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Zusammenfassung

Diese Arbeit befasst sich mit drei verschiedenen physikalischen Modellen, in de-
nen eine zufällige Komponente in Form eines Potentials bzw. Eichfeldes an ein
kubisches Gitter geknüpft ist.

Zuerst wird ein Modell untersucht, das in numerischen Rechnungen der Quan-
tenchromodynamik (Gitter-QCD), also der starken Wechselwirkung zwischen Ha-
dronen, benutzt wird. Die Formulierung dieses Models mit zufälligen Eichfeldern
auf den Kanten eines kubischen Gitters wird in den mathematischen Rahmen von
ergodischen Operatorfamilien eingefügt. Zunächst wird gezeigt, dass für kleine
Kopplungskonstanten die Ergodizität des zu Grunde liegenden Wahrscheinlich-
keitsmaßes gegeben ist. In diesem Bereich bilden die Wilson Dirac Operatoren
eine ergodische Operatorfamilie und es wird weiterhin gezeigt, dass die zugehöri-
ge integrierte Zustandsdichte existiert und fast sicher unabhängig von der gewähl-
ten Eichfeldkonfiguration ist.

Die nächsten beiden Modelle sind sich in ihrer physikalischen Situation ähn-
lich. Beide untersuchen einen kubischen Kristall mit Unreinheiten, welche in
Form des typischen Anderson-Modells, also als zufälliges Potential an den Gitter-
punkten, modelliert werden. Nun wird allerdings nicht ein einzelnes, sondern ein
System von Fermionen in diesem Kristall untersucht. Beide Kapitel sind somit
Ideen, das 1-Teilchen Anderson-Modell auf unendlich viele Fermionen auszudeh-
nen.

Zunächst wird die Hartree-Fock Näherung auf ein solches System angewen-
det. Im Fall der reduzierten Hartree-Fock Theorie bei positiver Temperatur und
festem chemischen Potential untersuchen wir den thermodynamischen Limes und
zeigen die Existenz und Eindeutigkeit eines Minimierers des Hartree-Fock Funk-
tionals, sowie die Tatsache, dass die Minimierer eine ergodische Operatorfamilie
bilden.

Im letzten Modell wird das Fermionensystem algebraisch mittelsC∗-Algebren
formuliert. Dann wird die Wärmeproduktion unter dem Einfluss eines äußeren,
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örtlich und zeitlich inhomogenen aber kompakt getragenen, elektromagnetischen
Feldes untersucht. Im Falle kleiner Felder, also im Bereich der linearen Response,
wird die Existenz einer Funktion, die als Leitfähigkeit aufgefasst werden kann,
gezeigt. Die Wärmeproduktion entspricht dann exakt dem empirisch bekann-
ten Jouleschen Gesetz. Für den Fall des perfekten Leiters sowie des perfek-
ten Isolators erwartet man aus physikalischer Sicht keinerlei Wärmeproduktion.
Tatsächlich kann gezeigt werden, dass im Limes sehr kleiner Unreinheiten bzw.
unendlich großer Unreinheiten die Leitfähigkeit gegen null konvergiert. Außer-
dem wird bewiesen, dass in einem Bereich mittelerer Unreinheiten die Wärmepro-
duktion wie erwartet strikt positiv ist.



Summary

This thesis deals with three different physical models, where each model involves
a random component which is linked to a cubic lattice.

First, a model is studied, which is used in numerical calculations of Quan-
tum Chromodynamics (QCD), hence the theory of the strong interaction between
hadrons. In these calculations random gauge-fields are distributed on the bonds
of the lattice Zd according to the so-called Wilson-action. The formulation of
the model in lattice QCD is fitted into the mathematical framework of ergodic
operator families which has been built up to study random Schrödinger opera-
tors. We prove, that for small coupling constants, the ergodicity of the underlying
probability measure is indeed ensured. In this regime, the Wilson Dirac opera-
tors constitute an ergodic operator family in the probabilistic sense. Then we can
prove, that the integrated density of states exists in the thermodynamic limit and
is almost surely independent of the chosen gauge field configuration.

The physical situations treated in the next two chapters are more similar to
one another. In both cases the principle idea is to study a fermion system in a
cubic crystal with impurities, that are modeled by a random potential located at
the lattice sites, hence the Anderson setup. Very roughly speaking both chapters
can be understood as ideas to extend the 1-particle Anderson model to the case of
infinitely many particles.

In the second model we apply the Hartree-Fock approximation to such a sys-
tem. For the case of reduced Hartree-Fock theory at positive temperatures and a
fixed chemical potential we consider the limit of an infinite system. In that case we
show the existence and uniqueness of minimizers and that they form an ergodic
operator family.

The third model also deals with a system of fermions in a crystal with impuri-
ties. The question imposed here is to calculate the heat production of the system
under the influence of an outer electromagnetic field. We show that in linear re-
sponse theory there is a function, the AC-conductivity, such that the heat produc-
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tion corresponds exactly to what is empirically predicted by AC-Joule’s law. From
the physical point of view, one does not expect any heat production in a perfect
insulator, as well as for the case of a perfect conductor. In both cases we can show
that the AC-conductivity converges to zero. Nevertheless, the AC-conductivity is
not always zero. We show that the heat production is indeed strictly positive in a
regime of moderate randomness.
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Chapter 1

Introduction

In this thesis different physical models are studied, where the common element
of all presented models is a random component connected to a lattice. The lattice
under consideration is here Zd, but any other lattice might be studied as well.
Apart from model-specific methods, there are two mathematical components that
are used frequently in this work and are explicitly connected with the random
component of the models, namely the theory about ergodic operator families and
the Ackoglu-Krengel (superadditive) ergodic theorem. The first one ensures the
non-randomness of the spectrum of a certain family of random operators, and
the second one allows us to replace a mean over infinitely many boxes by an
expectation value, and can be seen as an expansion of Birkhoff’s Theorem to the
lattice Zd. These two rather simple ingredients turn out to be futile methods in
very different physical fields.

The following introduction gives a description of the three different models
and the according physical setup as well as a presentation of the obtained results.
This introducing part is meant to give an detailed overview over the work.

The next chapters, that is Chapter 2 to 4, then refer to one of the models each
and contain again a more precise description, the exact mathematical formulation
and all results as well as their proofs.

In order to present the results in short in the introduction, some notations are
simplified and not all definitions and results are complete. The precise formulation
can always be found in the according chapters.

For a better overview, the three different models are presented separately in
the following.
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2 CHAPTER 1. INTRODUCTION

Model 1: Lattice QCD and the Wilson Dirac operator
In Chapter 2 a model is studied which evolves from the theory of the strong in-
teraction, that is Quantum Chromodynamics (QCD). In order to give a rough
overview over the idea of lattice QCD we recite the associated Lagrangian density,
that depends on the fermion field ψ(x), ψ(x) and gauge fields A := (Aµ(x))µ,x,
where x is a point in the (Minkowski) space-time and µ ∈ {1, . . . , 4},

L(x) = −1

4
Fµν(x)F µν(x)︸ ︷︷ ︸

Lg

+ ψ(x)
(
iD(A)−m

)
ψ(x)︸ ︷︷ ︸

Lf

. (1.1)

Here, D(A) = γµ(∂µ + iAµ) is the Dirac operator with Dirac matrices γµ and
Fµν(x) = ∂µAν(x)−∂νAµ(x)− [Aµ(x), Aν(x)] is the field tensor. As it turns out,
concrete quantitative predictions are difficult to derive from (1.1) and one uses
either calculations in perturbation theory or numerical simulations on a discretized
finite space-time, that is made euclidean by a Wick rotation. These numerical
studies and simulations are generally summarized under the notion of lattice QCD
(LQCD) and are a very important and frequently used tool, since several important
basic properties of QCD occur in the regime of low energies, where perturbation
theory in the QCD coupling constant cannot be applied.

For example the low lying eigenvalues of the (discretized) fermion Dirac oper-
ator are of particular interest since they are deeply linked to the value of the chiral
condensate 〈ψψ〉, c.f. [8], which indicates spontaneous chiral symmetry breaking
if it is non-vanishing. Furthermore, the distribution of the low-lying eigenvalues
of the fermion Dirac operator is observed to be very close to the one of the cor-
responding (i.e., respecting symmetries) random matrix ensemble. This idea was
put forward in [34, 39, 37] and confirmed by numerous numerical studies, for a
review see for example [38].

This is the starting point for our analysis, that can be seen as a first, modest
step to enlighten these connections. In Chapter 2 we fit the formulation of the
model in LQCD into the mathematical framework of ergodic operator families.
This mathematical field has been originally built up to study random Schrödinger
operators and, especially, the Anderson model. In contrast to random Schrödinger
operators, the randomness in LQCD models lies on the lattice bonds - not on the
lattice sites.

We consider the lattice Zd, d ≥ 2, with fermion fields supported on the sites
and gauge fields supported on the bonds of the lattice. The Hilbert space of the
fermion fields is H = `2(Zd,Ck). The considered operators on H also depend on
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the configuration of gauge fields, U = {Ub}b∈B, on the bonds of Zd, where the
set of bonds is given by B := Zd × {1, . . . , d}. The gauge fields associated to
the bonds are elements of a compact Lie group G, the gauge group, that is either
SO(N), SU(N), or U(N).

The gauge field configuration is randomly generated with a distribution that is
determined by the Wilson action SW , which is a discretized version of the Young-
Mills action SYM =

∫
Lg(x)dx. In a finite subset Λ ⊂ Zd it is given by

SW (U) =
∑
p∈P

Sp(Up), (1.2)

where P is the set of all so-called plaquettes (in Λ), that are plane squares consist-
ing of four points of the form

p = p(x;µ, ν) =
{

(x, µ), (x+ êµ, ν), (x+ êν , µ), (x, ν)
}
, (1.3)

where µ 6= ν ∈ {1, . . . , d}, Up is the product of the gauge fields along a plaquette
p, and

Sp(Up) = Re Tr(1− Up) . (1.4)

The origin of the plaquettes is the discretization of the field tensor Fµν in the
gluonic part Lg of the Lagrangian density (1.1).

In Chapter 2 the precise setup of the underlying probability space is given in
detail. Here we summarize, that for finite regions the probability measure of the
distribution of gauge field configuration U is given by

PΛ(U) := (ZΛ)−1e−βSW (U) P̃Λ(U) (1.5)

where β > 0 is a coupling constant, ZΛ a normalization factor and P̃Λ(U) =

×b∈B µH is the product measure of all bonds in Λ with µH being the normalized
Haar measure of the gauge group.

Then we use the Gibbs formalism to perform the thermodynamic limit, that
means Λ is approaching Zd. It ensures the existence of a probability measure P
whose ’restrictions’ to finite Λ ⊂ Zd are exactly the measures PΛ. This measure
is known to be unique for small β, in our case for

0 < β <
1

12N(d− 1)
. (1.6)

The first main result of Chapter 2 is that the condition on the uniqueness of P
also ensures its ergodicity, i.e. P obeys

1

(2L+ 1)d

∑
l∈Zd, ‖l‖∞≤L

P(A ∩ T lA′)→ P(A)P(A′), as L→∞, (1.7)



4 CHAPTER 1. INTRODUCTION

for all sets A,A′ of the underlying σ-algebra F , if 0 < β < 1
12N(d−1)

.
Then we are ready to start our analysis of the Wilson Dirac Operator DW ≡

DW (U) acting on the Hilbert space H, which is a discretization of the fermion
Dirac operator. Here we do not give its explicit form for simplicity, but we remark
that it also depends on the gauge field configuration U and obeys the covariance
condition

τ `DW (U)τ−` = DW (T `U) , (1.8)

where τ ` is the translation in H by ` ∈ Zd and T ` is the according translation of
the gauge field configuration. Together with the ergodicity of P a famous result
of Pastur [32] gives the non-randomness of the spectrum of the operator family
{DW (U)}U∈GB .

This observation is crucial to proof the main result of Chapter 2, that is the
existence and non-randomness of the integrated density of states of the Wilson
Dirac Operator:

Theorem 1.0.1. Choose 0 < β < 1
12N(d−1)

(such that P is ergodic). Let (Ωn)n∈N

be a sequence in Zd of nested cubes, Ωn ⊆ Ωn+1, with Ωn ↗ Zd and NΩn,U(E)
the number of eigenvalues of DW (U) restricted to Ωn that are smaller than E.

Then the limit
ρU(E) := lim

n→∞

1

|Ωn|
NΩn,U(E) (1.9)

exists for allE ∈ R, P-almost surely, and is independent of the sequence (Ωn)n∈N.
Furthermore, for all E ∈ R, the integrated density of states ρU(E) is indepen-

dent of U , P-almost surely.

In Chapter 2 also different boundary conditions for the restriction ofDW (U)to
to a finite subset Λ ⊂ Zd are considered.

Finally, the author would like to emphasize, that the results of Chapter 2 are
common work with Volker Bach and are also published in [4].

Model 2: Hartree Fock Theory for Random Schrödinger Oper-
ators
The physical situations treated in Chapter 3 and Chapter 4 are more similar to one
another. In both cases the principal idea is to study a fermion system in a cubic
crystal with impurities. Very roughly speaking both chapters can be understood
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as ideas to extend the 1-particle Anderson model to the case of infinitely many
fermions.

The idea of random Schrödinger operators is to model a disordered quantum
mechanical system, e.g. a crystal with impurities, by introducing a random po-
tential on the lattice sites. For example, the Anderson Hamiltonian hω acting on
H := `2(Zd) is given by

hω = −∆d + Vω , (1.10)

where ∆d is the discrete Laplacian and Vω the multiplication operator with the
random potential {Vω(x)}x∈Zd . In the Anderson model {Vω(x)}x∈Zd is assumed
to be an independently and identical distributed (i.i.d.) random variable.

As it turns out, those systems show the tendency to have localized states, this
effect is the famous Anderson localization. The theory of random Schrödinger
operators is very successful and has led to deeper mathematical understanding,
as for example the theory of ergodic operator families, which have a non-random
(essential, discrete, continuous, absolutely continuous etc) spectrum [32, 29].

The state of the art is to handle systems with finitely many interacting fer-
mions in the thermodynamic limit [1]. At that point, the question of a system
of infinitely many interacting fermions, as for example an infinite system with
constant fermion density, arises naturally.

In Chapter 3 we apply the Hartree-Fock approximation to a system of electrons
in the Anderson setup. Technically, the fermion system is described by elements
of the fermion Fock space Ff , a special Hilbert space whose construction is de-
scribed in Chapter 3. For the introduction, let us summarize that the elements
of Ff are wave functions that describe a system of particles that obey the Pauli
principle. The number of fermions in such a systems is not necessarily fixed.

The Hartree-Fock functional is an approximation to the energy of the fermion
system. It takes into account the energy of each fermion with respect to an ex-
ternal, in our case random, potential. This amount of energy is described by the
1-particle Anderson Hamiltonian hω. A second part represents the interaction be-
tween the fermions, via a certain, in our case repulsive, interaction potential W ,
and in the case of positive temperatures a third term is added, which yields the
entropy S of the system.

The basic idea of the Hartree-Fock approximation is to give an upper bound
to the energy of the ground state by minimizing the Hartree-Fock functional over
states evolving from Slater determinants, i.e., product wave functions. As it turns
out it is of advantage to run the minimization even over quasi-free, particle con-
serving states, which contain also Slater determinants. These can be represented
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by 1-particle density matrices {γ ∈ L1(H) | 0 ≤ γ ≤ 1}.
First, we consider finite systems, that are finitely many fermions in a finite

region Λ ⊂ Zd. Here, we suppress the dependence on Λ in the notation, where all
operators are to be understood as acting on `2(Λ) or `2(Λ) ⊗ `2(Λ) in the case of
the interaction W and the exchange operator Ex, which exchanges components.
In Chapter 3 we study the following functionals, that are to be minimized over the
set of 1-particle density matrices and represent different physical cases

• The Hartree-Fock functional, describing a system at zero temperature,

E (HF)
ω (γ) = Tr `2(Λ){hωγ}+

g

2
Tr `2(Λ)⊗`2(Λ){W (1− Ex )(γ⊗γ)} , (1.11)

• The Hartree-Fock functional for a system at zero temperature and at fixed
chemical potential µ

Ẽ (HF)
ω,µ (γ) = E (HF)

ω (γ)− µTr `2(Λ){γ} , (1.12)

• the Hartree-Fock pressure functional, for a system at temperature β−1 > 0,

−P(HF)
ω,β (γ) = E (HF)

ω (γ)− β−1S(γ) , (1.13)

• and the Hartree-Fock grand canonical potential functional for a system at
temperature β−1 > 0 and fixed chemical potential µ ∈ R

M(HF)
ω,β,µ(γ) = E (HF)

ω (γ)− β−1S(γ)− µTr `2(Λ){γ} . (1.14)

For the first and third functional we fix the particle number, that is given by Tr{γ}
for the minimization. The coupling constant g > 0 scales the strength of the
interaction. Furthermore, we also consider the case of reduced Hartree-Fock the-
ory, where the exchange operator Ex is neglected, hence the reduced Hartree-Fock
functional is defined as

E (rHF)
ω (γ) = Tr{hωγ}+

g

2
Tr{W (γ ⊗ γ)} , (1.15)

and accordingly for Ẽ (HF)
ω,µ , −P(rHF)

ω,β ,M(rHF)
ω,β,µ .

For finite regions Λ ⊂ Zd, the minimizers of the functionals introduced above
fulfill self-consistent equations, in the full as well as in the reduced case. For
example we obtain forM(HF)

ω,β,µ that any minimizer γ0 obeys

γ0 =
(

1 + exp
[
β(H

(HF)
eff [γ0]− µ)

])−1

, (1.16)
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where H(HF)
eff [γ0] ∈ B(`2(Λ)) is the effective Hamiltonian, that depends on the

minimizer γ0. Note, that the effective Hamiltonian is different for the reduced
Hartree-Fock theory.

In the reduced case, we use the a convexity property of E (rHF)
ω and the self-

consistent equations, to deduce the uniqueness of the minimizers of −P(rHF)
ω,β , and

M(rHF)
ω,β,µ .
Thus it is reasonable to study the minimizers of these reduced functionals in

the thermodynamic limit Λ↗ Zd. As in Chapter 2, we assume Λn to be the cube
of side length 2n + 1 centered at zero and take the limit n → ∞. Then we proof
the existence of an accumulation point of minimizers γn ofM(rHF)

ω,β,µ in Λn in the
weak-* sense and show that this accumulation point also fulfills self-consistent
equations.

For positive temperatures and fixed chemical potential, hence for minimiz-
ers ofM(rHF)

ω,β,µ , we can show, that the limit is unique provided that β · g is small
enough, i.e. for high temperature and small interaction between the fermions.
Furthermore, we are able to proof that in this case the minimizers as well as the
corresponding effective Hamiltonians form ergodic operator families in the prob-
abilistic sense, hence have a non-random spectrum.

Model 3: Entropy production of fermions in disordered media

The last chapter is common work with Walter de Siqueira Pedra and Jean-Bernard
Bru. Only those parts of the in some aspects considerably larger work [15, 17, 16,
18] are presented, where the author has had a major contribution and that were
completely finished, when this thesis was done.

As mentioned before, Chapter 4 also deals with a system of fermions in a crys-
tal with impurities. The focus is here to calculate the heat or entropy production of
the system, due to the impurities, under the influence of an electromagnetic field.

In general, the electric resistance of conductors is supposed to result from both,
the presence of disorder in the host material and interactions between charge car-
riers. The first aspect is included in our model, we use the Anderson setup as
introduced in Chapter 3 to model impurities. The interaction between charge car-
riers is not fully included. We respect the fermionic nature of the electrons, hence
the particles obey the Pauli principle, but do not include any further interaction be-
tween them, such as for example the Coulomb repulsion. If the density of charge
carriers is low, the effect of a mutual force between them is assumed to be small
and hence the setup considered here can be seen as a suitable model in that case.



8 CHAPTER 1. INTRODUCTION

As mentioned before, the impurities of the crystal are modeled as in the usual
Anderson setup. The i.i.d. random potential on the lattice sites is assumed to be
bounded, e.g. Vω ∈ [−1, 1] and we scale it by a parameter λ > 0. This is a
preparation to consider also the cases of a perfect conductor, that would be λ→ 0
as well as a perfect insulator, where the randomness is supposed to be very large,
hence λ→∞.

Then we study a fermion system in that setup under the influence of an exter-
nal electromagnetic potential. The fermion system is infinitely extended and de-
scribed by the C∗-algebra U , that is generated by the identity and the creation and
annihilation operators {a∗x, ax}x∈Zd , which obey the canonical anti-commutation
relations and thus encode the Pauli exclusion principle. The electromagnetic po-
tential is inhomogeneous, but assumed to be smooth and compactly supported in
time- and space,

A = A(t, x) ∈ C∞0 (R× Rd;Rd) . (1.17)

In the following, we denote by t0 the time where the electromagnetic potential is
switched on and by t1 the time where it is switched off again. The fact that A is
compactly supported in time induces the so-called AC-condition for the electric
field EA, which is given by

EA(t, x) := −∂tA(t, x) , (1.18)

namely, ∫ t1

t0

EA(t, x)dt = 0 . (1.19)

As the main assertion about the heat production in the system caused by A is
formulated for times t ≥ t1, one should keep in mind, that we really attend to
the AC-case in the following and do not aim to formulate results concerning the
DC-case.

As usual, the electromagnetic potential A is minimally coupled to the fermion
system, this amounts to replacing the discrete Laplacian ∆d in the Anderson
Hamiltonian by the minimally coupled one, denoted here by ∆

(A)
d , which is then

time-dependent. Then we study the induced dynamics, that means we consider
the Schrödinger equation on the one-particle Hilbert space `2(Zd) with time-
dependent Hamiltonian

∆
(A)
d + λVω ∈ B(`2(Zd)) ,
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which has a unique solution determined by the family {U (ω,λ,A)
t,s }t≥s of unitary

operators on `2(Zd). The family {U (ω,λ,A)
t,s }t≥s induces a random two-parameter

group {τ (ω,λ,A)
t,s }t≥s of Bogoliubov automorphisms of the CAR algebra U .

Before the electromagnetic field is turned on, i.e. as initial state, we assume the
system to be at thermodynamic equilibrium. For infinite systems, this is realized
by taking the unique Kubo-Martin-Schwinger-state (KMS-state) %(β,ω,λ) ≡ %(β)

of the system at temperature β−1, random potential configuration ω and scaling
parameter λ. The precise definition of KMS-states is given in Section 4.2.4, here
we may very roughly summarize, that the finite volume analog of the KMS-state
minimizes the free energy of the finite system. Then we take the time evolution
of this state under the influence of the electromagnetic potential A, that is

ρ
(β,A)
t :=

{
%(β) , t ≤ t0 ,

%(β) ◦ τ (ω,λ,A)
t,t0 , t ≥ t0 .

(1.20)

Now we are ready to define the heat production of the system, that is the
amount of energy, or more precisely entropy, the system gains under the influence
of A. We consider the energy observable in the box of side length 2n+ 1, that is

Λn := {x ∈ Zd : ‖x‖∞ ≤ n} , (1.21)

which is given by

Hn :=
∑
x,y∈Λn

〈ex, (∆d + λVω) ey〉a∗xay ∈ U , (1.22)

for any n ∈ N.
The energy increment in the state ρ(β,A)

t w.r.t. the equilibrium state %(β) ≡
ρ

(β,A)
t0 is then given by

I
(β,A)
t := lim

n→∞

{
ρ

(β,A)
t (Hn)− ρ(β,A)

t0 (Hn)
}
, (1.23)

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞0 and t ∈ R, whereas it is a priori not

clear that the limit above exists. We prove that I(β,A)
t is indeed well-defined for

small fields. Furthermore, we show that the energy increment I(β,A)
t can also be

expressed as an entropy production, and hence it is in particular positive.
The main result of Chapter 4 is the following theorem, that we call AC-Joule’s

law in the following. We study the limit of the energy increment I(β,ηAL)
t for
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(η, L−1) → (0, 0), where AL(x, t) = A(L−1x, t) is a rescaled version of A.
This limit corresponds to analyzing the linear response of the fermion system
under the influence of a time-dependent electric field localized in a very small but
macroscopic region of the bulk. As it turns out, the energy increment I(β,ηAL)

t is
of order O

(
η2Ld

)
. This is due to the fact that the electromagnetic energy given

to the system, that is the L2-norms of the fields, is also of order O
(
η2Ld

)
, by

classical electrodynamics.

Theorem 1.0.2.
Let β ∈ R+ and λ ∈ R+

0 . Then there is a unique function σ ≡ σ(β,λ) ∈ C (R,R)
satisfying σ(t) = σ(|t|) and σ(0) = 0, and a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω
of full measure such that, for any ω ∈ Ω̃, A ∈ C∞0 and t ≥ t1,

I := lim
(η,L−1)→(0,0)

{(
η2Ld

)−1
I

(β,ηAL)
t

}
(1.24)

=

∫ t

t0

∫ s1

t0

[
σ(s1 − s2)

∫
Rd
〈EA(s1, x), EA(s2, x)〉 ddx

]
ds2ds1

=
1

2

∫
R

∫
R

[
σ(s1 − s2)

∫
Rd
〈EA(s1, x), EA(s2, x)〉 ddx

]
ds2ds1 ≥ 0 .

Note, that in Theorem 1.0.2, we make an assertion for t ≥ t1, that means as
soon as the electromagnetic field is turned off. For all those times t, t′ ≥ t1 the
energy increment is no longer time-dependent, i.e. It = It′ .

The physicist J. P. Joule observed that the heat (per second) within a circuit
is proportional to the electric resistance and the square of the current in the DC-
regime. Nevertheless, we name Theorem 1.0.2 AC-Joule’s law because of two
clear similarities. Qualitatively like Joule’s law, Theorem 1.0.2 describes the rate
at which resistance in the fermion system converts electric energy into heat en-
ergy for t ≥ t1. Quantitatively, Theorem 1.0.2 is an analogue of Joule’s law
in the AC-regime with currents and resistance replaced by electric fields and AC-
conductivity. To see this connection more explicitly, let us assume for the moment,
that the AC-conductivity σ in Theorem 1.0.2 would have a Fourier transform σ̂.
Then (1.24) could be rewritten as

I =
1

2

∫
R

[∫
Rd
|ÊA(ν, x)|2ddx

]
σ̂(ν)dν , (1.25)

where ÊA(·, x) is the Fourier transform of the map t 7→ EA(t, x), and the heat
production is proportional to the (integrated) square of the absolute value of the
electric field, while σ̂ plays the role of an (inverse) impedance.
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However, in general, we can not assume, that σ can be Fourier transformed.
This leads us to the notion of an AC-conductivity measure. This notion is inspired
by the work of Klein, Lenoble and Müller, who introduced in [25] the concept
of an AC-conductivity measure for a system of fermions subjected to a random
potential for the first time. Let us note here, that the setup in [25] is a bit different
than the one presented here, for example we take space inhomogeneous fields
instead of homogeneous ones.

During the proof of Theorem 1.0.2, we obtain an explicit expression for the
AC-conductivity as an expectation value over certain propagators, from which
we deduce by Bochner’s Theorem that for any inverse temperature β > 0 and
parameter λ ≥ 0, there is a finite positive measure µσ, such that

σ(t) =

∫
R

(
eitν − 1

)
dµσ(ν) , t ∈ R .

Then (1.24) can be written as

I =
1

2

∫
R\{0}

[∫
Rd
|ÊA(ν, x)|2ddx

]
dµσ(ν) . (1.26)

We complete Chapter 4 by studying µσ for different regimes of randomness.
More precisely, we model a perfect conductor by the limit λ→ 0+, and a perfect
insulator by taking λ → ∞. From the physical point of view, one does not ex-
pect any heat production in the system for both cases. Indeed, we prove that our
model shows exactly the expected behaviour, i.e. the AC-conductivity measure
µσ converges in the weak∗-topology to the trivial measure (0 · dν) on R\{0}, as
λ → ∞ or λ → 0+. The skeptical reader might suspect at that point, that the
AC-conductivity measure is the trivial measure for all λ, β. However, this is not
the case. We prove that the heat production is generally a strictly positive quantity
in a regime of moderate randomness, i.e. for λ ∈ (λ0/2, λ0) with some suitable
λ0 > 0, we have an almost surely strictly positive heat production.

To conclude the presentation of the main results of Chapter 4 let us remark,
that ongoing work shows, that it is possible to extend the model presented here and
the used techniques to get much broader results. Especially, the consideration of
the electromagnetic free-energy in addition to the entropy increment It introduced
above, allows us to formulate results similar to Theorem 1.0.2 for all times t ∈ R
and thus also for the DC-case, see [16].

Furthermore, it is to be emphasized, that the inclusion of an additional interac-
tion between the fermions could, in principle, be included in our model. Although
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the technical treatment is then much more demanding and elaborate, it seems nev-
ertheless possible. This might be the major aspect of this work for further studies
and the main advantage in contrast to other publications concerning the concept
of an AC-conductivity measure, as for example [25].



Chapter 2

The Integrated Density of States for
the Wilson Dirac Operator

In this section a result on the integrated density of states for the Wilson Dirac Op-
erator is presented. It is based on common work with Volker Bach and published
in [4]. After the physical motivation in Section 2.1, the precise mathematical
description of the model is presented in Section 2.2. Then the main result is for-
mulated in Section 2.3 and proven in Section 2.4.

2.1 Physical motivation
The Standard Model of Elementary Particles provides a common conceptual ba-
sis for all elementary forces except gravity. The part which describes the strong
nuclear force is called Quantum Chromodynamics (QCD). The associated La-
grangian density has a clear and simple appearance that is

L(x) = −1

4
Fµν(x)F µν(x) + ψ(x)

(
iD(A)−m

)
ψ(x), (2.1)

with D(A) := γµ(∂µ + iAµ) being the Dirac operator of the fermion field ψ(x),
ψ(x), which depends on the gauge fieldA := (Aµ(x))µ,x, andFµν(x) = ∂µAν(x)−
∂νAµ(x)− [Aµ(x), Aν(x)] being the field tensor. In spite of its structural simplic-
ity, concrete quantitative predictions are difficult to derive from (2.1), and one of-
ten resorts either to calculations in perturbation theory or numerical simulations on
a discretized (Euclidean, after Wick rotation) space-time, known as lattice QCD
(LQCD, see [30] for an overview).

13
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Several basic properties of QCD, such as the spontaneous breaking of chiral
symmetry or the phenomenon of quark confinement, manifest themselves in the
regime of low energies, where perturbation theory in the QCD coupling constant
cannot be applied. Spontaneous chiral symmetry breaking is signaled by the for-
mation of a non-vanishing chiral condensate 〈ψψ〉. In a seminal paper [8], Banks
and Casher formulated a link between the value of the condensate and the spectral
properties of the Dirac operator D in the deep infra-red. Since the gauge field A
does not appear explicitly in the observable, it acts as a background field which
nonetheless determines the spectral properties in a non-trivial way.

The idea that the distribution of the low-lying eigenvalues of the fermion Dirac
operator is very close to the one of the corresponding (i.e., respecting symmetries)
random matrix ensemble was put forward in [34, 39, 37] and affirmed by numer-
ous numerical studies, e.g. [24, 9], for a review see for example [38]. In fact,
these distributions agree to an accuracy that would, perhaps, allow to replace the
derivation of average spectral properties of the fermion Dirac operator by sam-
pling gauge field configurations with the random matrix eigenvalue distribution.
The robustness of this phenomenon over a broad range of parameter values, like
the underlying gauge group or the system’s temperature (in the Boltzmann weight)
is also remarkable.

In the following we fit the formulation of the model in LQCD into the mathe-
matical framework of ergodic operator families which has been built up over the
past three decades or so to study random Schrödinger operators and, especially,
the Anderson model. In contrast to random Schrödinger operators, however, the
randomness in LQCD models lies on the lattice bonds - not on the lattice sites -
and corresponds to a random magnetic field, rather than an alloy or a quenched
glass.

We prove that Dirac operators of LQCD which depend on the gauge field
indeed constitute ergodic operator families in the probabilistic sense, provided the
gauge field itself is ergodic, i.e., has sufficient rapidly decaying correlations (see
Section 2.2.2 for a precise formulation). This, in turn, is a fair assumption in many
physical situations, e.g., at high temperature. As a consequence of our result the
integrated density of states exists in the thermodynamic limit and is almost surely
independent of the chosen gauge field configuration.

Many observables can be expressed in terms of derivatives of the QCD parti-
tion function with respect to source terms. For example, the chiral condensate is
given by [38]

〈ψψ〉 = − lim
m→0

lim
V→∞

1

V
∂m logZQCD, (2.2)
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with the partition function

ZQCD =

∫ ∏
x∈V,µ=1,...,d

dAµ det
[
iD(A) +m

]
e−SYM (A). (2.3)

Here, the integration of the fermionic variables yields the fermion determinant
det[iD(A) +m], and SYM(A) is the Euclidean Yang-Mills action.

It is customary to use the quenched approximation in numerical simulations,
which amounts to setting the fermion determinant is equal to one. This reduces
the numerical effort significantly and corresponds to the physical case of infinitely
heavy sea quarks.

The discretization of the Dirac operator is also subtle, because the naive dis-
cretization leads to the occurrence of fermion doublers, which have no physical
meaning. There are several ways to work around this problem. Wilson proposed
to add a term that vanishes in the continuum limit and suppresses the doublers on
the lattice [40]. Another method is to introduce staggered fermions - the lattice
is divided up in sub-lattices where different staggered phases live, that are inter-
preted as physical phases [27, 36]. We are mainly interested in those two cases,
where the Dirac operator still has nearest-neighbour interaction. This is not the
case for another elegant solution, the overlap operator proposed in [31].

2.2 Introduction of the model
Now we come to the precise description of the mathematical setting. We consider
the lattice Zd, d ≥ 2, with fermion fields supported on the sites and gauge fields
supported on the bonds of the lattice. We only take the one-particle case into
account. Then the matter fields are complex vectors and the configuration of all
matter fields is supposed to be an element of the Hilbert space H = `2(Zd,Ck)
of square summable Zd-sequences in Ck. H is equipped with the usual scalar
product

〈ϕ, ψ〉 =
∑
x∈Zd

d∑
i=1

ϕ̄i(x)ψi(x), ϕ, ψ ∈ H. (2.4)

We will consider operators on H, that also depend on the configuration of
gauge fields on the bonds of Zd. The set of bonds in the lattice Zd is denoted by

B := Zd × {1, . . . , d}. (2.5)
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The bond (x, µ) ∈ B is the one connecting x and x + êµ, with êµ the unit vector
in Zd pointing in direction µ. We give the bond (x, µ) the orientation from x to
x+ êµ.

The gauge fields associated to the bonds are elements of a compact Lie group
G, the gauge group. We assume G to be either SO(N), SU(N), or U(N) to be
explicit and since these are the relevant physical cases. The gauge field on the
bond b = (x, µ) is denoted by Ux,µ or Ub.

It turns out to be necessary to consider the orientation of a bond, the gauge
field for going from x+ êµ to x is Ux+êµ,−µ and we set Ux+êµ,−µ = U−1

x,µ.
A gauge field configuration is the collection {Ub}b∈B. As mentioned before,

this gauge field configuration is randomly generated. In order to specify the under-
lying probability space in the next section, we will need the notion of a plaquette,
a collection of four bonds that form a plane square in Zd,

p(x;µ, ν) :=
{

(x, µ), (x+ êµ, ν), (x+ êν , µ), (x, ν)
}
, (2.6)

with µ 6= ν. We need the product of the gauge fields along a plaquette p =
p(x;µ, ν),

Up := Ux;µ,ν := U−1
x,ν U

−1
x+êν ,µ

Ux+êµ,ν Ux,µ, (2.7)

where the orientation of the bonds leads to the inverse gauge fields. Thus we have
Ux;µ,ν = U−1

x;ν,µ and define a plaquette as positively orientated if µ < ν. The set of
all positively orientated plaquettes is denoted by

P :=
{
p(x;µ, ν)

∣∣ x ∈ Zd, µ, ν ∈ {1, . . . , d
}
, µ < ν}. (2.8)

Figure 2.1 shows a plaquette and its associated gauge fields.

-

6

�

?u u

u u

u u

u u

x x+ êµ

x+ êµ + êνx+ êν

Ux,µ

Ux+êµ,ν

U−1
x+êν ,µ

U−1
x,ν

Figure 2.1: The plaquette p(x;µ, ν) and the associated gauge fields are sketched
in the (µ, ν)-plane of Zd.
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2.2.1 The probability space
We start by specifying the probability space for a single bond. Since G is a com-
pact Lie group, G is equipped with a natural measure, the Haar measure µH . Be-
cause of the compactness of G, the Haar measure µH is normalized and we obtain
the probability space (G,F0, µH), with F0 being the σ-algebra of Borel sets of
the topological space G. A priori, we let the gauge field Ub on a single bond be
a random variable that is uniformly distributed with respect to the Haar measure
µH of G.

Let Ω ⊆ B be a (possibly infinite) subset of B. The gauge field configuration
U = {Ub}b∈Ω can be regarded as an element of the product space GΩ. Note that
GΩ is compact in the product topology by Tychonov’s Theorem. The probability
space for gauge field configurations is now constructed by means of cylinder sets
as, for example, in [10]. A cylinder set is a subset of GΩ of the form

M =
{
U ∈ GΩ

∣∣ Ub1 ∈ A1, . . . , Ubn ∈ An
}

(2.9)

with A1, . . . , An ∈ F0 and b1, . . . , bn ∈ Ω. The set of all cylinder sets is denoted
Z . We take as a σ-algebra for GΩ the σ-algebra FΩ generated by the system of all
cylinder sets. For finite subsets Ω ⊂ B, FΩ is the usual product σ-algebra. The
probability measure P̃Ω on GΩ is then defined to be the product measure, setting
for every cylinder set

P̃Ω

({
U ∈ GΩ

∣∣ Ub1 ∈ A1, . . . , Ubn ∈ An
})

=
n∏
i=1

µH(Ai). (2.10)

Finally, define F := FB and P̃ := P̃B.
Now, we modify the measure P̃Ω by a weight function that represents the gauge

action as it is used in lattice QCD calculations. Those calculations are done on
finite lattices, of course. Therefore, let Λ ⊂ B be a finite region and η ∈ GB a
gauge field configuration, that will play the role of a boundary condition, which
fixes the gauge field outside of Λ. Then the underlying probability measure is of
the form

Pηβ,Λ(U) := (Zη
β,Λ)−1e−βS

η
Λ(U) P̃Λ(U) (2.11)

with β > 0, Zη
Λ the normalization factor and SηΛ representing the gauge action. We

assume in the following that SηΛ is the Wilson action, that is often used in lattice
QCD calculations, namely

SηΛ(U) =
∑

p∈P,p∩Λ6=∅

Sp({UΛ, ηΛc}), (2.12)
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and

Sp({UΛ, ηΛc}) :=
1

2
Tr {(1− Up({UΛ, ηΛc}))(1− Up({UΛ, ηΛc}))∗}

= Re Tr {1− Up({UΛ, ηΛc})} (2.13)

with Up({UΛ, ηΛc}) the plaquette variable as defined in (2.7) for the gauge field
configuration that equals U inside Λ and η outside Λ. In the following we will
use this notation in general for composed gauge field configurations. Note that
Sp(U) ≥ 0 for all U ∈ G.

Let us also formally define the unrestricted gauge action S(U),

S(U) =
∑
p∈P

Sp({U}), (2.14)

although this infinite sum might be divergent. If the unrestricted gauge action S
converges for a certain gauge field configuration U ∈ GB, it is invariant under
translations. Denoting by T ` the translation in Zd by ` ∈ Zd, i.e. T `x := x − `,
and defining the translation of a gauge field by ` ∈ Zd to be

T `Ux,µ := UT `x,µ = Ux−`,µ, (2.15)

for any Ux,µ ∈ G and (x, µ) ∈ B, we have

S(U) = S(T `U) (2.16)

for all ` ∈ Zd, with T `U := {Ux−`,µ}(x,µ)∈B
Since we are interested in the integrated density of states, we would like to

pass to the thermodynamic limit, hence Λ ↗ B. We use the Gibbs formalism,
following [12, 35], to establish the existence of such a limit for the probability
measure and later its uniqueness and ergodicity for small β. Therefore, the gauge
action Sp for a single plaquette is interpreted as an interaction between four bonds.
Note that in [12] the lattice Zd is used as underlying lattice. This is no restriction
for our application. For example, we may regard B = Zd × {1, . . . , d} as a
sublattice of 1

2
Zd by identifying each bond b = (x, µ) with the point x + 1

2
êmu.

Then we take the lattice 1
2
Zd and set the interaction equal to zero for all subsets of

points, except those that correspond to a plaquette in the original lattice.
For each finite Λ ⊂ B and η ∈ GB, Pηβ,Λ is a probability measure on (GB,F).

These probability measures fulfill the following compatibility condition.
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Lemma 2.2.1. For any two finite subsets Λ ⊂ Λ′ ⊂ B, all η ∈ GB and any
F-measurable function f : GB → R we have∫

GB
dPηβ,Λ′(U

′)

∫
GB

dP{U
′
Λ′ ,ηΛ′c}

β,Λ (U)f({UΛ,U ′Λ′\Λ, ηΛ′c})

=

∫
GB

dPηβ,Λ′(U
′)f({U ′Λ′ , ηΛ′c}). (2.17)

Proof. The result follows by a simple renaming of variables, e.g. set for b ∈ Λ
Ũb = Ub, Ûb = U ′b and for b ∈ Λ′\Λ, Ũb = U ′b. Then the integration over Û
cancels with Z

{ÛΛ,ŨΛ′\Λ,ηΛ′c}
β,Λ = Z

{ŨΛ′ ,ηΛ′c}
β,Λ .

This compatibility condition is the same as for conditional expectations of
some (yet unknown) probability measure. Indeed, this inspires the notion of a
Gibbs measure as a measure for which the conditional distributions, given the
configuration η in the complement of any finite set Λ, are given by Pηβ,Λ′ .

Definition 2.2.2. [12, Definition 4.2.12] A probability measure Pβ on (GB,F) is
a Gibbs measure for the gauge interaction S and β > 0, if and only if, for any
finite Λ ∈ Zd and all bounded F-measurable functions f : GB → R we have

Pβ(f |FΛc) = P(·)
Λ . (2.18)

The existence of such a Gibbs measure is guaranteed by rather weak assump-
tions on the underlying probability space and the interaction, [12, Cor. 4.2.17]. It
suffices that G is compact, Sp : GB → R is continuous for all p ∈ P and that for
any b ∈ B there is a constant cb <∞ such that∑

p∈P:b∈p

‖Sp‖∞ ≤ cb . (2.19)

Indeed, we have the uniform constant∑
p∈P:b∈p

‖Sp‖∞ =
∑

p∈P:b∈p

‖Re Tr(1− Up)‖ ≤ 2(d− 1) · 2N (2.20)

since any bond b ∈ B is part of 2(d − 1) plaquettes and Up ∈ G, that is Up ∈
SO(N), SU(N) or U(N). Therefore we obtain by [12, Theorem 4.2.15, Corol-
lary 4.2.17]:
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Lemma 2.2.3. Let η ∈ GB, β > 0 and (Λn)n∈N be an increasing and absorbing
sequence of finite subsets of B, that means Λn ⊆ Λn+1 and for each finite B ⊂ B
there is Λn such that B ⊂ Λn. Then there is a weakly converging subsequence
of (Pηβ,Λn)n∈N that converges to a Gibbs measure Pβ on (GB,F) for the gauge
interaction S and β > 0.

Now, Dobrushin’s uniqueness criterion (see for example [12, Theorem 4.3.1
and Equation (4.46)] or [35, Theorem V.1.1]) ensures the uniqueness of the Gibbs
measure, provided

sup
b∈B

∑
p∈P:b∈p

(|p| − 1) ‖Re Tr(1− Up)‖∞ < β−1. (2.21)

Applying this result we obtain:

Lemma 2.2.4. Let η ∈ GB,

0 < β <
1

12N(d− 1)
(2.22)

and (Λn)n∈N be an increasing and absorbing sequence of finite subsets of B. Then
the Gibbs measure Pβ on (GB,F) from Lemma 2.2.3 is unique.

We note in passing, that the translations are measure preserving transforma-
tions with respect to P̃ and Pβ , that means for all A ∈ F , ` ∈ Zd

P̃(T `A) = P̃(A) and Pβ(T `A) = Pβ(A). (2.23)

Put differently, Pβ and P̃ are stationary w.r.t. the group Zd of translations.

2.2.2 Ergodic probability measures
A stationary probability measure P is called ergodic iff, for all A,A′ ∈ F ,

1

(2L+ 1)d

∑
l∈Zd, ‖l‖∞≤L

P(A ∩ T lA′)→ P(A)P(A′), as L→∞, (2.24)

with ‖l‖∞ = max
{
|l1|, . . . , |ld|

}
.

A random variable f : (GB,F) → (R, B) is called invariant iff f(T `U) =
f(U), for all ` ∈ Zd and almost all U ∈ GB. The importance of the notion of
ergodicity lies in the fact that any invariant random variable is P-almost surely
constant.

In the following, we show that the measure Pβ is ergodic, provided (2.22)
holds true.
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Lemma 2.2.5. Assume
0 < β <

1

12N(d− 1)
, (2.25)

such that the Gibbs measure Pβ on (GB,F) is unique according to Lemma 2.2.4.
Then Pβ is also ergodic.

Proof. First, we specify the decay of correlations. We define a metric d : B×B →
R+

0 on B by setting d(b, b) := 0 and

d(b, b′) := (2.26)

min
{
n|∃{p1, . . . , pn} ⊂ P : b ∈ p1, p1 ∩ p2 6= ∅, . . . , pn−1 ∩ pn 6= ∅, b′ ∈ pn

}
,

for b, b′ ∈ B, b 6= b′. I.e. d(b, b′) is the minimal number of plaquettes to connect b
and b′.

If p = (x;µ, ν), p̃ = (x̃; µ̃, ν̃), and p∩p̃ 6= ∅ then ‖x−x̃‖∞ ≤ 1. Therefore, the
minimal number of plaquettes connecting b = (x, µ) ∈ B and b′ = (y, ν) ∈ B is
at least ‖x−y‖∞. Observing that, for all x ∈ Zd, µ, ν, τ ∈ {1, . . . , d}, ν 6= µ 6= τ ,

p(x;µ, ν) ∩ p(x+ êµ;µ, ν) 6= ∅
p(x;µ, ν) ∩ p(x− êµ;µ, ν) 6= ∅

p(x;µ, ν) ∩ p(x;µ, τ) 6= ∅, (2.27)

we obtain, with b = (x, µ), b′ = (y, ν) ∈ B as above, that

‖x− y‖∞ ≤ d(b, b′) ≤ ‖x− y‖1 + d, (2.28)

with ‖x− y‖1 =
∑d

i=1 |xi − yi|.
A modified version of the metric d called d̃ is obtained by multiplying d with
ln( c

β
), where c > β,

d̃(·, ·) := ln(
c

β
)d(·, ·). (2.29)

Now, we take two cylinder sets A,A′ ∈ F and show that condition (2.24) is
fulfilled forA andA′. Since the sigma-algebraF is generated byZ , (2.24) extends
to all F by a monotone class argument. There are two finite sets ΛA,ΛA′ ⊂ B and
Ab, A

′
b′ ∈ F0 for all b ∈ ΛA, b′ ∈ ΛA′ such that

A =×
b∈ΛA

Ab × GB\ΛA , A′ = ×
b′∈ΛA′

A′b′ × GB\ΛA′ (2.30)
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Let us choose χA,ε, χA′,ε ∈ C(GB, [0, 1]) such that χA,ε, χA′,ε depend only on the
variables Ub with b ∈ ΛA or b ∈ ΛA′ , respectively, χA,ε(U) = 1, χA′,ε(U ′) = 1,
for all U ∈ A, U ′ ∈ A′, and

Pβ
{
U ∈ AC | χA,ε(U) > 0

}
< ε , Pβ

{
U ′ ∈ A′C | χA′,ε(U ′) > 0

}
< ε. (2.31)

Then χA,ε, χA′,ε are continuous functions that differ from the characteristic func-
tion of A, A′ only on a set of measure less than ε.

Now, we use a result of [21] summarized in [35, Theorem V.2.1]. It states that,
if γ < 1, where γ is a constant depending on the interaction, one gets for any two
bonds i, j ∈ B that∣∣∣∣∫

GB
χA,ε χA′,ε dPβ −

∫
GB
χA,ε dPβ

∫
GB
χA′,ε dPβ

∣∣∣∣
≤ 1

4
e−d̃(i,j)(1− γ)−1 ∆i(χA,ε) ∆j(χA′,ε), (2.32)

where

∆j(f) :=
∑
i∈B

ed̃(i,j) sup
{
|f(U)− f(U ′)|

∣∣ Ub = U ′b, b 6= i
}

(2.33)

and
γ = sup

j

∑
i∈B,i 6=j

ed̃(i,j)ρij. (2.34)

In our case ρij for i 6= j, can be estimated as [35, page 403]

ρij ≤
∑

p∈P:i,j∈p

‖β Re Tr(1− Up)‖ ≤ 2Nβ 1[d(i, j) = 1], (2.35)

such that we get by inserting (2.35) into (2.34)

γ ≤ 3 · 2(d− 1)2Nβ · c
β
, (2.36)

and γ < 1 corresponds to

c <
1

12N(d− 1)
. (2.37)

Since β < 1
12N(d−1)

we can always find a c with β < c < 1
12N(d−1)

, such that
γ < 1.
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We denote the distance of A and A′ by

dist(A,A′) := min{d(i, j)|i ∈ ΛA, j ∈ ΛA′} (2.38)

and the diameter of A by

DA := max{d(i, j)|i, j ∈ ΛA}. (2.39)

If i ∈ ΛA then

∆i(χA,ε) ≤
∑
k∈B

ed̃(i,k)
1[k ∈ ΛA] ≤ |ΛA|

( c
β

)DA (2.40)

and analogously ∆j(χA′,ε) ≤ |ΛA′ |( cβ )DA′ , provided j ∈ ΛA′ . Inserting this into
equation (2.32), and choosing i ∈ ΛA and j ∈ ΛA′ such that d(i, j) = dist(A,A′),
we estimate∣∣∣∣∫

GB
χA,ε χA′,ε dPβ −

∫
GB
χA,ε dPβ

∫
GB
χA′,ε dPβ

∣∣∣∣
≤ 1

4

(
β

c

)dist(A,A′)−(DA+DA′ ) |ΛA| |ΛA′ |
1− 12N(d− 1)c

, (2.41)

for all 0 < β < c < (12N(d− 1))−1. In the limit ε→ 0, we obtain

|Pβ(A ∩ A′)− Pβ(A)Pβ(A′)| ≤ CA,A′

(
β

c

)dist(A,A′)

, (2.42)

where

CA,A′ =
1

4

1

1− 12N(d− 1)c
|ΛA||ΛA′|

(
c

β

)DA+DA′

(2.43)

is a constant independent of the distance of A and A′.
The exponential decay of correlations implies at once,

1

(2L+ 1)d

∑
`∈Zd, ‖`‖∞≤L

∣∣ Pβ(A ∩ T `A′)− Pβ(A) Pβ(A′)
∣∣

≤ 1

(2L+ 1)d

∑
`∈Zd, ‖`‖∞≤L

CA,A′

(
β

c

)dist(A,T `A′)

≤ 1

(2L+ 1)d

L∑
m=0

2d(2m+ 1)d−1CA,A′

(
β

c

)m−dist(A,A′)−2(DA+DA′ )

≤ 2dCA,A′

2L+ 1

(
β

c

)−dist(A,A′)−2(DA+DA′ ) 1

1− β
c

L→∞−→ 0, (2.44)
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where we used that d(k, T `k) ≤ d(i, k) + d(i, j) + d(T `k, j) and thus

dist(A, T `A′) = min{d(i, j)|i ∈ ΛA, j ∈ T `ΛA′}
≥ min{d(k, T `k)|k ∈ ΛA′} −max{d(i, k)|i ∈ ΛA, k ∈ ΛA′}
−max{d(T `k, j)|k ∈ ΛA′ , j ∈ T `ΛA′}
≥ ‖`‖∞ −DA − 2DA′ − dist(A,A′). (2.45)

2.2.3 Ergodic families of Wilson Dirac operators
In this section we specify the considered operators. The dependence of those
operators DU on the gauge field configuration is emphasized by the index U . We
consider the corresponding family of operators {DU}U∈GB .

Let {DU}U∈GB be a family of bounded, self-adjoint operators on the Hilbert
space H = `2(Zd;Ck). We call this family stationary if it depends on the gauge
field configuration U ∈ GB in such a way that translations act transitively, i.e.,

τ `DUτ
−` = DT `U (2.46)

for all U ∈ GB and ` ∈ Zd, where τ ` denotes the corresponding translation on H,
i.e.,

[τ `φ](x) = φ(x− `), (2.47)

for any φ ∈ H, x ∈ Zd. A stationary family {DU}U∈GB is called ergodic if the
underlying probability measure P on GB is stationary and ergodic. The crucial
fact about ergodic families {DU}U∈GB is the independence of their spectra on U ,
P-almost surely, see [32].

We assume that DU includes only nearest-neighbour interaction, i.e., for φ ∈
H, x ∈ Zd, [DUφ](x) depends only on the values of φ(x), φ(y) for those y with
|x− y| = 1 and the gauge fields Ux,µ, Ux,−µ for µ ∈ {1, . . . , d}, where we use the
notation Ux,−µ := Ux−êµ,µ.

There are various examples for such operators of physical interest. As men-
tioned in the introduction, we are mainly interested in the Wilson Dirac operator
and the staggered fermions operator. For simplicity, we concentrate our attention
to the Wilson Dirac operator int he following. Theorem 2.3.1 can be similarly
formulated for every ergodic family of self–adjoint operators of finite range.

In lattice gauge theories the Wilson Dirac operator D is used [30], which is a
discretized version of the QCD-Dirac operator. The corresponding matter fields
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are defined on the hypercubic lattice Z4 and are assumed to have a Dirac structure
labeled by Dirac indices α ∈ {1, 2, 3, 4}, as well as a colour structure with labels
c ∈ {1, . . . , Nc}. The Dirac structure is represented by the 4× 4 Euclidean Dirac
matrices {γµ}µ=1,...,4. A customary explicit representation is

γ1,2,3 =

(
0 −iσ1,2,3

iσ1,2,3 0

)
, γ4 =

(
0 1

1 0

)
(2.48)

with σ1,2,3 being the Pauli matrices. The Dirac matrices form a Clifford-Algebra
since they fulfill {γµ, γν} = 2δµν . Introducing γ5 := γ1γ2γ3γ4, i.e.,

γ5 =

(
1 0
0 −1

)
, (2.49)

we observe that {γµ, γ5} = 0.
The gauge group is G = SU(Nc) and acts on the colour structure. Therefore,

k = 4 · Nc, and φ = {φα,c}α=1,...,4, c=1...,Nc ∈ `2(Z4,Ck). The Wilson Dirac
operator D is defined by

[Dφ]α,c(x) :=
4∑

β=1

{
(γ5)α,βφβ,c(x)

− κ
4∑

µ=1

∑
σ=±1

Nc∑
f=1

(
(rγ5)α,β − σ(γ5γµ)α,β

)
(Ux,σµ)c,f φβ,f (x+ σêµ)

}
, (2.50)

in short,

[Dφ](x) = γ5

[
φ(x)− κ

4∑
µ=1

∑
σ=±1

(r − σγµ)Ux,σµ φ(x+ σêµ)
]
. (2.51)

The parameter r ∈ (0, 1] is the Wilson parameter and κ > 0 the hopping parame-
ter.

Displaying the dependence of D on the gauge field configuration U by writing
DU , we observe that DU fulfills condition (2.46) for any U ∈ SU(Nc)

B and any
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φ ∈ H, x ∈ Zd,

[τ `DUτ
−`φ](x) = [DUτ

−`φ](x− `)

= [τ−`φ](x− `)− κ
4∑

µ=1

∑
σ=±1

(r + γσµ)Ux−`,σµ [τ−`φ](x− `+ σêµ)

= φ(x)− κ
4∑

µ=1

∑
σ=±1

(r + γσµ)Ux−`,σµ φ(x+ σêµ)

= [DT `Uφ](x) (2.52)

and hence we have
τ `DUτ

−` = DT `U , (2.53)

for all ` ∈ Zd and U ∈ SU(Nc)
B. Thus, if Pβ is ergodic, so is {DU}U∈SU(Nc)B ,

and its spectrum is Pβ-almost surely constant.

2.2.4 The integrated density of states
In the following we study the integrated density of states of {DU}U∈GB , which
represents the number of eigenstates per unit volume. For the precise definition of
the integrated density of states, we restrict our analysis to a finite subset Λ ⊂ Zd.
Besides, this also allows us to relate our analysis to numerical simulation.

The boundary of Λ, denoted ∂Λ, is defined as

∂Λ :=
{
y ∈ Λ | ∃ x ∈ ΛC , |x− y| = 1

}
⊆ Λ. (2.54)

Furthermore we use the canonical orthonormal basis EH := {ŝ(x,i)}x∈Zd,i∈{1,...,k}
ofH where the Zd-sequence ŝ(x,i) is set to be

ŝ(x,i)(y) :=

{
êi, x = y

0, x 6= y
(2.55)

with êi ∈ Ck the unit vector in direction i.
Since DU contains only nearest-neighbour hopping, the value of DU ŝ(x,i) does

not change, if we replace DU by a restriction of DU to Λ, for any point x in Λ\∂Λ.
Only the boundary ∂Λ needs further specification. We present two customary
choices for this, namely, Dirichlet boundary conditions and periodic boundary
conditions.
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Dirichlet boundary conditions

First, we restrict the operators to the finite subset Λ ⊂ Zd by means of the projec-
tion

P
(dir)
Λ : H → H(dir)

Λ ,
[
P

(dir)
Λ ϕ

]
(x) :=

{
ϕ(x), x ∈ Λ,

0, x /∈ Λ,
(2.56)

with

H(dir)
Λ = `2(Λ,Ck) ⊂ H (2.57)

being the Hilbert space of sequences vanishing outside Λ. Note that

P
(dir)

T `Λ
= τ `P

(dir)
Λ τ−`. (2.58)

Then we define

D
(dir)
Λ,U = P

(dir)
Λ DUP

(dir)
Λ : H(dir)

Λ → H(dir)
Λ . (2.59)

Note that, since H(dir)
Λ is finite-dimensional, D(dir)

Λ,U can be represented by a
matrix of size (k|Λ|) × (k|Λ|), where |Λ| denotes the number of elements in Λ.
Since DU is self-adjoint, so is D(dir)

Λ,U . The number of eigenvalues of D(dir)
Λ,U smaller

than some E ∈ R, counting multiplicity, is denoted by

N
(dir)
Λ,U (E) := Tr

{
1[D

(dir)
Λ,U < E]

}
. (2.60)

The integrated density of states of D(dir)
Λ,U is defined as the number of eigenvalues

smaller than E per unit volume,

ρ
(dir)
Λ,U (E) :=

1

|Λ|
N

(dir)
Λ,U (E). (2.61)

Clearly, N (dir)
Λ,U (E) depends only on the gauge fields on the bonds connecting

points in Λ. Note that probabilistic statements about N (dir)

T `Λ,U(E) do not depend
on ` ∈ Zd, since Pβ and DU are stationary.
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Periodic boundary conditions

Another way to restrict DU to a finite set Λ ⊂ Zd is to require periodic boundary
conditions, which is often used in numerical simulations. In order to define pe-
riodic boundary conditions we assume Λ to be a cube of side length L. Without
loss of generality we may assume that Λ = {1, 2, . . . , L}d.

We define the Wilson Dirac operator on `2(Λ(per);Ck) with periodic boundary
conditions by

[
D

(per)
Λ,U φ

]
(x) := γ5

[
φ(x)− κ

4∑
µ=1

∑
σ=±1

(r − σγµ)Ux,σµ φ(x+ σêµ)
]
, (2.62)

where Λ(per) := (Z/LZ)d and x+ σêµ is determined only modulo multiples of L
in all directions. Similarly

Ux,−µ = U−1
x−êµ,µ, (2.63)

where x− êµ is also defined modulo L. Thus D(per)
Λ,U : H(per)

Λ → H(per)
Λ , with

H(per)
Λ := `2(Λ(per);Ck), (2.64)

only depends on the values of U for bonds b ∈ Λ× {1, . . . , d}, i.e., on

UΛ := {Ux,µ}x∈Λ,µ=1,...,d. (2.65)

Since H(per)
Λ is finite-dimensional, we can transcribe the definition of the inte-

grated density of states to periodic boundary conditions. We set N (per)
Λ,U (E) to be

the number of eigenvalues, counting multiplicity, of D(per)
Λ,U smaller than E ∈ R

and define the integrated density of states in the periodic case as

ρ
(per)
Λ,U (E) :=

1

|Λ|
N

(per)
Λ,U (E). (2.66)

2.3 Main Theorem
Our aim is the definition of the integrated density of states for {DU}U∈Ω. A natural
way is to let Λ be a cube of side length L and investigate the case L → ∞,
the thermodynamic limit. As it turns out, the boundary conditions imposed is
immaterial.
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Theorem 2.3.1. Let (GB,F ,Pβ) be the probability space defined in Section 2.2
and choose 0 < β < 1

12N(d−1)
(such that Pβ is ergodic). Let {DU}U∈GB be the

family of Wilson Dirac operators onH. Let (Ωn)n∈N be a sequence in Zd of nested
cubes, Ωn ⊆ Ωn+1, with Ωn ↗ Zd.

(i) Then the limits

ρ
(dir)
U (E) := lim

n→∞

1

|Ωn|
N

(dir)
Ωn,U(E) (2.67)

and
ρ

(per)
U (E) := lim

n→∞

1

|Ωn|
N

(per)
Ωn,U (E) (2.68)

exist for all E ∈ R, Pβ-almost surely, and are independent of the sequence
(Ωn)n∈N.

(ii) Furthermore, for all E ∈ R, the integrated density of states ρ(E), defined
by

ρ
(dir)
U (E) = ρ

(per)
U (E) =: ρ(E), (2.69)

is independent of the chosen boundary condition and of U ∈ GB, Pβ-almost
surely.

We remark that Theorem 2.3.1 implies the existence of the density of states.
That means there are measures ν, ν(dir)

Ωn,U , ν
(per)
Ωn,U such that∫ E

−∞
dν(r) = ρ(E) ,

∫ E

−∞
dν

(dir/per)
Ωn,U (r) =

1

|Ωn|
N

(dir/per)
Ωn,U (E) (2.70)

and ν = w − limn→∞ ν
(dir/per)
Ωn,U for U ∈ M , where M ⊂ GB is a set of measure

one, such that equation (2.69) holds for all U ∈ M . The only critical point is to
prove the existence of ν, which follows since the family {ν(dir/per)

Ωn,U }n∈N is tight.

2.4 Proof of Theorem 2.3.1

2.4.1 An estimate on eigenvalues
Suppose, we take two disjoint sets Ω1,Ω2 ⊂ Zd and an operator DU , that fulfills
the requirements of Theorem 2.3.1. We can restrictDU to Ω1, Ω2 and Ω1∪Ω2 as in
(2.59) by means of the projections P (dir)

Ω1
, P (dir)

Ω2
and P (dir)

Ω1∪Ω2
. To simplify the no-

tation we suppress the superscript (dir) in the following. Then we can determine
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the number of eigenvalues below some E ∈ R for all three restrictions, denoted
by NU ,Ω1(E), NU ,Ω2(E) and NU ,Ω1∪Ω2(E), respectively. If dist(Ω1,Ω2) ≥ 2, we
know that NU ,Ω1∪Ω2(E) = NU ,Ω1(E) + NU ,Ω2(E), since the operator DU links
only neighbouring sites. Our first goal is the derivation of an upper bound on the
difference of NU ,Ω1(E) +NU ,Ω2(E) and NU ,Ω1∪Ω2(E).

To this end, we start with a general observation for finite matrices.
Let A,B be complex, self-adjoint (M ×M)-matrices. The rank of B is de-

noted by b, and the interesting case is b � M . Since A and B are self-adjoint,
so is A + B, and all three matrices A,B and A + B have M real eigenvalues
counting multiplicity. Due to the fact that rank(B) = b, B has (M − b) eigenval-
ues equal to zero, and b eigenvalues different from zero. Furthermore, we denote
by NA ∈ N0 the number of negative eigenvalues of A, by NB, N−B, NA+B the
number of negative eigenvalues of B, −B, and A+B, respectively.

Lemma 2.4.1. Let A, B be self-adjoint M ×M -matrices. The difference of the
number NA of negative eigenvalues of A and the number NA+B of negative eigen-
values of A+B is at most rank(B),

|NA −NA+B| ≤ rank(B). (2.71)

Note, that the bound (2.71) is independent of ‖B‖.

Proof. First, we show that NA+B −NA ≤ rank(B). Let us assume that NA+B >
NA + rank(B). Then the min-max principle ensures the existence of a subspace
X ⊆ CM , with dimension dim(X) = NA + rank(B) + 1 such that

sup
φ∈X,‖φ‖=1

〈φ|(A+B)φ〉 < 0. (2.72)

In particular we have

sup
φ∈X∩ker(B),‖φ‖=1

〈φ|(A+B)φ〉 = sup
φ∈X∩ker(B),‖φ‖=1

〈φ|Aφ〉 < 0. (2.73)

Using the min-max principle again, we obtain

NA ≥ dim(X ∩ ker(B)) ≥ dim(X)− rank(B) = NA + 1.

Therefore we have that NA+B − NA ≤ rank(B). Now, we set A′ := A + B,
B′ := −B and get analogously NA′+B′ −NA′ ≤ rank(B′) that is NA −NA+B ≤
rank(B).
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Lemma 2.4.2. Let (GB,F ,Pβ) be the probability space defined in Section 2.2.1
and choose 0 < β < 1

12N(d−1)
such that Pβ is ergodic. Let {DU}U∈GB be the

family of Wilson Dirac operators on H. Furthermore let Ω1, . . . ,ΩJ ⊂ Zd be
disjoint, finite sets and Ω :=

⋃J
j=1 Ωj their union.

(i) Then we have, for any U ∈ GB and all E ∈ R,

1

|Ω|

∣∣∣∣∣N (dir)
Ω,U (E)−

J∑
j=1

N
(dir)
Ωj ,U (E)

∣∣∣∣∣ ≤ k

∑J
j=1 |∂Ωj|
|Ω|

. (2.74)

(ii) If in addition the sets Ω1, . . . ,ΩJ are cubes, such that Ω is also a cube, then

1

|Ω|

∣∣∣∣∣N (per)
Ω,U (E)−

J∑
j=1

N
(per)
Ωj ,U (E)

∣∣∣∣∣ ≤ 3k

∑J
j=1 |∂Ωj|
|Ω|

, (2.75)

for any U ∈ GB and all E ∈ R.

Proof. We remark that it is enough to prove the case E = 0, because we can
replace DU by DU − E. We start with the case of Dirichlet boundary conditions
and define (k|Ω| × k|Ω|)-matrices A and C by

A := D
(dir)
Ω,U , C :=

J∑
j=1

PΩjAPΩj : H(dir)
Ω → H(dir)

Ω . (2.76)

The matrices are chosen in such a way that we get with counting multiplicity

N
(dir)
Ω,U (0) = Tr

{
1[A ≥ 0]

}
(2.77)

and
J∑
j=1

N
(dir)
Ωj ,U (0) = Tr

{
1[C ≥ 0]

}
. (2.78)

Now, we set the matrix B := A− C to be the difference of A and C. The rank of
B can be estimated as follows

rank(B) ≤ k

J∑
j=1

|∂Ωj|, (2.79)
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using that B =
∑

j 6=l PΩjAPΩl . By Lemma 2.4.1, we obtain

1

|Ω|

∣∣∣∣∣NΩ,U(0)−
J∑
j=1

NΩj ,U(0)

∣∣∣∣∣ ≤ k

∑J
j=1 |∂Ωj|
|Ω|

, (2.80)

and (i) is proven.
To prove (ii), we use that, for any cube Λ, we have that

rank
[
D

(per)
Λ,U −D

(dir)
Λ,U
]
≤ k |∂Λ| (2.81)

Therefore, (i) and another application of Lemma 2.4.1 yield (2.75),

1

|Ω|

∣∣∣∣∣N (per)
Ω,U (E)−

J∑
j=1

N
(per)
Ωj ,U (E)

∣∣∣∣∣
≤ 1

|Ω|

( ∣∣∣N (per)
Ω,U (E)−N (dir)

Ω,U (E)
∣∣∣+

∣∣∣∣∣N (dir)
Ω,U (E)−

J∑
j=1

N
(dir)
Ωj ,U (E)

∣∣∣∣∣
+

∣∣∣∣∣
J∑
j=1

(N
(dir)
Ωj ,U (E)−N (per)

Ωj ,U (E))

∣∣∣∣∣ )
≤ 3k

∑J
j=1 |∂Ωj|
|Ω|

. (2.82)

Lemma 2.4.2 is an estimate on the change of the integrated density of states as
the subset of Zd is broken up into smaller pieces. The estimate is, indeed, precise
enough to prove the existence of a limit in the sense of Theorem 2.3.1 as is done
in the next sections.

2.4.2 Existence of the integrated density of states for a special
sequence

In this section it is shown that a limit for the integrated density of states exists
almost surely for a sequence of growing cubes in Zd.

To this end, we define the following sequence of growing cubes,

Λn := {−l02n−1 + 1, . . . , l02n−1}d , (2.83)
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with l0 ∈ N to be fixed later. Note that Λn has side length l02n.
The virtue of the sequence (Λn)n∈N is, that Λn+1 splits into 2d disjoint cubes,

each of size |Λn|, in a natural way. More precisely, there are z1, . . . , z2d ∈ Zd such
that, for

Πn := {T z1 , . . . , T z2d} (2.84)

being the set of associated translations,

Λn+1 =
⋃
T∈Πn

TΛn. (2.85)

In order to clarify the notation, we also introduce the sets Πl
n for l > n that consist

of the translations needed to compose Λl of translations of Λn,

Πl
n :=

{
Tn . . . Tl−1 : Tn ∈ Πn, . . . , Tl−1 ∈ Πl−1

}
. (2.86)

Thus, Πn = Πn+1
n and we have

Λl =
⋃
T∈Πln

TΛn, (2.87)

see Figure 2.2. Next, we study the integrated density of states of Λn, as n grows.
We omit the dependence of N (dir)

Λn,U(E) and N (per)
Λn,U (E) on E and the gauge field

configuration U and write

N (dir)[Λn] := N
(dir)
Λn,U(E) and N (per)[Λn] := N

(per)
Λn,U (E) (2.88)

instead.

Lemma 2.4.3. For any l0 ∈ N, the sequences
(

1
|Λn|N

(dir)[Λn]
)
n∈N and(

1
|Λn|N

(per)[Λn]
)
n∈N converge, Pβ-almost surely.

lim
n→∞

1

|Λn|
N (dir)[Λn]→ ρ

(dir)
l0

, lim
n→∞

1

|Λn|
N (per)[Λn]→ ρ

(per)
l0

. (2.89)

Furthermore
lim
n→∞

1

|Λn|
∣∣N (dir)[Λn]−N (per)[Λn]

∣∣ = 0, (2.90)

Pβ-almost surely, and ρl0 := ρ
(dir)
l0

= ρ
(per)
l0

.
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Figure 2.2: Λm and Λn in Z2, with m = n + 2. The dotted lines indicate the
translates of Λn whose union gives Λm.

Proof. We show that
(

1
|Λn|N

(dir)[Λn]
)
n∈N is a Cauchy sequence and in the proof

we denote N (dir)[Λn] =: N [Λn]. The proof for periodic boundary conditions is
completely analogous.

Assume that m > n. By applying (2.87), one can split Λm into 2d(m−n) cubes
of size |Λn|,

Λm =
⋃

T∈Πmn

TΛn. (2.91)

The mean integrated density of states for these translations of Λn is
1

2d(m−n)

∑
T∈Πmn

1

|Λn|
N [TΛn] =

1

|Λm|
∑
T∈Πmn

N [TΛn]. (2.92)

Thus we can estimate∣∣∣∣ 1

|Λm|
N [Λm]− 1

|Λn|
N [Λn]

∣∣∣∣
≤ 1

|Λm|

∣∣∣∣∣∣N [Λm]−
∑
T∈Πmn

N [TΛn]

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

|Λm|
∑
T∈Πmn

N [TΛn]− 1

|Λn|
N [Λn]

∣∣∣∣∣∣ .
(2.93)
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Lemma 2.4.2 directly gives us an upper bound for the first term on the right side
of (2.93), since we have

1

|Λm|

∣∣∣∣∣∣N [Λm]−
∑
T∈Πmn

N [TΛn]

∣∣∣∣∣∣ ≤ k
2d(m−n)|∂Λn|
|Λm|

≤ k 2d(m−n) 2d(l02n)d−1

(l02m)d
=

2dk

l0
2−n, (2.94)

independently of the gauge field configuration.

The second term on the right side of (2.93) is the difference of the integrated
density of states for a cube Λn and its spatial mean over 2d(m−n) translated disjoint
cubes of the same size. As we do not know, yet, whether this term is small with
high probability, provided n is large enough, we split Λn and its translates into
smaller cubes of size |Λn0| for some n0 < n ∈ N, as indicated in Figure 2.3. We

Figure 2.3: Both sets Λn and Λm are split up in smaller cubes of the same size as
Λn0 . For Λm only part of the splitting is sketched.
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estimate ∣∣∣∣∣∣ 1

|Λm|
∑
T∈Πmn

N [TΛn]− 1

|Λn|
N [Λn]

∣∣∣∣∣∣
≤ 1

|Λm|
∑
T∈Πmn

∣∣∣∣∣∣N [T Λn]−
∑

T ′∈Πnn0

N [T ′TΛn0 ]

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

|Λm|
∑
T∈Πmn0

N [TΛn0 ]− 1

|Λn|
∑
T∈Πnn0

N [TΛn0 ]

∣∣∣∣∣∣
+

1

|Λn|

∣∣∣∣∣∣
∑
T∈Πnn0

N [TΛn0 ]−N [Λn]

∣∣∣∣∣∣ , (2.95)

using that any T ∈ Πm
n0

is given as a product T = T ′T ′′, for unique T ′ ∈ Πm
n and

T ′′ ∈ Πn
n0

. Then Lemma 2.4.2 yields again an upper bound for the first and the
third term on the right side of (2.95), and analogously to (2.94), we obtain that

1

|Λm|
∑
T∈Πmn

∣∣∣∣∣∣N [TΛn]−
∑

T ′∈Πnn0

N [T ′TΛn0 ]

∣∣∣∣∣∣ ≤ 2dk

l0
2−n0 (2.96)

and
1

|Λn|

∣∣∣∣∣∣
∑
T∈Πnn0

N [TΛn0 ]−N [Λn]

∣∣∣∣∣∣ ≤ 2dk

l0
2−n0 . (2.97)

Thus equations (2.94), (2.95), (2.96), and (2.97) yield∣∣∣∣ 1

|Λm|
N [Λm]− 1

|Λn|
N [Λn]

∣∣∣∣
≤ 4dk

l0
(2−n + 2−n0) +

∣∣∣∣ 1

|Λm|
∑
T∈Πmn0

N [TΛn0 ]− 1

|Λn|
∑
T∈Πnn0

N [TΛn0 ]

∣∣∣∣. (2.98)

We can choose n0 and then n > n0 so large that 4dk
l0

(2−n + 2−n0) is arbitrarily
small. To estimate the remaining term, we view {Zx(U)}x∈Zd , with

Zx(U) := N [T 2n0 l0xΛn0 ] = N
(dir)

T 2n0 l0xΛn0 ,U
(E), (2.99)
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to be an invariant family of random variables. By the Ackoglu-Krengel (superad-
ditive) ergodic theorem [20, Theorem VI.1.7, Remark VI.1.8], the mean of these
random variables converges Pβ-almost surely. Hence,(

1

|Λm|
∑
T∈Πmn0

N [TΛn0 ]

)∞
m=n0+1

(2.100)

is a Cauchy sequence, Pβ-almost surely.
As noted above, we can replace N [#] by N (per)[#] and repeat the proof for

periodic boundary conditions with exactly the same arguments, since all sets are
cubes and Lemma 2.4.2(ii) applies.

Equation (2.90) is similarly proven as Lemma 2.4.2(ii),

1

|Λn|
∣∣N (dir)[Λn]−N (per)[Λn]

∣∣ ≤ k|∂Λn|
|Λn|

→ 0, n→∞ . (2.101)

Note that, while the preceding lemma holds for all l0 ∈ N0, this does not imply
the independence of the integrated density of states of the choice of l0. It turns out,
however, that not only the independence holds true, but that furthermore the size
of the cubes in the sequence is immaterial, as long as it is monotonically growing.

2.4.3 Proof of main Theorem 2.3.1

The proof is similar to the one of Lemma 2.4.3. We choose l0, n0 ∈ N arbitrary,
but fixed. Given Ωn, there is an m ∈ N such that Ωn ⊆ Λm. We define

Σn :=
{
T ∈ Πm

n0
| TΛn0 ⊆ Ωn

}
,

Ω̃n :=
⋃
T∈Σn

TΛn0 ⊆ Ωn (2.102)

Note that Ω̃n is a rectangular box, whose smallest side length is at most two
times smaller than its largest side length and all side lengths are multiples of l02n0 .
Moreover

|Ωn| − |Ω̃n| = |Ωn\Ω̃n| ≤ |∂Ωn| · |Λn0 | (2.103)
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Now, we estimate for n > n0, Ωn ⊇ Λn0

∣∣∣∣ 1

|Λn|
N [Λn]− 1

|Ωn|
N [Ωn]

∣∣∣∣ ≤
∣∣∣∣∣∣ 1

|Λn|
N [Λn]− 1

|Λn|
∑
T∈Πnn0

N [TΛn0 ]

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

|Λn|
∑
T∈Πnn0

N [TΛn0 ]− 1

|Ω̃n|

∑
T∈Σn

N [TΛn0 ]

∣∣∣∣∣∣
+

∣∣∣∣∣ 1

|Ω̃n|

∑
T∈Σn

N [TΛn0 ]− 1

|Ω̃n|
N [Ω̃n]

∣∣∣∣∣
+

∣∣∣∣∣ 1

|Ω̃n|
N [Ω̃n]− 1

|Ωn|
N [Ωn]

∣∣∣∣∣ . (2.104)

In the first and third term we can apply Lemma 2.4.2 directly to get upper bounds
vanishing in the limit n → ∞. The second term converges Pβ-almost surely to
zero, by the Ackoglu-Krengel ergodic theorem. For the last term we estimate the
difference of the integrated density of states of Ω̃n and Ωn,

∣∣∣∣∣ 1

|Ω̃n|
N [Ω̃n]− 1

|Ωn|
N [Ωn]

∣∣∣∣∣ =

∣∣∣|Ω̃n| ·N [Ωn]− |Ωn| ·N [Ω̃n]
∣∣∣

|Ω̃n| · |Ωn|
. (2.105)

First, we estimate

∣∣∣∣|Ωn| ·N [Ω̃n]−|Ω̃n| ·N [Ωn]

∣∣∣∣
=

∣∣∣∣|Ωn|
(
N [Ω̃n]−N [Ωn]

)
+
(
|Ωn| − |Ω̃n|

)
N [Ωn]

∣∣∣∣
≤ |Ωn|

∣∣N [Ωn]−N [Ω̃n]
∣∣+
(
|Ωn| − |Ω̃n|

)
N [Ωn]. (2.106)

Then we observe that

|N [Ωn]−N [Ω̃n]| ≤ k|∂Ω̃n|+ (2d+ 1)k(|Ωn| − |Ω̃n|) (2.107)
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holds true because of the following estimate using Lemma 2.4.2∣∣∣∣N [Ωn]−N [Ω̃n]

∣∣∣∣− ∣∣∣∣ ∑
x∈Ωn\Ω̃n

N [{x}]
∣∣∣∣

≤
∣∣∣∣N [Ωn]−

(
N [Ω̃n] +

∑
x∈Ωn\Ω̃n

N [{x}]
)∣∣∣∣

≤ k
(
|∂Ω̃n|+ 2d(|Ωn| − |Ω̃n|)

)
. (2.108)

Thus we get∣∣∣∣ 1

|Ω̃n|
N [Ω̃n]− 1

|Ωn|
N [Ωn]

∣∣∣∣
≤ 1

|Ω̃n|
|N [Ωn]−N [Ω̃n]|+ 1

|Ωn|
N [Ωn]

(|Ωn| − |Ω̃n|)
|Ω̃n|

≤ k|∂Ω̃n|
|Ω̃n|

+
(2d+ 2)k(|Ωn| − |Ω̃n|)

|Ω̃n|
n→∞−→ 0, (2.109)

by using equations (2.106), (2.107) and the fact that 1
|Ωn|N [Ωn] ≤ k. Altogether

we have proven

lim
n→∞

∣∣∣∣ 1

|Λn|
N [Λn]− 1

|Ωn|
N [Ωn]

∣∣∣∣ = 0, (2.110)

Pβ-almost surely. The periodic case is again proven completely analogously.
Recall that Lemma 2.4.3 gives the existence of the limit

ρU(E) := lim
n→∞

1

|Λn|
N

(dir)
Λn,U(E) = lim

n→∞

1

|Λn|
N

(per)
Λn,U (E) (2.111)

with (Λn)n∈N as in (2.83), Pβ-almost surely. Equation (2.110) ensures the inde-
pendence of this limit of the chosen sequence (Ωn)n∈N. Furthermore, Lemma 2.4.3
implies that the limit for periodic boundary conditions is the same.

Since the integrated density of states is invariant under translations, it is Pβ-
almost surely constant, and (ii) follows. This finishes the proof of Theorem 2.3.1.
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Chapter 3

Hartree–Fock Theory for Random
Schrödinger Operators

The theory of random Schrödinger operators has developed since the middle of the
last century, going back to the work of Anderson and Mott. The idea is to model a
disordered quantum mechanical system, for example a crystal with impurities or
dislocations, by introducing a random potential or a random displacement of the
lattice sites. As it turns out, those systems show the tendency to have localized
states, i.e., there is dense point spectrum, at certain regimes of the spectrum. This
effect is the famous Anderson localization. The theory of random Schrödinger
operators is very successful and has led to deeper mathematical understanding,
as for example the theory of ergodic operator families, which have a non-random
spectrum [32, 29].

The state of the art is to handle systems with finitely many interacting fermions
in the thermodynamic limit [1]. At that point, the question of a system of infinitely
many interacting fermions, as for example a system with constant fermion density
in the thermodynamic limit, arises naturally.

The following chapter can be seen as a first modest step in this direction - we
aim to apply the Hartree-Fock theory to a system of electrons in a crystal with
impurities, which are modeled as in the random Schrödinger operator theory by
a random potential, and then take the thermodynamic limit. The principal idea
of the Hartree-Fock approximation is to give an upper bound to the energy of
the ground state of a quantum mechanical system, that is the lowest eigenvalue
of the corresponding Hamiltonian H , by minimizing 〈φ,Hφ〉 only over Slater
determinants, i.e., product wave functions. We consider finite systems first, and
for the case of reduced Hartree-Fock theory at positive temperatures and fixed

41



42 CHAPTER 3. HARTREE–FOCK FOR RSO

chemical potential the limit of an infinite system is also considered. We proof the
existence of a unique minimizer in the thermodynamic limit in the weak-* sense
and show that this minimizers as well as the corresponding effective Hamiltonians
form ergodic operator families, hence have a non-random spectrum.

Very recently, a similar setup was also considered by Cancès, Lahbabi and
Lewin [19], where some results for the reduced Hartree-Fock case are similar to
the ones presented here. The main difference to our work is that we consider
general finite range interactions which have a strictly positive Fourier transform,
whereas in [19] the Coulomb- and Yukawa-potential are considered more explic-
itly.

3.1 Introduction of the model
In this section we describe the precise set-up of the model under consideration and
give an introduction to (reduced) Hartree-Fock theory for zero temperature and
also for positive temperatures. As mentioned above, the Hartree-Fock functional
is an approximation for the energy of the ground state of a system with finitely
many fermions. It takes into account the energy of each fermion with respect to the
external, in our case random, potential. A second part represents the interaction
between the fermions, via a certain interaction potential, and in the case of positive
temperatures a third term is added, which yields the entropy of the system.

This section is organized as follows: First, we introduce the 1-particle Hamil-
tonian hω, representing the interaction of a single particle with the random poten-
tial. Then the interaction W between two fermions is described in Section 3.1.2.
We review the formalism of a many-fermion system in Section 3.1.3, before intro-
ducing the Hartree-Fock functional and the reduced Hartree-Fock functional for
temperature T = 0 and T > 0 in Section 3.1.4.

3.1.1 Random Schrödinger Operators
The starting point is to describe the propagation and the interaction of a single
fermion with the background of impurities in the cubic crystal. This is done by the
1-particle Hamiltonian. We take as 1-particle Hamiltonian the lattice Anderson-
Hamiltonian acting on the Hilbert spaceH = `2(Zd).

More specifically, we introduce an independently and identically distributed
(i.i.d.) random potential in Zd. Let (Ω0,A0,P0) be a probability space, where
Ω0 ⊂ R is any bounded subset of R, A0 the Borel σ-algebra on Ω0 w.r.t. the usual
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metric topology and P0 a probability measure on (Ω0,A0). Now, set Ω = ΩZd
0 and

let A be the product σ–algebra generated by the cylinder sets, where a cylinder set
is a set of the form×x∈Zd Ax, where Ax ∈ A and Ax = Ω0 for all but finitely
many x ∈ Zd. The measure P is defined to be the product measure, hence for
every cylinder set, P

(×x∈Zd Ax

)
=
∏

x∈Zd P0(Ax).
Now, we define the random potential

V : Ω→ B(H), ω = (ωx)x∈Zd 7→ Vω, [Vω(φ)](x) = ωxφ(x) , (3.1)

i.e., for every random configuration ω = (ωx)x∈Zd ∈ Ω the operator Vω is the
multiplication operator by ω.

Then the Anderson Hamiltonian hω ∈ B(H) is given as hω = ∆d + Vω, i.e.,

[hω(φ)](x) = (2d+ ωx)φ(x)−
∑

y∈Zd, |x−y|=1

φ(y) . (3.2)

Since we also consider finite systems, let Pfin be the set of all finite subsets of
Zd, and define for all Λ ∈ Pfin the Hilbert space HΛ := `2(Λ) and the restriction
of hω to Λ, that is hω,Λ ∈ B(HΛ),

[hω,Λ(φ)](x) := (2d+ ωx)φ(x)−
∑

y∈Λ, |x−y|=1

φ(y) . (3.3)

Note, that the definition above corresponds to Dirichlet boundary conditions.

3.1.2 Interaction between two fermions
The interaction W is assumed to be a self-adjoint, positive semidefinite operator
onH⊗H, which is symmetric under permutation of the arguments, i.e.,

W ∗ = W , 〈φ⊗ ψ , W (φ⊗ ψ)〉 ≥ 0 , W (φ⊗ ψ) = W (ψ ⊗ φ) (3.4)

for all φ, ψ ∈ H. For our model we assume W ∈ B(H⊗H) to be bounded.
Furthermore we assume W to be a translation invariant multiplication opera-

tor, i.e. W is of the form

[W (ψ ⊗ φ)](x, y) =W(x− y)ψ(x)φ(y) (3.5)

for all ψ, φ ∈ H, all x, y ∈ Zd and a suitable function W : Zd → R. The
function W is supposed to be of finite range, hence there is some R > 0 such
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thatW(x) = 0 for all x ∈ Zd with ‖x‖ ≥ R. Observe that (3.4) and (3.5) imply
W(x) = W(−x) for all x ∈ Zd. A function W of finite range is also called a
finite range interaction.

To ensure the uniqueness of the minimizer of the reduced Hartree Fock func-
tional (c.f. Section 3.2.2), we also assume that the Fourier transform Ŵ : Td → R
ofW is strictly positive, that is

Ŵ(ξ) :=
∑
x∈Zd
W(x)e−i〈ξ,x〉 =

∑
x∈Zd,|x|<R

W(x) cos(〈ξ, x〉) > 0 for all ξ ∈ Td

(3.6)
where Td = [−π, π]d is the d-dimensional torus. Note, that the second equality
in (3.6) holds, becauseW is of finite range andW(x) = W(−x) for all x ∈ Zd.
Since Ŵ(ξ) is in fact a trigonometric polynomial and Td is compact, we even have
Ŵ(ξ) ≥ c for all ξ ∈ Td and some positive constant c > 0.

The restriction of W to HΛ ⊗ HΛ is denoted by WΛ. When introducing the
Hartree-Fock theory in Section 3.1.4, we multiply W by a positive parameter g to
rescale the strength of the interaction.

3.1.3 Many fermion systems
In the following, we give a short introduction to the terms used to define the
Hartree-Fock functional. Although in the end, the 1-particle density matrix is the
main object in the definition, we start slightly more general to motivate the used
terms, but omit some details, that are given for example in [14, Section 5.2.1-
5.2.3].

In order to describe a system of fermions, we introduce the fermion Fock space
over a separable, complex Hilbert space G. For N ∈ N we define the N -particle
Hilbert space F (N)[G] to be the N -fold tensor product of G with itself,

F (N) :=
N⊗
n=1

G (3.7)

and set
F (0)[G] = C|0〉 , (3.8)

where the normalized vector |0〉 is called vacuum vector.
Furthermore, we define the fermionic N -particle Hilbert space to be

F (N)
f [G] := A(N)

(
F (N)

)
, (3.9)
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where A(N) : F (N)[G]→ F (N)[G] is the projection onto antisymmetric elements,
i.e.

A(N)(φ1 ⊗ . . .⊗ φN) =
1

N !

∑
π∈SN

(−1)πφπ(1) ⊗ . . .⊗ φπ(N) . (3.10)

Note that this projection ensures that the fermions obey the Pauli principle and
that F (N)

f [G] is again a Hilbert space. A special class of elements of F (N)
f [G] are

the Slater determinants S(N)[G],

S(N)[G] = {φ1 ∧ . . . ∧ φN | φ1, . . . , φN ∈ G, 〈φi, φj〉 = δij} , (3.11)

with φ1∧ . . .∧φN :=
√
N !A(N)[φ1⊗ . . .⊗φN ], that will be used in the definition

of the Hartree-Fock functional.
The fermion Fock space is defined as the direct sum

Ff [G] :=
∞⊕
N=0

F (N)
f [G] (3.12)

i.e. ψ ∈ Ff [G] is a sequence (ψ(N))N∈N0 withψ(N) ∈ F (N)
f [G] and

∑∞
n=0 ‖ψ(n)‖2 <

∞. Then Ff [G] is a Hilbert space with scalar product

〈ψ, φ〉Ff [G] =
∑
N∈N0

〈ψ(N), φ(N)〉Ff [G] (3.13)

for all ψ, φ ∈ Ff [G]. Therefore we get for ψ = (ψ(N))N∈N ∈ Ff [G], that ‖ψ‖2 =∑∞
N=0 ‖ψ(N)‖2.
Then we may define creation and annihilation operators a∗, a : G → B(Ff [G]),

by setting for φ = (φ(N))N∈N ∈ Ff [G] a(f)φ(0) = 0, a∗(f)φ(0) = f and for
φ1 ⊗ . . .⊗ φN ∈ F (N)

f [G]

a(f)(φ1 ⊗ . . .⊗ φN) =
√
N〈f, φ1〉A(N−1)(φ2 ⊗ . . .⊗ φN) (3.14)

a∗(f)(φ1 ⊗ . . .⊗ φN) =
√
N + 1A(N+1)(f ⊗ φ1 ⊗ . . .⊗ φN). (3.15)

Note that f 7→ a(f) is an anti-linear map, whereas f 7→ a∗(f) is a linear map and
‖a(f)‖op, ‖a∗(f)‖op ≤ ‖f‖G . The creation and annihilation operators a∗, a obey
the canonical anti-commutation relations (CAR), that is

{a(φ), a(ψ)} = 0 , {a(φ), a∗(ψ)} = 〈φ, ψ〉1 , (3.16)
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and constitute the Fock representation of the CAR since

a(ψ)|0〉 = 0 , (3.17)

for all ψ ∈ G.
The procedure of the second quantization assigns to an operator h ∈ B(G) a

corresponding N -particle operator h(N) ∈ B(F (N)
f [G]),

h(N) =
N∑
n=1

1⊗ . . .⊗ 1⊗ h︸︷︷︸
nth factor

⊗1⊗ . . .⊗ 1. (3.18)

As it turns out, h(N) has a very useful representation using creation and annihila-
tion operators,

h(N) =
∞∑

i,j=1

〈φi, hφj〉a∗(φi)a(φj), (3.19)

where {φi}i∈N is any ONB of G.
Similarly, we define for W ∈ B(G ⊗ G) a corresponding N -particle operator

W (N) ∈ B(F (N)
f [G]) for N ≥ 2, by setting

W (N) =
∑

1≤i<j≤N

Πi,jW ⊗1⊗ . . .⊗ 1︸ ︷︷ ︸
N−2 factors

Πi,j, (3.20)

where Πi,j : F (N)
f [G] → F (N)

f [G] is the permutation operator, that permutes the
first component with component m and the second component with the n-th. Si-
milarly to (3.19) we have

W (N) =
1

2

∞∑
i,j,k,l=1

〈φi ⊗ φj,W (φk ⊗ φl)〉 a∗(φj)a∗(φi)a(φk)a(φl), (3.21)

for any ONB {φn}n∈N of G.
The physical state of a system is characterized by a functional, that assigns to

each observable of the system a real number, which corresponds to the expectation
of the measured value for this observable. More precisely, the observables are
seen as the C∗-sub-algebra of self-adjoint elements of a C∗-algebra C, and a state
is a positive (hence hermetian), normalized linear functional ρ : C → C, that is
ρ(A∗A) ≥ 0 for all A ∈ C and ‖ρ‖ = 1. The set of all states on C is thus also
denoted by C∗+,1. In the following, we are, as a first step, solely interested in the
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value of the energy observable for finitely many degrees of freedom, hence a finite
subset Λ ⊂ Zd, therefore we may simply take C = B(Ff [G]) = B(Ff [HΛ]).

In the finite dimensional case, any state can be represented by a density matrix,
that is a trace-class operator ρ̂ ∈ L1(Ff [G]), that is positive and has trace 1,
ρ̂ = ρ̂∗, ρ̂ ≥ 0 and Tr{ρ̂} = 1. The corresponding state ρ ∈ B(Ff [HΛ])∗+,1 is
then given by ρ(·) = Tr{ρ̂ ·}. Furthermore, we will assume that the states are
quasi-free, i.e., that all truncated correlation functions vanish, c.f. [14, p. 42-43].
For example a quasi-free state ρ fulfills

ρ(a∗(φ1)a∗(φ2)a(ψ1)a(ψ2)) = ρ(a∗(φ1)a∗(φ2))ρ(a(ψ1)a(ψ2))

−ρ(a∗(φ1)a(ψ1))ρ(a∗(φ2)a(ψ2))

+ρ(a∗(φ1)a(ψ2))ρ(a∗(φ2)a(ψ1)) (3.22)

for all φ1, φ2, ψ1, ψ2 ∈ G. As it turns out, any quasi-free state ρ ∈ C∗+,1 is com-
pletely characterized by

ρ(a∗(φ1)a∗(φ2)) and ρ(a∗(φ1)a(φ2)) (3.23)

for all φ1, φ2 ∈ G. This observation motivates the definition of the 1-particle
density matrix Γρ, see for example [6], of a quasi-free state ρ ∈ C∗+,1 as an operator
on G × G

Γρ =

(
γρ αρ
α∗ρ 1− γρ

)
, (3.24)

where γρ, αρ are bounded operators on G defined by

〈φ, γρψ〉 := ρ(a∗(ψ)a(φ)) and 〈φ, αρψ〉 := ρ(a∗(ψ)a∗(φ)) (3.25)

for all φ, ψ ∈ G and
〈φ, γρψ〉 := 〈φ, γρψ〉. (3.26)

Note that
γρ = γ∗ρ and α∗ρ = −αTρ . (3.27)

One can show that 0 ≤ Γρ ≤ 1, see [6, Lemma 2.1], and furthermore that any
operator Γ on G×G of the form 3.25 obeying 3.27 and 0 ≤ Γ ≤ 1 is the 1-particle
density matrix of a quasi-free state, see [6, Remark after (2b.8), Theorem 2.3].

If a quasi-free state ρ ∈ C∗+,1 is particle conserving, i.e., ρ(a∗(ψ)a∗(φ)) = 0
for all φ, ψ ∈ G, we have αρ = 0 and hence Γρ is completely characterized by
γρ ∈ B(G), which also obeys 0 ≤ γ ≤ 1. It will be indeed sufficient to consider
quasi-free, particle conserving states in the Hartree-Fock theory introduced in the
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following section, since we assume the interaction to be repulsive, that is W to be
positive, c.f. [6, Theorem 2.11]. Hence all occurring 1-particle density matrices
Γρ will be determined by γρ only and we will also call γρ the 1-particle density
matrix of the (quasi-free, particle conserving) state ρ.

3.1.4 Hartree–Fock theory
Now we consider an N -Fermion system in a finite crystal with impurities, which
is described by the Hamiltonian

H
(N)
ω,Λ := h

(N)
ω,Λ + gW

(N)
Λ ∈ B(F (N)

f [HΛ]), (3.28)

where the coupling constant g > 0 scales the strength of the repulsive interaction
W , ω ∈ Ω, and Λ is any finite subset of Zd.

The ground state energy of such a system is given by

E
(GS)
ω,Λ (N) := inf

{
〈φ,H(N)

ω,Λφ〉
∣∣ φ ∈ F (N)

f [HΛ], ‖φ‖ = 1
}

(3.29)

The Hartree-Fock approximation is defined by restricting the wave functions
in (3.29) to Slater determinants only,

E
(HF)
ω,Λ (N) := inf

{
〈φ,H(N)

ω,Λφ〉
∣∣ φ ∈ S(N)[HΛ]

}
. (3.30)

For a Slater determinant Φ = φ1 ∧ . . . ∧ φN ∈ S(N)[HΛ] the density matrix
ρ̂ = |Φ〉〈Φ| is an orthogonal projection. Let the corresponding state be denoted
by ρ. In this case, we get by straightforward computation using (3.16), (3.19) and
(3.21), that

〈Φ, H(N)
ω,Λ Φ〉 = ρ

(
H

(N)
ω,Λ

)
(3.31)

= TrHΛ
{hω,Λγρ}+

g

2
TrHΛ⊗HΛ

{WΛ(1− Ex)(γρ ⊗ γρ)},

where we exceptionally indicate the space over which the trace is taken. The op-
erator Ex: HΛ⊗HΛ → HΛ⊗HΛ simply exchanges components, it is determined
by

Ex(φ⊗ ψ) = ψ ⊗ φ for all φ, ψ ∈ HΛ , (3.32)

and is obviously linear and continuous. Note that the right hand side of (3.31)
is expressed in terms of the 1-particle operators hω,Λ and WΛ. Furthermore, we
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remark that the second equality of (3.31) is also true if ρ is a quasi-free, particle
conserving state because of (3.22).

Introducing the set of 1-particle density matrices on the finite-dimensional
Hilbert-spaceHΛ,

ZΛ := {γ ∈ B(HΛ)
∣∣ 0 ≤ γ ≤ 1} (3.33)

the Hartree-Fock functional E (HF)
ω,Λ (γ) : ZΛ → R is defined as

E (HF)
ω,Λ (γ) = Tr{hω,Λγ}+

g

2
Tr{WΛ(1− Ex )(γ ⊗ γ)} (3.34)

and exists since B(HΛ) = L1(HΛ) for |Λ| < ∞. Then the Hartree-Fock ground
state energy (3.30) can also be expressed in terms of 1-particle density matrices,

E
(HF)
ω,Λ (N) = inf

{
E (HF)
ω,Λ (γ)

∣∣ γ = γ∗ = γ2,Tr{γ} = N
}
. (3.35)

Unfortunately, the set of Slater determinants over which the minimization is
taken, does not have a linear or convex structure, which is a basic assumption for
most results of the calculus of variations. Lieb’s variational principle gives a very
elegant solution. Indeed, in [28, 3] it is shown that the infimum E

(HF)
ω,Λ (N) does

not change, if the condition γ = γ∗ = γ2 is replaced by the weaker assumption
0 ≤ γ ≤ 1, that is

E
(HF)
ω,Λ (N) = inf

{
E (HF)
ω,Λ (γ)

∣∣ 0 ≤ γ ≤ 1,Tr{γ} = N
}
. (3.36)

Physically, this amounts to minimizing over all quasi-free, particle conserving
states with particle number expectation value equal to N . Note that, in general,
the expectation value of the particle number is possibly not an integer. It is shown
in [6, Theorem 2.11], that for repulsive interactions, i.e., if W is positive, even
minimizing over all quasi-free states (with particle expectation value N ) does not
change the infimum E

(HF)
ω,Λ (N).

Although we originally defined the Hartree-Fock ground state energy for N
particles, it is now natural, regarding (3.31) and (3.36), to allow all positive parti-
cle numbers N > 0,

E
(HF)
ω,Λ (N) = inf

{
E (HF)
ω,Λ (γ)

∣∣ γ ∈ ZΛ,N

}
, (3.37)

where
ZΛ,N :=

{
γ ∈ B(HΛ)

∣∣ 0 ≤ γ ≤ 1,Tr{γ} = N
}
. (3.38)
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Let us also define the so-called reduced Hartree-Fock functional. It is given
by minimizing E (rHF)

ω,Λ (γ) : ZΛ → R

E (rHF)
ω,Λ (γ) = Tr{hω,Λγ}+

g

2
Tr{WΛ(γ ⊗ γ)}, (3.39)

this corresponds to neglecting the exchange term g
2

Tr{WΛ Ex (γ ⊗ γ)} in E (HF)
ω,Λ .

Analogously, we define the reduced Hartree-Fock ground state energy for N > 0

E
(rHF)
ω,Λ (N) = inf

{
E (rHF)
ω,Λ (γ)

∣∣ γ ∈ ZΛ,N

}
. (3.40)

The advantage of the reduced functional is a special convexity property which
ensures the uniqueness of the minimizer in some cases, see Section 3.2.2. This
can not be guaranteed for the full Hartree-Fock functional by the methods used in
the following.

From the physical point of view it is also interesting to fix the chemical poten-
tial of the system instead of fixing the particle number. This is the reason why we
define the following functionals Ẽ (HF/rHF)

ω,Λ,µ (γ) : Z → R as

Ẽ (HF/rHF)
ω,Λ,µ (γ) = E (HF/rHF)

ω,Λ (γ)− µTr{γ} , (3.41)

which we call (reduced) Hartree-Fock functional at chemical potential µ. Recall
that Tr{γ} is well-defined since |Λ| < ∞. The according ground state energy is
then given by

Ẽ
(HF/rHF)
ω,Λ (µ) = inf

{
Ẽ (HF/rHF)
ω,Λ,µ (γ)

∣∣ γ ∈ ZΛ

}
. (3.42)

Up to now, all our considerations were done for temperature equal to zero. For
results at positive temperatures we have to take the entropy SΛ : ZΛ → R of the
system into account, that is given in terms of 1-particle density matrices γ ∈ ZΛ

by

SΛ(γ) = −1

2
Tr {γ ln(γ)} − 1

2
Tr {(1− γ) ln(1− γ)} . (3.43)

see for example [7]. In the following, we consider the canonical ensemble and
grand canonical ensemble, at fixed positive temperature and a certain particle
number or chemical potential, respectively.

We define the (reduced) Hartree-Fock pressure functional P(HF/rHF)
ω,Λ,β at inverse

temperature β by

−P(HF/rHF)
ω,Λ,β (γ) = E (HF/rHF)

ω,Λ (γ)− β−1SΛ(γ) (3.44)
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and the supremum of the (reduced) Hartree-Fock pressure functional is denoted
as

P
(HF/rHF)
ω,Λ,β (N) = sup

{
P(HF/rHF)
ω,Λ,β (γ)

∣∣ γ ∈ ZΛ,N

}
. (3.45)

Again, we also consider the case where the chemical potential instead of the
particle number is fixed. That amounts to considering the grand canonical ensem-
ble, and minimize the (reduced) Hartree-Fock grand canonical potential, given
by

M(HF/rHF)
ω,Λ,β,µ (γ) = E (HF/rHF)

ω,Λ (γ)− β−1SΛ(γ)− µTr{γ} . (3.46)

The corresponding infimum is defined as

M
(HF/rHF)
ω,Λ,β (µ) = inf

{
M(HF/rHF)

ω,Λ,β,µ (γ)
∣∣ γ ∈ ZΛ

}
. (3.47)

In the thermodynamic limit we are mainly interested in the minimizers of the
reduced Hartree-Fock grand canonical potentialM(rHF)

ω,Λ,β,µ, see Section 3.3.

3.2 Minimizers for finite systems
As a preparation to study the limit Λ ↗ Zd, we summarize in this section some
results for finite systems. For finite systems, i.e., Λ ∈ Pfin, the Hilbert space HΛ

is finite dimensional and so is the fermion Fock space Ff (HΛ). Therefore the
sets ZΛ and ZΛ,N are compact for all N ∈ R+ and the continuous functionals
E (HF)
ω,Λ , E (rHF)

ω,Λ , Ẽ (HF)
ω,Λ,µ, Ẽ (rHF)

ω,Λ,µ , M(HF)
ω,Λ,β,µ and M(rHF)

ω,Λ,β,µ have indeed a minimizer,
likewiseP(HF)

ω,Λ,β andP(rHF)
ω,Λ,β have maximizers. Starting from the existence, we show

in Section 3.2.1 that the mini- or maximizers obey self-consistent equations. For
the full Hartree Fock Theory mini- or maximizers may turn out to be degenerated,
but in the reduced case the uniqueness can be shown by using the self-consistent
equations and a convexity property of the reduced Hartree Fock functional, see
Section 3.2.2.

3.2.1 Self-consistent equations

The minimizers of E (HF/rHF)
ω,Λ , Ẽ (HF/rHF)

ω,Λ,µ , −P(HF/rHF)
ω,Λ,β , andM(HF/rHF)

ω,Λ,β,µ , no matter
whether these are unique or not, fulfill certain self-consistent equations, that we
deduce in the following. The self-consistent equations are a useful tool to study
the minimizers in the thermodynamic limit, see Section 3.3.



52 CHAPTER 3. HARTREE–FOCK FOR RSO

In preparation, we define the effective Hamiltonians H(HF)
ω,Λ,eff [γ], H

(rHF)
ω,Λ,eff [γ] ∈

B(HΛ) for all γ ∈ ZΛ by

〈ei, H(HF)
ω,Λ,eff [γ]ej〉 = 〈ei, hω,Λej〉+ gTr{WΛ(1− Ex)(γ ⊗ | ej〉〈ei|)}

〈ei, H(rHF)
ω,Λ,eff [γ]ej〉 = 〈ei, hω,Λej〉+ gTr{WΛ(γ ⊗ | ej〉〈ei|)} , (3.48)

where {ei} is any orthonormal basis ofHΛ.

Remark 3.2.1. Using (3.5) and the canonical ONB {ex}x∈Λ of HΛ, the effective
Hamiltonian in the reduced case can be rewritten as

〈ex, H(rHF)
ω,Λ,eff [γ]ey〉 = 〈ex, hω,Λey〉+ g

∑
z∈Λ

W(x− z)γ(z, z)δxy , (3.49)

where γ(x, y) := 〈ex, γey〉. In particular H(rHF)
ω,Λ,eff [γ] only depends on the diagonal

entries of γ. Thus we define the density ργ : Zd → R for all γ ∈ ZΛ to be

ργ(x) :=

{
γ(x, x), x ∈ Λ

0, x /∈ Λ
. (3.50)

Then the effective Hamiltonian is of the form

H
(rHF)
ω,Λ,eff [γ] = hω,Λ + g[WΛ ∗ ργ] (3.51)

where [WΛ ∗ ργ] ∈ B(HΛ) is the multiplication operator

[[WΛ ∗ ργ](φ)] (x) =
∑
y∈Λ

W(x− y)ργ(y)φ(x) (3.52)

for every γ ∈ ZΛ, φ ∈ HΛ, and x ∈ Λ. Emphasizing this observation we also
write H(rHF)

ω,Λ,eff [ργ] ≡ H
(rHF)
ω,Λ,eff [γ].

Lemma 3.2.2 (Self-consistent equations for minimizers of E (HF)
ω,Λ and E (rHF)

ω,Λ ).
Let Λ ∈ Pfin, ω ∈ Ω and N ∈ (0, |Λ|). If γ(HF/rHF)

ω,Λ,N ∈ ZΛ,N is a minimizer of

E (HF/rHF)
ω,Λ on ZΛ,N , then there are E(HF/rHF)

F ∈ R and P (HF/rHF) ∈ B(HΛ) with

0 ≤ P (HF/rHF) ≤ 1

[
H

(HF/rHF)
ω,Λ,eff [γ

(HF/rHF)
ω,Λ,N ] = E

(HF/rHF)
F

]
such that

γ
(HF/rHF)
ω,Λ,N = 1

[
H

(HF/rHF)
ω,Λ,eff [γ

(HF/rHF)
ω,Λ,N ] < E

(HF/rHF)
F

]
+ P (HF/rHF) (3.53)
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Proof. The proof is completely analogous for both cases. We omit the superscripts
(HF) and (rHF) for EΛ ≡ Eω,Λ, γ0 ≡ γω,Λ,N , EF , P and Heff [γ0] ≡ Hω,Λ,eff [γ0] to
shorten the notation.

First, note that Heff [γ0] is a self-adjoint operator on the finite dimensional
Hilbert space Hλ. We denote by λ1 ≤ λ2 ≤ . . . λ|Λ| the eigenvalues (counting
multiplicity) of Heff [γ0] and by {φi}i=1,...,|Λ| the corresponding ONB of eigenvec-
tors of Heff [γ0]. Let us already fix the Fermi energy EF by choosing Ñ ∈ N such
that Ñ ≤ N < Ñ + 1 and setting

EF = λÑ+1 .

Furthermore, let m be the degree of degeneration of the eigenvalue EF , i.e.

m = |{i ∈ {1, . . . , |Λ|} | λi = EF}| ,

and n the number of eigenvalues smaller than EF ,

n = |{i ∈ {1, . . . , |Λ|} | λi < EF}| .

Then we define the functional f : ZΛ,N → R as

f(γ) :=
d

dt
(EΛ(tγ + (1− t)γ0))

∣∣∣∣
t=0

. (3.54)

A straightforward computation yields for any γ ∈ ZΛ,N

f(γ) = Tr{Heff [γ0](γ − γ0)}. (3.55)

Observe that f(γ) ≥ 0 for all γ ∈ ZΛ,N since γ0 is the minimizer. In particular
we have

Tr {(Heff [γ0]− EF )γ} ≥ Tr{(Heff [γ0]− EF )γ0}, (3.56)

for all γ ∈ ZΛ,N , hence γ0 also minimizes the functional gEF |ZΛ,N
, with gEF :

ZΛ → R,
gEF (γ) = Tr{(Heff [γ0]− EF )γ}. (3.57)

Recalling that Heff [γ0] is nothing but a finite self-adjoint matrix, we observe that
any minimizer γ̃ ∈ ZΛ, i.e. 0 ≤ γ̃ ≤ 1, of gEF is of the form

γ̃ = γ̃EF ,α :=
n∑
i=1

|φi〉〈φi|+
m∑
j=1

αj|φn+j〉〈φn+j| (3.58)
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for some α = (α1, . . . , αm) with 0 ≤ αj ≤ 1 for j = 1, . . . ,m.
Now we choose α1, . . . , αm ∈ [0, 1] such that

Tr{γ̃EF ,α} = N . (3.59)

Then γ̃EF ,α minimizes gEF (onZΛ) as well as gEF |ZΛ,N
and we obtain gEF (γ̃EF ,α) =

gEF (γ0). But then γ0 is also a minimizer of gEF (on ZΛ) and hence of the form
(3.58).

In the proof presented above we choose EF to be an eigenvalue of Heff [γ0],
and in that case even obtained that 0 ≤ P < 1 [Heff [γ0] = EF ]. If P = 0 we may
also choose EF slightly smaller (for example as small as the next eigenvalue of
Heff [γ0]) and thus get γ0 = 1 [Heff [γ0] ≤ EF ].

If the interaction W is strictly positive and N ∈ N, it is known from Lieb’s
variational principle [28] that any minimizer of the Hartree-Fock functional is nec-
essarily a projection. Furthermore it is shown in [5], that under these conditions
one always gets P (HF ) = 0.

We can not show such a general result, since we only assume the Fourier trans-
form of the interaction potential Ŵ to be strictly positive, but not the interaction
itself. Nevertheless, we can prove for finite Λ ⊂ Zd, that there is at least one
minimizer which is a projection.

Lemma 3.2.3.
Let Λ ∈ Pfin, ω ∈ Ω and N ∈ N be such that 0 < N < |Λ|. Then there is a
projection γω,Λ,N = γ2

ω,Λ,N ∈ ZΛ,N , which also minimizes E (HF)
ω,Λ on ZΛ,N .

Proof. We replace the interactionWΛ in the Hartree-Fock functional (3.34) by the
interaction Wε ≡ WΛ,ε defined by

Wε := WΛ + εV , (3.60)

where V is the interaction that is equally repulsive between any two points in Λ ,
i.e.

[V (ψ ⊗ φ)](x, y) = V(x− y)ψ(x)φ(y) = ψ(x)φ(y) (3.61)

for all ψ, φ ∈ H and all x, y ∈ Zd, hence V ≡ 1. For any ε > 0 the interaction
Wε is strictly positive and thus we get, following [28, 5], that there is a projection
γε = γ2

ε ∈ ZΛ,N which minimizes the following Hartree-Fock functional

Eε(γ) := Tr{hω,Λγ}+
g

2
Tr{Wε(1− Ex )(γ ⊗ γ)} (3.62)
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on ZΛ,N . Now we choose the sequence (γn)n∈N in ZΛ,N such that

γ2
n = γn and En−1(γn) = inf {En−1(γ) | γ ∈ ZΛ,N} . (3.63)

Recall, that γn is a sequence of finite matrices. This sequence is bounded and
ZΛ,N is closed. Thus we can find a convergent subsequence, which, for the sake
of simplicity, we also denote by (γn)n∈N and w.l.o.g. we assume (3.63) to hold.
Then the limit γ∞ := limn→∞ γn ∈ ZΛ,N is obviously also a projection, γ2

∞ = γ∞.
Thus it remains to show that

E0(γ∞) = inf{E0(γ) | γ ∈ ZΛ,N} . (3.64)

This is achieved via the following two observations: First, the map γ → E0(γ) is
continuous, and second, the sequence of functions {En−1}n∈N is uniformly con-
vergent, i.e.

‖En−1 − E0‖∞ := sup
γ∈ZΛ,N

{|En−1(γ)− E0(γ)|}

= sup
γ∈ZΛ,N

{
g

2n

∣∣∣∣∣∑
x,y∈Λ

γ(x, x)γ(y, y)− |γ(x, y)|2
∣∣∣∣∣
}

≤ 2g

n
|Λ|2 . (3.65)

Then, for any ε > 0 we may choose n0 ∈ N such that for all n ≥ n0

|E0(γ∞)− E(γn)| ≤ ε

3
and ‖En−1 − E0‖∞ ≤

ε

3
. (3.66)

Then we get for all n ≥ n0

0 ≤ E0(γ∞)− inf
γ∈ZΛ,N

{E0(γ)}

≤ [E0(γ∞)− E0(γn)] + [E0(γn)− En−1(γn)]

+En−1(γn) + sup
γ∈ZΛ,N

{−En−1(γ) + [En−1(γ)− E0(γ)]}

≤ ε

3
+
ε

3
+ En−1(γn) + sup

γ∈ZΛ,N

{−En−1(γ)}+ sup
γ∈ZΛ,N

{En−1(γ)− E0(γ)}

≤ ε+ En−1(γn)− inf
γ∈ZΛ,N

{En−1(γ)}

= ε . (3.67)

Thus we have shown 0 ≤ E(γ∞) − inf{E0(γ) | γ ∈ ZΛ,N} ≤ ε for arbitrarily
small ε > 0 and hence we obtain E(γ∞) = inf{E0(γ) | γ ∈ ZΛ,N}.
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The minimizers of Ẽ (HF/rHF)
ω,Λ,µ of the Hartree-Fock functional at chemical po-

tential µ fulfill similar self-consistent equations. As it turns out, the Fermi energy
is, of course, fixed at µ.

Lemma 3.2.4 (Self-consistent equations for minimizers of Ẽ (HF)
ω,Λ,µ and Ẽ (rHF)

ω,Λ,µ ).
Let Λ ∈ Pfin, ω ∈ Ω and µ ∈ R. If γ(HF/rHF)

ω,Λ,µ ∈ ZΛ is a minimizer of Ẽ (HF/rHF)
ω,Λ,µ on

ZΛ, then there is P (HF/rHF) ∈ B(HΛ) with

0 ≤ P (HF/rHF) ≤ 1

[
H

(HF/rHF)
ω,Λ,eff [γ

(HF/rHF)
ω,Λ,µ ] = µ

]
such that

γ
(HF/rHF)
ω,Λ,µ = 1

[
H

(HF/rHF)
ω,Λ,eff [γ

(HF/rHF)
ω,Λ,µ ] < µ

]
+ P (HF/rHF) (3.68)

Proof. Again, the proof is completely analogous for both cases. As before we
omit the superscripts (HF) and (rHF), and shorten the notation by setting ẼΛ ≡
Ẽ (HF/rHF )
ω,Λ,µ , γ0 ≡ γ

(HF/rHF )
ω,Λ,µ , P ≡ P (HF/rHF ) and Heff [γ0] ≡ H

(HF/rHF )
ω,Λ,eff [γ0].

Basically, the proof is a simplification of the proof of Lemma 3.2.2. We define
the functional f : ZΛ → R as

f(γ) :=
d

dt

(
ẼΛ(tγ + (1− t)γ0)

)∣∣∣∣
t=0

, (3.69)

and obtain that for any γ ∈ ZΛ

f(γ) = Tr{(Heff [γ0]− µ)(γ − γ0)}. (3.70)

Obviously, we have f(γ) ≥ 0 for all γ ∈ ZΛ since γ0 is the minimizer, and
therefore

Tr {(Heff [γ0]− µ)γ} ≥ Tr{(Heff [γ0]− µ)γ0}, (3.71)

for all γ ∈ ZΛ, and γ0 also minimizes the functional g : ZΛ → R,

g(γ) = Tr{(Heff [γ0]− µ)γ} . (3.72)

Recalling that Heff [γ0] is nothing but a finite self-adjoint matrix, we observe that
any minimizer γ̃ ∈ ZΛ, i.e. 0 ≤ γ̃ ≤ 1, of g is of the form

γ̃ = 1[(Heff [γ0]− µ) < 0] + P (3.73)

for some P ∈ B(HΛ) with 0 ≤ P ≤ 1[(Heff [γ0]− µ) = 0].
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For the case of positive temperature, we obtain slightly different self-consistent
equations. As one might expect from the physical point of view, the step function
1[Heff [γ0] < EF ] is replaced by the Fermi-function (1 + exp[β(Heff [γ0]− EF )])−1.
The results for the maximizers of the unrestricted Hartree-Fock and the reduced
Hartree-Fock pressure are again completely analogous.

Lemma 3.2.5 (Self-consistent equations for maximizers of P(HF)
ω,Λ,β and P(rHF)

ω,Λ,β ).
Let Λ ∈ Pfin, ω ∈ Ω, β ∈ (0,∞) and N ∈ (0, |Λ|). If γ(HF/rHF)

ω,Λ,β,N ∈ ZΛ,N is a

maximizer of P(HF/rHF)
ω,Λ,β on ZΛ,N , then there is E(HF/rHF)

F ∈ R such that

γ
(HF/rHF)
ω,Λ,β,N =

(
1 + exp

[
β(H

(HF/rHF)
ω,Λ,eff [γ

(HF/rHF)
ω,Λ,β,N ]− E(HF)

F )
])−1

(3.74)

Here, Hω,Λ,eff(HF/rHF)[γ
(HF/rHF)
ω,Λ,β,N ] ∈ B(HΛ) are the effective Hamiltonians de-

fined in (3.48).

Proof. The proof is again completely analogous for both cases, as before we
omit the superscripts (HF) and (rHF). Furthermore, the proof is similar to that of
Lemma 3.2.2.

We define the functional f : ZΛ → R,

f(γ) :=
d

dt
(−PΛ,β(tγ + (1− t)γ0))

∣∣∣∣
t=0

, (3.75)

with γ0 ≡ γω,Λ,β,N . As before, we have f(γ) ≥ 0 for all γ ∈ ZΛ,N and f(γ0) = 0
Furthermore we obtain for any γ ∈ ZΛ,N

f(γ) = Tr

{[
Heff [γ0] +

β−1

2
(ln(γ0)− ln(1− γ0))

]
(γ − γ0)

}
≥ 0. (3.76)

In particular we have for any E ∈ R and γ ∈ ZΛ,N that

gE(γ) ≥ Tr

{
(Heff [γ0]− E)γ +

β−1

2
(γ ln(γ0) + (1− γ) ln(1− γ0))

}
≥ Tr

{
(Heff [γ0]− E)γ0 +

β−1

2
(γ0 ln(γ0) + (1− γ0) ln(1− γ0))

}
= gE(γ0) (3.77)

where gE : ZΛ → R

gE(γ) := Tr
{

(Heff [γ0]− E)γ + β−1SΛ(γ)
}
. (3.78)
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Note that in order to derive the first inequality in (3.77), we used the technical
lemma [14, Lemma 6.2.21]. Hence γ0 also minimizes the functional gE|ZΛ,N

.
Now, it is a straightforward computation to show that

γ̃E = (1 + exp[β(Heff [γ0]− E)])−1 (3.79)

is the unique minimizer of gE on ZΛ, c.f. [7]. Obviously, we may choose EF ∈ R
such that Tr{γ̃EF } = N and obtain the assertion.

Instead of computing γ̃E in (3.79) directly, we may also observe, that the func-
tion gE(γ) defined in (3.78) is the free energy of the system with Hamiltonian
Heff [γ0]−E at inverse temperature β in the state with 1-particle density matrix γ.
But the unique minimizer of the free energy is known to be the Gibbs-state, see
for example [14, Proposition 6.2.22]. As it turns out its corresponding 1-particle
density matrix is given by γ̃E .

Lemma 3.2.6 (Self-consistent equations for minimizers ofM(HF)
ω,Λ,β,µ andM(rHF)

ω,Λ,β,µ).

Let Λ ∈ Pfin, ω ∈ Ω, β ∈ (0,∞) and µ ∈ R. If γ(HF/rHF)
ω,Λ,β,µ ∈ ZΛ is a minimizer of

M(HF/rHF)
ω,Λ,β,µ , then

γ
(HF/rHF)
ω,Λ,β,µ =

(
1 + exp

[
β(H

(HF/rHF)
ω,Λ,eff [γ

(HF/rHF)
ω,Λ,β,µ ]− µ)

])−1

(3.80)

Here, H(HF/rHF)
ω,Λ,eff [γ

(HF/rHF)
ω,Λ,µ ] ∈ B(HΛ) are the effective Hamiltonians, defined in

(3.48).

Proof. The proof is a simplification of the proof of Lemma 3.2.5, we use the same
simplified notation in the following. More precisely, let the functional f : ZΛ →
R be now given by

f(γ) :=
d

dt
(Mω,Λ,β,µ(tγ + (1− t)γ0))

∣∣∣∣
t=0

, (3.81)

Note that with f as above, (3.76) and (3.77) with E = µ are valid for all γ ∈ ZΛ.
That means, we obtain, now for any γ ∈ ZΛ,

f(γ) = Tr

{[
(Heff [γ0]− µ) +

β−1

2
(ln(γ0)− ln(1− γ0))

]
(γ − γ0)

}
≥ 0.

(3.82)
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and therefore with gµ as in (3.78),

gµ(γ) ≥ Tr

{
(Heff [γ0]− µ)γ +

β−1

2
(γ ln(γ0) + (1− γ) ln(1− γ0))

}
≥ Tr

{
(Heff [γ0]− µ)γ0 +

β−1

2
(γ0 ln(γ0) + (1− γ0) ln(1− γ0))

}
= gµ(γ0) (3.83)

for all γ ∈ ZΛ. The assertion follows by the same argument as in Lemma 3.2.5.

3.2.2 Uniqueness

Now we are able to prove the uniqueness of the minimizers of −P(rHF)
ω,Λ,β and

M(rHF)
ω,Λ,β,µ, using the self-consistent equations deduced in Section 3.2.1. Before

proving the uniqueness, we show the following auxiliary lemma that asserts a
special convexity property of E (rHF)

ω,Λ :

Lemma 3.2.7. Let γ, γ̃ ∈ ZΛ be such that their corresponding densities, defined
in (3.50), differ, i.e. ργ 6= ργ̃ . Then

αE (rHF)
ω,Λ (γ) + (1− α)E (rHF)

ω,Λ (γ̃)− E (rHF)
ω,Λ (αγ + (1− α)γ̃) > 0 (3.84)

for all α ∈ (0, 1).

Proof. Let γ, γ̃ ∈ ZΛ be such that ργ 6= ργ̃ . Recall that the Fourier transform of
W is strictly positive by assumption, see (3.6). Hence we get for any α ∈ (0, 1)

αE (rHF)
ω,Λ (γ) + (1− α)E (rHF)

ω,Λ (γ̃)− E (rHF)
ω,Λ (αγ + (1− α)γ̃)

=
g

2

∑
x,y∈Λ

W(x− y) [αργ(x)ργ(y) + (1− α)ργ̃(x)ργ̃(y)

− (αργ(x) + (1− α)ργ̃(x)) (αργ(y) + (1− α)ργ̃(y))]

=
g

2

(
α− α2

) ∑
x,y∈Λ

W(x− y)(ργ − ργ̃)(x)(ργ − ργ̃)(y)

=
g

2

(
α− α2

) 1

(2π)d

∫
[−π,π]d

dξ Ŵ(ξ)
∣∣∣ ̂[ργ − ργ̃](ξ)

∣∣∣2
> 0 . (3.85)
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Lemma 3.2.8 (Uniqueness of the minimizers of −P(rHF)
ω,Λ,β andM(rHF)

ω,Λ,β,µ). For all
ω ∈ Ω, Λ ∈ Pfin, β−1 > 0, N ∈ (0, |Λ|), and µ ∈ R, there are unique 1-particle
density matrices γω,Λ,β,N ∈ ZΛ,N , γω,Λ,β,µ ∈ ZΛ such that

P
(rHF)
ω,Λ,β (N) = P(rHF)

ω,Λ,β (γω,Λ,β,N) (3.86)

M
(rHF)
ω,Λ,β (µ) = M(rHF)

ω,Λ,β,µ(γω,Λ,β,µ) . (3.87)

Proof. First, let us prove (3.86). Recall, that ZΛ,N is a convex set. Let γ, γ̃ ∈
ZΛ,N be minimizers of −P(rHF)

ω,Λ,β which have identical densities ργ = ργ̃ and thus
identical effective HamiltoniansH(rHF)

ω,Λ,eff [γ] = H
(rHF)
ω,Λ,eff [γ̃] =: Heff . By means of the

self-consistent equations, i.e. Lemma 3.2.5, we obtain the existence of EF , ẼF ∈
R such that

γ = (1 + exp [β(Heff − EF )])−1

γ̃ =
(

1 + exp
[
β(Heff − ẼF )

])−1

. (3.88)

But, for Tr{γ} = Tr{γ̃}, we have in particular

Tr
{

(1 + exp [β(Heff − EF )])−1} = Tr
{

(1 + exp[β(Heff − ẼF )])−1
}

(3.89)

and hence EF = ẼF , which implies γ = γ̃. Again, we conclude, that any two
different minimizers γ, γ̃ ∈ ZΛ,N of −P(rHF)

ω,Λ,β have different densities ργ 6= ργ̃ .
Lemma 3.2.7 together with the observation, that the entropy SΛ : ZΛ → R is
(even strictly) convex, imply for any α ∈ (0, 1)

−P(rHF)
ω,Λ,β (γ) = αE (rHF)

ω,Λ (γ) + (1− α)E (rHF)
ω,Λ (γ̃)− β−1(αSΛ(γ) + (1− α)SΛ(γ̃))

> −P(rHF)
ω,Λ,β (αγ + (1− α)γ̃) , (3.90)

and thus we get γ = γ̃.
The proof of (3.87) is completely analogous to the case discussed above, since

the self-consistent equations in Lemma 3.2.6 imply at once, that ργ = ργ̃ ⇔ γ = γ̃
for any two minimizers γ, γ̃ ∈ ZΛ.

3.3 Minimizers in the thermodynamic limit
In this section we concentrate on analyzing the thermodynamic limit of minimiz-
ers ofM(rHF)

ω,Λ,β,µ. Some statements in this section are also possible for minimizers
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of E (HF/rHF)
ω,Λ , Ẽ (HF/rHF)

ω,Λ,µ , −P(HF/rHF)
ω,Λ,β orM(HF)

ω,Λ,β,µ, which will be indicated in the
context. Only for minimizers ofM(rHF)

ω,Λ,β,µ we obtain the uniqueness of the mini-
mizer in the thermodynamic limit. Note that for each Λ ∈ Pfin the minimizer
of M(rHF)

ω,Λ,β,µ is of course also the minimizer of the density of the grand canoni-
cal ensemble, 1

|Λ|M
(rHF)
ω,Λ,β,µ, which is the natural quantity in the thermodynamic

limit. Since we consider properties of the corresponding minimizers (but not of
M(rHF)

ω,Λ,β,µ itself), we do not need to take this distinction into account.

3.3.1 Existence and uniqueness
We define Λn to be the box of side length 2n+ 1 centered at zero,

Λn := {x ∈ Zd |‖x‖∞ = sup
i=1,...,d

{|xi|} ≤ n} . (3.91)

Fix ω ∈ Ω, β ∈ (0,∞) and µ ∈ R. For each n ∈ N let γn ∈ ZΛn be the unique
minimizer ofM(rHF)

ω,Λn,β,µ
, see Lemma 3.2.8. We define

Z := {γ ∈ B(H) | 0 ≤ γ ≤ 1} (3.92)

and continue γn to an operator γ̃n ∈ Z by setting

〈ex, γ̃ney〉 =

{
〈ex, γney〉, x, y ∈ Λn

0, x /∈ Λn ∨ y /∈ Λn.
(3.93)

In the following we will denote for any operator A ∈ HΛ the above continuation
also as A ≡ Ã ∈ H to simplify notation. Note that the elements of Z are not as-
sumed to be trace-class operators. For ZΛ as defined in (3.33) this is naturally the
case since Λ is a finite subset of Zd. Recall that the trace of the 1-particle density
matrix γ is the expectation value of the particle number in the corresponding state
and we may not expect a finite particle number in the thermodynamic limit.

As explained in Section 3.1.3 each 1-particle density matrix γn corresponds to
a quasi-free, particle conserving state ρn ∈ (B[Ff [H]])∗+,1.

Now we deduce the existence of a limit of γn for n→∞. Since this limit will
be in the weak-* topology on (B[Ff [H]])∗, let us first recall the definition of this
topology. The weak-* topology on any dual X∗ of a Banach space X is defined
as the weakest topology such that all functionals

{φx : X∗ → C, φx(x∗) = x∗(x) | x ∈ X} (3.94)
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are continuous. This is equivalent to the formulation, that the weak-* topology is
the locally convex topology on X∗ which is induced by the family

{‖ · ‖x : X∗ → R+
0 , ‖x∗‖x = |x(x∗)|}x∈X (3.95)

of semi-norms onX∗. In particular, we deduce from the continuity of all function-
als in (3.94), that any sequence (x∗n)n∈N which converges in the weak-* topology
to some x∗∞ ∈ X∗ obeys

lim
n→∞

x∗n(x) = lim
n→∞

φx(x
∗
n) = φx(x

∗
∞) = x∞(x) , (3.96)

for all x ∈ X .
It is well-known, that the set of states (B[Ff [H]])∗+,1 is compact in the weak-

*-topology, see for example [13, Theorem 2.3.15]. This induces at once that the
sequence (ρn)n∈N has at least one accumulation point in (B[Ff [H]])∗+,1. Hence
there is a subsequence (ρnk)k∈N that converges in the weak-*-topology to some
ρ∞ ∈ (B[Ff [H]])∗+,1. In the following, we denote this convergent subsequence
again as (ρn)n∈N to simplify notation.

Recall, that for each quasi-free, particle conserving state ρn ∈ (B[Ff [H]])∗+,1
there is a corresponding 1-particle density matrix γn ∈ B(H) , see Section 3.1.3.
From the continuity of all functionals in (3.94) we obtain at once that the set
of quasi-free, particle conserving states is weak-*-closed. Therefore ρ∞ is also
quasi-free and particle conserving. We denote the corresponding 1-particle-density
matrix by γ∞ ∈ ZΛ, and obtain for every φ, ψ ∈ H

〈φ, γ∞ψ〉 = ρ∞(a∗(ψ)a(φ)) = lim
n→∞

ρn(a∗(ψ)a(φ)) = lim
n→∞
〈φ, γnψ〉 . (3.97)

The equation above induces γn
w→ γ∞ in the weak operator topology of B(H).

Recall, that the weak operator topology on B(H), with H being a Hilbert space,
is defined as the weakest topology such that all functionals in the set

{φx,y : B(H)→ C, φx,y(A) = 〈x,Ay〉 | x, y ∈ H} (3.98)

are continuous.

Remark 3.3.1. The construction of a weak-* accumulation point as described
above is of course also possible for minimizers (unique or not) of E (HF/rHF )

ω,Λn
,

Ẽ (HF/rHF)
ω,Λ,µ , −P(HF/rHF )

ω,Λn,β
or M(HF )

ω,Λn,β,µ
, but the result is in any case rather weak.

Especially, if the uniqueness of the minimizers is not clear, the accumulation
points may depend on the choice of the minimizers. In addition to this the unique-
ness of the limit state is not understood in any of these cases.
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The following Lemma is a preparation to prove the uniqueness of the ther-
modynamic limit of minimizers ofM(rHF)

ω,Λn,β,µ
in Theorem 3.3.4 by means of the

self-consistent equations.

Lemma 3.3.2 (Self-consistent equations for accumulation points).
For ω ∈ Ω, β ∈ (0,∞) and µ ∈ R, let γn ∈ Z be a subsequence of the

unique minimizers of M(rHF)
ω,Λn,β,µ

, such that the corresponding quasi-free states
ρn ∈ (B[Ff [H]])∗+,1 converge in the weak-*-topology to the quasi-free state ρ∞
with corresponding 1-particle density matrix γ∞ ∈ Z given by (3.97).

Then the effective Hamiltonians H(rHF)
ω,Λn,eff [γn] ∈ B(H) converge in the weak

operator topology to H(rHF)
ω,eff [γ∞] ∈ B(H), given by

〈ex, H(rHF)
ω,eff [γ∞]ey〉 = 〈ex, hωey〉+ gTr{W (γ∞ ⊗ | ey〉〈ex|)}. (3.99)

Furthermore, γ∞ fulfills the self-consistent equation,

γ∞ =
(

1 + exp
[
β(H

(rHF)
ω,eff [γ∞]− µ)

])−1

(3.100)

Remark 3.3.3. Similar to (3.51) the effective Hamiltonian H
(rHF)
ω,eff [γ∞] can be

expressed as
H

(rHF)
ω,eff [γ∞] = hω + g[W ∗ γ∞] (3.101)

where [W ∗ γ∞] ∈ B(H) is the multiplication operator defined analogously to
(3.52)

[[W ∗ γ∞]φ] (x) =
∑
y∈Zd
W(x− y)ργ∞(y)φ(x) (3.102)

for every φ ∈ HΛ, x ∈ Zd. Note that [W ∗ γ∞] is well-defined, because W is of
finite range.

Proof. We show (3.99) by using (3.101). For all x, y ∈ Zd we have

lim
n→∞
〈ex, (H(rHF)

ω,Λn,eff [γn]−H(rHF)
ω,eff [γ∞])ey〉

= lim
n→∞
〈ex, (hω,Λn − hω)ey〉+ g〈ex, [W ∗ (γn − γ∞)]ey〉

= g lim
n→∞

W(y − x)(γn(x, x)− γ∞(x, x)) = 0

because of (3.97).
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Each minimizer γn fulfills the self-consistent equation

γn = f
(
β(H

(rHF)
ω,Λn,eff [γn]− µ)

)
(3.103)

for f : R→ R, f(x) = (1 + ex)−1.
Therefore we obtain by (3.97) and the continuity of f , the scalar product and

the functional calculus w.r.t. the weak operator topology, that for all x, y ∈ Zd

〈ex, γ∞ey〉 = lim
n→∞
〈ex, γney〉

= lim
n→∞
〈ex, f(β(H

(rHF)
ω,Λn,eff [γn]− µ))ey〉

= 〈ex, f(β(H
(rHF)
ω,eff [γ∞]− µ))ey〉 ,

which proves (3.100).

Now we are ready to prove the uniqueness of γ∞:

Theorem 3.3.4 (Uniqueness of the minimizer ofM(rHF)
ω,Λ,β,µ in the thermodynamic

limit).
If β ∈ (0,∞), g > 0 are such that

βg

4
‖W‖1 < 1 , (3.104)

where
‖W‖1 =

∑
x∈Zd
|W(x)| , (3.105)

then for all ω ∈ Ω, β ∈ (0,∞) and µ ∈ R there is γ∞ ∈ Z such that the sequence
of unique minimizers γn ∈ Z ofM(rHF)

ω,Λn,β,µ
converges in the weak-operator topo-

logy of B(H) to γ∞,

lim
n→∞
〈ex, γney〉 = 〈ex, γ∞ey〉 for all x, y ∈ Zd. (3.106)

Proof. Note that

f(x) = (1 + ex)−1 =
1

2

(
1 + tanh

(
−x

2

))
. (3.107)

It follows from the product representation of cosh that

tanh(x) =
d

dx
ln cosh(x)

=
∞∑
k=0

(
1

πi(k + 1
2
) + x

− 1

πi(k + 1
2
)− x

)
, (3.108)
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c.f. [6]. Therefore we can express f as the following series

f(x) =
1

2
+
∞∑
k=0

∑
σ=±1

1

2σπi(k + 1
2
)− x

. (3.109)

Now, we define for any β ∈ (0,∞) and µ ∈ R the function Fβ,µ : B(H)→ B(H)
by setting

Fβ,µ(γ) := f
(
β(H

(rHF)
ω,eff [γ]− µ)

)
(3.110)

and estimate for arbitrary γ, γ̃ ∈ B(H)

‖Fβ,µ(γ)− Fβ,µ(γ̃)‖op ≤
∥∥∥f(β(H

(rHF)
ω,eff [γ]− µ))− f(β(H

(rHF)
ω,eff [γ̃]− µ))

∥∥∥
op

≤
∞∑
k=0

∑
σ=±1

∥∥∥∥∥ 1

2σπi(k + 1
2
)− β(H

(rHF)
ω,eff [γ]− µ)

− 1

2σπi(k + 1
2
)− β(H

(rHF)
ω,eff [γ̃]− µ)

∥∥∥∥∥
op

≤ 2βg
∞∑
k=0

1

4π2(k + 1
2
)2
‖W ∗ (γ̃ − γ)‖op

≤ βg

4
‖W‖1 ‖(γ̃ − γ)‖op (3.111)

where we used the second resolvent equality and
∞∑
k=0

1

π2(k + 1
2
)2

=
1

2
. (3.112)

Because βg
4
‖W‖1 < 1, Fβ,µ is a contraction and therefore it has a unique

fixed point. But by Lemma 3.3.2 any accumulation point of {γn} is a fixed point
of Fβ,µ, hence there is exactly one unique accumulation point. Since the set of
quasi-free states is weak-*-compact, the convergence of γn in the weak operator
topology follows.

3.3.2 Ergodicity of the minimizer and the effective Hamilto-
nian

We show, that the minimizers as well as the effective Hamiltonians in the thermo-
dynamic limit are ergodic operator families w.r.t. the group of translations in Zd.
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The translations are given by τ k : H → H

[τ kφ](x) := φ(x− k) (3.113)

and T k : Ω→ Ω
[T kω](x) = ω(x− k) , (3.114)

respectively.

Theorem 3.3.5. Let ω ∈ Ω, µ ∈ R and g, β ∈ (0,∞) be such that βg
4
‖W‖1 < 1.

Let γω ∈ Z be the thermodynamic limit of the unique minimizers γω,n ∈ Z of
M(rHF)

ω,Λn,β,µ
, c.f Theorem 3.3.4. Set H̃ω := H

(rHF)
ω,eff [γω] to be the corresponding

effective Hamiltonian.
Then {H̃ω}ω∈Ω and {γω}ω∈Ω are ergodic operator families w.r.t the group of

translations {τ k}k∈Zd , that is for all k ∈ Zd

τ kγωτ
−k = γTkω , (3.115)

and
τ kH̃ωτ

−k = H̃Tkω . (3.116)

Proof. Similar to the proof of Theorem 3.3.4 we define for ω ∈ Ω, β ∈ (0,∞),
µ ∈ R the function Fω,β,µ : B(H)→ B(H)

Fω,β,µ(γ) := f
(
β(H

(rHF)
ω,eff [γ]− µ)

)
(3.117)

where we explicitly denote the dependence on ω ∈ Ω now and f is given by
f(x) = (1 + ex)−1 as before. Recall, that (3.111) implies that Fω,β,µ(γ) has a
unique fixed point.

The effective Hamiltonian H(rHF)
ω,eff [γ] obeys for all φ ∈ H, x, k ∈ Zd[(

τ kH
(rHF)
ω,eff [γ]τ−k

)
φ
]

(x) = [hω(τ−k)φ](x− k) + g
[
[W ∗ γ](τ−kφ)

]
(x− k)

= [hTkωφ](x) + g
∑
y∈Zd
W(x− y)γ(y − k, y − k)φ(x)

= [hTkωφ](x) + g
[
[W ∗ (τ kγτ−k)]φ

]
(x)

=
[
H

(rHF)

Tkω,eff
[τ kγτ−k]φ

]
(x) , (3.118)

hence we have
τ kH

(rHF)
ω,eff [γ]τ−k = H

(rHF)

Tkω,eff
[τ kγτ−k] (3.119)
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Now, we use (3.119) and the self-consistent equations and observe that

τ kγωτ
−k = τ kFω,β,µ(γω)τ−k

= τ k
(

1 + exp
[
β(H

(rHF)
ω,eff [γω]− µ)

])−1

τ−k

=
(

1 + exp
[
β(τ kH

(rHF)
ω,eff [γω]τ−k − µ)

])−1

=
(

1 + exp
[
β(H

(rHF)

Tkω,eff
[τ kγωτ

−k]− µ)
])−1

= FTkω,β,µ(τ kγωτ
−k) , (3.120)

as well as
γTkω = FTkω,β,µ(γTkω) . (3.121)

Since the fixed point of FTkω,β,µ is unique, we obtain (3.115). Then (3.116) fol-
lows immediately from (3.119) and (3.115).

We conclude this section by remarking that Theorem 3.3.5 implies at once:

Corollary 3.3.6. Under the assertion of Theorem 3.3.5, the spectrum of the oper-
ator families {H̃ω := H

(rHF)
ω,eff [γω]}ω∈Ω and {γω}ω∈Ω is P-almost surely constant.
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Chapter 4

The AC–Conductivity Measure from
the Entropy Production of Fermions
in Disordered Media

In this chapter, the notion of an AC-conductivity measure µσ in linear response
theory for free fermions on the lattice is proposed. The fermions are subjected to
a random potential and an electric field that is time- and space-dependent. General
properties of µσ, as its behavior at large, small and moderate randomness, are also
proven. The project is common work together with Jean-Bernard Bru and Walter
de Siqueira Pedra, that is to be published [15, 17, 16, 18].

This chapter is organized in the following way: First, we give an introduc-
tion to the physical background and a rough overview of the main results in Sec-
tion 4.1. The precise description of the model is then given in Section 4.2. Next,
in Section 4.3 we prove some technical lemmas as a preparation, since these are
essential for the following proofs. In Section 4.4 we define and proof the existence
of energy increments. These play a major role in the main result, that is presented
in the following Section 4.5. Theorem 4.5.1 corresponds to Joule’s law of heat
production in the AC-case. Finally, in Section 4.6 we define the AC-conductivity
measure and study the asymptotics of this measure, that vanishes in the case of
very small and very large randomness, as is proven in Theorem 4.6.5, and show
that it is strictly positive in a certain regime of randomness and temperature, see
Theorem 4.6.10.

69
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4.1 Introduction

It is widely accepted that the electric resistance of conductors results from both,
the presence of disorder in the host material and interactions between charge carri-
ers. Here, we only consider effects of disorder for non-interacting fermions. That
means physically that the particles obey the Pauli exclusion principle, i.e. the an-
tisymmetry of the many-body wave function, but do not interact with each other
via some mutual force. This setup corresponds for example to the case of low
electron densities in crystals.

First let us review a result of Klein, Lenoble and Müller, who introduced
in [25] the concept of an AC-conductivity measure µKLM for a system of non-
interacting fermions subjected to a random potential for the first time. More pre-
cisely, the authors considered the Anderson tight-binding model in presence of a
time-dependent spatially homogeneous electric field E = Et that is adiabatically
switched on. Then they showed that the in-phase linear response current density
is given, at any time t ∈ R, by

J in
lin(t; E) =

∫
R
Êν eiνt µKLM(dν) ,

cf. [25, Eq. (2.13)]. Here, Êν is the Fourier transform of the electric field Et at
frequency ν ∈ R and is compactly supported, see also [11] for further details.
The fermionic nature of charge carriers - electrons or holes in crystals - was im-
plemented by choosing the Fermi-Dirac distribution as the initial density matrix
of particles at time t → −∞. In [25] only systems at zero temperature with
Fermi energy lying in the localization regime are considered, but it is shown in
[26] that an AC-conductivity measure can also be defined without the localization
assumption and at any positive temperature.

Although there is no interaction between fermions, we do not restrict our anal-
yses to the one-particle Hilbert space. In contrast to [25] the presented approach
is based on the algebraic formulation of fermion systems on lattices. It makes
the role played by many-fermion correlations due to the Pauli exclusion principle,
i.e., the antisymmetry of the many-body wave function, more transparent. The
AC-conductivity in this framework is naturally defined by current-current corre-
lations, i.e. four-point correlation functions. Moreover, in principle, this approach
can be used to define the AC-conductivity measure for interacting fermions on the
lattice. This work can thus be seen as a mathematical preparation for such further
studies.
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In the following, we present the mathematical framework we use and our re-
sults. We consider the random two-parameter group {U (ω)

t,s }t≥s of unitary opera-
tors on `2(Zd) generated by the time-dependent Hamiltonian

∆
(A(t,·))
d + λVω ∈ B(`2(Zd)) ,

where the parameter ω runs in a probability space and λVω is a random potential
with strength λ ≥ 0.

Here, the vector potential A = A(t, x) ∈ C∞0 (R × Rd; (Rd)∗) represents
a time-dependent spatially inhomogeneous electromagnetic field which is min-
imally coupled to (minus) the discrete Laplacian ∆d. In contrast to [25, 26],
the electromagnetic field is inhomogeneous, supported in an arbitrarily large but
bounded region of space and is switched off for times outside some finite interval
[t0, t1].

The family {U (ω)
t,s }t≥s of unitaries on `2(Zd) induces a random two-parameter

group {τ (ω,λ,A)
t,s }t≥s of Bogoliubov automorphisms of a CAR algebra U (c.f. Sec-

tion 4.2.3) associated with non-relativistic fermions in the cubic lattice Zd. In-
deed, the canonical anti-commutation relations (CAR) encode the Pauli exclusion
principle. Note that the C∗-algebra U corresponds to a fermion system which is
infinitely extended.

As initial state of the system at time t0 ∈ R, we take the unique KMS state
(c.f. Section 4.2.4) on U related to the autonomous dynamics for A ≡ 0 and
inverse temperature β > 0. That means, we assume the system to be in thermal
equilibrium before the electromagnetic potential is switched on. Then we analyze
the produced entropy or heat It up to times t ≥ t1. We show that, almost surely,

It =

∫ t

t0

∫ s1

t0

[
σ(s1 − s2)

∫
Rd
〈EA(s1, x), EA(s2, x)〉 ddx

]
ds2ds1 ≥ 0 (4.1)

at leading order. Here,

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd ,

is the electric field induced by A and σ : R → R is a deterministic continu-
ous bounded function. As in [26], we do not need any localization assumption.
Additionally, we obtain an explicit expression for the function σ.

Since EA is the electric field, we may interpret the term∫ s1

t0

σ(s1 − s2)EA(s2, x)ds2
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as the current density at time s1 and space position x ∈ Rd and σ can be seen as
the AC-conductivity of the system. Hence, (4.1) is the energy delivered by the
electric field to the system, as predicted by Joule’s law.

As is shown in Section 4.6.1, it follows from the explicit form of σ and the use
of analyticity properties of correlation functions of KMS states, that σ is, up to
a constant, a function of positive type, and then Bochner’s Theorem implies that
there is a finite, positive measure, such that

σ(t) =

∫
R

(
eitν − 1

)
dµσ(ν) , t ∈ R . (4.2)

The measure µσ is naturally named AC-conductivity measure of the fermion sys-
tem in accordance with Joule’s law in the AC-case, because we get for t ≥ t1∫ t

t0

∫ s1

t0

σ(s2−s1)〈EA(s1, x), EA(s2, x)〉ds1ds2 =
1

2

∫
R\{0}

|ÊA(ν, x)|2 dµσ(ν) ,

(4.3)
with ÊA being the Fourier transform of EA. Observe, that |ÊA(ν, x)|2 dµσ(ν) is
the heat production due to the component of frequency ν of the electric field at
position x ∈ Rd. Furthermore, note that because of A being compactly supported
in time, we have that ÊA(0, x) = 0 at any space position x ∈ Rd. Thus the
exclusion of {0} in (4.3) might seem artificial, but it is done to emphasize that we
are dealing with the AC-case here.

The AC-conductivity measure µσ converges in the weak∗-topology to the zero-
measure on R\{0} in the case of perfect conductors, that is the absence of ran-
domness, i.e. λ→ 0, as well as in the case of perfect insulators, corresponding to
complete localization, i.e. λ → ∞. Note, that the fact that the AC-conductivity
measure vanishes in R\{0} does not imply, in general, that there are no currents
in presence of electric fields. It only implies that the so-called in-phase current,
which is the component of the total current producing heat (active current), is zero.
Furthermore, observe that µσ(R\{0}) is in general non-vanishing: In Section 4.6
it is shown that µσ(R\{0}) > 0, at least for large temperatures β−1 and small
randomness λ > 0.

4.2 Setup of the model
In this section the precise mathematical setup of the model under consideration is
presented. We start by giving a short introduction to fermion systems on lattices



4.2. SETUP OF THE MODEL 73

and go on by inducing first the dynamic due to the randomness or impurities of the
crystal and second the dynamics induced by the outer electromagnetic potential.
The section is concluded by the characterization of the initial KMS state and its
time evolution.

4.2.1 Algebraic formulation of fermion systems on lattices
The host material for the conducting fermions is assumed to be a cubic crystal.
Other crystal families could also be studied in the same way, but, for simplicity,
we refrain from considering them. We thus use the d-dimensional cubic lattice
L := Zd to represent the crystal and we define Pf (L) to be the set of all finite
subsets of L.

Within this framework, an infinite system of charged fermions is considered.
To simplify notation we restrict to spinless fermions. That means, we refrain
from regarding, for example, Zd × {−1,+1} instead of Zd. The case of spinning
particles can be treated by exactly the same methods.

For any Λ ∈ Pf (L), UΛ is the C∗-algebra generated by the identity 1 and the
annihilation operators {ax}x∈Λ, satisfying the canonical anti-commutation rela-
tions (CAR): For any x, y ∈ L,

axay + ayax = 0 , axa
∗
y + a∗yax = δx,y1 . (4.4)

UΛ is isomorphic to the (finite dimensional) C∗-algebra B(
∧
HΛ) of all linear

operators on the fermion Fock space
∧
HΛ, where HΛ :=

⊕
x∈ΛHx is the direct

sum of copies Hx, x ∈ Λ, of the one-dimensional Hilbert space H ≡ C, see also
Section 3.1.3. The CAR C∗-algebra U is the (separable) C∗-algebra defined by
the inductive limit of {UΛ}Λ∈Pf (L). Note here that UΛ′ ⊂ UΛ whenever Λ′ ⊂ Λ.

In order to set up the time evolution in the following sections, we define annihi-
lation and creation operators of (spinless) fermions with wave functions ψ ∈ `2(L)
by

a(ψ) :=
∑
x∈L

ψ(x)ax ∈ U , a∗(ψ) :=
∑
x∈L

ψ(x)a∗x ∈ U . (4.5)

These operators are well-defined because of (4.4). Indeed,

‖a(ψ)‖2, ‖a∗(ψ)‖2 ≤ ‖ψ‖2
2 , ψ ∈ `2(L) , (4.6)

and thus, the antilinear map ψ 7→ a(ψ) and the linear map ψ 7→ a∗(ψ) from `2(L)
to U are norm-continuous. Clearly, a∗(ψ) = a(ψ)∗ for all ψ ∈ `2(L).
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4.2.2 Disorder in the crystal and induced dynamics
Disorder in the crystal is modeled as in the usual Anderson model. Therefore we
take a random chemical potential coming from a probability space (Ω,AΩ, aΩ)
defined as follows: Let Ω := [−1, 1]L and Ωx, x ∈ L, be an arbitrary element of
the Borel σ-algebra of the interval [−1, 1] w.r.t. the usual metric topology. Then
AΩ is the σ-algebra generated by the cylinder sets×x∈L Ωx, where Ωx = [−1, 1]
for all but finitely many x ∈ L. The measure aΩ is the product measure

aΩ

(
×
x∈L

Ωx

)
:=
∏
x∈L

a0(Ωx) , (4.7)

where a0 is any fixed probability measure on the interval [−1, 1]. In other words,
the random potential is independently and identically distributed (i.i.d.).

For any realization ω ∈ Ω, Vω ∈ B(`2(L)) is the self-adjoint multiplication
operator with the function ω : L→ [−1, 1]. Note that the potential Vω is of order
O(1) and we rescale its strength by an additional parameter λ ∈ R+

0 (i.e., λ ≥ 0),
see (4.9).

For simplicity and without loss of generality (w.l.o.g.), we assume that the
expectation of the potential at any single site potential is zero:

E (ω(0)) =

∫
Ω

ω(0)da0(ω) = 0 . (4.8)

We can easily remove this condition by replacing ω by ω − E(ω(0)) and adding
E(ω(0)) to the discrete Laplacian defined below.

Finally note that the i.i.d. property of the potential is not essential for our
results. We could take any ergodic ensemble instead. However, this assumption
and (4.8) extremely simplify the proof of the strict positivity of the heat production
(Theorem 4.6.10).

Now, for any realization ω ∈ Ω and strength of disorder λ ∈ R+
0 , we define

the free dynamics of the lattice fermion system via the unitary group {U(ω,λ)
t }t∈R

with
U

(ω,λ)
t := exp(−it(∆d + λVω)) ∈ B(`2(L)) . (4.9)

Here, ∆d ∈ B(`2(L)) is (up to a minus sign) the usual d-dimensional discrete
Laplacian:

[∆d(ψ)](x) := 2dψ(x)−
∑

z∈L, |z|=1

ψ(x+ z) , x ∈ L, ψ ∈ `2(L) . (4.10)
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For all ω ∈ Ω and λ ∈ R+
0 , the condition

τ
(ω,λ)
t (a(ψ)) = a

(
(U

(ω,λ)
t )∗(ψ)

)
, t ∈ R, ψ ∈ `2(L) , (4.11)

uniquely defines a one-parameter (Bogoliubov) group τ (ω,λ) := {τ (ω,λ)
t }t∈R of

automorphisms of U , see [14, Theorem 5.2.5]. As τ (ω,λ)
t is an automorphism of

U , we have in particular -per definition - that

τ
(ω,λ)
t (B1B2) = τ

(ω,λ)
t (B1)τ

(ω,λ)
t (B2) , B1, B2 ∈ U , t ∈ R . (4.12)

Physically, (4.11) means that the fermionic particles do not experience any mutual
force: They interact with each other via the Pauli exclusion principle only, i.e.,
they form an ideal lattice fermion system. From (4.6) and the strong continuity of
the unitary group {e−it(∆d+λVω)}t∈R it follows that the (Bogoliubov) group τ (ω,λ)

of automorphisms is strongly continuous. (U , τ (ω,λ)) is hence a C∗-dynamical
system. Its generator is denoted by δ(ω,λ), which is a symmetric derivation. This
means that the domain Dom(δ(ω,λ)) of δ(ω,λ) is a dense ∗-subalgebra of U and, for
all B1, B2 ∈ Dom(δ(ω,λ)),

δ(ω,λ)(B1)∗ = δ(ω,λ)(B∗1), δ(ω,λ)(B1B2) = δ(ω,λ)(B1)B2 +B1δ
(ω,λ)(B2) .

4.2.3 Electromagnetic fields and induced dynamics
The electromagnetic potential is defined by a smooth, compactly supported time-
dependent vector potential

A ∈ C∞0 := C∞0 (R× Rd; (Rd)∗) . (4.13)

Here, (Rd)∗ is the set of one-forms1 on Rd that take values in R. Using any
orthonormal basis {ek}dk=1 of the Euclidian space Rd, we define the scalar product
between two fields E(1), E(2) ∈ (Rd)∗ as usual by

〈
E(1), E(2)

〉
:=

d∑
k=1

E(1) (ek)E
(2) (ek) . (4.14)

Since A ∈ C∞0 , A(t, x) = 0 for all t ≤ t0, where t0 ∈ R is some initial time.
Recall also that

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd , (4.15)
1In a strict sense, one should take the tangent spaces T (Rd)x, x ∈ Rd, and their dual spaces.
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is the electric field associated with A.
Since A is by assumption compactly supported in time, the corresponding

electric field satisfies the AC-condition∫ t

t0

EA(s, x)ds = 0 , x ∈ Rd , (4.16)

for sufficiently large times t ≥ t1 ≥ t0. From (4.16)

t1 := min

{
t ≥ t0 :

∫ t′

t0

EA(s, x)ds = 0 for all x ∈ Rdand t′ ≥ t

}
(4.17)

is the time at which the electric field is turned off.
Below, we rescale the strength of the electromagnetic potential A by a para-

meter η > 0, see Section 4.4.2. Then the limit η → 0 corresponds to the linear
response of the fermion system, which is the regime in which Joule’s law holds
true.

Remark 4.2.1.
By considering the Fourier transform ofEA(·, x), the property (4.16) corresponds
to the fact that the low frequency components of the external electromagnetic field
are small. We do not try to remove this condition because, for electric fields slowly
varying in time, charge carriers have time to move and significantly change the
charge density, producing an additional, self-generated, internal electric field.
This contribution is not taken into account in the model presented here.

We consider w.l.o.g. negatively charged fermions. Thus, the (minimal) cou-
pling of the vector potential A ∈ C∞0 to the fermion system is achieved through a
redefinition of the discrete Laplacian. Indeed, we define the self-adjoint operator
∆

(A)
d ∈ B(`2(L)) by

〈ex,∆(A)
d ey〉 = exp

(
−i
∫ 1

0

[A(t, αy + (1− α)x)] (y − x)dα

)
〈ex,∆dey〉

(4.18)
for all x, y ∈ L, where 〈·, ·〉 is here the scalar product in `2(L) and {ex}x∈L is the
canonical orthonormal basis ex(y) ≡ δx,y of `2(L). Note, that in Equation (4.18)
αy + (1− α)x and y − x are seen as vectors in Rd.

Furthermore, there is some l0 ∈ R+ such that

∆
(A)
d −∆d ∈ B(`2([−l0, l0]d)) ⊂ B(`2(L))
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for all times t ∈ R, because A is, by definition, compactly supported. Note also
that, for simplicity, the time dependence is often omitted in the notation

∆
(A)
d ≡ ∆

(A(t,·))
d , t ∈ R ,

even if one has to keep in mind that the dynamics is non-autonomous.
In the following the dynamics due to the electromagnetic vector potential A is

studied. We show the existence of the dynamics and give its explicit expression in
terms of a series involving multi-commutators. Let ω ∈ Ω, λ ∈ R+

0 and A ∈ C∞0
be arbitrarily fixed.

Indeed, the Schrödinger equation on the one-particle Hilbert space `2(L) with
time-dependent Hamiltonian (∆

(A)
d + λVω) and initial value ψ ∈ `2(L) at t = t0

has a unique solution U
(ω,λ,A)
t,t0 ψ for any t ≥ t0. Here,

{U(ω,λ,A)
t,s }t≥s ⊂ B(`2(L))

is the random two-parameter group of unitary operators on `2(L) generated by the
(anti-self-adjoint) operator−i(∆(A)

d +λVω) for any ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞0 ,

i.e.

∀s, t ∈ R, t ≥ s : ∂tU
(ω,λ,A)
t,s = −i(∆(A(t,·))

d + λVω)U
(ω,λ,A)
t,s , U(ω,λ)

s,s := 1 .
(4.19)

The restriction t ≥ s is not essential here and U
(ω,λ,A)
t,s could also be defined

for all s, t ∈ R. Indeed, ∆d ∈ B(`2(L)) and the map

t 7→ wA
t := (∆

(A(t,·))
d −∆d) ∈ B(`2(L)) (4.20)

from R to the set B(`2(L)) of bounded operators acting on `2(L) is continuously
differentiable for every A ∈ C∞0 . Hence, {U(ω,λ,A)

t,s }t≥s can be written explicitly
as the Dyson-Phillips series

U
(ω,λ,A)
t,s − U

(ω,λ)
t−s (4.21)

=
∑
k∈N

(−i)k
∫ t

s

ds1 · · ·
∫ sk−1

s

dskU
(ω,λ)
t−s1 wA

s1
U

(ω,λ)
s1−s2 · · ·U

(ω,λ)
sk−1−skw

A
sk

U
(ω,λ)
sk−s

for any t ≥ s, ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞0 . Since all operators are bounded, it is

easy to check that {U(ω)
t,s }t≥s is a family of unitary operators.
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Therefore, for all ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞0 , the condition

τ
(ω,λ,A)
t,s (a(ψ)) = a

(
(U

(ω,λ,A)
t,s )∗(ψ)

)
, t ≥ s, ψ ∈ `2(L) , (4.22)

uniquely defines a family {τ (ω,λ,A)
t,s }t≥s of Bogoliubov automorphisms of the C∗-

algebra U , see [14, Theorem 5.2.5]. It is a strongly continuous two-parameter
family which obeys the non-autonomous evolution equation

∀s, t ∈ R, t ≥ s : ∂tτ
(ω,λ,A)
t,s = τ

(ω,λ,A)
t,s ◦ δ(ω,λ,A)

t , τ (ω,λ,A)
s,s := 1 , (4.23)

with 1 being the identity map from U to U . Here, at any fixed time t ∈ R,
δ

(ω,λ,A)
t is the infinitesimal generator of the (Bogoliubov) group {τ (ω,λ,A)

s }s∈R ≡
{τ (ω,λ,A(t,·))
s }s∈R of automorphisms defined by replacing ∆d with ∆

(A)
d in (4.9).

The Bogoliubov automorphisms τ (ω,λ,A)
t,s defined by (4.22) can be represented

as a Dyson-Phillips series by using the unperturbed dynamics defined by the one-
parameter (Bogoliubov) group τ (ω,λ) := {τ (ω,λ)

t }t∈R, see (4.9) and (4.11). To this
end, for every A ∈ C∞0 , we denote the second quantization of wA

t by

WA
t : =

∑
x,y∈L

[
exp

(
−i
∫ 1

0

[A(t, αy + (1− α)x)] (y − x)dα

)
− 1

]
×〈ex,∆dey〉a∗xay , (4.24)

see (4.18) and (4.20). Note that there is a finite subset Λ ∈ Pf (L) such that
WA
t ∈ UΛ for all t ∈ R because A ∈ C∞0 . We also define the continuously

differentiable map
t 7→ LA

t := i[WA
t , · ] ∈ B (U) (4.25)

from R to the set B (U) of bounded operators acting on U .

Lemma 4.2.2.
For any ω ∈ Ω, λ ∈ R+

0 , A ∈ C∞0 and s, t ∈ R, t ≥ s,

τ
(ω,λ,A)
t,s = τ

(ω,λ)
t−s +

∑
k∈N

∫ t

s

ds1 · · ·
∫ sk−1

s

dskτ
(ω,λ)
sk−sL

A
sk
τ

(ω,λ)
sk−1−sk · · · τ

(ω,λ)
s1−s2L

A
s1
τ

(ω,λ)
t−s1 .

(4.26)

Proof. Let ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞0 and define

τ̌
(ω,λ,A)
t,s := τ

(ω,λ)
t−s +

∑
k∈N

∫ t

s

ds1 · · ·
∫ sk−1

s

dskτ
(ω,λ)
sk−sL

A
sk
τ

(ω,λ)
sk−1−sk · · · τ

(ω,λ)
s1−s2L

A
s1
τ

(ω,λ)
t−s1

(4.27)
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for any t ≥ s. This series is well-defined. Indeed, τ (ω,λ) := {τ (ω,λ)
t }t∈R is a

one-parameter group of contractions, i.e.,

‖τ (ω,λ)
t ‖op ≤ 1 , t ∈ R ,

whereas, for any A ∈ C∞0 , there is a constant D ∈ R+ such that

sup
t∈R
‖LA

t ‖op < D , (4.28)

because WA
t = 0 for any t /∈ [t0, t1] (cf. (4.17) and (4.24)). By (4.27)-(4.28), it

follows that
‖τ̌ (ω,λ,A)
t,s ‖op ≤ eD(t−s) , s, t ∈ R, t ≥ s .

Now, straightforward computations using (4.20) and (4.25) show that the follow-
ing ”pull through” formula holds:

LA
t (a(ψ)) = a(iwA

t ψ) , t ∈ R, ψ ∈ `2(L) .

We therefore infer from (4.11), (4.21) and (4.27) that

τ̌
(ω,λ,A)
t,s (a (ψ)) = a((U

(ω,λ,A)
t,s )∗(ψ)) , t ≥ s, ψ ∈ `2(L) ,

for all ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞0 . By [14, Theorem 5.2.5], this condition

uniquely defines the automorphisms of U . Direct computations show, for all t ≥ s,
that τ̌ (ω,λ,A)

t,s is an automorphism of U . As a consequence, one gets τ̌ (ω,λ,A)
t,s =

τ
(ω,λ,A)
t,s , see (4.22).

It follows that the Dyson-Philips series (4.26) is an explicit expression of the
fundamental solution of the Cauchy initial value problem (4.23), where the in-
finitesimal generator δ(ω,λ,A)

t of τ (ω,λ,A)
t,s equals

δ
(ω,λ,A)
t = δ(ω,λ) + i[WA

t , · ] (4.29)

with δ(ω,λ) being the (time-independent) generator of the one-parameter (Bogo-
liubov) group τ (ω,λ) := {τ (ω,λ)

t }t∈R.
We now introduce the abbreviation

WA
t,s := τ

(ω,λ)
t (WA

s ) ∈ U (4.30)

for any t, s ∈ R as well as the multi-commutators defined by induction as follows:

[B1, B2](2) := [B1, B2] , B1, B2 ∈ U , (4.31)
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and, for all integers k > 2,

[B1, B2, . . . , Bk+1](k+1) := [B1, [B2, . . . , Bk+1](k)] , B1, . . . , Bk+1 ∈ U .
(4.32)

Then, using (4.12), we rewrite Equation (4.26) as

τ
(ω,λ,A)
t,s (B)− τ (ω,λ)

t−s (B) (4.33)

=
∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk[W
A
sk−s,sk , . . . ,W

A
s1−s,s1 , τ

(ω,λ)
t−s (B)](k+1)

for any B ∈ U and t ≥ s.
In Section 4.3 we will study certain bounds on multi-commutators of the above

type in detail.
Finally, observe that one can equivalently use either (4.22) or (4.23) to de-

fine the dynamics. However, only the second formulation is appropriate to study
transport properties of systems of weakly interacting fermions on the lattice in its
algebraic formulation.

Remark 4.2.3.
The initial value problem (4.23) can easily be understood in the Heisenberg pic-
ture. The time-evolution of any observable Bs ∈ B(`2(L)) at initial time t = s ∈
R equals Bt = (U

(ω,λ,A)
t,s )∗BsU

(ω,λ,A)
t,s for t ≥ s, which yields

∀t ≥ s : ∂tBt = (U
(ω,λ,A)
t,s )∗i[∆

(A)
d + λVω, Bs]U

(ω,λ,A)
t,s .

The action of the symmetric derivation δ(ω,λ,A)
t is related to the above commu-

tator whereas the map B 7→ (U
(ω,λ,A)
t,s )∗BU

(ω,λ,A)
t,s leads to the evolution family

{τ (ω,λ,A)
t,s }t≥s in the second quantization.

4.2.4 The initial KMS state and its time evolution
States on theC∗-algebra U are, by definition, continuous linear functionals ρ ∈ U∗
which are normalized and positive, i.e., ρ(1) = 1 and ρ(A∗A) ≥ 0 for all A ∈ U .

It is well-known that, at finite volume, the thermodynamic equilibrium of the
system is described by the corresponding Gibbs state, which is the unique state
minimizing the free-energy. It is stationary and satisfies the so-called KMS con-
dition. The latter also makes sense in infinite volume and is thus used to define
the thermodynamic equilibrium of the infinite system.
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These thermal equilibrium states of the fermion system under consideration
can be defined, for all inverse temperatures β ∈ R+, any realization ω ∈ Ω of
the potential and any strength λ ∈ R+

0 of the potential Vω, through the bounded
positive operator

f (β,ω,λ) :=
1

1 + eβ(∆d+λVω)
∈ B(`2(L)). (4.34)

Indeed, the so-called symbol f (β,ω,λ) uniquely defines a (faithful) quasi-free state
%(β,ω,λ) on the CAR algebra U by the conditions %(β,ω,λ)(1) = 1 and

%(β,ω,λ) (a∗(f1) . . . a∗(fm)a(gn) . . . a(g1)) = δm,n det
(
[〈gk, f (β,ω,λ)fj〉]j,k

)
(4.35)

for all {fj}mj=1 , {gj}
n
j=1 ⊂ `2(L) and m,n ∈ N. 〈·, ·〉 is the scalar product in

`2(L). %(β,ω,λ) ∈ U∗ is the unique (β, τ (ω,λ))-KMS state of the C∗-dynamical
system (U , τ (ω,λ)). The KMS property (4.40) is usually taken as the mathemat-
ical characterization of the thermal equilibrium of C∗-dynamical systems. This
definition of thermal equilibrium states for infinite systems is rather abstract, but
can be physically motivated from an maximum entropy principle by observing
that %(β,ω,λ) is the unique weak∗-limit of Gibbs states, for further details see also
Section 4.4.3. Moreover, KMS states are stationary and thus, %(β,ω,λ) is invariant
under the dynamics defined by the (Bogoliubov) group τ (ω,λ) of automorphisms:

%(β,ω,λ) ◦ τ (ω,λ)
t = %(β,ω,λ) , t ∈ R , β ∈ R+, ω ∈ Ω, λ ∈ R+

0 . (4.36)

Because of the quasi-free property (4.35), the state %(β,ω,λ) is uniquely deter-
mined by the set of numbers{

%(β,ω,λ) (a∗ (fj) a (fk)) = 〈fk, f (β,ω,λ)
k fj〉

}
j,k∈N

⊂ C (4.37)

for any orthonormal basis {fk}k∈N ⊂ `2(L). For instance, one can take in (4.37)
the canonical orthonormal basis {ex}x∈L of `2(L) defined by ex(y) ≡ δx,y for
all x, y ∈ L. The state %(β,ω,λ) is thus completely determined by its two-point
correlation function defined on L2 by

x = (x(1), x(2)) 7→ %(β,ω,λ)(a∗x(1)ax(2)) . (4.38)

It turns out to be useful for our results to consider the complex-time evolution
C

(ω)
t+iα ≡ C

(β,ω,λ)
t+iα of the two-point correlation function (4.38):

C
(ω)
t+iα(x) := %(β,ω,λ)

(
a∗x(1)τ

(ω,λ)
t+iα (ax(2))

)
x := (x(1), x(2)) ∈ L2 , (4.39)
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for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, and α ∈ [0, β]. C(ω)

t+iα : L2 → C is called
complex-time two-point correlation function with potential Vω. This definition
makes sense since %(β,ω,λ) is a (β, τ (ω,λ))-KMS state: For every x, y ∈ L, the map

t 7→ %(β,ω,λ)
(
a∗xτ

(ω,λ)
t (ay)

)
from R to C extends uniquely to a continuous map on R × [0, β] ⊂ C which is
holomorphic on R× (0, β). Note that the KMS property of %(β,ω,λ), i.e.

%(β,ω,λ)(B1τ
(ω,λ)
iβ (B2)) = %(β,ω,λ)(B2B1) , B1, B2 ∈ U , (4.40)

together with (4.12) and (4.36), yields

C
(ω)
−t+i(β−α)(x) = %(β,ω,λ)(ax(2)τ

(ω,λ)
t+iα (a∗x(1))) , x := (x(1), x(2)) ∈ L2 , (4.41)

for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, and α ∈ [0, β].

We assume that, for any realization ω ∈ Ω and strength λ ∈ R+
0 of disorder, the

state of the system before the electric field is switched on is the unique (τ (ω,λ), β)-
KMS state %(β,ω,λ), see [14, Example 5.3.2.].

Since A(t, x) = 0 for all t ≤ t0, the time evolution of the state of the system
thus equals

ρ
(β,ω,λ,A)
t :=

{
%(β,ω,λ) , t ≤ t0 ,

%(β,ω,λ) ◦ τ (ω,λ,A)
t,t0 , t ≥ t0 .

(4.42)

Remark that the definition does not depend on the particular choice of initial time
t0 because of the stationarity of the KMS state %(β,ω,λ) w.r.t. the unperturbed
dynamics (cf. (4.36)). The state ρ(β,ω,λ,A)

t is, by construction, a quasi-free state.
Moreover, since {τ (ω,λ,A)

t,t0 }t≥s is defined by (4.19) and (4.22), we infer from
(4.42) that the symbol f

(ω)
t , defined analogously to (4.35), of the quasi-free state

ρ
(β,ω,λ,A)
t is the solution of the following (one-particle) non-autonomous Cauchy-

problem:

∀t ≥ t0 : i∂tf
(ω)
t = [∆

(A)
d + λVω, f

(ω)
t ] f

(ω)
t0 := f (β,ω,λ) , (4.43)

for every realization ω ∈ Ω, λ ∈ R+
0 and β ∈ R+. The latter is known as the

Liouville equation.
In [11, 25, 26] the authors consider an evolution equation similar to (4.43)

with t0 = −∞ and use the expectation value of the velocity observable w.r.t. the
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trace per unit volume of (ω)
t ∈ B(`2(L)) to define a current density, see, e.g., [25,

Eqs. (2.5)-(2.6)]. Spatially local perturbations A ∈ C∞0 of the electromagnetic
field do not influence the mean velocity of an infinite system of particles. Thus, by
contrast, the electromagnetic perturbation considered in [11, 25, 26] is infinitely
extended as it is space-homogeneous. Indeed, w.r.t. the time-evolving density
operator (ω)

t , the main quantity we analyze, the heat production I(ω,A)(t), is not a
trace density, but rather the infinite volume limit of (finite volume) traces. Note
however that, by considering space-homogeneous electromagnetic perturbations
AL in finite boxes ΛL, L ∈ R+, and the corresponding current densities, one can
see in the limit l → ∞ that, up to the different convention on (ω)

t for the initial
condition, the notion of AC-conductivity proposed here corresponds quite well to
the one introduced in [25, Eqs. (2.5)-(2.6)], even if this correspondence is not
totally explicit and the approaches are conceptually different.

4.3 Technical preparation
In preparation for the following proofs, we develop in this section two useful
tools. In Section 4.3.1, we compute multi-commutators of products of annihi-
lation and creation operators. These occur for example already in (4.33), see
also (4.31)-(4.32) for the precise definition of multi-commutators. Then we in-
troduce the notion of tree-decay bounds and show that these bounds hold for the
one-parameter group of automorphisms τ (ω,λ). The second result is given in Sec-
tion 4.3.2, we show that the complex-time two-point correlation function C(ω)

t+iα,
defined in (4.39), can be split up into two terms, whereas the first is arbitrarily
small in norm and the second one decays fast in space.

4.3.1 Tree-decay bounds
Before going into details, let us first get an intuitive feeling of what will be proved
in Lemma 4.3.1. The aim is to simplify an N -fold multi-commutator of products
of annihilation and creation operators, as for example

[a∗(ψ1)a(ψ2)a∗(ψ3)a∗(ψ4), a∗(ψ5)a(ψ6), . . .](N) (4.44)

with ψ1, ψ2, . . . ∈ `2(L). At a first glance one expects sums over monomials
of all occurring annihilation and creation operators. Because of the structure of
the multi-commutator, there are certain terms that can be summed up, getting
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then a monomial of all annihilation and creation operators except two times the
anti-commutator of those two annihilation and creation operators. This is useful
because the anti-commutator is known to be a multiple of the identity, c.f. (4.4).
This procedure can be repeated in order to reduce the number of operators in the
remaining monomial. As one might expect, only pairs of creation and annihila-
tion operators that come from different entries of the multi-commutator can be
removed from the monomial. This is why we consider a special family of trees
in the following, similar to [23]. These trees will play the role of an underlying
structure between the N entries in the N -fold multi-commutator. Then we need
to introduce some notation to express the monomials of annihilation and creation
operators in a convenient way before formulating Lemma 4.3.1.

Recall, that a tree is a connected graph that has no loops. Here, we have a finite
number of labeled vertices, denoted by 1, . . . , N , and (undirected) bonds between
these vertices, for example the bond connecting vertices i and j is denoted by
{i, j} = {j, i}. A tree with N vertices is thus characterized by the set of its N − 1
bonds. The family of trees we use is defined as follows: Let T2 be the set of all
trees with exactly two vertices. This set contains a unique tree T = {{1, 2}}
which, in turn, contains the unique bond {1, 2}, i.e., T2 := {{{1, 2}}}. Then, for
each integer N ≥ 3, we recursively define the set TN of trees with N vertices by

TN :=
{
{{k,N}} ∪ T : k = 1, . . . , N − 1, T ∈ TN−1

}
. (4.45)

In other words, TN is the set of all trees with vertex set VN := {1, . . . N} for
which N ∈ VN is a leaf, and if the leaf N is removed, the vertex N − 1 is a leaf
in the remaining tree and so on.

Each of the entries of the N -fold multi-commutator is a product of annihi-
lation and creation operators, which we characterize by certain finite index sets
Λ̄1,Λ1, . . . , Λ̄N ,ΛN ⊂ N, where the set Λ̄i refers to creation operators in entry
i and Λi to annihilation operators in the corresponding entry. For example we
choose for

[a∗(ψ1)a(ψ2)a∗(ψ3)a∗(ψ4), a∗(ψ5)a(ψ6), . . .](N) (4.46)

with ψ1, ψ2, . . . ∈ `2(L)

Λ̄1 = {1, 3, 4}, Λ1 = {2}, Λ̄2 = {5}, Λ2 = {6}, . . . (4.47)

The kind of products we are interested in allows us to restrict our considerations
to index sets Λ̄1,Λ1, . . . , Λ̄N ,ΛN ⊂ N that are non-empty, mutually disjoint and
such that ∣∣Λ̄j

∣∣+ |Λj| := 2nj ∈ 2N ,
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for all j ∈ {1, . . . , N}. Hence the total number of annihilation and creation op-
erators is even in each entry of the multi-commutator. To shorten the notation we
set

Ωj := ({+} × Λ̄j) ∪ ({−} × Λj) ,

for all j ∈ {1, . . . , N}. In order to determine the order of annihilation and creation
operators in entry j we choose a numbering (that is an bijective map)

πj : {1, . . . , 2nj} → Ωj

of Ωj . Furthermore, for all x ∈
⋃N
j=1 Λ̄j ∪Λj let ψx ∈ `2(L) be the corresponding

wave function and denote (only in this subsection) by

a(−, x) := a(ψx) and a(+, x) := a∗(ψx)

the annihilation and creation operators, respectively. Using this notation, we then
define the monomials

pj :=

2nj∏
k=1

a(πj(k)) (4.48)

in a(±, x) for all j ∈ {1, . . . , N}. Recall, that pj will be the j-th entry in the
N -fold multi-commutator.

To formulate the main result of this section, we need one more thing. Recall,
that the idea is to replace a sum over monomials of all occurring annihilation and
creation operators, by a sum over shorter monomial times anti-commutators of
the removed operators. Therefore we need to specify the annihilation and creation
operators, that are ’moved’ from the monomial to the anti-commutator. The cor-
responding points in Ω1, . . . ,ΩN are characterized by maps (x,y) defined in the
following.

For every tree T ∈ TN (cf. (4.45)), we define maps x,y : T →
⋃N
j=1 Ωj ,

that choose for each bond {i, j} ∈ T a point in the set Ωi and one point in the set
Ωj . More precisely, we assume for i < j that x({i, j}) ∈ Ωi and y({i, j}) ∈ Ωj .
The induced orientation of the bond is completely arbitrary, and has no deeper
meaning here. Furthermore, we do not allow any points to be chosen twice, that
means |x(T )| = |y(T )| = N − 1 and x(T ) ∩ y(T ) = ∅. This assumptions
corresponds to the fact that all operators can be removed from the monomial only
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once. Then the set of all those maps is given by

KT :=

{
(x,y)

∣∣∣∣∣x,y : T →
N⋃
j=1

Ωj with x(b) ∈ Ωi,y(b) ∈ Ωj

for b = {i, j} ∈ T, i < j

and |x(T )| = |y(T )| = N − 1,x(T ) ∩ y(T ) = ∅

}
.

Now, we are finally ready to express an N -fold multi-commutator of products
of annihilation and creation operators as a sum over trees T ∈ TN of monomials
in the annihilation and creation operators:

Lemma 4.3.1 (Multi-commutators as sums over trees).
Let N ≥ 2. Then, for all T ∈ TN and (x,y) ∈ KT , there are constants

mT (x,y) ∈ {−1, 1} (4.49)

and numberings

πT (x,y) :
{

1, 2, . . . , 2N
}
→

N⋃
j=1

Ωj\ (x(T ) ∪ y(T ))

where N :=
∑N

j=1 nj − (N − 1) ≥ 1, such that

[pN , . . . , p1](N) =
∑
T∈TN

∑
(x,y)∈KT

mT (x,y) pT (x,y)
∏
b∈T

{a (x(b)) , a (y(b))} ,

(4.50)

with {B1, B2} := B1B2 +B2B1 for B1, B2 ∈ U being the usual anti-commutator,
and where

pT (x,y) :=
2N∏
k=1

a(πT (x,y)(k)) .

Proof. We first observe that, for any two integers n1, n2 ∈ N and any arbitrary
elements B1, . . . , B2n2 ∈ U and B̃1, . . . , B̃2n1 ∈ U ,

[B1 . . . B2n2 , B̃1 . . . B̃2n1

]
(4.51)

=
∑

1≤k2≤2n2

1≤k1≤2n1

(−1)k1+1B1 . . . Bk2−1B̃1 . . . B̃k1−1

× {Bk2 , B̃k1}B̃k1+1 . . . B̃2n1Bk2+1 . . . B2n2 ,
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see [23, Eq. (4.18)]. We are now in position to prove the assertion by induction.
For N = 2, the set T2 consists of only one tree T = {{1, 2}}. Using (4.48)

and (4.51) we get

[p2, p1] =
∑

1≤k2≤2n2

1≤k1≤2n1

(−1)k1+1a(π2(1)) . . . a(π2(k2 − 1))a(π1(1)) . . . a(π1(k1 − 1))

× {a(π2(k2)), a(π1(k1))}a(π1(k1 + 1)) . . . a(π1(2n1))

× a(π2(k2 + 1)) . . . a(π2(2n2)) . (4.52)

Note that {a(π2(k2)), a(π1(k1))} is always either zero or a multiple of the identity
in U , see (4.4) and (4.5). Therefore, the assertion for N = 2 directly follows
from the previous equality by observing that the sum over k1 and k2 in (4.52)
corresponds to the sum over (x,y) ∈ K{{1,2}} in (4.50) by choosing

p{{1,2}}(x,y) := a(π2(1)) . . . a(π2(k2 − 1))a(π1(1)) . . . a(π1(k1 − 1)) (4.53)
× a(π1(k1 + 1)) . . . a(π1(2n1))a(π2(k2 + 1)) . . . a(π2(2n2))

for

x({1, 2}) = π2(k2) ∈ Ω2 , k2 ∈ {1, . . . , 2n2} ,
y({1, 2}) = π1(k1) ∈ Ω1 , k1 ∈ {1, . . . , 2n1} .

Indeed, for (x,y) ∈ K{{1,2}} as above, the constant m{{1,2}}(x,y) equals (−1)k1+1 ∈
{−1, 1}, whereas the associated map

π{{1,2}} (x,y) :
{

1, 2, . . . , 2N
}
→ Ω1 ∪ Ω2\ (x({{1, 2}}) ∪ y({{1, 2}}))

with
N := (n1 + n2)− 1 ≥ 1

depends on the order of the factors on the r.h.s. of (4.53):

π{{1,2}} (x,y) (k) :=


π2(k) , k ∈{1, 2, . . . , k2 − 1}
π1(k − k2 + 1) , k ∈{k2, . . . , k2 + k1 − 2}
π1(k − k2 + 2) , k ∈{k2 + k1 − 1, . . . , 2n1 − 2 + k2}
π2(k − 2n1 + 2) , k ∈

{
2n1 − 2 + k2 + 1, . . . , 2N

} .

We assume now that the assertion holds for some fixed integer N ≥ 2. Recall
that N -fold multi-commutators are defined by (4.31)-(4.32). In particular,

[pN+1, . . . , p1](N+1) = [pN+1, [pN , . . . , p1](N)]
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where, by assumption,

[pN , . . . , p1](N) =
∑
T∈TN

∑
(x,y)∈KT

mT (x,y) pT (x,y)
∏
b∈T

{a (x(b)) , a (y(b))} ,

as stated in the theorem. Therefore,

[pN+1, . . . , p1](N+1) =
∑
T∈TN

∑
(x,y)∈KT

mT (x,y) [pN+1, pT (x,y)]

×
∏
b∈T

{a (x(b)) , a (y(b))} , (4.54)

whereas, using again (4.51),

[pN+1, pT (x,y)]

=
∑

1≤k2≤2nN+1

1≤k1≤2N

(−1)k1+1a(πN+1(1)) . . . a(πN+1(k2 − 1)) (4.55)

× a(πT (1)) . . . a(πT (k1 − 1)) a(πT (k1 + 1)) . . . a(πT (2N))

× a(πN+1(k2 + 1)) . . . a(πN+1(2nN+1)) {a(πN+1(k2)), a(πT (k1))} .

Note that, for simplicity, we used above the notation πT ≡ πT (x,y). To get
now the assertion for (N + 1)-fold multi-commutators, for any (x,y) ∈ KT , we
define:

X := πN+1(k2) ∈ ΩN+1 , k2 ∈{1, . . . , 2nN+1} ,
Y := πT (k1) ∈

⋃N
j=1 Ωj\ (x(T ) ∪ y(T )) , k1 ∈

{
1, . . . , 2N

}
,

as well as
m̃T (X, Y ) := (−1)k1+1

and

p̃T (x,y, X, Y )

:= a(πN+1(1)) · · · a(πN+1(k2 − 1)) a(πT (1)) · · · a(πT (k1 − 1))

× a(πT (k1 + 1)) · · · a(πT (2N)) a(πN+1(k2 + 1)) · · · a(πN+1(2nN+1)) .

Then, by (4.54)-(4.55), one has

[pN+1, . . . , p1](N+1) =
∑
T∈TN

∑
(x,y)∈KT

∑
X∈(Ω1∪···∪ΩN )\(x(T )∪y(T ))

∑
Y ∈ΩN+1

mT (x,y) m̃T (X, Y ) p̃T (x,y, X, Y ){a(X), a(Y )}
∏
b∈T

{a (x(b)) , a (y(b))} .
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This last equation can clearly be rewritten as

[pN+1, . . . , p1](N+1) (4.56)

=
∑
T∈TN

∑
k∈{1,...,N}

∑
(x,y)∈KT

∑
X{k,N+1}∈Ωk\(x(T )∪y(T ))

∑
Y{k,N+1}∈ΩN+1

mT (x,y)m̃T

(
X{k,N+1}, Y{k,N+1}

)
p̃T (x,y, X{k,N+1}, Y{k,N+1})

× {a(X{k,N+1}), a(Y{k,N+1})}
∏
b∈T

{a (x(b)) , a (y(b))} .

Note now, that the first two sums on the l.h.s of the equation above can be seen
as a sum over TN+1, where k gives the position of the leaf N + 1, c.f. (4.45).
The remaining sums then give exactly the summation over KT with T ∈ TN+1,
since {Ωj}j∈{1,...,N} are by definition mutually disjoint sets. For any T ∈ TN+1

and (x,y) ∈ KT the appropriate constant mT (x,y) ∈ {−1, 1} as well as the map
πT (x,y) can directly be deduced from (4.56) and we arrive at the assertion.

We conclude this section by the notion of tree-decay bounds:

Definition 4.3.2. Let ρ ∈ U∗ be any state and τ ≡ {τt}t∈R be any one-parameter
group of automorphisms on the C∗-algebra U . We say that (ρ, τ) satisfies tree-
decay bounds with parameters ε ∈ R+ and t0 < t if there is a finite constant
D ∈ R+ such that, for any integer N ≥ 2, s1, . . . , sN ∈ [t0, t], x1, . . . , xN ∈ L
and all z1, . . . , zN ∈ L satisfying |zi| = 1 for i ∈ {1, . . . , N},∣∣∣ρ([τs1(a∗x1

ax1+z1), . . . , τsN (a∗xNaxN+zN )
](N)

)∣∣∣ ≤ DN−1q
(ε)
N (x1, . . . , xN) ,

(4.57)
where

q
(ε)
N (x1, . . . , xN) =

∑
T∈TN

∏
{k,l}∈T

1

1 + |xk − xl|d+ε
, x1, . . . , xN ∈ L . (4.58)

Such a property has been used many times in the present work for τ = τ (ω,λ)

and ρ = %(β,ω,λ) for β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . Using Lemma 4.3.1 we

show below that the one-parameter Bogoliubov group τ (ω,λ) of automorphisms
defined by (4.11) and any state ρ satisfy tree-decay bounds. Indeed, observe first
the following elementary lemma:
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Lemma 4.3.3.
For any T, ε ∈ R+, there is a finite constant D ∈ R+ such that∣∣〈ex, eit(∆d+λVω)ey

〉∣∣ ≤ D

1 + |x− y|d+ε

for all ω ∈ Ω, λ ∈ R+
0 , t ∈ [−T, T ] and x, y ∈ L. Recall that {ex}x∈L is the

canonical orthonormal basis of `2(L) defined by ex(y) ≡ δx,y for all x, y ∈ L.

Proof. Let ω ∈ Ω, λ ∈ R+
0 , t ∈ R and x, y ∈ L. Using the Trotter-Kato formula

and the canonical orthonormal basis {ex}x∈L of `2(L) we first observe that〈
ex, e

it(∆d+λVω)ey
〉

= lim
m→∞

〈
ex,
[
e
it
m

∆de
it
m
λVω
]m

ey

〉
(4.59)

= lim
m→∞

lim
l→∞

∑
x1,...,xm−1∈Λl

〈
ex, e

it
m

∆dex1

〉
· · ·
〈
exm−1 , e

it
m

∆dey

〉
×e

it
m
λVω(x1) × · · · × e

it
m
λVω(y) ,

where Λl is the finite box (4.74) of side length 2l + 1 for l ∈ N. Writing now the
exponential e

it
m

∆d as a power series and using the definition (4.10) of the discrete
Laplacian ∆d note that∣∣∣〈ex, e itm∆dey

〉∣∣∣ ≤ e
4dt
m

〈
ex, e

− |t|
m

∆dey

〉
x, y ∈ L , t,m ∈ R . (4.60)

Therefore, we infer from (4.59) and (4.60) that∣∣〈ex, eit(∆d+λVω)ey
〉∣∣ ≤ e4d|t| 〈ex, e−|t|∆dey

〉
. (4.61)

Since ∆d is explicitly given in Fourier space by the dispersion relation E(p) de-
fined by

E(p) = 2

(
d−

d∑
in1

cos(pi)

)
(4.62)

for p ∈ [−π, π]d, explicit computations show that, for all s ∈ R,

〈
ex, e

s∆dey
〉

=
1

(2π)d

∫
[−π,π]d

esE(p)−ip·(x−y)ddp ,

which, combined with (4.61), implies the assertion.
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Since, by (4.4) and (4.11),∥∥{τ (ω,λ)
s1

(a∗x), τ
(ω,λ)
s2

(ay)}
∥∥ =

∣∣〈ex, ei(s2−s1)(∆d+λVω)ey
〉∣∣ , (4.63)

for any ε, t ∈ R+, we infer from Lemma 4.3.3 the existence of a finite constant
D ∈ R+ (only depending on ε, t) such that∥∥{τ (ω,λ)

s1
(a∗x) , τ

(ω,λ)
s2

(ay)
}∥∥ ≤ D

1 + |x− y|d+ε
(4.64)

for all s1, s2 ∈ [0, t], x, y ∈ L, ω ∈ Ω and λ ∈ R+
0 . Using this and Lemma 4.3.1

we obtain (4.57) with a uniform constant D < ∞ not depending on ω ∈ Ω and
λ ∈ R+

0 :

Corollary 4.3.4 (Uniform tree-decay bounds).
Let τ = τ (ω,λ) be the one-parameter Bogoliubov group of automorphisms defined
by (4.11) for ω ∈ Ω, λ ∈ R+

0 and ρ an arbitrary state on U . Then, for any
ε ∈ R+ and t0 < t, there is D = Dε,t0,t ∈ R+ such that the tree-decay bounds
(4.57)-(4.58) hold for all ω ∈ Ω and λ ∈ R+

0 .

Proof. Choose in Lemma 4.3.1 sets Λ̄j,Λj containing exactly one element and
note that, in this case, |KT | = 22|T | = 22(N−1). Observe also that ‖pT (x,y)‖ ≤ 1
as the corresponding vectors ψx have norm 1 in this case. The assertion then
follows from (4.64) and Lemma 4.3.1.

4.3.2 Decay of the complex-time two-point correlation func-
tions

In this section, a space-decay property of the complex-time two-point correlation
function C(ω)

t+iα

C
(ω)
t+iα(x) := %(β,ω,λ)(a∗x(1)τ

(ω,λ)
t+iα (ax(2))) x := (x(1), x(2)) ∈ L2 , (4.65)

is proven, which turns out to be very useful in the proofs of the following sections.

Lemma 4.3.5 (Decomposition of two-point correlation functions).
For any ε, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , t ∈ R, υ ∈ (0, β/2) and α ∈ [υ, β − υ], the
complex-time two-point correlation function C(ω)

t+iα can be decomposed as

C
(ω)
t+iα (x) = A

(ω)
t+iα,υ,ε (x) +B

(ω)
t+iα,υ,ε (x) , x := (x(1), x(2)) ∈ L2 ,
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whereA(ω)
t+iα,υ,ε (·) andB(ω)

t+iα,υ,ε (·) are kernels (w.r.t. the canonical basis {ex}x∈L)
of bounded operators A(ω)

t+iα,υ,ε ≡ A
(β,ω,λ)
t+iα,υ,ε and B(ω)

t+iα,υ,ε ≡ B
(β,ω,λ)
t+iα,υ,ε acting on

`2(L) and satisfying the following properties:
(i) Boundedness: There is a finite constant D ∈ R+ only depending on β, υ such
that ∥∥∥A(ω)

t+iα,υ,ε

∥∥∥
op
≤ ε and

∥∥∥B(ω)
t+iα,υ,ε

∥∥∥
op
≤ D .

(ii) Decay: If T ∈ R+ and t ∈ [−T, T ], then there is a finite constant D ∈ R+

only depending on ε, β, υ, d, T such that∣∣∣B(ω)
t+iα,υ,ε (x)

∣∣∣ ≤ D

1 + |x(1) − x(2)|d2+1
, x ∈ L2 .

(iii) Continuity: If T ∈ R+ and s1, s2 ∈ [−T, T ], then there is a finite constant
η ∈ R+ only depending on ε, β, υ, d, T such that∣∣∣B(ω)

s1+iα,υ,ε (x)−B(ω)
s2+iα,υ,ε (x)

∣∣∣ ≤ ε (1 + λ)

1 + |x(1) − x(2)|d2+1
, x ∈ L2 ,

whenever |s2 − s1| ≤ η.

Proof. (i) Using (4.11), (4.34) and (4.35), for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R

and α ∈ [0, β], one gets from (4.39) that

C
(ω)
t+iα(x) = 〈ex(2) , e−it(∆d+λVω)F β

α (∆d + λVω) ex(1)〉 , (4.66)

where F β
α is the real function defined, for every β ∈ R+ and α ∈ R, by

F β
α (κ) :=

eακ

1 + eβκ
, κ ∈ R .

In particular, the spectral theorem applied to the bounded self-adjoint operator
(∆d + λVω) ∈ B(`2(L)) implies from (4.66) that

C
(ω)
t+iα(x) =

∫
F β
α (κ)e−itκdκ(ω)

x (κ)

with dκ
(ω)
x ≡ dκ

(ω,λ)
x being the spectral measure of (∆d + λVω) w.r.t. ex(1) , ex(2) ∈

`2(L).
Note that F β

α is a Schwartz function for all β ∈ R+ and α ∈ (0, β). Therefore,
its Fourier transform F̂ β

α is again a Schwartz function. Moreover, for all β > 0 and
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υ ∈ (0, β/2), there is a finite constant Dβ,υ ∈ R+ such that, for any α ∈ [υ, β−υ]
and all ν ∈ R, ∣∣∣F̂ β

α (ν)
∣∣∣ ≤ Dβ,υ

1 + ν2
. (4.67)

In particular, for any ε ∈ R+, there is Mβ,υ,ε ∈ R+ such that∫
|ν|≥Mβ,υ,ε

∣∣∣F̂ β
α (ν)

∣∣∣ dν ≤ ∫
|ν|≥Mβ,υ,ε

Dβ,υ

1 + ν2
dν < ε . (4.68)

For any ε, β ∈ R+, υ ∈ (0, β/2) and α ∈ [υ, β − υ], we then decompose the
function F β

α into two orthogonal functions of κ ∈ R:

fβυ,ε,α (κ) :=

∫
|ν|≥Mβ,υ,ε

F̂ β
α (ν) eiνκdν ,

gβυ,ε,α (κ) :=

∫
|ν|<Mβ,υ,ε

F̂ β
α (ν) eiνκdν . (4.69)

Now, for any ε, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, υ ∈ (0, β/2) and α ∈ [υ, β−

υ], define the bounded operators A(ω)
t+iα,υ,ε ≡ A

(β,ω,λ)
t+iα,υ,ε and B(ω)

t+iα,υ,ε ≡ B
(β,ω,λ)
t+iα,υ,ε

acting on `2(L) by their kernels

〈ex(2) , A
(ω)
t+iα,υ,εex(1)〉 ≡ A

(ω)
t+iα,υ,ε (x) :=

∫
fβυ,ε,α (κ) e−itκdκ(ω)

x (κ) , x ∈ L2 ,

〈ex(2) , B
(ω)
t+iα,υ,εex(1)〉 ≡ B

(ω)
t+iα,υ,ε (x) :=

∫
gβυ,ε,α (κ) e−itκdκ(ω)

x (κ) , x ∈ L2 .

(4.70)

Indeed, by construction (cf. (4.68)),∥∥∥A(ω)
t+iα,υ,ε

∥∥∥
op
≤ ε and

∥∥∥B(ω)
t+iα,υ,ε

∥∥∥
op
≤ πDβ,υ

for all ε, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, υ ∈ (0, β/2) and α ∈ [υ, β − υ]. By

(4.67), recall that Dβ,υ only depends on β and υ ∈ (0, β/2).
(ii) We first invoke Fubini’s theorem to observe from (4.69) and (4.70) that

B
(ω)
t+iα,υ,ε (x) =

∫
|ν|<Mβ,υ,ε

F̂ β
α (ν)

(∫
e−iκ(t−ν)dκ(ω)

x (κ)

)
dν

=

∫
|ν|<Mβ,υ,ε

F̂ β
α (ν) 〈ex(2) , e−i(t−ν)(∆d+λVω)ex(1)〉dν (4.71)
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for all x ∈ L2. If T ∈ R+ and t ∈ [−T, T ] then

(t− ν) ∈ [−Mβ,υ,ε − T,Mβ,υ,ε + T ] .

Thus, by Lemma 4.3.3 with ε = d2 − d+ 1 (d ∈ N), for any ε, β, T ∈ R+ and
υ ∈ (0, β/2), there is a finite constant D̃β,υ,ε,T ∈ R+ such that

∣∣〈ex(2) , e−i(t−ν)(∆d+λVω)ex(1)〉
∣∣ ≤ D̃β,υ,ε,T

1 + |x(1) − x(2)|d2+1
, x ∈ L2 , (4.72)

for all ω ∈ Ω, λ ∈ R+
0 , t ∈ [−T, T ], ν ∈ [−Mβ,υ,ε,Mβ,υ,ε] and x ∈ L2. We now

combine this last inequality with (4.67) and (4.71) to derive the bound

∣∣∣B(ω)
t+iα,υ,ε (x)

∣∣∣ ≤ πDβ,υD̃β,υ,ε,T

1 + |x(1) − x(2)|d2+1
, x ∈ L2 .

(iii) By (4.71), note that

∂tB
(ω)
t+iα,υ,ε (x) = −i

∫
|ν|<Mβ,υ,ε

F̂ β
α (ν) 〈(∆d + λVω) ex(2) , e−i(t−ν)(∆d+λVω)ex(1)〉dν

(4.73)
for all ε, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , t ∈ R, υ ∈ (0, β/2), α ∈ [υ, β − υ] and
x ∈ L2. Since, for any x ∈ L2,

〈(∆d + λVω)ex(2) , e−i(t−ν)(∆d+λVω)ex(1)〉

= −
∑

z∈L,|z|=1

〈ex(2)+z, e
−i(t−ν)(∆d+λVω)ex(1)〉

+ (λVω(x(2)) + 2d)〈ex(2) , e−i(t−ν)(∆d+λVω)ex(1)〉 ,

we use again (4.67) and (4.72) together with (4.73) and |Vω (x) | ≤ 1 to arrive at
the third assertion.

Remark 4.3.6.
Better estimates on the complex-time two-point correlation functions C(ω)

t+iα can
certainly be obtained by using that the spectrum of the self-adjoint operator (∆d+
λVω) belongs to some (λ-dependant) compact set. This property is however not
used in Lemma 4.3.5 to get bounds (i)-(ii) that do not depend on λ ∈ R+

0 .
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4.4 Energy increments
In this section we introduce the energy increment, that is the amount of energy
(or more precisely entropy) the systems gains by the electromagnetic field. After
the definition in Section 4.4.1, we show in Section 4.4.2 that the energy increment
exists for small enough fields and give an explicit form using multi-commutators.
In the next Section 4.4.3 we rewrite the energy increment as a thermodynamic
limit of Gibbs-states, hence the equilibrium states for finite volumes.

4.4.1 Definition of energy increments
As explained in the introduction, we use a thermodynamic approach and consider
the heat production of the system while imposing a time-dependent electromag-
netic field. The energy increment is defined here by the energy that is definitively
absorbed by the fermion system from the electromagnetic field.

The energy observable in the box

Λn := {(x1, . . . , xd) ∈ L : |x1|, . . . , |xd| ≤ n} ∈ Pf (L) (4.74)

of side length 2n+ 1 is given by

H(ω,λ)
n :=

∑
x,y∈Λn

〈ex, (∆d + λVω) ey〉a∗xay ∈ U , (4.75)

for any n ∈ N. It is the second quantization of the one-particle operator ∆d +λVω
restricted to `2(Λn) ⊂ `2(L).

Then, for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞0 and t ∈ R,

I
(β,ω,λ,A)
t := lim

n→∞

{
ρ

(β,ω,λ,A)
t (H(ω,λ)

n )− ρ(β,ω,λ,A)
t0 (H(ω,λ)

n )
}
∈ R (4.76)

is the energy increment in the state ρ(β,ω,λ,A)
t w.r.t. the equilibrium state %(β,ω,λ) ≡

ρ
(β,ω,λ,A)
t0 . It is not a priori clear that the limit (4.76) exists because, in general,

ρ
(β,ω,λ,A)
t (H(ω,λ)

n ) = O(nd) .

Note that, by definition, I(β,ω,λ,ηAL)
t ≡ 0 whenever t ≤ t0. If I(β,ω,λ,A)

t > 0 for
any t ≥ t1, we would have a strictly positive amount of energy absorbed by the
infinite volume fermion system even if the AC-condition (4.16) holds. This situ-
ation is interpreted as a heat production. Indeed, we show below, that the energy
increment I(β,ω,λ,A)

t can also be seen as an entropy production, see Corollary 4.4.5
for more details.
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4.4.2 Existence of energy increments at small fields
The physical situation considered here is as follows: We start with a macroscopic
bulk containing conducting fermions. This is idealized by taking an infinite sys-
tem of non-interacting fermions as explained above. Then the AC-conductivity is
measured in a local region which is very small w.r.t. the size of the bulk, but very
large w.r.t. the lattice spacing of the crystal.

We implement this hierarchy of space scales by rescaling the vector potentials.
That means, for any L ∈ R+ and A ∈ C∞0 , we consider the space-rescaled vector
potential

AL(t, x) := A(t, L−1x) , t ∈ R, x ∈ Rd . (4.77)

Then, to ensure that a macroscopic number of lattice sites is involved, we even-
tually perform the limit L → ∞. Indeed, the scaling factor L−1 used in (4.77)
means, at fixed L, that the space scale of the electric field (4.15) is infinitesimal
w.r.t. the macroscopic bulk (which is the whole space), whereas the lattice spacing
gets infinitesimal w.r.t. the space scale of the vector potential when L→∞.

Furthermore, Joule’s law is a linear response to electric fields. Therefore, as
explained in Section 4.2.3, we also rescale the strength of the electromagnetic
potential AL by a strictly positive parameter η ∈ R+ and eventually take the limit
η → 0.

Within this framework we prove that the heat production is a well-defined
quantity, i.e., the energy increment I(β,ω,λ,ηAL)

t exists for small enough η ∈ R+

and all L ∈ R+.
Indeed, using the Dyson-Phillips series of the time evolution, that is Equation

(4.33), and (4.36), i.e. the fact that KMS states are stationary, as well as (4.10)
and (4.42), we observe that

ρ
(β,ω,λ,ηAL)
t (H

(ω,λ)
l )− ρ(β,ω,λ,ηAL)

t0 (H
(ω,λ)
l )

=
∑
x∈Λl

∑
z∈L,|z|≤1

〈ex, (∆d + λVω) ex+z〉1[x+ z ∈ Λl]
∑
k∈N

ik

×
∫ t

t0

ds1

∫ s1

t0

ds2 · · ·
∫ sk−1

t0

dsk

%(β,ω,λ)
(

[W ηAL
sk−t0,sk , . . . ,W

ηAL
s1−t0,s1 , τ

(ω,λ)
t−t0 (a∗xax+z)]

(k+1)
)

(4.78)

for any L, l, β, η ∈ R+, ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞0 .

In order to obtain the existence of energy increments, we need to bound the
r.h.s. of (4.78). To this end, we prove the following lemma by using tree-decay
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bounds on multi-commutators:

Lemma 4.4.1.
For any A ∈ C∞0 , there is η0 ∈ R+ such that, for l, ε ∈ R+, there is a ball

B(0, R) := {x ∈ L : |x| ≤ R} (4.79)

of radius R ∈ R+ centered at 0 such that, for all η ∈ (0, η0], β ∈ R+, ω ∈ Ω,
λ ∈ R+

0 , t0 ≤ s1, . . . , sk ≤ t and L ∈ R+,

∑
x∈Λl\BR

∑
z∈L,|z|≤1

∑
k∈N

(t− t0)k

k!∣∣∣%(β,ω,λ)
(

[W ηAL
sk−t0,sk , . . . ,W

ηAL
s1−t0,s1 , τ

(ω,λ)
t−t0 (a∗xax+z)]

(k+1)
)∣∣∣ ≤ ε .

Proof. We first need to bound the (k + 1)-fold multi-commutator

[WA
sk−t0,sk , . . . ,W

A
s1−t0,s1 , τ

(ω,λ)
t−t0 (a∗xax+z)]

(k+1)

for any k ∈ N, x ∈ ΛL and z ∈ L so that |z| ≤ 1. This is done by using tree-
decay bounds as explained in Section 4.3.1. Indeed, by (4.77), for any l ∈ R+ and
A ∈ C∞0 , there exists a finite subset Λ̃l ∈ Pf (L) such that AL(t, x) = 0 for all
x ∈ L\Λ̃l and t ∈ R. Then we infer from (4.24) and (4.30) that, for all l, η ∈ R+,
x, y ∈ L, A ∈ C∞0 and t ∈ R, there are constants DηAL

x,y (t) ∈ C such that

W ηAL
s1,s2

=
∑
x∈Λ̃l

∑
z∈L,|z|≤1

DηAL
x,x+z(s2)τ (ω,λ)

s1
(a∗xax+z) (4.80)

for any ω ∈ Ω, λ ∈ R+
0 and s1, s2 ∈ R. Here, the constants DηAL

x,y (t) are always
of order η:

sup
t∈R , x,y∈L

∣∣DηAL
x,y (t)

∣∣ ≤ Kη (4.81)

with

Kη := ‖∆d‖
∣∣∣∣exp

{
iη max

(t,x)∈R×Rd , z∈L,|z|≤1
|[A(t, x)] (z)|

}
− 1

∣∣∣∣ = O (η) .

(4.82)
Therefore, using Corollary 4.3.4 we deduce that, for every ε ∈ R+ and t0 < t,
there is a constant D ∈ R+ such that, for any k ∈ N, L, l, η, β ∈ R+, ω ∈ Ω,
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λ ∈ R+
0 , A ∈ C∞0 , s1, . . . , sk ∈ [t0, t] and R > Rl,∑

x∈Λl\BR

∑
z∈L,|z|≤1

∣∣∣%(β,ω,λ)
(

[W ηAL
sk−t0,sk , . . . ,W

ηAL
s1−t0,s1 , τ

(ω,λ)
t−t0 (a∗xax+z)]

(k+1)
)∣∣∣

≤ |Λ̃l| |Tk+1|

 ∑
x∈L,|x|≥R−Rl

KηD

1 + |x|d+ε

[∑
x∈L

KηD

1 + |x|d+ε

]k−1

, (4.83)

with B(0, R) being the ball of radius R ∈ R+ centered at 0 and where |Λ̃l| is the
volume of the finite subset Λ̃l ∈ Pf (L) with radius

Rl := max
{
|x| : x ∈ Λ̃l

}
∈ R+ , l ∈ R+ . (4.84)

Note that there exists a finite constant D ∈ R+ such that Rl ≤ lD for all l ∈ R+.
From (4.24) and (4.30) it follows that WA

t,s = 0 for any t ≥ t1, where t1 is the
time when the electromagnetic potential is switched off, see (4.17). Therefore,
w.l.o.g. we only consider times t ∈ (t0, t1] with t1 > t0. Thus, take η0 ∈ R+

sufficiently small to imply∑
x∈L

KηD

1 + |x|d+ε
≤
∑
x∈L

Kη0D

1 + |x|d+ε
≤ 1

2 (t1 − t0)

for all η ∈ (0, η0]. Then, using |Tk+1| = k! and the upper bound (4.83) we arrive
at ∑

x∈Λl\BR

∑
z∈L,|z|≤1

∣∣∣%(β,ω,λ)
(

[W ηAL
sk−t0,sk , . . . ,W

ηAL
s1−t0,s1 , τ

(ω,λ)
t−t0 (a∗xax+z)]

(k+1)
)∣∣∣

≤ k!

2k−1 (t1 − t0)k−1
|Λ̃l|

∑
x∈L,|x|≥R−Rl

KηD

1 + |x|d+ε
(4.85)

for all η ∈ (0, η0] and any L, l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k ∈ N, t ∈ (t0, t1]

and s1, . . . , sk ∈ [t0, t]. Therefore, we get the assertion from (4.85) by choosing
R ∈ R+ such that

2 (t1 − t0) |Λ̃l|
∑

x∈L,|x|≥R−Rl

Kη0D

1 + |x|d+ε
≤ ε

for some fixed arbitrarily chosen parameter ε ∈ R+.
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From (4.78) and Lemma 4.4.1 we deduce:

Theorem 4.4.2 (Existence of energy increments).
For any A ∈ C∞0 , there is a strictly positive number η0 ∈ R+ such that, for all
η ∈ (0, η0], L, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and t ≥ t0, the limit (4.76) exists and
equals

I
(β,ω,λ,ηAL)
t =

∑
x,z∈L,|z|≤1

〈ex, (∆d + λVω) ex+z〉
∑
k∈N

ik
∫ t

t0

ds1 · · ·
∫ sk−1

t0

dsk

%(β,ω,λ)
(

[W ηAL
sk−t0,sk , . . . ,W

ηAL
s1−t0,s1 , τ

(ω,λ)
t−t0 (a∗xax+z)]

(k+1)
)
.

(4.86)

4.4.3 Energy increments as thermodynamic limits
In this section we first review well-known facts about the infinite system consid-
ered above as a thermodynamic limit of finite volume systems. This is used to
express the energy increment as a thermodynamic limit, which allows us to find
other useful representations of the energy increment.

First, fix n ∈ R+ and recall that Λn is the box (4.74) of side length 2n+ 1. Let

[∆
(n)
d (ψ)](x) := 2dψ(x)−

∑
|z|=1,x+z∈Λn

ψ(x+ z) , x ∈ Λn, ψ ∈ `2(Λn) ,

be the discrete Laplacian restricted to the box Λn with Dirichlet boundary con-
ditions. For any realization ω ∈ Ω, we denote by V (n)

ω the restriction of Vω to
Λn:

V (n)
ω (ex) := 1 [x ∈ Λn]Vω(ex) , x ∈ L .

Recall that {ex}x∈L is the canonical orthonormal basis ex(y) ≡ δx,y of `2(L).
Then, for any λ ∈ R+

0 , define the bounded self-adjoint operator

h(ω,λ)
n := ∆

(n)
d + λV (n)

ω ∈ B(`2(Λn)) . (4.87)

Obviously, this operator can also be extended to a bounded operator h̃(ω,λ)
n on

`2(L) by defining

h̃(ω,λ)
n (ex) :=

{
h

(ω,λ)
n (ex) for x ∈ Λn .

0 for x ∈ L\Λn .



100 CHAPTER 4. AC–CONDUCTIVITY MEASURE

Since UΛn is isomorphic to the algebra of all bounded linear operators on the
fermion Fock space

F :=
∧

(`2(Λn)) ,

the Hamiltonian (4.75), that is,

H(ω,λ)
n =

∑
x,y∈Λn

〈ex, h(ω,λ)
n ey〉a∗xay ∈ UΛn , (4.88)

can be seen as the second quantization of h(ω,λ)
n for all ω ∈ Ω and λ ∈ R+

0 . It
is well-known in this case that the one-parameter (Bogoliubov) group τ (ω,λ,n) :=

{τ (ω,λ,n)
t }t∈R of automorphisms uniquely defined by the condition

τ
(ω,λ,n)
t (a(ψ)) = a(eith̃

(ω,λ)
n (ψ)) , t ∈ R, ψ ∈ `2(L) ,

(cf. [14, Theorem 5.2.5]) satisfies

τ
(ω,λ,n)
t (A) = eitH

(ω,λ)
n Ae−itH

(ω,λ)
n , A ∈ U ,

for each n ∈ R+ and all ω ∈ Ω and λ ∈ R+
0 .

Let %(β,ω,λ,n) be the unique (τ (ω,λ,n), β)-KMS state for any ω ∈ Ω and λ ∈ R+
0

at fixed inverse temperature β ∈ R+. It is again well-known that this state is
directly related with the Gibbs state g(β,ω,λ,n) associated with the Hamiltonian
H

(ω,λ)
n and defined by

g(β,ω,λ,n) (A) := TrF

(
A

e−βH
(ω,λ)
n

TrF(e−βH
(ω,λ)
n )

)
, A ∈ UΛn , (4.89)

for any n, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . Indeed,

%(β,ω,λ,n)(AB) = g(β,ω,λ,n)(A)tr(B) , A ∈ UΛn , B ∈ UL\Λn , (4.90)

where tr is the normalized trace (state) on U . Note that tr is also named tracial
state and satisfies a product property, see [2, Section 4.2]. Here, UL\Λn ⊂ U is the
C∗-algebra generated by {ax}x∈L\Λn and the identity. In particular,

%(β,ω,λ,n)(A) = g(β,ω,λ,n)(A) , A ∈ UΛn .

In the following theorem we summarize well-known results on the infinite
volume dynamics.
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Theorem 4.4.3.
Let β ∈ R+, ω ∈ Ω and λ ∈ R+

0 . Then:
(i) For any t ∈ R, the localized (quasi-free) automorphism τ

(ω,λ,n)
t converges

strongly to τ (ω,λ)
t , as n→∞.

(ii) The (τ (ω,λ,n), β)-KMS states %(β,ω,λ,n) converge to the (τ (ω,λ), β)-KMS state
%(β,ω,λ) in the weak∗-topology, as n→∞.

Proof. See [14, Chapters 5.2 and 5.3].

Let A ∈ C∞0 , t ≥ t0 and l, η ∈ R+. For any sufficiently large n ∈ R+

we have W ηAL
t ∈ UΛn . Thus we consider the following finite dimensional initial

value problem on UΛn for any sufficiently large n ∈ R+:

∀s, t ∈ R, t ≥ s : ∂tτ
(ω,λ,ηAL,n)
t,s = τ

(ω,λ,ηAL,n)
t,s ◦δ(ω,λ,ηAL,n)

t , τ (ω,λ,ηAL,n)
s,s := 1 ,

(4.91)
with 1 being here the identity in UΛn . Here, the infinitesimal generator δ(ω,λ,ηAL,n)

t

of τ (ω,λ,ηAL,n)
t,s equals

δ
(ω,λ,ηAL,n)
t (·) := i[H(ω,λ)

n +W ηAL
t , · ] (4.92)

and is of course a bounded operator acting on UΛn . Therefore, using the Dyson-
Phillips series one shows, completely analogously to Section 4.2.3, the existence
and uniqueness of a (quasi-free) strongly continuous two-parameter group of au-
tomorphisms {τ (ω,λ,ηAL,n)

t,s }t≥s of the finite dimensional C∗-algebra UΛn satisfying
(4.91).

Now, the energy increment I(β,ω,λ,ηAL)
t can be expressed as the thermody-

namic limit of quantities resulting from the finite volume system above. Indeed,
by combining tree-decay bounds (cf. (4.57)-(4.58) and Corollary 4.3.4) with The-
orem 4.4.3, one obtains:

Theorem 4.4.4 (Energy increments as thermodynamic limits).
For all A ∈ C∞0 and t ≥ t0, there is η0 ∈ R+ such that

I
(β,ω,λ,ηAL)
t = lim

n→∞

{
g(β,ω,λ,n)(τ

(ω,λ,ηAL,n)
t,t0 (H(ω,λ)

n ))− g(β,ω,λ,n)(H(ω,λ)
n )

}
∈ R

for all η ∈ (0, η0], ω ∈ Ω, λ ∈ R+
0 and L, β ∈ R+.
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Proof. Similar to Equation (4.78),

g(β,ω,λ,n)(τ
(ω,λ,ηAL,n)
t,t0 (H(ω,λ)

n ))− g(β,ω,λ,n)(H(ω,λ)
n )

=
∑
x∈Λn

∑
z∈L,|z|≤1

〈ex, h(ω,λ)
n ex+z〉1[x+ z ∈ Λn]

∑
k∈N

ik

×
∫ t

t0

ds1

∫ s1

t0

ds2 · · ·
∫ sk−1

t0

dsk

× g(β,ω,λ,n)
(

[W ηAL
sk−t0,sk , . . . ,W

ηAL
s1−t0,s1 , τ

(ω,λ,n)
t−t0 (a∗xax+z)]

(k+1)
)
. (4.93)

By Theorem 4.4.3, for any fixed x, z ∈ L, k ∈ N, A ∈ C∞0 , s1, . . . , sk ∈ [t0, t],
η, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and L ∈ R+,

lim
n→∞

{
〈ex, h(ω,λ)

n ex+z〉1[x+ z ∈ Λn]

× g(β,ω,λ,n)
(

[W ηAL
sk−t0,sk , . . . ,W

ηAL
s1−t0,s1 , τ

(ω,λ,n)
t−t0 (a∗xax+z)]

(k+1)
)}

=〈ex, (∆d + λVω) ex+z〉%(β,ω,λ)
(

[W ηAL
sk−t0,sk , . . . ,W

ηAL
s1−t0,s1 , τ

(ω,λ)
t−t0 (a∗xax+z)]

(k+1)
)
.

Therefore, the assertion follows from (4.86) and (4.93) provided one can use
Lebesgue’s dominated convergence theorem. In fact, the arguments proving Corol-
lary 4.3.4 can be used for the one-parameter groups τ (ω,λ,n) and the (β, τ (ω,λ,n))-
KMS states %(β,ω,λ,n). In particular, for any ε ∈ R+ and t0 < t, there is D =
Dε,t0,t ∈ R+ such that the tree-decay bounds (4.57)-(4.58) holds for all β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 and n ∈ N. Note that this constantD = Dε,t0,t does not depend on
n ∈ N because of Lemma 4.3.3 and (4.63). Following the proof of Lemma 4.4.1
as a guideline, we obtain absolutely summable upper bounds for (4.93).

We show in the following, that the theorem above implies that the energy
increment I(β,ω,λ,ηAL)

t corresponds to a heat production, that is, a production of
entropy: For any state ρ on the finite dimensional C∗-algebra UΛn , there is a den-
sity matrix dρ ∈ UΛn with dρ ≥ 0 and Tr F (dρ) = 1. Then we define the relative
entropy, for any states ρ1 and ρ2, by

S (ρ1|ρ2) = −Tr F (dρ2 ln dρ1)− S(ρ2) . (4.94)

Here, we assume that 0 /∈ σ(dρ1) and, for any state ρ,

S(ρ) := −Tr F (dρ ln dρ) (4.95)
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is the von Neumann entropy of the state ρ on the finite dimensional C∗-algebra
UΛn . Observe that the relative entropy is always a non-negative quantity, i.e.,
S (ρ1|ρ2) ≥ 0 for all states ρ1 and ρ2. Now, using Theorem 4.4.4, we can rewrite
the energy increment I(β,ω,λ,ηAL)

t as the thermodynamic limit of an entropy pro-
duction, which is in particular a positive quantity:

Corollary 4.4.5.
For any A ∈ C∞0 , there is η0 ∈ R+ such that, for all η ∈ (0, η0], ω ∈ Ω, λ ∈ R+

0 ,
and L, β ∈ R+ and t ≥ t0, the energy increment I(β,ω,λ,ηAL)

t exists and equals

I
(β,ω,λ,ηAL)
t = lim

n→∞
β−1S

(
g(β,ω,λ,n)| g(β,ω,λ,n) ◦ τ (ω,λ,ηAL,n)

t,t0

)
∈ R+

0 .

In particular, the energy increment is positive.

Proof. The arguments follows those of [22]. Note first that

g(β,ω,λ,n) ◦ τ (ω,λ,ηAL,n)
t,t0 ∈ U∗Λn (4.96)

is obviously a state and

S(g(β,ω,λ,n) ◦ τ (ω,λ,ηAL,n)
t,t0 ) = S(g(β,ω,λ,n)) (4.97)

for all t ≥ t0 because τ (ω,λ,ηAL,n)
t,t0 is an automorphism on UΛn . Using (4.89),

(4.94)-(4.95) and (4.97), we then directly derive the equality

S
(
g(β,ω,λ,n) | g(β,ω,λ,n) ◦ τ (ω,λ,ηAL,n)

t,t0

)
= β

(
g(β,ω,λ,n)(τ

(ω,λ,ηAL,n)
t,t0 (H(ω,λ)

n ))− g(β,ω,λ,n)(H(ω,λ)
n )

)
,

provided t ≥ t0. The assertion then follows from Theorem 4.4.4.

Remark 4.4.6.
It is possible to express the energy increment I(β,ω,λ,ηAL)

t as a relative entropy of
the states %(β,ω,λ) and %(β,ω,λ) ◦ τ (ω,λ,ηAL)

t,t0 , this is done in [15]. We refrain here
from doing it for technical simplicity.

Meanwhile, Theorem 4.4.4 also allows us to rewrite the energy increment
(4.86) as follows:
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Corollary 4.4.7.
For any A ∈ C∞0 , there is η0 ∈ R+ such that, for all η ∈ (0, η0], L, β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 and t ≥ t0, the energy increment I(ω,ηAL)(t) exists and equals

I
(β,ω,λ,ηAL)
t =

∫ t

t0

%(β,ω,λ) ◦ τ (ω,λ,ηAL)
s,t0

(
∂sW

ηAL
s

)
ds− %(β,ω,λ,ηAL)

t (W ηAL
t ) .

Proof. Let n ∈ R+ be sufficiently large so that W ηAL
t ∈ UΛn . Since WA

t = 0 for
any t ≤ t0 (cf. (4.24)), we get for any t ≥ t0,

τ
(ω,λ,ηAL,n)
t,t0 (H(ω,λ)

n +W ηAL
t )−H(ω,λ)

n

= τ
(ω,λ,ηAL,n)
t,t0 (H(ω,λ)

n +W ηAL
t )− τ (ω,λ,ηAL,n)

t0,t0 (H(ω,λ)
n +W ηAL

t0 )

=

∫ t

t0

∂s

{
τ

(ω,λ,ηAL,n)
s,t0 (H(ω,λ)

n +W ηAL
s )

}
ds .

Combining this equality with (4.91)-(4.92) we thus arrive at

τ
(ω,λ,ηAL,n)
t,t0 (H(ω,λ)

n +W ηAL
t )−H(ω,λ)

n =

∫ t

t0

τ
(ω,λ,ηAL,n)
s,t0

(
∂sW

ηAL
s

)
ds .

Now, by (4.24) observe that ∂sW ηAL
s is given by an expression of the form (4.80).

Hence, the remaining part of the proof uses arguments similar to those used to
show Theorem 4.4.4: Dyson-Phillips series to obtain series over multi-commutators,
tree-decay bounds, Theorem 4.4.3 and Lebesgue’s dominated convergence theo-
rem.

This corollary turns out to be useful for proving Theorem 4.5.1 in the next section.

4.5 AC-Joule’s law and AC-conductivity
In this section we formulate and proof the main result of the chapter, that is The-
orem 4.5.1.

We study the limit of the energy increment I(β,ω,λ,ηAL)
t for (η, L−1) → (0, 0).

As explained before, it means that we analyze the linear response of the fermion
system under the influence of a time-dependent electric field localized in a very
small but macroscopic region of the bulk.

In the limit (η, L−1)→ (0, 0) it turns out that the energy increment I(β,ω,λ,ηAL)
t

is of order O
(
η2Ld

)
. This is to be expected since by classical electrodynamics

the electromagnetic energy given to the system, is also of order O
(
η2Ld

)
.
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Theorem 4.5.1 (AC-Joule’s law - Heat production).
Let β ∈ R+ and λ ∈ R+

0 . Then there is a unique function σ ≡ σ(β,λ) ∈ C (R,R)
satisfying σ(t) = σ(|t|) and σ(0) = 0, and a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω
of full measure such that, for any ω ∈ Ω̃, A ∈ C∞0 and t ≥ t1,

lim
(η,L−1)→(0,0)

{(
η2Ld

)−1
I

(β,ω,λ,ηAL)
t

}
(4.98)

=
1

2

∫
R

∫
R

[
σ(s1 − s2)

∫
Rd
〈EA(s1, x), EA(s2, x)〉 ddx

]
ds2ds1

=

∫ t

t0

∫ s1

t0

[
σ(s1 − s2)

∫
Rd
〈EA(s1, x), EA(s2, x)〉 ddx

]
ds2ds1 ≥ 0 .

Thus, (4.98) exactly corresponds to the heat production or the electric power
delivered by the electric field EA (4.15). Note that the physicist J. P. Joule ob-
served that the heat (per second) within a circuit is proportional to the electric
resistance and the square of the current in the DC-regime. Nevertheless, we name
Theorem 4.5.1 AC-Joule’s law because of two clear similarities. Qualitatively like
Joule’s law, Theorem 4.5.1 describes the rate at which resistance in the fermion
system converts electric energy into heat energy for t ≥ t1, by (4.98). Quantita-
tively, Theorem 4.5.1 is an analogue of Joule’s law in the AC-regime with currents
and resistance replaced by electric fields and AC-conductivity. Indeed, the real-
valued function σ is interpreted as the AC-conductivity.

Note, that in Theorem 4.5.1, we make an assertion for t ≥ t1, that means as
soon as the electromagnetic field is turned off. For all those times t, t′ ≥ t1 we
have, of course,

I
(β,ω,λ,ηAL)
t = I

(β,ω,λ,ηAL)
t′ , (4.99)

and the energy increment is no longer time-dependent. Nevertheless, we keep the
index t in the notation.

In the following subsections we prove Theorem 4.5.1.

4.5.1 Derivation of local AC-Joule’s law
We derive here an asymptotic expression for the energy increment which is similar
to the one given by Theorem 4.5.1.

To this end, for any A ∈ C∞0 , we define the difference of electric potential
between x(2) ∈ L and x(1) ∈ L at time t ∈ R by

V A
t (x) :=

∫ 1

0

[
EA(t, αx(2) + (1− α)x(1))

]
(x(2) − x(1))dα (4.100)
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with x := (x(1), x(2)) ∈ L2 and where we recall that

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd ,

see (4.15).
It is also convenient to define the subset K ⊂ L2 of nearest neighbours in L,

i.e.
K :=

{
x := (x(1), x(2)) ∈ L2 : |x(1) − x(2)| = 1

}
, (4.101)

as well as the current observables Ix = I∗x

Ix := i(a∗x(2)ax(1) − a∗x(1)ax(2)) , x := (x(1), x(2)) ∈ L2 . (4.102)

Note, that this term is justified because Ix obeys the following discrete continuity
equation

∂tnx(t) = −τ (ω,λ)
t

 ∑
y∈L,|x−y|=1

I(x,y)

 , for all x ∈ L , (4.103)

where
nx(t) := τ

(ω,λ)
t (a∗xax) (4.104)

is the particle density observable at lattice site x ∈ L and time t ∈ R. Observe
that the minus sign in the r.h.s. of (4.103) comes from the fact that the particles
are negatively charged, I(x,y) being the observable related to the flow of particles
from the lattice site x to the lattice site y or the current from y to x without electric
field. Positively charged particles can of course be treated in the same way.

Finally, for any s1, s2 ∈ R and x,y ∈ L2, let

ζ(ω)
x,y ≡ ζ(β,ω,λ)

x,y (s1, s2) :=
1

4

∫ s2

s1

%(β,ω,λ)
(
i[τ (ω,λ)

s1
(Iy) , τ (ω,λ)

s (Ix)]
)

ds . (4.105)

Since

(τ
(ω,λ)
t (Ix))∗ = τ

(ω,λ)
t (I∗x) = τ

(ω,λ)
t (Ix) , t ∈ R, x ∈ L2, ω ∈ Ω, λ ∈ R+

0 ,

the function ζ(ω)
x,y is a map from R2 to R which turns out to be a (local) energy

production coefficient:
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Theorem 4.5.2 (Local AC-Joule’s law).
For any A ∈ C∞0 , there is η0 ∈ R+ such that, for all η ∈ (0, η0], L, β ∈ R+,
λ ∈ R+

0 , ω ∈ Ω and t ≥ t1 one has

I
(β,ω,λ,ηAL)
t = η2

∫ t

t0

ds1

∫ s1

t0

ds2

∑
x,y∈K

ζ(ω)
x,y(s1, s2)V AL

s2
(x)V AL

s1
(y) +O(η3Ld) .

Proof. First, we develop the expression given in Corollary 4.4.7 for the energy
increment I(β,ω,λ,ηAL)

t in terms of small fields, i.e. small η. Using W ηAL
t ≡ 0 for

all t /∈ (t0, t1) and (4.36) note that, in particular for all t ≥ t1

ρ
(β,ω,λ,ηAL)
t (W ηAL

t ) = %(β,ω,λ)(W ηAL
t ) =

∫ t

t0

%(β,ω,λ)
(
∂sW

ηAL
s

)
ds

=

∫ t

t0

%(β,ω,λ) ◦ τ (ω,λ)
s−t0

(
∂sW

ηAL
s

)
ds .

Furthermore, for all s ∈ [t0, t],

W ηAL
s , ∂sW

ηAL
s ∈ UΛ̃L

for some finite subset Λ̃L ∈ Pf (L) of diameter of order O(L), see, e.g., (4.84).
As a consequence, by Corollary 4.4.7, for any A ∈ C∞0 , there is η0 ∈ R+ such
that, for all η ∈ (0, η0], ω ∈ Ω, λ ∈ R+

0 , and L, β ∈ R+ and t ≥ t1, the energy
increment I(β,ω,λ,ηAL)

t exists and equals

I
(β,ω,λ,ηAL)
t =

∫ t

t0

%(β,ω,λ) ◦
(
τ

(ω,λ,ηAL)
s,t0 − τ (ω,λ)

s−t0

) (
∂sW

ηAL
s

)
ds (4.106)

Similar to the proofs of Lemma 4.4.1, Theorem 4.4.4 or Corollary 4.4.7, one can
use Corollary 4.3.4 to infer from (4.106) that, for all η ∈ (0, η0],

I
(β,ω,λ,ηAL)
t =

∫ t

t0

ds1

∫ s1

t0

ds2 %
(β,ω,λ)

(
i
[
τ

(ω,λ)
s2−t0

(
W ηAL
s2

)
, τ

(ω,λ)
s1−t0

(
∂s1W

ηAL
s1

)])
+O(η3Ld) . (4.107)

This last correction term of order O(Ldη3) is uniformly bounded in β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 and t ≥ t1.
Recall that WA

t,s is defined by (4.30) for any t, s ∈ R as

WA
t,s := τ

(ω,λ)
t (WA

s ) ∈ U , t, s ∈ R .
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In particular, due to (4.80)-(4.82), by (4.10), (4.24) and (4.100), there are constants
D̃ηAL
x,y (s) ∈ C for all x, y ∈ L, s ∈ [t0, t] and a finite subset Λ̃L ∈ Pf (L) such that

W ηAL
t,s = −iη

∑
x,y∈L,|x−y|=1

(∫ s

t0

V AL
α (x, y)dα

)
τ

(ω,λ)
t (a∗xay)

+η2
∑
x∈Λ̃L

∑
z∈L,|z|≤1

D̃ηAL
x,x+z(s)τ

(ω,λ)
t (a∗xax+z) (4.108)

and
D̃ηAL
x,x+z(s) = O(1) , ∂sD̃

ηAL
x,x+z(s) = O(1) , (4.109)

uniformly for all x, z ∈ L such that |z| ≤ 1, any small parameter η ∈ (0, η0], and
all ω ∈ Ω, λ ∈ R+

0 , β, L ∈ R+ and A ∈ C∞0 . Therefore, we insert (4.108)-(4.109)
in Equation (4.107) and use Corollary 4.3.4 to arrive at the equality

I
(β,ω,λ,ηAL)
t = −iη2

∑
x,y∈K

∫ t

t0

ds1

∫ t

s1

ds2

∫ s2

t0

ds3

×V AL
s1

(x)V AL
s3

(y)%(β,ω,λ)
(

[τ
(ω,λ)
s2−t0(a∗y(1)ay(2)), τ

(ω,λ)
s1−t0

(
a∗x(1)ax(2)

)
]
)

+O(Ldη3) (4.110)

uniformly for β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . Note that (4.100) yields

V AL
t (x) ≡ V AL

t (x(1), x(2)) = −V AL
t (x(2), x(1)) , x := (x(1), x(2)) ∈ L2 , t ∈ R ,

(4.111)
whereas (4.12) and (4.36) combined with the group property of τ (ω,λ) = {τ (ω,λ)

t }t∈R
imply that

%(β,ω,λ)
(

[τ
(ω,λ)
s2−t0(B2), τ

(ω,λ)
s1−t0 (B1)]

)
= %(β,ω,λ)

(
[τ (ω,λ)
s2

(B2), τ (ω,λ)
s1

(B1)]
)

(4.112)

for any B1, B2 ∈ U and all s1, s2 ∈ R. Therefore, by (4.111) and (4.112), Equa-
tion (4.110) is equal to

I
(β,ω,λ,ηAL)
t =

η2

4

∑
x,y∈K

∫ t

t0

ds1

∫ t

s1

ds2

∫ s2

t0

ds3V
AL
s1

(x)V AL
s3

(y)

×%(β,ω,λ)
(
i[τ (ω,λ)

s2
(Iy), τ (ω,λ)

s1
(Ix)]

)
+O(η3Ld) , (4.113)

see (4.102). By (4.105) we obtain that

∂s2ζ
(ω)
x,y (s1, s2) =

1

4
%(β,ω,λ)

(
i[τ (ω,λ)

s1
(Iy), τ (ω,λ)

s2
(Ix)]

)
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for any x,y ∈ L2, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . As a consequence, the assertion

follows from (4.113) and an integration by parts using the AC-condition (4.16) for
t ≥ t1.

4.5.2 Microscopic AC-conductivity

Recall that, for any x,y ∈ L2, the map ζ(ω)
x,y ≡ ζ

(β,ω,λ)
x,y from R2 to R defined by

(4.105) is an energy production coefficient, by Theorem 4.5.2. First, we observe
that the function ζ(ω)

x,y can be reduced to a real-valued function defined on the real
line, only. This function is called microscopic AC-conductivity in the following.
Then we relate the microscopic AC-conductivity to the complex-time two-point
correlation functions defined in (4.65).

Lemma 4.5.3 (Microscopic AC-conductivity).
For any β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and x,y ∈ L2, there is a function σ(ω)
x,y ≡ σ

(β,ω,λ)
x,y

from R to R such that

ζ(ω)
x,y (s1, s2) = σ(ω)

x,y (s2 − s1) , s1, s2 ∈ R .

Proof. The assertion follows by combining (4.105) with (4.12) and (4.36).

Therefore, by (4.105) and Lemma 4.5.3, for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and

x,y ∈ L2,

σ(ω)
x,y(t) =

1

4

∫ t

0

%(β,ω,λ)
(
i[Iy, τ

(ω,λ)
s (Ix)]

)
ds , t ∈ R . (4.114)

The latter directly implies that σ(ω)
x,y is symmetric w.r.t. time-reversal, provided one

exchanges x and y:

Corollary 4.5.4.
For any β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and x,y ∈ L2, the function σ(ω)
x,y ≡ σ

(β,ω,λ)
x,y

obeys
σ(ω)
x,y(t) = σ(ω)

y,x (−t) , t ∈ R .

Proof. We use again (4.12) and (4.36) in (4.114) to check that, for all x,y ∈ L2
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and t ∈ R,

σ(ω)
x,y (−t) =

1

4

∫ −t
0

%(β,ω,λ)
(
i[Iy, τ

(ω,λ)
s (Ix)]

)
ds

= −1

4

∫ t

0

%(β,ω,λ)
(
i[Iy, τ

(ω,λ)
−s (Ix)]

)
ds

=
1

4

∫ t

0

%(β,ω,λ)
(
i[Ix, τ

(ω,λ)
s (Iy)]

)
ds = σ(ω)

y,x(t) . (4.115)

The microscopic AC-conductivity σ
(ω)
x,y ≡ σ

(β,ω,λ)
x,y defined in Lemma 4.5.3

can be expressed in terms of complex-time two-point correlation functions (4.39)
C

(ω)
t+iα ≡ C

(β,ω,λ)
t+iα defined by

C
(ω)
t+iα(x) := %(β,ω,λ)(a∗x(1)τ

(ω,λ)
t+iα (ax(2))) , x := (x(1), x(2)) ∈ L2 , (4.116)

for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R and α ∈ [0, β]. This is done in Lemma 4.5.6

below. The space-decay properties of complex-time two-point correlation func-
tions C(ω)

t+iα, specified already in Section 4.3.2 and in particular Lemma 4.3.5, turn
out to be very convenient in the proof of AC-Joule’s Law, i.e. Theorem 4.5.1.

First, we derive a useful identity relating the microscopic AC-conductivity
σ

(ω)
x,y to Duhamel two-point correlation functions of currents:

Lemma 4.5.5.
Let β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and x,y ∈ L2. Then, for all t ∈ R,

σ(ω)
x,y(t) =

1

4

∫ β

0

(
%(β,ω,λ)

(
Iyτ

(ω,λ)
t+iα (Ix)

)
− %(β,ω,λ)

(
Iyτ

(ω,λ)
iα (Ix)

))
dα

=
1

4

{
(Iy, τ

(ω,λ)
t (Ix))∼ − (Iy, Ix)∼

}
,

where, for any self-adjoint B1 = B∗1 , B2 = B∗2 ∈ U ,

(B1, B2)∼ ≡ (B1, B2)(β,ω,λ)
∼ :=

∫ β

0

%(β,ω,λ)
(
B1τ

(ω,λ)
iα (B2)

)
dα . (4.117)

Proof. The KMS property (4.40) implies that, for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 ,

x,y ∈ L2 and s1, s ∈ R,

%(β,ω,λ)
(
[τ (ω,λ)
s1

(Iy), τ (ω,λ)
s (Ix)]

)
= %(β,ω,λ)

(
τ (ω,λ)
s1

(Iy)τ (ω,λ)
s (Ix)

)
− %(β,ω,λ)

(
τ (ω,λ)
s1

(Iy)τ
(ω,λ)
s+iβ (Ix)

)
,
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whereas the map
z 7→ %(β,ω,λ)

(
τ (ω,λ)
s1

(Iy)τ (ω,λ)
z (Ix)

)
is holomorphic on the strip R + i(0, β), see for instance [14, Proposition 5.3.7].
As a consequence, by using (4.12) and (4.36), we obtain from (4.114) that

σ(ω)
x,y(t) =

1

4

∫ β

0

(
%(β,ω,λ)

(
Iyτ

(ω,λ)
t+iα (Ix)

)
− 1

4
%(β,ω,λ)

(
Iyτ

(ω,λ)
iα (Ix)

))
dα

=
1

4

∫ β

0

%(β,ω,λ)
(
Iyτ

(ω,λ)
t+iα (Ix)

)
dα− 1

4
(Iy, Ix)∼

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and x,y ∈ L2. The group property of τ (ω,λ)

yields

%(β,ω,λ)
(
Iyτ

(ω,λ)
t+z (Ix)

)
= %(β,ω,λ)

(
Iyτ

(ω,λ)
z (τ

(ω,λ)
t (Ix))

)
(4.118)

for all z ∈ R. On the other hand, the KMS property (4.40) of %(β,ω,λ) and the
group property of τ (ω,λ) together with [14, Proposition 5.3.7], that is here,

%(β,ω,λ)
(
Iyτ

(ω,λ)
t+iβ (Ix)

)
= %(β,ω,λ)

(
τ

(ω,λ)
t (Ix)Iy

)
,

lead to Equation (4.118) for all z ∈ R+ iβ. Together with the Phragmen-Lindelöf
Theorem [14, Proposition 5.3.5], this implies that, for any β ∈ R+, ω ∈ Ω,
λ ∈ R+

0 and x,y ∈ L2, (4.118) can be extended to all z ∈ R + i[0, β]. In
particular, ∫ β

0

%(β,ω,λ)
(
Iyτ

(ω,λ)
t+iα (Ix)

)
dα = (Iy, τ

(ω,λ)
t (Ix))∼ .

It is not difficult to check that

%(β,ω,λ)
(
Bτ

(ω,λ)
iα (B)

)
≥ 0

for any selfadjoint B = B∗ ∈ U and all α ∈ [0, β]. So (B1, B2) 7→ (B1, B2)∼
is a positive bilinear form in the real linear space of self-adjoint elements of U .
Indeed, the Duhamel two-point function (·, ·)∼ is also called Bogoliubov or Kubo-
Mari scalar product for observables. Its use in the context of linear response theory
is well-known, see for instance [14, Discussion after Lemma 5.3.16 and Section
5.4]. Note finally that our definition of (·, ·)∼ is slightly different from the usual
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one because of the missing normalization factor β−1 in front of the integral in
(4.117).

Now, we can express the microscopic AC-conductivity σ(ω)
x,y ≡ σ

(β,ω,λ)
x,y defined

in Lemma 4.5.3 in terms of complex-time two-point correlation functions:

Lemma 4.5.6.
Let β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and x,y ∈ L2. Then,

σ(ω)
x,y(t) =

∫ β

0

(
C

(ω)
t+iα(x,y)− C

(ω)
iα (x,y)

)
dα ∈ R , t ∈ R ,

where C
(ω)
t+iα ≡ C

(β,ω,λ)
t+iα is the map from L4 to C defined by

C
(ω)
t+iα(x,y) :=

1

4

∑
π,π′∈S2

επεπ′C
(ω)
t+iα(yπ

′(1), xπ(1))C
(ω)
−t+i(β−α)(x

π(2), yπ
′(2))

(4.119)

for any x := (x(1), x(2)) ∈ L2,y := (y(1), y(2)) ∈ L2. Here, π, π′ ∈ S2 are by
definition permutations of {1, 2} with signatures επ, επ′ ∈ {−1, 1}.
Proof. From Lemma 4.5.5,

σ(ω)
x,y(t) =

1

4

∫ β

0

(
%(β,ω,λ)

(
Iyτ

(ω,λ)
t+iα (Ix)

)
− %(β,ω,λ)

(
Iyτ

(ω,λ)
iα (Ix)

))
dα (4.120)

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , x,y ∈ L2 and s1, s2 ∈ R.

By (4.12) and (4.102), for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, α ∈ [0, β],

x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2,

Iyτ
(ω,λ)
t+iα (Ix) =

(
a∗y(1)ay(2) − a∗y(2)ay(1)

)
τ

(ω,λ)
t+iα (a∗x(2))τ

(ω,λ)
t+iα (ax(1)) (4.121)

−
(
a∗y(1)ay(2) − a∗y(2)ay(1)

)
τ

(ω,λ)
t+iα (a∗x(1))τ

(ω,λ)
t+iα (ax(2)).

Note that, for all x ∈ L2, x ∈ L the maps z 7→ τ
(ω,λ)
z (Ix), z 7→ τ

(ω,λ)
z (a∗x),

z 7→ τ
(ω,λ)
z (ax), z ∈ R, have unique analytic continuations for z in whole C.

Meanwhile, using the canonical orthonormal basis ex(y) ≡ δx,y of `2(L), we
get that, for any ω ∈ Ω, λ ∈ R+

0 , t ∈ R, α ∈ [0, β] and x,y ∈ L2,

%(β,ω,λ)
(
a∗y(1)ay(2)τ

(ω,λ)
t+iα (a∗x(1))τ

(ω,λ)
t+iα (ax(2))

)
=− %(β,ω,λ)

(
a∗y(1)τ

(ω,λ)
t+iα (a∗x(1))ay(2)τ

(ω,λ)
t+iα (ax(2))

)
+ %(β,ω,λ)

(
{ay(2) , τ

(ω,λ)
t+iα (a∗x(1))}

)
%(β,ω,λ)

(
a∗y(1)τ

(ω,λ)
t+iα (ax(2))

)
(4.122)
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since the anticommutator is a multiple of the identity, i.e.,

{ay(2) , τ
(ω,λ)
t+iα (a∗x(1))} =

〈
ey(2) ,U

(ω,λ)
t+iα ex(1)

〉
from the CAR (4.4) and (4.11). Since %(β,ω,λ) is by construction a quasi-free state,
we use [14, p. 48], that is here,

%(β,ω,λ)(a∗ (f1) a∗ (f2) a (g1) a (g2))

= %(β,ω,λ)(a∗ (f1) a (g2))%(β,ω,λ)(a∗ (f2) a (g1))

− %(β,ω,λ)(a∗ (f1) a (g1))%(β,ω,λ)(a∗ (f2) a (g2)) ,

to infer from (4.122) that

%(β,ω,λ)
(
a∗y(1)ay(2)τ

(ω,λ)
t+iα (a∗x(1))τ

(ω,λ)
t+iα (ax(2))

)
= %(β,ω,λ)(a∗y(1)ay(2))%(β,ω,λ)(τ

(ω,λ)
t+iα (a∗x(1))τ

(ω,λ)
t+iα (ax(2)))

+ %(β,ω,λ)
(
a∗y(1)τ

(ω,λ)
t+iα (ax(2))

)
%(β,ω,λ)

(
ay(2)τ

(ω,λ)
t+iα (a∗x(1))

)
(4.123)

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, α ∈ [0, β] and x,y ∈ L2. Using (4.36),

(4.39) and (4.41), we then deduce from Equation (4.123) that

%(β,ω,λ)
(
a∗y(1)ay(2)τ

(ω,λ)
t+iα (a∗x(1))τ

(ω,λ)
t+iα (ax(2))

)
= C

(ω)
0 (y(1), y(2))C

(ω)
0 (x(1), x(2)) + C

(ω)
t+iα(y(1), x(2))C

(ω)
−t+i(β−α)(x

(1), y(2))

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, α ∈ [0, β] and x,y ∈ L2. We then

combine this last equality with (4.121) to arrive at

%(β,ω,λ)
(
Iyτ

(ω,λ)
t+iα (Ix)

)
= −

∑
π,π′∈S2

επεπ′
(
C

(ω)
t+iα(yπ

′(1), xπ(2))C
(ω)
−t+i(β−α)(x

π(1), yπ
′(2))

+C
(ω)
0 (yπ

′(1), yπ
′(2))C

(ω)
0 (xπ(1), xπ(2))

)
(4.124)

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, α ∈ [0, β], x := (x(1), x(2)) ∈ L2

and y := (y(1), y(2)) ∈ L2. Therefore, the assertion follows by combining (4.120)
with (4.124).
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Remark 4.5.7.
Observe that, for each β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , t ∈ R and α ∈ [0, β], the
coefficient C(ω)

t+iα defined by (4.119) can be seen as the kernel (w.r.t. the canonical
basis {ex⊗ex}x,x′∈L) of a bounded operator on `2(L)⊗`2(L) that is again denoted
by C

(ω)
t+iα ≡ C

(β,ω,λ)
t+iα . By (4.66), its operator norm can be uniformly bounded w.r.t.

β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R and α ∈ [0, β]:∥∥∥C(ω)

t+iα

∥∥∥
op
≤
∥∥∥∥e(−it+α)(∆d+λVω)

1 + eβ(∆d+λVω)

∥∥∥∥
op

·
∥∥∥∥e(it+β−α)(∆d+λVω)

1 + eβ(∆d+λVω)

∥∥∥∥
op

≤ 1 . (4.125)

We are now in position to give the proof of the main result, that is, a rigorous
derivation of AC-Joule’s law for lattice fermions with random chemical potential.

4.5.3 Derivation of AC-Joule’s law
The main aim of this section is to prove Theorem 4.5.1, this is essentially done
in Theorem 4.5.19. Its proof uses several arguments. We present them in various
lemmata which then yield the final result.

Note that, by Theorem 4.5.2, Lemmata 4.5.3 and 4.5.6 as well as Equation
(4.17), we already obtain that for any A ∈ C∞0 and t ≥ t1, there is η0 ∈ R+ such
that, for all η ∈ (0, η0] and L ∈ R+, the energy increment exists, is positive and
equals

I
(β,ω,λ,ηAL)
t = η2Ld

∫ t

t0

∫ s1

t0

X
(ω)
L,0(s1, s2)ds2 ds1 +O(η3Ld) (4.126)

uniformly for β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . Here, X

(ω)
L,υ ≡ X

(β,ω,λ,A)
L,υ is defined,

for any υ ∈ [0, β/2) and s1, s2 ∈ R, by

X
(ω)
L,υ(s1, s2) :=

1

Ld

∑
x,y∈K

∫ β−υ

υ

C
(ω)
s2−s1+iα(x,y)V AL

s2
(x)V AL

s1
(y)dα . (4.127)

Recall that the definition of the set K ⊂ L2 of nearest neighbours is given by
(4.101). Note also that the integral in (4.127) can be exchanged with the (finite)
sum because A ∈ C∞0 .

The first important result of the present subsection will be a proof that X
(ω)
L,0

almost surely converges to a deterministic function, as L→∞, this is achieved in
Corollary 4.5.17. Then we will use Lebesgue’s dominated convergence theorem to
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get the energy increment I(β,ω,λ,ηAL)
t in the limit (η, L−1) → (0, 0), see Theorem

4.5.19.
By Lemma 4.3.5, note that, for all ε, β ∈ R+, λ ∈ R+

0 , t ∈ R, υ ∈ (0, β/2) and
α ∈ [υ, β−υ], the complex-time two-point correlation functions C(ω)

t+iα ≡ C
(β,ω,λ)
t+iα

can be written as the sum

C
(ω)
t+iα (x) = A

(ω)
t+iα,υ,ε (x) +B

(ω)
t+iα,υ,ε (x) , x := (x(1), x(2)) ∈ L2 , (4.128)

of two maps A(ω)
t+iα,υ,ε, B

(ω)
t+iα,υ,ε from L2 to C. This decomposition has the fol-

lowing useful property: A(ω)
t+iα,υ,ε can be seen as the kernel (w.r.t. the canonical

basis {ex}x∈L) of an operator, again denoted by A(ω)
t+iα,υ,ε ∈ B(`2(L)), with arbi-

trarily small operator norm ‖A(ω)
t+iα,υ,ε‖op ≤ ε, whereas B(ω)

t+iα,υ,ε is fast decaying,
as |x(1) − x(2)| → ∞. This is however only verified if α ∈ [υ, β − υ] with fixed
υ ∈ (0, β/2), cf. Lemma 4.3.5.

As a consequence, the first step is to approximate X
(ω)
L,0 with X

(ω)
L,υ for small

υ > 0. This is done by using the following lemma:

Lemma 4.5.8 (Approximation I).
Let A ∈ C∞0 . Then,

X
(ω)
L,0 (s1, s2) = X

(ω)
L,υ (s1, s2) +O(υ) ,

uniformly for L, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and s1, s2 ∈ R.

Proof. The canonical orthonormal basis of `2(L)⊗`2(L) is {ex(1)⊗ex(2)}(x(1),x(2))∈L2

with
ex := ex(1) ⊗ ex(2) , x := (x(1), x(2)) ∈ L2 .

Recall that ex(y) ≡ δx,y ∈ `2(L). Then, using Remark 4.5.7 observe that∑
x,y∈K

C
(ω)
s2−s1+iα(x,y)V AL

s2
(x)V AL

s1
(y) =

∑
x,y∈K

〈
ex,C

(ω)
s2−s1+iαey

〉
V AL
s2

(x)V AL
s1

(y) .

(4.129)
In particular, via (4.125) we arrive at the upper bound

1

Ld

∑
x,y∈K

∣∣∣C(ω)
s2−s1+iα(x,y)V AL

s2
(x)V AL

s1
(y)
∣∣∣

≤ 2d‖V A‖2
∞max

t∈R
|supp(A(t, .))|+O(1) (4.130)



116 CHAPTER 4. AC–CONDUCTIVITY MEASURE

for any A ∈ C∞0 , L, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , α ∈ [0, β], and s1, s2 ∈ R, where

‖V A‖∞ := max {|EAL
(t, x)| : (t, x) ∈ supp(A)} ∈ R+ . (4.131)

Therefore, the assertion follows from (4.127) combined with (4.130).

Because of (4.128) and Lemma 4.3.5, it is natural to define, at any ε, β ∈ R+,
t ∈ R, υ ∈ (0, β/2) and α ∈ [υ, β − υ], the map B

(ω)
t+iα,υ,ε ≡ B

(β,ω,λ)
t+iα,υ,ε from L4 to

C by

B
(ω)
t+iα,υ,ε(x,y) (4.132)

:=
1

4

∑
π,π′∈S2

επεπ′B
(ω)
t+iα,υ,ε(y

π′(1), xπ(1))B
(ω)
−t+i(β−α),υ,ε(x

π(2), yπ
′(2))

for any x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2. In other words, this
map is defined by replacing in (4.119) the complex-time two-point correlation
functions C(ω)

t+iα by their approximations B(ω)
t+iα,υ,ε coming from the decomposition

(4.128).
Similarly, we define the function Y

(ω)
L,υ,ε,0 ≡ Y

(β,ω,λ,A)
L,υ,ε,0 of times s1, s2 ∈ R by

Y
(ω)
L,υ,ε,0(s1, s2) :=

1

Ld

∑
x,y∈K

∫ β−υ

υ

B
(ω)
s2−s1+iα,υ,ε(x,y)V AL

s2
(x)V AL

s1
(y)dα .

(4.133)
We show in the next lemma that it is a good approximation of (4.127), provided
υ 6= 0.

Lemma 4.5.9 (Approximation II).
Let ε ∈ R+ and A ∈ C∞0 . Then,

X
(ω)
L,υ (s1, s2) = Y

(ω)
L,υ,ε,0(s1, s2) +O(ε) ,

uniformly for L, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , υ ∈ (0, β/2) and s1, s2 ∈ R.

Proof. Let ε, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞0 . By Lemma 4.3.5 (i),

note that A(ω)
t+iα,υ,ε, B

(ω)
t+iα,υ,ε can be seen as the kernels (w.r.t. the canonical basis

{ex}x∈L) of two bounded operators on `2(L). In particular, similar to (4.129),

A
(ω)
t+iα,υ,ε(y, x) =

〈
ey, A

(ω)
t+iα,υ,εex

〉
, B

(ω)
t+iα,υ,ε(y, x) =

〈
ey, B

(ω)
t+iα,υ,εex

〉
,
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where ex(y) ≡ δx,y ∈ `2(L). Therefore, Lemma 4.3.5 (i) and the Cauchy-Schwarz
inequality yield the existence of a finite constant D ∈ R+ independent of α ∈
[υ, β − υ], t ∈ R, ω ∈ Ω and ε ∈ R+ such that, for all cx, c′y ∈ C, y ∈ L,∣∣∣∣∣∑

x,y∈L

cxc
′
yA

(ω)
t+iα,υ,ε(y, x)

∣∣∣∣∣ ≤ ∥∥∥A(ω)
t+iα,υ,ε

∥∥∥
op

√∑
x,y∈L

|cx|2
∣∣c′y∣∣2

≤ ε

√∑
x,y∈L

|cx|2
∣∣c′y∣∣2,∣∣∣∣∣∑

x,y∈L

cxc
′
yB

(ω)
t+iα,υ,ε(y, x)

∣∣∣∣∣ ≤ ∥∥∥B(ω)
t+iα,υ,ε

∥∥∥
op

√∑
x,y∈L

|cx|2
∣∣c′y∣∣2

≤ D

√∑
x,y∈L

|cx|2
∣∣c′y∣∣2.

It obviously follows that, for all cx ∈ C, x ∈ K, and some D ∈ R+∣∣∣∣∣ ∑
x,y∈K

cxcyB
(ω)
t+iα,υ,ε(y

(1), x(2))A
(ω)
−t+i(β−α),υ,ε(x

(1), y(2))

∣∣∣∣∣ ≤ εD
∑
x∈K

|cx|2 ,∣∣∣∣∣ ∑
x,y∈K

cxcyA
(ω)
t+iα,υ,ε(y

(1), x(2))B
(ω)
−t+i(β−α),υ,ε(x

(1), y(2))

∣∣∣∣∣ ≤ εD
∑
x∈K

|cx|2 ,∣∣∣∣∣ ∑
x,y∈K

cxcyA
(ω)
t+iα,υ,ε(y

(1), x(2))A
(ω)
−t+i(β−α),υ,ε(x

(1), y(2))

∣∣∣∣∣ ≤ ε2D
∑
x∈K

|cx|2 ,

provided α ∈ [υ, β−υ] with υ ∈ (0, β/2). Here, x = (x(1), x(2)), y = (y(1), y(2)).
Similar to (4.130), we then use this three above bounds to get the existence of a
finite constant D ∈ R+ not depending on α ∈ [υ, β − υ], s1, s2 ∈ R, ω ∈ Ω,
ε ∈ (0, 1) and L ∈ N such that∣∣∣X(ω)

L,υ (s1, s2)−Y
(ω)
L,υ,ε,0(s1, s2)

∣∣∣ ≤ εD .

The (approximating) correlation functions B(ω)
t+iα,υ,ε in (4.132) decay fast, as

|yπ′(1) − xπ(2)| → ∞ or |xπ(1) − yπ
′(2)| → ∞, see Lemma 4.3.5(ii). This de-

cay is uniform for t on compact intervals. We can divide the (compact) support



118 CHAPTER 4. AC–CONDUCTIVITY MEASURE

supp(A(t, .)) ⊂ Rd of the vector potential A ∈ C∞0 in small regions to use
later a piecewise-constant approximation of the smooth electric field EA (4.15) in
(4.133). Then, because of the space decay of B(ω)

t+iα,υ,ε, the contributions to the
total heat production coming from each region of constant electric field behave
additive, at large L.

To do this, let us assume w.l.o.g. that, for all t ∈ R,

supp(A(t, .)) ⊂ [−1/2, 1/2]d .

For n ∈ N, we divide the elementary box [−1/2, 1/2]d in nd boxes {bj}j∈Dn of
side-length 1/n, where

Dn := {− (n− 1) /2,− (n− 3) /2, · · · , (n− 3) /2, (n− 1) /2}d . (4.134)

Explicitly, for any j ∈ Dn,

bj := jn−1 + n−1[−1/2, 1/2]d and [−1/2, 1/2]d =
⋃
j∈Dn

bj . (4.135)

Then, for all ε, L, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , υ ∈ (0, β/2), we extend the definition

of Y
(ω)
L,υ,ε,0 to all n ∈ N as

Y
(ω)
L,υ,ε,n(s1, s2) (4.136)

:=
1

Ld

∑
j∈Dn

∑
x,y∈K∩(Lbj)2

∫ β−υ

υ

B
(ω)
s2−s1+iα,υ,ε(x,y)V AL

s2
(x)V AL

s1
(y)dα

for all s1, s2 ∈ R. In fact, the acumulation points of Y
(ω)
L,υ,ε,T,n, as L→∞, do not

depend on n:

Lemma 4.5.10 (Approximation III).
Let n ∈ N, ε, L, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , υ ∈ (0, β/2) and A ∈ C∞0 . Then, for
all s1, s2 ∈ R,

lim
L→∞

∣∣∣Y(ω)
L,υ,ε,0 (s1, s2)−Y

(ω)
L,υ,ε,n (s1, s2)

∣∣∣ = 0 .

Proof. We observe from (4.133), (4.135) and (4.136) that

Y
(ω)
L,υ,ε,0(s1, s2)−Y

(ω)
L,υ,ε,n(s1, s2)

=
1

Ld

∑
j,k∈Dn,j 6=k

∑
x∈K∩(Lbj)2

∑
y∈K∩(Lbk)2∫ β−υ

υ

B
(ω)
s2−s1+iα,υ,ε(x,y)V AL

s2
(x)V AL

s1
(y)dα . (4.137)
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Meanwhile, for any j, k ∈ Dn, j 6= k, every

x := (x(1), x(2)) ∈ K ∩ (Lbj)
2 , y := (y(1), y(2)) ∈ K ∩ (Lbk)

2 ,

(cf. (4.101)) and all sufficiently large L ∈ R+, one clearly has the lower bound

min
π,π′∈S2

∣∣∣xπ(1) − yπ′(2)
∣∣∣ ≥ ∣∣ ∣∣x(1) − y(1)

∣∣− 2
∣∣ .

Therefore, we use the last estimate together with (4.131) and Lemma 4.3.5 (ii)
to obtain from (4.132) and (4.137) that, for any fixed T ∈ R+ and all s1, s2 ∈
[−T, T ],∣∣∣Y(ω)

L,υ,ε,0 (s1, s2)−Y
(ω)
L,υ,ε,n(s1, s2)

∣∣∣ (4.138)

≤ D
1

Ld

∑
j,k∈Dn,j 6=k

∑
x∈L∩(Lbj)

∑
y∈L∩(Lbk)

1

(1 + | |x− y| − 2|)2d2+2
,

where D ∈ R+ is a finite constant only depending on d, ε, T , β, λ, υ ∈ (0, β/2)
and A ∈ C∞0 . Note that, for any small δ > 0,

1

Ld

∑
j,k∈Dn,j 6=k

∑
x∈L∩(Lbj)

∑
y∈L∩(Lbk)

1 [|x− y| ≥ δL]

(1 + | |x− y| − 2|)2d2+2
= O

(
1

L2d2−d+2δ2d2+2

)

and

1

Ld

∑
j,k∈Dn,j 6=k

∑
x∈L∩(Lbj)

∑
y∈L∩(Lbk)

1 [|x− y| ≤ δL]

(1 + | |x− y| − 2|)2d2+2
= O

(
δd+1Ld

)
.

Then, for δ = L
− 2d2+2

2d2+d+3 , the last two sums are both of order O(L
− d2−d+2

2d2+d+3 ) with
d2 − d + 2 ≥ 2 for all d ∈ N. Combining this two asymptotics with (4.138) we
arrive at the assertion.

As already mentioned above, we now consider piecewise-constant approxima-
tions of the (smooth) electric field (4.15), that is,

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd . (4.139)
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For any j ∈ Dn, let z(j) ∈ bj be any fixed point of the box bj . Then, define the
function Ȳ

(ω)
L,υ,ε,n ≡ Ȳ

(β,ω,λ,A)
L,υ,ε,n of times s1, s2 ∈ R by

Ȳ
(ω)
L,υ,ε,n(s1, s2) :=

1

Ld

∑
j∈Dn

∑
x,y∈K∩(Lbj)2

∫ β−υ

υ

dαB
(ω)
s2−s1+iα,υ,ε(x,y)

×
[
EA(s2, z

(j))
]

(x(1) − x(2))
[
EA(s1, z

(j))
]

(y(1) − y(2)) .

(4.140)

Recall that in this definition x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2, see
(4.101). This new function aproximates (4.136) arbitrarily well, as L → ∞ and
n→∞:

Lemma 4.5.11 (Approximation IV).
Let n ∈ N, ε, L, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , υ ∈ (0, β/2) and A ∈ C∞0 . Then, for
all s1, s2 ∈ R,

lim
n→∞

{
lim sup
L→∞

∣∣∣Y(ω)
L,υ,ε,n (s1, s2)− Ȳ

(ω)
L,υ,ε,n (s1, s2)

∣∣∣} = 0 .

Proof. By taking an orthonormal basis {ek}dk=1 of the lattice L, we directly infer
from (4.77), (4.100) and (4.139) that, for any L ∈ R+, A ∈ C∞0 , j ∈ Dn, t ∈ R,
k ∈ {1, · · · , d} and x ∈ Lbj ,∣∣V AL

t (x, x± ek)−
[
EA(t, z(j))

]
(±ek)

∣∣
≤
∫ 1

0

∣∣[∂tA(t, z(j))
]

(ek)− [∂tAl(t, x± (1− α)ek)] (ek)
∣∣ dα

≤ sup
y∈b̃j,l

∣∣[∂tA(t, z(j))
]

(ek)− [∂tA(t, y)] (ek)
∣∣ <∞ ,

where

b̃j,L :=

{
x ∈ Rd : min

y∈bj
|x− y| ≤ L−1

}
.

In particular, since A ∈ C∞0 , there is a finite constant D independent of j ∈ Dn,
t ∈ R, k ∈ {1, · · · , d} and x ∈ bj such that∣∣V AL

t (x, x± ek)−
[
EA(t, z(j))

]
(±ek)

∣∣ ≤ D(n−1 + L−1) .



4.5. AC-JOULE’S LAW AND AC-CONDUCTIVITY 121

Therefore, using (4.131) and Lemma 4.3.5(ii) as in (4.138), one gets that, for any
fixed T ∈ R+ and all s1, s2 ∈ [−T, T ],∣∣∣Y(ω)

L,υ,ε,n (s1, s2) −Ȳ
(ω)
L,υ,ε,n (s1, s2)

∣∣∣ (4.141)

≤ D(n−1 + L−1)2 1

Ld

∑
j∈Dn

∑
x,y∈L∩(Lbj)

1

(1 + | |x− y| − 2|)2d2+2
,

where D ∈ R+ is a finite constant depending on d, ε, T , β, λ, υ ∈ (0, β/2) and
A ∈ C∞0 . For all j ∈ Dn, note that

1

Ld

∑
x,y∈L∩(Lbj)

1

(1 + | |x− y| − 2|)2d2+2
≤ 1

nd

∑
x∈L

1

(1 + | |x| − 2|)2d2+2
≤ D

nd

for some finite constant D ∈ R+. Therefore, we arrive at the assertion by com-
bining this last bound with (4.141).

By taking again some orthonormal basis {ek}dk=1 of the lattice L and setting
e−k := −ek for each k ∈ {1, · · · , d}, we rewrite the function (4.140) as

Ȳ
(ω)
L,υ,ε,n(s1, s2) :=

1

nd

∑
j∈Dn

∑
k,q∈{1,−1,··· ,d,−d}

Z
(ω)
L,j,k,q(s2 − s1)

×
[
EA(s2, z

(j))
]

(ek)
[
EA(s1, z

(j))
]

(eq) (4.142)

for any s1, s2 ∈ R, where, for all n ∈ N, ε, L, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 ,

υ ∈ (0, β/2), j ∈ Dn, k, q ∈ {1,−1, · · · , d,−d} and t ∈ R,

Z
(ω)
L,j,k,q(t) ≡ Z

(β,ω,λ)
L,υ,ε,n,j,k,q :=

nd

Ld

∑
x,y∈L∩(Lbj)

∫ β−υ

υ

B
(ω)
t+iα,υ,ε(y, y−eq, x, x−ek)dα .

Notice that we have neglected terms related to x, y on the boundary of L ∩ (Lbj),
since these are irrelevant in the limit L→∞. Here, for any x := (x(1), x(2)) ∈ L2

and y := (y(1), y(2)) ∈ L2,

B
(ω)
s2−s1+iα,υ,ε(x,y) ≡ B

(ω)
s2−s1+iα,υ,ε(x

(1), x(2), y(1), y(2)) , (4.143)

see (4.132). Hence, it remains to analyze the limit of Z
(ω)
L,j,k,q, as L→∞.
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Lemma 4.5.12.
Let ε, L, β ∈ R+, λ ∈ R+

0 , t ∈ R and υ ∈ (0, β/2). Then, there is a measurable
subset Ω̃υ,ε(t) ≡ Ω̃

(β,λ)
υ,ε (t) ⊂ Ω of full measure such that, for any n ∈ N, j ∈ Dn,

k, q ∈ {1,−1, · · · , d,−d} and any ω ∈ Ω̃υ,ε(t),

lim
L→∞

Z
(ω)
L,j,k,q(t) =

∑
x∈L

E
(∫ β−υ

υ

B
(ω)
t+iα,υ,ε(x, x− eq, 0,−ek)dα

)
<∞ .

Here, E is the expectation value associated with the probability measure aΩ (4.7).

Proof. Fix first in all the proof the parameters n ∈ N, ε, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 ,

t ∈ R, υ ∈ (0, β/2), j ∈ Dn and k, q ∈ {1,−1, · · · , d,−d}. To avoid trivial
technical complications in this proof we will, moreover, assume w.l.o.g. that n is
a odd natural number. For any x ∈ L, let

Fω ({x}) :=
∑
y∈L

∫ β−υ

υ

B
(ω)
t+iα,υ,ε(y, y − eq, x, x− ek)dα <∞ .

This sum is finite because of (4.132) and Lemma 4.3.5 (ii). We now define an
additive process {Fω (Λ)}Λ∈Pf (L) (cf. [20, Definition VI.1.6]) by

Fω (Λ) :=
∑
x∈Λ

Fω ({x})

for any finite subset Λ ∈ Pf (L) with cardinality |Λ| < ∞. Indeed, it is not
difficult to show that the map ω 7→ Fω (Λ) is bounded and measurable w.r.t. the
σ-algebra AΩ for all Λ ∈ Pf (L). Obviously, for all Λ ∈ Pf (L),

|Λ|−1 E (Fω (Λ)) = E (Fω ({0})) , (4.144)

because the probability measure aΩ (4.7) is translation invariant. Then, for any
regular sequence {Λ(L)}L∈N ⊂ Pf (L) (cf. [20, Remark VI.1.8]), the Ackoglu-
Krengel (superadditive) ergodic theorem [20, Theorem VI.1.7, Remark VI.1.8]
tells us that, almost surely, the limit

lim
L→∞

{∣∣Λ(L)
∣∣−1

Fω
(
Λ(L)

)}
exists and, by (4.144), is equal to

lim
L→∞

{∣∣Λ(L)
∣∣−1

Fω
(
Λ(L)

)}
= E (Fω ({0})) . (4.145)
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Observe however that {L ∩ (Lbj)}L∈N is not a non-decreasing sequence, and is
thus a non-regular sequence, if j 6= (0, . . . , 0). To overcome this difficulty, we
take first the regular sequences {Λ(L,j)}L∈N and {Λ̃(L,j)}L∈N defined, for any L ∈
N and j ∈ Dn\{(0, . . . , 0)}, by

Λ(L,j) :=
{

(x1, . . . , xd) ∈ L : ∀k ∈ {1, . . . , d}, |xk| ≤ L(|jk|+ 1/2)n−1 + 1
}

and Λ̃(L,j) := Λ(L,j)\{L ∩ (Lbj)}. Notice that {Λ(L,j)}L∈N and {Λ̃(L,j)}L∈N are
regular sequences for all j ∈ Dn\{(0, . . . , 0)} because we assumed that n is odd.
Note indeed that {L ∩ (Lbj)} ⊂ Λ(L,j) and hence, for any j ∈ Dn,∑

x∈L∩(Lbj)

Fω ({x}) =
∑

x∈Λ(L,j)

Fω ({x})−
∑

x∈Λ̃(L,j)

Fω ({x}) ,

see (4.134) and (4.135). Therefore, we apply (4.145) twice to the regular se-
quences {Λ(L,j)}L∈N and {Λ̃(L,j)}L∈N, respectively, to get that

lim
L→∞

nd

Ld

∑
x∈L∩(Lbj)

∑
y∈L

∫ β−υ

υ

B
(ω)
t+iα,υ,ε(y, y − eq, x, x− ek)dα

 = E (Fω ({0}))

(4.146)
for any j ∈ Dn. Note that we have used here that the intersection of two sets of
full measure has of course full measure. In the way one proves Lemma 4.5.10, we
obtain

lim
L→∞

nd

Ld

∑
x∈L∩(Lbj)

∑
y∈L\{L∩(Lbj)}

∫ β−υ

υ

B
(ω)
t+iα,υ,ε(y, y − eq, x, x− ek)dα

 = 0 .

Using this with (4.146) and observing that

E (Fω ({0})) =
∑
x∈L

E
(∫ β−υ

υ

B
(ω)
t+iα,υ,ε(x, x− eq, 0, 0− ek)dα

)
,

we arrive at the assertion for any realization ω within a measurable set

Ω̂υ,ε,n,j,k,q(t) ≡ Ω̂
(β,λ)
υ,ε,n,j,k,q(t) ⊂ Ω

of full measure that still depends on n ∈ N, j ∈ Dn, and k, q ∈ {1,−1, · · · , d,−d}.
To remove this dependency and obtain the lemma, define

Ω̃υ,ε(t) :=
⋂
n∈N

⋂
j∈Dn

⋂
k,q∈{1,−1,··· ,d,−d}

Ω̂υ,ε,n,j,k,q(t)
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and observe that any countable intersection of measurable sets of full measure has
full measure.

For all ε, β ∈ R+, λ ∈ R+
0 , υ ∈ (0, β/2) and k, q ∈ {1,−1, · · · , d,−d},

define the functions

Γ̃υ,ε,k,q(t) ≡ Γ̃
(β,λ)
υ,ε,k,q(t) =

∑
x∈L

E
(∫ β−υ

υ

B
(ω)
t+iα,υ,ε(x, x− eq, 0,−ek)dα

)
(4.147)

for any t ∈ R, and

Y∞,υ,ε(s1, s2) :=
∑

k,q∈{1,−1,··· ,d,−d}

Γ̃υ,ε,k,q(s1 − s2)

×
∫
Rd

[EA(s2, x)] (ek) [EA(s1, x)] (eq)d
dx (4.148)

for any s1, s2 ∈ R. We show next that the function Y
(ω)
L,υ,ε,0 defined by (4.133)

almost surely converges to the deterministic function Y∞,υ,ε, as L→∞:

Lemma 4.5.13.
Let ε, β ∈ R+, λ ∈ R+

0 , υ ∈ (0, β/2) and s1, s2 ∈ R. Then, there is a measurable
subset Ω̃υ,ε (s1, s2) ≡ Ω̃

(β,λ)
υ,ε (s1, s2) ⊂ Ω of full measure such that, for any A ∈

C∞0 and ω ∈ Ω̃υ,ε(t),

lim
L→∞

Y
(ω)
L,υ,ε,0 (s1, s2) = Y∞,υ,ε(s1, s2) .

Proof. Let ε, β ∈ R+, λ ∈ R+
0 , υ ∈ (0, β/2), A ∈ C∞0 and s1, s2 ∈ R. Us-

ing Lemmata 4.5.10-4.5.12 and (4.142), we obtain the existence of a measur-
able subset Ω̃υ,ε (s1, s2) ≡ Ω̃

(β,λ)
υ,ε (s1, s2) ⊂ Ω of full measure such that, for any

ω ∈ Ω̃υ,ε (s1, s2),

lim
L→∞

Y
(ω)
L,υ,ε,0 (s1, s2) =

∑
k,q∈{1,−1,··· ,d,−d}

Γ̃υ,ε,k,q(s2 − s1)

× lim
n→∞

{
1

nd

∑
j∈Dn

[
EA(s2, z

(j))
]

(ek)
[
EA(s1, z

(j))
]

(eq)

}
.

The latter implies the assertion because the term within the limit n → ∞ is a
Riemann sum and EA ∈ C∞0 for any A ∈ C∞0 , see (4.139).
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This last limit depends on the two arbitrary parameters ε ∈ R+ and υ ∈
(0, β/2), where β ∈ R+. Therefore, the next step is to remove this dependency,
by considering the limits ε→ 0+ and υ → 0+.

As a preliminary, we first observe that the functions Γ̃υ,ε,k,q (4.147) are ap-
proximations of the function Γk,q ≡ Γ

(β,λ)
k,q defined, for any β ∈ R+, λ ∈ R+

0 ,
k, q ∈ {1,−1, · · · , d,−d} and t ∈ R, by

Γk,q(t) := lim
n→∞

1

|Λn|
∑
x,y∈Λn

E
(∫ β

0

C
(ω)
t+iα(x, x− eq, y, y − ek)dα

)
. (4.149)

Observe that, for all x, y ∈ L, k, q ∈ {1,−1, · · · , d,−d} and t ∈ R, the map

ω 7→
∫ β

0

C
(ω)
t+iα(x, x− eq, y, y − ek)dα

is bounded and measurable w.r.t. the σ-algebra AΩ. Here, we use the convention
for the arguments of C(ω)

t+iα as described in (4.143) for B(ω)
t+iα,υ,ε. Recall also that E

is the expectation value associated with aΩ. This function is well-defined and it is
the limit of Γ̃υ,ε,k,q, as ε→ 0+ and υ → 0+:

Lemma 4.5.14.
Let ε, β ∈ R+, λ ∈ R+

0 , t ∈ R and k, q ∈ {1,−1, · · · , d,−d}. Then Γk,q(t) exists
and equals

Γk,q(t) = Γ̃υ,ε,k,q(t) +O(υ) +O(ε) .

Proof. Let ε, β ∈ R+, λ ∈ R+
0 , υ ∈ (0, β/2), t ∈ R and k, q ∈ {1,−1, · · · , d,−d}.

Then using similar arguments to the proof of Lemma 4.5.9, one shows that

lim sup
n→∞

1

|Λn|
∑
x,y∈Λn

E
(∫ β−υ

υ

∣∣∣B(ω)
t+iα,υ,ε(x, x− eq, y, y − ek)

−C(ω)
t+iα(x, x− eq, y, y − ek)

∣∣∣ dα) = O(ε)

uniformly for any υ ∈ (0, β/2). Moreover, by Lemma 4.3.5 (ii) and the translation
invariance of aΩ observe that

lim
n→∞

{
1

|Λn|
∑
x,y∈Λn

E
(∫ β−υ

υ

B
(ω)
t+iα,υ,ε(x, x− eq, y, y − ek)dα

)

−
∑
x∈L

E
(∫ β−υ

υ

B
(ω)
t+iα,υ,ε(x, x− eq, 0, 0− ek)dα

)}
= 0 (4.150)
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for t ∈ R and υ ∈ (0, β/2). Then one uses the same arguments as in Lemma 4.5.8
to obtain the assertion, see (4.147) and (4.149).

We can now consider the limit of the integrand X
(ω)
L,0 in (4.126), as L → ∞,

see also (4.127). In fact, we show in the theorem below that X
(ω)
L,0 converges

almost surely to the deterministic function X∞ ≡ X
(β,λ)
∞ defined, for any β ∈ R+,

λ ∈ R+
0 and s1, s2 ∈ R, by

X∞(s1, s2) :=
∑

k,q∈{1,−1,··· ,d,−d}

Γk,q(s2 − s1)

×
∫
Rd

[EA(s2, x)] (ek) [EA(s1, x)] (eq)d
dx . (4.151)

Lemma 4.5.15.
Let β ∈ R+, λ ∈ R+

0 and s1, s2 ∈ R. Then there is a measurable subset
Ω̃ (s1, s2) ≡ Ω̃(β,λ) (s1, s2) ⊂ Ω of full measure such that, for any A ∈ C∞0
and ω ∈ Ω̃ (s1, s2),

lim
L→∞

X
(ω)
L,0 (s1, s2) = X∞(s1, s2) .

Proof. Fix the parameters β ∈ R+, λ ∈ R+
0 and s1, s2 ∈ R. Define also the

sequences {υn}n∈N and {εm}m∈N by υn := n−1 and εm := m−1 for n,m ∈
N. Then, by Lemma 4.5.13, for any n,m ∈ N, there is a measurable subset
Ω̂n,m (s1, s2) ≡ Ω̂

(β,λ)
n,m (s1, s2) ⊂ Ω of full measure such that, for any A ∈ C∞0

and ω ∈ Ω̂n,m (s1, s2),

lim
L→∞

Y
(ω)
L,υn,εm,0

(s1, s2) = Y∞,υn,εm(s1, s2) . (4.152)

Thus, we define the subset

Ω̃ (s1, s2) :=
⋂

n,m∈N

Ω̂n,m (s1, s2) . (4.153)

It has full measure, since it is a countable intersection of measurable sets of full
measure. Now, we always assume ω ∈ Ω̃ (s1, s2) ⊂ Ω.

Fix any strictly positive parameter ε ∈ R+. Then, by Lemmata 4.5.8, 4.5.9
and 4.5.14, there is Nε ∈ N such that, for all n,m > Nε and any L, β ∈ R+,
ω ∈ Ω̃ (s1, s2) and λ ∈ R+

0 ,∣∣∣X(ω)
L,0 (s1, s2)−X∞(s1, s2)

∣∣∣ ≤ ε

2
+
∣∣∣Y(ω)

L,υn,εm,0
(s1, s2)−Y∞,υn,εm(s1, s2)

∣∣∣ .
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Therefore we prove this theorem by combining the bound above with (4.152)-
(4.153) for any realization ω ∈ Ω̃ (s1, s2).

In order to obtain the energy increment I(β,ω,λ,ηAL)
t given by (4.126) in the

limit (η, L−1) → (0, 0), we use below Lebesgue’s dominated convergence theo-
rem and it is crucial to remove the dependence of the measurable subset Ω̃ (s1, s2)
on s1, s2 ∈ R, see Lemma 4.5.15. In order to achieve this, we first need to
show some uniform boundedness and continuity of the function X

(ω)
L,0 defined by

(4.127):

Lemma 4.5.16.
Let T, β ∈ R+ and λ ∈ R+

0 . The family{
(s1, s2) 7→ X

(ω)
L,0(s1, s2)

}
L∈R+,ω∈Ω

of maps from [−T, T ]× [−T, T ] to C is uniformly bounded and uniformly contin-
uous.

Proof. The uniform boundedness of this collection of maps is an immediate con-
sequence of (4.130)-(4.131), see (4.127). To prove the uniform continuity on
any compact set, it suffices, by Lemmata 4.5.8-4.5.9, to verify that, for any fixed
T, β ∈ R+, λ ∈ R+

0 , ε ∈ R+ and υ ∈ (0, β/2), the family{
(s1, s2) 7→ Y

(ω)
L,υ,ε,0(s1, s2)

}
L∈R+,ω∈Ω

of maps from [−T, T ] to C is uniformly continuous, see (4.133). This property
immediately follows from Lemma 4.3.5 (iii).

Lemma 4.5.15 and Lemma 4.5.16 imply two corollaries: The first one al-
lows us to eliminate the (s1, s2)-dependency of the measurable set Ω̃ (s1, s2) of
Lemma 4.5.15. The second one concerns the continuity of the function Γk,q which
is in fact related to a matrix-valued AC-conductivity as explained after Theorem
4.5.19.

Corollary 4.5.17.
Let β ∈ R+ and λ ∈ R+

0 . Then there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any s1, s2 ∈ R, A ∈ C∞0 and ω ∈ Ω̃,

lim
L→∞

X
(ω)
L,0 (s1, s2) = X∞(s1, s2) . (4.154)
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Proof. First, fix β ∈ R+ and λ ∈ R+
0 . By Lemma 4.5.15, for any s1, s2 ∈ Q, there

is a measurable subset Ω̂ (s1, s2) ⊂ Ω of full measure such that (4.154) holds.
Let Ω̃ be the intersection of all such subsets Ω̂ (s1, s2). Since this intersection
is countable, Ω̃ is measurable and has full measure. By Lemma 4.5.16 and the
density of Q in R, it follows that (4.154) holds true for any s1, s2 ∈ R, A ∈ C∞0
and ω ∈ Ω̃.

Corollary 4.5.18.
For any k, q ∈ {1,−1, · · · , d,−d}, the function Γk,q ≡ Γ

(β,λ)
k,q from R to C defined

by (4.149) is continuous.

Proof. For each k, q ∈ {1,−1, · · · , d,−d} and t ∈ R, choose A ∈ C∞0 such that,
a fixed neighborhood of t, the map s 7→ EA(s, x) is constant for any x ∈ Rd and∫

Rd
[EA(t, x)] (ek) [EA(0, x)] (eq)d

dx 6= 0 .

Then we combine the uniform continuity of the family{
s 7→ X

(ω)
L,0(s, 0)

}
L∈R+,ω∈Ω

of maps from R to C given by Lemma 4.5.16 with Corollary 4.5.17 to show that
the function Γk,q is continuous at t ∈ R for each k, q ∈ {1,−1, · · · , d,−d}.

Because of Lemma 4.5.16 and Corollary 4.5.17, we can now use Lebesgue’s
dominated convergence theorem to get the energy increment I(β,ω,λ,ηAL)

t in the
limit (η, L−1)→ (0, 0):

Theorem 4.5.19 (Matrix-valued AC-conductivity).
Let β ∈ R+ and λ ∈ R+

0 . Then there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any t ≥ t1, A ∈ C∞0 and ω ∈ Ω̃,

lim
(η,L−1)→(0,0)

{(
η2Ld

)−1
I

(β,ω,λ,ηAL)
t

}
=

∫ t

t0

∫ s1

t0

X∞(s1, s2)ds2 ds1 ∈ R+
0 .

Proof. Recall (4.126), that is, for any t ≥ t1,(
η2Ld

)−1
I

(β,ω,λ,ηAL)
t =

∫ t

t0

∫ s1

t0

X
(ω)
L,0(s1, s2)ds2 ds1 +O(η) .

The assertion then follows from Lemma 4.5.16 and Corollary 4.5.17 together with
Lebesgue’s dominated convergence theorem. Note that I(β,ω,λ,ηAL)

t ∈ R+
0 for all

L ∈ R+ and sufficiently small η ∈ R+ because of Corollary 4.4.5.
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Notice at this point that the theorem above together with Equation (4.151)
means that the continuous functions Γk,q define the entries of a matrix-valued AC-
conductivity. Below we obtain a scalar AC-conductivity under the assumption
that the probability measure aΩ is invariant by permutations of the axis, by trans-
lations and by reflections.

Indeed, let σ ≡ σ(β,λ) be the deterministic function defined by

σ(t) := 4 (Γ1,1(t)− Γ1,1(0)) ∈ R , t ∈ R , (4.155)

and named here the macroscopic energy production coefficient. Observe that, by
Corollary 4.5.18 and (4.155), for any β ∈ R+ and λ ∈ R+

0 , σ(β,λ) is a continuous
map from R to R satisfying σ (0) = 0. In fact, it is the function appearing in
Theorem 4.5.1:

Lemma 4.5.20 (Scalar AC-conductivity).
For any β ∈ R+, λ ∈ R+

0 and A ∈ C∞0 , the (deterministic) function X∞ defined
by (4.151) equals

X∞(s1, s2) = σ(s2 − s1)

∫
Rd
〈EA(s2, x), EA(s1, x)〉 ddx , s1, s2 ∈ R .

Proof. By (4.7), the probability measure aΩ is invariant by permutations of the
axis and by reflections. Consequently, the functions {Γk,q}k,q∈{1,−1,··· ,d,−d} defined
by (4.149) satisfy:

Γk,q(t) = Γq,k(t) , Γk,k(t) = Γq,q(t) Γk,k(t) = Γ−k,−k(t) , Γk,−k(t) = Γq,−q(t) ,
(4.156)

for any k, q ∈ {1,−1, · · · , d,−d} and all t ∈ R. Straightforward computations
using the invariance of aΩ under translations, reflections and permutations of axes
show that the function Γk,q(t) vanishes for all k, q ∈ {1,−1, · · · , d,−d} with
k /∈ {q,−q} and that

Γk,k(t) = −Γk,−k(t) . (4.157)

Therefore, we deduce from (4.155) that

σ(t) = 4 [Γ1,1(t)− Γ1,1(0)] (4.158)

for any t ∈ R+
0 , β ∈ R+ and λ ∈ R+

0 . Using this together with (4.14), (4.151) and
(4.156), we arrive at the assertion.
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Note, that there is an intuitive connection between the (macroscopic) AC-
conductivity σ and the microscopic AC-conductivity introduced in Section 4.5.2,
which we prove in the following. Therefore, let the averaged microscopic AC-
conductivity σ̄(ω)

l in the box Λl be defined by

σ̄
(ω)
l (t) =

4

|Λl|
∑
x,y∈Λl

σ
(ω)
(x,x+e1),(y,y+e1)(t) ∈ R , t ∈ R , (4.159)

for any l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . We show that, at large l, σ̄(ω)

l is the energy
production coefficient at macroscopic space scales. Indeed, the pointwise limit
l →∞ of σ̄(ω)

l exists almost surely and it is the deterministic function σ ≡ σ(β,λ)

defined in (4.155):

Theorem 4.5.21 (Macroscopic AC-conductivity).
Let β ∈ R+ and λ ∈ R+

0 . Then there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any t ∈ R and ω ∈ Ω̃,

lim
l→∞

σ̄
(ω)
l (t) = σ(t) ∈ R . (4.160)

Proof. For any β ∈ R+ ∈ R+, ω ∈ Ω, λ ∈ R+
0 and x,y ∈

fL2, recall that

σ(ω)
x,y(t) =

∫ β

0

(
C

(ω)
t+iα(x,y)− C

(ω)
iα (x,y)

)
dα ∈ R , t ∈ R ,

see Lemma 4.5.6. Therefore, by (4.159) the pointwise limit of σ̄(ω)
l as l → ∞

follows from Corollary 4.5.17 by taking (smooth approximations of) an electric
field EA(t, ·) which is constant in space, supported on the unit box [−1/2, 1/2]d,
and such that [EA(0, 0)] (ek) = 0 for k ∈ {2, . . . , d} as well as

[EA(0, 0)] (e1) [EA(t, 0)] (e1) = 1 .

Combined with Corollary 4.5.4, Theorem 4.5.21 immediately yields the time-
reversal symmetry of the AC-conductivity σ:

Corollary 4.5.22 (Time-reversal symmetry of σ).
For any β ∈ R+, λ ∈ R+

0 and t ∈ R, σ(t) = σ(|t|).

Thus, Theorem 4.5.1 is a consequence of Corollary 4.5.18, Theorem 4.5.19,
Lemma 4.5.20 and Corollary 4.5.22.
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4.6 The AC-conductivity measure
In this section we introduce the notion of an AC-conductivity measure and show
its existence in the model presented here as well as important properties, as the
asymptotics for small and large randomness λ and its strict positivity in the case
of moderate randomness.

In order to illustrate the physical meaning of our results on the AC-conductivity
measure presented below, we first discuss some heuristics: Recall that computa-
tions using Drude’s model predict that the AC-conductivity σDrude(t) behaves like

D exp(−T−1t) , t ∈ R+
0 ,

where T > 0 is related to the mean time interval between two collisions of a
charged carrier with defects in the crystal, whereas D ∈ R+ is some positive
constant. In particular, for any electromagnetic potential A ∈ C∞0 , the heat pro-
duction is in this case equal to

D

∫
Rd

[∫ t

t0

∫ s1

t0

exp
(
−T−1 (s1 − s2)

)
〈EA(s1, x), EA(s2, x)〉ds2ds1

]
ddx

(4.161)
for any t ≥ t0. Then, since s 7→ EA(s, x) is smooth and compactly supported for
all x ∈ Rd, we deduce from (4.161) at sufficiently large t ∈ R that∫ t

t0

∫ s1

t0

[
σDrude(s1 − s2)

∫
Rd
〈EA(s1, x), EA(s2, x)〉 ddx

]
ds2ds1

=
1

2

∫
Rd

[∫
R
〈ÊA(ν, x), ÊA(ν, x)〉ϑT (ν) dν

]
ddx ,

where ν 7→ ÊA(ν, x) and

ν 7→ ϑT (ν) :=
D
√

2T

π (1 + T2ν2)

are the Fourier transforms of the maps

s 7→ EA(s, x) and s 7→ exp
(
−T−1 |s|

)
,

respectively, at any fixed x ∈ Rd. Thus, the restriction of the (positive) measure
ϑT(ν)dν on R\{0} can be interpreted as the (real part of the) “AC-conductivity
measure” of Drude’s model. In the limit of the perfect insulator (T → 0) and
perfect conductor (T → ∞) the AC-conductivity measure of Drude’s model, as
defined above, converges in the weak∗-topology to the trivial measure (0 · dν) on
R\{0}. The same phenomenology is found in our many-body quantum system.
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4.6.1 Derivation of the AC-conductivity measure
In order to derive the AC-conductivity measure, we observe that Theorem 4.5.21
can be combined with Lemma 4.5.5 to prove that the production coefficient σ is -
up to a constant - a function of positive type (see, e.g., [33, Section IX.2]):

Theorem 4.6.1.
For any β ∈ R+ and λ ∈ R+

0 , there is D ∈ R+
0 such that {σ(ti − tj) +D}i,j is a

positive matrix on Cn for each n ∈ N and all (t1, . . . , tn) ∈ Rn.

Proof. Fix β ∈ R+ and λ ∈ R+
0 . For any ω ∈ Ω and l ∈ R+ define the constant

D
(ω)
l :=

1

|Λl|
(Il, Il)∼ ∈ R+

0

where Il = I∗l ∈ U is the macroscopic current observable in the box Λl defined by

Il :=
∑
x∈Λl

I(x,x+e1) ∈ U (4.162)

Recall also that (·, ·)∼ is the Duhamel two-point function defined in Lemma 4.5.5.
It is a scalar product on the set of self-adjoint elements of U , as discussed after
Lemma 4.5.5. Note additionally that we show within the proof of Lemma 4.5.5
that (4.118) can be extended to all z ∈ R + i[0, β].

Then, using this together with (4.159), (4.12), (4.36) and Lemma 4.5.5, we
obtain that, for any ω ∈ Ω, l ∈ R+, n ∈ N, (t1, . . . , tn) ∈ Rn and all (z1, . . . , zn) ∈
Rn,

n∑
i,j=1

(
σ̄

(ω)
l (ti − tj) +D

(ω)
l

)
zjzi

=
4

|Λl|

(
n∑
j=1

τ
(ω,λ)
tj (Il)zj,

n∑
j=1

τ
(ω,λ)
tj (Il)zj

)
∼

≥ 0 . (4.163)

Note that it suffices to consider n real numbers z1, . . . , zn ∈ Rn instead of complex
ones.

From (4.124) observe now that

D
(ω)
l =

1

|Λl|
∑
x,y∈Λl

∫ β

0

C
(ω)
iα ((x, x+ e1), (y, y + e1))dα

− β

|Λl|
∑
x,y∈Λl

C
(ω)
0 ((x, x+ e1), (y, y + e1)) (4.164)
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for any ω ∈ Ω and l ∈ R+. Thus, in order to compute the limit l → ∞ of
the positive constant D(ω)

l ∈ R+
0 we do exactly the same as in the proof of The-

orem 4.5.17: One uses approximations like in Lemmata 4.5.8-4.5.9 and 4.5.14
with Lemma 4.3.5 and the Ackoglu-Krengel (superadditive) ergodic theorem [20,
Theorem VI.1.7, Remark VI.1.8] to obtain the existence of a measurable subset
Ω̃ ⊂ Ω of full measure such that, for all ω ∈ Ω̃1,

Γ−1,−1(0) = lim
l→∞

1

|Λl|
∑
x,y∈Λl

∫ β

0

C
(ω)
iα ((x, x+ e1), (y, y + e1))dα

(cf. (4.149)), whereas

lim
l→∞

β

|Λl|
∑
x,y∈Λl

C
(ω)
0 ((x, x+ e1), (y, y + e1))

= lim
l→∞

β

|Λl|
∑
x,y∈Λl

E
(
C

(ω)
0 ((x, x+ e1), (y, y + e1))

)
∈ R

for all ω ∈ Ω̃1. As a consequence, by (4.164), there is a measurable subset Ω̃1 ⊂ Ω
of full measure such that, for all ω ∈ Ω̃1,

D∞ := lim
l→∞

D
(ω)
l ∈ R+

0 . (4.165)

By Theorem 4.5.21, there is also a measurable subset Ω̃2 ⊂ Ω of full measure
such that, for all ω ∈ Ω̃2, the functions σ̄(ω)

l : R→ R converge point-wise to σ, as
l → ∞. Then the assertion with D = D∞ follows from (4.163) and (4.165), by
using the non-empty measurable subset Ω̃ := Ω̃1 ∩ Ω̃2.

By using σ (0) = 0 (cf. (4.155)) and Theorem 4.6.1 for n = 2, t1 = t ∈ R and
t2 = 0, one obviously obtains:

Corollary 4.6.2.
For any β ∈ R+and λ ∈ R+

0 , there is D ∈ R+
0 such that σ(t) ∈ [−2D, 0] for all

t ∈ R.

Note that if the constant of Theorem 4.6.1 is zero, i.e., D = 0, then clearly σ = 0.
By Corollary 4.5.18 and (4.155), for any β ∈ R+ and λ ∈ R+

0 , the non-positive
bounded function σ is also continuous. Therefore, we deduce from Theorem 4.6.1
the existence of a non-negative constant D ∈ R+

0 such that (σ + D) : R → R is
a function of positive type. Using Bochner’s theorem [33, Theorem IX.9] and the
condition σ(0) = 0, we thus directly obtain the following corollary:
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Corollary 4.6.3 (AC-conductivity measure).
For any β ∈ R+ and λ ∈ R+

0 , there is a positive measure µσ ≡ µ
(β,λ)
σ that is finite,

i.e., µσ(R) <∞, such that

σ(t) =

∫
R

(
eitν − 1

)
dµσ(ν) , t ∈ R .

Remark 4.6.4.
It is also possible to obtain the AC-conductivity measure already by the fact that
the heat production is positive and A is compactly supported, see [16] for more
details. In this case one uses the Bochner-Schwartz Theorem and obtains the
weaker assertion that the measure is of at most polynomial growth.

4.6.2 Asymptotics of the AC-conductivity

In the present section, we study the asymptotics properties of the AC-conductivity
σ ≡ σ(β,λ) as λ→ 0+ and λ→∞, that are summarized in Theorem 4.6.5 below.
Physically, the case λ = 0 can be interpreted as the perfect conductor and the limit
λ → ∞ corresponds to the perfect insulator. Both cases lead to a vanishing heat
production, as will be proved in the following.

Theorem 4.6.5 (AC-conductivity - Asymptotics).
For any β ∈ R+, σ(β,λ)(t) converges uniformly on compact sets to zero, as λ →
0+. If a0 is absolutely continuous w.r.t. the Lebesgue measure, then the same is
true for λ → ∞. In particular, the AC-conductivity measure µσ(β,λ) converges in
the weak∗-topology to the trivial measure in these two cases.

Proof. The assertion follows from Lemma 4.6.8 and Lemma 4.6.9, that we prove
in the following.

The crucial observation for the proof of Theorem 4.6.5 is that by Lemma
4.5.14 and Equation (4.158), it suffices to obtain the asymptotics of the func-
tions Γ̃υ,ε,1,1 defined for all ε, β ∈ R+, λ ∈ R+

0 and υ ∈ (0, β/2), by (4.147). By
(4.150), this functions equals

Γ̃υ,ε,1,1(t) = lim
l→∞

1

|Λl|
∑
x,y∈Λl

E
(∫ β−υ

υ

B
(ω)
t+iα,υ,ε(x, x− e1, y, y − e1)dα

)
(4.166)
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with B
(ω)
t+iα,υ,ε ≡ B

(β,ω,λ)
t+iα,υ,ε being defined by (4.132), that is,

B
(ω)
t+iα,υ,ε(x,y) :=

1

4

∑
π,π′∈S2

επεπ′B
(ω)
t+iα,υ,ε(y

π′(1), xπ(1))

×B(ω)
−t+i(β−α),υ,ε(x

π(2), yπ
′(2))

for any ω ∈ Ω, x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2.
Note furthermore that B(ω)

t+iα,υ,ε is given by (4.71), that is,

B
(ω)
t+iα,υ,ε (x) =

∫
|ν|<Mβ,υ,ε

F̂ β
α (ν) 〈ex(2) , e−i(t−ν)(∆d+λVω)ex(1)〉dν (4.167)

for all x ∈ L2. Here, Mβ,υ,ε is a constant only depending on β, υ, ε. To analyze
the asymptotics λ→ 0+ and λ→∞ we use the finite sum approximation

ξ
(ω,λ)
ν,t,N := e−i(t−ν)λVω +

N−1∑
n=1

(−i)n
∫ t

ν

dν1 · · ·
∫ νn−1

ν

dνn e−i(t−ν1)λVω∆d

× e−i(ν1−ν2)λVω∆de−i(ν2−ν3)λVω · · · e−i(νn−1−νn)λVω∆de−i(νn−ν)λVω

of the unitary operator e−i(t−ν)(∆d+λVω) for any ω ∈ Ω, λ ∈ R+
0 , N ∈ N and

ν, t ∈ R. Indeed, using Duhamel’s formula one gets that

lim
N→∞

∥∥∥ξ(ω,λ)
ν,t,N − e−i(t−ν)(∆d+λVω)

∥∥∥
op

= 0 (4.168)

uniformly for ω ∈ Ω, λ ∈ R+
0 , ν ∈ [−Mβ,υ,ε,Mβ,υ,ε] and t ∈ [−T, T ], where

T ∈ R+ is arbitrarily but fixed. Hence, we replace e−i(t−ν)(∆d+λVω) by its approx-
imation ξ(ω,λ)

ν,t,N in (4.167) and define

B̃
(ω,λ)
t+iα,υ,ε,N (x) :=

∫
|ν|<Mβ,υ,ε

F̂ β
α (ν) 〈ex(2) , ξ

(ω,λ)
ν,t,N ex(1)〉dν (4.169)

and

B̃
(ω,λ)
t+iα,υ,ε,N(x,y) :=

1

4

∑
π,π′∈S2

επεπ′B̃
(ω)
t+iα,υ,ε,N(yπ

′(1), xπ(1))

× B̃(ω)
−t+i(β−α),υ,ε,N(xπ(2), yπ

′(2))

for any ε, β ∈ R+, λ ∈ R+
0 and x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2.

Indeed, one has:
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Lemma 4.6.6.
Let ε, β ∈ R+, t ∈ R and υ ∈ (0, β/2). Then,

lim
N→∞

1

|Λl|
∑
x,y∈Λl

∫ β−υ

υ

∣∣∣B(ω)
t+iα,υ,ε(x, x− e1, y, y − e1)

−B̃(ω,λ)
t+iα,υ,ε,N(x, x− e1, y, y − e1)

∣∣∣ dα = 0

uniformly for l ∈ R+, ω ∈ Ω and λ ∈ R+
0 .

Proof. The map (α, ν) 7→ F̂ β
α (ν) is absolutely integrable in (α, ν) ∈ [υ, β − υ]×

[−Mβ,υ,ε,Mβ,υ,ε] for any ε, β ∈ R+ and υ ∈ (0, β/2). Therefore, the assertion is
directly proven by using (4.168) to compute the difference between (4.167) and
(4.169).

As a consequence, we only need to study, for any ε, β ∈ R+, υ ∈ (0, β/2),
and l, N ∈ N, the asymptotics of the function

q
(β,ω,λ)
υ,ε,N,l (t) :=

1

|Λl|
∑
x,y∈Λl

E
(∫ β−υ

υ

B̃
(ω,λ)
t+iα,υ,ε,N(x, x− e1, y, y − e1)dα

)
,

as λ→ 0+ and λ→∞.

Lemma 4.6.7.
Let ε, β ∈ R+, λ ∈ R+

0 , t ∈ R, υ ∈ (0, β/2), and N ∈ N. Then,

lim
λ→0

E
(
q

(β,ω,λ)
υ,ε,N,l (t)

)
= E

(
q

(β,ω,0)
υ,ε,N,l(t)

)
uniformly for all l ∈ R+. If the probability measure a0 is additionally absolutely
continuous w.r.t. the Lebesgue measure, then

lim
λ→∞

E
(
q

(β,ω,λ)
υ,ε,N,l (t)

)
= 0

uniformly for all l ∈ R+.
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Proof. The function q
(β,ω,λ)
υ,ε,N,l (t) is a finite sum of terms of the form

(−i)n1+n2

4

∑
x,y∈Λl

∑
π,π′∈S2

επεπ′

∫ β−υ

υ

dα

∫
|ν|<Mβ,υ,ε

dν

∫
|u|<Mβ,υ,ε

du

∫ t

ν

dν1 · · ·
∫ νn1−1

ν

dνn1

∫ −t
u

du1 · · ·
∫ un2−1

u

dun2F̂
β
α (ν) F̂ β

β−α (u)〈
exπ(1)

, e−i(t−ν1)λVω∆de−i(ν1−ν2)λVω · · · e−i(νn1−1−νn1)λVω∆de−i(νn1−ν)λVωeyπ′(1)

〉
×
〈
eyπ′(2)

, e−i(−t−u1)λVω∆de−i(u1−u2)λVω · · · ei(un2−1−un2)λVω∆de−i(un2−u)λVωexπ(2)

〉
for n1, n2 ∈ N0. Here, (x1, x2) := (x, x−e1), (y1, y2) := (y, y−e1). From this and
the translation invariance of the probability measure aΩ, we get that E(q

(β,ω,λ)
υ,ε,N,l (t))

is a finite sum of terms of the form

(−i)n1+n2

4 |Λl|
∑
x∈L

∑
π,π′∈S2

επεπ′

∫ β−υ

υ

dα

∫
|ν|<Mβ,υ,ε

dν

∫
|u|<Mβ,υ,ε

du (4.170)

∫ t

ν

dν1 · · ·
∫ νn1−1

ν

dνn1

∫ −t
u

du1 · · ·
∫ un2−1

u

dun2F̂
β
α (ν) F̂ β

β−α (u) 1[x ∈ Λl]

E
(〈

exπ(1)
, e−i(t−ν1)λVω∆de−i(ν1−ν2)λVω · · ·∆de−i(νn1−ν)λVωeyπ′(1)

〉
×
〈
eyπ′(2)

, e−i(−t−u1)λVω∆de−i(u1−u2)λVω · · ·∆de−i(un2−u)λVωexπ(2)

〉)
,

where (x1, x2) := (x, x− e1), (y1, y2) := (0,−e1). Note that∫ β−υ

υ

dα

∫
|ν|<Mβ,υ,ε

dν

∫
|u|<Mβ,υ,ε

du
∣∣∣F̂ β

α (ν) F̂ β
β−α (u)

∣∣∣ <∞
and the volume of integration in (4.170) of the νa- and ub-integrals, a = 1, . . . , n1,
b = 1, . . . , n2, gives a factor |t−ν|

n1 |t+u|n2

n1!n2!
. By developing the Laplacians ∆d, note

that, whenever t 6= ν, t 6= −u,

1[x ∈ Λl]E
(〈

exπ(1)
, e−i(t−ν1)λVω∆de−i(ν1−ν2)λVω · · ·∆de−i(νn1−ν)λVωeyπ′(1)

〉
×
〈
eyπ′(2)

, e−i(−t−u1)λVω∆de−i(u1−u2)λVω · · ·∆de−i(un2−u)λVωexπ(2)

〉)
is a sum of (2d+ 1)n1+n2 terms of the form (up to constants bounded in absolut
value by (2d)n1+n2)

1[x ∈ Λl]E
(
e±it1λVω(x1) · · · e±itnλVω(xn)

)
(4.171)
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with n ∈ N, n ≤ n1 + n2, and where t1, . . . , tn ∈ R+ and x1, . . . , xn ∈ L with
xj 6= xp for j 6= p. By Lebesgue’s dominated convergence theorem, it suffices to
analyze (4.171) either in the limit λ→∞ or λ→ 0+. By (4.7),

E
(
e±it1λVω(x1) · · · e±itnλVω(xn)

)
= E

(
e±it1λVω(x1)

)
· · ·E

(
e±itnλVω(xn)

)
(4.172)

for any n ∈ N, t1, . . . , tn ∈ R+ and x1, . . . , xn ∈ L with xj 6= xp for j 6= p. Since

lim
λ→0

E
(
e±itλVω(x)

)
= 1

for all x ∈ L and t ∈ R+, we deduce from (4.172) that

lim
λ→0

E
(
e±it1λVω(x1) · · · e±itnλVω(xn)

)
= 1 .

and one gets the first assertion of the lemma by Lebesgue’s dominated conver-
gence theorem.

If the probability measure a0 is in addition absolutely continuous w.r.t. the
Lebesgue measure, then from the Riemann-Lebesgue lemma we have the limit

lim
λ→∞

E
(
e±itλVω(x)

)
= 0

for all x ∈ L and t ∈ R+. From (4.172), we then obtain that

lim
λ→∞

E
(
1[x ∈ Λl]e

±it1λVω(x1) · · · e±itnλVω(xn)
)

= 0

uniformly for all l ∈ R+. Using this and Lebesgue’s dominated convergence
theorem, one thus gets the second assertion.

We are now in position to compute the asymptotics, as λ → 0+ and λ → ∞,
of the AC-conductivity σ ≡ σ(β,λ), which is defined by (4.158).

Lemma 4.6.8.
Let β ∈ R+, λ ∈ R+

0 and t ∈ R. Then,

lim
λ→0

σ(β,λ)(t) = σ(β,0)(t) .

If additionally the probability measure a0 is absolutely continuous w.r.t. the Lebesgue
measure, then

lim
λ→∞

σ(β,λ)(t) = 0 .
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Proof. Let β ∈ R+, λ ∈ R+
0 and t ∈ R. By Lemmata 4.6.6 and 4.6.7, one gets

that

lim
λ→0

1

|Λl|
∑
x,y∈Λl

E
(∫ β−υ

υ

B
(β,ω,λ)
t+iα,υ,ε(x, x− e1, y, y − e1)dα

)

=
1

|Λl|
∑
x,y∈Λl

E
(∫ β−υ

υ

B
(β,ω,0)
t+iα,υ,ε(x, x− e1, y, y − e1)dα

)

uniformly for all l ∈ R+, whereas

lim
λ→∞

1

|Λl|
∑
x,y∈Λl

E
(∫ β−υ

υ

B
(β,ω,λ)
t+iα,υ,ε(x, x− e1, y, y − e1)dα

)
= 0

provided the probability measure a0 is absolutely continuous w.r.t. the Lebesgue
measure. Therefore, by using these limits together with Lemma 4.5.14, (4.158)
and (4.166) we arrive at the assertions.

Finally, to get Theorem 4.6.5, we need to compute explicitly the macroscopic
AC-conductivity σ(β,λ) at λ = 0. This is done in the next lemma:

Lemma 4.6.9 (AC-conductivity at constant potential).
For any β ∈ R+ and t ∈ R, σ(β,0)(t) = 0.

Proof. Let β ∈ R+. By (4.159), Lemma 4.5.6 and Theorem 4.5.21, note that

σ(β,0)(t) = lim
l→∞

4

|Λl|
∑
x,y∈Λl

∫ β

0

(Dt+iα(x, y)−Diα(x, y)) dα , (4.173)

where
Dt+iα(x, y) := C

(β,ω,0)
t+iα (x, x− e1, y, y − e1).

Observe also that C(β,ω,0)
t+iα , which is defined by (4.119), does not depend on ω ∈ Ω.

Explicit computations show that Dt+iα(x, y) equals

Dt+iα(x, y) =
1

2(2π)2d

∫
[−π,π]d

ddp

∫
[−π,π]d

ddp′
eβEp′e(α−it)(Ep−Ep′)

(1 + eβEp)
(
1 + eβEp′

)
× (1− cos (p1 − p′1)) ei(p+p

′)·(x−y)
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for any t ∈ R, α ∈ [0, β] and x, y ∈ L, with Ep being the dispersion relation of
∆d, that is,

Ep := 2 [d− (cos(p1) + · · ·+ cos(pd))] , p ∈ [−π, π]d , (4.174)

Since Ep = E−p, it follows that∫ β

0

Dt+iα(x, y)dα =

∫
[−π,π]d

dt (p) eip·(x−y)ddp (4.175)

for all t ∈ R and x, y ∈ L, with dt being the function defined on [−π, π]d by

dt (p) :=
1

2(2π)2d

∫
[−π,π]d

ddp′
e
βEp′+ p

2 e
−it
(
Ep′− p2

−Ep′+ p
2

)
(

1 + e
βEp′− p2

)(
1 + e

βEp′+ p
2

)

×

(
e
β
(
Ep′− p2

−Ep′+ p
2

)
− 1

)
(
Ep′− p

2
− Ep′+ p

2

) (1− cos (2p′1)) .

Consequently, using (4.175) one gets, for any l ∈ R+ and t ∈ R, the equality

1

|Λl|
∑
x,y∈Λl

∫ β

0

Dt+iα(x, y)dα =

∫
[−π,π]d

γl (p) dt (p) ddp , (4.176)

where the function γl is defined on [−π, π]d by

γl (p) :=

∣∣∣∣∣ 1

|Λl|1/2
∑
x∈Λl

eip·x

∣∣∣∣∣
2

=
1

|Λl|
∑
x,y∈Λl

eip·(x−y) .

Observe that, for any l ∈ R+ and all ε ∈ R+,∫
[−π,π]d

γl (p) ddp = 1 and lim
l→∞

∫
[−π,π]d\B(0,ε)

γl (p) ddp = 0 ,

where B (0, ε) ⊂ Rd is the ball of radius ε centered at 0. From this we infer that

lim
l→∞

∣∣∣∣∫
[−π,π]d

γl (p) dt (p) ddp−
∫
B(0,ε)

γl (p) dt (p) ddp

∣∣∣∣ = 0 (4.177)
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for all ε ∈ R+ and any t ∈ R. Meanwhile, remark that

dt (p)− d0 (p) = O (|tp|) .

Then, using the continuity of the function d0 (·) together with (4.173), (4.176) and
(4.177), it follows that σ(β,0)(t) = 0 for all t ∈ R.

Therefore, Theorem 4.6.5 follows from Lemma 4.6.8 and Lemma 4.6.9.

4.6.3 On the strict positivity of the heat production

In this subsection we show, that the heat production is in general strictly positive.
By Theorem 4.5.1, the fermion system cannot transfer any energy to the electro-
magnetic field, as expected. This is not so, because µσ(β,λ) is the trivial measure
µσ(β,λ)(R\{0}) ≡ 0 for any choice of β, λ. In fact, the fermion system generally
absorbs some non-vanishing amount of electromagnetic energy:

Theorem 4.6.10 (Absorption of electromagnetic energy).
There are β0, λ0 ∈ R+ and a meager set Z ⊂ C∞0 such that, for any β ∈ (0, β0),
λ ∈ (λ0/2, λ0), all A ∈ C∞0 \Z and every t ≥ t1, the AC-conductivity σ ∈
C
(
R,R+

0

)
defined in Theorem 4.5.1 satisfies∫ t

t0

∫ s1

t0

[
σ(s1 − s2)

∫
Rd
〈EA(s1, x), EA(s2, x)〉 ddx

]
ds2ds1 > 0 .

Here, C∞0 is seen as a subspace of the Fréchet space S(Rd) (space of Schwartz
functions Rd → Rd) endowed with the corresponding relative topology.

Proof. Use Lemmata 4.6.11 and 4.6.12.

To prove Theorem 4.6.10 we expand the AC-conductivity σ at β, λ, t = 0.
Then we show that the behavior of σ near this point implies strict positivity of the
heat production, at least for short pulses of the electric field and small β, λ > 0.
This result corresponds to Lemma 4.6.11. The latter can, at small β, λ > 0, be
extended by an analyticity argument to all electric fields outside a meager2 set,
this will be done in Lemma 4.6.12.

2in the sense of the usual metric of the space of Schwartz functions.
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Lemma 4.6.11.
Let A ∈ C∞0 \{0} be such that, for some k ∈ {1, . . . , d},∫

Rd

(∫
R
sEA(s, x) (ek) ds

)2

ddx > 0

and define, for all T ∈ R+, the time-rescaled potential

A(T )(t, x) := A(T−1t, x) , t ∈ R, x ∈ Rd .

There are β0, λ0, T0 ∈ R+ such that, for β ∈ (0, β0), λ ∈ (λ0/2, λ0) and T ∈
(T0/2, T0), the AC-conductivity σ ∈ C (R;R) defined in Theorem 4.5.1 satisfies∫ t

t0

∫ s1

t0

[
σ(s2 − s1)

∫
Rd
〈EA(T )(s1, x), EA(T )(s2, x)〉 ddx

]
ds1ds2 > 0

for all t ≥ Tt1.

Proof. Recall (4.119), (4.149) and (4.158), that are, respectively,

C
(ω)
t+iα(x,y) :=

1

4

∑
π,π′∈S2

επεπ′C
(ω)
t+iα(yπ

′(1), xπ(1))C
(ω)
−t+i(β−α)(x

π(2), yπ
′(2))

for any x := (x(1), x(2)),y := (y(1), y(2)) ∈ L2,

Γ1,1(t) := lim
l→∞

1

|Λl|
∑
x,y∈Λl

E
(∫ β

0

C
(ω)
t+iα(x, x− e1, y, y − e1)dα

)
(4.178)

and
σ(t) = 4(Γ1,1(t)− Γ1,1(0)) (4.179)

for any β ∈ R+, λ ∈ R+
0 and t ∈ R. In the first equation, π, π′ ∈ S2 are, by

definition, permutations of the elements {1, 2} with signatures επ, επ′ ∈ {−1, 1}.
C

(ω)
t+iα ≡ C

(β,ω,λ)
t+iα is the complex-time two-point correlation function (4.39). It is

equal to (4.66), that is, for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R and α ∈ [0, β],

C
(ω)
t+iα(x) = 〈ex(2) , e−it(∆d+λVω)F β

α (∆d + λVω) ex(1)〉 , x := (x(1), x(2)) ∈ L2 ,

where the real function F β
α is defined, for any β ∈ R+ and α ∈ R, by

F β
α (κ) :=

eακ

1 + eβκ
, κ ∈ R .
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Using Duhamel’s formula note first that

e(α−it)(∆d+λVω) = e(α−it)∆d +

∫ 1

0

e(α−it)(1−γ)∆d (α− it)λVωe(α−it)γ(∆d+λVω)dγ

(4.180)
for any α ∈ [0, β] and t ∈ R. Since all operators in this last equation are
bounded, it follows that, if λ, β ∈ R+ are sufficiently small, the Neumann se-
ries for

(
1 + eβ(∆d+λVω)

)−1 converges absolutely:

(1 +eβ(∆d+λVω)
)−1

(4.181)

=
∞∑
n=0

{
−βλ

(
1 + eβ∆d

)−1
∫ 1

0

eβ(1−γ)∆dVωeβγ(∆d+λVω)dγ

}n (
1 + eβ∆d

)−1
.

By (4.180) and (4.181), one then gets the existence of a constant D such that, for
any sufficiently small λ, β ∈ (0, 1) and any α ∈ [0, β], ω ∈ Ω,∥∥F β

α (∆d + λVω)− F β
α (∆d)

∥∥
op
≤ Dβλ . (4.182)

Therefore, we define the approximated complex-time two-point correlation
function C̃(ω)

t+iα ≡ C̃
(β,ω,λ)
t+iα , for any β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , t ∈ R and α ∈ [0, β],
by

C̃
(ω)
t+iα(x) := 〈ex(2) , e−it(∆d+λVω)F β

α (∆d) ex(1)〉 , x := (x(1), x(2)) ∈ L2 .
(4.183)

For any x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2, let

C̃
(ω)
t+iα(x,y) :=

1

4

∑
π,π′∈S2

επεπ′C̃
(ω)
t+iα(yπ

′(1), xπ(1))C̃
(ω)
−t+i(β−α)(x

π(2), yπ
′(2)) .

From (4.178) and (4.182) we thus deduce that

Γ1,1(t) = lim
l→∞

1

|Λl|
∑
x,y∈Λl

E
(∫ β

0

C̃
(ω)
t+iα(x, x− e1, y, y − e1)dα

)
+O(β2λ) .

(4.184)
Next, we define an approximation Ĉ(ω)

t+iα ≡ Ĉ
(β,ω,λ)
t+iα of C̃(ω)

t+iα by

Ĉ
(ω)
t+iα(x) := 〈ex(2) , e−it∆dF β

α (∆d) ex(1)〉

− 1

2

〈
ex(2) , λ

(
itVω +

t2

2
(Vω∆d + ∆dVω + λV 2

ω )

)
ex(1)

〉
(4.185)
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for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, α ∈ [0, β] and x := (x(1), x(2)) ∈ L2.

Indeed, by (4.180) and an expansion of F β
α (∆d) at α, β = 0, note that there is a

constant D such that, for any λ, β ∈ (0, 1), α ∈ [0, β], ω ∈ Ω and t ∈ R,∥∥∥∥(e−it(∆d+λVω) − e−it∆d
)
F β
α (∆d) +

1

2

∫ 1

0

e−it(1−γ)∆ditλVωe−itγ(∆d+λVω)dγ

∥∥∥∥
op

≤ Dβλ |t| . (4.186)

Meanwhile, note that∫ 1

0

e−it(1−γ)∆ditλVωe−itγ(∆d+λVω)dγ (4.187)

= itλVω +
t2λ

2

(
Vω∆d + ∆dVω + λV 2

ω

)
+O(λ |t|3)

uniformly for λ ∈ (0, 1) and ω ∈ Ω. Therefore, by combining (4.183) and (4.185)
with (4.184), (4.186) and (4.187), we arrive at the equality

Γ1,1(t) = lim
l→∞

1

|Λl|
∑
x,y∈Λl

E
(∫ β

0

Ĉ
(ω)
t+iα(x, x− e1, y, y − e1)dα

)
+O(β2λ) +O(βλ |t|3) (4.188)

for sufficiently small |t|, where

Ĉ
(ω)
t+iα(x,y) :=

1

4

∑
π,π′∈S2

επεπ′Ĉ
(ω)
t+iα(yπ

′(1), xπ(1))Ĉ
(ω)
−t+i(β−α)(x

π(2), yπ
′(2))

for all x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2.
We use now that Vω is an i.i.d. potential satisfying E (Vω(x)) = 0 for all x ∈ L

to compute that, for any x := (x(1), x(2)) and y := (y(1), y(2)) ∈ L2, x(1) 6= x(2),
y(1) 6= y(2),

E
(∫ β

0

Ĉ
(ω)
t+iα(x,y)dα

)
−
∫ β

0

C
(0)
t+iα(x,y)dα (4.189)

= −λ
2t2

16
E
(
V 2
ω

) ∑
π,π′∈S2

επεπ′

{(∫ β

0

〈exπ(1) , e−it∆dF β
α (∆d) eyπ′(1)〉dα

)
δxπ(2),yπ

′(2)

+

(∫ β

0

〈eyπ′(2) , eit∆dF β
β−α (∆d) exπ(2)〉dα

)
δyπ′(1),xπ(1)

}
+
βλ2t4

64
D (x,y) ,
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where, for any x = (x(1), x(2)),y = (y(1), y(2)) ∈ L2, x(1) 6= x(2), y(1) 6= y(2),

D (x,y) :=
∑

π,π′∈S2

επεπ′
{
λ2
(
E
(
V 2
ω

))2
δyπ′(1),xπ(1)δxπ(2),yπ

′(2)

+E
(
〈exπ(1) , (Vω∆d + ∆dVω) eyπ′(1)〉〈eyπ′(2) , (Vω∆d + ∆dVω) exπ(2)〉

)}
.

Note that, for each λ ∈ R+
0 and t ∈ R, D ≡ D(λ) can be seen as the kernel (w.r.t.

the canonical basis {ex⊗ ex′}x,x′∈L) of a bounded operator on `2(L)⊗ `2(L) with
operator norm uniformly bounded w.r.t. λ on compact sets. Similar to (4.130), it
follows that

lim
l→∞

1

|Λl|
∑
x,y∈Λl

D(x, x− e1, y, y − e1) = O(1) (4.190)

uniformly for λ in compact sets.
Because of Lemma 4.6.9 and (4.179), note that

lim
l→∞

1

|Λl|
∑
x,y∈Λl

∫ β

0

C
(0)
t+iα(x, x− e1, y, y − e1)dα

= lim
l→∞

1

|Λl|
∑
x,y∈Λl

∫ β

0

C
(0)
iα (x, x− e1, y, y − e1)dα

does not depend on t ∈ R. Using this we infer from (4.179) and (4.188)-(4.190)
the existence of a constant D ∈ R+ such that the AC-conductivity σ is of the form

σ(t) = −Dλ2βt2 +O(β2λ) +O(βλ |t|3) (4.191)

for sufficiently small β, λ, |t|.
Now we choose sufficiently small λ0, β0, T0 > 0 and estimate the energy incre-

ment caused by the time-rescaled potential A(T ) ∈ C∞0 \{0} for T ∈ (T0/2, T0),
λ ∈ (λ0/2, λ0), β ∈ (0, β0). We assume w.l.o.g. that EA is zero in all but the first
component which equals a function Et ∈ C∞0

(
Rd;R

)
for any t ∈ R. Then, by

(4.191) and Fubini’s theorem, we have∫ t

t0

∫ s1

t0

[
σ(s2 − s1)

∫
Rd
〈EA(T )(s1, x), EA(T )(s2, x)〉 ddx

]
ds1ds2

= −Dλ
2βT 2

2

∫
Rd

[∫
R

∫
R
(s2 − s1)2Es1(x)Es2(x)ds1ds2

]
ddx

+O(β2λ) +O(βλT 3) . (4.192)
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Because of the AC-condition (4.16), observe that, for all x ∈ Rd,

−
∫
R

∫
R
(s2 − s1)2Es1(x)Es2(x)ds1ds2 = 2

(∫
R
sEs(x)ds

)2

. (4.193)

As a consequence, if ∫
R

(∫
R
sEs(x)ds

)2

ddx > 0 ,

then (4.192)-(4.193) yield the lemma, provided λ0T
2
0 � β0, λ0T

2
0 � T 3

0 .

Note that Lemma 4.6.11 implies that, for sufficiently small λ, β > 0, the
AC-conductivity measure µσ on R\{0} is non-zero. This property implies the
following result:

Lemma 4.6.12.
Assume that the AC-conductivity measure µσ on R\{0} is non-zero. Then the set

Z :=

{
ϕ ∈ S (R;R) :

∫
R

∫
R
σ(s2 − s1)ϕ(s1)ϕ(s2)ds1ds2 = 0

}
is meager in the (Fréchet) space S (R;R) of Schwartz functions equipped with the
usual locally convex topology.

Proof. Since µσ is by assumption non-zero, there is at least one point ν0 ∈ R\{0}
such that µσ (V) 6= 0 for all open neighborhoods V of ν0. To see this, observe that

R\{0} =
⋃
n∈N

[
1

n
, n

]
∪
[
−n,− 1

n

]
,

and thus there is n ∈ N such that

µσ

([
1

n
, n

]
∪
[
−n,− 1

n

])
> 0 .

Then, by compactness, there is ν0 ∈
[

1
n
, n
]
∪
[
−n,− 1

n

]
such that

µσ

(
V ∩

([
1

n
, n

]
∪
[
−n,− 1

n

]))
6= 0

for all open neighborhoods V of ν0.
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Take now any non-zero function ϕ ∈ C∞0 (R;R) ⊂ S (R;R). Its Fourier
transform ϕ̂ obeys ∣∣∣∣dnϕ̂dνn (ν)

∣∣∣∣ ≤ D1D
n
2 , n ∈ N , ν ∈ R ,

for some constants D1, D2 ∈ R+. In particular, there is a unique continuation of
ϕ̂ : R→ C to an entire function, again denoted by ϕ̂ : C→ C. Hence, the set of
zeros of ϕ̂ has no accumulation points.

If ϕ̂ (ν0) 6= 0 then, by continuity of ϕ̂,∫
R

∫
R
σ(s2 − s1)ϕ(s1)ϕ(s2)ds1ds2 =

∫
R\{0}

|ϕ̂(ν)|2 dµσ (ν) > 0 . (4.194)

If ϕ̂ (ν0) = 0 then, for all α ∈ (0, 1), we define the rescaled function ϕ̂α (ν) by
ϕ̂ (αν), which is the Fourier transform of α−1ϕ (α−1x). For sufficiently small
ε ∈ R+ and all α ∈ (1− ε, 1),∫

R\{0}
|ϕ̂α (ν)|2 dµσ (ν) > 0 ,

because the set of zeros of ϕ̂ has no accumulation points. On the other hand,
α−1ϕ (α−1x) converges in S (R;R) to ϕ (x), as α→ 1. Thus, the complement of
Z is dense in S (R;R), by density of the set C∞0 (R;R) in S (R;R). Since µσ is
bounded (see Section 4.6), note that the map

ϕ̂ 7→
∫
R\{0}

|ϕ̂(ν)|2 dµσ (ν)

is continuous on S (R;R). Because the Fourier transform is a homeomorphism of
S (R;R), by the first equation in (4.194), the map

ϕ 7→
∫
R

∫
R
σ(s2 − s1)ϕ(s1)ϕ(s2)ds1ds2

is also continuous on S (R;R) and the complement of Z is hence an open set.
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