRV
NdxR. When V is transported around an infinitesimal loop in the

(M,N)-plane with area δaMN = −δaNM it changes by the amount

δV P = −1
2
δaMNRMN

P
QV

Q . (A.14)

Notice that under parallel transport the length |V | remains constant since
|V |2 = V MV NGMN and ∇PGMN = 0. The generalization to the parallel
transport of tensors and spinors is obvious.
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Appendix B: First Chern Class of Hypersurfaces of Pn

This Appendix is adopted from [27].
Let X = {z ∈ Pn; f(z) = 0}, f a homogeneous polynomial of degree d,

be a non-singular hypersurface in Pn. From (3.70) we know that c1(X) can
be expressed by any choice of volume element on X. As volume element we
will use the pull-back of the (n − 1)-st power of the Kähler form on Pn. We
will first compute this in general and will then use the Fubini-Study metric
on Pn. It suffices to do the calculation on the subset

U0 ∩ {∂nf �= 0} ∩X . (B.1)

Given that ω = igīdz
i ∧ dz̄ we compute (zi are the inhomogeneous coordi-

nates on U0)

ωn−1 = (igīdz
i∧dz̄j)n−1 = in−1

n∑

i,j=1

(−1)i+j det(mij)(· · · î · · ·̂̄ · · · ) , (B.2)

where mij is the (i, j)-minor of the metric gī. The notation (· · · î · · ·̂̄ · · · )
means that the hatted factors are missing in the product dz1 ∧ dz̄1 ∧ · · · ∧
dzn ∧ dz̄n. In the next step we split the above sum according to how many
powers of dzn appear. We get

inωn−1 =
n−1∑

i,j=1

(−1)i+j det(mij)(· · · î · · ·̂̄ · · · )

+
n−1∑

i=1

(−1)n+i det(min)(· · · î · · · ̂̄n) +
n−1∑

j=1

(−1)n+j det(mhj)(· · ·̂̄ · · · n̂·)

+ det(mnn)(· · · n̂ ̂̄n) . (B.3)

We now replace dzn via the hypersurface constraint:

df =
n−1∑

i=1

∂f

∂zi
dzi +

∂f

∂zn
dzn ⇒ dzn = −

(
∂f

∂zn

)−1 n−1∑

i=1

∂f

∂zi
dzi . (B.4)

Using this in (B.3), we find

(i)nωn−1 =
∣
∣
∣
∣
∂f

∂zn

∣
∣
∣
∣

−2 n∑

i,j=1

∂f

∂zi

∂f

∂zj
(−1)i+j det(mij)(dz1∧· · ·∧dz̄n−1) . (B.5)

Next we need the identity

gī ≡ (g−1)ī = (−1)i+j det(mij)(det g)−1 . (B.6)

Using this in (B.4), we obtain
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(−i)nωn−1 = (det g)
∣
∣
∣
∣
∂f

∂zn

∣
∣
∣
∣

−2 n∑

i,j=1

gī ∂f

∂zi

∂f

∂zj
(dz1 ∧ · · · ∧ dz̄n) . (B.7)

We now specify to the Fubini-Study metric, for which

gī = (1 + |z|2)(δij + ziz̄j) . (B.8)

It follows that

n∑

i,j=1

gī ∂f

∂zi

∂f

∂zj
= (1 + |z|2)




n∑

i=1

∣
∣
∣
∣
∂f

∂zi

∣
∣
∣
∣

2

+
n∑

i,j=1

zi ∂f

∂zi
zj
∂f

∂zj



 . (B.9)

Now, since f vanishes on X and since it is a homogeneous function of degree
d, on X we get

0 = d · f =
∂f

∂z0
+

n∑

i=1

zi ∂f

∂zi
, (B.10)

and therefore
n∑

i,j=1

gī ∂f

∂zi

∂f

∂zj
= (1 + |z|2)

(
n∑

i=0

∣
∣
∣
∣
∂f

∂zi

∣
∣
∣
∣

2
)

. (B.11)

Because the determinant of the metric is (cf. (3.28))

det(gī) =
1

(1 + |z|2)n+1
, (B.12)

we find

(i)nωn−1 =
∣
∣
∣
∣
∂f

∂zn

∣
∣
∣
∣

−2
∑n

i=0

∣
∣
∣ ∂f
∂zi

∣
∣
∣
2

(|z|2)n
(B.13)

where now |z|2 =
∑n

i=0 |zi|2. If we set

ψ = log
(∑n

i=0 |∂if |2
|z|2d−2

)

, (B.14)

which is a globally defined function, i.e. it has a unique value on all overlaps,
we can write

∂∂̄ logωn−1 = ∂∂̄ log

∑∣∣
∣ ∂f
∂zi

∣
∣
∣
2

(|z|2)n
− ∂∂̄ log

∣
∣
∣
∣
∂f

∂zn

∣
∣
∣
∣

2

= ∂∂̄ log eψ(|z|2)d−n−1

= ∂∂̄ψ + i(n− d+ 1)ω . (B.15)

Recall that this is valid on the subset specified in (B.1), in particular that
this expression is to be evaluated on the hypersurface f(z) = 0. Comparing
this to (3.70) we realize that we have shown that

2πc1(X) = (n+ 1− d)[ω] . (B.16)
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Appendix C: Partition Function
of Type II Strings on T10−d/ZN

The starting point is the partition function for the ten-dimensional type II
strings that can be written as the product of a bosonic ZB and a fermionic
ZF contribution [4, 5, 6]. Up to normalization:

Z(τ, τ̄) = ZB(τ, τ̄)ZF (τ, τ̄)

ZB(τ, τ̄) =
(

1√
τ2 η η̄

)8

(C.1)

ZF (τ, τ̄) =
1
4






ϑ4
[
0
0

]

η4
−
ϑ4
[

0
1
2

]

η4
−
ϑ4
[

1
2
0

]

η4
+
ϑ4
[

1
2
1
2

]

η4






×






ϑ̄4
[
0
0

]

η̄4
−
ϑ̄4
[

0
1
2

]

η̄4
−
ϑ̄4
[

1
2
0

]

η̄4
±
ϑ̄4
[

1
2
1
2

]

η̄4





,

where η(τ) is the Dedekind function defined in (4.27) and the Jacobi theta
functions are

ϑ
[

δ
ϕ

]
(τ) =
∑

n

q
1
2 (n+δ)2 e2iπ(n+δ)ϕ ; q = e2iπτ . (C.2)

The theta functions also have the product form (4.42) given in Sect. 4.3. In
the following we will not write explicitly that ϑ and η are functions of τ .

Depending on the sign in the last term of the right-moving piece of ZF we
have type IIB (+ sign) or IIA (− sign) strings. In the following we consider
type IIB so that ZF (τ, τ̄) = |ZF (τ)|2. The left-moving ZF (τ) can be written
as:

ZF (τ) =
1
2

∑

α,β=0, 1
2

sαβ

ϑ4
[

α
β

]

η4
. (C.3)

The sαβ are the spin structure coefficients. Modular invariance requires s0 1
2

=
s 1

20 = −s00. This can be checked using the transformation properties:

T : τ → τ + 1 ; η → e
iπ
12 η ; ϑ

[
α
β

]
→ e−iπ(α2−α)ϑ

[
α

α+β− 1
2

]
,

S : τ → −1/τ ; η → (−iτ) 1
2 η ; ϑ

[
α
β

]
→ (−iτ) 1

2 e2iπαβϑ
[

β
−α

]
. (C.4)

We take s00 = 1 and choose s 1
2

1
2

equal to s00 so that the GSO projections in
the NS and R sectors turn out the same as we explain below.

The NS sector corresponds to α = 0. Using (C.2) we can write
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1
2






ϑ4
[
0
0

]

η4
−
ϑ4
[

0
1
2

]

η4





=

1
η4

∑

ra∈Z

q
1
2 r2
[
1− eiπ(r0+r1+r2+r3)

2

]

. (C.5)

This shows that left-moving fermionic degrees of freedom of a given NS state
depend on a vector r with four integer entries. This is an SO(8) weight in
the scalar or vector class. Similarly, for the R sector with α = 1

2 we have

−1
2






ϑ4
[

1
2
0

]

η4
−
ϑ4
[

1
2
1
2

]

η4





= − 1

η4

∑

ra∈Z+ 1
2

q
1
2 r2
[
1− eiπ(r0+r1+r2+r3)

2

]

.

(C.6)
Now r has half-integer entries so that it corresponds to an SO(8) spinor
weight. Here we are actually exchanging the light-cone world-sheet fermions
by four free bosons that have momentum r in the SO(8) weight lattice. This
equivalence between fermions and bosons is in fact seen in (C.5) and (C.6)
when we write the left-hand-side using (4.42). Furthermore, because we have
included both β = 0 and β = 1

2 , only states with
∑
ra = odd do appear.

This is the GSO projection. For instance, the tachyon r = 0 in the NS sector
is eliminated from the spectrum. In the R sector one of the SO(8) spinor
representations with r2 = 1 is also absent. For the right-moving piece we
obtain completely analogous results in terms of an SO(8) weight denoted p.

Let us now discuss the partition function for the orbifold that has the
form (4.39). Each term Z(θk, θ�) can be written as the product of bosonic
and fermionic pieces. The bosonic piece is

ZB(θk, θ�) =
(

1√
τ2 η η̄

)d−2

χ(θk, θ�)

∣
∣
∣
∣
∣
∣

5− d
2∏

j=1

η

ϑ[
1
2+kvj
1
2+�vj

]

∣
∣
∣
∣
∣
∣

2

, (C.7)

where χ(θk, θ�) is the number of simultaneous fixed points of θk and θ�. The
first term is the contribution of the non-compact coordinates (d − 2 in the
light-cone gauge), whereas the second term comes from the (10−d) compact
coordinates as we have seen in Sect. (4.3). We are assuming d even.

For the fermionic piece we start with the untwisted sector. The insertion
of θ� in the trace leads to

ZF (�, θ�) =
1
4

∣
∣
∣
∣
∣
∣

∑

α,β=0, 1
2

sαβ(0, �)
ϑ
[

α
β

]

η

3∏

j=1

ϑ
[

α
β+�vj

]

η

∣
∣
∣
∣
∣
∣

2

, (C.8)

where sαβ(0, �) = sαβ(0, 0) are the spin structures in (C.3). We have special-
ized to d = 4, for other cases simply set vj = 0 for j > 5 − d

2 . To derive the
remaining ZF (θk, θ�) we use modular transformations. In the end we obtain

ZF (θk, θ�) =
1
4

∣
∣
∣
∣
∣
∣

∑

α,β=0, 1
2

sαβ(k, �)
ϑ
[

α
β

]

η

3∏

j=1

ϑ
[

α+kvj

β+�vj

]

η

∣
∣
∣
∣
∣
∣

2

. (C.9)
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Modular invariance imposes relations among the spin structure coefficients.
We find:

s00(k, �) = −s 1
20(k, �) = 1 ; s0 1

2
(k, �) = −s 1

2
1
2
(k, �) = −e−iπk(v1+v2+v3) .

(C.10)
Setting k = N then gives a further condition on the twist vector, namely:

N(v1 + v2 + v3) = 0mod 2 . (C.11)

Notice that all twists in Table 2 do satisfy this condition.

Exercise C.1 : Use (C.4) to show that (C.9) has the correct modular trans-
formations, i.e. ZF (θk, θ�) transforms into ZF (θk, θk+�) under T and into
ZF (θ�, θ−k) under S.
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algébrique d’Angers”, (A. Beauville, ed.) 1990, 273–310. 119



178 A. Font and S. Theisen

31. W. Fulton, Introduction to Toric Varieties, Princeton University Press, 1993. 119
32. D.A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Mathemat-

ical Surveys and Monographs, Vol. 68, AMS, 1999. 119, 147
33. P. Candelas and X. C. de la Ossa, Comments on Conifolds, Nucl. Phys. B342

(1990) 246–268. 133, 143
34. P.S. Howe, G. Papadopoulos and K.S. Stelle, Quantizing The N=2 Super Sigma

Model In Two-Dimensions, Phys. Lett. B176 (1986) 405–410. 134
35. A. Lichnerowicz, Global theory of connections and holonomy groups, Noordhoff

International Publishing, 1976. 136
36. P. Griffiths, On the periods of certain rational integrals I,II, Ass. of Math. 90

(1969) 460–495, 498–541. 137
37. D. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces in Mir-

ror Symmetry I (s.-T. Yau, ed.), AMS and International Press, 1998,p. 185–199,
alg-geom/9202026. 137

38. P. Candelas, Yukawa couplings between (2,1)-forms, Nucl. Phys. B298 (1988)
458–492. 137, 140, 143, 148

39. P. Mayr, Mirror Symmetry, N = 1 Superpotentials and Tensionless Strings on
Calabi-Yau Fourfolds, Nucl. Phys. B494 (1997) 489–545, hep-th/9610162;
A. Klemm, B. Lian, S.S. Roan and S.T. Yau, Calabi-Yau Fourfolds for M-
Theory and F-Theory Compactifications, Nucl. Phys. B518 (1998) 515–574,
hep-th/9701023. 139

40. V. Batyrev, Variations of the Mixed Hodge Structure of Affine Hypersurfaces
in Algebraic Tori, Duke Math. J. 69 (1993) 349–409; Dual Polyhedra and Mir-
ror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties, J. Algebraic
Geometry 3 (1994) 493–535, alg-geom/9310003; Quantum Cohomology Rings
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G. Zoupanos, Non-Kaehler string backgrounds and their five torsion classes,
Nucl. Phys. B652 (2003) 5–34, hep-th/0211118.;
K. Becker, M. Becker, K. Dasgupta and P. S. Green, Compactifications of het-
erotic theory on non-Kaehler complex manifolds. I, JHEP 0304 (2003) 007,
hep-th/0301161;
J. P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic tor-
sion, hep-th/0302158;
K. Becker, M. Becker, P. S. Green, K. Dasgupta and E. Sharpe, Compact-
ifications of heterotic strings on non-Kaehler complex manifolds. II, hep-
th/0310058;
S. Fidanza, R. Minasian and A. Tomasiello, Mirror symmetric SU(3)-structure
manifolds with NS fluxes, hep-th/0311122. 169

76. S. B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string
compactifications, Phys. Rev. D66 (2002) 106006(16), hep-th/0105097. 169



Introduction to String Compactification 181

77. M. Grana and J. Polchinski, Supersymmetric three-form flux perturbations on
AdS5, Phys. Rev. D63 (2001) 026001(8), hep-th/0009211. 169

78. S. Kachru, M. B. Schulz and S. Trivedi, Moduli stabilization from fluxes in a
simple IIB orientifold, JHEP 0310 (2003) 007, hep-th/0201028;
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