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“Opportunity may knock, but it seldom nags.”–David Mamet



Measurement of the tt̄ cross section
at the Run II Tevatron using

Support Vector Machines

by Benjamin Eric Whitehouse

Advisor: Professor Krzysztof Sliwa

Abstract

This dissertation measures the tt̄ production cross section at the Run II CDF detector

using data from early 2001 through March 2007. The Tevatron at Fermilab is a pp̄

collider with center of mass energy
√
s = 1.96 TeV. This data composes a sample

with a time-integrated luminosity measured at 2.2 ± 0.1 fb−1. A system of learning

machines is developed to recognize tt̄ events in the “lepton plus jets” decay channel.

Support Vector Machines are described, and their ability to cope with a multi-class

discrimination problem is provided. The tt̄ production cross section is then measured

in this framework, and found to be σtt̄ = 7.14 ± 0.25 (stat) +0.61
−0.86 (sys) pb.

Version 1.0
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Chapter 1

The Standard Model

The major focus of this chapter is the summary introduction of the framework of high

energy particle physics. It will serve as the jumping off point for a discussion of the

fundamental components of the theory of Nature. Once complete, the top quark and

its properties will be examined in slightly more detail, and the chapter will conclude

with a discussion of the top quark’s importance in the Standard Model.

1.1 Overview

The Standard Model of particle physics represents our most successful phenomenolog-

ical description of Nature. It describes 3 of her 4 fundamental forces: the strong and

weak nuclear forces, as well as electromagnetism. At this time gravity is described

separately by the General Theory of Relativity. It remains one of the largest open

problems in physics to combine the Standard Model and Relativity into a single Grand

Unified Theory.

The Standard Model details the allowed interactions between particles through a

specific application of Quantum Field Theory.

Excitations of these fields give rise to the particles of matter and their quantized

force intermediators. What we call fermions are the particles which make up matter,

while the bosons convey the interaction forces between fermions. Bosons and fermions

are differentiated by the amount of intrinsic spin they carry: fermions possess 1/2

integer multiples of ~ ( n
2
~, for n = 1,3,5... ), while bosons have integer multiples ( n~,

for n = 0,1,2,3...). Fermions are distinguished as either quarks or leptons, and each of

these are further delineated in what are called generations. The main difference between

3



4 CHAPTER 1. THE STANDARD MODEL

couples mass charge spin
force to affects boson [GeV/c2] [e] [~]

EM electric charge photon (γ) 0 0 1
charge carriers

strong color quarks, gluon (g) 0 0 1
gluons
quarks,

weak weak leptons, W±, 80.4 +1,−1 1
charge W±, Z0 Z0 91.2 0

gravity mass, all graviton 0 0 2
energy (unobserved)

Figure 1.1: Fundamental Forces

particles across generations is in their mass, as every fermion of the 1st generation has

an analogous, heavier version in the 2nd and 3rd. Figure 1.1 enumerates the forces of

the Standard Model, while Figure 1.2 provides a more detailed list of the properties of

the fermions.

The allowable symmetries of the Standard Model are found according to the group

SU(3)QCD × SU(2)L × U(1)Y .

The strong interaction is governed by the SU(3)QCD gauge group. This force cou-

ples to the “color charge” of quarks, and comes in three varieties that are normally

enumerated as red, green, and blue. The mediator bosons of the strong force are

called gluons, which are massless and come in eight varieties derived from the allow-

able (color/anti-color) combinations. The theory of the strong interaction is thus aptly

named Quantum ChromoDynamics (QCD).

The theory of the weak nuclear force has been successfully combined with that of

electromagnetism in the “electro-weak” theory of Glashow, Salam, and Weinberg. The

gauge group SU(2)L × U(1)Y of weak hyper-charge Y and weak isospin T governs its

interactions.

Because the weak interaction only couples to left handed particles L, the fermion

fields Ψ are split into left- and right-handed pieces ΨL,R = 1
2
(1∓γ5)Ψ. These then give

rise to left-handed doublet states with T = 1
2
, and right-handed singlet states where

T = 0.
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The neutrinos and up-type quarks ( u, c, t ) of the doublets have isospin component

T3 = +1
2
, while the down-type quarks ( d, s, b ) and charged leptons have T3 = −1

2
.

Weak hyper-charge is defined to be Y = 2Q− 2T3, where Q is electric charge. Hence,

Y = −1 for leptons and Y = 1
3
for quarks.

Non-zero masses for the particles of SU(2)L × U(1)Y violate the group’s gauge

symmetry. Thus, masses are introduced to the particles via the so-called “Higgs mech-

anism.” This formal procedure introduces a complex scalar field doublet Φ = (Φ+,Φ0)T

to the Lagrangian. This spontaneously breaks the SU(2)L × U(1)Y symmetry to

U(1)QED when the neutral component takes on a non-zero vacuum expectation value

of v/
√
2. The three weak gauge bosons W+,W−, Z0 acquire masses, while the QED

boson (i.e. the photon) remains massless. The remaining degree of freedom from the

introduced scalar doublet gives rise to a new particle in our framework, which is known

as the Higgs boson. The Higgs is the last predicted Standard Model particle which

remains to be observed experimentally.

The Particles of Matter

Fermion 1st Generation 2nd Generation 3rd Generation Q
Quarks u (up) c (charm) t (top) +2/3

d (down) s (strange) b (bottom) −1/3
Leptons e− (electron) µ− (muon) τ− (tau) −1

νe (electron neutrino) νµ (muon neutrino) ντ (tau neutrino) 0

Figure 1.2: Summary of Standard Model Fermions

The Higgs mechanism can also be used to give the fermions masses via Yukawa

couplings to the Higgs scalar field. Through spontaneous symmetry breaking, the Higgs

field gives rise to a mass for each fermion (mf ) which is proportional to the vacuum

expectation: mf = (vλf )/
√
2. Thus, each fermion has a free parameter (Yukawa

coupling λf ) which can be used to set its mass.

Because the mass eigenstates of electro-weak theory are not the same as the weak

force eigenstates, it is possible for weak interactions (particle decays) to cross genera-
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tions. The transformation of basis from the mass eigenstates to weak force eigenstates

is encoded in the unitary matrix given in Equation (1.1), known as the CKM matrix

(named for Cabibbo, Kobayashi, and Maskawa). As an example of its implications,

weak processes like (c → W+s) are the norm, while the small CKM off-diagonal ele-

ments also allow interactions such as (c → W+d) to take place. If the CKMmatrix were

exactly equal to identity, such decays across quark generations would not be allowed.







d′

s′

b′







L

=







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













d

s

b







L

≡ VCKM







d

s

b







L

(1.1)







|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|






=







(0.9741, 0.9756) (0.219, 0.226) (0.0025, 0.0048)

(0.219, 0.226) (0.9732, 0.9748) (0.038, 0.044)

(0.004, 0.014) (0.037, 0.044) (0.9990, 0.9993)







(1.2)

fermion electric
type charge Gen 1 Gen 2 Gen 3

Quarks + 2

3
up(u) charm(c) top(t)

1.5 - 3.3 MeV/c2 1.27 +0.07
−0.11 GeV/c2 172.4 ± 1.2 GeV/c2

− 1

3
down(d) strange(s) bottom(b)

3.5 - 6.0 MeV/c2 104 +26
−34 MeV/c2 4.20 +0.17

−0.07 GeV/c2

Leptons 0 νe νµ ντ
< 2 eV/c2 < 0.19 MeV/c2 < 18.2 MeV/c2

-1 e µ τ
0.511 MeV/c2 105.658 MeV/c2 1,777 MeV/c2

Figure 1.3: Properties of Standard Model Fermions

Though originally thought to be massless, it has been determined that neutrinos

also have some very small non-zero mass. The formalism of allowing for neutrino

masses gives rise to a similar basis mixing, which in turn allows for transitions across

lepton generations in analogy to the CKM matrix. This matrix is called the PMNS

matrix (for Pontecorvo, Maki, Nakagawa, and Sakata).

In summary, the Standard Model[2] uses Quantum Field Theory to describe Nature.

It requires a total of 25 free parameters which must come from empirical measurements.
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These are:

• 2 parameters for the Higgs Mechanism ( mH , v )

• 3 force coupling constants ( αs, g, g
′ )

• 4 parameters of CKM matrix

• 4 parameters of PMNS matrix

• 12 Yukawa couplings that give mass to the fermions

1.2 The Top Quark

The top quark was discovered in 1994 here at the Tevatron during Run I. A nice

summary of that time period is given by Liss and Tipton in Scientific American[5].

Top quark pair production can occur through quark/anti-quark annihilation or gluon-

gluon fusion during the pp̄ collision. Figure 1.4 shows leading order Feynman diagrams

for the possible configurations.

Figure 1.4: Feynman Diagrams for tt̄ pair production.

As can be seen from the magnitudes of the last row of the CKM matrix listed

in Equation (1.2), the dominant decay mode for the top quark is into the two body

system (t → W+b). Decays to both W+s and W+d are highly suppressed, and are not

considered further in this thesis. The b quark in this decay leads to a hadronic jet, while

the W boson can decay hadronically into quarks, or leptonically into a lepton/neutrino

pair. The tt̄ decays therefore fall into three different channels. The dilepton channel

(DIL), represents the case where both W ’s decay leptonically. The lepton plus jets

channel (L+J) has one of the W ’s decay leptonically and the other hadronically. The

all hadronic (HAD) encompasses all cases where both W ’s turn into hadronic jets. See

Figure 1.5.



8 CHAPTER 1. THE STANDARD MODEL

Figure 1.5: tt̄ Decay Channels

The tt̄ pair production cross section (σtt̄) comes primarily from valance quark an-

nihilation between the proton and anti-proton. Only about 15% of σtt̄ comes from

gluon-gluon fusion. This is due to the fact that the center of mass energy of the Teva-

tron (
√
s = 1.98 TeV) is relativly close to the production threshold for tt̄ because of

the quark’s large mass. Two theoretical calculations for the tt̄ cross section are quoted

in Figure 1.6. Both of the values listed in this figure use the CTEQ6.6 PDF set at

NNLO, and assume a top mass mt = 175 GeV/c2. See [25], [26], [27], and [28] for other

assumed top masses and/or PDFs.

σtt̄ [pb] Reference
6.61+0.51

−0.58 Cacciari et al.[26]
6.73+0.51

−0.46 Kidonakis et al.[28]

Figure 1.6: Theoretical σtt̄ Calculations
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Figure 1.7: Cartoon of L+J tt̄ Production
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Chapter 2

The Support Vector Machine

The overall idea for the Support Vector Machine was put forth by Vladimir Vapnik[20]

in the 1990s. Using labeled training data as a basis, the SVM methodology attempts

to calculate the optimal separating hyperplane between the two classes of data under

consideration. In order to tell apart apples from oranges, one might consider any

number of descriptive, quantifiable features of these two objects. Color, texture, size,

lifetime, ripening time, seed content, skin width, shape, density, mass, etc. can all

be assembled in a vector of values used to describe an apple or an orange. Given a

labeled handful of these vectors, the SVM formalism computes a separating hyperplane

that attempts to place all the apples on one side and all oranges on the other. The

purpose of this chapter is to set forth the theory behind Support Vector Machines,

point out some of their interesting properties, and show how they can be applied to

larger classification problems.

2.1 The Basics

Suppose that we define a vector of real numbers, where each dimension represents some

characteristic of the subject we wish to study. The N dimensions of this vector are

known as features. Let us define

#»x ≡ {x1, x2, . . . , xN} (2.1)

y ≡ ±1

11



12 CHAPTER 2. THE SUPPORT VECTOR MACHINE

We also need a way to distinguish between the two classes of data. We will use the

convention that every data point is specified by its vector #»x , and its class y when this

information is available.

Imagine we are given some number of events whose class is known. Some of the

points belong to the y = +1 class, and others to the y = −1 class. Suppose we plot

these vectors in real N dimensional space in the normal way. Our task is to then use

these event vectors to find a separating hyper-plane between the points with y = +1

and y = −1. For vectors with only 2 features, consider Figure 2.1. As can be seen,

it is necessary to establish a way to uniquely define the plane of separation. The

method that is chosen is to find the plane that separates the two classes of points with

the widest margin. Figure 2.2 defines the geometry of the situation in a two feature

problem.

Figure 2.1: Many planes could potentially separate our data.

For an N dimensional space, the equation of a hyper-plane in that space is given

by:

f( #»x ) = #»w · #»x − b (2.2)

where #»w is a vector normal to the plane, and b is a real number that offsets the plane’s
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r

d

H

H1

H2

Figure 2.2: 2D SVM Geometry

position from the origin. Once #»w and b have been determined, this expression becomes

the learned function. After computing f( #»a ) on some vector of unknown class, the sign

of f( #»a ) can be our guess as to which class #»a belongs.

Looking more closely at the learned function, we see that the perpendicular distance r

from the plane to a point #»z is given by

r =
#»w · #»z − b

| #»w| (2.3)

A further step needs to be taken to set the overall scale for the problem. This is

because there are an infinite number of vectors #»w that give the same orientation for the

plane. We could simply constrain #»w to be a unit vector. However, a more convenient

method for our future calculations is simply to compute #»w such that the value of the

learned function is ±1 at the margin. This fixes the scale, and the overall width of the

margin is then
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d =
2

| #»w| (2.4)

This quantity is clearly maximized if we minimize the length of #»w . To be clear,

we have now totally specified our geometry. #»w’s direction gives the orientation of the

separating hyperplane, b displaces it from the origin to its proper absolute position, and
#»w’s magnitude sets the width of the margin (i.e. the density of the contours parallel

to the hyper-plane).

In order to ensure that no data points invade the margin, we also require the

following linear constraints on each of the N training points under consideration.

yi(
#»w · #»xi − b) ≥ 1 (2.5)

Putting everything together, we can assemble a Lagrangian to minimize for this

problem.

L =
1

2
#»w · #»w −

N
∑

i=1

αiyi(
#»w · #»xi − b) +

N
∑

i=1

αi (2.6)

The first term maximizes the margin, and the subsequent N terms ensure the

separation of the two classes in our training set. Notice the use of Lagrange multipliers

(α′
is ≥ 0) to enforce these linear constraints. This approach is common in solving

quadratic optimization problems such as we have here. A dual Lagrangian can be

constructed by taking the partial derivatives with respect to the primal variables #»w

and b and noting they are zero at optimality. This leads to the following relations

∂L

∂ #»w
= 0 ⇒ #»w =

N
∑

i=1

αiyi
#»xi (2.7)

∂L

∂b
= 0 ⇒

N
∑

i=1

αiyi = 0 (2.8)

Substituting these back into our original Lagrangian, we get the dual Lagrangian

LD =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj
#»xi · #»xj (2.9)

This formulates our problem entirely in terms of the α’s. Once the α’s are known, we

can recover #»w through the relation (2.7) above, and b from the fact that
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b = #»w · #»xk − yk (2.10)

for any training vector k, as long as its corresponding αk 6= 0. Using our new formula-

tion we can re-express the learned function in terms of the α’s.

f( #»z ) =
N
∑

i=1

αiyi
#»xi · #»z − b (2.11)

The important thing to note here is that our learned function depends only on those

training points #»xi which have an αi 6= 0. Training points that meet this requirement are

known as the Support Vectors, as they are the vectors that hold up the decision plane.

Only support vectors, along with their associated Lagrange multipliers, are needed to

reconstruct the decision plane. All other training points are ignorable. Also, notice

that the learned function only depends on the inner product between training points

and the test point #»z . We will return to this later when considering non-linear decision

surfaces.

2.2 Mechanical Analogy

An interesting interpretation of the formulation of the Support Vector Machine reveals

it to have an exact physical analog. The support vectors can be viewed as exerting a

positive or negative force on the decision boundary, and the solution in which we find

the best separating hyper-plane is exactly that which provides mechanical equilibrium.

In other words, all we are requiring is that the sum of all the forces and torques net

zero at optimality. This view can be helpful in getting a handle on what actually is

happening when a SVM is optimized. It can be useful to think about how certain

points “push around” the decision boundary.

To illustrate this point, let’s associate a force
#»

F i with each support vector. We will

take

#»

F i = −yiαiŵ (2.12)

Here, ŵ is simply a unit vector in the direction of #»w, defined as ŵ =
#»w
| #»w | . Recall from

Equation (2.2) that ŵ gives the orientation of the hyper-plane. In fact, ŵ is normal to

the hyper-plane’s surface. Therefore, Equation (2.12) associates a force normal to the

hyper-plane which points inwards toward the zero contour of the decision surface. The
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magnitude of the force is proportional to the size of that vector’s Lagrange multiplier

αi. The requirements for mechanical equilibrium are as follows:

SV s
∑

i

#»

F i = 0 (2.13)

SV s
∑

i

#»x i ×
#»

F i = 0 (2.14)

Using Equations (2.7) and (2.8), we see that these conditions hold.

SV s
∑

i

#»

F i =
SV s
∑

i

−yiαiŵ = −ŵ
SV s
∑

i

yiαi = 0 (2.15)

SV s
∑

i

#»x i ×
#»

F i =
SV s
∑

i

#»x i × (−yiαi)ŵ =
SV s
∑

i

(−yiαi)
#»x i × ŵ = − #»w × ŵ = 0 (2.16)

2.3 Soft Margin

Sometimes, it happens that a problem is not perfectly separable. Imagine there is

some noise in the problem, or that some points in the training sample are mislabeled.

To accommodate this kind of situation, our problem can be reformulated to allow

some points to invade the margin. However, we will penalize these points in order

to discourage their occurrence. To relax the margin constraints, we modify Equation

(2.5) to read

yi(
#»w · #»xi − b) ≥ 1− ξi

ξi ≥ 0
(2.17)

These free parameters ξi allow individual points to enter the margin. However, if

we don’t suppress this behavior in some manner, then the trivial solution where all the

points fall into the margin will result. So, we modify the Lagrangian as follows:

L =
1

2
#»w · #»w + C

N
∑

i=1

ξi −
N
∑

i=1

αiyi(
#»w · #»xi − b) +

N
∑

i=1

αi(1− ξi) (2.18)
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The second term in (2.18) involving C is the penalty term. Since we are minimizing

L , and both C and the ξi’s are taken to be non-negative, this term will tend to cap

the error. It is instructive to view the Lagrangian rearranged like this:

L =
1

2
#»w · #»w −

N
∑

i=1

αiyi(
#»w · #»xi − b) +

N
∑

i=1

αi +
N
∑

i=1

ξi(C − αi) (2.19)

Equation (2.19) has exactly the same form as (2.6), except for the last term that

isolates ξ. In order to constrain L , we note what happens to the objective function

when α’s are allowed to grow larger then C. In that case, the sum in the last term can

be driven to −∞ by letting the ξ’s become arbitrarily large. To avoid this situation,

we require that the α’s are bound within the range 0 ≤ αi ≤ C. This result follows

naturally by taking

∂L

∂ξi
= 0 ⇒ αi = C (2.20)

for any ξi that exists (that is ξi > 0). A very convenient by product of applying

this constraint is that it eliminates the last term in (2.19)! We are left with exactly

Equation (2.6), and the rest of the solution follows as before. Equations (2.7) and (2.8)

are the same, as is the dual LD in (2.9). We are solving exactly the same problem as

previously, except we have restricted the range of the Lagrange multipliers. We have

a new free parameter C that controls the rigidity of the margin. To summarize, the

problem we are solving is

LD =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj
#»xi · #»xj

0 ≤ αi ≤ C

N
∑

i=1

αiyi = 0

(2.21)

Note that there is also a formulation that fixes the overall invasion “length” by

placing an upper bound on the sum of the ξ variables. This is in contrast to the

method just outlined which limits the individual penetration of the given training

points, but places no bound on the number of points which invade the margin.
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2.4 Non-linear Solutions

Up to this point, we have shown how to find the best separating hyper-plane for a

given set of training data. However, the hyper-plane we have constructed exists in the

same space as the data points, or what is known as the feature space. One drawback to

this situation is that it may not be possible to find a separating plane for the problem

we would like to solve. It would be nice if we were able to carry our support vector

formalism over to such problems that only have non-linear solutions. This can be

accomplished if we map our original space into some other feature space of higher

dimensionality. The hyper-plane can then be constructed in this higher dimensional

space where the problem is linearly separable.

Figure 2.3: Mapping problem into higher dimensional space

Notice that in Equations (2.21) and (2.11) the training vectors #»xi only enter the

calculations when being dotted into another #»xj. If we were to actually do a mapping

on the original vectors #»xi ⇒ ϕ( #»xi), the only expressions that show up in the training

procedure are of the form ϕ( #»xi) ·ϕ( #»xj). Therefore, as long as we can carry out the dot

products in the higher dimensional space, we need not know the exact details of the

mapping function ϕ.

It turns out that there is a whole class of functions, known as kernel functions,

which are dot products in some multi-dimensional space. In fact, any positive semi-

definite function that can be shown to have the form given in (2.22) is a kernel function.

Equations (2.23) through (2.26) are some example kernel functions:

K( #»xi,
#»xj) ≡ ϕ( #»xi) · ϕ( #»xj) (2.22)
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K( #»xi,
#»xj) =

#»xi · #»xj (2.23)

K( #»xi,
#»xj) = (1 + #»xi · #»xj)

p (2.24)

K( #»xi,
#»xj) = tanh(β0

#»xi · #»xj + β1) (2.25)

K( #»xi,
#»xj) = e

−| #»xi−
#»xj |

2

2σ2 (2.26)

All we have to do in order to apply SVMs to non-linear problems is to replace

everywhere we see #»xi · #»xj with some suitable kernel function K( #»xi,
#»xj). The function

given in (2.26) will be the one we employ. It’s known as the Gaussian kernel, and

has been shown to give good performance over a variety of different problems. It has

one free parameter, σ, which controls the width of the Gaussian function. Its value

should be chosen to be of roughly the same magnitude as the length of your training

vectors. The actual value should be determined through an empirical study of different

trainings on your specific problem in order to optimize the SVM’s performance. As a

general rule, σ determines how flexible the learned function’s contours can become in

the problem’s unmapped feature space. The larger the magnitude of σ, the more rigid

(less bendy) the contours. In fact, the Gaussian kernel function tends toward the linear

kernel ( i.e. Equation (2.23) ) as σ tends toward ∞. If σ is taken to be too small, the

SVM will simply “memorize” your training set and not generalize well.

Figure 2.4: Linear and non-linear problems
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2.5 Feature Ranking & Reduction

Another interesting property of the SVM formalism is that the learned function de-

scribes a geometrical space which, in and of itself, can be analyzed. This provides

additional information above and beyond the simple binary answers derived from the

learned function’s sign. One piece of information which can be very insightful in ana-

lyzing a classification problem is a ranking of the features from most to least relevant.

In a SVM, each of the features is represented by one of the dimensions in the space

defined by the learned function. The most straight forward way to achieve this ranking

is by taking the gradient of the learned function (in its d dimensions). By then sampling

the gradient at different points, a numerical ordering of the most relevant features can

be found. Recall, the learned function is defined as

f( #»z ) =
N
∑

i=1

αiyiK( #»xi,
#»z )− b (2.27)

For a Gaussian kernel function, this becomes

f( #»z ) =
N
∑

i=1

αiyie
−| #»xi−

#»z |2

2σ2 − b (2.28)

Note that the sum index i in this context runs over the N support vectors. Thus #»x i

refers to the ith support vector, and not the ith dimension of #»x . The jth component of

the gradient (
#»∇f)j is then given by

(
#»∇f)j =

∂

∂zj
f

N
∑

i=1

αiyie
−| #»xi−

#»z |2

2σ2 =
N
∑

i=1

αiyie
−( #»xi1−z1)

2−( #»xi2−z2)
2−...−( #»xij−zj)

2−...−( #»xid−zd)
2

2σ2

⇒ (
#»∇f)j =

N
∑

i=1

αiyi
σ2

( #»xij − zj)e
−| #»xi−

#»z |2

2σ2 (2.29)

where by #»xij it is meant the jth component of the ith support vector.

For completeness, the gradient for a linear kernel is
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f( #»z ) =
N
∑

i=1

αiyi
#»xi · #»z − b

(
#»∇f)j =

N
∑

i=1

αiyi
#»xij (2.30)

To see why this method works, consider a simple two dimensional problem and

a linear SVM. The decision plane and the margin define a surface of constant slope

and orientation. The gradient in this situation is then a constant vector in some

direction which is normal to the decision plane. Now, if one of the dimensions (features)

turns out to be completely irrelevant to our decision, then our problem was really one

dimensional. In this case we would find a decision plane parallel to the ignorable

dimension, and a gradient pointing along the dimension that matters. Extended over

many dimensions, the same general behavior still holds. The gradient points in the

direction of the most relevant features, and is weighted in proportion to the pertinence

each feature has with respect to the decision. See Figure 2.5 below.

Figure 2.5: Using the gradient to rank features

In the non-linear case, the gradient varies from point to point in the decision space.

To cope with this situation, we take the average of the gradient for some appropriate

number of test points in the area of interest. This may have some drawbacks, as the

averaging might wash out over a feature that is positively and negatively correlated

over the test sample in different regimes. However, as an intuitive tool, the gradient is
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a very nice way to gain confidence in your classifier’s behavior and to better understand

the dataset.

2.6 Implementation

To create a functional Support Vector Machine, it is required to solve the quadratic

optimization problem given in Equation (2.21) with the appropriate kernel function

included. The SVMs used in this thesis were implemented by the author and Jacob

Borgman in C++. The implementation we used is based upon the improvements to

Platt’s Sequential Minimal Optimization (SMO) [30] method proposed by Keerthi, et

al. [29]. This implementation was found to be faster than general quadratic optimiza-

tion software, and other existing SVM implementations.



Chapter 3

Multiclass SVM

The previous sections have described how to use SVMs to solve binary classification

problems. Many problems can be cast in this form, and be satisfactorily solved using a

single SVM. Some unique properties of the physics problem we are attempting to solve

in this thesis have suggested the use of a multiclass SVM system. Because the fractional

heavy quark content of the W+Jets backgrounds in our problem are not well known,

the results given by a single SVM depend greatly on the amount of heavy quarks used

to compose the backgrounds in our training sets. In order to avoid having to pick a

specific mixture of heavy vs. light quarks in the W+Jets backgrounds, it was decided

to employ a multiclass SVM framework that treats the W+heavy quark flavors as a

separate background from W+light flavors. This allows the heavy flavor fraction of the

background to be measured independently of the tt̄ signal, and therefore removes the

bias caused by having to pick a particular training mixture for the two-class problem.

These next sections explain how to use several SVMs to attack a general multiclass

problem. Then, some specifics of the three-class problem which was used in computing

the tt̄ cross section are provided.

3.1 Generalized Solution

Suppose there are many objects, belonging to N different classes, that are to be sep-

arated using SVMs. Instead of the single SVM of the N = 2 case, we will now use a

system of multiple SVMs to accomplish classification. After the creation of training

sets representative of each data class, a SVM is trained for each pairing of classes in

our problem. This leads to the creation of K = N(N − 1)/2 trained machines. These

23
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SVMs then form a set of classifiers to which one may take an event of unknown class,

and systematically ask each SVM the following question: “Assuming this event be-

longs to either your y = +1 class or your y = −1 class, to which does it belong?”

How one goes about answering this set of questions can be different depending on the

application at hand. For example, one could simply examine the sign of the learned

function for each of the SVMs. If simple classification is the only requirement, then

a popular method is to count the number of votes each class generates. However, for

our purposes, we would like something a little bit more rigorous and quantitative. It

would be much preferable to work in terms of an estimated class probability for each

event. The method of Pairwise Coupling [3] provides a means to make this kind of

estimate. Also, it was found that a direct examination of a combined feature space for

the trained SVMs can be used to compute these probabilities. Both of these methods

are described below.

3.2 Pairwise Coupling

Once our system of K Support Vector Machines has been trained, we can assemble

a matrix of pairwise probabilities for any proposed test vector #»z . This matrix rij =

Prob( #»z ∈ i | #»z ∈ i or #»z ∈ j), where i and j run over the N classes. Clearly, the

diagonal is undefined (i 6= j), and rij = 1 − rji. We would like to discover the class

probabilities pi = Prob( #»z ∈ i ), such that
∑N

i pi = 1, which are compatible with the

pairwise probabilities rij.

The Pairwise Coupling procedure uses the model that rij = pi/(pi+pj). It assumes

this form for rij and computes the pi’s so that a distance between a µij ≡ pi/(pi + pj)

and rij is extremized. The metric employed by Hastie & Tibshirani in their paper is

the Kullback-Leibler distance (also known as the relative entropy in physics!). This

distance is specified as

ℓ( #»p ) =
N
∑

j=1

∑

i<j

[rij log
rij
µij

+ (1− rij) log
1− rij
1− µij

] (3.1)

where #»p ≡ {p1, . . . , pN}, and is re-expressed as µij on the right hand side.

The rij matrix is created by taking the value of the learned function f( #»z ) [ see

Equation (2.27) ] from the SVM trained on classes i and j. This value is then used

to evaluate that SVM’s probability distribution functions (PDFs). There are 2K PDF
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functions, as each class pairing results in a SVM, and each SVM has a PDF for its

y = +1 class and its y = −1 class.

The class i PDF for the (i vs. j) trained SVM is taken to be PDF ij
i . Then, we form

rij(
#»z ) =

PDF ij
i ( #»z )

PDF ij
i ( #»z )+PDF ij

j ( #»z )
. It will be seen later that these PDFs are found empirically

for our problem, but for the purposes of this discussion can be assumed to be supplied

by an oracle.

Hence, finding the #»p that maximizes ℓ( #»p ) provides an estimate of the class prob-

abilities for an unknown event #»z . The Pairwise Coupling scheme outlined here was

implemented in C++ for use in this analysis.

3.3 Feature Space

A more direct way of determining the separation ability of the SVM system is to view

the problem’s feature space and how the different data classes are distributed therein.

Because we take our problem to consist of three classes, we find ourselves with a system

of 3(3− 1)/2 = 3 SVMs. As is seen in Equation (2.2), each SVM has a normal vector

in feature space given by #»w. These vectors can be written as

|w1〉 =
SVM1
∑

i

yiαi|ϕ( #»x i)〉 (3.2)

|w2〉 =
SVM2
∑

i

yiαi|ϕ( #»x i)〉 (3.3)

|w3〉 =
SVM3
∑

i

yiαi|ϕ( #»x i)〉 (3.4)

where ϕ is the unknown mapping function that takes our initial vectors into the

feature space used in constructing our separating hyper-plane. Here we are assuming

that each of the 3 SVMs in question have been trained using the same kernel function

and hyper-parameters. Generally, the dimensionality of the mapped space is very

large. At the same time, the way in which these |w〉 vectors intersect is almost surely

non-orthogonal. Because this is true, the simple plotting of a 3-tuple for a test point
#»z given by (f1(

#»z ), f2(
#»z ), f3(

#»z )) can misrepresent the actual separation of points in

feature space. The value of the learned function f( #»z ) simply offers a measure of the

distance between a test point and that SVM’s hyper-plane. The relative orientations
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of the 3 SVMs in feature space is not taken into account. What we would really like is

to construct an ortho-normal basis in feature space using the 3 |w〉 vectors. This can

be done using the Gram-Schmidt procedure as follows:

|w′
1〉 = |w1〉 (3.5)

|w′
2〉 = |w2〉 −

〈w1|w2〉
〈w1|w1〉

|w1〉 (3.6)

|w′
3〉 = |w3〉 −

〈w1|w3〉
〈w1|w1〉

|w1〉 −
〈w′

2|w3〉
〈w′

2|w′
2〉
|w′

2〉 (3.7)

Using this basis, we can then create 3-tuples (X, Y, Z) like this:

X( #»z ) =
〈 #»z |w′

1〉
〈w′

1|w′
1〉

(3.8)

Y ( #»z ) =
〈 #»z |w′

2〉
〈w′

2|w′
2〉

(3.9)

Z( #»z ) =
〈 #»z |w′

3〉
〈w′

3|w′
3〉

(3.10)

See Appendix A for an expansion of these equations. This expansion can be used

to create a function that takes a 3-tuple of the learned function values, and returns a

3D point from feature space as above. Using such a function, I have plotted the zero

contour of the learned function for each of the three SVMs used in this physics analysis.

This maps out the hyper-plane decision surfaces in feature space, and illustrates the

non-orthogonality described above. See Figures 3.1 and 3.2. These figures also show

points sampled from each of the three major classes of training data, and therefore

illustrate their separability. Note that this three dimensional (3D) plot can be viewed

interactively by visiting http://tuhept.phy.tufts.edu/~ben/talk1.html.

3.4 Summary

As was seen above, SVMs can be used effectively to tackle multi-class problems.

There are a few considerations in choosing the best method for extracting the multi-

dimensional information from the SVM systems. While Hastie’s Pairwise Coupling is
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Figure 3.1: Kinematic SVM’s ortho-normalized data points, plotted in feature space.

Figure 3.2: b-tagging SVM’s ortho-normalized data points, plotted in feature space.

straight forward and convenient, it was found to introduce a small bias in the pseudo-

experiments which employed it. The feature space method was found to be largely

un-biased in pseudo-experiments, and as such it was used as the primary method of

producing probability (density) estimates. Pairwise Coupling was then used mainly as

a cross check on our methodology in the final tt̄ physics analysis.



Part III

Apparatus
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Chapter 4

Fermilab and the Tevatron

The purpose of this chapter is to give an overall picture of the Fermi National Ac-

celerator Laboratory (FNAL), and specifically outline the operation of the particle

accelerator & collider located there. FNAL is run under the control of the United

States Department of Energy, and was built in 1967 for $243 million. The Tevatron

itself was completed in 1983 for a mere $120 million, though it used much of the labora-

tory’s existing infrastructure to subsidize the project. Fermilab employs roughly 2,000

people, and its total operating budget for FY2008 was $320 million. It also serves as

host to a large community of visiting scientists and students from all around the world.

See [18] for more information.

Figure 4.1: Wilson Hall, and the Tevatron

29
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4.1 Tevatron

The Tevatron is located in suburban Illinois, about 40 miles west of Chicago, at the

Fermi National Accelerator Laboratory (FNAL). It is a proton & anti-proton collider

(pp̄), is 2π kilometers in circumference (6.28 km ≈ 3.91 miles), and has two main inter-

action points which are approximately separated by 120◦. The measurement described

in this thesis was carried out at one of these locations using the CDF (Collider Detec-

tor at Fermilab) detector. This chapter examines the various pieces of the Tevatron in

general, and the next chapter concentrates on the specifics of the CDF detector[16].

The first task required to accelerate protons and anti-protons is, of course, to gather

a supply of these objects. Fortunately, protons are easy to come by in our area, and the

protons used at the Tevatron come from your standard common tank of compressed

hydrogen. On the other hand, anti-protons are quite scarce in our world, and hence they

will need to be manufactured in our accelerator chain. Like the gears of an automobile,

there are certain types of accelerators which work better for different particle energy

regimes. From initial energies near 25 keV, all the way up to the targeted 0.98 TeV per

beam, the Tevatron uses a series of four (4) machines in assistance: Pre-accelerator,

Linac, Booster, and the Main Injector.

MAIN INJECTOR          (MI)

LINAC

BOOSTER

120 GeV  p
8 GeV
INJ

p ABORT

TEVATRON

p ABORT

SWITCHYARD

          RF
150 GeV  p  INJ
150 GeV  p  INJ

p SOURCE:
DEBUNCHER (8 GeV) &
ACCUMULATOR (8 GeV)

_

p
_

p
F0

A0

CDF DETECTOR
& LOW BETA

E0 C0

DO DETECTOR
& LOW BETA

p (1 TeV)

p (1 TeV)
_

TeV EXTRACTION
COLLIDER ABORTS

_

B0

D0

_

P1

A1

P8

P3

P2

TEVATRON EXTRACTION
for FIXED TARGET EXPERIMENTS

& RECYCLER

PRE-ACC

NS

W

E

(150 GeV)

(8 GeV)

(8 GeV)

(400 MeV)

Figure 4.2: Acceleration Chain

4.1.1 Cockroft-Walton

To start the acceleration chain, a Cockroft-Walton style accelerator is used to bring

negative hydrogen ions (H−) to an energy of 750 keV. In particle physics, the electron
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volt (eV) is often the preferred unit of energy, and is of course the amount of energy

imparted to a single electron when accelerated through an electrostatic potential of

one (1) volt. Richard Feynman summarized the situation very nicely in a lecture at

Caltech in the early 1960s[17]: “...a single atom is such a small thing that to talk about

its energy in joules would be inconvenient. But instead of taking a definite unit in the

same system (like 10−20 J), [physicists] have unfortunately chosen, arbitrarily, a funny

unit called an electron volt, ... and that turns out to be about 1.6 × 10−19 J. I am

sorry that we do that, but that’s the way it is for the physicists.”The hydrogen from

the storage tank is ionized (in this case, given an extra electron), and then kept in a

dome which is maintained at an electric potential of -750,000 volts. The negative ions

accelerate through this potential to the grounded pre-accelerator wall. A transport line

then guides the accelerated ions to the Linac[12].

Figure 4.3: Cockroft-Walton and the Linac

4.1.2 Linac & Booster

The “Linac”, short for linear accelerator, is next in the acceleration chain. This machine

uses a series of 14 radio-frequency cavities to push up the energies of the ions further

to 400 MeV[13]. After leaving the Linac, the ions are passed on into the Booster.

The first thing done at the Booster stage is to strip all the electrons off the H− ions,

leaving only the proton nuclei. This is done by passing the ions through a thin foil of

carbon. The Booster is a synchrotron (circular accelerator) that extends 150 meters in

diameter, and is made up of a series of magnets with 18 RF cavities interspersed. The

magnets are used to bend the beam into its circular path, and short areas of applied

electromagnetic potential increase their energy. At injection, the magnetic field is 740
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gauss, and by extraction it has reached 7,000 gauss. The process of accelerating the

protons in this ring tends to cause them to coalesce in stable regions of acceleration

called buckets. These buckets give rise to groupings of protons, or bunches, which

typically contain 6× 1010 protons each. At the end of the Booster phase, the protons

have reached 8 GeV, and are ready to be passed along into the Main Injector.

4.1.3 Main Injector

The Main Injector is a much larger synchrotron. It is seven (7) times larger then the

Booster, and is able to accelerate the 8 GeV protons to an energy of first 120 GeV,

and then 150 GeV. The smaller bunches from the Booster are regrouped at this stage

into larger collections of 6×1013 protons. Thirty-six (36) of these bunches are created,

and injected into the Tevatron separated by 396 nanoseconds.

It is at this stage in the acceleration chain that the anti-protons are produced. Every

1.5 seconds, some of the 120 GeV protons are directed at a target composed of nickel

(Ni). The results of this fixed target interaction produces anti-protons in the debris.

These anti-protons are focused via a lithium lens, and captured using a magnetic field.

Upon leaving the target, the anti-protons have a somewhat wide energy spectrum in

the neighborhood of 8 GeV. For every million (106) protons sent onto the nickel target,

only approximately 20 anti-protons survive to be used for collisions in the Tevatron.

Because the protons arriving on target are bunched, the resulting p̄’s are also

bunched. In order to be acceptable to subsequent higher energy accelerators in the

chain, it is desirable that the p̄’s are rotated in phase space to produce a more uniform

momentum and continuous beam. This is done through a stochastic cooling process in

an 8 GeV synchrotron called the Debuncher. Once this process is realized, the p̄’s are

transfered to another 8 GeV synchrotron called the Accumulator. Its purpose is to take

groups of 8 GeV anti-protons from the Debuncher and create “stacks” of roughly 1011

particles. These 1011 p̄’s are used to create four bunches in the Tevatron. When there

are enough anti-protons in the Accumulator to complete a “store”, they are transfered

in groups back into the Main Injector where they are accelerated up to 150 GeV and

passed on to the Tevatron. Thirty-six (36) bunches of anti-protons are injected in this

fashion, in opposition to the protons already present in the machine.
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4.1.4 Tevatron Main Ring

The final stage of acceleration is done in the main Tevatron ring. It is a synchrotron

made up of some thousand (1,000) superconducting magnets. To maintain their su-

perconducting state, the magnets are cooled to 4 K. They produce a magnetic field of

4.2 telsa (42,000 gauss) which is used to keep the beam within its almost 4 mile cir-

cular orbit. The protons rotate clockwise (looking from above), and the anti-protons

counter-clockwise. Each beam is only about the width of a human hair (∼30 µm),

and traces out a helical path which intertwines its antimatter partner in a caducean

fashion. At their peak energy, each beam reaches an energy of 0.98 TeV, which allows

for a center of mass collision energy
√
s = 1.96 TeV.

To put this energy into perspective, the Tevatron’s proton beam contains about 2×
1015 protons. This means that there is roughly 35 million joules of energy circulating in

the ring once the protons have reached 1 TeV. That amount of energy is approximately

the same as would be required to lift an elephant (8 tons, 7,250 kg) to the top of the

Sears Tower (442 meters) in Chicago. If the elephant were to fall off the building, the

amount of energy it would have upon reaching the ground is the same as is stored in

the Tevatron during normal operation!

The Tevatron ring is sectioned into 60 degree segments labeled A through F. Each of

these segments are sub-divided into five (5) sections which are numbered 0 through 4.

The zero sections are actually short straight-away segments for the beams, and hence

it’s in these sections the two major interaction points and collision detectors for each of

their experiments are located. The Collider Detector at Fermilab (CDF) experiment is

located at the B0 section in the ring, while the D0 (pronounced “dee-zero”) experiment

is aptly housed in section D0. Proton / anti-proton collisions are induced through the

use of “low beta quadrapole” magnets, which act to squeeze the two beams together

at the desired interaction point. The typical instantaneous luminosity for CDF at the

beginning of a store is 9.5 × 1031 cm−2 s−1. Since the beginning of Run II at the

Tevatron in 2001, the total time integrated luminosity has reached in excess of 3 fb−1.



34 CHAPTER 4. FERMILAB AND THE TEVATRON

Store Number

 I
ni

ti
al

 L
um

in
os

it
y 

(E
30

)

0

50

100

150

200

250

300

1000 2000 3000 4000 5000 6000

1 4 7 10 1 4 7 101 4 7 1 4 7101 7101 4 710
2002 2003 2004 2005 2006 2007 2008Year

Month

Store Number

 T
ot

al
 L

um
in

os
it

y 
(p

b-1
)

0

500

1000

1500

2000

2500

3000

3500

4000

1000 2000 3000 4000 5000 6000

1 4 7 10 1 4 7 101 4 7 1 4 7101 7101 4 710
2002 2003 2004 2005 2006 2007 2008Year

Month

Delivered
To tape

Figure 4.4: CDF Luminosity by Store
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Chapter 5

Collider Detector at Fermilab

The CDF detector is based around a solenoid, which is then surrounded by calorime-

try, and muon detection systems. Inside the solenoid, there are charged particle track-

ing systems, consisting (from the inside-out) of a silicon vertex detector abutting the

beam pipe, and an open cell drift chamber called the Central Outer Tracker (COT).

Located at the B0 hub of the Tevatron ring, the detector sits centered 10 meters un-

derground. The protons in the ring move clockwise from above, and enter the detector

moving West to East. Anti-protons circle in the opposite direction and enter the de-

tector from the East side. The coordinate system employed at CDF usually puts the

origin at the interaction point in the center of the apparatus. The z axis extends into

35
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the proton direction (East) along the beamline, while the x and y axes create a right

handed coordinate system such that the x-axis is in the same plane as the Tevatron ring.

Hence, the polar angle θ is measured from the West, the azimuthal angle φ = 0◦ looks

North, and φ = 90◦ points up into outer space. Also, it is customary to use a defined

quantity called pseudorapidity1 in lieu of the polar angle θ, where η ≡ − ln[tan(θ/2)].

Many quantities in hadron colliders are “flatter” as functions of η as opposed to the

polar angle θ. Pseudorapidity is convenient as it takes on a value of zero at θ = 90◦,

and then varies symmetrically from ∞ to −∞ as θ runs over its domain from 0◦ to

180◦. However, it doesn’t take on very large values ( greater then 10 ) until θ becomes

a very “forward” angle, which is to say that the angle θ is so small or large that it

points down the beamline. See Figure 5.1.
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Θ
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Figure 5.1: Pseudorapidity η(θ)

5.1 Tracking

5.1.1 The Silicon

One of the fundamental problems in extrapolating tracks from the secondary particles

created in the pp̄ collisions is finding their point of origin. Without detectors close up

to the interaction region, it becomes very hard to differentiate between hard tracks that

come from the primary interaction, and the tracks from the decay of other particles

with very short lifetimes which create a secondary vertex which is slightly displaced

1This quantity is often sloppily called rapidity, though it is really only the massless approximation
of the actual Lorentz additive quantity y = 1

2
ln E+pz

E−pz

bearing that name.
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from the main collision point. For instance, B hadrons can decay within a few hundred

picoseconds of their creation, and only travel several millimeters before turning into

longer-lived particles visible to the rest of the detector. Without eyes up front, pin-

pointing the exact locus for certain tracks to within millimeters would be impossible.

With this in mind, the innermost tracking system of the CDF detector is tasked to

provide data points for the paths we reconstruct as close as possible to the beam line.

This initial tracking instrument is composed of three different detector systems

which are collectively and colloquially called “the silicon”. These are the “Layer

00”(L00), the Silicon Vertex Detector (SVX II), and the Intermediate Silicon Layers

(ISL).

Layer 00 resides at a radius from the beamline of 1.35 centimeters. L00 is a single

sided strip sensor, and is attached right upon the beam pipe. It is composed of 12 flat

strips which are arranged around the beamline. This configuration gives full coverage

in φ, and a length along the z-axis of ±475 mm [19].

Figure 5.2: SVX II under construction

Five concentric detector layers make up what is called the Silicon Vertex Detector,

which is abbreviated as SVX II in order to differentiate it from its CDF Run I incar-

nations. Three identical barrels of length 29 centimeters each are stacked end-on-end.

This gives a z-axis extent of ±435 mm. Each barrel is subdivided into 12 wedges in φ.

Each wedge is configured as a “ladder” consisting of five rungs of double sided silicon

strip sensors. The first resides at a radius of 2.45 cm, and the last extends out to 10.7

cm. In the first three layers, one side of the silicon strip gives an axial r-φ position,

while the other side reports a stereo measurement oriented at 90◦ to its partner. The

final two rungs on the ladder also give an axial r-φ measurement, but in stereo with
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the strip information shifted by 1.2◦.

The ISL is the outermost tracking system using silicon, and provides one last set

of data points to particle tracks before they enter the Central Outer Tracker (COT).

As can be seen in Figure 5.3, the COT only provides its full radial coverage out to an

|η| < 1. As can also be seen in the figure, the SVX II is designed to provide tracking

information even out to a forward region with |η| < 2. For |η| < 1, the combination

of the SVX II and the COT could provide full three-dimensional (3D) tracking, but

the bulk of the tracking information would come from the COT, and hence the overall

resolution suffers. In the forward region 1 < |η| < 2, the problem is even worse as the

COT coverage diminishes quickly with η. The ISL was designed with these problems

in mind, and serves to “glue together” the SVX II with the COT. In the central region

an extra double-sided silicon strip is placed at a radius of 22 cm. The large η regions

of the detector are given two new layers of information, placed at 20 cm and 28 cm.

These extra layers augment the SVX II/COT, and provide enough information to allow

for complete 3D tracking for all |η| < 2.
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Figure 5.3: View of CDF

5.1.2 Central Outer Tracker

The Central Outer Tracker (COT) is an open cell drift chamber used to reconstruct

charged particle tracks at CDF. It is located within the CDF solenoid just outside

the ISL, and extends in the z direction ±155 cm for an overall length of 310 cm. Its

cylindrical volume starts at a radius from the beamline of 43 cm, and extends out to
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133 cm. The general principle used to locate tracks within this active volume is as

follows. Several layers of wires, each extending the whole length of the detector along

the z direction, are placed into groupings called cells. The wires are fixed at a high

voltage with respect to the cell’s wall. The whole of the detector is filled with a specially

chosen gas mixture, which when traversed by high energy particles, causes the gas to

be ionized. The ions and electrons created through this process are accelerated by the

potential toward the wires where charge collects and an electric current is produced.

By recording which wires in the layers read out a current, it is possible to see the

particle paths through the COT. Through a careful analysis of the amount of current

induced and how long it took for the current to read out, it is possible to calculate

just how close to the wires a particle actually passed. In this way, the track finding

resolution is increased well beyond the simple coarse spacing of the wires themselves.

The COT for Run II at CDF is composed of 8 super-layers, which extend out in

the radial direction. Each super-layer is composed of cells that each have 12 sense wire

layers. This means that for a track which traverses the whole of the COT, a total of 96

(8× 12) separate position measurements are available for track reconstruction. There

are also 13 field wires within each cell which are used to control the shape of its electric

field. The sense wires are held at a voltage of 2,000 volts, while the potential wires are

run at a higher voltage around 3,000 volts. The actual voltage of each potential wire

is varied somewhat to create a uniform drift field within each cell. For tracks with an

|η| < 1, all 8 super-layers are exposed to the trajectory. However, tracks with |η| > 1

will start to lose information. Once past |η| > 1.3, only fewer then half (≤ 3) of the

super-layers are traversed.

Figure 5.4: Inside the COT
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The super-layers alternate between stereo and axial measurements, with an offset

of ±3◦ for the stereo layers. This simply means that while the axial layers run parallel

to the z-axis and give r-φ information, the stereo super-layers are placed at a small

angle with respect to z, and the resulting grid formed by the overlapping super-layers

yields the z position for a hit. All told, there are a total of 30,240 sense wires and

32,760 potential wires within the chamber. In order to take into account the effect of

the Lorentz force of the CDF solenoid’s 1.4 tesla magnetic field on particle trajectories,

the COT’s cells are tilted at an angle of 35◦.

The gas used to fill the chamber is chosen so that the drift time for (velocity of)

the ions created will be quick enough to be read out before the next beam crossing.

To achieve this at CDF, a gas mixture of Argon-Ethane-CF4 in proportion (50:45:5) is

used. An Argon-Ethane (50:50) mixture has been shown to result in a maximum drift

time of 100 ns, which is ample for the Tevatron’s 396 ns time between bunch crossings.

The small amount of added CF4 is used to reduce aging effects on the wires[21].

See Figure 5.6 for summary information concerning the performance characteristics

of all the tracking systems at CDF.

Number of Layers 96
Number of SLs 8
Sense Wire Spacing 7.62 mm
Wire Diameter 40 µm gold plated tungsten
Wire Tension 135 g
Drift Field 1.9-2.5 kV/cm
Maximum Drift Distance 0.88 cm
Maximum Drift Time 100 ns
Tilt Angle 35◦

PseudoRapidity Coverage (All SLs) |η| < 1
Length of Active Region 310 cm
Total Number of Wires 73,080
Endplate Load 40 metric tons

Super-layer 1 2 3 4 5 6 7 8
Stereo Angle +3◦ 0◦ -3◦ 0◦ +3◦ 0◦ -3◦ 0◦

Cells/Layer 168 192 240 288 336 384 432 480
Sense Wires/Cell 12 12 12 12 12 12 12 12
Radius at SL Center (cm) 47 59 70 82 94 106 117 129

Figure 5.5: COT Design Summary
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Detector(s) Feature Resolution
L00 hit position 11 µm
SVX hit position 5 µm
SVX+ISL z0 position 40 µm
COT hit position 140 µm

momentum σ(pT )
pT

0.15% pT [GeV/c]−1

SVX+ISL+COT momentum σ(pT )
pT

0.07% pT [GeV/c]−1

Figure 5.6: Tracking Summary

5.2 Time of Flight

Just outside the COT, but still within the CDF solenoid, resides a detector of radial

thickness 4.2 centimeters called the Time-of-Flight system (TOF)[22]. It is made up

of 216 scintillator bars for full coverage in φ, and whose function is to measure the

time duration for a particle from the main interaction region to reach them. Located

at a radius of 1.4 meters from the beamline, this time is typically on the order of 5

nanoseconds for the fastest particles. Hence, the TOF has a high resolution of 100

picoseconds. It has two major purposes in particle detection and identification. First,

it plays a large role in the cosmic ray veto algorithm used to identify tracks that do not

originate from the colliding particles in the Tevatron. Second, it is used to discriminate

between stable particles of different mass that have made their way through the tracking

volume.

m =
p

c

√

t2c2

L2
− 1 (5.1)

The mass m of the particle can be reconstructed through the use of Equation (5.1),

where p is the momentum from the CDF tracking systems, t the flight time, and L the

path length. The ability to distinguish charged kaons and pions aids in tagging the

decays of particles containing b quarks, which is of central importance to most bottom

and top physics analyses at CDF.

5.3 Calorimetry

Once outside the tracking systems, we would like to then measure the energy of the

particles emanating from the collision. The tracking information up to this point
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gives us the 3-momentum (pxyz) through the examination of track curvature through

the CDF magnetic field. The Lorentz force from this field is non-perturbative to the

particles, in the sense that their deflection through the field doesn’t change their initial

momentum’s magnitude. Since the real feature of interest is the particle 4-momentum

(E, pxyz), we must be able to measure p without disturbing |p| and E very much. Thus,

it is not by coincidence that the detectors used up to this point in the reconstruction

process contain as little “stuff” as possible. Thin layers of silicon and wire and their

support structures are all that have been in the way of the flying debris from the pp̄

interaction. In order to finally measure the particle energies, things become a bit more

invasive. In fact, the major goal of the calorimetry put in place outside the solenoid

is to stop all possible particles of reasonable energy, while in the process of measuring

that energy.

The calorimetry at CDF is separated into two major regions which are mirrored

on the East and West sides of the detector. The central region covers |η| < 1.1, while

the forward regions extend to 1.1 < |η| < 3.6. Each region in η is further divided

into two type of sensors which distinguish between energy deposited by electrons and

photons (called Electromagnetic or EM), and energy from hadronic jets. The central

systems are called the Central ElectroMagnetic and Central HAdronic (CEM and CHA)

calorimeters. The large η, or “plug”, systems are the Plug ElectroMagnetic and Plug

HAdronic (PEM and PHA). There is also a set of hadronic calorimeters known as the

WHA (End Wall Hadronic) that fills a gap between the CHA and PHA. See Figure

5.3 for an illustration of the configuration.

All the calorimeters used at CDF operate on the principle of stacking layers of

scintillator and a heavy absorbing material. The absorber causes the incoming particle

to shower, and then the size of the shower is sampled through the use of a scintillator.

The scintillator produces photons in response to the shower which are “read out”

through photo-multiplier tubes (PMTs). The number of photons read out is then

proportional to the number of particles in the shower, which is in turn proportional to

the energy of the incident particle.

In the electromagnetic case, the absorber used is lead (Pb), and incoming e±’s and

photons (γ’s) of sufficient energy cause a shower to form. Electrons and positrons un-

dergo bremsstrahlung (produce photons), while photons cause pair production (create

electrons and positrons). As one might imagine, there is a very quick multiplication of

particles that happens in this showering process. The shower size continues to increase

until the energy of the particles drops below some critical energy, at which point the
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Figure 5.7: CDF Calorimeter Towers

primary mode of energy loss becomes ionization, and the shower decays. This is why

the total number of particles in the shower is directly proportional to the incoming

particle’s energy.

In the hadronic calorimeters, the same basic idea is used to measure hadronic en-

ergies. In analogy to their EM counterparts, hadrons produce a shower of products,

but now through the strong interaction with the absorbing material. The resulting

particles in these showers are much more diverse. Because of the wide variety of inter-

actions which can take place through the strong force, the resolution of the hadronic

calorimeters is typically worse than the electromagnetic. Products such as muons and

neutrinos leave the detector unseen, and events like neutron and proton capture make

the picture much more confused.

Hadrons (i.e. quark final states: neutrons, protons, pions, etc.) have a much

longer interaction length than their EM counterparts. The nuclear interaction length

λ0 (appropriate for hadronic showers) is much larger then the radiation length χ0 used

to characterize EM showers. To use the CDF systems as an example, the lead (Pb)

of the EM calorimeters has χ0 = 0.56 cm, and the iron (Fe) of the hadronic sections

has λ0 = 19 cm. While hadrons do deposit energy within the EM calorimeters, their

occupancy is clearly dominated by the EM particle contributions. Meanwhile, out at

the radius of the hadronic systems, all of the EM particles will have showered away.

The central calorimeter sub-detector sections are divided into twenty-four (24)

wedges that each cover 15◦ in φ. The individual wedges then have ten (10) towers
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of 0.1 each in η. These towers have a projective geometry, by which it is meant that

they point back toward the interaction point. The EM sections come first, and are

closest to the beamline. Their scintillator and lead (Pb) sections are interrupted by an

intermediate system called the CES (Central Electromagnetic Shower maximum) de-

tector. Its purpose is to further localize and describe the geometry of the EM showers.

At the shower maximum, the EM particles have dropped below critical energy, and the

shower has peaked in size. The CES is a proportional chamber filled with 95% argon

(Ar) and 5% carbon dioxide (CO2), and it is located within the CEM at the shower

maximum (approximately 6 χ0). The position information this detector provides is

used to help associate particle tracks to EM objects in the event reconstruction. The

CES is then surrounded by the remaining CEM layers and the 32 hadronic layers of

iron (Fe) and acrylic scintillator.
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Figure 5.8: Central Calorimeter Wedge and CES

The plug systems are similar in conception to their central cousins. Just as the CES

is embedded in the CEM, a detector called the PES (Plug Electromagnetic Shower) is

located at ∼ 6 χ0 inside the PEM. Its purpose is identical to the CES, but it uses two

layers of scintillator strips aligned at angles to provide the position information. See

Figure 5.3 for a cross section of the plug calorimeters.

An interesting facet of these types of calorimeters is that their energy resolution

actually increases (gets better) with the energy of the incoming particle. This is in
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contrast to the tracking systems, in which the “stiffer” the track, the harder it becomes

to accurately measure its curvature and place of origin.

Figure 5.7 shows a graphical representation of the calorimeter towers taken from

the CDF control room’s event display. In the picture, the longitudinal angle φ is

unwrapped, and is the shorter edge of the overall rectangle. η is represented along the

larger edge, and each square in the grid shows the EM and Hadronic energy occupancy

for that tower in the event. The EM energy is shown in pink, while hadronic energy is

blue.

See Figure 5.9 for a summary of the CDF calorimeters.

Detector CEM PEM CHA WHA PHA
Coverage |η| < 1.1 1.1 < |η| < 3.6 |η| < 0.9 0.7 < |η| < 1.3 1.1 < |η| < 3.6
Modules 48 24 48 48 24
η Towers/Module 10 12 8 6 10
Layers 31 23 32 15 23
Absorber Lead Lead Iron Iron Iron

3.2 mm 4.5 mm 2.5 cm 5 cm 5 cm
Scintillator poly. poly. acrylic acrylic acrylic

5 mm 4 mm 1 cm 1 cm 6 mm
Radiation Length 18 χ0 21 χ0 4.7 λ0 4.5 λ0 7.0 λ0

Resolution(δE/E) 14%/
√
E 16%/

√
E 75%/

√
E 75%/

√
E 80%/

√
E

Figure 5.9: CDF Calorimetry Summary

5.4 Muons & Neutrinos

With all the heavy calorimeters (purposefully) impeding the way toward freedom, the

last detector systems at the outside of CDF are designed to register muons.

The only other particles expected to make it through all the detector material other

than muons (µ±) are neutrinos (νe, νµ, ντ ). Because neutrinos hardly interact with

matter at all, there is really no hope of detecting them with a machine on the scale

of CDF. Therefore, neutrinos are lumped into a category called “Missing Transverse

Energy”, or �
�ET . In the real world our detectors are imperfect. There are cracks

between sub-detectors, which exist to provide for space for readout electronics and

other essential systems such as cryogenics. Also, we do not have complete coverage over

the entire solid angle surrounding the interaction point. We do our best to contend

with all these things through efficient design methods. However, despite our best
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efforts, neutrinos will always slip through our grasp and must be included with the

unmeasurable.

Because protons and anti-protons are composite objects made of quarks and gluons,

the overall z component of momentum for the initial collision objects need not net zero.

This results from the fact that we can never know exactly what fraction of the proton’s

momentum in z is carried by the parts that interact in any specific collision event.

Was that collision between a gluon and a down quark, and how much of the 1 TeV of

energy did each possess? These questions aren’t answerable with our detectors. On the

other hand, the overall transverse components of momentum (px and py) before the pp̄

collision do add to zero. Consequently, through conservation of momentum we expect

that the vector sum of the transverse components of all the debris to exactly cancel as

well. Therefore, it is a good first order assumption to conclude that any imbalance in

ET is due to neutrino emission.

The situation is not so hopeless for muons. Muons are quasi-stable. That is, with

a lifetime of 2.2 µs, they live long enough to easily travel through the entire CDF

detector. At the same time, their modest mass of 105.7 MeV/c2 allows them to plow

their way through the CDF calorimetry. In general terms, possessing a larger mass

than the electron causes the muon to emit less bremsstrahlung radiation. This causes

the showering for muons to be much reduced compared to electrons, and hence they

deposit very little energy in the calorimeters. Compared with almost everything else

produced in our collider, muons are able to penetrate large distances through normal

matter. For this reason, it is the final layer of detection equipment surrounding CDF

that is devoted to spotting muons.

The central systems for muon detection are called the Central Muon (CMU) and

Central Muon Upgrade (CMP), sometimes collectively referred to as CMUP. Also

present are the Central Muon Extension (CMX) and the Intermediate Muon System

(IMU). Their coverages are shown in Figure 5.10. The CMUP covers |η| ≤ 0.6, the

CMX from 0.6 < |η| ≤ 1.0 , and the IMU covers |η| > 1. The CMUP covers the full

360◦ in φ. In both the CMX and IMU, there are gaps in φ which are due to engineering

and the physical constraints of other detector components. As of this writing, the IMU

and its associated forward muon detection systems have not been fully integrated into

the standard CDF event reconstruction process. Muons from this η range are usually

referred to as barrel muons (BMU). While no forward muons were used in the analysis

presented in this thesis, some sections may make reference to them.

Much like the COT, the muon systems are based on the drift chamber principle.
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Figure 5.10: Muon System η - φ Coverage

Chambers consisting of single sense wires are layered, with adjacent layers offset in φ

to provide higher resolution. The CMU has a total of four (4) layers. When a hit is

registered within three or more (≥ 3) layers, we have a so-called muon “stub” at that

location. This essentially means there is enough information to reconstruct a small

muon track (hence stub) at that spot. Located behind the CMU, the CMP contains

another set (4 offset layers) of single wire drift chambers. While only furnishing φ

information, the CMP layers provide for increased discriminatory power when added

to existing stubs within the CMU. Finally, outside the CMU and CMP is a layering of

scintillation counters. These yield timing data, which aids in muon track extrapolation

from the Silicon and COT systems.

Once outside the “block” of the central calorimeters (|η| > 0.6), muon coverage is

taken over by the CMX. As is shown in Figure 5.12, the CMX is built up to form arcs

of layered drift chambers called “arches”. The photograph in Figure 5.12 shows the

arches (the semi-circular silver strips) during their installation. Figure 5.11 shows their

placement in a slice through the x-z plane, and a detailed view of the layering scheme

used. The arches are installed on the “sides” of CDF, while the top and bottom gaps

between the arches are filled by the keystone and miniskirt. Note that the miniskirt

is only operational on the East side of CDF, and accounts for the gap in φ shown in

Figure 5.10. Just as with the CMUP, the CMX is completed with a scintillation layer
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(CSX).

One may wonder about tau leptons (τ±), and how they manifest themselves in a

machine like CDF. Though possessing a relatively high mass (1.777 GeV/c2), taus have

a very short lifetime of only 2.9 × 10−13 s. This allows them to travel some 100 µm

within the CDF detector before decaying. This can happen hadronically (∼65%) or

leptonically. Here are some examples:

τ± → e±νeντ

τ± → µ±νµντ

τ± → π±ντ

τ± → ρ(π±π0)ντ → π±γγντ

(5.2)

The point is that tau leptons quickly become objects which our detector can handle

via the systems described previously. Taus are discernible via their large invariant mass,

large impact parameter, and the missing transverse energy from their decay product

neutrinos. Final states of hadrons and photons from π’s are similarly characteristic.

See [23] for a summary of tau detection and identification at the Tevatron.

Figure 5.11: Central Muon Extension (CMX)

5.5 Luminosity

Another important quantity for any hadron collider experiment to measure is how

many collision events have actually been delivered to the detectors. This information

can be addressed through what is known as the time integrated luminosity for the

experiment. Luminosity in many contexts usually connotes brightness, and here one
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Figure 5.12: CMX Arches & Miniskirt

Detector CMU CMP CMX
Coverage |η| < 0.6 |η| < 0.6 0.6 < |η| < 1.0
Drift tube size 2.68×6.35×226 cm 2.5×15×640 cm 2.5×15×160 cm
Max drift time 0.8 µs 1.4 µs 1.4 µs
Scin. thickness 2.5 cm 1.5 cm
Total Counters 269 324
Min muon pt 1.4 GeV/c 2.2 GeV/c 1.4 GeV/c

Figure 5.13: CDF Muon Summary

might be led to ask the “brightness” of the interaction point of the colliding beams.

In particle and collider physics, this word is used to describe the potential number of

interactions per unit time. Specifically, luminosity is the proportionality factor between

production cross section σ and event rate. For a given process x, the number of events

of that process generated per unit time is given as:

Nx

dt
= σxLinst (5.3)

Instantaneous luminosity is recorded in units of (area time)−1, and is some large

number. A typical peak luminosity value for a given run at the Tevatron is 5 × 1031

cm−2 s−1. When speaking of the time integrated value of luminosity, particle physicists

often find it useful to introduce the following units.

1 barn (b) = 10−24cm2 (5.4)

Walking around Fermilab, one might overhear some physicists talking about the

latest 300 inverse picobarns of data. We often use time integrated luminosity to describe

the size of a dataset, or the amount of colliding particles which have been delivered to
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the detectors. Since cross sections are usually quoted in barns, it is convenient to speak

of luminosity in terms of inverse barns. The origin of the barn unit dates back to World

War II. The February 2006 issue of Symmetry [9] magazine describes its inception.

Figure 5.14: CLC Schematic View

Luminosity is measured at CDF through the use of Cherenkov Luminosity Counters

(CLC). These counters sit just off the beamline in a conical configuration located at

polar angle θ = 3◦ ( see Figure 5.14 ). For Run II, these counters measure luminosity

by sampling the beam crossings at 1 Hz. For each sample, the counters decide whether

( or not ) there has been inelastic scattering. The following equation is then used to

calculate the time integrated luminosity:

∫

∆t

(Linst)dt =
NX

σpp̄ ·NB

NB
∑

j=1

N j
pp̄

N j
S

(5.5)

Here, NX is the number of bunch crossings during time ∆t, NB is the number

of bunches in the Tevatron, σpp̄ is the proton / anti-proton inelastic cross section,

NS the number of trigger samples taken by the CLC, and Npp̄ the number of inelastic

collisions observed by the CLC. See CDF Notes 4831 [6] and 6052 [7] for a more detailed

discussion.

5.6 Trigger

All of this sophisticated hardware designed to detect the high energy debris from our pp̄

collisions would be useless if we were unable to read out the information they provide

in a timely fashion. As has been previously stated, the Tevatron has a bunch crossing
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every 396 nanoseconds in its Run II operation mode. This gives a very short window

of opportunity to look at the collisions that have taken place, determine if they are

somewhat interesting, and if so record all the information our detector systems make

available.

The trigger system is responsible for this task at CDF. It consists of hardware de-

signed to make decisions about which collisions to record. A 396 nanosecond bunch

crossing translates into approximately 2.5 million crossings per second. Our data ac-

quisition system (DAQ) is only capable of recording data from the detector elements

at a rate on the order of 50 Hertz.

This is not as daunting a situation as it may seem at first glance. The vast majority

of collision events in a collider like the Tevatron are very similar. What are known as

“minimum bias” events account for a large fraction of possible outcomes. These are

events where no hard scattering takes place, and the proton and anti-proton can be

said to ooze through one another. Most of the debris continues along the beamline,

and the detector occupancy is minimized. By way of comparison, the total tt̄ cross

section is nine orders of magnitude smaller than the minimum bias cross section[16].

L2 trigger
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Figure 5.15: CDF Run II Data Flow and Trigger Schematic
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5.6.1 Trigger Hierarchy

The trigger system at CDF uses a three tiered protocol, where each pass is designed

to separate out the interesting events from those more mundane.

The first level of decision hardware consists of custom electronics designed to use

only a subset of the detector information. It receives information from the calorimeter,

central tracking chamber, and muon detectors. The decisions it makes are based on

counting simple objects (i.e. muon, electron, or jet candidates) from these sub-systems.

For example, we might want to pass events that contain a 10 GeV electron, or perhaps

others with two 1.5 GeV muons. See Figure 5.15 for a block diagram of the overall

trigger system’s data flow.

Level 1 is pipelined for 42 beam crossings. This means that it can store the in-

formation from 42 crossings while waiting for the higher level triggers to accept and

process the data which has been forwarded to them. These data pipelines exist at all

trigger levels, and are designed to minimize “dead-time”. That is to say, we would

like to avoid losing collision events because our trigger hardware was overloaded and

couldn’t process them.

Level 2 further reduces the acceptance rate by a factor of 160, moving from some-

thing near 50 kHz at Level 1 down to 300 Hertz. Level 2 is an asynchronous system

which has four event buffers, and takes approximately 20 µs to make a decision. Upon

a L2 acceptance, the event data is passed along to the DAQ buffers for reconstruction

at Level 3. L2 allows for more complex event primitives to be used as discriminators.

All L1 data is available at L2 (though some with more precision), and having had extra

time to calculate, some additional information is also in evidence. The most notable of

these additions to the L1 features is the ability to use output from the SVT at L2. The

silicon detector allows for the identification of tracks with displaced vertices (e.g. which

indicate b quark production). Also, the L2 cluster finder allows for more accurate jet

based triggers. Overall, decisions at this level can be based on the presence of displaced

tracks, the event’s missing transverse energy, and the number, and/or energy of, any

electrons, muons, photons, and jets.

Level 3 hardware is made up of a dedicated CPU farm located on the top floor of the

CDF complex. It is used to fully reconstruct the event fragments passed along from L2.

The L3 event reconstruction takes advantage of the full detector information, including

some pieces not available to the other trigger levels. This allows for full 3-dimensional

track reconstruction, and complete matching of tracks to the calorimeters. Once an
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event has been duly considered and found desirable, its characteristics are passed off

to the mass storage system. Level 3 has a target acceptance rate of 50 Hertz, with the

average size of an event being approximately 150 kilobytes. This translates to roughly

7.5 MB/s of recordable data during acquisition, with peaks in the neighborhood of 15

MB/s.

5.6.2 Trigger Paths

Events that end up in mass storage for offline analysis consequently have followed some

logical path trough the trigger system. The triggers used in the analysis presented in

this thesis came from stream B, which triggers on electrons and muons that have large

transverse momenta (pT ) in the central region of the detector. The details of these

triggers have evolved over the course of Run II. The revisions made were motivated

by the rise in the initial instantaneous luminosity the Tevatron experienced as the

machine’s performance was improved, changes in detector hardware performance over

time, and our improved ability to trigger efficiently.

Level CEM CMUP CMX
L1 L1 CEM8 PT8 v-4 L1 CMUP6 PT4 L1 CMX6 PT8 PS1

L1 CMX6 PT8 CSX PS1
L2 L2 CEM8 PT8 CES3 TRK5 DPHI10 L2 AUTO L1 CMUP6 PT4 L2 AUTO L1 CMX6 PT8

L2 CEM8 PT8 CES8 TRK8 L2 TRK8 L1 CMUP6 PT4 L2 AUTO L1 CMX6 PT8 CSX
L3 L3 ELECTRON CENTRAL 18 L3 MUON CMUP18 L3 MUON CMX18

Figure 5.16: Example Stream B Trigger Paths

To provide a flavor for the trigger requirements involved in stream B, Figure

5.16 lists some examples. The figure shows trigger paths for CEM electrons and

CMUP/CMX muons. Numbers following the sub-system’s text (i.e. CMUP6) are

the minimum energy requirement for that object. The number following PT is the

transverse momentum needed in the lepton primitive, and TRK lists the transverse

momentum cut on the associated track. AUTO indicates the trigger is automatically

accepted at that level, and PSN indicates a “pre-scaled” trigger (i.e. PS3 would mean

only every 3rd event which passes is actually forwarded to the next level). Individual

triggers at each level are combined with a logical OR operation, while requirements

across levels are AND’ed together.
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Figure 5.17: CDF
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Chapter 6

Problem Description

As a physics analysis, the SVM formalism described in the opening chapters has been

used to measure the t t̄ production cross section (σtt̄) at the Tevatron. This methodology

has been applied to the so-called lepton plus jets decay channel (L+J), where one half of

the t t̄ system decays leptonically, while the other goes out hadronically. The signature

of this type of decay in the CDF detector is 1 high transverse momentum ( #»p T ) lepton,

and four (4) hadronic jets. The primary Feynman diagram for our signal process is

given in Figure 6.1. Processes that mimic this signature are mainly W ’s with QCD

jets. Figure 6.2 depicts a representative example of W production at the Tevatron.

Figure 6.1: Feynman diagram for decay of tt̄ to lepton plus jets

The measurement of σtt̄ can be broken down into several steps. The major brush

strokes of the analysis process are given here, so an overarching vision can be kept in

mind by the reader.

First, we will derive an equation which will be used to calculate σtt̄. This expression

56
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Figure 6.2: Example Feynman diagram for W + jets production

will include scale factors for dealing with corrections to individual terms, in order that

differences between simulation and the actual performance of the CDF detector may

be included. Also, the CDF detector will be treated logically as three (3) separate

machines in this equation. Because we are using the L+J decay channel, it is possible

to partition events by the type of lepton they contain. The three reconstructed lepton

types which are kept in this analysis are CEM electrons, CMUP muons, and CMX

muons. The trigger and scale factors for the CMUP and CMX are sufficiently different

such that a separate treatment in our derivation is warranted.

Next, we will lay out the specifics of our event selection criteria, and we will talk

briefly about the high level objects used in CDF’s event reconstruction. The results of

using this event selection to calculate acceptances and scale factors will be listed.

The details of how we compose event vectors for the SVMs will then be discussed.

This includes any “post processing” done on events. That section will conclude with

the training procedure used for the SVM systems, and the resulting performance char-

acteristics obtained.

The trained SVM framework will be used to construct pseudo-experiments from

Monte Carlo events, which are meant to mimic the actual measurement of σtt̄ when

using CDF’s real world data. These pseudo-experiments will allow us to quantify many

sources of uncertainty on our final value for the cross section. These sources of error

will then be detailed.
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Finally, the SVM framework will be used to calculate σtt̄ in the same way as was

done in the pseudo-experiments, and our measured value will be quoted with appro-

priate errors.

6.1 Cross Section

In basic particle physics theory, the idea of production cross section is usually defined

to represent the likelihood of creating a specific physics object during some type of

collision event.

σx =
Nx

L
(6.1)

where Nx is the number of type x events, L is the time integrated luminosity, and

σx is the production cross section for that process.

Suppose we had a large sample of collision events which corresponded to an inte-

grated luminosity L , and we desired to know the tt̄ production cross section σtt̄. We

further suppose that these collision events were observed with an imperfect detector,

and using this detector we were able to record some of these events which we thought

would be interesting to study. After some thought, we devise a way to distinguish

tt̄ events from other types within the observed Nobs events we saved. This technique

calculates the fractional number of events it believes to be tt̄ within a given sample.

We will call this fractional value θ. Because our detector is imperfect and only covers a

finite solid angle about the collision point, we will miss and be unable to record some tt̄

events. There are electronic effects associated with the detector’s readout and trigger

which also cause us to lose some events of interest. Taken together, we can express

this loss as an efficiency of our apparatus. Let us define εtt̄ as the amount of tt̄ that

is kept while observing collisions with our detector, as a fraction of what potentially

could have been seen. If, after the detector effects and trigger loss has taken place,

we were to lose 35% of the tt̄ events, then εtt̄ = 0.65. If there are some quality cuts

or an event selection criteria applied in the compilation of the Nosv data sample, then

these effects should also be accounted for in this ε factor. Our expression for the tt̄

production cross section becomes

σtt̄ =
Ntt̄

L
=

(θNobs)ε
−1
tt̄

L
(6.2)

as (θNobs) gives the number of tt̄ events in our observed data set, and dividing by



6.1. CROSS SECTION 59

the efficiency takes us back to the total number of tt̄ events we could have seen with a

perfect detector.

In practice, the detectors we use are broken down into several specialized sub-

systems. Each of these systems records events based on a trigger, and thus have

corresponding trigger efficiencies for each of the different types of events one might like

to examine. So, a typical calculation of the σtt̄ across detector elements might look as

follows

N obs = εdetectorN
all (6.3)

N obs is the number of observed events from some process in a detector element,

while ε is that detector’s efficiency for that process, and Nall is the total number of

events from that process which would have been seen in a perfect detector.

N obs = N obs
CEM +N obs

CMUP +N obs
CMX (6.4)

N obs = εCEMNall
CEM + εCMUPN

all
CMUP + εCMXN

all
CMX (6.5)

Assuming the process of interest is tt̄:

N obs
tt̄ = εCEM(σtt̄LCEM) + εCMUP (σtt̄LCMUP ) + εCMX(σtt̄LCMX) (6.6)

which implies:

σtt̄ =
N obs

tt̄

εCEMLCEM + εCMUPLCMUP + εCMXLCMX

(6.7)

Each of the ε terms in (6.7) would be obtained from Monte Carlo studies of the

process in question, and a simulation of the detector subsections. Trigger efficiencies,

obtained in this same manner, modify the individual terms. Making the assumption

that there are certain detector effects that are common to all detector elements, an

εcommon can be factored out. Taking N obs
tt̄ = θNobs, our final expression looks as follows:

σtt̄ =
θNobs

εcommon(εCEMLCEM+εCMUP LCMUP+εCMXLCMX)
(6.8)

where we will take (e.g.):

εCEM = SFCEM
id × SFCEM

trig ×ACEM (6.9)
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with SFid and SFtrig being identification and trigger scale factors, A the raw Monte

Carlo acceptance, and εcommon to include any factors applicable to all detector elements.

The following sections will detail these efficiency factors for our final calculation of

the tt̄ cross section.

6.2 Sub-detector Efficiencies

The sub-detectors we have used in this analysis to identify event candidates are the

Central Electromagnetic (CEM), Central Muon (CMUP), and Central Muon Extension

(CMX). We use these detector elements to identify high transverse momentum (pT )

leptons, employing the CEM to find electrons, and the CMUP/CMX for muons. These

are the main central detectors, and cover |η| ≤ 1.5 for CEM, |η| ≤ 0.6 for CMUP, and

0.6 < |η| ≤ 1.2 for CMX. The PHX (plug a.k.a. phoenix electrons) and BMU (barrel

muon) detectors, which cover larger values in |η|, are not used in this analysis.

Detector Potential Saved Acceptance Stat Error
CEM 4,461,497 199,231 0.044656 ±0.000098
CMUP 4,461,497 125,425 0.028113 ±0.000078
CMX 4,412,909 53,785 0.012188 ±0.000052
PHX 4,461,497 50,482 0.011315 ±0.000050
BMU 4,461,497 32,115 0.007198 ±0.000040

Figure 6.3: Raw Monte Carlo Acceptance

The starting basis for the efficiency factors for the CEM, CMUP, and CMX for

the tt̄ process come from the raw Monte Carlo acceptance values for each of these

sub-detectors. CDF has a large pool (∼5 Million) of simulated tt̄ decays, generated

with a top quark mass of 175 GeV/c2. This pool is all inclusive in its decay modes,

meaning that every possible decay of the tt̄ system is represented as predicted by the

Standard Model. These Monte Carlo simulated events have been passed through a

realistic detector simulation. This simulation produces output that mirrors that of the

real data coming from the actual CDF detector. After running over these events with

our event selection, and recording the number of CEM, CMUP, and CMX events we

retain, a first order estimate of the acceptance is obtained. These values have been

recorded in Figure 6.3. PHX and BMU are also listed there for reference.

Each of these sub-detectors has an associated “scale factor” that corrects the Monte

Carlo simulation to fit the real data with regard to the identification and reconstruction
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Period StartRun EndRun Lumi[pb−1] CMX Lumi[pb−1]

0d 138425 186598 331.47 318.11
0h 190697 203799 362.94 359.50
0i 203819 212133 258.37 258.37
8 217990 222426 166.29 166.29
9 222529 228596 156.76 152.78
10 228664 233111 243.56 243.49
11 233133 237795 234.99 229.98
12 237845 246231 163.96 157.13
13 241665 246231 280.63 268.17

All 138425 246231 2,198.97 2,153.82

Figure 6.4: Luminosity for Silicon Good Run List v20

of the electron and muon objects. It has been found that usually the simulation is more

perfect than the real detector in picking out high PT leptons. These correction terms

are called the “idreco scale factors” in CDF notes and documentation, and represent

the data idreco rate divided by the simulated rate. These scale factors are calculated

over each run period of the experiment at the Tevatron to account for any changes

that may occur in the circumstances of the detector. In order to combine these terms

over the complete run history, their values have been averaged, weighting each scale

factor by the delivered luminosity during its corresponding run period. The time

integrated luminosity for the different run periods used in this analysis are shown in

Figure 6.4. The terminology “silicon good run list” indicates that the list of validated

datasets used to compute the total delivered luminosity includes only those runs that

had CDF’s silicon tracking system activated. The following three (3) tables detail the

idreco scale factors (SFid) for CEM, CMUP, and CMX. The final row labeled “All”

shows the luminosity weighted value to be used in Equation 6.8 when calculating σtt̄.
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Period StartRun EndRun CEM SF Error

0d 138425 186598 0.991 ±0.004
0h 190697 203799 0.985 ±0.004
0i 203819 212133 0.974 ±0.004
8 217990 222426 0.977 ±0.006
9 222529 228596 0.978 ±0.006
10 228664 233111 0.978 ±0.005
11 233133 237795 0.968 ±0.007
12 237845 246231 0.961 ±0.007
13 241665 246231 0.975 ±0.005

All 138425 246231 0.978 ±0.005

Figure 6.5: CEM Electron Identification & Reconstruction Scale Factors

Period StartRun EndRun CMUP SF Error

0d 138425 186598 0.936 ±0.0055
0h 190697 203799 0.929 ±0.005
0i 203819 212133 0.917 ±0.0064
8 217990 222426 0.931 ±0.0078
9 222529 228596 0.940 ±0.008
10 228664 233111 0.932 ±0.007
11 233133 237795 0.899 ±0.008
12 237845 246231 0.919 ±0.009
13 241665 246231 0.924 ±0.007

All 138425 246231 0.9253 ±0.0068

Figure 6.6: CMUP Muon Identification & Reconstruction Scale Factors

Period StartRun EndRun CMX SF Error

0d 138425 186598 1.0098 ±0.0057
0h 190697 203799 0.9744 ±0.007
0i 203819 212133 0.9781 ±0.009
8 217990 222426 0.9704 ±0.012
9 222529 228596 0.9565 ±0.013
10 228664 233111 0.9655 ±0.011
11 233133 237795 0.9456 ±0.011
12 237845 246231 0.9577 ±0.014
13 241665 246231 0.9466 ±0.012

All 138425 246231 0.9697 ±0.0098

Figure 6.7: CMX Lepton Identification & Reconstruction Scale Factors
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The following three (3) tables list the trigger efficiencies (SFtrig) for CEM, CMUP,

and CMX.

Period StartRun EndRun CEM Eff Error

0d 138425 186598 0.962 ±0.007
0h 190697 203799 0.976 ±0.006
0i 203819 212133 0.979 ±0.004
8 217990 222426 0.959 ±0.007
9 222529 228596 0.960 ±0.002
10 228664 233111 0.959 ±0.002
11 233133 237795 0.961 ±0.004
12 237845 246231 0.960 ±0.003
13 241665 246231 0.957 ±0.003

All 138425 246231 0.9647 ±0.0044

Figure 6.8: CEM Electron Trigger Efficiency

Period StartRun EndRun CMUP Eff Error

0d 138425 186598 0.9015 ±0.0044
0h 190697 203799 0.9191 ±0.0039
0i 203819 212133 0.9179 ±0.0048
8 217990 222426 0.913 ±0.0061
9 222529 228596 0.927 ±0.0067
10 228664 233111 0.8655 ±0.0072
11 233133 237795 0.8623 ±0.0098
12 237845 246231 0.8417 ±0.012
13 241665 246231 0.8284 ±0.0091

All 138425 246231 0.8871 ±0.0067

Figure 6.9: CMUP Muon Trigger Efficiency
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Period StartRun EndRun CMX Eff Error

0d 138425 186598 0.9665 ±0.0036
0h 190697 203799 0.9120 ±0.0063
0i 203819 212133 0.9049 ±0.0079
8 217990 222426 0.8839 ±0.0087
9 222529 228596 0.8659 ±0.0084
10 228664 233111 0.9294 ±0.0089
11 233133 237795 0.9272 ±0.0098
12 237845 246231 0.9002 ±0.0140
13 241665 246231 0.8926 ±0.0094

All 138425 246231 0.9141 ±0.0080

Figure 6.10: CMX Muon Trigger Efficiency
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Figure 6.11 lists the scale factor resulting from the exclusion of events with a primary

z-vertex located more than ±60 cm in z from the detector’s geometric center. This

factor is common across all sub-detectors.

Period StartRun EndRun z-vertex SF Error

0d 138425 186598 0.951 ±0.005
0h 190697 203799 0.960 ±0.005
0i 203819 212133 0.966 ±0.005
8 217990 222426 0.968 ±0.002
9 222529 228596 0.968 ±0.002
10 228664 233111 0.968 ±0.002
11 233133 237795 0.968 ±0.002
12 237845 246231 0.972 ±0.001
13 241665 246231 0.972 ±0.001

All 138425 246231 0.9647 ±0.003

Figure 6.11: z-vertex Scale Factor (εcommon)



Chapter 7

Event Selection

In order to start any type of high energy physics analysis in a detector such as CDF,

one of the first things done is to abstract certain types of physics objects from the raw

detector readout. Rather then play with things like calorimeter towers, tracks, and

muon stubs, we would prefer the familiar concepts of electrons, muons, photons, and

jets.

Figure 7.1: Decay Signatures

Figure 7.1 gives the basic signatures used to identify these objects at CDF Run II.

Charged particles will leave tracks in the most central detector elements. For CDF

this means the silicon detectors and the COT will provide us with information about

the momentum of electrons, muons, and charged hadrons. The silicon detectors give

a highly accurate impact parameter, or initial point of origin for a track, which can

then be aligned with tracks from the COT. The curvature of the track through the

magnetic field of the solenoid gives us a measurement of the particle’s 3-momentum. It

is important to measure this momentum before the particles start interacting with the
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more invasive components of the detector. The calorimeters, while providing us with

the necessary information about a particle’s energy, are inherently active instruments

that do not preserve the initial state of the incoming matter.

Electrons exhibit tracks in conjunction with EM energy which doesn’t penetrate the

EM calorimeter. Muons plow through everything, leaving small quantities of energy in

the calorimeters as minimum ionizing particles. Uncharged particles such as neutrons

or photons don’t leave tracks in the COT, as they are unable to induce any currents

in the sense wires. However, they can be told apart by looking at the type of energy

they deposit in the calorimeters.

The specific requirement for a CEM electron are listed in Figure 7.3, while CMUP

and CMX muons are described in Figure 7.4.

Jets are somewhat curious objects, as there is a greater degree of subjectivity in

their definition. They conceptually are used to represent collections of hadronic and EM

energy located in close (η, φ) proximity. Typically, they arise due to the hadronization

of quarks and gluons into mesons and baryons. Jets are constructed by some algorithm

which normally takes at least 1 parameter ( the cone size =
√

∆η2 +∆φ2 ). The

standard algorithm used for CDF’s event reconstruction is called JetClu-0.4. See [32]

for a complete description of the JetClu method.

Since we are looking in the tt̄ lepton plus jets (L+J) decay channel, we want an

overall event topology similar to the following. According to the Standard Model, a top

quark decays into a W boson and b quark about 99% of the time (t → bW+, t̄ → b̄W−).

Bottom quarks quickly decay (on the order of 10−12 seconds, or an approximate length

of a few millimeters in the detector), and create hadronic jets. The W bosons can

decay either into a lepton neutrino pair (W± → ℓ±ν), or as hadrons (W → qq). The

case where both W ’s decay into leptons is called the dilepton (DIL) channel for tt̄. The

case where both W ’s go into hadrons is (suitably) called the all-hadronic channel. The

case we have interested ourselves in for this analysis is the case where one W goes into

a lepton/neutrino (L+J), and the other into hadrons (L+J). See Figure 6.1.

Thus, the basic event selection employed in this analysis is to ask for exactly 1 tight

electron or muon, three or more tight jets, and a missing ET > 20 GeV representing

the lost neutrino. We loosen our selection to require only three jets (and not the 4 jets

that might be expected reading directly off the Feynman diagram) to allow a slightly

greater acceptance, and to make allowance for the loss of a jet down the beamline,

event mis-reconstruction, or jet cone overlap.
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Figure 7.2: Schematic Depiction of Jets

7.1 High Level Objects

7.1.1 Electrons

There are specific “cuts” applied to the general tracking and calorimetry quantities

from the detector that are used in order to identify electrons. This analysis employs

CDF’s most conservative cuts on the detector primitives to enumerate “tight” CEM

electrons. Figure 7.3 lists the selection criteria.

• ET : The transverse EM energy. Electrons are expected to expend the vast ma-

jority of their energy in the EM calorimeter. The ET used here is the total EM

energy in a “cluster” of calorimeter towers, times sin θ, where θ comes from the

best COT track pointing to that cluster. Clusters for electrons are defined to be

at most 3 towers: a seed tower pointed to by the track, and possibly 1 adjacent

tower in φ and another in η.

• PT : The transverse momentum of the best COT track from its curvature in the

magnetic field.

• Iso4: This quantity called “isolation” is the amount of energy in a cone of radius
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Quantity Cut

ET > 20 GeV

pT > 10 GeV/c

Iso4 < 0.1

EHAD/EEM < 0.055 + 0.00045 (EHAD + EEM )

ET /pT < 2.0 or pT > 50 GeV/c

LSHR < 0.2

Q ∗∆x −3.0 cm to +1.5 cm

|∆z| < 3.0 cm

χ2
strip < 10

|z0| < 60.0 cm

COT quality 3 axial SL & 2 stereo SL w/ ≥ 7 hits each SL

Figure 7.3: Tight CEM electron cuts

R ≡
√

∆η2 +∆φ2 ≤ 0.4 around the EM cluster, excluding the EM energy in

that cluster, divided by that EM energy. It is therefore a measure of the energy

in the neighborhood of the cluster, as a fraction of the cluster’s EM energy.

• EHAD/EEM : The ratio of the hadronic energy in the EM cluster to the amount

of EM energy.

• ET/pT : The ratio of the transverse EM energy in the cluster to the COT’s

transverse momentum.

• LSHR: The lateral shower profile for electrons. See [34] for details.

• Q ∗ ∆x: The distance in the r-φ plane between the COT track and the best

matched CES cluster, times the charge of the track.

• ∆z: The distance in the r-z plane between the COT track and the best matched

CES cluster.

• χ2
strip: The statistical χ

2 of the CES shower profile in r-z, compared to test beam

data.

• z0: The z position of the COT track along the beamline axis.

• Track quality: The COT track must possess segments through 3 axial super-

layers and 3 stereo super-layers, with each super-layer having no less then 7 (of

a possible 12) hits.
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7.1.2 Muons

This section describes the cuts applied to define muons objects. Any COT track

associated with a stub in one of the muon systems that also meets the following criteria

is called a muon. This analysis only makes use of CDF’s tight CMUP or CMX muons.

Quantity Cut

ET > 20 GeV

EHAD < 6.0 + MAX[0, 0.0280× (c pT − 100)] GeV

EEM < 2.0 + MAX[0, 0.0115× (c pT − 100)] GeV

|∆x| CMU < 7 cm

|∆x| CMP < 5 cm

|∆x| CMX < 6 cm

|d0| silicon track < 0.02 cm

|d0| non-silicon track < 0.2 cm

Isolation Cut < 0.1 in R = 0.4 cone

COT hits ≥ 7 hits on 3 Axial & 2 Stereo Super-Layers

Figure 7.4: CMUP/CMX muon cuts

• EHAD: Hadronic calorimeter energy threshold.

• EEM : EM calorimeter energy threshold.

• |∆x|: The magnitude of the r-φ distance between the fitted COT track path and

the muon stub location (in centimeters).

• |d0|: The magnitude of the impact parameter for the associated track.

• Isolation Cut: The ratio of the total pT in a cone of radius R = 0.4 around the

muon (excluding its own) to the muon’s pT .

Also, all muons that have a silicon track have the so-called “larry” correction [35]

applied to their track curvature, such that:

1

q · pT
→ 1

q · pT
− 0.00039− 0.00129 · sin(φ+ 0.47) (7.1)

Finally, any muon stubs used must pass a cosmic ray veto [36] to ensure that their

timing characteristics are consistent with having originated from the detector’s centre.
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7.1.3 Jets

At CDF, a “tight” jet is defined to be a jet reconstructed using the JetClu-0.4 algorithm

that possesses a minimum transverse energy of 20 GeV. The details of the JetClu

algorithm can be found in CDF note 7543[32]. The 0.4 refers to the radius R =
√

∆η2 +∆φ2 of the cone in η-φ space used to reconstruct the jet. As η increases, the

jet cone becomes somewhat squashed along the z-axis. To illustrate the extent of a jet’s

size about the collision point, Figure 7.5 plots some example cones of radius R = 0.4

with centers located at increasing values of η.

In general terms, the algorithm computes the following quantities based on “seed”

towers with large amounts of transverse energy.

Ejet
T =

Ntow
∑

i

ET i (7.2)

φjet =
Ntow
∑

i

φiET i

Ejet
T

(7.3)

ηjet =
Ntow
∑

i

ηiET i

Ejet
T

(7.4)

Each seed tower builds “clusters” composed of the towers located within a radius

R that have ET > 1 GeV.

This procedure is repeated iteratively by selecting a new list of towers located

around the computed centers for φ and η in (7.3) and (7.4). This process continues

until the center of the jet becomes stable. If any two jets overlap by more than 50%,

they are combined into a single jet. If there is less than a 50% overlap, the offending

towers are assigned to the jet with the closest center. The final jet parameters are then

computed per the following definitions (using the final combination of towers):

Ejet =
Ntow
∑

i

Ei (7.5)

pjetx =
Ntow
∑

i

Ei sin θi cosφi (7.6)

pjety =
Ntow
∑

i

Ei sin θi sinφi (7.7)
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pjetz =
Ntow
∑

i

Ei cos θi (7.8)

pjetT =

√

(pjetx )2 + (pjety )2 (7.9)

φjet = tan

(

pjety

pjetx

)

(7.10)

sin
(

θjet
)

=
pjetT

√

(pjetx )2 + (pjety )2 + (pjetz )2
(7.11)

Ejet
T = Ejet sin

(

θjet
)

(7.12)

Jets that have ET < 3 GeV are typically not used. The jet energies also undergo a

correction process to account for various detector and physical effects. The corrections

are broken down into levels, of which there are seven (7):

• Relative: Normalize the calorimeter response to be uniform in η.

• Time Dependant: Corrects jets for any effects in the calorimeters due to time

(i.e. effects that change with Run Number).

• Energy Scale: Corrects the jets for differences between Real Data and Monte

Carlo.

• Multiple Interactions: Take account of any extra parton interactions from the

pp̄ collision.

• Absolute: Convert the jet’s total cluster energy back to the particle level.

• Underlying Event: Subtract out the energy of the underlying event, to leave

only the energy of the jet’s originating parton.

• Out-of-Cone: Correct for any energy from the parent particle lost outside the

cone radius R.

This analysis follows the lead of CDF’s top quark working group, and corrects jets

up to and including level 5. These corrections are applied to all jets (both MC and
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RD) to make them align as best as possible. This will be discussed further in Section

9.4.1, which deals with the jet energy scale systematic error.
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Figure 7.5: Jet cones of radius R = 0.4 (left) and R = 0.7 (right)

7.1.4 Missing ET

The missing transverse energy ( ��ET ) is specifically defined as follows:

�
�ET x = −

ℓ+j′s
∑

i

ET i cosφi (7.13)

�
�ET y = −

ℓ+j′s
∑

i

ET i sinφi (7.14)

�
�ET =

√

(��ET x)2 + (��ET y)2 (7.15)
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φ��ET
= tan−1

(

�
�ET y

�
�ET x

)

(7.16)

where the sums in Equations (7.13) and (7.14) are over the lepton and jet objects

in the event. Note that when applying jet corrections, the �
�ET and its direction are

recomputed to reflect any energy shifts. Also, since muons are minimally ionizing in

the calorimeter, any that were identified are added in a special way. Their minimal

energy deposits are subtracted out, and then their total reconstructed pT is added to

our vector sum.

7.2 Complete Event Selection Criteria

We are now in a position to enumerate the entire initial event selection criteria used in

our σtt̄ analysis. These requirements make use of CDF’s latest lepton plus jets (L+J)

selection standards.

For both Real Data and Monte Carlo, the selection that follows was used. We

required exactly one (1) tight electron or one (1) tight muon. The event must have

contained three (3) or more tight jets, and have had�
�ET greater then 20 GeV. Further,

we required that there be no plug (phoenix) electrons present, and that five (5) other

criteria (described below) were met. In terms of pseudo-code, the requirements were

as follows:

if(

(( nTightMuo == 1 && nTightEle == 0 ) || ( nTightMuo == 0 && nTightEle == 1 )) &&

( nTightJet >= 3 ) && ( corrMetMag > 20.0 ) && ( nPhoenix == 0 ) &&

!isQCD && !isDilepton && !isZ && !isDifferentInteraction && !isCosmic

)

where && is the logical AND, || the logical OR, == logical equivalence, and ! the

logical NOT.

“isQCD” is true when the angle ∆φ between the leading jet and �
�ET is less then

0.5 or greater than 2.5 radians and the magnitude of the �
�ET is less than 30 GeV.

“isDilepton” is true when the summary bank from the top ntuple has two or more (≥
2) tight leptons recorded (plug electrons included). “isZ” and “isCosmic” also come

from the top summary bank in the ntuple. They serve to veto events in the Z0 boson

mass window or events that don’t pass the cosmic ray filter. “isDifferentInteraction” is
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true when the z0 of the tight muon or electron is greater than ±5 cm from the event’s

z-vertex object.

The selection criteria was applied to pythia tt̄ signal (ttop75), W→ ℓν + lf back-

grounds (ptopXX, utopXX), W→ ℓν + bb backgrounds (btopXw, dtopXw), W→
ℓν+cc backgrounds (ctopXw, etopwX), and W→ ℓν + c backgrounds (stopwX). All

these MC datasets were used in the training of our SVMs. After training, dibosons,

single top, and Z+jets samples were also considered for use within the background

templates.

7.3 Features

In order to describe our physics events, we must decide on a collection of quantities

which capture the character of the different classes in our problem. First, we would

like to make sure we are using all the information available to us in the event. As

was discussed above, the major players in the topology of the events we select are a

tight, high transverse momentum lepton, three or more high pt jets, and a large missing

transverse energy. We can deal quickly with the �
�ET , by recording its magnitude and

longitudinal angle φ. Since we have exactly one (1) lepton in the event, it makes sense

to grab its 4-momentum as one of our features. This should fully describe that part of

the event. Next, since there are potentially many jets, we need some description which

will capture their overall distribution. There are an unknown number of 4-vectors that

come from jets, so let’s try several things to get as much out of them as is possible.

The overall vector sum of the 4-momentum is a good first start. Also, we can take

the scalar sum of the jet energies. However, another series of quantities, known as

Fox-Wolfram Moments, can be used to quantify the angular distribution of the jets

from an event. Fox-Wolfram Moments are defined as follows:

Hℓ =
4π

2ℓ+ 1

ℓ
∑

m=−ℓ

|
jets
∑

i

ET (i)

ET (Total)
Y m
ℓ (θ, φ) |2 (7.17)

As can be seen, they are the spherical harmonics [ Y m
ℓ (θ, φ)’s ], fractionally weighted

by jet transverse energy. They are constructed such that each moment ℓ corresponds

to the basis functions, which form an orthonormal basis about the unit sphere. Recall

that Y 0
0 = 1

2
√
π
, so that H0 = 1, a constant, by definition. Things only get interesting

for ℓ > 0. We will keep the first five moments in our ntuples. One nice property of
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these Fox-Wolfram moments is that they are invariant under any global rotation in θ

or φ.

Now we might like to know how the transverse quantities correlate. In a scalar

fashion, we can construct the so-called HT . It is defined as the total of all the transverse

quantities in the event. In other words, it’s simply the sum total of the jet’s ET , ��ET ,

and lepton ET . These quantities can also be combined, retaining some of their vector

information, in a normalized momentum tensor.

The normalized momentum tensor is given as:

Pij =
�
�ET i�

�ET j
∣

∣

�
�ET

∣

∣

2 +

ℓ+5 jets
∑ pipj

|p|2
(7.18)

where i and j run over xyz only. For the jets, we only take as many as five, those

with the highest ET . We will calculate this tensor for each event, and then keep its

two largest eigenvalues.

An additional factor which can help in describing our events is the fact that we

expect there to be a symmetry in φ, the longitudinal angle about the beamline of the

accelerator. As such, we can reduce the “phase space” of events we select by rotating

each event in φ such that the lepton in the event travels along φ = 0, or parallel to the

ground in the coordinate system of the CDF detector.

Describing our events with these features gets a good handle on the kinematic

aspects of the decay products. However, another piece of information at our disposal is

the fact that the top quark almost always (very quickly) decays to a bottom quark and

W boson (t → bW+, t̄ → b̄W−). Therefore, the decays we are trying to identify should

contain two jets originating from b quarks. There are methods which can be used to

identify jets which come from bottom quarks, which is known in particle physics lingo

as b tagging the jets. A jet which has been b-tagged is then considered to be a jet

which resulted as a consequence of the hadronization of a bottom quark. A simple

count of the number of jets within the event that are tagged should then give us some

discriminatory power. CDF has several methods which are used to tag jets. The one

we will employ in this analysis is the Secondary Vertex Method (SecVtx). A brief

description of this method follows below. Some of the other methods available are

jet probability and the soft lepton tagger. See the following reference [4] for more

information about these tagging methods.

The basic principle used in the SecVtx b tagging method is to look for another (i.e.

secondary) vertex displaced from the primary vertex in the event. The primary vertex
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represents the main interaction point of the pp̄ collision. Any secondary vertex located

an appropriate length away from the main collision, as to correspond with the flight

time of a bottom quark over its lifetime, can be tagged.

In summary, we create vectors with twenty (20) dimensions in order to characterize

the events we have saved after the application of the event selection described in the

earlier parts of this chapter. Each of these quantities is listed in Figure 7.6.

Note that one final step is carried out before these values are fed into the SVM

framework. So that the features each carry something of the same weight, and each

are considered on an equal footing in the optimization process, the magnitudes of the

individual features are scaled to approximate unity. The number used to divide each

feature is recorded in Figure 7.6 as well. These specific values were found empirically

by the examining the range of values each variable exhibited.

Num Feature Scaled by

1 Missing ET 250
2 Missing ET φ 2π
3 Lepton Energy 400
4 Lepton px 400
5 Lepton py 400
6 Lepton pz 400
7 Fox-Wolfram Moment 1 1
8 Fox-Wolfram Moment 2 1
9 Fox-Wolfram Moment 3 1
10 Fox-Wolfram Moment 4 1
11 Fox-Wolfram Moment 5 1
12 Sum All Jets ET 500
13 Sum All Jets Energy 750
14 Sum All Jets px 750
15 Sum All Jets py 750
16 Sum All Jets pz 750
17 HT 500
18 p-Tensor Eigenvalue 1 1
19 p-Tensor Eigenvalue 2 1
20 Number SecVtx Tags 10

Figure 7.6: Feature Vectors



Chapter 8

SVM Training

Following our analysis outline, we now know how to decide if we want to keep any given

event for further study, and how to create a vector of features to describe that event.

The next step is to take simulated events from known underlying processes, and use

them to train Support Vector Machines that will be able to tell those processes apart

from tt̄ pair production.

In order to train our SVMs, the following procedure was followed. The Monte

Carlo sample was split into two sections. One set was used to train the machine. The

remaining events were then used to test the training’s performance. Also, it was these

remaining events that were used in any subsequent pseudo-experiments and analysis.

Training events which passed our initial selection cuts were randomly picked from each

Monte Carlo sample. Six thousand (6,000) tt̄ events for the Signal class [S], and twelve

thousand (12,000) background events (6k for the Heavy class [H], and 6k for the Light

class [L]) were used to train SVMs with a Gaussian kernel. As was described in the

theory section of this document, this means that there are two free parameters that

needed to be specified when training. These are the σ parameter of the Gaussian

kernel, and C that constrains the Lagrange multipliers in the solution. A search grid

was implemented over these parameters, and the performance of a given training was

then evaluated based upon how well a testing sample was classified. As an example

of the results from this kind of grid search, see Figure 8.1. It shows classification

performance as a function of σ and C. Because the light class is the more dominant

background, we chose the hyper-parameters to maximize the performance of the SvL

SVM. In order to maintain the same feature space across all the SVMs in the system

we created, σ and C were always taken to be the same for each pairing of classes. This
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allows us to use the Gram-Schmidt procedure described earlier in Section 3.3.

Figure 8.1: Sample Training Grid Search

In our initial trials, two different SVM systems were trained with the Monte Carlo

data. One used only the kinematic features, which includes all the features listed in

Figure 7.6 except for the last one. This SVM set was used to learn and perfect our

methodology, and also as a baseline to compare against our future discriminatory gains.

A second set of SVMs was trained to included all features (adding the SecVtx b-tag

feature), and this 2nd set was the one ultimately employed to measure σtt̄.

It is worth noting that there were attempts made at using more features, some of

which included information from more than one b-tagging scheme. However, because of

difficulties in trying to correct each of the different b-tagging features to align with Real

Data (RD), it was decided to only include the number of SecVtx tags to supplement the

kinematic quantities. This allowed us to correct events by the SecVtx b-tagging scale

factor between MC and RD by dropping some b-tags in the MC as appropriate. See the

systematic error Section 9.4.5 later in this document for a more detailed description of

this procedure.

We will refer to the two trained SVM systems as the kinematic version and the

b-tagging version, respectfully. Their overall performance when using the sign of the

learned function for classification is listed in Figure 8.2. The final values that were

chosen for the hyper-parameters are also listed there.

Here, “FP%” means false positive rate, and represents the percentage of the time

the classifier misidentifies signal events. Similarly, “FN%” stands for false negative,
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SVM MC Version σ C FP% FN%
kinematic 1invfb 1.2 10 20.0 18.0
b-tagging 1invfb 1.2 10 11.0 15.0

Figure 8.2: Training Results

and tells us how often the specified SVM mislabels background events.

8.1 Receiver Operator Characteristic

Another performance metric is given by the so-called Receiver Operator Characteristic

(ROC) curve. This plot shows how the performance of a SVM varies with the bias (b)

of the learned function. By construction, the bias (b) computed in the training process

gives the optimal combination of false positives (FP%) and false negatives (FN%) for

the selected hyper-plane. However, if the bias is slid from −∞ to +∞, gains can be

made in one category at the expense of the other.

The ROC curve is a standard statistical plot that illustrates this interrelationship

for a given classification scheme. Traditionally, it plots the FP% on the x-axis, and

(1−FN%) on the y-axis. The area under the generated curve can be used to compare

different classifiers. A classifier that is no better then a coin produces an ROC curve

with area 0.5, while a perfect classifier has unit area.

Figure 8.3 shows ROC curves for both the kinematic and b-tagging SVMs which

were trained with the class pairing (tt̄ signal vs light background). They have areas

of 0.871 and 0.941, respectivly. Another series of ROC curves are plotted in Figure

8.4. These compare the performances of the three SVMs trained in our multiclass

framework.

It can be shown that in the limit of a perfectly crafted ROC curve (i.e. the PDFs are

known exactly), its area represents the probability of correctly classifying a randomly

chosen pair of events, one from each class. In other words, if you were to pick a

random signal event and a random background event, the area under the ROC curve

is the probability that the learned function value of the signal event would be greater

than that of the background event.
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Figure 8.3: ROC Curves for kinematic and b-tagging SVMs

Figure 8.4: ROC Curves for SvL, SvH, and LvH SVMs



Chapter 9

SVM Performance & Error

Analysis

9.1 Counting Events

9.1.1 PDFs & Probabilities

After deciding on the optimal values for σ and C, it is instructive to histogram the

values of the learned function for each of the events in the test set. The SVM output

for the tt̄ test events from the b-tagging SVMs are displayed in Figure 9.1. These dis-

tributions represent the response of the SVM to a wide range of signal and background

events. By treating them as probability density functions, we can construct the proba-

bility for a given event to be signal or background with respect to that SVM’s training

data. For example,

Psig(
#»x ) =

PDFsig(
#»x )

PDFsig(
#»x ) + PDFbg(

#»x )
(9.1)

The PDFs are important because we have used them to characterize the data. The

PDF curves as shown would be sufficient to employ the Pairwise Coupling scheme of

Section 3.2. However, in the multi-class method of multiple SVMs we have employed

here, it was seen that the full feature space distributions using the procedures of Section

3.3 were superior. Thus, we used 3D histograms of points calculated via Equations

(3.8), (3.9), and (3.10) to characterize events. The following sections will flesh out this

process.

Note that to be useful in our calculations below, we did some processing to turn any

82
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binned histograms into continuous functions. The bin centers were linearly interpolated

to create continuous functions that follow a curve. These interpolated functions were

then used in any subsequent calculations.
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Figure 9.1: PDF templates for individual SVMs. (SvL,SvH,LvH)

-10 -5 0 5 10
SVM Output

0

0.1

0.2

0.3

0.4
Diboson
Z+Jets
W+Jets
All

-10 -5 0 5 10
SVM Output

0

0.05

0.1

0.15

0.2

0.25

0.3

Diboson
Z+Jets
W+Jets
All

-10 -5 0 5 10
SVM Output

0

2.5

5

7.5

10

12.5

15

Diboson
Z+Jets
W+Jets
All

Figure 9.2: Light BG Template Breakdown
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Figure 9.3: Heavy BG Template Breakdown

9.1.2 Likelihoods

Ultimately, we are interested in determining the relative amounts of signal and back-

ground in an unidentified sample. Probability gives us a measure of how likely a

particular outcome is before an event takes place. However, we have set ourself the
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opposite task. We are given a number of events that have already taken place, and

would like to know how much of one outcome occurred as opposed to another. To do

this, we employ the idea of likelihood. When trying to count the actual number of

signal events in a given blind sample, the following procedure was followed.

L =
∏

i

(θpi + (1− θ)ni) (9.2)

Λ ≡ ln(L) (9.3)

We extend these equations to the three class problem as:

L =
∏

i

(θSi + φLi + (1− θ − φ)Hi) (9.4)

Λ =
∑

i

ln(θSi + φLi + (1− θ − φ)Hi) (9.5)

Assuming we are given an unknown sample of size N , we can pass each of these

N event vectors through a trained SVM. Let us define θ to be the fractional amount

of signal in the unknown sample, and is the value we would like to determine. The

likelihood for an event is taken as the value of the probability distribution function

at that event’s value of the learned function. As in Equation (9.2), this will be some

weighted combination of the signal and background PDFs (i.e. templates). We have

an approximation of these PDFs from the distribution of events given by the learned

function of the trained SVM. The overall likelihood of the ensemble is just the prod-

uct of the likelihoods for each of the N events. The likelihood function can then be

extremized with respect to θ. The value of θ at the extremum is our best guess at the

amount of signal in our sample.

As a matter of computability, usually the logarithm of the likelihood function is

taken. This is because samples usually consist of a large number of events, and products

with a large number of terms can quickly grow out of hand. Taking the logarithm turns

the product into a sum, has the same extremum as the product, and keeps the problem

tractable.

As you can see, the likelihoods we will use are computed in terms of the prob-

ability distribution functions in the previous section. For example, we can define

pi ≡ PDFsig(
#»xi) and ni ≡ PDFbg(

#»xi). A Monte Carlo sample separate from the
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training sample is used to generate the PDF templates. Once the PDFs are known, we

have fully defined a method for determining θ in an unknown sample.

Another way to view this procedure is the rescaling of the interpolated PDF func-

tions calculated in the above section. A histogram of the SVM learned function over

the blind sample should follow the distribution of the PDF functions if their relative

areas are renormalized to the ratio θ/(1− θ).

When extending our procedures to include more then 2 class templates, the likeli-

hood function can be extended as in Equation (9.4). Here, Si, Li, and Hi are generally

PDFs, or specifically the values given by our 3D templates from SVM feature space.

θ and φ are the fractional amounts of the signal and light classes, and the fractional

amount of the heavy class has been constrained to be (1− θ − φ).

Another way to think of the likelihood for an event is to assume we have a large bag

of marbles, each with an internal core which is colored to represent its class. The only

way to see the core’s color is to break open the marble. On the marble’s surface are

features that otherwise describe things about the properties of that particular sphere.

We would like to guess the number of each type of marble in our bag, based only on

the observation of these external features. Then, the likelihood of any specific marble

we pick from the bag is given by the prior probability of picking a certain color (i.e.

the fraction of green marbles in the bag ) while at the same time having a marble of

that color with this one’s external features (i.e. the probability our external features

are an expression of green-ness). If we sum this product for the marble over all its

possible colors, the resulting quantity gives a measure of how likely we were to pick

such a marble out of the bag. If we then compute this likelihood for every marble

we select, their overall product tells how likely we were to assemble that collection of

marbles. By maximizing this likelihood with respect to the prior fractional amounts

of each color in our bag (e.g. θ and φ), we can estimate the bag’s overall composition.

Obviously, the more marbles we are able to examine from the bag, the better our guess

becomes as to its content.

In order to maximize our Equation (9.5), we used the C++ version of MINUIT.

Because MINUIT is not designed to impose mutual constraints on the parameters of

optimization (here that 0 ≤ θ ≤ 1 and 0 ≤ φ ≤ 1 and θ + φ ≤ 1), a transformation of

variables was used to impose this restriction. See Appendix D for the details of this

transformation, and its implementation. As a cross check on the answers generated by

MINUIT with this change of variables, the results obtained during development were

verified using a (much slower) grid search over θ and φ. Figure 9.4 shows a contour
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plot of the log-likelihood Λ for a typical pseudo-experiment, and also the analogous

plot when computing Λ for the Real Data.

9.2 Pseudo-Experiment Procedure

In order to evaluate various aspects of the SVM system we have trained, a series of

pseudo-experiments were performed. A pseudo-experiment is an attempt to recreate

and simulate the circumstances of the measurement we are making. Running many of

these pseudo-experiments gives insight into how we can expect the results of our actual

experiment to change, allowing for modifications of certain assumptions made in the

construction of our mathematical apparatus. For instance, we chose certain mathe-

matical Monte Carlo generators to simulate the tt̄ (and other physical processes). We

can do pseudo-experiments using different generators to examine how this would affect

the results of the cross section measurement. Changing the various knobs associated

with underlying assumptions used in training our SVMs gives us a handle on system-

atic effects which may arise from those initial choices. However, we must first have

a baseline performance with which to compare these changes. This baseline will also

be evaluated in terms of pseudo-experiments, but using the statistical nature of the

physics involved in the events we are examining.
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Figure 9.4: Contour Plots for Pseudo-Experiment (left) and Real Data (right)
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9.2.1 Class Composition

Each pseudo-experiment has a basic premise. We will draw a certain number of events

from each of the various classes which were used to construct our class templates.

The total number of events selected will be Poisson fluctuated around a mean value

M , chosen to be the actual number of real data events that pass our initial selection

criteria ( see Section 7 ). The number of events from each class will be chosen in an

appropriate way to test various aspects of the SVM system. The first thing we will

examine is the “linearity” of the system we have trained. By this, it is meant that we

would like to see if the SVM procedure we have devised gets the correct answers when

examining mixtures of the 3 classes ( tt̄ signal, light BG, heavy BG ). Doing so will

expose any biases within the framework of our procedure.

M = µS + µL + µH (9.6)

It is expected that the heavy background will account for between 5% to 10% of

the overall W+Jets background. For what follows we will assume a mixture of 7.5%

Heavy events to 92.5% Light events. As was discussed in the training section of this

report, the various sub-processes within the overarching Heavy and Light delineations

are determined by their expected cross sections within that class.

To serve as an example, the following paragraphs will describe in detail the com-

position of an example Heavy class, built up from random selections taken from its

sub-processes. An analogous procedure is used to construct the Light class. To ease

the discussion here, we will assume that the Heavy class is made up of nine (9) sep-

arate sub-processes, which are all the permutations of W (e,µ,τ)+bb+(0,1,2)p. Table

9.5 shows the expected cross sections for each of these sub-processes. Note that the

actual Heavy class used in our full measurement also includes Z+bb and single top

events (as is discussed later in this document). With the knowledge that we would like

to construct a sample of size with Poisson fluctuated mean µH , we will again utilize the

fact that a mixture of samples taken from several Poisson distributions is itself Pois-

son distributed (see Appendix B). Translating the cross sections in Table 9.5 into the

relative fractional representation of each process yields Table 9.5’s rightmost column.

These values are calculated by weighting the number of events from a process that pass

the selection cuts by its cross section, and then renormalizing these values to sum to

unity.

For example, the process We+bb+1p had generated for it 1,459,427 events, of
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cross pre-selection post-selection
Dataset Process section fraction raw accept fraction
btop0w We+bb+0p 2.980 pb 23.9% 0.067% 2.962%
btop1w We+bb+1p 0.888 pb 7.1% 1.159% 15.264%
btop2w We+bb+2p 0.287 pb 2.3% 7.559% 32.167%
btop5w Wµ+bb+0p 2.980 pb 23.9% 0.057% 2.522%
btop6w Wµ+bb+1p 0.889 pb 7.1% 1.015% 13.383%
btop7w Wµ+bb+2p 0.286 pb 2.3% 6.571% 27.866%
dtop0w Wτ+bb+0p 2.980 pb 23.9% 0.008% 0.334%
dtop1w Wτ+bb+1p 0.888 pb 7.1% 0.134% 1.769%
dtop2w Wτ+bb+2p 0.286 pb 2.3% 0.880% 3.734%

Figure 9.5: Heavy Class (W → ℓν+bb+Jets) composition

which all were potentially CEM / CMUP events and 1,443,652 could have been CMX

events. Of these, 16,918 CEM events were reconstructed ( zero CMUP and zero CMX

). Therefore, this process has a raw acceptance of 16,918 / 1,459,427 = 0.0116 or 1.16%

in the CDF detector. Given the cross sections in Table 9.5, a perfect detector would

expect to see σbb+1p/
∑AllW+bb

i σi = 0.888/12.464 = 0.07125 or 7.125% of all W+bb

events to come from We+bb+1p. To correct this amount for the detector effects, the

product of the process’s raw detector acceptance and theoretical expected fraction is

taken. This is then renormalized by the sum of these products over all the sub-processes

in the class, and thus gives the corrected post event selection fractional composition

for that sub-process. For We+bb+1p, this turned out to be 15.3%.

9.2.2 Template Construction

Once we know the frequency at which we can expect to find each class’s sub-processes

to appear, we are able to build templates to represent the class’s reaction to the SVM

system we have trained. The templates for each class are created in the following

way. Each event that was not used in the training process is classified by each of our

three SVMs. This triplet is then transformed via the Gram-Schmidt process described

in Section 3.3. This provides us with a 3 dimensional point for each event, which is

located in the sub-space of feature space that is picked out by the three hyperplanes

we have trained. This three dimensional space is then used to build a function. To

do this, we create a tri-variate histogram over the space. This simply means that our

space is divided up into cubes of some size, and the number of events from our sample
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which fall inside each cube is tallied. However, the tally we make is a weighted one.

The event weights we calculated, as in the rightmost column of Table 9.5, are entered

for each event depending upon the source sub-process of that event. By dividing this

weight by the number of events we enter into the histogram from its sub-process, we

automatically give that class an overall weight of the correct proportion. To be totally

clear, again using the Heavy class as an example, the histogram we create over feature

space would have We+bb+1p events entered with a weight of 0.153 / (number of

We+bb+1p events inserted), and Wµ+bb+2p events entered with a weight of 0.279

/ (number of Wµ+bb+2p events). Using this weighting procedure allows us to make

maximal use of all the Monte Carlo events at our disposal for the construction of the

template.

In order to create a continuous function from the histogram weight counts, the

value of the function between adjacent cubes is linearly interpolated. Also, the overall

size of the function is rescaled to have an integral area of one. For a histogram cube

size of length dx, this is achieved by dividing the whole function by dx3. This makes

the template function somewhat analogous to a probability density function (PDF).

Templates PDFs S, L, and H were created in this manner, and are functions of feature

space in the following way (e.g.):

S(X( #»z ), Y ( #»z ), Z( #»z )) ⇒ S( #»z ) (9.7)

as the X, Y , and Z of Equations (3.8) - (3.10) are ultimately functions of test

feature vectors #»z .

The process of maximizing the likelihood function was carried out using MINUIT.

To apply the constraint that θ + φ+ γ = 1, a transformation of variables was used as

described in Appendix D.

9.2.3 Template Results

Using the procedure of the previous section, templates were constructed for each of the

three training classes using all the events available which were not used in training our

SVMs. Some figures have been included to show these functions. Since three dimen-

sions can be difficult to visualize, we have presented the resulting template (density)

functions in two different ways. In Figure 9.6, the picture on the left shows a random

sampling of the template functions, treating them as probability densities. A sampling

of five thousand (5,000) points from each class was used. The picture on the right shows
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the contour of the functions for the value 1,000. This value was chosen empirically to

show the general behavior of the templates. Figure 3.2 shows some views of the fea-

ture space along with the three separating hyper-planes determined from our training.

This picture illustrates nicely the effect of using the Gram-Schmidt procedure to place

points in feature space, and how these hyper-planes form the basis for separating the

three classes. The structure seen in these pictures can be understood in terms of the

discrete nature of the SecVtx b-tag feature used in training. The three bands seen in

the template graphs correspond to the groups of events with zero, one, or two btags.

As expected, the blue Light class is mostly located in the zero band. Also notice the

Light vs Heavy hyper-plane is located between events with zero tags, and those with

more. This is also as one might näıvely expect.

As was discussed above, its possible to compute the gradient functions for each of

the SVMs we have trained. This has been done, and then each gradient sampled with

several tt̄ events. The average gradient vector over these events is shown in Figure

9.7. As can be expected, b-tagging plays a large role in separating tt̄ events from Light

events, while the separation of tt̄ from Heavy is much more kinematically oriented. Also

in accord with our intuition, the Light class is distinguished from the Heavy almost

entirely by the b-tag feature.

Figure 9.6: Template Plots (Signal, Light BG, Heavy BG)
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Figure 9.7: Gradients for (S vs L), (S vs H), and (L vs H) SVMs

9.2.4 Linearity

Pulling everything together, we will now examine the linearity of our multi-class SVM

technique. Because we observe 6,888 events in the real data that pass our selection

criteria, we choose this to be our mean events size M in our pseudo-experiments ( PEs

). As was also stated previously, we will fix the relative Light and Heavy proportions

at 92.5% and 7.5% (or 121
3
Light events to each Heavy). Next we will take the mean

tt̄ fraction fS to range from 5% to 95% in increments of 5% (or sometimes from 10%

to 20% in 1% increments). Therefore,

µS = MfS

µL = M(1− fS)(0.925) (9.8)

µH = M(1− fS)(0.075)

These three values were used to draw pseudo-experiments. Five hundred (500) PEs

were drawn at each of the values of fS. For each individual PE, the actual number of

events for each class was determined by consulting Poisson distributions with means as

given by µS, µL, and µH . This allows the specific class contribution to fluctuate from

PE to PE. Note that for the composite Light and Heavy classes, the underlying sub-

processes are also Poisson fluctuated in the manner described above in section (9.2.1).

Once we have determined the specific number of events from each class to include,

the corresponding number of events in random permutation from our Monte Carlo is

chosen. This leaves us with a grouping of events that we will use to represent the actual

measurement we will eventually carry out on the real data from the accelerator.

The values of the three template functions ( S, L, and H ) we have created are

evaluated for each event in the pseudo-experiment. These values are used to create the
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likelihood function, as is shown in Equation (9.4). This function is then extremized

with respect to the mixture parameters (θ and φ) to get our estimate of the class

compositions. The calculated θ and φ are compared to their actual values which were

used to create the pseudo-experiment. The differences between these calculated values

and the actual class composition is shown in Figure 9.8. The upper left plot in the

figure shows the mean value of the absolute difference between θ and its expected value

(i.e. ∆θ = θcalc− θtrue), as fS moves from 10% to 20%. The other two top graphs show

the coresponding plots for the Light and Heavy classes (φ and γ = 1 − θ − φ ). The

bottom of Figure 9.8 shows the standard deviation of these ∆’s.
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Figure 9.8: Baseline Linearity Plots. Mean ∆ is shown on top and the Standard
Deviation σ below

As can be seen from the plots, the ∆ error in θ is fairly small and on the low

side. The Light fraction ∆φ is typically high, as is the Heavy class ∆γ. The Light

class has the smallest bias, but even at their largest these biases are constant and only

-0.002 for Signal and +0.002 for Heavy. Ideally these plots would be completely flat,

though some bias has to be expected because our training samples didn’t include all

the processes used in our templates (i.e. diboson, single top, or Z+Jets). It is difficult

to completely understand the sources of these (albeit small) biases. They could also

come from a statistical skew of the training data we used, or even the choices of binning

and interpolation used in creating the template functions. Because they are so small,

and can be mapped out with PEs, the approach taken will be to correct answers by

these biases, treating them as a baseline correction.

The standard deviations shown give us an estimate of the statistical error in our
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framework. To illustrate this, we have plotted in Figure 9.9 the relationship between

this standard deviation and the mean number of events in the pseudo-experiment M .

These PEs were performed at a fixed fS = 20%.

5000 10000 15000 20000 25000 30000
Events

0.01

0.02

0.03

0.04

Σ

Figure 9.9: θ’s statistical error as a function of the number of events in the pseudo-
experiment

Also, to show the power of including the b-tagging information, this linearity test

was also performed on the kinematic only SVMs. The results can be seen in Figure

9.10. The biases between the two formulations follow a similar trend. However, the

standard deviation for the kinematic SVMs across all three classes is typically very

much higher. Because we have no b-tagging information in the kinematic only formu-

lation, one would expect our discriminatory power between the Heavy and Light classes

to be greatly diminished. This is reflected in the large biases (sometimes 10%) with

absolute standard deviations between 6% and 9%. Note that the bias in the signal class

remains relatively small (at worst only about 0.5%), but that the standard deviation

in tt̄ here is roughly double that of the SVMs with SecVtx information included.

9.3 Other Backgrounds

There are a few other background processes which can mimic the signature of a tt̄ decay.

One kind of events so far unconsidered are the so-called non-W QCD fakes. This is a

somewhat catchall group, that includes any QCD backgrounds which can fake a tight

lepton in our detector. Other processes which have small cross sections are Z + Jets,
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Figure 9.10: Kinematic SVMs’ Linearity Plots

and the dibosons (WW , WZ, and ZZ + Jets). Finally, single top (i.e. the non pair

production of a t or t̄) can also be a source of background in this measurement.

9.3.1 Diboson

Events that contain two bosons (WW , WZ, or ZZ) can also sometimes give the same

signature as tt̄. CDF has Monte Carlo to represent these events. Datasets itopww,

itopwz, and itopzz are combined by their expected cross sections, which are 7.70 pb,

2.30 pb, and 2.56 pb respectfully. This translates into a makeup of 83.4% WW , 14.2%

WZ, and 2.4% ZZ for this analysis, after taking into account our event selection and

the detector acceptances for these processes. These Monte Carlo datasets were added

into the Light BG template, weighting these events by their cross sections relative

to the other processes in this class. See Figure C.3 for a summary of the Light BG

template and the processes included.

9.3.2 Z+Jets

As was noted above in Section 7.2, we use a Z veto in our initial selection criteria.

This process removes events reconstructed with a Z boson found near its mass win-

dow. Consequently, the overall contribution from Z+Jets is small. However, to take

their contribution into account, Z+Jets events were included in our two background

templates. Z+lf and Z+cc events were folded into the Light Class, while Z+bb was
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included in the Heavy Class.

9.3.3 Single Top

Single top production can mimic pair production in the case where one of the pair’s

top quarks is lost (e.g. down the beamline). Single top production occurs through

two methods. These are the s-channel (where an intermediate W decays into a top &

anti-bottom), and t-channel (in which a bottom quark transforms into a top through

the exchange of a W with a up or down quark). Each has a relatively low cross section

(0.88 pb and 1.98 pb respectfully). Because top quarks decay primarily as aWb system,

we have included the single top event signatures in the Heavy template.

9.3.4 non-W QCD Fakes

CDF employs two primary methods to model the QCD fakes. These are the jet-

electron model, and the anti-electron model. Both use real data from the detector, and

relax various aspects of the definition of a reconstructed electron. For jet-electrons,

events which have a jet that is improperly identified as a tight electron are considered.

Drawing on the pool of generic jet20 events, one looks for instances where a jet has ET

> 20 GeV, EMfraction between 0.80 and 0.95, and 4 or more tracks. Once identified,

a jet-electron is treated as an electron and the rest of the event is subjected to all the

rest of our selection cuts.

On the other hand, anti-electrons are objects very close to passing all the quality

cuts assigned to the CDF definition of an electron. In order to qualify, two of the

following five kinematic criteria must fail: CES ∆x, CES ∆z, Lshr, track χ2, and

hadronic fraction.

Because there are only some few hundred events that meet this definition in all

the CDF data, they are not very useful in this SVM framework. Since our templates

are based on trivariate histograms, it takes a good number of events to get a reliable

function that describes the class in question. In contrast to the anti-electrons, jet-

electrons are plentiful. They come from the generic jet datasets, a small sample of

which produced a pool of some 35k events. This amount is entirely sufficient to create

a template and run pseudo-experiments.

Two approaches were taken to evaluate the contribution of non-W QCD fakes to

number of events which survive our selection criteria, and further to examine how they

would be classified in our SVM framework.
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As a first step, jet-electron events were used to construct a template in the feature

space of our problem. Again, this means that all the jet-electron events were classified

by our three SVMs, and then transformed into feature space through the Gram-Schmidt

procedure. These results are placed in a 3D histogram, and the function linearly

interpolated between bins. A picture of this template is shown ( in light blue ) together

with our original three templates in Figure 9.11. Also shown there are the projection

histograms of the these templates onto each SVM’s axis.

Figure 9.11: Jet Electron Template

0 tag 1 tag 2 tags ≥ 3 tags
Pythia tt̄ 0.408183 0.440856 0.144519 0.00644222
Jetele 0.912403 0.0817759 0.00564956 0.000171199

Figure 9.12: b-tag spectrum

When these four templates are used to fit the real data, the maximum likelihood

gives a fractional value of zero ( 0.0 ) for the jet-electron template. In order to investi-

gate this result, it was theorized that the b-tagging feature of jet-electrons was not very

well modeled. To test this idea, the jet-electron pool was recreated twice, assigning

b-tags to events randomly such that they would have half as many, and just as many,

as the tt̄ signal. The tt̄ Monte Carlo has the spectrum of tags shown in Figure 9.12.
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Once this was done, the likelihood fit to real data still gave a null result when

using these two new templates. This seemed to indicate that across all the tag bins

for the real data, the events which survive our selection criteria do not conform very

well overall to the jet-electron template. To delve into this further, three SVMs were

trained to examine how jet-electrons are different from our tt̄, W+Jets light flavor,

and W+Jets heavy flavor Monte Carlo. Interestingly, it was found that these events

are just about perfectly separable from each of the three original classes. Upon taking

the gradients of these three new SVMs, the separation comes almost exclusively from

a combination of HT and �
�ET . Perhaps this is to be expected, as these types of events

are removed by the initial selection cuts. However, it is difficult to see this a priori

from the relaxed quantities used to define the jet-electrons.

In order to establish some kind of upper limit on the contribution from this template,

the original jet-electron template was used to draw pseudo-experiments which slowly

increased the jet-electron fraction of the toy events. It was found that there was a bias

of the SVM framework to underestimate the amount of jet-electrons in PEs. It was

not until the overall content of the PE reached 12% jet-electrons that our procedure

recognized they were present. When this underestimation takes place, note that it is

mostly over accounted for in the W+Jets light and heavy flavor classes. From these

PEs, it was conservatively estimated that the content of the Real Data represented

by this jet-electron template must be less then 12%, and therefore an error in the tt̄

fraction θ from this source is something less then 7.5%. To account for QCD fakes, we

therefore take an overall systamatic error of −7.5% on σtt̄ (i.e. a 7.5% systematic on

σtt̄’s lower error bar).

9.4 Systematic Errors

The following sections will detail the evaluation of the effects of the relaxation of certain

assumptions made in the Monte Carlo used to train our Support Vector Machines.

Among many models, one must be chosen to actually generate our Monte Carlo and

simulate the physics we are interested in studying. The choice of the best model is

not always obvious, and it is possible these choices introduce a systematic bias in the

measurement we are trying to undertake.

In evaluating the magnitude of these systematic errors, a specific approach was

taken in order to be as consistent as possible across all the different sources of error.
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It was decided that we ask ourselves the following question: “What value of σtt̄ would

have been calculated instead, if the potential source of error under investigation were

to be adjusted by one standard deviation (1 σ)?”

This means that each quantity that goes into calculating σtt̄ in Equation (6.8) is

considered in turn. If the quantity has some dependence on the systematic, it will

be re-evaluated under conditions that take the shifted systematic into account. These

newly calculated quantities are then substituted into Equation (6.8) and the result is

compared to our central value for σtt̄.

Sticking to this procedure removes any ambiguity as to what is actually being

probed when evaluating a systematic. Also, it takes into account correlations between

quantities in Equation (6.8) which otherwise may be difficult to account for if the errors

on individual terms were considered separately. The final answers for each source of

error can be combined in quadrature, and give an overall error estimate on σtt̄.

9.4.1 Jet Energy Scale

The reconstruction of hadronic jets in the detector is a complicated process. Not only

are there several choices of algorithm for constructing jets, but there are detector effects

that must be taken into account in arriving at an overall answer for the energy contained

within a jet. All of these corrections are used to arrive at our best guess as to the actual

energy content of the hadronic decay at the root of the jet. For a complete discussion

of the corrections applied to jets at CDF, see [31],[32], and [33]. The important point

to recognize for our discussion here is that there is an error associated with the jet’s

energy which is determined through the application of these corrections. This error is

typically referred to collectively as the Jet Energy Scale ( JES ) systematic error.

The software simulation of CDF allows one to set the JES at ±1 σ in the event

reconstruction. Applying such a setting causes the jets in an event to get more/less

energy than they otherwise might have had given the nominal approach to jet re-

construction. In order to evaluate how the choice of JES affects our cross section

measurement, all of our Monte Carlo events were re-evaluated with the jet energies in

every event being shifted by +1σ and -1σ. Our pseudo-experiment procedure was then

repeated, except that the events drawn for each PE were taken from the JES shifted

events. In this way, a new batch of linearity PEs was calculated for both JES +1σ and

JES -1σ. Our templates and everything else about the method remained unchanged

from our baseline series of PEs. To estimate the JES systematic error, we can examine
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how the biases in the PEs shift with respect to the original baseline pseudo-experiment

results. Figure 9.13 shows the results of the pseudo-experiments for JES +1σ, while

Figure 9.14 shows JES -1σ. The ∆ on the y-axis shown in these plots has the small

bias from our original linearity plots subtracted out. Thus, these plots show the bias

from JES only, and not any other effects that may arise from our methodology.
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Figure 9.13: JES +1σ Pseudo-Experiments
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Figure 9.14: JES -1σ Pseudo-Experiments

As can be seen in the Equation (6.8) for the tt̄ cross section, other terms of interest

are ε for CEM, CMUP, CMX, and their associated luminosities L . Luminosity has no

dependence on the jet energy scale. However, the detector acceptance for tt̄ does have

some reliance on JES. This simply comes from the fact that some of our selection cuts

require a missing ET > 20 GeV and ≥ 3 tight jets with energy > 20 GeV. When the

jets are JES shifted in energy, there are some number of events which slosh, into or out

of, our selection window. See Figure 9.15.

Finally, the number of observed events Nobs also has JES dependence. Again,

because of our selection criteria, more events come under our scrutiny as we allocate

more energy to the jets in our events (and vice versa). While we have reliable Monte

Carlo for our tt̄ events, Nobs will include events from every possible process which can

occur in our detector. As such, instead of relying on Monte Carlo to estimate the shift

in Nobs due to JES, I’ve taken the real data from our pp̄ collisions and applied the JES
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shifts to them. As the number of surviving real data events was used as the basis for

our PE size of 6,888 events, doing a similar thing here should be a fair way to estimate

how the size of Nobs changes with JES.

JES has a unique property among our various systematics in that we know which

JES we are using in both the Real Data (RD) and Monte Carlo (MC) events. Suppose

we were considering the mass of the top quark as a source of systematic error. While

we could tweak the mass of the top in our MC to see how our method reacts to each

different situation, the Real Data would always contain a top quark with a fixed (though

to us uncertain) mass.

Thus, we could not correct for any bias we might find in our method due to top

mass because we wouldn’t know which mass was the correct one. However, with JES

we always know which JES we are using. JES is a correction applied to events, both

MC and RD. This allows us to correct for any bias seen in PEs due to the JES we are

currently employing.

To estimate the JES uncertainty on σtt̄, we calculate σtt̄ by plugging into Equation

(6.8) the three acceptances ACEM , ACMUP , ACMX and also Nobs at JES = +1σ. For

θ, we can measure it on the RD events reconstructed with JES = +1σ, and then

correct that value by the bias we observe in our apparatus when it encounters JES =

+1σ events (per Figure 9.13). This gives us a measured value for the cross section at

JES = +1σ. Thus we have arrived at the value for σtt̄ that we would have calculated

on the real data assuming a differing JES. We repeat this procedure at JES = −1σ.

By comparing these two cross sections to our central value, we can estimate our JES

systematic uncertainty. See Figure 9.16 for the results of this procedure.

JES Shift CEM CMUP CMX PHX BMU
+1 σ 205,314 129,491 55,542 52,208 33,238
0 σ 199,231 125,425 53,785 50,482 32,115
-1 σ 192,702 121,274 51,991 48,628 30,868

∆A CEM ∆A CMUP ∆A CMX ∆A PHX ∆A BMU
+1 σ +0.001363 +0.0009114 +0.0003982 +0.0003869 +0.0002517

+3.05% +3.24% +3.27% +3.42% +3.50%
-1 σ -0.001463 -0.0009304 -0.0004065 -0.0004156 -0.0002795

-3.28% -3.31% -3.34% -3.67% -3.88%

Total CEM/CMUP Events: 4,461,497
Total CMX Events: 4,412,909

Figure 9.15: tt̄ Acceptance at JES ±1 σ
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JES Shift N θraw Correction θ Ntt̄ σtt̄ ∆
+1 σ 8,535 0.1570 −0.019 0.1380 1,177.8 7.102 pb −0.6%
0 σ 6,888 0.1667 0.000 0.1667 1,148.2 7.144 pb -

−1 σ 5,729 0.1693 +0.023 0.1923 1,101.7 7.085 pb −0.8%

Figure 9.16: θ & σtt̄ calculations at JES ±1 σ

9.4.2 tt̄ Generator

As an alternative to the Pythia event generator used to create the tt̄ Monte Carlo, the

Herwig generator was used by CDF to create an independent group of some 4× 106 tt̄

events (specifically, dataset otop1s). As was done with the JES systematic, the Herwig

events were used to draw pseudo-experiments. In this case Pythia tt̄ was replaced by

Herwig, and all other aspects of the PE procedure remained constant. The results from

this series of pseudo-experiments is shown in Figure 9.18. The acceptance values for

Herwig tt̄ were also calculated, and are listed in Figure 9.17.

tt̄ Gen CEM CMUP CMX PHX BMU
Herwig 172,146 108,932 46,834 43,272 27,274
Pythia 199,231 125,425 53,785 50,482 32,115

∆A CEM ∆A CMUP ∆A CMX ∆A PHX ∆A BMU
+0.001607 +0.001162 +0.0005377 +0.0003139 +0.0001314

+3.60% +4.13% +4.41% +2.77% +1.82%

Herwig CEM/CMUP Events: 3,721,073 Herwig CMX Events: 3,680,253
Pythia CEM/CMUP Events: 4,461,497 Pythia CMX Events: 4,412,909

Figure 9.17: tt̄ Acceptance Herwig vs. Pythia
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Figure 9.18: Herwig Pseudo-Experiments
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9.4.3 Generator PDF

The Parton Distribution Functions used in the creation of our tt̄ Monte Carlo can

also be varied considerably. As standard procedure, CDF uses the so-called CTEQ5L

PDF set. To evaluate this choice’s effect on our measurement, a series of 45 other

sets were considered as alternatives. The top group at CDF has a standard procedure

for re-weighting our nominal Pythia Monte Carlo to account for the differences in

each of these PDF sets. See [24] for a full description of this re-weighting procedure.

This re-weighting scheme was used to evaluate the tt̄ acceptance from each of these

sets, and pseudo-experiments were run to see how our measurement of θ is biased. In

order to create these PEs, each of our templates was recreated weighting the events

differently for each PDF set. The templates were then sampled ( treating each as

a probability density ) in order to create event pools which reflect that template’s

distribution in feature space. These pools were then randomly sampled when drawing

pseudo-experiments. PEs were run at each of the 46 weightings, giving an average θ

for each PDF. These shifted θ’s, along with the adjusted A’s, were combined to get a

value for the cross section for each PDF. CDF has a standard procedure for combining

the results from these 46 different PDFs. The resulting errors on ε and θ (and therefore

σtt̄) are summarized in Figure 9.29.

9.4.4 Q2

See Figure 9.19 for a summary of the Q2 systematic error. Two sets of Monte Carlo

were used to replace all the W+Jets backgrounds in pseudo-experiments. One modified

the Q2 higher, and the other moved it lower. Two things should be noted here. First,

there was no Monte Carlo generated for the tau processes W→ τν+Jets ( lf, bb, cc,

and c ). These were assumed to not contribute to the classes when working out their

fractional sub-process compositions. Second, though usually referred to off-handedly

as the Q2 = 0.5 and Q2 = 2.0 shifts, what is actually done is to measure the effect of

having Q2 → (Q/2)2 and Q2 → (2Q)2.

9.4.5 b-tagging Scale Factor

It is observed that the rate of tagging jets in the real data is less than that found in

Monte Carlo estimates. See Figure 9.21. The scale factor which relates the rate in

Data to that of Monte Carlo is found to be SFb = 0.95 ± 0.04. To correct the Monte
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Figure 9.19: Q2 = 0.5 PEs (upper) and Q2 = 2.0 PEs (lower)

Q2=0.5 Q2=2.0
∆θ +0.0017 -0.0070
% +0.9 -3.9

Figure 9.20: W+Jets Q2 Systematic

Carlo for this effect, 5% of all heavy ( b and c ) jets in simulated events are dropped.

Specifically, for each b or c jet that was tagged, a random number between 0 and 1 was

thrown. If that number happened to be greater then 0.95, this jet was not counted

as being tagged in the tally of tags for that event. For light flavor jets ( u, d, or s

), the so-called “mistag matrix” was used to compute the probability that jet would

be (wrongly) tagged. Another random number between 0 and 1 was then selected,

and if it was discovered to be less then the probability for mistag, then the tag count

for the corresponding event was incremented. This method was followed as standard

procedure for all Monte Carlo used in this measurement.

To evaluate a systematic error based on the error bar on the b-tagging scale factor,

separate sets of Monte Carlo were generated taking SFb to be 0.99 and 0.91. These

samples were then used to draw pseudo-experiments. Since SFb doesn’t change the

event selection, all values of ε have no error associated with this effect. Luminosity is

also unaffected. See the systematic error summary in Figure 9.29.
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Figure 9.21: SFb = 0.91 PEs (upper) and SFb = 0.99 PEs (lower)

SF = 0.91 SF = 0.99
∆θ -0.0030 +0.0027
% -1.7 +1.5

Figure 9.22: b-tag SF Systematic

9.4.6 Initial / Final State Radiation

Processes that contain colored and/or electrically charged objects in their initial or final

configurations can emit photon/gluon radiation. Adding these types of corrections to

our basic event topologies is necessary to match the observed jet multiplicities in hadron

colliders. Initial State Radiation (ISR) refers to radiation from any objects before the

main hard scattering event, while Final State Radiation (FSR) refers to any emissions

added to the collision products. CDF has MC samples which add/subtract both ISR

and FSR for the tt̄ signal process.

The ISR/FSR more sample (otop03) was used to evaluate an upper “1σ” systematic.

The ISR/FSR less sample (otop04) was used to evaluate the lower “1σ” shift of this

systematic. Both are succinctly summarized in Figure 9.23.

9.4.7 Top Quark Mass

All of the tt̄ Monte Carlo discussed in this text has been taken to have a mass of 175

GeV/c2. CDF has generated a series of different mass samples, and following the same
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Figure 9.23: ISR/FSR less PEs (upper) and ISR/FSR more PEs (lower)

ISR&FSR more ISR&FSR less

∆CEM -0.000200119 -0.0001761
% -0.45 -0.39

∆CMUP -0.000225329 -0.000110726
% -0.80 -0.39

∆CMX -0.0000562168 +0.000004900945
% -0.46 +0.04

∆θ +0.0034 -0.0002
% +1.9 -0.1

Figure 9.24: ISR/FSR Sys

methodology as above, several different masses were used to investigate how the choice

of top mass influences our cross section measurement. At the time of this writing,

the best top mass available as measured at the Tevatron is 172.4 ± 1.2 GeV/c2. PEs

were conducted at masses of 165 GeV/c2, 170 GeV/c2, and 180 GeV/c2, such that the

events drawn for tt̄ and single top took on these values. Top mass is not traditionally

cited as a source of error in measurements of the tt̄ cross section at CDF. Instead, the

dependence of σtt̄ on the mass is plotted as a separate entity. See Figure 9.27 for such

a plot. The different tt̄ acceptance values, along with the θ biases due to changing mt

found from the PEs, are shown in Figure 9.26. Note also that the mass of the top

quark was changed in the single top MC used to draw PEs as appropriate.
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9.4.8 Luminosity

The overall time integrated luminosity used in this measurement was:

LCEM/CMUP = 2.20± 0.1 fb−1 (9.9)

LCMX = 2.15± 0.1 fb−1 (9.10)

Note that the CMX was inactive in the early part of Run II, which is why it has a

slightly lower value for L . Luminosity measured at CDF has an overall 6% error (as

shown in the above equations).

9.4.9 Statistical Error and Other Sources

Statistical error in the context of our measurement examines how the value of our

measured tt̄ cross section depends upon quantities which would simply vary randomly

were we to repeat our experiment identically. Because of the finite number of samples

taken in our measurement, certain quantities could take on values apart from their true

value, simply due to statistical fluctuation in the specific instance of this measurement.

By their very nature, the results of a collider experiment have a random component.

When collisions take place, the results and their debris derive from probabilities. By

measuring the tt̄ cross section, we are trying to determine how often pp̄ collisions result

in top quarks pairs in lieu of other possibilities. If we were to examine only a handful

of collisions, just as if we were to only poll a few potential voters, the answers we

calculate would be largely a statistical byproduct of our happenstance. This variance

is minimized, of course, by looking at as many collisions as is practical.

All the terms in Equation (6.8) are influenced by this effect. The first term we

should consider is N , which is the overall number of events which survive our selection

cuts. Just as the number of events from each sub-process of our backgrounds fluctuates

as a Poisson, so will the makeup of our overall sample and its signal component. To

account for this error, we assign N a statistical error of ±
√
N . For 6,888 events, this

translates to a 1.2% error on N .

The statistical nature of θ was evaluated during the pseudo-experiment process.

Each PE represents a simulated execution of our measurement, and so doing many PEs

and seeing how θ fluctuates under identical initial conditions will give us a measure

of its statistical error. As one might expect, the statistical error on θ is determined
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Figure 9.25: (∆θ,∆φ,∆γ) from 5k pseudo-experiments

largely by the magnitude of N . However, it isn’t any kind of simple dependence, and is

tied very closely to our methodology. Since this is true we must use Monte Carlo PEs

to calculate its magnitude. The standard deviation of θ as found through these PEs

is taken as its statistical error. For our nominal 6,888 events, this standard deviation

was found to be 0.0055 for a θ of 0.165 and thereabouts (see linearity plots in Figure

9.8). Figure 9.25 shows a histogram of ∆θ from a series of 5k PEs, where (θ, φ, γ) were

fixed to mean values of (0.165, 0.772, 0.063). The histogram in the figure was fit to a

Gaussian for comparison.

Figure 9.9 shows the statistical error on θ as a function of the total number of events

N in the pseudo-experiment.

9.4.10 Putting It All Together

This section will describe the process of taking all of the different sources of error

together. To be clear, when discussing the addition of errors in quadrature for a

function f(xa, xb, . . .) with xa = a± σa and xb = b± σb, etc., it is meant that:

σf =

√

√

√

√

(

∂f

∂xa

∣

∣

∣

∣

xa=a

)2

σa
2 +

(

∂f

∂xb

∣

∣

∣

∣

xb=b

)2

σb
2 + . . . (9.11)

All the statistical errors on each of the major variables, along with any other quanti-

ties which are taken to be completely independent of each other, were added in quadra-

ture. These include the gross errors on the idreco scale factors, trigger efficiencies, and

the z-vertex factor εcommon.
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mt CEM CMUP CMX PHX BMU

165 GeV 25,652 15,969 6,867 6,641 4,242
170 GeV 25,944 16,251 6,944 6,692 4,197
175 GeV 199,231 125,425 53,785 50,482 32,115
180 GeV 26,663 16,727 7,360 6,807 4,322

165 GeV CEM/CMUP Events: 600,829 165 GeV CMX Events: 600,829
170 GeV CEM/CMUP Events: 592,252 170 GeV CMX Events: 580,086
175 GeV CEM/CMUP Events: 4,461,497 175 GeV CMX Events: 4,412,909
180 GeV CEM/CMUP Events: 589,041 180 GeV CMX Events: 589,041

mt θ ∆A CEM ∆A CMUP ∆A CMX ∆A PHX ∆A BMU

165 GeV 0.1827 −4.39% −5.46% −6.23% −2.32% −1.92%
170 GeV 0.1747 −1.90% −2.40% −1.78% −0.14% −1.55%
175 GeV 0.1667 0.00% 0.00% 0.00% 0.00% 0.00%
180 GeV 0.1603 +1.36% +1.01% +2.52% +2.13% +1.93%

Figure 9.26: mt dependence for θ and tt̄ Acceptance
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Figure 9.27: σtt̄ dependence on top mass

9.5 Application to Real Data

The previous sections have described how an SVM can be used to discriminate t t̄ decays

from their W+Jets background in Monte Carlo. The general idea is to then take a
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trained SVM from Monte Carlo Data, process the real data from the detector with the

same initial selection criteria, and then form the maximum likelihood with the events

that survive to determine θ. This should then be the fractional amount of signal in the

real data sample. We have carried this out using the current release of the real data

top ntuples through Run Period 13, which corresponds to an integrated luminosity of

2.2 fb−1.

The results for the kinematic and b-tagging SVMs are summarized in Figure 9.28.

Plugging these results into Equation (6.8), we get a central value for our tt̄ cross section

from the b-tag SMVs of 7.14 pb.

The negative value for γ for the kinematic SVM deserves some explaination. While

the actual values for (θ, φ, γ) are constrained to be positive and sum to 1, the values

shown in the figure are after the baseline correction. The baseline correction for γ

is a subtraction, and when combined with the large statistical errors on φ and γ for

the kinematic SVMs, gives a negative value for γ in the instance of the real data.

It shouldn’t be taken too seriously, other then the fact that the real data shows a

downward fluctuation in γ. The statistical errors are so large that we aren’t really

interested in the specific information φ and γ give in the kinematic case.

SVM θ± stat φ± stat γ± stat
Kinematic 0.1764± 0.0095 0.8476± 0.041 −0.0240± 0.045
b-tagging 0.1667± 0.0055 0.7716± 0.0068 0.0617± 0.0088

Figure 9.28: (θ, φ, γ) for Kinematic and b-tag SVMs
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Source ACEM ACMUP ACMX θtt̄ N L LCMX Total
JES −1σ −3.3% −3.3% −3.3% 15.3% −16.8% - - −0.8%
JES +1σ +3.1% +3.2% +3.3% −19.2% +23.9% - - −0.6%
Herwig +3.6% +4.1% +4.4% −2.5% - - - −6.1%
ISR/FSR −1σ −0.4% −0.4% 0.04% −0.6% - - - −0.3%
ISR/FSR +1σ −0.4% −0.8% −0.5% −2.4% - - - −1.9%
PDF −1σ −0.7% −0.9% −0.2% −1.2% - - - −1.0%
PDF +1σ +0.4% +0.6% +0.2% +1.0% - - - +1.3%
SFb = 0.91 - - - +1.0% - - - +1.0%
SFb = 0.99 - - - −1.2% - - - −1.2%
Q2 less - - - −0.8% - - - −0.8%
Q2 more - - - +4.2% - - - +4.2%
Luminosity −1σ - - - - - −6.0% −6.0% +6.4%
Luminosity +1σ - - - - - +6.0% +6.0% −5.7%
QCD Fakes - - - - - - - −7.5%
Statistical - - - ±3.3% ±1.2% - - ±3.5%
Common ±3.6%
All +9.3%

−12.6%

Figure 9.29: Error Summary
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Results

Figure 10.1: Measured σtt̄ (stat) vs. Theory ( Cacciari[26] and Kidonakis[28] )

10.1 Central Value

Plugging in the values for acceptance (Figure 6.3), trigger efficiency (Figures 6.8, 6.9,

6.10), idreco scale factors (Figures 6.5, 6.6, 6.7), luminosity (Figure 6.4), z-vertex

common factor (Figure 6.11), and theta (Figure 9.28) into Equation (6.8), the overall

central value for the cross section is found to be
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σtt̄ = 7.14± 0.25(stat)+0.41
−0.76(sys)

+0.45
−0.40(lumi) pb (10.1)

which includes all sources of error summarized in Figure 9.29. Folding the luminosity

errors into the systematics:

σtt̄ = 7.14± 0.25(stat)+0.61
−0.86(sys) pb (10.2)

and overall:

σtt̄ = 7.14+0.66
−0.90 pb (10.3)

The error bars on σtt̄ are asymmetric. It can be symmetrized by taking the values

in Equation (10.3) as describing a lopsided Gaussian distribution. We can then find

a symmetric Gaussian which has the same weighted mean as the asymmetric version,

and a width such that the area under the old function around the new mean is one (1)

standard deviation.

Figure 10.2: Symmetric vs. Asymmetric

Specifically, for an asymmetric Gaussian distribution G(x | µ, σ−, σ+), we find the

symmetric Gaussian G(x | µ′, σ′), such that:



10.2. RESULTS COMPARISON 113

µ′ =

∫

x G(x | µ, σ−, σ+) dx (10.4)

and σ′ = a where

∫ µ′+a

µ′−a

G(x | µ, σ−, σ+) dx = 0.6827 . . . (10.5)

Following this procedure, it was found that

σtt̄ = 6.96± 0.78 pb (symmetrized) (10.6)

Figure 10.2 shows the difference between the symmetric and asymmetric Gaussian

distributions. Figure 10.3 breaks down the central value for σtt̄ by run period.

Period Events CEM CMUP CMX θ σtt̄ [pb]
0d 988 602 267 119 0.1698 6.85
0h 1,133 652 307 174 0.1776 7.44
0i 816 489 193 134 0.1559 6.62
8 536 315 141 80 0.1517 6.63
9 508 306 143 59 0.1702 7.47
10 794 436 232 126 0.1781 7.95
11 749 445 190 114 0.1621 7.23
12 523 313 124 86 0.1525 6.85
13 841 517 201 123 0.1644 6.94

CEM 4,075 0.1571 7.16
CMUP 1,798 0.1957 7.19
CMX 1,015 0.1406 6.36

All 6,888 0.1667 7.14

Figure 10.3: σtt̄ by Run Period

10.2 Results Comparison

Figures 10.4 and 10.5 show some of the results from other measurements of σtt̄ given

by CDF and D0. Figure 10.6 shows some more recent CDF results (which assume a

slightly lower value for mt). From Figure 9.27, it can be seen that the central value of

σtt̄ for this thesis shifts to 7.4 pb at mt = 172.5 GeV/c2.
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The error due to luminosity is consistent across all measurements, as the 6% error

is standard. Note that the newer measurements that quote a smaller error in the

luminosity column are actually forming the ratio of σtt̄ with σ(Z/γ → ℓℓ). The ratio

is then multiplied by the theoretical value for σ(Z/γ → ℓℓ) to extract σtt̄. Thus for

those measurements, the last number listed is actually an error due to the theoretical

σ(Z/γ) calculation, and not the delivered luminosity.

Our systematic error is dominated by the QCD fakes and generator (Herwig vs.

Pythia) errors, and is comparable with other measurements at the 2.2 fb−1 level. The

QCD fakes error can possibly be reduced through further study. CDF has developed

a more advanced QCD veto, and the increase in available data with > 4.0 fb−1 should

allow our measurement to use a tighter event selection to further reduce this source

of error. Both of these options should be explored in any future application of the

techniques of this thesis to the full CDF dataset.

The statistical error we quote is one of the best from the Tevatron. This derives

mostly from the small statistical error found in computing θtt̄. Most other measure-

ments in the L+J channel either do not use b-tagging or require a b-tag in their event

selection. By keeping our event selection in the pre-tag regime, but utilizing the tag

information to extract the signal content (while still differentiating tt̄ from W+bb

and other heavy backgrounds), we were able to construct an excellent classifier that

maintains a large N sample size.
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Figure 10.4: σtt̄ Measurements at CDF



116 CHAPTER 10. RESULTS

Figure 10.5: σtt̄ Measurements at D0
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Figure 10.6: σtt̄ Measurements at CDF (assuming mt = 172.5 GeV/c2)
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Appendix A

Gram-Schmidt Expansion

This appendix is designed to expound the use of the Gram-Schmidt procedure using

SVM decision functions as the basis vectors of the expansion. In feature space, the

decision plane of a trained SVM can be expressed as follows[1]:

|w〉 =
SV
∑

i

yiαi|ϕ( #»xi)〉 (A.1)

Here, we mean #»xi to be that SVM’s ith support vector, and yi and αi to be its

associated target value and Lagrange multiplier.

Given a set of three SVMs that use the same mapping function ϕ to feature space,

the Gram-Schmidt prescription results in the following orthonormal basis vectors:

|w′
1〉 = |w1〉 (A.2)

|w′
2〉 = |w2〉 −

〈w1|w2〉
〈w1|w1〉

|w1〉 (A.3)

|w′
3〉 = |w3〉 −

〈w1|w3〉
〈w1|w1〉

|w1〉 −
〈w′

2|w3〉
〈w′

2|w′
2〉
|w′

2〉 (A.4)

The three dimensional point {X,Y,Z} in feature space corresponding to a test vector
#»z in our original un-mapped space can then be computed as:

X( #»z ) =
〈w′

1|ϕ( #»z )〉
〈w′

1|w′
1〉

(A.5)
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Y ( #»z ) =
〈w′

2|ϕ( #»z )〉
〈w′

2|w′
2〉

(A.6)

Z( #»z ) =
〈w′

3|ϕ( #»z )〉
〈w′

3|w′
3〉

(A.7)

Recall that to carry out an inner product in feature space defined by the mapping

ϕ, we use the kernel function of that space:

〈ϕ( #»a )|ϕ( #»

b )〉 = K( #»a ,
#»

b ) (A.8)

To make the computations of Equations (A.5) - (A.7) easier, we will enumerate all

the inner products involving {w1, w2, w3, w
′
1, w

′
2, w

′
3} not having any dependence on the

test point #»z . Here we will use the short hand a · b = 〈a|b〉, and a2 = a · a.

w1
2 = w′

1
2
=
∑

i,j

y1iy1jα1iα1jKij (A.9)

w2
2 =

∑

i,j

y2iy2jα2iα2jKij (A.10)

w3
2 =

∑

i,j

y3iy3jα3iα3jKij (A.11)

w1 · w2 =
∑

i,j

y1iy2jα1iα2jKij (A.12)

w1 · w3 =
∑

i,j

y1iy3jα1iα3jKij (A.13)

w2 · w3 =
∑

i,j

y2iy3jα2iα3jKij (A.14)

Here we mean that Kij = K( #»ai,
#»

bj), where
#»ai and

#»

bj are the ith and jth support

vectors of the SVM(s) involved in the sum. Then,

w′
2
2
= w2

2 − (w1 · w2)
2

w1
2

(A.15)

w′
2 · w3 = w2 · w3 −

(w1 · w2)(w1 · w3)

w1
2

(A.16)
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w′
3
2
= w3 · w3 −

(w1 · w3)
2

w1
2

− (w′
2 · w3)

2

w′
2
2 (A.17)

and by construction,

w1 · w′
2 = 0 (A.18)

w1 · w′
3 = 0 (A.19)

w′
2 · w′

3 = 0 (A.20)

Finally, for the general point #»z we have

w1 · ϕ( #»z ) =
∑

i

y1iα1iK( #  »x1i,
#»z ) (A.21)

w′
2 · ϕ( #»z ) =

∑

i

y2iα2iK( #  »x2i,
#»z )− (w1 · w2)(w1 · ϕ( #»z ))

w1
2

(A.22)

w′
3 ·ϕ( #»z ) =

∑

i

y3iα3iK( #  »x3i,
#»z )− (w1 · w3)(w1 · ϕ( #»z ))

w1
2

− (w′
2 · w3)(w

′
2 · ϕ( #»z ))

w′
2
2 (A.23)

Note the recursive nature of these equations, as the result of Equation (A.21) ap-

pears in the second term of (A.22) and (A.23), and Equation (A.22) in (A.23)’s third

term. From these equations, it is straight forward to calculate the {X,Y,Z} of Equations
(A.5),(A.6), and (A.7).



Appendix B

Poisson Distributed Random

Variables

This appendix gives a proof that a set formed by taking samples from two independent

Poisson distributed variables is also Poisson distributed. Here, we will use the notation

that follows something like P (X = x) = 1
10
, which in words can be read as “The

probability that the random variable X takes on the value x is ten percent.” We use

X to represent a random variable, and it stands in the abstract for any of its possible

outcomes. We then use x to indicate the concrete realization of one such random

measurement of X.

Given two Poisson distributed variables X1 and X2, with corresponding mean pa-

rameters λ1 and λ2, what is the probability density function of Y = X1 +X2 ?

P (Y = n) = P (X1 +X2 = n) (B.1)

=
n
∑

k=0

P (X1 = k)P (X2 = n− k) (B.2)

=
n
∑

k=0

e−λ1
λk
1

k!
e−λ2

λn−k
2

(n− k)!
(B.3)

= e−(λ1+λ2)

n
∑

k=0

1

k!(n− k)!
λk
1λ

n−k
2 (B.4)
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=
1

n!
e−(λ1+λ2)

n
∑

k=0

n!

k!(n− k)!
λk
1λ

n−k
2 (B.5)

= e−(λ1+λ2)
(λ1 + λ2)

n

n!
(B.6)

We recall in the last step the binomial theorem, which reads:

(x+ y)n =
n
∑

k=0

n!

k!(n− k)!
xn−kyk (B.7)

Hence, the sum of two Poisson distributed random variables is again Poisson dis-

tributed with parameter equal to the sum of the two constituent distributions. This

result recursively generalizes such that the sum of N independent random Poisson X’s

is Poisson with parameter given by
∑N

i=1 λi.



Appendix C

Light & Heavy Class Composition

The following tables show the individual processes that were used in constructing the

Light and Heavy background classes. The processes are grouped together by their

underlying physical origin. The column “Fraction” lists the fractional composition for

each sub-process within that process block. The rightmost column “All” shows the

overall fractional composition for that block, as compared to the other process blocks

within the class template. For the Light class, the three blocks were W+Jets, Z+Jets,

and dibosons, while in the Heavy class the blocks correspond to W+Jets, Z+Jets, and

single top.
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Process Dataset x-sec(pb) Fraction All

W→ eν+bb+0p btop0w 2.980 0.029617024 0.449102508
W→ eν+bb+1p btop1w 0.888 0.152637014
W→ eν+bb+2p btop2w 0.287 0.321669261
W→ µν+bb+0p btop5w 2.980 0.025218874
W→ µν+bb+1p btop6w 0.889 0.133827962
W→ µν+bb+2p btop7w 0.286 0.278660237
W→ τν+bb+0p dtop0w 2.980 0.003341731
W→ τν+bb+1p dtop1w 0.888 0.017690943
W→ τν+bb+2p dtop2w 0.287 0.037336955

Z→ ee+bb+0p ztopb0 0.551 0.069326301 0.028294533
Z→ ee+bb+1p ztopb1 0.134 0.106773854
Z→ ee+bb+2p ztopb2 0.551 0.111770917
Z→ µµ+bb+0p ztopb5 0.0385 0.041923083
Z→ µµ+bb+1p ztopb6 0.134 0.137162971
Z→ µµ+bb+2p ztopb7 0.0385 0.249475049
Z→ ττ+bb+0p ztopbt 0.625 0.283567824

single top, s-channel 0.88 0.434991294 0.522602959
single top, t-channel 1.98 0.565008706

Figure C.1: Heavy class summary
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Process Dataset x-sec(pb) Fraction All

W→ eν+0p ptopw0 1800 0.004684158 0.870654143
W→ eν+1p ptopw1 225.0 0.010387354
W→ eν+2p ptop2w 35.30 0.060159273
W→ eν+3p ptop3w 5.59 0.262711467
W→ eν+4p ptoprw 1.03 0.096195014
W→ µν+0p ptopw5 1800 0.003891884
W→ µν+1p ptopw6 225.0 0.010431707
W→ µν+2p ptop7w 35.30 0.052784323
W→ µν+3p ptop8w 5.59 0.230790812
W→ µν+4p ptop9w 1.03 0.085403204
W→ τν+0p utopw0 1800 0.000500299
W→ τν+1p utopw1 225.0 0.001038589
W→ τν+2p utop2w 35.40 0.005612156
W→ τν+3p utop3w 5.60 0.027985075
W→ τν+4p utop4w 1.03 0.01112805

W→ eν+cc+0p ctop0w 5.00 0.001706753
W→ eν+cc+1p ctop1w 1.79 0.009333996
W→ eν+cc+2p ctop2w 0.628 0.026771642
W→ µν+cc+0p ctop5w 5.00 0.001529929
W→ µν+cc+1p ctop6w 1.79 0.00825559
W→ µν+cc+2p ctop7w 0.628 0.023455275
W→ τν+cc+0p etopw0 5.00 0.000222678
W→ τν+cc+1p etopw1 1.80 0.001051447
W→ τν+cc+2p etopw2 0.628 0.0030596

W→ eν+c+0p stopw0 17.10 0.001128891
W→ eν+c+1p stopw1 3.39 0.004919126
W→ eν+c+2p stopw2 0.507 0.017589217
W→ eν+c+3p stopw3 0.083 0.007259374
W→ µν+c+0p stopw5 17.10 0.000802717
W→ µν+c+1p stopw6 3.39 0.004236985
W→ µν+c+2p stopw7 0.507 0.015190844
W→ µν+c+3p stopw8 0.083 0.006296487
W→ τν+c+0p stopwa 17.10 0.000112235
W→ τν+c+1p stopwb 3.39 0.00054588
W→ τν+c+2p stopwc 0.507 0.001965036
W→ τν+c+3p stopwd 0.083 0.000862931

Figure C.2: Light class summary, part 1
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Process Dataset x-sec(pb) Fraction All

Z→ ee+0p ztopp0 158 0.005774698 0.054531259
Z→ ee+1p ztopp1 21.6 0.022353636
Z→ ee+2p ztop2p 3.47 0.098849848
Z→ ee+3p ztop3p 0.55 0.048744146
Z→ ee+4p ztop4p 0.0992 0.017133729
Z→ µµ+0p ztopp5 158 0.007645735
Z→ µµ+1p ztopp6 21.6 0.014151397
Z→ µµ+2p ztop7p 3.47 0.0740248
Z→ µµ+3p ztop8p 0.55 0.166775594
Z→ µµ+4p ztop9p 0.0992 0.060281419
Z→ ττ+0p ztopt3 158 0.002317325
Z→ ττ+1p ztopt4 21.5 0.025620647
Z→ ττ+2p ztopt2 4.14 0.390732861

Z→ ee+cc+0p ctop0w 1.08 0.003328643
Z→ ee+cc+1p ctop1w 0.331 0.005558777
Z→ ee+cc+2p ctop2w 0.107 0.008694607
Z→ µµ+cc+0p ctop5w 1.08 0.002300994
Z→ µµ+cc+1p ctop6w 0.332 0.008624698
Z→ µµ+cc+2p ctop7w 0.107 0.021276104
Z→ ττ+cc+0p etopw0 1.28 0.015810344

diboson WW itopww 12.40 0.835733126 0.074814598
diboson WZ itopwz 3.70 0.141737725
diboson ZZ itopzz 3.80 0.022529149

Figure C.3: Light class summary, part 2



Appendix D

MINUIT Transform

D.1 Introduction

The minimization program known as MINUIT is very popular among physicists. One

drawback of this program is that it is unable to minimize with respect to parameters

that have general mutual constraints. A particular constraint that often appears is the

desire for the parameters of a likelihood function to sum to unity ( 1.0 ). Explicitly,

with n parameters x1 . . . xn, we might desire that:

n
∑

i=1

xi = 1 (D.1)

where individually, 0 ≤ xi ≤ 1.

This appendix describes a variable transformation that can be applied such that

MINUIT is able to handle these situations.

D.2 Transformation

Because of the constraint given in Equation (D.1), our transformation takes us from

a likelihood function of n parameters to another containing only (n − 1) parameters.

The convention we will use is that the x’s will be the parameters of the untransformed

likelihood function, and a’s will represent the (n− 1) transformed parameters.

The transformation is given by
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x1 → a1

x2 → (1− a1)a2

x3 → (1− a1)(1− a2)a3 (D.2)

...

xn → (1− a1)(1− a2)...(1− an−1)

with each of the a’s taken to fall on the interval 0 ≤ ai ≤ 1. If we make the

definition that an ≡ 1, then a general transformation can be written as

xi → ai

i−1
∏

j=1

(1− aj) (D.3)

and from this, a recursion relation can be written as

xi+1

xi

=
ai+1(1− ai)

ai
(D.4)

For reference, we note that the inverse transformation is given by

a1 → x1 = 1−
n
∑

j=2

xj

...

ai →
xi

xi + . . .+ xn

(D.5)

...

an−1 →
xn−1

xn−1 + xn

Considering the constraint of Equation (D.1), we can see that the middle relation-

ship shown in Equation (D.5) is general in its form.

D.3 Gradient

The gradient of this transformation can be explicitly calculated in terms of the original

function’s partial derivatives.
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The full derivative of our function f with respect to one of our transformed variables

ai is given below. The full gradient is given by computing each of these expressions for

the (n− 1) variables a.

df

dai
=

n
∑

j=1

∂f

∂xj

∂xj

∂ai
(D.6)

Using Equation (D.2), we can compute the terms
∂xj

∂ai
. These partial derivatives

make up an n x (n − 1) matrix. To observe how this matrix behaves for an arbitrary

value of n, the n = 3, n = 4, and n = 5 cases are written explicitly below:

1 0

−a2 (1− a1)

−(1− a2) −(1− a1)

1 0 0

−a2 (1− a1) 0

−(1− a2)a3 −(1− a1)a3 (1− a1)(1− a2)

−(1− a2)(1− a3) −(1− a1)(1− a3) −(1− a1)(1− a2)

1 0 0 0

−a2 (1 − a1) 0 0

−(1 − a2)a3 −(1 − a1)a3 (1 − a1)(1 − a2) 0

−(1 − a2)(1 − a3)a4 −(1 − a1)(1 − a3)a4 −(1 − a1)(1 − a2)a4 (1 − a1)(1 − a2)(1 − a3)

−(1 − a2)(1 − a3)(1 − a4) −(1 − a1)(1 − a3)(1 − a4) −(1 − a1)(1 − a2)(1 − a4) −(1 − a1)(1 − a2)(1 − a3)

First, notice that these matrices fill only the lower left triangle. Next, notice that

the first n − 1 rows of the matrix are different then the last. This obviously derives

from the asymmetry of the last equation of our transformation. The first n − 1 rows

follow a pattern such that it can be formed by taking the expression for the jth row

as: (−aj)
∏j−1

i=1 (1− ai), and then in the kth column remove the associated (−ak) or

(1− ak) term from this expression. For the nth row, the expression is −∏n−1
i=1 (1− ai),

where the (1− ak) term is removed in the kth column. This Jacobian matrix can then

be used in computing the full gradient in Equation (D.6).

The discussion that follows will make the following assumption for the form of f ,

which is the one I’ve been employing in a recent experiment. Suppose f ∗ has the

following form:

f ∗( #»xi|
#»

θ ) =
N
∏

i=1

(

p
∑

j=1

(
#»

θ )j(
#»x i)j) (D.7)

Here, #»x and
#»

θ are vectors of length p. The function f is related to f ∗ as f =

− ln(f ∗), such that:
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f( #»xi|
#»

θ ) = −
N
∑

i=1

ln(

p
∑

j=1

(
#»

θ )j(
#»x i)j) (D.8)

Suppose we are using MINUIT to maximize f with respect to the θi’s. Each of the

N vectors #»x represent a data point where each dimension of x describes the probability

density for that data point to derive from the ith class. We would like to impose that
∑

θi = 1, as then the values that the θ’s take at the maximum of f are the most likely

fractional composition values for the different classes given these N data points.

Using the transformation we have described in the beginning of this document

to impose our constraint on
#»

θ , the gradient is easily calculated for MINUIT using

Equation (D.6) if we calculate ∂f

∂
#»

θ
. For our function f , we have:

∂f

∂θz
= −

N
∑

i=1

( #»x i)z

(
∑p

j=1 (
#»

θ )j(
#»x i)j)

(D.9)

D.4 Implementations

This section gives a C++ implementation of our coordinate transformation and the

calculation of its gradient.

Transformation

The following computes our transformation:

vector<double>

MaxLikeFCN::transformPar( const vector<double>& par ) const

{

// This transformation lets you impose a constraint such that

// 0 <= x[i] <= 1 and Sum( x[i] ) = 1

//

// Take N-1 variables 0 <= a[i] <= 1, and define a[N] = 1

//

// Therefore:

//

// x[1] = a[1]
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// x[2] = (1 - a[1]) a[2]

// x[3] = (1 - a[1]) (1 - a[2]) a[3]

// ...

// x[N] = (1 - a[1]) (1 - a[2]) ... (1 - a[N-1]) a[N]

//

// Also note that:

//

// x[i]/x[i-1] = ( 1 - a[i-1] ) a[i] / a[i-1]

//

// which makes for a quick recursive definition if a[i-1] isn’t zero!

//

// take the input vector, and add a[N] = 1 to

// make it the same length as x

vector<double> a( par );

a.push_back( 1.0 );

vector<double> x( a.size() );

// use the recursive definition, unless

// we get into divide by zero trouble...

x[0] = a[0];

for( unsigned i = 1; i < x.size(); ++i )

{

if( a[i-1] != 0. )

{

x[i] = x[i-1] * (1. - a[i-1]) * a[i] / a[i-1];

}

else

{

x[i] = a[i];
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for( unsigned j = 0; j < i; ++j )

{

x[i] *= (1. - a[j]);

}

}

}

return x;

}

Gradient

The following computes the gradient of the function f described in Equation (D.8).

The first half of this code which computes the Jacobian for the general transformation

in this document is general, and can be applied toward any function f .

vector<double>

MaxLikeFCNGrad::Gradient( const vector<double> & x ) const

{

//we need the gradient of the Minuit transformed parameters

//

// df/dx[i] = Sum_j( df/dxPrime[j] dxPrime[j]/dx[i] )

// these are the non-transformed coordinates

vector<double> xPrime = transformPar( x ) ;

// this will be the returned gradient

// ie g[i] = df/dx[i]

vector<double> g( x.size(), 0. );

// this is the partial derivative matrix for our transformation

// partial[i][j] = dxPrime[i]/dx[j]

vector< vector<double> > partial;

// compute the partial derivatives of the untransformed

// coordinates wrt the transformed ones
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for( unsigned i = 0; i < xPrime.size(); ++i )

{

vector<double> temp( x.size(), 0. );

if( i < x.size() )

{

for( unsigned j = 0; j <= i; ++j )

{

temp[j] = 1.;

for( unsigned k = 0; k <= i; ++k )

{

if( k != j )

{

if( k == i )

{

temp[j] *= -1. * x[k];

}

else

{

temp[j] *= 1. - x[k];

}

}

}

}

}

else

{

// last row of derivatives

for( unsigned j = 0; j < x.size(); ++j )

{

temp[j] = -1.;

for( unsigned k = 0; k < x.size(); ++k )

{

if( k != j )

{

temp[j] *= 1. - x[k];
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}

}

} // for

} // else

partial.push_back( temp );

}

// Un-comment to print the partials matrix

/*

for(unsigned i = 0; i< partial.size();++i)

{

for(unsigned j = 0; j < partial[i].size(); ++j )

{

cout << partial[i][j] << " ";

}

cout << endl;

}

*/

// now compute the gradients

// each gradient has the same denominator

// so we compute that first and save it

// then, each direction has its own numerator

// we compute all of those, and then update

// the gradients by adding numerator / denom

for( unsigned i = 0; i < _prob.size(); ++i )

{

// get the denominator term first

double denom = 0.;

for( unsigned j = 0; j < xPrime.size(); ++j )

{
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denom += xPrime[j] * _prob[i][j];

}

vector<double> numerator( x.size(), 0. );

for( unsigned j = 0; j < numerator.size(); ++j )

{

for( unsigned k = j; k < xPrime.size(); ++k )

{

numerator[j] += _prob[i][k] * partial[k][j];

}

}

for(unsigned k = 0; k < numerator.size(); ++k )

{

g[k] -= numerator[k] / denom;

}

}

return g;

}
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