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Abstract
This thesis comprises three mathematically rigorous papers about the vacuum Ein-

stein equations. Their respective titles and abstracts are:

A formalism for analyzing vacuum spacetimes: The Einstein vacuum equations in the
formulation developed by Newman, Penrose and Friedrich are expressed in terms of
a Lie superbracket. Differential identities are derived from the super Jacobi identity.
This perspective clarifies the covariance properties of the equations. The equations
are intended as a tool for the analytic study of vacuum spacetimes.

Strongly Focused Gravitational Waves: Christodoulou proved that trapped spheres can
form in evolution from a generic initial state, through the focusing of gravitational
waves. His work is the motivation for the present paper, in which we consider the
same physical problem, using very different mathematical methods. Our approach is
based on a controlled “far field expansion”. By a systematic use of scaling symme-
tries, we regularize Christodoulou’s singular “short pulse method”, rigorously track
vacuum solutions by the far field expansion and exhibit trapped spheres that first ap-
pear deep inside the far field region. Our presentation is self-contained. In the final
section, we present a detailed outline of the construction of another, more subtle, ex-
pansion that allows us to continue the solutions beyond the far field region to within
any fixed “finite distance” from the (expected) singularity. From a methodological
perspective, the underlying aim of this paper is the development of a general method
for constructing solutions to the vacuum Einstein equations by controlled expan-
sions.

The BKL Conjectures for Spatially Homogeneous Spacetimes: We rigorously construct
and control a generic class of spatially homogeneous (Bianchi VIII and Bianchi IX)
vacuum spacetimes that exhibit the oscillatory BKL phenomenology. We investigate
the causal structure of these spacetimes and show that there is a “particle horizon”.

These are three collaborations with Dr. Eugene Trubowitz.
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Zusammenfassung
Diese Dissertation umfasst drei mathematisch rigorose Arbeiten über die Einstein-

schen Vakuumfeldgleichungen, nämlich:

Ein Formalismus zur Untersuchung von Vakuumraumzeiten: Für die Newman-Penrose-
Friedrich Formulierung der Einsteinschen Vakuumfeldgleichungen wird eine Lie-
Super-Klammer eingeführt. Wichtige differentielle Identitäten dieser Formulierung
folgen aus der Super-Jacobi-Identität. Durch diesen Zugang werden die Kovarian-
zeigenschaften der Gleichungen deutlich gemacht.

Stark fokussierte Gravitationswellen: Christodoulou hat gezeigt, dass das Fokussieren
von Gravitationswellen zur Entstehung von “trapped spheres” führen kann. In der
vorliegenden Arbeit untersuchen wir dasselbe physikalische Phänomen, verwen-
den dazu aber andere mathematische Methoden, insbesondere rigorose Fernfeld-
Entwicklungen. Mittels geeigneter Skalierungen regularisieren wir Christodoulous
“short pulse method” und zeigen, dass “trapped spheres” bereits tief in der Fern-
feldzone entstehen können. Schliesslich skizzieren wir eine zweite Entwicklung, die
es erlaubt, die Lösungen auch jenseits der Fernfeldzone zu kontrollieren. Ziel die-
ser Arbeit ist es auch, eine allgemeine Methode für die rigorose Konstruktion von
Vakuumraumzeiten durch Entwicklungen zu erarbeiten.

Die BKL-Vermutungen für räumlich homogene Raumzeiten: Wir konstruieren eine
generische Familie von räumlich homogenen (Bianchi VIII und Bianchi IX) Vaku-
umraumzeiten, die BKL-artige Oszillationen aufweisen. Wir untersuchen die kausa-
le Struktur dieser Raumzeiten und zeigen, dass sie “Teilchenhorizonte” haben.

Diese drei Arbeiten entstanden in Zusammenarbeit mit Dr. Eugene Trubowitz.
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General Introduction
This thesis comprises three papers:

[RT1] A formalism for analyzing vacuum spacetimes (p. 15-36)
[RT2] Strongly Focused Gravitational Waves (p. 37-132)
[RT3] The BKL Conjectures for Spatially Homogeneous Spacetimes (p. 133-181)

These are three collaborations with Dr. Eugene Trubowitz.

This thesis is a mathematically rigorous piece of work in theoretical physics. The
common topic of [RT1], [RT2], [RT3] are the vacuum Einstein equations. The main
mathematical methods used are: differential geometry and the language of vector bun-
dles [RT1]; quasilinear symmetric hyperbolic systems and expansions [RT2]; ordinary
differential equations [RT3].

The three papers are included in their entirety, each with a dedicated technical in-
troduction, and with a separate list of references. The purpose of the present general
introduction is to put these works in a common, wider context, to explain their mu-
tual relationships, and foremost to emphasize the original scientific contributions, by
a comparison with existing literature. Original scientific contributions are highlighted
visually and thus easy to spot.

Fix a real, constant, symmetric matrix (gab) with signature (−,+,+,+). Let O(1, 3)
be the 6-dimensional group of real matrices (Λab) with gabΛamΛbn = gmn, the ho-
mogeneous Lorentz group. Here and in the rest of this introduction, small Latin indices
always run over the ordered set {1, 2, 3, 4}.

A spacetime (all the discussion here is local) is a pair (M, [E ]), where M is a four
dimensional manifold, E = (E1, E2, E3, E4) is a frame of vector fields on M , and two
frames belong to the same equivalence class [E ] iff the associated field gabEa ⊗Eb is
the same. Equivalently, [E ] = {ΛE ∣∣ Λ : M → O(1, 3)}, where (ΛE)a = Λa

bEb.

The spacetime metric g is given by g(Ea, Eb) = gab and depends only on [E ].
Here, (gab) is the matrix inverse of (gab). The inverse metric is the field gabEa ⊗ Eb.

A spacetime is flat iff there is a representative frame E such that the vector field
commutators [Ea, Eb], a, b = 1, 2, 3, 4, all vanish identically. Equivalently, given any
representative frame E, the spacetime is flat iff there is a Λ : M → O(1, 3) for which
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the commutators [(ΛE)a, (ΛE)b] all vanish identically. The integrability condition for
this first order differential system1 for Λ is the vanishing of

Rmna
b = Em(Γnab)− En(Γmab) + Γna

`Γm`
b − Γma`Γn`b + (Γnm` − Γmn`)Γ`ab

with (Γnab) determined by [Em, En] = (Γmn`−Γnm`)E` and Γa`ng`m+Γa`
mg`n =

0. Equivalently, Γam` = 1
2g
`n(cmna − camn + canm) where [Em, En] = cmnag

abEb.

By construction, the field (Rmnab) represents the equivalent concepts: obstruction
to integrability of the flatness condition; measure of deviation from flatness; curvature.
It is called Riemann curvature.

The Riemann curvatures associated to two equivalent frames E and ΛE are related
in a pointwise manner, R(ΛE)mna

b
Λb

d = Λm
kΛn

`Λa
cR(E)k`c

d. Thus, at each point,
the Riemann curvature can be analyzed by the group representation theory of O(1, 3).
It decomposes invariantly into a sum of three pieces, that transform according to three
irreducible real representations of O(1, 3), denoted (0, 0) and (1, 1) and (2, 0)⊕ (0, 2),
with dimensions 1 and 9 and 10, respectively. In the context of four-dimensional geom-
etry, the three pieces in this invariant decomposition have the following names:

(Riemann curvature) =(
Trace of Ricci curvature

= Scalar curvature

)
⊕ (Traceless Part of Ricci curvature) ⊕ (Weyl curvature)

Einstein proposed to interpret spacetimes for which the Riemann curvature is purely
of type (2, 0)⊕ (0, 2), that is purely a Weyl curvature, as physical vacuum spacetimes.
By the above discussion, this is a representative-independent condition for a spacetime.
Equivalently,

Vacuum Einstein Equations: Rnab
n = 0 for all a, b = 1, 2, 3, 4.

A fundamental property of the vacuum Einstein equations is causality, that is, finite
speed of propagation. To discuss causality properly, local gauge-transformations have
to be taken into account. Causality of the vacuum Einstein equations may be exhibited
by a process known as hyperbolic reduction (essentially, complete gauge fixing, and
deriving hyperbolic partial differential equations). Such a reduction yields L2-type es-
timates, usually referred to as energy estimates, a basic analytic tool to gain rigorous
control over the solutions.

The traditional hyperbolic reduction of the vacuum Einstein equations uses the har-
monic gauge2. It was used by Choquet-Bruhat [CB] to obtain a rigorous local existence
and uniqueness theorem.

An alternative hyperbolic reduction uses the Newman-Penrose-Friedrich orthonor-
mal frame formalism. Newman and Penrose [NP] introduced the basic unknown fields
of this formalism (frame, connection, Weyl curvature) and the corresponding vacuum

1 Modulo the O(1, 3)-condition gabΛamΛbn = gmn, the system [(ΛE)a, (ΛE)b] = 0 is equivalent to
the linear system En(Λab) + Λa`Γn`

b = 0 for Λ.
2 Coordinates (xµ)µ=0,1,2,3 satisfy the harmonic gauge with respect to a metric g = gµν dxµ ⊗ dxν

iff ∂µ(gµν
√−g ) = 0 for all ν. Here, g is the determinant of the matrix (gµν)µ,ν=0,1,2,3. The harmonic

gauge bears some similarity to the Lorentz gauge of electromagnetism.
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Einstein equations . Their equations are not independent, but satisfy general differential
identities, that were derived by Friedrich [Fr].

In [RT1], the vacuum Einstein equations as formulated by Newman and Pen-
rose [NP] are expressed in terms of a Lie superbracket. The general differential
identities of Friedrich [Fr] are derived from the associated super Jacobi identity.
Special care is taken to exhibit the covariance properties of the equations.

The first hyperbolic reduction in the Newman-Penrose-Friedrich formalism was dis-
covered by Friedrich [Fr]. He showed, by choosing a particular gauge, that the vacuum
equations contain a symmetric hyperbolic subsystem3 that determines the evolution of
all unknown fields (frame, connection, Weyl curvature). To show that the remaining
equations, called constraints, are also fulfilled, he used the general differential identi-
ties. The importance of [Fr] is the insight that a hyperbolic reduction in the Newman-
Penrose-Friedrich formalism is at all possible, using symmetric hyperbolic systems.
The particular gauge introduced in [Fr] is secondary, and is not used in this thesis.

The discussion below makes frequent reference to characteristic coordinates. A func-
tion u on a spacetime with nonvanishing differential, du 6= 0, is characteristic iff
it solves the eikonal equation, gabEa(u)Eb(u) = 0. The eikonal equation depends
only on the equivalence class [E ]. It is a Hamilton-Jacobi equation, and the associated
Hamiltonian equation of motion is the geodesic equation. Explicitly, the gradient vector
field gabEa(u)Eb is tangent to the level sets of u, and its integral curves are (affinely
parametrized) null geodesics. Hence, the level sets of u are ruled by null geodesics.

Gauges in which one of the four coordinates are characteristic appear, for example,
in [BBM] and in [Fr].

A gauge in which two of the four coordinates are characteristic, sometimes called
double-null-gauge, is a natural choice for some problems in general relativity4. See
[KN] and [Chr]. Many calculations and estimates are conveniently done in this gauge.
However, in the absence of a hyperbolic reduction directly in the double-null gauge,
rigorous works using this gauge had to carry out parts of the argument (local existence)
in a different gauge, say the harmonic gauge. This technical detour can be avoided:

In [RT2], a hyperbolic reduction for the Newman-Penrose-Friedrich formalism
is given directly in the double-null-gauge, using symmetric hyperbolic systems.

The geometric notion of a closed trapped surface was introduced by Penrose [Pen].
The definition of this notion assumes that the spacetime is time-oriented: at each point,
a choice is made which half of the light cone is future-directed, and this choice is made
in a continuous way. A closed 2-dimensional surface in a time-oriented spacetime is
trapped iff, every tangent space to the surface is spacelike, and the traces of both future-
directed null second fundamental forms5 are negative everywhere on the surface. The
original definition of Penrose [Pen] is more direct: “[...] a closed, spacelike, two-surface

3 For a general discussion of quasilinear symmetric hyperbolic systems, see [Tay].
4 A basic example are the coordinates t+r+2m log(r/(2m)−1) and t−r−2m log(r/(2m)−1) on

Schwarzschild spacetime, when r > 2m > 0. Here, (t, r) are two of the standard Schwarzschild coordinates.
5 A spacelike 2-dimensional surface can locally always be written as the intersection of the zero-level sets

of two functions u and u, both solutions to the eikonal equation, gabEa(u)Eb(u) = gabEa(u)Eb(u) = 0,
with du and du pointwise linearly independent. The two null second fundamental forms describe the extrinsic
geometry of the spacelike 2-dimensional surface with respect to these two zero-level sets.
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[...] with the property that the two systems of null geodesics which meet [the surface]
orthogonally converge locally in future directions at [the surface].” A closed trapped
surface diffeomorphic to the two-sphere S2, will be referred to as a trapped sphere.

The prototypical trapped spheres in a vacuum spacetime are the SO(3) orbits in-
side the horizon of a Schwarzschild spacetime. Closed trapped surfaces appear in the
formulation of Penrose’s incompleteness theorem [Pen].

Christodoulou [Chr] has proved that trapped spheres can form in evolution through
the focusing of incoming gravitational waves. To be sure, the spacetimes constructed in
[Chr] are solutions to the vacuum Einstein equations, and the theorems in [Chr] apply
to a generic class of initial data (in particular, there are no assumptions of symmetry).

[RT2] contains a new and logically independent proof of the main results of
[Chr], including the formation of trapped spheres. [RT2] is based on exactly
the same physical mechanism / the same geometrical setup that was exploited
in [Chr]. However, the proof of [RT2] uses only a combination of traditional
and well-known tools, in particular symmetric hyperbolic systems and formal
expansions, thereby achieving a technical simplification over [Chr].

The focusing of gravitational waves in [Chr] is implemented by a dedicated geomet-
ric optics argument, called short pulse method in [Chr]. It is instructive to first consider
an idealized limiting case: an infinitely short (or instantaneous) pulse. This discussion
uses spherically symmetric non-vacuum spacetimes. The bearing of this discussion on
[Chr] and [RT2], which deal with vacuum spacetimes without assumptions of symme-
try, is explained afterward.

On the manifold M = {(u, r, θ, φ) ∈ R× (0,∞)× (0, π)× (0, 2π)} set

E1 = ∂u + 1
2

(
1− 2r−1m(u)

)
∂r E3 = r−1∂θ

E2 = −∂r E4 = (r sin θ)−1∂φ

and use

(gab) =

 0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1


The function m = m(u) is assumed to be given, with dm/du ≥ 0. Observe that
E = (E1, E2, E3, E4) is a frame. By direct calculation:

Rnab
n = 2kakb with ka = δa1 r

−1
√

dm/du

The coordinate u is a characteristic coordinate, gabEa(u)Eb(u) = 0. The spacetime
(M, [E ]) is spherically symmetric, and Rnabn = 2kakb are the Einstein Equations
with a null fluid matter field, because the wave vector field (ka) is null, gabkakb = 0.
This spacetime was introduced by Vaidya [Vai]. From now on,

m(u) =

{
0 if u ≤ 0
m0 if u > 0

(m0 > 0 constant)

The corresponding spacetime will be referred to as the distributional Vaidya spacetime.
Then, 2kakb = 2δa1δb1r−2m0 δ(u) has singular support on the incoming characteristic

8



hypersurface u = 0. The spacetime (M, [E ]) is vacuum when u < 0 (Minkowski
spacetime) and u > 0 (Schwarzschild spacetime in Eddington-Finkelstein coordinates
with mass m0).

The level sets of (u, r) as a map M → R × (0,∞) are spheres with area 4πr2,
and hence are trapped iff6 E1(r) < 0 and E2(r) < 0, that is, u > 0 and r < 2m0.
Therefore, in the distributional Vaidya spacetime, trapped spheres form in evolution.
Recall that this is a non-vacuum spacetime.

The null fluid term 2kakb in the distributional Vaidya spacetime may be interpreted
as a massless radiation, possibly gravitational radiation. Therefore, heuristically speak-
ing, one may attempt to high-frequency-modify the distributional Vaidya spacetime
near u = 0 to obtain a vacuum spacetime. Necessarily, one has to abandon spherical
symmetry (Birkhoff theorem).

The distributional Vaidya spacetime is not discussed in [Chr], but could serve as
a natural motivation for [Chr], or at least some aspects of it. In fact, the spacetimes
constructed in [Chr] do also contain a complete Minkowskian past cone, the boundary
of which ‘carries’ a wave. This wave is non-spherical, and purely gravitational, in the
sense that it is a solution to the vacuum Einstein equations. The technical implementa-
tion of this picture is the short pulse method of [Chr]. In [Chr], the Minkowskian region
and the pulse region are considered.

[RT2] in addition controls the transition from the pulse region to the (approxi-
mate) Schwarzschild region. This result is established under certain natural as-
sumptions. In particular, the ‘incoming energy per unit solid angle’ in the finite-
duration pulse is spherically symmetric. See Section 9 of [RT2].

The distributional Vaidya spacetime gives a simple, intuitive picture for some aspects
of the focusing problem, but not all aspects. In particular, it gives no direct information
about the short pulse region itself.

In [Chr], the short pulse method is presented as a self-consistent way of introducing
a small parameter δ > 0 into the problem. More precisely, it is a self-consistent scheme
of bounds for all the unknown quantities in terms of δ. Many quantities in [Chr] have
bounds of the form O(δ−α), with α > 0. The limit (of the bound) as δ ↓ 0 does not
exist, it is singular. Whether this is necessarily so, or whether it is possible to define
in a mathematically meaningful way the actual limit, is not discussed in [Chr]. Can the
δ ↓ 0 limit be regularized?
The next statement is formulated in the coordinate system (ξ1, ξ2, u, u) that is used in
[RT2]. The first two are ‘angular coordinates’, the last two characteristic coordinates.
The small parameter A in [RT2] is equivalent to δ of [Chr] through δ = A4.

[RT2] uses (dependent and independent) variables for which the limit A ↓ 0 ex-
ists / is regular, and for which the equations remain symmetric hyperbolic even at
A = 0. The inverse metric gabEa⊗Eb degenerates from signature (−,+,+,+)
to (−, 0, 0,+), which causes all partial derivatives with respect to ξ1, ξ2 to drop
out. For each value of the now passive parameters (ξ1, ξ2), one obtains 1 + 1 di-
mensional symmetric hyperbolic systems with respect to just u, u. The solutions
to these systems break down, along a curve in the (u, u)-plane that is explicitly
calculated in [RT2] in terms of the data at past null infinity.

6 This uses the implicit assumption that E1 + E2 determines the future direction.
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The A = 0 solutions have a degenerate frame (rank 2 rather than rank 4). There-
fore, they are not spacetimes, and their breakdown does not describe the breakdown
of vacuum spacetimes. However, in Subsection 9.5 of [RT2], an informal but careful
argument is given to the effect that the vacuum spacetimes of [RT2] can be extended,
using nothing more than the methods of [RT2], to within any ‘finite distance’ of the
A = 0 breakdown. No statement is made about later ‘times’. Nevertheless, the informal
argument, and the heuristic picture that comes with it, together identify a direction for
promising future research. Subsection 9.5 stands apart from the rest of [RT2], and will
not be discussed further in this introduction.

A few more details about [RT2] will now be given. To keep things reasonably short,
the following compromises are made. The vacuum spacetimes of [RT2] are discussed
in terms of just the 16 components of an orthonormal frame E = (E1, E2, E3, E4).
The components of the connection and Weyl curvature are ignored, even though in the
Newman-Penrose-Friedrich formalism they are on an operationally equal footing with
the frame, and are treated as such in [RT2]. A single stereographic-type coordinate
patch (ξ1, ξ2) ∈ R2 is mentioned for the two-sphere. It is implicit that two such patches
are used to cover the two-sphere, and that everything is compatible on the overlap. It is
assumed that the vacuum spacetimes have been shown to exist beforehand, and they are
just described here. The discussion is incomplete and a little informal.

The discussion uses the conventions of the High Amplitude Picture with a = A in
Section 9 of [RT2], because it is the simplest to explain. (All the technical parts of [RT2]
are done using another picture, the Regularized Picture, because it is much better suited
for making calculations. The two pictures are equivalent, and are related by scaling
symmetries of the Newman-Penrose-Friedrich formalism, see Section 9 [RT2].)

Set M =
{
(xµ)µ=1,2,3,4 = (ξ1, ξ2, u, u) ∈ R2 × (0, 1)× (−∞, u0)

}
with u0 < 0.

The components of the frame vector fields Ea = Ea
µ∂µ are

(Eaµ) =

∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 0 1
0 0 ∗ 0

 (gab) =

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


Entries with asterisk ∗ can be nonzero. Some of them are necessarily nonzero, because
E is a frame. The entry E4

3 > 0. The seemingly wrong signature of (gab) is explained
by the fact that the frame vector fields are complex (this is convenient!). The complex
conjugate of (E1, E2, E3, E4) is (E2, E1, E3, E4). Therefore, gabEa ⊗ Eb is real and
has signature (−,+,+,+). The asterisk pattern of (Eaµ) is discussed in more detail a
few paragraphs down from here.

Let M ′,M ′′ ⊂M be the subsets given by 0 < u < 1
2 and 1

2 < u < 1, respectively.
Then (M ′, [E ]) is flat / Minkowskian, (M ′′, [E ]) carries the gravitational wave.

More precisely, the subset M ′, on which

(Eaµ) =

ρ
−1e +iρ−1e 0 0
ρ−1e −iρ−1e 0 0

0 0 0 1
0 0 1 0

 ρ = u− u
e = 1

2

(
1 + (ξ1)2 + (ξ2)2

)
is isometric to a subset of Minkowski spacetime: u = 2−1/2(t+ r), u = 2−1/2(t− r),
with standard Minkowskian time t and radius r, and standard stereographic coordinates
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(ξ1, ξ2). Therefore, the past light cone t + r ≤ 0 in Minkowski spacetime can be
smoothly attached to (M, [E ]).

There is a map7 DATAH : R2 × (0, 1)→ C with

lim
u→−∞u

2(E1
1 − ρ−1e) = lim

u→−∞ iu
2(E1

2 − iρ−1e) = e
∫ u
0

du′ DATAH(ξ1, ξ2, u′)

The limits are taken at constant ξ1, ξ2, u. Here, u → −∞ is interpreted as past null
infinity, and DATAH is interpreted as initial data at past null infinity. More informally,
DATAH describes the incoming radiation. Necessarily, DATAH = 0 when u < 1

2 . Given
the Minkowskian data on M ′, the map DATAH uniquely determines (M, [E ]). To make
rigorous sense of the last statement, technical assumptions about the decay as u→ −∞
of various unknowns are made in [RT2]. These assumptions are not discussed here.

A minimal requirement for the uniqueness statement in the last paragraph is the
complete fixing of the gauge degrees of freedom. Here, the asterisk pattern of (Eaµ)
comes in. The three zeros in the third (resp. fourth) column imply that u (resp. u)
solves the eikonal equation and that its gradient8 is−E4

3E3 (resp.−E4). The two zeros
in the lower-left corner imply that ξ1, ξ2 are transported along E4. Thus, two eikonal
equations and two transport equations, together with the Minkowskian data on M ′
and the additional assumption limu→−∞E4

3 = 1, fix the coordinates. An additional
condition is needed to also fix the frame, because there still is the local U(1) gauge
degree of freedom (E1, E2)→ (e+iθE1, e

−iθE2), but this is not discussed here.

If E is rescaled by a constant positive factor, it will still satisfy the vacuum Einstein
equations. To satisfy the gauge conditions, u and u have to be rescaled by the inverse
of the same factor. Therefore, the initial assumption that u has range (0, 1) is a choice
of scale. That is, the coordinate-width of the wave is fixed to ∼ 1.

Let ‖DATAH‖ (the amplitude) be equal to a suitable Cm norm of DATAH, that also
takes into account the two patches for the two-sphere. The value of m is technical. The
results of [RT2] apply with m = 10.

There is no smallness condition on the amplitude ‖DATAH‖ in [RT2], in fact the
analysis is tailored to large amplitude. The theorems of [RT2] control / assert existence
of the vacuum spacetime for u ∈ (−∞, u0), with u0 < 0 becoming more negative as
the amplitude grows. More precisely:

[RT2] yields |u0| ∼ ‖DATAH‖ as ‖DATAH‖ → ∞.

Whether the statement |u0| ∼ ‖DATAH‖κ as ‖DATAH‖ → ∞ can be proved for some
κ ∈ (0, 1) is not known, but κ = 1 may well be optimal. By comparison, [Chr] only
directly implies the weaker statement with9 κ = 2.

7 The subscript in DATAH is for High Amplitude Picture. See Section 9 of [RT2].
8 The gradient of f : M → R is the vector field gabEa(f)Eb.
9 To make this conclusion, the vacuum spacetimes of [Chr] have to be expressed in the same gauge,

by a straightforward global rescaling. There are two remarks. First, in [Chr] the range of u is actually a
finite interval, but the results are uniform in the left (i.e. more negative) endpoint of the interval. Second,
the amplitude ‖DATAH‖ can be taken to be a C7 norm in [Chr], as opposed to C10 in [RT2]. Thus, from
this particular point of view, [Chr] is stronger than [RT2]. However, in view of the fact that the focusing of
gravitational waves is an infrared problem, this remark is technical.
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The vacuum Einstein equations are a system of nonlinear partial differential equa-
tions. There are two simplifications that are commonly used to facilitate / allow a rig-
orous quantitative treatment. One is perturbation theory (a small parameter) and this is
used in [RT2]. The other is symmetry (dimensional reduction) and this is used in [RT3].

In [RT3], the spacetimes are spatially homogeneous, Bianchi type VIII and IX. The
vacuum Einstein equations become a nonlinear system of six ordinary differential equa-
tions and one propagating algebraic constraint, namely the following equations with
n = (n1, n2, n3) = (1, 1, 1):

d
dτ α1 = −(n1β1)2 + (n2β2)2 + (n3β3)2 − 2n2n3β2β3

d
dτ α2 = −(n2β2)2 + (n3β3)2 + (n1β1)2 − 2n3n1β3β1

d
dτ α3 = −(n3β3)2 + (n1β1)2 + (n2β2)2 − 2n1n2β1β2

d
dτ β1 = β1α1

d
dτ β2 = β2α2

d
dτ β3 = β3α3

0 = α2α3 + α3α1 + α1α2 − (n1β1)2 − (n2β2)2 − (n3β3)2

+ 2n2n3β2β3 + 2n3n1β3β1 + 2n1n2β1β2

(Other values n = (n1, n2, n3) are used later.) The condition (α1 + α2 + α3)|τ=0 < 0
breaks the τ → −τ symmetry and implies that the solutions α(τ), β(τ) ∈ R3 exist for
all τ ≥ 0, with α1 +α2 +α3 < 0. However, the half-infinite interval τ ≥ 0 corresponds
to a finite physical duration of the associated spatially homogeneous vacuum spacetime.
In [RT3], β1, β2, β3 6= 0.

The pioneering calculations and heuristic picture of Belinskii, Khalatnikov, Lifshitz
[BKL] and Misner [Mis] suggest that a generic class of solutions are oscillatory as
τ → +∞ and that the dynamics of one degree of freedom is closely related to the
discrete dynamics of the Gauss map G(x) = 1

x − b 1
xc, a non-invertible map from

(0, 1) \ Q to itself. Every element of (0, 1) \ Q admits a unique infinite continued
fraction expansion

〈k1, k2, k3, . . .〉 =
1

k1 + 1
k2+

1
k3+...

where (kn)n≥1 are strictly positive integers. The Gauss map is the left-shift,

G
(〈k1, k2, k3, . . .〉

)
= 〈k2, k3, k4, . . .〉

Rigorous results about spatially homogeneous spacetimes have been obtained by
Rendall [Ren] and Ringström [Ri1], [Ri2]. See also Heinzle and Uggla [HU1]. See
[HU2] for a detailed discussion.

The first rigorous proofs that there exist spatially homogeneous vacuum spacetimes
whose asymptotic behavior is related, in a precise sense, to iterates of the Gauss map,
have been obtained by Béguin [Be] and by Liebscher, Härterich, Webster and Georgi
[LHWG]. These theorems apply to a dense subset of (0, 1) \ Q. A basic restriction of
both these works is that the sequence (kn)n≥1 has to be bounded, a condition fulfilled
only by a Lebesgue measure zero subset of (0, 1) \Q.
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The results of [RT3] apply to any sequence (kn)n≥1 that grows at most polyno-
mially. The corresponding subset of (0, 1) \Q has full Lebesgue measure one.

The structure of each solution constructed in [RT3] can be informally described by
a sequence (τj)j≥0, with 0 = τ0 < τ1 < . . . < τj−1 < τj < . . . and limj→∞ τj =∞,
and by a sequence (aj)j≥1 with aj ∈ {1, 2, 3} and aj 6= aj+1 for all j ≥ 1. These two
sequences specify a semi-global approximation scheme: for each j ≥ 1 the vacuum
Einstein equations n = (n1, n2, n3) = (1, 1, 1) on [τj−1, τj ] are approximated by
n = (1, 0, 0) if aj = 1, by n = (0, 1, 0) if aj = 2, by n = (0, 0, 1) if aj = 3.
(The three approximate systems are explicitly solvable.) This scheme is good enough
to construct semi-global solutions. To make rigorous sense of this, it is shown in [RT3]
that the accumulated error stays finite as one is coming in from j → +∞, or τ → +∞
that is.

To explain the role of (kn)n≥1, suppose the sequence (aj)j≥1 contains the segment

(. . . , 2, 1, 2, 1∗, 3, 1, 3, 1∗, 2∗, 3, 2∗, 1∗, 3, 1, 3, 1, . . .)

The element aj has been marked by an asterisk iff aj−1 6= aj+1. The leftmost element
and the rightmost element are not marked, because it was assumed that the next element
to the left of the segment is 1, and the next to the right is 3. The elements of the sequence
(kn)n≥1 measure the distance between neighboring asterisks. In the present example,
(kn)n≥1 contains the segment (. . . , 4, 1, 2, 1, . . .).

In [Mis], billiard game jargon is introduced to informally describe the dynamics:
the billiard ball is in free motion near τj−1, a short but finite-duration billiard bounce
occurs somewhere in [τj−1, τj ], the billiard ball is again in free motion near τj , and so
forth. There are three walls, labeled 1, 2, 3, respectively. The bounce in [τj−1, τj ] is off
the wall labeled aj .

In [RT3], a dimensionless parameter hj > 0 is defined. Essentially, hj is the du-
ration of the billiard bounce in [τj−1, τj ], divided by |τj − τj−1|. Proving rigorously
the validity of the semi-global approximation scheme goes hand in hand with decay
estimates for hj , as j → +∞.

It is shown in [RT3] that, under appropriate smallness conditions,

hj = O
((

1
2 (1 +

√
5)
)−2(D−1j)1/(γ+1))

as j → +∞

Here, D ≥ 1 and γ ≥ 0 are constants such that kn ≤ Dnγ for all n ≥ 1.

A basic question regarding the causal structure is whether, for every pair of points
p, p′ in the spatially homogeneous spacetime, there is a point q that lies in the causal
future of both p and p′. (Here, future corresponds to increasing τ .) If the answer to this
question is negative, the spacetime is said to have a particle horizon.

All spatially homogeneous vacuum spacetimes constructed in [RT3] have parti-
cle horizons.

The heuristic work of Belinskii, Khalatnikov, Lifshitz [BKL] concerns very general
(inhomogeneous) spacetime singularities. It heavily relies on intuition about the homo-
geneous case. The existence of particle horizons in the homogeneous case, established
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in [RT3] under certain smallness assumptions, seems to be a necessary condition for
the homogeneous case to have any bearing on the inhomogeneous case.

The solutions constructed in [RT3] are generic in the sense that ‘they depend on
the right number of free parameters’ (for a precise statement, see [RT3]). It would be
desirable to have a stronger genericity statement.
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[Be] Béguin, F., Class. Quantum Grav. 27, (2010) 185005
[BKL] Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., Adv. Phys. 19 (1970) 525-573
[CB] Choquet-Bruhat, Y., Acta Math. 88, (1952) 141-225
[Chr] Christodoulou, D., The Formation of Black Holes in General Relativity (EMS, 2009)
[Fr] H. Friedrich, Proc. Roy. Soc. Lond. A 375, (1981) 169-184.
[HU1] Heinzle, J.M. and Uggla, C., Class. Quantum Grav. 26, (2009) 075015
[HU2] Heinzle, J.M. and Uggla, C., Class. Quantum Grav. 26, (2009) 075016
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A formalism for analyzing vacuum spacetimes

Michael Reiterer, Eugene Trubowitz

Department of Mathematics, ETH Zurich, Switzerland

Abstract: The Einstein vacuum equations in the formulation developedby Newman,
Penrose [NP] and Friedrich [Fr] are expressed in terms of a Lie superbracket. Differ-
ential identities are derived from the super Jacobi identity. This perspective clarifies
the covariance properties of the equations. The equations are intended as a tool for the
analytic study of vacuum spacetimes.

1. Introduction

In this paper, we discuss a formalism that is suited to the analysis of solutions to the
Einstein vacuum equations. In this formalism, the vacuum equations

• become a quasilinear, first order system of partial differential equations, that
• are quadratically nonlinear, and
• through gauge-fixing, can be brought into symmetric hyperbolic form.

Newman and Penrose [NP] introduced the basic unknown fields of this formalism
(frame, connection, Weyl curvature) and the correspondingEinstein vacuum equations.
Their equations are not independent, but satisfy general differential identities, that were
derived by Friedrich [Fr].

Friedrich [Fr] showed, by choosing an appropriate gauge, that the vacuum equations
contain a symmetric hyperbolic subsystem that determines the evolution of all unknown
fields. To show that the remaining equations, calledconstraints, are also fulfilled, he
used the general differential identities.

In this paper, the vacuum equations as formulated by Newman and Penrose are ex-
pressed in terms of a Lie superbracket, see (5.1) and (5.2). The general differential
identities, see (5.6b), are derived from the associated super Jacobi identity. We take
special care to exhibit the covariance properties of the equations.

We used a forerunner of the present formalism to analyze strongly focused gravi-
tational waves, see Appendix B of [RT]. The point of the refined presentation of this
paper is the derivation of the equations in Section 8 from an invariant point of view.
They are intended to be used as a tool in the analysis of other problems in classical
general relativity.

Important remark:We expect that there is a close relationship between the notion of
a Cartan connection, see [Sh], and the formalism of this paper, which is not made here.
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2

This relationship ought to be clarified. However, we have notpursued this relationship,
since the equations of Section 8 can be derived without it.

2. A Lie Superalgebra Identity

We recall the definition of a real Lie superalgebra:

Definition 2.1. A (non-associative)Z2-graded real algebra
(
L = L0 ⊕ L1, J · , · K),

with even partsL0 and odd partsL1, satisfying for allx1 ∈ Lk1 , x2 ∈ Lk2 , x3 ∈ Lk3
(a) Jx1, x2K ∈ Lℓ with ℓ = k1 + k2 (mod 2)
(b) Jx1, x2K = (−1)1+k1k2Jx2, x1K
(c) (−1)k1k3Jx1, Jx2, x3KK + (−1)k2k1Jx2, Jx3, x1KK + (−1)k3k2Jx3, Jx1, x2KK = 0

is called areal Lie superalgebra. In this context,J · , · K is the Lie superbracket, (b) is
super skew-symmetry, and (c) is the super Jacobi identity.

Let
(
L = L0 ⊕ L1, J · , · K) be a Lie superalgebra as above. SetA0 = L0 × L1 and

A1 = L1 × L0, that isAℓ = Lℓ × Lℓ+1 for all ℓ ∈ Z2.

Definition 2.2. For ℓ ∈ Z2, let

D(ℓ) : A1 ×Aℓ → Aℓ+1 (x, y) 7→ D(ℓ)
x y

where

D(ℓ)
x y = z = (z1, z2) ∈ Aℓ+1 with

{
z1 = y2 − ǫℓJx1, y1K
z2 = ǫℓJx1, y2K + ǫℓJy1, x2K (2.1)

for all x = (x1, x2) ∈ A1 and ally = (y1, y2) ∈ Aℓ. Here,ǫ0 = 1 andǫ1 = 1
2 .

Equation (2.1) is consistent, becausex1 ∈ L1, x2 ∈ L0, y1 ∈ Lℓ, y2 ∈ Lℓ+1 imply
z1 ∈ Lℓ+1, z2 ∈ Lℓ, as required.

Convention 2.1.From now on, we will drop the superscripts(0), (1) on the operatorD,
with the understanding that ”the arguments determine the superscript”.

Proposition 2.1.DxDxx = 0 for all x ∈ A1

Proof. Let y = Dxx andz = Dxy. We have to show thatz = 0. We have

y1 = x2 − 1
2Jx1, x1K (2.2a)

y2 = Jx1, x2K (2.2b)

and therefore

z1 = y2 − Jx1, y1K = 1
2Jx1, Jx1, x1KK (2.2c)

z2 = Jx1, y2K + Jy1, x2K = Jx1, Jx1, x2KK− 1
2JJx1, x1K, x2K + Jx2, x2K (2.2d)

Recalling thatx1 ∈ L1 and x2 ∈ L0, the super skew symmetry (b) and the su-
per Jacobi identity (c) in Definition 2.1 implyJx1, Jx1, x1KK = 0, Jx2, x2K = 0 andJJx1, x1K, x2K = 2Jx1, Jx1, x2KK. For example,

0 = Jx1, Jx1, x2KK + Jx2, Jx1, x1KK − Jx1, Jx2, x1KK
= Jx1, Jx1, x2KK − JJx1, x1K, x2K + Jx1, Jx1, x2KK

Therefore,z = 0. ⊓⊔
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3

Remark 2.1.In Section 5 the abstract equationDxx = 0 for the unknown ”field”x ∈
A1 will be interpreted as ”Einstein vacuum equations”. There are too many equations.
The system is apparently overdetermined. The remedy is the identity of Proposition 2.1,
that holds for allx ∈ A1.

3. Diamonds

Convention 3.1.In this paper, all manifolds are real, smooth and finite dimensional. For
any fiber bundleπ : E → B, the fiber overp ∈ B is denoted byEp = π−1({p}).
For any sectionX ∈ Γ (E) the mapX : B → E is given byp 7→ Xp ∈ Ep. For
any vector bundleπ : E → B we denote byE∗, Sym2E, SE, the dual bundle, the
subbundle of symmetric elements ofE ⊗ E, and the sphere bundle associated withE.
That is, forp ∈ B, we have(SE)p = (Ep \ {0})/R+. Finally,End(E) = E∗ ⊗ E is
the endomorphism bundle associated withE.

Convention 3.2.For a bundleπ : E → B we denote byT (E) the algebraic direct sum
of all tensor products ofE andE∗.

For therest of this paper, fix

• a 4-dimensional manifoldM ,
• a real vector bundleπV : V →M with 4 dimensional fibers,
• a sectionH ∈ Γ (S Sym2 V ∗) with signature(−,+,+,+).

In other words,H defines aconformalLorentzian inner product on each fiber ofV .

Definition 3.1. For every integerk ≥ 0, letPk be the set of all maps♦,

♦ : Γ (T (V )) → Γ
(∧kV ∗ ⊗ T (V )

)
(3.1)

so that for allu, v ∈ Γ (T (V )), all representativesh ∈ Γ (Sym2 V ∗) of the conformal
Lorentzian inner productH ∈ Γ (S Sym2 V ∗), and allY ∈ Γ (V ⊗k), we require, with
Convention 3.3 below:

(a) ♦ is linear overR,
(b) ♦Y mapsC∞(M) → C∞(M) andΓ (V ) → Γ (V ) andΓ (V ∗) → Γ (V ∗),
(c) ♦Y (u⊗ v) = (♦Y u)⊗ v + u⊗ (♦Y v),
(d) ♦I = 0 if I ∈ Γ (End(V )) is the identity on the fibers ofV ,
(e) ♦h = µ⊗ h for someµ ∈ Γ (∧kV ∗).

The vertical subspacePk⊥ ⊂ Pk is the set of all♦ ∈ Pk such that♦f = 0 for all
f ∈ C∞(M).

Convention 3.3.For eachY ∈ Γ (V ⊗k) andu ∈ Γ (T (V )) set

♦Y u = iY
(
♦u

) ∈ Γ (T (V ))

HereiY is interior multiplication byY acting on the firstk factors of♦u.

Remark 3.1.Observe that♦Y acts on the ringC∞(M) as a derivation, by (c).

Remark 3.2.Every element ofPk can be written as a finite sum of ”pure” elements
θ ⊗ ♦, whereθ ∈ Γ (∧kV ∗) and♦ ∈ P0. The Leibniz rule (c) forθ ⊗ ♦ reads(

θ ⊗ ♦)(u ⊗ v) = θ ⊗ (♦u)⊗ v + θ ⊗ u⊗ (♦v)
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4

Remark 3.3.Let I be an index set,|I| = 4. LetF(a), a ∈ I, be local sections ofV that
are a frame for fibers ofV . Let λ(a), a ∈ I, be the dual frame. For every♦ ∈ Pk and
Y ∈ Γ (V ⊗k), property (d) in Definition 3.1 implies

0 = ♦Y I = ♦Y
(
λ(a) ⊗ F(a)

)
=

(
♦Y λ(a)

)⊗ F(a) + λ(a) ⊗ (
♦Y F(a)

)
Consequently,(♦Y λ(a))(F(b)) = −λ(a)

(
♦Y F(b)

)
for all a, b ∈ I. Now, the Leibniz

rule (c) implies
(♦Y ξ)(Z) = ♦Y (ξ(Z))− ξ(♦Y Z) (3.2)

for all ξ ∈ Γ (V ∗) andZ ∈ Γ (V ).

Definition 3.2. Letm, k1, . . . , kℓ ≥ 0 be integers, andk = k1 + . . . + kℓ. The multi
(k1, . . . , kℓ) wedge product operator shifted bym is the linear map

∧(m)
k1,...,kℓ

: Γ
(
(∧mV ∗)⊗ (∧k1V ∗)⊗ · · · ⊗ (∧kℓV ∗)⊗ T (V )

)
→ Γ

(
(∧mV ∗)⊗ (∧kV ∗)⊗ T (V )

)
determined byξ⊗ν1⊗· · ·⊗νℓ⊗u 7→ ξ⊗(

ν1∧· · ·∧νℓ
)⊗u. Set∧k1,...,kℓ

= ∧(0)
k1,...,kℓ

.

Remark 3.4.We have

∧k1,k2+k3∧(k1)
k2,k3

= ∧k1,k2,k3
♦∧k2,k3 = ∧(k1)

k2,k3
♦

for any♦ ∈ Pk1 .

Proposition 3.1.For all ♦ ∈ Pk, ♦/ ∈ Pℓ, set

J♦,♦/K = ∧k,ℓ♦♦/ − (−1)kℓ ∧ℓ,k ♦/♦ (3.3)

ThenJ♦,♦/K ∈ Pk+ℓ and moreover,
(P0 ⊕ P1, J · , · K) is a Lie superalgebra, with

P0 =
⊕

k≥0 evenPk andP1 =
⊕

k≥0 oddPk.

Proof. To see thatJ♦,♦/K ∈ Pk+ℓ, consider first the special case whenk = ℓ = 0. In
this caseJ♦,♦/K = ♦♦/ −♦/♦. Properties (a), (b), (d) in Definition 3.1 hold. The Leibniz
rule (c) holds:

J♦,♦/K(u ⊗ v) = ♦♦/(u ⊗ v)− ♦/♦(u ⊗ v)

= ♦
(
(♦/u)⊗ v

)
+ ♦

(
u⊗ (♦/v)

) − ♦/
(
(♦u)⊗ v

)− ♦/
(
u⊗ (♦v)

)
= (♦♦/u)⊗ v + (♦/u)⊗ (♦v) + (♦u)⊗ (♦/v) + u⊗ (♦♦/v)

− (♦/♦u)⊗ v − (♦u)⊗ (♦/v)− (♦/u)⊗ (♦v) − u⊗ (♦/♦v)
=

(J♦,♦/Ku)⊗ v + u⊗ (J♦,♦/Kv)
For property (e), note that there areµ, µ/ ∈ C∞(M) such that♦h = µh and♦/h = µ/h.

J♦,♦/Kh = ♦(µ/h) − ♦/(µh) = (♦µ/)h + µ/µh− (♦/µ)h− µµ/h =
(
♦µ/ − ♦/µ

)
h

Therefore, (e) holds. For generalk, ℓ, (a), (b) and (d) still hold. For the Leibniz rule
(c), observe that both sides of (3.3) are bilinear overR in ♦ and♦/ . It therefore suffices

18



5

to consider the case when♦ = θ ⊗ ♦0 and♦/ = θ/ ⊗ ♦/0, where♦0,♦/0 ∈ P0 and
θ ∈ Γ (∧kV ∗) andθ/ ∈ Γ (∧ℓV ∗). In this case,

J♦,♦/K = ∧k,ℓ θ ⊗ ♦0

(
θ/ ⊗ ♦/0

)− (−1)kℓ ∧ℓ,k θ/ ⊗ ♦/0

(
θ ⊗ ♦0

)
= (θ ∧ θ/)⊗ J♦0,♦/0K +

(
θ ∧ (♦0θ/)

)⊗ ♦/0 −
(
(♦/0θ) ∧ θ/

)⊗ ♦0 (3.4)

Each term separately satisfies the Leibniz rule (the first oneby the special casek = ℓ =
0), and (c) holds. Property (e) also follows from (3.4).
To see thatJ · , · K : Pk × Pℓ → Pk+ℓ is a Lie superbracket, observe that

J♦/,♦K = ∧ℓ,k♦/♦ − (−1)kℓ ∧k,ℓ ♦♦/
= (−1)1+kℓ

( ∧k,ℓ ♦♦/ − (−1)kℓ ∧ℓ,k ♦/♦
)

= (−1)1+kℓJ♦,♦/K
Let ♦1 ∈ Pk1 , ♦2 ∈ Pk2 , ♦3 ∈ Pk3 . Then

J♦1, J♦2,♦3KK = ∧k1,k2+k3♦1 ∧k2,k3 ♦2♦3 − (−1)k2k3∧k1,k2+k3♦1 ∧k3,k2 ♦3♦2

− (−1)k1(k2+k3)∧k2+k3,k1∧k2,k3♦2♦3♦1

+ (−1)k1(k2+k3)+k2k3∧k2+k3,k1 ∧k3,k2 ♦3♦2♦1

By Remark 3.4,

(−1)k1k3J♦1, J♦2,♦3KK
= (−1)k1k3∧k1,k2,k3♦1♦2♦3 − (−1)k1k2∧k2,k3,k1♦2♦3♦1

− (−1)k3(k1+k2)∧k1,k3,k2♦1♦3♦2 + (−1)k2(k1+k3)∧k3,k2,k1♦3♦2♦1

Adding,

(−1)k1k3J♦1, J♦2,♦3KK + (−1)k2k1J♦2, J♦3,♦1KK + (−1)k3k2J♦3, J♦1,♦2KK = 0

⊓⊔
Convention 3.4.The symbolJ denotes a finite index set. The setJ and its length|J |
may change from occurrence to occurrence. Boldface small Latin indicesa,b, . . . take
values inJ . Boldface Capital Latin indices are multiindices, that is,elements ofJ k for
somek ≥ 0. The length of a multiindexA = (a1, . . . ,ak) will be denoted|A| = k.
We writeXA = Xa1 ⊗ · · · ⊗Xak

, for various types of objectsX .

Definition 3.3. LetJ be an index set and letA, B1, . . . , Bℓ beJ -multiindices such
that |A| = |B1| + . . . + |Bℓ| = k. Let A = (a1, . . . ,ak) and letB1|| · · · ||Bℓ =
(b1, . . . ,bk) be the concatenation ofB1 throughBℓ. Set

AA
B1···Bℓ = 1

|B1|! ··· |Bℓ|!
∑
π∈Sk

sgn(π)δaπ(1)
b1 · · · δaπ(k)

bk (3.5)

The index setJ is implicit in (3.5)and will be specified every time it is used.

Remark 3.5.AA
BCAB

DE = AA
DEC where|A| = |B|+ |C| = |D|+ |E|+ |C|.
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Remark 3.6.Let ♦ ∈ Pk, Y ∈ Γ (V ⊗k) andz ∈ Γ (T (V )). Then

[z⊗ ,♦Y ] = −(♦Y z)⊗ (3.6)

as operators acting onΓ (T (V )), and[ · , · ] is the commutator of operators.

Remark 3.7.Equation (3.3) is equivalent to

iYAJ♦,♦/K
= AA

BC
(
iYB⊗YC♦♦/ − iYC⊗YB♦/♦

)
(3.7a)

= AA
BC

(
♦YB♦/YC − ♦/YC♦YB

)−AA
BcE♦/ (♦YB

Yc)⊗YE
+ AA

bDC♦(♦/YC
Yb)⊗YD

(3.7b)

HereY1, . . . , Yk+ℓ are any sections ofV . Moreover,J = {1, . . . , k + ℓ} andA =
(1, . . . , k + ℓ), see Convention 3.4. TheJ -multiindices have length|A| = k + ℓ,
|B| = k, |C| = ℓ. Also, i is interior multiplication as in Convention 3.3.
To check (3.7b), use (3.6) withY = YB andz = YC and apply it to♦/u. Then,

YC ⊗ (
♦YB♦/u

)− ♦YB

(
YC ⊗ ♦/u

)
= −(

♦YBYC

)⊗ ♦/u

Both sides are sections ofΓ (V ⊗ℓ ⊗ ∧ℓV ∗ ⊗ T (V )). Contracting the firstℓ with the
secondℓ factors, we obtain (since diamonds commute with contractions)

iYC

(
♦YB♦/u

)− ♦YB

(
iYC♦/u

)
= −i♦YB

YC

(
♦/u

)
This is equivalent to (sinceiYCiYB = iYB⊗YC)

iYB⊗YC

(
♦♦/u

)
= ♦YB

(
♦/YCu

)− (
♦/♦YB

YC

)
u (3.8)

With Remark 3.7, we obtain the following corollary of Proposition 3.1.

Corollary 3.1. For all ♦ ∈ P1 andY1, Y2 ∈ Γ (V ),

1
2J♦,♦KY1⊗Y2 =

(
iY1⊗Y2 − iY2⊗Y1

)
♦♦

= ♦Y1♦Y2 − ♦Y2♦Y1 − ♦♦Y1Y2−♦Y2Y1

Definition 3.4. g(V,H) is the subbundle ofEnd(V ) whose fiber atp ∈ M is all A ∈
End(V )p for which there is aλ ∈ R so that

hp(AY1, Y2) + hp(Y1, AY2) = λ hp(Y1, Y2) (3.9)

for all Y1, Y2 ∈ Vp. Herehp ∈ (Sym2 V ∗)p is a representative forHp. For eachk ≥ 0,
set

Rk = Γ
(∧kV ∗ ⊗ g(V,H)

)
Remark 3.8.The definition of the vector bundleg(V,H) does not depend on the choice
of a representativeh. The fibers ofg(V,H) have dimension 7. Each fiber is a Lie algebra
isomorphic to the Lie algebra of the groupR+ × O(1, 3), the direct product of the
multiplicative group of positive real numbers with the Lorentz group.
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Proposition 3.2.For all ♦ ∈ Pk⊥ andY ∈ Γ (V ⊗k) andZ ∈ Γ (V ) set

β(♦)Y Z = ♦Y Z ∈ Γ (V )

Thenβ(♦)Y ∈ Γ (g(V,H)) ⊂ Γ (End(V )) andβ(♦) ∈ Rk. The map

β : Pk⊥ →Rk

♦ 7→ β(♦)

is a bijection.

Proof. First,β(♦) ∈ Γ (∧kV ∗ ⊗ End(V )) becauseβ(♦)Y Z is linear overC∞(M) in
bothY andZ, by the assumption that♦ ∈ Pk⊥. We have to show thatβ(♦) ∈ Rk. Let
h be a representative ofH. Then

0 = ♦Y (h(Z1, Z2))
= (♦Y h)(Z1, Z2) + h(♦Y Z1, Z2) + h(Z1,♦Y Z2)
= µ(Y ) h(Z1, Z2) + h(β(♦)Y Z1, Z2) + h(Z1, β(♦)Y Z2)

for all Z1, Z2 ∈ Γ (V ), andµ as in (e) of Definition 3.1. Hence,β(♦) ∈ Rk. Also,

• β is injective. In fact,β(♦) = 0 implies that♦ annihilates functions, sections ofV
and, by equation (3.2), sections ofV ∗. By (a), (c) in Definition 3.1, we have♦ = 0.
• β is surjective. GivenΥ ∈ Rk, set

♦Y f = 0 ♦Y Z = ΥY Z (♦Y ξ)(Z) = −ξ(ΥY Z)

for all f ∈ C∞(M), Z ∈ Γ (V ), ξ ∈ Γ (V ∗) and allY ∈ Γ (V ⊗k). Together with
(a),(c) in Definition 3.1, they uniquely determine♦Y u for all u ∈ Γ (T (V )), and
(b), (d), (e) in Definition 3.1 are automatic.♦ ∈ Pk⊥ satisfiesβ(♦) = Υ .
⊓⊔

4. From Diamonds of degree one to Lorentzian Geometry

In this section, we characterize the elements ofP1 that correspond to Lorentzian ge-
ometries. Conversely, we show that every Lorentzian manifold (locally) arises from an
element ofP1. The Einstein vacuum equations are reinterpreted as conditions on ele-
ments ofP1, to motivate their reformulation in Section 5.
This section is outside the overall technical development of this paper. Its purpose is to
connect the present formalism with traditional approaches.

Proposition 4.1.For all ♦ ∈ P1 there is a unique vector bundle homomorphism

E♦ : V → TM or, equivalently, E♦ ∈ Γ (V ∗ ⊗ TM) (4.1)

such that(E♦(Y ))(f) = ♦Y (f) for all Y ∈ Γ (V ) andf ∈ C∞(M).

Proof. The operator♦Y acts as a derivation onC∞(M) and is linear overC∞(M) in
Y , by Definition 3.1. ⊓⊔
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Definition 4.1. A ♦ ∈ P1 is callednon-degenerateif and only ifE♦ is a vector bundle
isomorphism. The canonical extension ofE♦ fromV to T (V ) is also denoted by

E♦ : T (V ) → T (TM)

The extension is a vector bundle isomorphism determined by

• E♦(f) = f for all f ∈ C∞(M)
• E♦(u⊗ v) = E♦(u)⊗ E♦(v) for all u, v ∈ Γ (T (V ))
• E♦(IV ) = ITM whereIV ∈ Γ (End(V )), ITM ∈ Γ (End(TM)) are the identities

Proposition 4.2.Let♦ ∈ P1 be non-degenerate. LetE = E♦ and set

∇♦ : Γ (T (TM)) → Γ (T ∗M ⊗ T (TM)) ∇♦
Xu = E

(
♦E−1(X)E−1(u)

)
for all X ∈ Γ (TM) andu ∈ Γ (T (TM)). Then∇♦ is a connection on the tensor
bundleT (TM) such that for allX ∈ Γ (TM),

• ∇♦ is linear overR
• ∇♦

Xf = X(f) for all f ∈ C∞(M)
• ∇♦

X mapsC∞(M) → C∞(M), Γ (TM) → Γ (TM) andΓ (T ∗M) → Γ (T ∗M)
• ∇♦

X(u⊗ v) = (∇♦
Xu)⊗ v + u⊗ (∇♦

Xv) for all u, v ∈ Γ (T (TM))
• ∇♦I = 0 whereI ∈ Γ (End(TM)) is the identity.

Proof. By direct verification. ⊓⊔
Lemma 4.1.Let ♦ ∈ P1 be non-degenerate. Let∇ = ∇♦, E = E♦. For all Xi ∈
Γ (TM), i = 1, 2, andv ∈ Γ (T (TM)) and correspondingYi = E−1(Xi) ∈ Γ (V ),
i = 1, 2, andz = E−1(v) ∈ Γ (T (V )):

(a)
(∇X1∇X2 −∇X2∇X1 −∇∇X1X2−∇X2X1

)
v = 1

2 E
(J♦,♦KY1⊗Y2z

)
(b) J♦,♦K ∈ P2

⊥ if and only if∇ is torsion-free

Let h be a representative forH and let♦h = µ ⊗ h as in (e) of Definition 3.1. Let
ν = E(µ) ∈ Γ (T ∗M). For all Xi andYi as above,i = 1, 2, and allf ∈ C∞(M):

(c)∇X1

(E(efh)
)

= ef (df + ν)(X1) E(h)

(d) dν(X1, X2) h− ν
(
∇X1X2 −∇X2X1 − [X1, X2]

)
h = 1

2J♦,♦KY1⊗Y2h

Proof. We verify (a) through (d):

(a) The left hand side is equal toE((
♦Y1♦Y2 − ♦Y2♦Y1 − ♦♦Y1Y2−♦Y2Y1

)
z
)
, by the

definition of∇ = ∇♦, see Proposition 4.2. Now use Corollary 3.1.
(b) Let v ∈ C∞(M) in (a). Thenz = v. We obtain−∇T (X1,X2)v = 1

2 J♦,♦KY1⊗Y2v.
The torsionT of ∇ vanishes if and only ifJ♦,♦K ∈ P2

⊥.
(c)

∇X1

(E(efh)
)

= ef df(X1) E(h) + ef ∇X1

(E(h)
)

∇X1

(E(h)
)

= E(
♦E−1(X1)h

)
= E(

µ(E−1(X1)) h
)

= ν(X1) E(h)

(d) Letz = h in (a). Thenv = E(h). Rewrite the result using (c) withf = 0.

This concludes the proof.⊓⊔
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Convention 4.1.Let π : E → B be a vector bundle. For everyS ∈ Γ (End(E)) we
denote bytr(S) ∈ C∞(B) its trace as a linear map.

Proposition 4.3.LetM be simply connected. Let♦ ∈ P1 and suppose

(a) ♦ is non-degenerate
(b) 1

2J♦,♦K ∈ P2
⊥

(c) tr(ΥY1⊗Y2) = 0 for all Y1, Y2 ∈ Γ (V ), where

Υ = β(1
2J♦,♦K) ∈ R2

Fix any representativeh′ for H, and let♦h′ = µ⊗ h′ as in (e) of Definition 3.1.
Part 1:The 1-formν = E♦(µ) ∈ Γ (T ∗M) is exact,ν = −df with f ∈ C∞(M).
Part 2:Let h be a representative ofH. Then∇♦ is the Levi-Civita connection for the
Lorentzian metricE♦(h) ∈ Γ (Sym2 T ∗M) if and only ifh = ef+Ch′ for someC ∈ R.
Part 3:The associated Riemann curvatureR♦ is given by

R♦(X1, X2)X3 = E♦
(
ΥY1⊗Y2Y3

)
∈ Γ (TM) (4.2)

for all Xi ∈ Γ (TM) andYi = (E♦)−1(Xi) ∈ Γ (V ), i = 1, 2, 3.

Remark 4.1.Part 2 of Proposition 4.3 implies that:There is a representativeh of H,
unique up to an overall constant multiplicative factor, such that∇♦ is the Levi-Civita
connection forE♦(h). In particular, the assignment♦ 7→ E♦(h) is canonical (indepen-
dent of the choice ofh′), modulo an overall constant multiplicative factor.

Proof. We use Lemma 4.1 with the understanding that the representative for H in
Lemma 4.1 ish′. Thenν in Lemma 4.1 coincides withν in Proposition 4.3.
Part 1: (b) implies that∇♦ is torsion-free by Lemma 4.1.(b). Thendν(X1, X2)h′ =
1
2J♦,♦KY1⊗Y2h

′ by Lemma 4.1.(d). Contracting with(h′)−1 gives 4 dν(X1, X2) =
1
2 i(h′)−1

(J♦,♦KY1⊗Y2h
′) wherei denotes interior multiplication. That is, both factors

of
(J♦,♦KY1⊗Y2h

′) ∈ Γ (Sym2 V ∗) are contracted with(h′)−1 ∈ Γ (Sym2 V ). Let I,
F(a) andλ(a), a ∈ I, be as in Remark 3.3. Lethab be the components ofh′, that is,
h′ = habλ

(a) ⊗ λ(b) andh′ = habF(a) ⊗ F(b), where(hab) is the inverse of(hab). By
direct calculation,

1
2 i(h′)−1

(J♦,♦KY1⊗Y2h
′) =

(J♦,♦KY1⊗Y2 λ
(a)

)
(F(a)) = −λ(a)

(J♦,♦KY1⊗Y2 F(a)

)
= −2 tr

(
ΥY1⊗Y2

)
For the last equality, bear in mind that1

2J♦,♦K andΥ coincide in their actions on sec-
tions ofV . It follows from the last identity thatdν(X1, X2) = − 1

2 tr
(
ΥY1⊗Y2

)
, which

vanishes for allX1, X2 ∈ Γ (TM) by (c). Therefore,dν = 0. SinceM is simply con-
nected, there is, by the Poincare Lemma, anf ∈ C∞(M) with df = −ν.
Part 2:∇♦ is torsion-free.∇♦ is compatible with the Lorentzian metricE(eF h′) if and
only if F = f + C for someC ∈ R, see Lemma 4.1.(c).
Part 3: Use Lemma 4.1.(a) withv = X3 and recall that∇♦ is torsion-free. ⊓⊔
Remark 4.2.To connect the Lie superalgebra identityJ♦, J♦,♦KK = 0 with the classical
algebraic and differential Bianchi identities forR♦, we derive an identity. First of all,
suppose that♦ ∈ P1 and♦/ ∈ P2

⊥. ThenΥ = β(♦/) ∈ R2 is defined. LetJ = {1, 2, 3}.
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For all Yi ∈ Γ (V ), i ∈ J , andZ ∈ Γ (V ), we have for anyJ -multiindexC with
|C| = 2,

iYb⊗YC⊗Z
(
♦Υ

)
= iYb⊗YC

(
♦♦/Z

)− iYC⊗Yb

(
♦/♦Z

)− ♦ΥYC
Yb
Z

Multiply by AA
bC, whereA = (1, 2, 3), sum and obtain, by equation (3.7a),

AA
bCiYb⊗YC⊗Z

(
♦Υ

)
= J♦,♦/KYAZ −AA

bC♦ΥYC
Yb
Z

In the special case whenJ♦,♦K ∈ P2
⊥ and when♦/ = 1

2J♦,♦K, the first term on right
hand side vanishes by the Lie superalgebra identityJ♦, J♦,♦KK = 0. The left hand side
is linear overC∞(M) in Z, and so must be the right hand side. If♦ is non-degenerate,
the last observation implies the ”algebraic Bianchi identity”

AA
bCΥYCYb = 0

whereΥ = β
(

1
2J♦,♦K). Consequently, we also have the ”differential Bianchi identity”

AA
bCiYb⊗YC⊗Z

(
♦Υ

)
= 0

Finally, if ♦ satisfies all the assumptions of Proposition 4.3, then we obtain the tradi-
tional Bianchi identities for the associated Riemann curvatureR♦.

Proposition 4.4.LetM be simply connected, and assume we are given

(a) a vector bundle isomorphismE/ : V → TM
(b) a representativeh/ for H

Let h′ = h/ in Proposition 4.3. Then, there is a unique♦ ∈ P1 which satisfies the
assumptions of Proposition 4.3 such thatE♦ = E/ and such thatµ = 0 in Proposition
4.3.

Remark 4.3.Observe that (a) and (b) induce the Lorentzian metricE/(h/) onM . Con-
versely, every Lorentzian metric arises locally from such aconstruction.

Proof. We use Lemma 4.1 with the understanding that the representative for H in
Lemma 4.1 ish/ . Thenν in Lemma 4.1 coincides withν in Proposition 4.3.
We first prove existence. The canonical extension ofE/ fromV to T (V ) is also denoted
by E/ : T (V ) → T (TM) (just as in Definition 4.1). Let∇/ be the Levi-Civita connec-
tion associated withE/(h/) ∈ Γ (Sym2 T ∗M), a metric with signature(−,+,+,+). For
all Y ∈ Γ (V ) andu ∈ Γ (T (V )), set♦Y u = E/−1(∇/E/ (Y )E/(u)) ∈ Γ (T (V )). By direct
inspection,♦ ∈ P1 (see Definition 3.1). ThenE/ = E♦ and∇/ = ∇♦. In particular,
♦ is non-degenerate. Lemma 4.1.(b) implies thatJ♦,♦K ∈ P2

⊥, because∇♦ = ∇/ is
torsion-free. Lemma 4.1.(c) impliesν = 0 because∇♦ = ∇/ is compatible with the
metricE/(h/). Now Lemma 4.1.(d) implies12J♦,♦KY1⊗Y2h/ = 0 for all Y1, Y2. This im-
pliestr(ΥY1⊗Y2) = 0, whereΥ = β(1

2J♦,♦K). This concludes the existence proof. To
prove uniqueness, assume there are two such♦ ∈ P1. Then theirE♦ = E/ coincide,
and their∇♦ coincide, because they are the Levi-Civita connection for the same metric
E♦(h/) by Proposition 4.3. Then the two♦’s must be the same.⊓⊔
Proposition 4.5.LetM be simply connected. Let♦ ∈ P1 be non-degenerate. The fol-
lowing are equivalent:
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(a) ♦ satisfies the assumptions of Proposition 4.3, and the associated Lorentzian mani-
fold is Ricci-flat

(b) 1
2J♦,♦K ∈ P2

vac

(c) there is an♦/ ∈ P2
vac such that♦/ = 1

2J♦,♦K andJ♦,♦/K = 0

See Definition 5.1 below forP2
vac.

Proof. (c) implies (b), and conversely, (b) implies (c) by setting♦/ = 1
2J♦,♦K and using

the super Jacobi identity to conclude thatJ♦,♦/K = 1
2J♦, J♦,♦KK = 0. The equivalence

of (a) and (b) follows by comparing for each row of the following table the correspond-
ing condition/assumption in Proposition 4.3 and Definition5.1:

Proposition 4.3 Definition 5.1 with♦/ = 1
2J♦,♦K, k = 2

(b) the assumption♦/ ∈ P2
⊥

alg. Bianchi identity forR♦ and (4.2) (a)
(c) (b)

Ricci flatness and (4.2) (c.2)

This concludes the proof.⊓⊔

5. Reformulation of the Einstein vacuum equations

In the next definition, the index setJ = {1, . . . , k + 1} andA = (1, . . . , k + 1), and
B is aJ -multiindex of length|B| = k.

Definition 5.1. The ”vacuum subspace”Pkvac ⊂ Pk⊥, k = 2, 3, 4, is the set of all♦ ∈
Pk⊥ such that the associatedΥ = β(♦) ∈ Rk satisfies for allYi ∈ Γ (V ), i ∈ J ,

(a) AA
BcΥYBYc = 0

(b) tr(ΥYB) = 0 for B = (1, . . . , k)
(c.2) fork = 2: C(Υ ) = 0 whereC is the contraction operator for the index pair(2, 4)
(c.3) fork = 3: C(Υ ⊗ h−1) = 0 whereC contracts(1, 5), (3, 6) and(4, 7)

In (c.2) we regardΥ as a section of(V ∗)⊗3 ⊗ V ⊃ ∧2V ∗ ⊗ g(V,H).
In (c.3) we regardΥ⊗h−1 as a section of(V ∗)⊗4⊗V ⊗3 ⊃ ∧3V ∗⊗g(V,H)⊗Sym2 V .
Here,h is any representative ofH. All contractions are natural pairings ofV with V ∗.

See Definition 6.1 and Proposition 6.1 for a discussion ofPkvac in index notation.

We now adopt verbatim, from Section 2, the definitions ofD, A0 andA1, with the
understanding thatL0 = P0 andL1 = P1, see Proposition 3.1. In particular, for all
� = (♦,♦/) ∈ P1 × P2 ⊂ A1 and�′ = (♦′,♦/ ′) ∈ P2 × P3 ⊂ A0, we have

D�� =
(
♦/ − 1

2J♦,♦K, J♦,♦/K) ∈ P2 × P3 ⊂ A0 (5.1a)

D��′ =
(
♦/ ′ − J♦,♦′ K, J♦,♦/ ′ K + J♦′,♦/K) ∈ P3 × P4 ⊂ A1 (5.1b)

The Einstein vacuum equations are now reformulated as:

Find� ∈ P1 × P2
vac such thatD�� = 0. (5.2)
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Remark 5.1.Proposition 4.5 justifies the expression ”reformulationof the Einstein vac-
uum equations”. Notice that, in contrast to Proposition 4.5, we do not requireω to be
non-degenerate. Degenerate solutions may not be physically interesting in themselves.
However, they can be used as a mathematical tool, to construct nearby non-degenerate
solutions.

We now derive algebraic and differential identities.

Lemma 5.1.For all (k, ℓ) ∈ {(1, 2), (2, 2), (1, 3)}, all ♦ ∈ Pk and all ♦/ ∈ Pℓvac, we
haveJ♦,♦/K ∈ Pk+ℓvac .

Proof. In this proof, the index setJ = {1, . . . , k + ℓ} andA = (1, . . . , k + ℓ). First
show thatJ♦,♦/K ∈ Pk+ℓ⊥ . Equations (3.7b), (3.8) and Definition 5.1.(a) for♦/ ∈ Pℓvac
imply J♦,♦/KYAu = AA

BC

(
iYB⊗YC

(
♦♦/u

)− ♦/YC

(
♦YBu

))
(5.3)

We have used thatΥ♦/ = β(♦/) ∈ Rℓ satisfiesΥ♦/
Y Z = ♦/Y Z for all Y ∈ Γ (V ⊗ℓ)

andZ ∈ Γ (V ). The assumption♦/ ∈ Pℓ⊥ implies that♦/f = 0 for all f ∈ C∞(M),
and consequently by equation (5.3),J♦,♦/Kf = 0 for all f ∈ C∞(M). Therefore,J♦,♦/K ∈ Pk+ℓ⊥ .

We can now defineΥ♦/ = β(♦/) ∈ Rℓ andΥ J♦,♦/K = β(J♦,♦/K) ∈ Rk+ℓ. Equation
(5.3) withu = Z ∈ Γ (V ) is equivalent to

Υ
J♦,♦/K
YA

Z = AA
BCiYB⊗YC⊗Z

(
♦Υ♦/ )

(5.4)

Here♦Υ♦/ is a section of(V ∗)⊗(k+ℓ+1) ⊗ V ⊃ ∧kV ∗ ⊗ ∧ℓV ∗ ⊗ g(V,H). We now
check thatJ♦,♦/K ∈ Pk+ℓvac , by showing (a), (b) in Definition 5.1 forJ♦,♦/K. When
(k, ℓ) = (1, 2) we also have to check (c.3).

• The totally antisymmetric part of the right hand side of equation (5.4) with respect
to Y1, . . . , Yk+ℓ, Z vanishes by (a) for♦/ ∈ Pℓvac. Therefore, (a) holds forJ♦,♦/K.
• ♦YA commutes with natural contractions (pairings ofV with V ∗). Therefore, (b)
for ♦/ ∈ Pℓvac and equation (5.4) imply (b) forJ♦,♦/K.

This concludes the proof when(k, ℓ) ∈ {(2, 2), (1, 3)}. From here,(k, ℓ) = (1, 2).

• We must show (c.3). We must show thatC(Υ J♦,♦/K⊗ h−1) = 0, whereC contracts
the index-pairs(1, 5), (3, 6), (4, 7) (see the explanation at the end of Definition 5.1).
By writing out the sum on the right hand side of (5.4) (there are |P (1, 2)| = 3 terms),
we see that it suffices to show that the contractions

(3, 5), (2, 6), (4, 7) or (2, 5), (1, 6), (4, 7) or (1, 5), (3, 6), (4, 7) (5.5)

of (♦Υ♦/ )⊗ h−1 ∈ Γ ((V ∗)⊗4 ⊗ V ⊗3) all vanish. Recall that there is aµ ∈ Γ (V ∗)
such that♦h = µ⊗ h. Consequently,♦(h−1) = −µ⊗ (h−1). By the Leibniz rule,(

♦Υ♦/ )⊗ (h−1) =
(
♦ + µ⊗

)(
Υ♦/ ⊗ h−1

)
The contractions listed in (5.5) indeed vanish, because♦/ ∈ P2

vac. In the first set of
pairings, the contraction(3, 5) suffices. In the second,(2, 5) suffices. In the third,
(3, 6) and(4, 7) together suffice, by (b) and (c.2) for♦/ ∈ P2

vac.
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This concludes the proof.⊓⊔
Proposition 5.1.For all � ∈ P1 × P2

vac and all�′ ∈ P2 × P3
vac,

D�� ∈ P2 × P3
vac (5.6a)

D�D�� = 0 (5.6b)

D��′ ∈ P3 × P4
vac (5.6c)

Proof. Equations (5.6a) and (5.6c) follow from Lemma 5.1, equation(5.6b) follows
from Proposition 2.1. ⊓⊔
Remark 5.2.Equations (5.6a) and (5.6b) are, respectively, algebraic and differential
identities for the left hand side of the equationD�� = 0.

6. Components and Multiindices

In this section, the previous constructions are made concrete by introducing local coor-
dinates and components. For this purpose, fix

• an index setI with |I| = 4
• a constant symmetric matrix(gab)a,b∈I with signature(−,+,+,+)
• an open setU ⊂M
• a coordinate diffeomorphismρ : U → U ⊂ R4, p 7→ (ρµ(p))µ=1,2,3,4

• a representativeh of H overU
• sectionsF(a) of V overU , a ∈ I, such thath(F(a), F(b)) = gab

Convention 6.1.We denote by(gab)a,b∈I the inverse of(gab)a,b∈I .

Convention 6.2.(λ(a))a∈I are the sections ofV ∗ overU dual to(F(a))a∈I .

Convention 6.3.Standard Cartesian coordinates onU ⊂ R4 are denoted(xµ)µ=1,2,3,4.

Convention 6.4.Small Latin indices take values in the index setI. Capital Latin indices
are multiindices, that is, elements ofIk for somek ≥ 0. For example,A = (a1 . . . ak)
wherea1, . . . , ak ∈ I. The length of a multiindex will be denoted by|A| = k. More-
over,AA

BC is introduced just as in Definition 3.3, with the understanding that ordinary
Latin indices refer to the index setJ = I.

Convention 6.5.For any multiindexA = (a1 . . . ak), writeF(A) = F(a1)⊗· · ·⊗F(ak).

Definition 6.1.Sk is the real vector space of all(σ, τ) = (σAµ, τAmn), whereA is an
I-multiindex of length|A| = k andm,n ∈ I andµ = 1, 2, 3, 4, such that

(a) σ, τ are totally antisymmetric in their firstk lower indices,
(b) τAmℓgℓn + τAn

ℓgℓm = 1
2τAℓ

ℓgmn where|A| = k

The ”vertical subspace”Sk⊥ is the set of all(σ, τ) ∈ Sk such that

(c) σ = 0

The ”vacuum subspace”Skvac, 2 ≤ k ≤ 4, is the set of all(σ, τ) ∈ Sk⊥ such that

(d) AA
BτB

n = 0 where|A| = |B| = k + 1
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(e) τAmℓgℓn + τAn
ℓgℓm = 0 where|A| = k

(f.2) for k = 2: τanmn = 0
(f.3) for k = 3: gbmτabnmn = 0

Remark 6.1.Property (e) in Definition 6.1 impliesτAnn = 0.

Remark 6.2.We havedimR Sk = 11
(
4
k

)
anddimR Sk⊥ = 7

(
4
k

)
and

dimR S
2
vac = 10 dimR S

3
vac = 16 dimR S

4
vac = 6

Let Pk(U) be defined just as in Definition 3.1, withU instead ofM . Similarly for
Pk⊥(U) andPkvac(U).

Proposition 6.1.Part 1: Let ♦ ∈ Pk(U). Set

(σ♦)A
µ ◦ ρ = ♦F(A)ρ

µ (6.1a)(
(τ♦)Am

n ◦ ρ)F(n) = ♦F(A)F(m) (6.1b)

Then(σ♦, τ♦) ∈ C∞(U , Sk).
Part 2: For all (σ♦, τ♦) ∈ C∞(U , Sk) there is a unique♦ ∈ Pk(U) so that(6.1)hold.
Part 3: (σ♦, τ♦) ∈ C∞(U , Sk⊥) if and only if♦ ∈ Pk⊥(U).
Part 4: (σ♦, τ♦) ∈ C∞(U , Skvac) if and only if♦ ∈ Pkvac(U).

Remark 6.3.For all♦ ∈ Pk(U), equations (6.1) imply that for allf ∈ C∞(U):

♦F(A)f =
(
(σ♦)A

µ ∂
∂xµ

(
f ◦ ρ−1

)) ◦ ρ (6.2a)

♦F(A)λ
(m) = −(

(τ♦)An
m ◦ ρ)λ(n) (6.2b)

Proof (Proposition 6.1).Recall thath = gabλ
(a)⊗λ(b) is a representative forH overU .

Part 1: Use♦h = µ⊗ h, whereµ ∈ Γ (∧kV ∗|U ), substituteh = gabλ
(a)⊗λ(b) and use

the Leibniz rule to show that((τ♦)Am
ℓ ◦ ρ)gℓn + ((τ♦)An

ℓ ◦ ρ)gmℓ = −µ(F(A)) gmn.

Multiply with gmn, sum and obtain− 1
2 ((τ♦)Aℓ

ℓ ◦ ρ) = µ(F(A)). This implies (b)
in Definition 6.1. Part 2: Equations (6.1b), (6.2a) and (6.2b) together with (a), (c) in
Definition 3.1 determine♦ uniquely. Properties (b), (d), (e) in Definition 3.1 are then
automatic. This proves existence.♦ is unique, because for every♦ ∈ Pk(U), the equa-
tions (6.1) imply (6.2a), (6.2b). Part 3:♦ ∈ Pk⊥(U) iff ♦f = 0 for all f ∈ C∞(U) iff
σ♦ = 0, by equation (6.2a). Part 4 follows from Definition 5.1.⊓⊔
Proposition 6.2.Let ♦ ∈ Pk(U), ♦/ ∈ Pℓ(U). The superbracketJ♦,♦/K ∈ Pk+ℓ(U)
has the components

(σJ♦,♦/K)Aµ = AA
BC

(
(σ♦)B

ν ∂
∂xν (σ♦/ )C

µ − (σ♦/ )C
ν ∂
∂xν (σ♦)B

µ
)

−AA
BcE(τ♦)Bc

ℓ
(σ♦/ )ℓE

µ
+ AA

bDC(τ♦/ )Cb
ℓ
(σ♦)ℓD

µ

and

(τ J♦,♦/K)Amn = AA
BC

(
(σ♦)B

µ ∂
∂xµ (τ♦/ )Cm

n − (σ♦/ )C
µ ∂
∂xµ (τ♦)Bm

n
)

+ AA
BC

(
(τ♦/ )Cm

ℓ
(τ♦)Bℓ

n − (τ♦)Bm
ℓ
(τ♦/ )Cℓ

n
)

−AA
BcE(τ♦)Bc

ℓ
(τ♦/ )ℓEm

n
+ AA

bDC(τ♦/ )Cb
ℓ
(τ♦)ℓDm

n
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The multiindices have length

|A| = k + ℓ |B| = k |C| = ℓ |D| = k − 1 |E| = ℓ− 1

Proof. By direct calculation, using (3.7b) and Proposition 6.1. Equation (3.7b) with
Yi = F(ai) andA = (a1 . . . ak+ℓ) implies

J♦,♦/KF(A)u = AA
BC

(
♦F(B)

(
♦/F(C)u

)− ♦/F(C)

(
♦F(B)u

))
−AA

BcE♦/ (♦F(B)F(c)),F(E)
u+ AA

bDC♦(♦/F(C)F(b)),F(D)
u

= AA
BC

(
♦F(B)

(
♦/F(C)u

)− ♦/F(C)

(
♦F(B)u

))
−AA

BcE
(
(τ♦)Bc

ℓ ◦ ρ)♦/F(ℓ),F(E)u

+ AA
bDC

(
(τ♦/ )Cb

ℓ ◦ ρ)♦F(ℓ),F(D)u

To calculateσJ♦,♦/K, setu = ρµ and use (6.1) and (6.2) repeatedly. To calculateτ J♦,♦/K,
setu = F(m). ⊓⊔
Propositions 6.1 and 6.2 enable us to write down all the equations of Section 5 explicitly.
See Section 8.

7. Covariance

For this section, fix

• M , V , H just as at the beginning of Section 3
• another such triplẽM , Ṽ , H̃

• open subsetsU ⊂M andŨ ⊂ M̃

• a diffeomorphismψ : Ũ → U

• a vector bundle isomorphismφ : W̃ = Ṽ |eU →W = V |U so thatπW ◦φ = ψ ◦πfW
We require that

• for each representativẽh of H̃ overŨ , φ(h̃) ∈ Γ (Sym2W ∗) is a representative for
H overU .

Convention 7.1.As always, there is a canonical extension ofφ to a vector bundle iso-
morphismT (W̃ ) → T (W ), which we also denote asφ. For every sectionu ∈ T (W̃ )
we denote byφ(u) = φ ◦ u ◦ ψ−1 the corresponding section ofT (W ).

LetPk(U) andPk(Ũ) be defined just as in Definition 3.1.

Proposition 7.1.For all ♦ ∈ Pk(U) and all Ỹ ∈ Γ (W̃⊗k) andũ ∈ T (W̃ ), set

♦̃eY ũ = φ−1
(
♦Y u

)
(7.1)

whereY = φ(Ỹ ) ∈ Γ (W⊗k) andu = φ(ũ) ∈ Γ (T (W )). Then♦̃ ∈ Pk(Ũ). The map
Pk(U) → Pk(Ũ), ♦ 7→ ♦̃ = φ−1(♦)

• is a bijection that mapsPk⊥(U) → Pk⊥(Ũ) andPkvac(U) → Pkvac(Ũ),
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• Jφ−1(♦1), φ−1(♦2)K = φ−1
(J♦1,♦2K) for all ♦1,♦2 ∈ Pk(Ũ).

Proof. By construction. ⊓⊔
We will now spell out the transformation law♦ 7→ ♦̃ (see Proposition 7.1) in compo-
nents. For this purpose, we fix additional objects, as at the beginning of Section 6:

• I and(gab)
• ρ : U → U ⊂ R4 andh and(F(a))
• ρ̃ : Ũ → Ũ ⊂ R4 andh̃ and(F̃(a))

Define

• χ : Ũ → U by the following commuting diagram:

W̃
φ //

πfW
��

W

πW

��
Ũ

ψ //

eρ
��

U

ρ

��
Ũ

χ // U

(7.2)

• Ω : Ũ → (0,∞) by
h̃ = φ−1(h) (Ω ◦ ρ̃)−2 (7.3)

• a matrix valued map(Λab)a,b∈I on Ũ by

F̃(a) = φ−1
(
F(b)

) (
Λba ◦ ρ̃

)
(7.4)

• the componentsJν
µ ∈ C∞(Ũ) of the inverse of the Jacobian ofχ by

Jν
µ =

(
∂
∂xν (χ−1)µ

)
◦ χ or, equivalently,

(
∂
∂exν χ

α
)
Jα

µ = δν
µ (7.5)

Convention 7.2.Standard Cartesian coordinates onU ⊂ R4 andŨ ⊂ R4 are denoted
(xµ)µ=1,2,3,4 and(x̃µ)µ=1,2,3,4 respectively.

Remark 7.1.Equations (7.3), (7.4) andh(F(a), F(b)) = gab, h̃(F̃(a), F̃(b)) = gab imply

gab = gkℓ
(

1
ΩΛ

k
a

) (
1
ΩΛ

ℓ
b

)
(7.6)

on Ũ . In other words,( 1
ΩΛ

a
b) is a Lorentz transformation matrix.

Proposition 7.2.Let ♦ ∈ Pk(U) and♦̃ = φ−1(♦) ∈ Pk(Ũ). Let (σ, τ) and(σ̃, τ̃ ) be
the components of♦ and♦̃, respectively, as in Proposition 6.1. (These components are
functions onU andŨ .) We have oñU
σ̃ µ
A =

(
σB

ν ◦ χ)
ΛBA Jν

µ (7.7a)

τ̃ n
Am = 1

Ω2 (τBkℓ ◦ χ)ΛBAΛkmΛℓn + 1
Ω2 (σBν ◦ χ)ΛBAJνµ

(
∂
∂exµΛ

ℓ
m

)
Λℓ

n (7.7b)

HereA = (a1 . . . ak),B = (b1 . . . bk),ΛBA = Λb1a1 · · ·Λbk
ak

andΛℓ
n = gℓaΛ

a
bg
bn.
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Remark 7.2.Setϕ = χ−1 andKν
µ = ∂

∂xν ϕ
µ andΘ = Ω ◦ ϕ and∆a

b = Λab ◦ ϕ.
Then (7.7) is equivalent to

σ̃ µ
A ◦ ϕ = σB

ν ∆B
AKν

µ (7.8a)

τ̃ n
Am ◦ ϕ = 1

Θ2 τBk
ℓ∆B

A∆
k
m∆ℓ

n + 1
Θ2 σB

ν∆B
A

(
∂
∂xν∆

ℓ
m

)
∆ℓ

n (7.8b)

Proof (Proposition 7.2).Calculate

σ̃ µ
A ◦ ρ̃ = ♦̃ eF(A)

ρ̃µ

=
(
ΛBA ◦ ρ̃

)
♦̃φ−1(F(B))

(
(χ−1)µ ◦ ρ ◦ ψ

)
=

(
ΛBA ◦ ρ̃

)(
♦F(B)

(
(χ−1)µ ◦ ρ)) ◦ ψ

=
(
ΛBA ◦ ρ̃

)(
σB

ν ∂
∂xν (χ−1)µ)

)
◦ ρ ◦ ψ

Compose with̃ρ−1 from the right, and obtain equation (7.7a). To show (7.7b), use(
τ̃ n
Am ◦ ρ̃)F̃(n) = ♦̃ eF(A)

F̃(m)

(see equation (6.1b)) and calculate(
τ̃ n
Am ◦ ρ̃)φ−1(F(ℓ))

(
Λℓn ◦ ρ̃

)
=

(
ΛBA ◦ ρ̃

)
♦̃φ−1(F(B))

(
φ−1(F(ℓ)) (Λℓm ◦ ρ̃)

)
=

(
ΛBA ◦ ρ̃

) {
(Λkm ◦ ρ̃) ♦̃φ−1(F(B))φ

−1(F(k)) + φ−1(F(ℓ)) ♦̃φ−1(F(B))(Λ
ℓ
m ◦ ρ̃)

}
=

(
ΛBA ◦ ρ̃

){
(Λkm ◦ ρ̃) φ−1

(
♦F(B)F(k)

)
+

(
♦F(B)

(
Λℓm ◦ χ−1 ◦ ρ)) ◦ ψ}

φ−1(F(ℓ))

=
(
ΛBA ◦ ρ̃

){
(Λkm ◦ ρ̃)

(
τBk

ℓ ◦ ρ ◦ ψ)
+

(
σB

ν ∂
∂xν

(
Λℓm ◦ χ−1

)) ◦ ρ ◦ ψ}
φ−1(F(ℓ))

=
(
ΛBA ◦ ρ̃

){
(Λkm ◦ ρ̃)

(
τBk

ℓ ◦ ρ ◦ ψ)
+

((
∂
∂exµΛ

ℓ
m

) ◦ ρ̃) (
σB

ν ∂
∂xν

(
χ−1

)µ) ◦ ρ ◦ ψ}
φ−1(F(ℓ))

From both sides, factor outφ−1(F(ℓ)), compose with̃ρ−1 from the right, and obtain
(7.7b). ⊓⊔

8. Instruction manual

The purpose of this section is to state, in a self-contained and ready-to-use manner,
definitions and propositions that express the reformulatedEinstein vacuum equations
(5.2), in explicit coordinate/index notation on an open subset ofR4.

For this section, fix
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• a simply connected open subsetU ⊂ R4

• an index setI with |I| = 4
• a constant symmetric matrix(gab)a,b∈I with signature(−,+,+,+)
Thestatementsof all definitions and propositions in this section are completely self-
contained and make no reference to previous sections. The proofs, on the other hand,
rely on the previous sections. We consider Definition 3.3, Conventions 6.1, 6.3, 6.4 and
Definition 6.1 as being part of this section.

In the next proposition,A, B, C,D areI-multiindices with length

|A| = |B| = 2 |C| = 3 |D| = 4

Proposition 8.1.Part 1:For all � = ((E,Γ ), (0,W )) ∈ C∞(U , S1 × S2
vac) set

TA
µ = −AA

bc
(
Eb

ν ∂
∂xν Ec

µ − Γbc
ℓEℓ

µ
)

(8.1a)

UAm
n = WAm

n −AA
bc

(
Eb

µ ∂
∂xµΓcm

n + Γcm
ℓΓbℓ

n − Γbc
ℓΓℓm

n
)

(8.1b)

VCm
n = AC

bA
(
Eb

µ ∂
∂xµWAm

n + Γbℓ
nWAm

ℓ − Γbm
ℓWAℓ

n − 2ΓAℓWℓbm
n
)

(8.1c)

Then�′ = ((T, U), (0, V )) is inC∞(U , S2 × S3
vac). In other words, there is a map

C∞(U , S1 × S2
vac) → C∞(U , S2 × S3

vac) (8.2)

� 7→ �′

which we again write asD�� = �′.
Part 2:For all

� = ((E,Γ ), (0,W )) ∈ C∞(U , S1 × S2
vac)

�′ = ((T, U), (0, V )) ∈ C∞(U , S2 × S3
vac)

not necessarily�′ = D��, set

TC
µ = AC

bA
(
− Eb

ν ∂
∂xν TA

µ + TA
ν ∂
∂xνEb

µ + 2ΓAℓTℓbµ − UAb
ℓEℓ

µ
)

(8.3a)

UCm
n = VCm

n −AC
bA

(
Eb

µ ∂
∂xµUAm

n − TA
µ ∂
∂xµΓbm

n + UAm
ℓΓbℓ

n (8.3b)

− Γbm
ℓUAℓ

n − 2ΓAℓUℓbmn + UAb
ℓΓℓm

n
)

VDm
n = AD

bC
(
Eb

µ ∂
∂xµVCm

n + VCm
ℓΓbℓ

n − Γbm
ℓVCℓ

n + 3UCℓWℓbm
n
)

(8.3c)

+ AD
AB

(
TA

µ ∂
∂xµWBm

n +WBm
ℓUAℓ

n − UAm
ℓWBℓ

n − 2ΓAℓVℓBmn
)

Then�′′ = ((T,U), (0,V)) is inC∞(U , S3 × S4
vac). In other words, there is a map

C∞(U , S1 × S2
vac)× C∞(U , S2 × S3

vac) → C∞(U , S3 × S4
vac) (8.4)

(�,�′) 7→ �′′

which we again write asD��′ = �′′.
Part 3:For all � ∈ C∞(U , S1 × S2

vac),

D�D�� = 0 (8.5)
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Proof. Warning, in this proof we consciously abuse notation, the symbolsU andV are
both given two meanings.
LetK be the 4-dimensional real vector space spanned by elements(k(a))a∈I . We use
the previous sections, with the understanding thatM , V , H at the beginning of Section
3 andU , ρ, h, F(a) at the beginning of Section 6 are:

• M = U ⊂ R4 with trivial bundleV = U ×K
• ρ : U = U → U the identity transformation
• F(a) : U ∋ x 7→ (x, k(a)) ∈ U ×K constant sections
• H is defined by declaringh to be a representative, whereh(F(a), F(b)) = gab.

Part 1: We identify� = ((E,Γ ), (0,W )) ∈ C∞(U , S1 × S2
vac) with the corresponding

� ∈ P1 ×P2
vac, in the sense of Proposition 6.1. Let�′ = D�� ∈ P2 ×P3 be given by

equation (5.1a). By Proposition 5.1,�′ ∈ P2×P3
vac. Identify�′ with the corresponding

�′ = ((T, U), (0, V )) ∈ C∞(U , S2 × S3
vac), in the sense of Proposition 6.1. It follows

from equation (5.1a) and Proposition 6.2 thatT, U, V are given by equations (8.1). For
the last term in (8.1c), recall that2AC

bAΓA
ℓ = AC

bmnΓmn
ℓ, see Definition 3.3.

Part 2: Analogous to Part 1, using equation (5.1b).
Part 3: This is now a corollary of Proposition 5.1.⊓⊔

The Einstein vacuum equations are reformulated as:

Find� ∈ C∞(U , S1 × S2
vac) such thatD�� = 0. (8.6)

Remark 8.1.By the proof of Proposition 8.1, the coordinate construction ofD and the
abstract construction ofD coincide. Therefore, (5.2) and (8.6) are equivalent.

Proposition 8.2.Suppose� = ((E,Γ ), (0,W )) ∈ C∞(U , S1 × S2
vac) satisfies

D�� = 0

and (Eaµ) is invertible as a matrix at each point ofU , so that the four vector fields
Ea = Ea

µ ∂
∂xµ , a ∈ I, are a frame for each fiber ofTU .

Part 1:ν ∈ Γ (T ∗U) given byν(Ea) = − 1
2Γan

n is exact,ν = −df with f ∈ C∞(U).
Part 2:The Lorentzian metricg on U given byg(Ea, Eb) = efgab has Levi-Civita
connection∇EaEm = Γam

nEn.
Part 3:The associated Riemann curvature is given byR(Ea, Eb)Em = Wabm

nEn. In
particular, the Ricci-curvature vanishes.

Proof. We adopt the conventions in the proof of Proposition 8.1, up to and including the
four bullets. We identify� = ((E,Γ ), (0,W )) with the corresponding� = (♦,♦/) ∈
P1 × P2

vac, in the sense of Proposition 6.1. Recall Proposition 4.1, Definition 4.1 and
(6.2a). Observe that

• ♦ ∈ P1 is non-degenerate, because(Eaµ) is invertible, andE♦(F(a)) = Ea. In
fact, for everyq ∈ C∞(U) we haveEa(q) = Ea

µ ∂
∂xµ q = ♦F(a)q.

• (a) in Proposition 4.5 holds, becauseM = U is simply connected,♦ ∈ P1 is
non-degenerate, (c) in Proposition 4.5 holds byD�� = 0, and (c) implies (a).
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Let h′ in Proposition 4.3 be given byh′(F(a), F(b)) = gab, and let♦h′ = µ⊗ h′. Then
the 1-formν ∈ Γ (T ∗U) in Proposition 4.3 is given byν(Ea) = µ(F(a)) = − 1

2Γan
n.

For the last equality, use♦F(a)h
′ = µ(F(a))h′ and equations (6.1) and (6.2).

We apply Parts 1, 2, 3 of Proposition 4.3.ν = −df with f ∈ C∞(U). ∇♦ is the
Levi-Civita connection ofg = E♦(efh′) = efE♦(h′), andg(Ea, Eb) = efgab. The
connection∇♦

Ea
Em = E♦(♦F(a)F(m)) = E♦(ΓamnF(n)) = Γam

nEn. The Riemann
curvature isR(Ea, Eb)Em = 1

2E♦(J♦,♦KF(a)⊗F(b)F(m)) = E♦(♦/F(a)⊗F(b)F(m)) =
E♦(Wabm

nF(n)) = Wabm
nEn. The Ricci-curvature vanishes byWanm

n = 0. ⊓⊔

Proposition 8.3.Suppose(Ea)a∈I is a frame for each fiber ofTU and the Lorentzian
metricg given byg(Ea, Eb) = gab is Ricci-flat. Theng arises from a solution to

D�� = 0

as in Proposition 8.2.

Proof. We adopt the conventions in the proof of Proposition 8.1, up to and including
the four bullets. Define a vector bundle isomorphismE/ : V → TU by E/(F(a)) = Ea.
Leth/ be given byh/(F(a), F(b)) = gab. It is a representative ofH. ThenE/(h/)(Ea, Eb) =
h/(F(a), F(b)) = gab = g(Ea, Eb), that is,g = E/(h/). Let ♦ ∈ P1 be as in Proposition
4.4. Then♦ satisfies the assumptions of Proposition 4.3,E♦ = E/ , ♦h/ = 0, and the
Lorentzian metric associated with♦ (see Remark 4.1) isE/(h/) = g, which by assump-
tion is Ricci-flat. By (a)=⇒ (c) in Proposition 4.5 (recall thatU is simply connected)
there is a♦/ ∈ P2

vac so that� = (♦,♦/) satisfiesD�� = 0. Identify� ∈ P1 × P2
vac with

the corresponding� = ((σ♦, τ♦), (0, τ♦/ )) ∈ C∞(U , S1×S2
vac), in the sense of Propo-

sition 6.1. Then(σ♦)a
µ ∂
∂xµ = E♦(F(a)) = E/(F(a)) = Ea, that is,(σ♦)a

µ = Ea
µ.

Moreover,ν = 0 in Proposition 8.2 and we can choosef = 0. Then theg’s in Proposi-
tion 8.2 and 8.3 coincide.⊓⊔

Proposition 8.4.Let Ũ ⊂ R4 be open. We use Convention 7.2. Let(χ,Λ) be a pair,

• χ : Ũ → U a diffeomorphism
• (Λab)a,b∈I = Ω (Lab)a,b∈I whereΩ : Ũ → (0,∞) and (Lab)a,b∈I is a matrix
valued map oñU such thatgab = gkℓL

k
aL

ℓ
b.

and let

• Jνµ be given by(7.5)

To each♦ = (σ, τ) ∈ C∞(U , Sk) we associatẽ♦ = (σ̃, τ̃ ) ∈ C∞(Ũ , Sk) by equations
(7.7), or, equivalently,(7.8). To each� = (♦,♦/) ∈ C∞(U , Sk × Sk+1) we associate

�̃ = (♦̃, ♦̃/) ∈ C∞(Ũ , Sk × Sk+1). Then:
Part 1:For all ♦ ∈ C∞(U , Sk), � ∈ C∞(U , S1 × S2

vac) and�′ ∈ C∞(U , S2 × S3
vac):

(a) ♦ ∈ C∞(U , Sk⊥) if and only if♦̃ ∈ C∞(Ũ , Sk⊥)
(b) ♦ ∈ C∞(U , Skvac) if and only if♦̃ ∈ C∞(Ũ , Skvac)
(c) �̃ ∈ C∞(Ũ , S1 × S2

vac) andDe��̃ = D̃��
(d) �̃′ ∈ C∞(Ũ , S2 × S3

vac) andDe��̃′ = D̃��′
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Especially,̃� is a solution to(8.6)on Ũ if and only if� is a solution to(8.6)onU .

Part 2:The composition of(χ,Λ) and(χ̃, Λ̃), whereχ̃ : ˜̃U → Ũ andΛ̃ is defined oñU ,
is given by(χ ◦ χ̃, (Λ ◦ χ̃)Λ̃). The inverse to(χ,Λ) is (χ−1, Λ−1 ◦ χ−1).

Proof. We adopt the conventions in the proof of Proposition 8.1, up to and including
the four bullets. We make the same conventions for all quantities with tildes. We use
Section 7, with the understanding that the diffeomorphismψ : Ũ = Ũ → U = U
is given byψ = χ, and the vector bundle isomorphismφ : Ũ × K̃ → U × K maps
(x̃, k̃(a)) to (χ(x̃), k(b)Λ

b
a(x̃)). With these definitions,χ, Ω, Λab, Jν

µ as defined in
Section 7 coincide withχ,Ω, Λab, Jν

µ in Proposition 8.4. In other words, the diagram
(7.2) commutes, and equations (7.3), (7.4), (7.5) hold.

• We verify equation (7.4): For everỹx ∈ Ũ ,(
φ ◦ F̃(a)

)ex = φ(x̃, k̃(a)) = (χ(x̃), k(b)Λ
b
a(x̃)) = (F(b) ◦ χ)ex Λba(x̃)

That is,φ ◦ F̃(a) = (F(b) ◦ χ)Λba. Compose withφ−1 from the left to obtain (7.4).
• We verify equation (7.3):

φ−1
(
h)(F̃(a), F̃(b)

)
= h

(
φ(F̃(a)), φ(F̃(b))

) ◦ χ =
(
h(F(k), F(ℓ)) ◦ χ

)
Λka Λ

ℓ
b

= gkℓΛ
k
aΛ

ℓ
b = Ω2gab = Ω2h̃

(
F̃(a), F̃(b)

)
We identify abstract diamonds and their components, in the sense of Proposition 6.1.
With this understanding, the maps

• C∞(U , Sk) → C∞(Ũ , Sk), ♦ 7→ ♦̃ in Proposition 8.4
• Pk(U) → Pk(Ũ), ♦ 7→ φ−1(♦) in Proposition 7.1

coincide, by Proposition 7.2. Part 1: Now (a), (b) follow from Proposition 6.1 and
Proposition 7.1. The first statements in (c) and (d) follow from (a) and (b). The sec-
ond statements in (c) and (d) follow from Remark 8.1, equations (5.1) and the fact that
the map♦ 7→ ♦̃ commutes with the Lie superbracket, see Proposition 7.1. Part 2: Let
ψ, φ andψ̃, φ̃ be the diffeomorphism and vector bundle isomorphism corresponding to
the pairs(χ,Λ) and(χ̃, Λ̃). Then the pair(χ ◦ χ̃, (Λ ◦ χ̃)Λ̃) corresponds toψ ◦ ψ̃, φ ◦ φ̃.
Now, Part 2 follows from Proposition 7.1.⊓⊔
We conclude this section with a few remarks:

Remark 8.2.The (coordinate) first order differential operatorsD in Part 1 and Part 2 of
Proposition 8.1 are classically defined when� and�′ are of classC1. Especially, the
left hand side of the Einstein vacuum equationD�� = 0 is well defined for any� of
classC1. By continuity, the differential identity (8.5) holds for every� of classC2.

Remark 8.3.It is essential to observe that there is a canonical subformalism of the for-
malism of this paper, which informally speaking is obtainedby putting all theµ ∈
Γ (V ∗) andν ∈ Γ (T ∗M) to zero. More precisely, at the beginning of Section 3, we
choose a sectionh0 = Γ (Sym2 V ∗) with signature(−,+,+,+) instead of a confor-
mal sectionH. From this point on, every representative ofH is replaced byh0. Then,
in (e) of Definition 3.1 we also require thatµ = 0. Definition 3.4 forg(V,H) is re-
placed by a Definition ofg(V, h0) by puttingλ = 0 in (3.9), giving a vector bundle
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with fibers of dimension 6, and the definition ofRk is changed accordingly. In this
subformalism, condition (c) in Proposition 4.3 is vacuous.Definition 6.1.(b) is replaced
by τAmℓgℓn + τAn

ℓgℓm = 0. (The new condition differs from the old condition by
τAℓ

ℓ = 0.) Remark 6.2 is replaced bydimR Sk = 10
(
4
k

)
anddimR Sk⊥ = 6

(
4
k

)
, while

dimR Skvac is unchanged. NowΩ ≡ 1 in (7.3). We emphasize the consequences that the
subformalism has for Proposition 8.1. In Part 1, we have the new conditionΓam

m = 0,
and the new conclusionUAm

m = 0. In Part 2, we have the new conditionsΓam
m = 0

andUAm
m = 0, and the new conclusionUCm

m = 0. Finally, Propositions 8.2 and 8.3
as well as all the other propositions hold for the subformalism, with the understanding
that in Proposition 8.4,Ω ≡ 1.

Remark 8.4.The discussion of Appendix B to [RT] is a precursor to the formalism of
this paper, more precisely to the subformalism elaborated on in Remark 8.3. To compare
the two developments, one must be aware that:

• The ordering of the indices may differ.
• Combinatorial factors may differ.
• In contrast to [RT], indices are neither raised nor lowered in this paper.
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Strongly Focused Gravitational Waves

Michael Reiterer, Eugene Trubowitz

Department of Mathematics, ETH Zurich, Switzerland

Abstract: Christodoulou [Chr] proved that trapped spheres can form inevolution from
a generic initial state, through the focusing of gravitational waves. His work is the mo-
tivation for the present paper, in which we consider the samephysical problem, using
very different mathematical methods. Our approach is basedon a controlled “far field
expansion”. By a systematic use of scaling symmetries, we regularize Christodoulou’s
singular “short pulse method”, rigorously track vacuum solutions by the far field expan-
sion and exhibit trapped spheres that first appear deep inside the far field region. Our
presentation is self-contained. In the final section, we present a detailled outline of the
construction of another, more subtle, expansion that allows us to continue the solutions
beyond the far field region to within any fixed “finite distance” from the (expected)
singularity. From a methodological perspective, the underlying aim of this paper is the
development of a general method for constructing solutionsto the vacuum Einstein
equations by controlled expansions.

1. Introduction

Formal and controlled (perturbation) expansions are common tools in mathematics and
physics. In general relativity, see, for example, [AnRe], [BBM], [Cha]. This paper is
a first step in the development of a hybrid method, combining formal expansions and
simple tools from the theory of hyperbolic partial differential equations (such as energy
estimates), to construct generic classical solutions to the vacuum Einstein equations, for
a wide variety of well posed problems with natural small parameters. The purpose of
this paper is to illustrate the methodology, by carrying it out in all detail for a concrete,
physically interesting situation.

Christodoulou [Chr] showed that strongly focused gravitational waves, coming in
from past null infinity, generate trapped spheres. One of themost important innovations
of [Chr] is the introduction of a small parameterδ and a picture in whichδ represents
the duration of a spherical pulse traveling along a null hypersurface. The amplitude
of the pulse is scaled so that, roughly speaking, the total incoming energy per unit
advanced time is proportional to1δ . Christodoulou refers to this picture as his “short
pulse method”. This physical setup triggered our interest in this problem.
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To illustrate our approach, we shall construct strongly focused gravitational wave so-
lutions to the vacuum Einstein equations by means of controlled expansions that exhibit
trapped spheres.

In Christodoulou’s picture, the limitδ ↓ 0 is singular, and “the initial data are no
longer confined to a suitable neighborhood of trivial data”.In this paper we adopt from
the outset a different (regularized) picture, in which there is a small parameterA 6= 0,
a regular limitA → 0, and the initial data is contained in a small ball around zero.
These apparently contradictory pictures can be reconciled, in fact they are equivalent,
see Section 9, in particular Remark 9.3. The relationship isgiven by settingδ = A4 and
using the one-parameter group of exact (anisotropic) scaling transformations, indexed
by A 6= 0, that is introduced in Section 3.

The construction of spacetimes in [Chr] and [ChrKl] adopts astrictly geometric
formalism and emphasizes the classical geometric point of view, in which the unknown
field is a Lorentzian metric on a manifold, subject to the vacuum Einstein field equations
Ricci = 0. In this paper we use the formalism of Friedrich [Fr] and Newman-Penrose
[NP], in which the unknown field is a triple(E,Γ,W ) of (a priori unrelated) fields,
where

• E = (Ea
µ) are the components of a frameEa = Ea

µ ∂
∂xµ that is declared, by fiat,

to be an orthonormal Lorentz frame,
• Γ = (Γabc) are the components of a connection∇ with respect to the frameE,
• W = (Wabcd) are the components of a Weyl field with respect to the frameE.

In this formalism, one associates to(E,Γ,W ) three additional fields(T, U, V ) that are
quadratic expressions inE, Γ , W and their first derivatives, see Appendix B. Deriva-
tives ofE only appear inT , those ofΓ only inU , those ofW only in V . Here:

• T is the torsion of∇,
• U is the difference between the curvature of∇ and the Weyl fieldW ,
• V = (Vabijk) whereVabijk = ∇iWabjk +∇jWabki +∇kWabij .

The vacuum Einstein field equations become(T, U, V ) = 0. In fact, to every solution
(E,Γ,W ) of these equations one can canonically associate a solutionof Ricci = 0,
and conversely every solution toRicci = 0 arises locally in this manner. We emphasize
that the equations(T, U, V ) = 0

• are a quasilinear, first order system of partial differential equations, that
• are quadratically nonlinear, and
• through gauge-fixing, can be brought into symmetric hyperbolic form, see [Fr].

In sharp contrast to the geometric approach tailored toRicci = 0 of [Chr] and
[ChrKl], we find it advantageous to ignore the geometric content of (T, U, V ) = 0
altogether. In this paper, geometry appears only in the formulation of the problem and
the interpretation of the final results.

We have tried to present our construction in a transparent form with as many details
as possible, so that it is accessible to the general reader without any specific back-
ground in general relativity or hyperbolic partial differential equations. For example,
we include the derivation of the single (L2) Sobolev inequality that is used. In fact,
the discussion, up to the formation of trapped spheres, is entirely self contained, apart
from the reference, in the proof of Proposition 7.3, to [Tay]for a simple local existence
theorem for quasilinear symmetric hyperbolic systems defined on the product of a time
interval with a torus. For these reasons, this paper is longer than it might be. We have,
however, omitted lengthy, but straight forward, direct verifications (typical of general

38



3

relativity) of many equations and algebraic identities. Wehave included an index of
notation (Appendix A).

This paper naturally divides into two parts, one algebraic and the other analytic.
The algebraic part culminates in the three Propositions 5.2, 5.3, 5.4 that we refer to
as the relevant/irrelevant form of the equations. This formexhibits the essential con-
stituents that have to be treated carefully (relevant terms), and sweeps everything else
into “generic terms” about which only general structural properties need to be known
(irrelevant terms). The relevant part dictates the analysis that follows. Everything is
organized around it. For example, the energy estimates, Proposition 7.4 and 7.7, are
designed to accommodate the most delicate terms in the relevant part of the equations.
One payoff of the lengthy algebraic preliminaries is that the analysis can be carried out,
for formal solutions in Section 6 and for classical solutions in Sections 7 and 8, with
elementary tools.

The rest of this introduction is an overview of the contents of this paper. The alge-
braic part comprises Appendices B, C, D and Sections 2, 3, 4, 5. If the reader is not
concerned about the derivation of the equations, he / she canread the self-contained
Sections 2, 3, 4, 5. Alternatively, the natural order is B, C,D, 2, 3, 4, 5. We now discuss
the algebraic appendices and sections of this paper:

• Appendix B is a self-contained review of the general formalism of Friedrich [Fr] and
Newman-Penrose [NP] of the vacuum Einstein equations.

• Appendix C introduces a gauge adapted to the focusing problem, in the language of
Lorentzian geometry. This gauge requires two coordinatesu andu to be solutions
to the eikonal equation (also called null or characteristiccoordinates). The other
two coordinates are denotedξ1, ξ2 that may be interpreted as “angular coordinates”.
Also, there are four frame vector fields: two future-directed null vector fields that are
tangent to the level sets ofu andu, respectively, and two spacelike vector fields that
span the tangent space to the intersections of the level setsof u andu. It is shown that
this gauge is locally realizable. That is, every point on every Lorentzian manifold
has a neighborhood on which such coordinates and frame can beintroduced. More
colloquially, no spacetimes are left out.

• Appendix D reinterprets and abstracts the gauge of AppendixC as a set of (point-
wise) affine linear algebraic constraints on the unknowns(E,Γ,W ). We introduce
a fieldΦ = (e, γ, w), with 31 real components, that takes values in the affine gauge
subspace at each point. ThisΦ is the basic unknown field that appears throughout the
paper. The equations(T, U, V ) = 0 split into two parts. The first part is a quasilinear
symmetric hyperbolic system forΦ, referred to as(SHS). The second part (constraint
equations) is writtenΦ♯ = 0, whereΦ♯ is the associated “constraint field”, with32
real components. It is an important fact that for every solutionΦ of (SHS), the associ-
atedΦ♯ is a solution to a linear homogeneous symmetric hyperbolic system referred
to as(̂SHS) . Therefore, the basic strategy carried out in Sections 6 and8 is to first
construct a solutionΦ to (SHS) for whichΦ♯ vanishes initially, and then usê(SHS) to
show thatΦ♯ vanishes everywhere.
It follows from the equivalence of(T, U, V ) = 0 andRicci = 0 and from the lo-
cal realizability of the gauge, that to every solutionΦ of (SHS) andΦ♯ = 0 one
can canonically associate a solution toRicci = 0, and conversely every solution to
Ricci = 0 arises locally in this way.

• In Section 2, which can be read independently of Appendices B, C, D, we write out
(SHS), the constraint fieldΦ♯ and(̂SHS)explicitly. Observe the simple structure of the
principal part of(SHS) , equation (2.5). The reader may be put off by the multi-page
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equations of Section 2. However, he or she should not be discouraged, because later,
in Propositions 5.2, 5.3, 5.4, we will derive the more transparent relevant / irrelevant
forms of these equations, mentioned above.

• Section 3 introduces a number of exact symmetry transformations of the equations
of Section 2. In particular, the global anisotropic scalingA (Definition 3.5) plays a
central role for everything we do.

• In Section 4 we define a two-parameter family of fieldsMa,A on the open subset
(ξ, u, u) ∈ Strip∞ = R2 × (0,∞)× (−∞, 0) ⊂ R4 that are solutions, in the role of
Φ, to (SHS) and the constraint equations.Ma,A is obtained fromM1,1 by applying
the scaling symmetries of Section 3. For all parameter values a,A 6= 0, the field
Ma,A corresponds to Minkowski space. The familyMa,A will be the starting point
for our expansion (see below).

• In Section 5 we make a change of variables and writeΦ = Ma,A+u−MΨ , whereM
is a diagonal matrix with strictly positive integral entries andΨ is the new unknown
field. We make a similar change of variablesΦ♯ = u−M♯

Ψ ♯ for the constraint field.
Then we rewrite(SHS) and (̂SHS) in terms ofΨ andΨ ♯. This section completes the
algebraic part of the paper with the relevant / irrelevant form of the equations forΨ
andΨ ♯. Notice that only terms that are either principal in the number of derivatives
or leading order in powers of1u are written out explicitly. The rest is summarized in
symbolic form, that keeps track of only certain overall structural properties. There-
fore, equations (5.7), (5.8), (5.9) deserve the name relevant / irrelevant form. It may
be surprising that the there are only two nonlinear terms in the relevant part on the
right hand side of equation (5.7). The one appearing in the last line of (5.7c) is actu-
ally irrelevant, see Remark 5.3. The one in the sixth line of (5.7a) generates trapped
spheres.

We now discuss the analytic part of the paper.

• In Section 6 the unique formal solution[Φ ] = [Ma,A]+u−M [Ψ ] onStrip∞ ⊂ R4 to
a formal characteristic initial value problem for(SHS) and[Φ♯ ] = 0 is constructed.
The asymptotic characteristic initial value problem is motivated by [Chr]. Data is
prescribed on
– the characteristic hypersurfaceu = 0,
– the asymptotic characteristic hypersurfaceu→ −∞ (past null infinity).
The data alongu = 0 is [Ψ ] = 0 or, equivalently,[Φ ] = [Ma,A ]. The data along
u→ −∞ is generic and consists of two real valued functions depending on(ξ, u).
In this paper, we will consistently use the notation

[ f ] =
∑∞

k=0

(
1
u

)k
f(k)(ξ, u)

for a formal power series in1u with coefficient functionsf(k), defined for(ξ, u, u)
in the openStrip∞ ⊂ R4 introduced above. The expansion parameter1

u is, morally,
the distance to past null infinity. For this reason, we refer to expansions of this kind
as far field expansions. Formallylimu→−∞ uM [Φ −Ma,A] = Ψ(0) is the asymp-
totic initial data at past null infinity, constructed out of the two free functions via
the constraint equations. All the coefficient functionsΨ(k), k = 0, 1, 2, . . . can be
written down explicitly. Trapped spheres already appear inthe lowest order term.
The formal solution and the relevant / irrelevant form of theequations are used in
the subsequent sections to construct a unique classical solution such that the formal
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expansion is an asymptotic expansion to this classical solution. At the conclusion of
Section 6, all the notation, definitions and concepts required for the statement of the
main theorem of this paper (Theorem 8.1) have been introduced. It can now be read
on its own.

• In Section 7 we collect all the analytical tools that are required for the proof of The-
orem 8.1. More precisely, standard results about symmetrichyperbolic systems are
adapted to the very specific applications we have in mind. In particular, finite speed
of propagation, a local existence theorem with a breakdown criterion, and energy
estimates. The long list of hypotheses for the energy estimates (see Subsection 7.4)
are dictated by the relevant / irrelevant form of the equations. We then prove a re-
fined (localized) version of the energy estimate (Proposition 7.7) that exploits finite
speed of propagation. This is done by using the setsO(ξ0, b, t) that are introduced
in Subsection 7.5 to capture the causal structure of the solutions. It is this refined
energy estimate that is applied in Section 8. Observe that Proposition 7.7 is actu-
ally an energy estimate for alinear, inhomogeneous symmetric hyperbolic system,
which in Section 8 is used in a self-consistent manner to obtain an estimate for the
nonlinearproblem.

• In Section 8 we writeΨ = ΨK + (Error). HereΨK is the truncation of the formal
power series solution at orderK + 1. Proposition 8.3 states in particular that the
quasilinear symmetric hyperbolic system for (Error) satisfies the hypotheses for the
refined energy estimate. More generally, Proposition 8.3 provides a list of sufficient
conditions under which the abstract propositions of Section 7 can be applied to the
various symmetric hyperbolic systems that are required forthe proof of Theorem 8.1.
Its setup, formulation and proof are lengthy, even somewhattedious, but elementary.
The section concludes with the formulation and proof of Theorem 8.1, which states
the existence and uniqueness of a classical solution to the characteristic initial value
problem for(SHS)andΨ ♯ = 0, under appropriate smallness conditions. The solution
is constructed on

Strip(1, c) = R2 × (0, 1)× (−∞,−c−1) ⊂ Strip∞

wherec > 0 is a constant. Roughly speaking, Theorem 8.1 says that

ψ =
∑K

k=0

(
1
u

)k
ψ(k) + O( 1

|u|K+1

)
(u→ −∞)

We show thatc can be chosen independent ofA 6= 0. Therefore, this theorem is
compatible with the limitA → 0.

• In Section 9 we extract a number of corollaries of Theorem 8.1.
– Proposition 9.1 states that the far field formal power seriesis an asymptotic ex-

pansion for the classical solution of Theorem 8.1 inI ∪ II , see the figure below.
In this sense, the solution is quasi-explicit. Using this result, we can systemat-
ically exploit Theorem 8.1 by transferring properties of the formal solution to
corresponding properties of the classical solution.

– The high point of [Chr] is the demonstration that strongly focused gravitational
waves generate trapped spheres. In Proposition 9.2 we recover this result by
showing that trapped spheres form at the end of regionI , that is, atu ∼ A−2,
using the fact that they appear in the lowest order term of theformal expansion.

– Proposition 9.5 states that for special initial conditions, the solutions of Theorem
8.1 become arbitrarily close to the Schwarzschild solutionon the upper edge of
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region I (u = 1). This would be used in conjunction with a controlled pertur-
bation expansion around the Schwarzschild / Kerr family to construct the global
exterior of a black hole. Our proof of this fact uses four terms of the expansion.

II

u
=

0

III

u
=
−ǫ
′

u
=
−
1
c

u = −ϕ(ξ, u) formal (naive) singularity
u = −ǫ− ϕ(ξ, u)

u
=

1

u
=

0

u
=
−∞

I

u
∼ −

1
A
2

– In Subsection 9.5 we sketch a method for continuing the solutions out of the
“far field region” I ∪ II using a more powerful expansion inA. The expansion in
A around the regular limitA → 0 is both more fundamental and more subtle.
It is an expansion around a two parameter family of decoupled, fully nonlinear
two dimensional systems. Higher order terms inA can be constructed and con-
trolled. The expansion breaks down atu = −ϕ(ξ, u), whereϕ can be explicitly
expressed in terms of the initial data and does not depend onA. See the figure.
Even though all the details are not carried out, the methods of this paper together
with the expansion inA suffice to extend Theorem 8.1 fromI ∪ II to the larger
domainI ∪ II ∪ III , whereǫ, ǫ′ > 0 are arbitrary constants and|A| is sufficiently
small depending onǫ, ǫ′.

– In [Chr] solutions are constructed onI . In this paper, we rigorously construct
solutions onI ∪ II , and outline their extension toI ∪ II ∪ III . Furthermore, in
Subsection 9.6 we obtain a class of solutions distinct from that of [Chr], corre-
sponding to more general initial data at past null infinity. This class arises from
the limit A → 0 with a > 0 fixed.

We appreciate the great effort that Demetrios Christodoulou invested over many
years to nurture the mathematical study of general relativity at ETH Zurich.

We thank Lydia Bieri, Joel Feldman, Horst Knörrer and Martin Lohmann for en-
couragement and helpful conversations.

2. A Reformulation of the Vacuum Einstein Equations

Our method for constructing solutions to the vacuum Einstein equations has two parts.
The first is algebraic, the second analytic. Here, we presentthe purely algebraic part.
It is a reformulation of the vacuum Einstein equations that is carefully tailored to the
constructive analytic tools used in the second, purely analytic part.

This section compresses the intuition and logic of the threeleisurely Appendices B,
C and D into elementary, but very lengthy, totally unmotivated and, to the contemporary
eye, unsightly, definitions and statements.

42



7

Let (
x1 , x2 , x3 , x4

)
=
(
ξ1 , ξ2 , u , u

)
be a coordinate system on the open subsetU of R4, and

Φ(x) =
(
Φ1(x) , Φ2(x) , Φ3(x)

)
=
(
e(x) , γ(x) , w(x)

)
any sufficiently differentiable field onU taking values in

R =
{
(e, γ, w) ∈ C5 ⊕ C8 ⊕ C5

∣∣ e3, e4, e5, γ2, γ6 ∈ R
}
, (2.1)

a real vector space of dimension 31. Throughout this paper,z is the complex conjugate
of z ∈ C.

Remark 2.1.Later on, the complex coordinateξ = ξ1 + iξ2 will play the role of an
“angular” coordinate. See, for instance, Remark 4.1.

Definition 2.1. To any sufficiently differentiable fieldΦ : U → R, satisfying the condi-
tions

(⋆) : e3 > 0

(⋆ ⋆) : ℑ(e1 e2) 6= 0

at every point ofU , we associate three fieldsFa
µ, Γ ajk, Wabjk and a complex frame

Fa = Fa
µ ∂

∂xµ on U . Here and below, small Latin and small Greek indices run from
one to four. The fields are uniquely determined by:

• Γ ajk = −Γ akj andWabjk = −Wabkj andWabjk = −Wbajk.
•

(
Fa

µ
)

=

 e1 e2 0 0
e1 e2 0 0
e4 e5 0 1
0 0 e3 0


(
Γ a(jk)

)
=

 γ3 + γ4 γ7 γ6 γ1 γ2 γ3 − γ4

− γ4 − γ3 γ6 γ7 γ2 γ1 − γ4 + γ3

γ8 − γ8 0 0 − γ3 + γ4 γ4 − γ3 γ8 + γ8

0 γ5 γ5 0 0 0



(
W(ab)(jk)

)
=


w3 + w3 w4 −w4 w2 −w2 w3 − w3

w4 w5 0 0 −w3 −w4

−w4 0 w5 −w3 0 −w4

w2 0 −w3 w1 0 w2

−w2 −w3 0 0 w1 w2

w3 − w3 −w4 −w4 w2 w2 w3 + w3


The matrix indices(ab), (jk) run over the ordered sequence

(12) (31) (32) (41) (42) (34)

The complex frame is written as:
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• (F1, F2, F3, F4

)
=
(
D,D,N,L

)
or, equivalently,

D = e1
∂

∂ξ1 + e2
∂

∂ξ2 , N = e4
∂

∂ξ1 + e5
∂

∂ξ2 + ∂
∂u , L = e3

∂
∂u (2.2)

The vector fieldsN andL are always real.

Proposition 2.1.The fieldWabjk has the symmetries

Wabjk = −Wbajk Wajkℓ + Waℓjk + Wakℓj = 0

Wabjk = Wjkab gaj Wabjk = 0

where the matrixgab and its inversegab are given by

(
gab

)
=

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 (
gab

)
=

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 (2.3)

That is,Wabjk has the algebraic properties of a Weyl field.

Proof. By direct inspection. ⊓⊔
Remark 2.2.Later on it will be important to drop(⋆ ⋆). That is, to allow the frame to
collapse.

The next definition singles out an important class of fieldsΦ(x) and relates them to
Ricci-flat Lorentzian manifolds, that is, vacuum spacetimes.

Definition 2.2. A fieldΦ : U → R is avacuum fieldwhen:

• Conditions(⋆) and(⋆ ⋆) are all satisfied at every point ofU .
• The Levi-Civita connection for the complex linear metricg onU is given by

g
(∇FaFj , Fk

)
= Γ ajk

whereg(Fa, Fb)
def
= gab (see,(2.3)) and

g
(∇FaFj , Fk

) def
= 1

2

(
− g

(
Fa, [Fj , Fk]

)
+ g

(
Fk, [Fa, Fj ]

)
+ g

(
Fj , [Fk, Fa]

))
• The Riemann tensor for the Levi-Civita connection is given by

Rabjk
def
= g

([∇Fj ,∇Fk

]
Fb −∇[Fj ,Fk]Fb, Fa

)
= Wabjk

Consequently, the Ricci curvature vanishes, sinceWabjk is traceless.
• The coordinate functionsu andu are both solutions to the eikonal equation. More
precisely,e3N andL are null geodesic vector fields that are minus the gradients of
u andu.

Remark 2.3.For anyR-valued fieldΦ satisfying the conditions(⋆) and(⋆ ⋆) the metric
given byg(Fa, Fb) = gab is real in the sense thatg(X,Y ) is real wheneverX andY
are real vector fields. Over the reals, it has signature(−,+,+,+). Bear in mind that
gab are the components with respect to thecomplexframeFa. If Φ is a vacuum field,
then(U ,g) is a Ricci-flat Lorentzian manifold, that is, a solution to the vacuum Einstein
equations.
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Remark 2.4.It is natural to ask whether all Ricci-flat Lorentzian manifolds arise, at least
locally, in this way. The answer to this question is given in Appendices C and D.

Remark 2.5.AssumeΦ(x) is a vacuum field. DeclareL + N to be future directed.
Let Su,u be the intersection of the level sets ofu andu, which by Definition 2.2 are
null hypersurfaces. The traces of the future-directed second fundamental forms ofSu,u

relative to the level sets ofu andu are given byg(∇DL,D) + g(∇DL,D) = 2γ2

andg(∇DN,D) + g(∇DN,D) = 2γ6. By (2.1), they are real, as they should be. By
definition,Su,u is a trapped surfacewhenγ2 andγ6 are strictly negative everywhere
on Su,u. Equivalently,Su,u is trapped if an infinitesimal shift ofSu,u along eitherL
or N (both future-directed null vector fields, orthogonal toSu,u) induces a pointwise
decrease of the area element.
The basic examples of (closed) trapped surfaces in a vacuum spacetime are the spherical
SO(3) orbits inside the horizon of a Schwarzschild spacetime. Closed trapped surfaces
appear in the the formulation of Penrose’s incompleteness theorem, see [Pen].

We need a criterion for a field to be a vacuum field. To this end, we make two more
definitions.

Definition 2.3. Suppose, condition(⋆) is satisfied at every point of the domainU . Let
Φ(x) =

(
e(x), γ(x), w(x)

)
: U → R be a sufficiently differentiable field, and let the

weightsλ1, λ2, λ3, λ4 be strictly positive functions onU . TheQuasilinear Symmetric
Hyperbolic System(SHS) for the fieldΦ(x) is

A(Φ)Φ = f(Φ) (2.4)

Here,A(Φ) = A1(Φ)⊕A2(Φ)⊕A3(Φ) is the first order, matrix differential operator,
with coefficients that are affine linear functions (overR) ofΦ, given by

A1(Φ) = diag
(
L, L, N, L, L

)
(2.5a)

A2(Φ) = diag
(
L, L, L, L, N, N, N, L

)
(2.5b)

A3(Φ) =


λ1N λ1D 0 0 0
λ1D λ1L+ λ2N λ2D 0 0

0 λ2D λ2L+ λ3N λ3D 0
0 0 λ3D λ3L+ λ4N λ4D
0 0 0 λ4D λ4L

 (2.5c)

Observe that the “angular” operatorsD,D only appear inA3(Φ). Also,

f(Φ) = f1(Φ) ⊕ f2(Φ)⊕ f3(Φ) =

f11
...

f51

⊕

f12
...

f82

⊕

f13
...

f53


is the quadratically nonlinear vector valued function given by

fj1 =



− e1γ2 − e1γ1

− e2γ2 − e2γ1

e3 2ℜ γ8 ⋆

2ℜ (− e1γ4 + e1γ5 + e1γ3

)
⋆

2ℜ (− e2γ4 + e2γ5 + e2γ3

)
⋆
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fj2 =



− 2γ1γ2 − w1

− |γ1|2 − γ2γ2 ⋆

+ γ1γ4 − γ1γ5 − γ2γ3 − w2

− γ2γ4 + γ2γ5 + γ3γ1

− γ3γ7 + γ4γ6 − γ5γ6 − γ5γ8 + γ5γ8 − γ6γ3 + γ7γ4 − γ7γ5 + w4

− γ6γ6 − γ6 2ℜ γ8 − |γ7|2 ⋆

− 2γ6γ7 − 3γ7γ8 + γ7γ8 − w5

− 2γ3γ4 + 2γ3γ5 + γ3γ3 + γ4γ4 − γ4γ5 − γ5γ4 + w3

fj3 =



− λ1

(
3γ1w3 − 6γ3w2 + γ6w1 − 4γ8w1 + 4γ4w2

)
− λ1

(
4γ2w2 + 4γ4w1 + γ5w1

)
− λ2

(
2γ1w4 − 3γ3w3 + 2γ6w2 − 2γ8w2 + 3γ4w3

)
− λ2

(
3γ2w3 + 2γ4w2 + 2γ5w2 + γ7w1

)− λ3

(
γ1w5 + 3γ6w3 + 2γ4w4

)
− λ3

(
2γ2w4 + 3γ5w3 + 2γ7w2

)− λ4

(
3γ3w5 + 4γ6w4 + 2γ8w4 + γ4w5

)
− λ4

(
γ2w5 − 2γ4w4 + 4γ5w4 + 3γ7w3

)
Definition 2.4. LetΦ(x) =

(
e(x), γ(x), w(x)

)
: U → R be a sufficiently differentiable

field, and letλ1, λ2, λ3, λ4 be strictly positive weight functions onU . The associated
constraint field

Φ♯(x) =
(
Φ♯

1(x), Φ
♯
2(x), Φ

♯
3(x)

)
=
(
t(x), u(x), v(x)

)
=

t1...
t5

⊕
u1

...
u9

⊕
v1...
v3



onU taking values in

R̂ =
{
(t, u, v) ∈ C5 ⊕ C9 ⊕ C3

∣∣ t1, t2 ∈ R
}

(2.6)

is given by

tj =



− 2ℑ (D(e1) + e1γ3 + e1γ4

)
− 2ℑ (D(e2) + e2γ3 + e2γ4

)
D(e3)− e3γ3 + e3γ4 + e3γ5

D(e4)−N(e1)− e1γ7 − e1γ6 + e1γ8 − e1γ8

D(e5)−N(e2)− e2γ7 − e2γ6 + e2γ8 − e2γ8

(2.7a)

46



11

uj =



D(γ2)−D(γ1) + w2 − 3γ1γ4 − γ1γ3 − γ2γ3 + γ2γ4

D(γ4) +D(γ3)− w3 + 2γ3γ4 + γ1γ7 − γ2γ6 + γ3γ3 + γ4γ4

D(γ3)−D(γ4) +N(γ2)
− w3 + 2γ3γ4 − 2γ4γ4 + γ1γ7 + γ2γ6 − γ2γ8 − γ2γ8

D(γ4)−D(γ3)−N(γ1)
+ 3γ1γ8 + 2γ3γ3 − 2γ3γ4 − γ1γ6 − γ1γ8 − γ2γ7

D(γ5)− L(γ7)− γ2γ7 − γ4γ5 + γ5γ5 − γ5γ3 − γ6γ1

L(γ6)−D(γ5)− w3 + γ1γ7 + γ2γ6 − γ3γ5 − γ5γ4 − γ5γ5

D(γ8)−N(γ3)− 2γ3γ6 + γ3γ8 − γ3γ8 + γ4γ7 + γ6γ4

N(γ4) +D(γ8) + w4 − 2γ3γ7 + γ4γ6 + γ4γ8 − γ4γ8 + γ7γ4

D(γ7)−D(γ6)− w4 + 3γ3γ7 + γ4γ6 − γ6γ3 + γ7γ4

(2.7b)

vj =


λ1

(
D(w1) + L(w2) + 4γ2w2 + 4γ4w1 + γ5w1

)
λ2

(
D(w2) + L(w3) + 3γ2w3 + 2γ4w2 + 2γ5w2 + γ7w1

)
λ3

(
D(w3) + L(w4) + 2γ2w4 + 3γ5w3 + 2γ7w2

) (2.7c)

Proposition 2.2.Suppose, conditions(⋆) and(⋆ ⋆) are all satisfied at every point ofU .
Then, the fieldΦ(x) is a vacuum field if and only if there exist strictly positive weight
functionsλ1, λ2, λ3, λ4 onU such thatΦ(x) is a solution to the quasilinear symmetric
hyperbolic system(SHS)and the constraint fieldΦ♯(x) = 0 everywhere onU .

Proof. Follows from the Appendices B, C, D. See, Propositions B.1, D.1, D.2, D.3. ⊓⊔
Remark 2.6.Proposition 2.2, together with Definition 2.2, is a reformulation of the vac-
uum Einstein equations. When does the solutionΦ to a well posed problem for(SHS)
also satisfyΦ♯ = 0?

Proposition 2.3.Suppose, that condition(⋆) is satisfied and there are strictly positive
weight functionsλ1, λ2, λ3, λ4 onU , such thatΦ(x) is aC2 solution to(SHS). Then, the
constraint fieldΦ♯ is a classical solution to the “dual”Homogeneous, Linear (over
R) Symmetric Hyperbolic System(̂SHS) :

Â(Φ)Φ♯ = f̂(Φ, ∂xΦ)Φ♯

In particular, if the data for any well posed problem for the system(̂SHS)vanishes, then
the constraint fieldΦ♯(x) vanishes everywhere. Here,Â(Φ) = Â1 ⊕ Â2 ⊕ Â3 is the
first order, matrix differential operator

Â1 = diag
(
L, L, N, L, L

)
(2.8a)

Â2 = diag
(
L, L, L, L, N, N, L, L, N

)
(2.8b)

Â3 =


1
λ1
N + 1

λ2
L 1

λ2
D 0

1
λ2
D 1

λ2
N + 1

λ3
L 1

λ3
D

0 1
λ3
D 1

λ3
N + 1

λ4
L

 (2.8c)
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and f̂ (Φ, ∂xΦ) is a linear (overR) transformation acting onΦ♯ = (t, u, v):

f̂(Φ, ∂xΦ)Φ♯ =
(
f̂1 ⊕ f̂2 ⊕ f̂3

)
Φ♯ =

 f̂11
...

f̂51

Φ♯ ⊕

 f̂12
...

f̂92

Φ♯ ⊕

 f̂13
...

f̂33

Φ♯

whereΦ has been suppressed on the right hand side, and

f̂j1 Φ♯ =



− 2γ2t1 + 2ℑ (t3 ∂e1
∂u

)
+ 2ℑ (e1u1

)
− 2γ2t2 + 2ℑ (t3 ∂e2

∂u

)
+ 2ℑ (e2u1

)
(−γ6 + 2γ8)t3 − γ7t3 − t4

∂e3
∂ξ1 − t5

∂e3
∂ξ2 + e3u7 + e3u8

i(γ3 − γ4 + γ5)t1 − γ2t4 − γ1t4 − t3
∂e4
∂u + e1u3 − e1u4 + e1u5 − e1u6

i(γ3 − γ4 + γ5)t2 − γ2t5 − γ1t5 − t3
∂e5
∂u + e2u3 − e2u4 + e2u5 − e2u6

f̂j2 Φ♯ =

− t3
∂γ2
∂u + t3

∂γ1
∂u − 3γ2u1 + γ1u1 + 1

λ1
v1

− t3
∂γ4
∂u − t3

∂γ3
∂u − γ4u1 + γ5u1 − γ3u1 − 2γ2u2 − γ1u5 − γ2u6 − 1

λ2
v2

− t3
∂γ3
∂u + t3

∂γ4
∂u + γ3u1 − γ4u1 + γ5u1

− 2γ2u3 + γ1u4 + γ1u4 − γ1u5 + γ2u6 − 1
λ2
v2

+ t3
∂γ3
∂u − t3

∂γ4
∂u + (γ3 − γ4 + γ5)u1 + γ1u3 + γ1u3 − 2γ2u4 + γ2u5 − γ1u6

− t4
∂γ5
∂ξ1 − t5

∂γ5
∂ξ2 − γ7u3 + γ6u4 − 2γ6u5 − 2γ8u5 + 2γ8u5

+ γ7u6 + γ7u6 + γ5u7 − γ5u8 − γ4u9 + γ5u9 + γ3u9

+ t4
∂γ5
∂ξ1 + t5

∂γ5
∂ξ2 + γ6u3 − γ7u4 + γ7u5 + γ7u5

− 2γ6u6 + γ5u7 − γ5u8 + γ3u9 − γ4u9 + γ5u9 + 1
λ3
v2

− t3
∂γ8
∂u − γ3u2 + γ4u2 − γ5u2 + γ3u3 + γ4u4 − γ5u4

− γ4u5 − 2γ3u6 + γ4u6 − γ2u7 − γ1u8 − 1
λ2
v1

− t3
∂γ8
∂u + γ3u2 − γ4u2 + γ5u2 − γ4u3 + γ5u3 − γ3u4

+ 2γ3u5 − γ4u5 + γ4u6 − γ1u7 − γ2u8 + 1
λ3
v3

+ t4
∂γ6
∂ξ1 − t4

∂γ7
∂ξ1 + t5

∂γ6
∂ξ2 − t5

∂γ7
∂ξ2 − 3γ7u7 + γ6u7

+ γ6u8 + γ7u8 − 3γ6u9 − 2γ8u9 + γ7u9 + 1
λ4
v3

f̂13 Φ♯ =− it1
∂w2
∂ξ1 − it2

∂w2
∂ξ2 + t3

∂w3
∂u − t4

∂w1
∂ξ1 − t5

∂w1
∂ξ2

+ 3w3u1 + 2w2u2 + 4w2u3 − 2w2u6 + 4w1u8 + w1u9

+
[− 4

λ2
γ2 − 2

λ1
γ6 + 3

λ1
γ8 + 1

λ1
γ8 + ( 1

λ1
)2N (λ1) + ( 1

λ2
)2L (λ2)

]
v1

+
[
( 1

λ2
)2D (λ2) + 4

λ2
γ3 − 4

λ2
γ4 − 1

λ2
γ5

]
v2 − 2

λ3
γ1v3
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f̂23 Φ♯ =− it1
∂w3
∂ξ1 − it2

∂w3
∂ξ2 + t3

∂w4
∂u − t4

∂w2
∂ξ1 − t5

∂w2
∂ξ2

+ 2w4u1 + 3w3u3 − 3w3u6 + 2w2u8 + 2w2u9

+
[− 2

λ2
γ4 − 2

λ2
γ5 + ( 1

λ2
)2D (λ2)

]
v1

+
[− 3

λ3
γ2 − 3

λ2
γ6 + 1

λ2
γ8 + 1

λ2
γ8 + ( 1

λ2
)2N (λ2) + ( 1

λ3
)2L (λ3)

]
v2

+
[

1
λ3
γ3 − 3

λ3
γ4 − 1

λ3
γ5 + ( 1

λ3
)2D (λ3)

]
v3

f̂33 Φ♯ =− it1
∂w4
∂ξ1 − it2

∂w4
∂ξ2 + t3

∂w5
∂u − t4

∂w3
∂ξ1 − t5

∂w3
∂ξ2

+ w5u1 − 2w4u2 + 2w4u3 − 4w4u6 + 3w3u9

− 2
λ2
γ7v1 +

[− 3
λ3
γ5 + ( 1

λ3
)2D (λ3)

]
v2

+
[− 2

λ4
γ2 − 4

λ3
γ6 − 1

λ3
γ8 + 1

λ3
γ8 + ( 1

λ3
)2N (λ3) + ( 1

λ4
)2L (λ4)

]
v3

Proof. Follows from the Appendices B, C, D. See, Proposition D.4.⊓⊔

Remark 2.7.Write A(Φ) = Aµ ∂
∂xµ = (A1

µ ⊕A2
µ ⊕A3

µ) ∂
∂xµ . Explicitly,

A1= e4diag(0, 0, 1, 0, 0)⊕e4diag(0, 0, 0, 0, 1, 1, 1, 0)⊕


λ1e4 λ1e1 0 0 0
λ1e1 λ2e4 λ2e1 0 0

0 λ2e1 λ3e4 λ3e1 0
0 0 λ3e1 λ4e4 λ4e1
0 0 0 λ4e1 0


A3= e3diag(1, 1, 0, 1, 1)⊕e3diag(1, 1, 1, 1, 0, 0, 0, 1)⊕e3diag(0, λ1, λ2, λ3, λ4)

A4= diag(0, 0, 1, 0, 0)⊕ diag(0, 0, 0, 0, 1, 1, 1, 0)⊕ diag(λ1, λ2, λ3, λ4, 0)

The matricesAµ are Hermitian matrices whose entries are linear (overR) functions of
Φ1 = e. The matrixA3 + A4 is strictly positive definite by the requiremente3 > 0 of
condition(⋆). We see that,(SHS) is truly a quasilinear, symmetric hyperbolic system. An
entirely similar discussion applies tô(SHS). See [John], [Tay], for linear and quasilinear
symmetric hyperbolic systems (in the sense of Friedrichs).

Remark 2.8.By definition, the fieldsΦ andΦ♯ take values inR ∼= R31 andR̂ ∼= R32,
respectively. The left and right hand sides of(SHS) are inR, becausef31, f41, f51, f22,
f62, marked by ⋆ , are real. The left and right hand sides of̂(SHS) are inR̂. In other
words,(SHS) is equivalent to areal quasilinear symmetric hyperbolic system for anR31

valued field, and̂(SHS) is equivalent to areal linear homogeneous symmetric hyperbolic
system for anR32 valued field.

Remark 2.9.Let P be the parity transformation(P · Φ)(x) = (−1)A Φ(x) with

A = diag(1, 1, 0, 0, 0)⊕ diag(0, 0, 1, 1, 1, 0, 0, 0)⊕ diag(0, 1, 0, 1, 0).

The fieldP · Φ solves(SHS) if and only if Φ solves(SHS) . The constraint(P · Φ)♯ = 0
if and only if Φ♯ = 0. Clearly,P ◦ P = Identity, andΦ splits naturally into 11P-
even and 7P-odd components. If theP-odd components ofΦ vanish atx ∈ U , that is
(P · Φ)(x) = Φ(x), then(SHS) implies thatL(e4) = L(e5) = 0 atx.
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Proposition 2.4.Suppose(⋆). Set all theP-odd components,e1, e2, γ3, γ4, γ5,w2,w4,
and the twoP-even componentse4, e5 of the fieldΦ equal to zero, and introduce the
field Φ̃ = e3 ⊕ (γ1, γ2, γ6, γ7, γ8) ⊕ (w1, w3, w5). In this case, the frame collapses to
D = 0,N = ∂

∂u andL = e3
∂
∂u and the system(SHS) reduces to

Ã
(
Φ̃
)
Φ̃ = f̃

(
Φ̃
)

(subSHS)

Ã
(
Φ̃
)

= N ⊕ diag(L,L,N,N,L)⊕ diag(λ1N, λ2L+ λ3N, λ4L)

f̃
(
Φ̃
)

= f31 ⊕ (f12, f22, f62, f72, f82)⊕ (f13, f33, f53) (see, Definition 2.3)

It is, separately for eachξ, a quasilinear symmetric hyperbolic system forΦ̃ in the(u, u)
plane. The componentst, u1, u7, u8, u9, v1, v3 of Φ♯ vanish.(̂SHS) reduces to a linear
(overR), homogeneous symmetric hyperbolic system forΦ̃ ♯ = (u2, u3, u4, u5, u6)⊕v2.

Corollary 2.1. Suppose,Φ is a solution to any well posed problem for(SHS) , such that
all its P-odd components ande4, e5 vanish initially. Then, they vanish everywhere.

3. Symmetries

A field transformation S with respect to the open subsetsU , U ′ of R4 consists of

• a diffeomorphism fromU to U ′,
• a map from fieldsΦ = (e, γ, w) : U → R to fieldsΦ′ = (e′, γ′, w′) : U ′ →R,
• a map from strictly positive weight functionsΛ = (λ1, λ2, λ3, λ4) onU to strictly

positive weight functionsΛ′ = (λ′1, λ
′
2, λ

′
3, λ

′
4) onU ′.

Let x, x′ be Cartesian coordinates onU andU ′. We write

x′ = S · x Φ′(x′) = (S · Φ)(x′) Λ′(x′) = (S · Λ)(x′)

In this section,S will always be linear over real valued functions in its action onΦ and
Λ. That is,(
S · (fΦ)

)
(x′) = f(S−1 · x′) (S · Φ)(x′) ,

(
S · (fΛ)

)
(x′) = f(S−1 · x′) (S · Λ)(x′)

for all f ∈ C(U ,R). Therefore,S acts pointwise. For this reason, it suffices to make a
local analysis. For the rest of this section, we make the assumption thatx′ = S · x is a
local diffeomorphism onR4. With this understanding, it is unnecessary to specify the
domainsU andU ′.
Definition 3.1. A field transformationS is a field symmetry if:

• (⋆) and(⋆⋆) are preserved (see, Definition 2.1).
• Φ satisfies(SHS)onU if and only ifS · Φ satisfies(SHS)onU ′.
• Φ♯ vanishes onU if and only(S · Φ)♯ vanishes onU ′.

It is implicit in the last two statements that the weightsΛ appear onU and the weights
S · Λ appear onU ′. For a field symmetryS, it follows thatΦ is a vacuum field onU if
and only ifS · Φ is a vacuum field onU ′.
As in Section 2, letx = (x1, x2, x3, x4) = (ξ1, ξ2, u, u). We now define a number of
field transformations.
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Definition 3.2. Angular coordinate transformation C. LetC1, C2 be real functions.

x′ = C · x =
(
C1(x1, x2), C2(x1, x2), x3, x4

)
e′A(x′) =

2∑
B=1

∂CA

∂xB (x) eB(x)
∣∣
x=C−1·x′ A = 1, 2

e′A+3(x
′) =

2∑
B=1

∂CA

∂xB (x) eB+3(x)
∣∣
x=C−1·x′ A = 1, 2

(e′3, γ
′, w′, Λ′)(x′) = (e3, γ, w, Λ)(C−1 · x′)

We will also use the notationC(ξ) = C1(ξ) + iC2(ξ), whereξ = ξ1 + iξ2.

Definition 3.3.U(1) transformation Z. Let ζ = ζ(x1, x2) ∈ U(1).

x′ = Z · x = x

Φ′(x′) = (Z · Φ)(x′) = ζAΦ(x) +


0
0
0
0
0

⊕



0
0

1
2 D(ζ)
1
2 D(ζ)

0
0
0

1
2 ζ

−1N(ζ)


(x) ⊕


0
0
0
0
0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=Z−1·x′

A = diag
(
1, 1, 0, 0, 0, 2, 0, 1,−1,−1, 0,−2, 0, 2, 1, 0,−1,−2

)
Λ′(x′) = (Z · Λ)(x′) = Λ(x)

∣∣
x=Z−1·x′

HereD(ζ) = (e1 ∂
∂x1 + e2

∂
∂x2 )(ζ) andN(ζ) = (e4 ∂

∂x1 + e5
∂

∂x2 )(ζ).

Definition 3.4. Global Isotropic ScalingJ. LetJ > 0 be a constant.

x′ = J · x = (x1, x2, Jx3, Jx4)

Φ′(x′) = (J · Φ)(x′) = JAΦ(x)
∣∣
x=J−1·x′

A = (−1) diag
(
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2

)
Λ′(x′) = (J · Λ)(x′) = Λ(x)

∣∣
x=J−1·x′

Definition 3.5. Global Anisotropic ScalingA. LetA 6= 0.

x′ = A · x =
(

1
Ax

1, 1
Ax

2, x3, A2x4
)

Φ′(x′) = (A · Φ)(x′) = AAΦ(x)
∣∣
x=A−1·x′

A = (−1) diag
(
2, 2, 0, 3, 3, 0, 0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 3, 4

)
Λ′(x′) = (A · Λ)(x′) = diag(1,A2,A4,A6)Λ(x)

∣∣
x=A−1·x′

The transformationA plays a central role in this paper. For a sample calculation,see
the proof of Proposition 4.1.

Proposition 3.1.C, Z, J, A are field symmetries.
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Proposition 3.1 is proven in Appendix E. We will now define an additional transforma-
tion. It is a composition of two field symmetries, and therefore itself a field symmetry.

Definition 3.6. Pole-Flip transformation Flipα. Let α 6= 0 be a constant. The Pole-
Flip transformationFlipα is the composition of aU(1) transformation and an angular
coordinate transformation. Precisely,

Flipα = Z ◦ C where ζ(ξ) = − ξ

ξ
C(ξ) = α2

ξ

andξ = ξ1 + iξ2 andC(ξ) = C1(ξ) + iC2(ξ).

Remark 3.1.With this choice ofζ andC, we haveC−1 ◦ Z ◦ C = Z−1 andC ◦ C =
Identity. Therefore,Flipα ◦ Flipα = Identity. The field symmetryFlipα will be used
to match constructions between two “angular” coordinate patches. For Minkowski,ξ
will be stereographic coordinates (scaled byα) based on the north and south poles.

4. The Doubly Scaled Minkowski FieldMa,A

Fix the coordinates(x1, x2, x3, x4) = (ξ1, ξ2, u, u) as in the preceding sections. For all
pairsµ, λ > 0, set

Strip(µ, λ) = R2 × (0, µ)× (−∞,−λ−1)

Strip∞ = Strip(∞,∞) = R2 × (0,∞)× (−∞, 0)
(4.1)

Definition 4.1. For all a,A 6= 0, letMa,A : Strip∞ →R (see(2.1)) be the field

Ma,A =


ρ−1

a,A ea,A

i ρ−1
a,A ea,A

1
0
0

⊕



0
ρ−1

a,A A2

ρ−1
a,A λa,A

ρ−1
a,A λa,A

0
−ρ−1

a,A

0
0


⊕


0
0
0
0
0

 (4.2)

Hereξ = ξ1 + iξ2 and

ρa,A(u, u) = A2u− u ea,A(ξ) = a
2

(
1 + A2

a2 |ξ|2
)

λa,A(ξ) = −A2

2a ξ (4.3)

We will often consciously suppress the subscriptsa, A on the functionsρ, e andλ. Set

S(u, u) = u2

ρ + u. (4.4)

The decomposition1ρ = − 1
u + S

u2 will be used over and over again.

Proposition 4.1.For all a,A 6= 0:

(a)Ma,A = (C ◦ A) ·M1,1 on Strip∞, whereC(ξ) = a ξ.
(b)Ma,A = Flip a

A
· Ma,A onStrip∞ ∩ {ξ 6= 0}.

(c)Ma,A = J ·Ma,A on Strip∞, for all J > 0.
(d)Ma,A is avacuum fieldon Strip∞ (see, Definition 2.2).
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(e) The Lorentzian manifold associated toMa,A is isometric to the open subset of
Minkowski space given by(4.5) below. For this reason, we refer toMa,A as the
doubly scaled Minkowski field.

Here,C, A, J andFlipα are field transformations defined in Section 3.

Proof. For (a), setCa = diag(a, a, 1, a, a) ⊕ 18 ⊕ 15 and letA be the matrix in
Definition 3.5. Then,(

(C ◦ A) ·M1,1

)
(x′′) =

(
C · (A ·M1,1)

)
(x′′)

= Ca (A ·M1,1)(x′)
∣∣
x′=C−1·x′′

= Ca AAM1,1(x)
∣∣
x=A−1·x′=A−1·(C−1·x′′)

= Ca AAM1,1

(
A
a ξ

′′, u′′, 1
A2 u

′′)
= Ma,A(x′′)

Similarly for (b) and (c). Part (d) is also verified by direct calculation. It suffices to check
(d) for M1,1, because the general case follows from (a) and Proposition 3.1. Recall
that the definition of a vacuum field is independent of the choice of weight functions
λ1, . . . , λ4. For (e), see Remark 4.1 below.⊓⊔

Remark 4.1.The Riemann curvature tensor of the Lorentzian manifold associated to
the vacuum fieldMa,A = (e, γ, w) onStrip∞ vanishes, becausew = 0 (see, Definition
2.2). It is isometric to the open subset of Minkowski space given by{

(X0,X) ∈ R× R3
∣∣∣ |X0| < |X|, X /∈ {0} × {0} × [0,∞)

}
(4.5)

where(X0,X) are the standard Minkowski coordinates, and

X0 =
1√
2 |A| (A

2u+ u)

X1

X2

X3

 =
1√
2 |A|

A2u− u

1 + A2

a2 |ξ|2


2A
a ξ

1

2A
a ξ

2

− 1 + A2

a2 |ξ|2


The level sets ofu = 2−

1
2 |A| (X0 − |X|) < 0 andu = 2−

1
2 | 1A |

(
X0 + |X|) > 0 are

null hypersurfaces. They intersect in a standard sphere of radius|X| = 2−
1
2 | 1A |ρ, with

the north pole removed, on whichAa ξ is the standard stereographic coordinate system.
The southern hemisphere corresponds to|ξ| < | a

A |.
Remark 4.2.The limit M0,0 = limA↓0MA,A exists onStrip∞. By taking the limit
of (d) in Proposition 4.1, it is a solution to(SHS) with M♯

0,0 = 0. Observe that the
associated frame is degenerate, becauseD = 0 here. (See, Proposition 2.4.)

Remark 4.3.For eacha 6= 0, the limit Ma,0 = limA↓0Ma,A exists onStrip∞. By
taking the limit of (d) in Proposition 4.1, it is a vacuum field. The Lorentzian mani-
fold associated toMa,0 is isometric to the open subset of Minkowski space given by
{|X0| < |X|, X0 +X3 < 0}:

1√
2
(X0 +X3) = u 1√

2
(X0−X3) = u+ u 1

a2 |ξ|2
(
X1

X2

)
= −

√
2 u

(
1
aξ

1

1
aξ

2

)
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Observe that−(X0)2+|X|2 = −2uu. The fieldMa,0 is independent ofξ andu, that is,
translation invariant in these directions. The level sets of u andu are null hypersurfaces.
They intersect in standard Euclidean planes.

5. The Far (Weak) Field Ansatz

Fix the coordinate system(x1, x2, x3, x4) = (ξ1, ξ2, u, u) on the infinitely wide strip
Strip∞ ⊂ R4, see (4.1), and make the far (“past null infinity”) field Ansatz

Φ(x) = Ma,A(x) + u−MΨ(x) (5.1)

onU . See, (4.2) for the definition ofMa,A(x). Here,

M = diag(2, 2, 2, 3, 3)⊕ diag(1, 2, 2, 2, 2, 2, 2, 3)⊕ diag(1, 2, 3, 4, 4)

Ψ(x) =
(
Ψ1(x), Ψ2(x), Ψ3(x)

)
=
(
f(x), ω(x), z(x)

) ∈ R
Our basic Ansatz (5.1), Minkowski plus asymptotically small corrections (assuming,
Ψ = O(1) asu → −∞), is completely naive. The only subtlety, lies in the choiceof
the diagonal matrixM that prescribes the far field asymptotics of the system, and is
ultimately a statement about the physics of propagating gravitational waves. Anyone
who has made formal or rigorous perturbative calculations or constructions in classical
or quantum physics knows from experience that one must “playwith the expansion”
until, “one sees what is going on”. We have followed this traditional route to the matrix
M . However, the only real justification is that it works.

In this section we bring the equations of Section 2 into a relevant / irrelevant form
that exhibits the essential constituents that have to be treated carefully, and sweeps
everything else into “generic terms” that we don’t need to know much about.

Proposition 5.1.In this proposition, ignore Definition 2.4, and regardΦ(x) andΦ♯(x)
as independent, sufficiently differentiable fields onStrip∞ with values inR andR̂, re-
spectively. Set

M = diag(2, 2, 2, 3, 3)⊕ diag(1, 2, 2, 2, 2, 2, 2, 3)⊕ diag(1, 2, 3, 4, 4) (5.2a)

E = diag(4, 4, 4, 6, 6)⊕ diag(2, 4, 4, 4, 4, 4, 4, 6)⊕ diag(0, 0, 0, 0, 0) (5.2b)

M ♯ = diag(2, 2, 2, 3, 3)⊕ diag(2, 2, 2, 2, 2, 2, 3, 3, 3)⊕ diag(0,−1,−2) (5.2c)

E♯ = diag(4, 4, 4, 6, 6)⊕ diag(4, 4, 4, 4, 4, 4, 6, 6, 6)⊕ diag(2, 2, 2) (5.2d)

and

Φ(x) = Ma,A(x) + u−M Ψ(x) Ψ(x) ∈ R (5.3a)

Φ♯(x) = u−M♯

Ψ ♯(x) Ψ ♯(x) ∈ R̂ (5.3b)

λj(x) = u2j j = 1, 2, 3, 4 (see, Definition 2.3) (5.3c)

The systems (see, Section 2)A(Φ)Φ = f(Φ) andÂ(Φ)Φ♯ = f̂(Φ, ∂xΦ)Φ♯ for Φ and
Φ♯ are equivalent to the following systems forΨ andΨ ♯:

Aa,A(x, Ψ)Ψ = fa,A(x, Ψ) (5.4a)

Âa,A(x, Ψ)Ψ ♯ = f̂a,A(x, Ψ, ∂xΨ)Ψ ♯ (5.4b)
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whereAa,A(x, Ψ) = Aµ
a,A(x, Ψ) ∂

∂xµ andÂa,A(x, Ψ) = Âµ
a,A(x, Ψ) ∂

∂xµ and

Aµ
a,A(x, Ψ) = uE

(
u−MAµ(Φ)u−M

)
(5.5a)

fa,A(x, Ψ) = uE−M
(
−Aµ(Φ)

(
∂

∂xµu
−M
)
Ψ + f(Φ)−Aµ(Φ) ∂

∂xµMa,A

)
(5.5b)

Âµ
a,A(x, Ψ) = uE♯(

u−M♯

Âµ(Φ)u−M♯)
(5.5c)

f̂a,A(x, Ψ, ∂xΨ) = uE♯−M♯
(
− Âµ(Φ)

(
∂

∂xµu
−M♯)

+ f̂(Φ, ∂xΦ)u−M♯
)

(5.5d)

In (5.5), Φ, ∂xΦ have to be expressed in terms ofΨ ,∂xΨ using(5.3a). We will sometimes
drop thea, A and writeA(x, Ψ), f(x, Ψ), Â(x, Ψ), f̂(x, Ψ, ∂xΨ). They are notationally
distinguished fromA(Φ), f(Φ), Â(Φ), f̂ (Φ, ∂xΦ) by the number of arguments.

Remark 5.1.The matricesAµ(x, Ψ), Âµ(x, Ψ) are Hermitian, so that (5.4a) and (5.4b)
are also symmetric hyperbolic. They are affine linear (overR) functions of the fieldΨ .
The linear (overR) transformation̂f (x, Ψ, ∂xΨ) depends affine linearly (overR) on
Ψ ⊕∂xΨ . On the other hand,f(x, Ψ) is a quadratic polynomial in the components ofΨ ,
Ψ without constant term. There is no constant term, becauseMa,A is a vacuum field.
By direct inspection, neither derivatives ofea,A nor derivatives ofλa,A appear in the
termAµ(Φ) ∂

∂xµMa,A. See, (2.5) and (4.2).

Definition 5.1. LetS be defined as in equation(4.4).

• P is a generic symbol for a quadratic polynomial in the components of the fieldsΨ
andΨ without constant term, whose coefficients are (complex) polynomials in1

u , A,
S, ea,A, λa,A, λa,A.
• P♯ is a generic symbol for a polynomial in the components of the fieldsΨ andΨ and
all their first order coordinate derivatives, whose coefficients are (complex) polyno-
mials in 1

u , A, S, ea,A, λa,A, λa,A, and all their first order coordinate derivatives.

We use the same symbolsP andP♯ for a vector or matrix all of whose entries are
polynomials of this kind.

Remark 5.2.The vector fieldsD,N andL corresponding toΦ = Ma,A + u−MΨ are:

D = − 2
u ea,A

∂
∂ξ

+ 2
u2 ea,A S

∂
∂ξ

+ 1
u2

(
f1

∂
∂ξ1 + f2

∂
∂ξ2

)
N = ∂

∂u + 1
u3

(
f4

∂
∂ξ1 + f5

∂
∂ξ2

)
L = ∂

∂u + 1
u2 f3

∂
∂u

(5.6)

Here, ∂
∂ξ

= 1
2 ( ∂

∂ξ1 + i ∂
∂ξ2 ).

Below,e = ea,A andλ = λa,A.
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Proposition 5.2.Let Ψ = (f, ω, z). The system(5.4a) takes the relevant / irrelevant
form:

L



f1
f2
f4
f5
ω1

ω2

ω3

ω4

ω8


=



eω1

−i eω1

2 eℜ(ω4 − ω3 − ω5)
−2 eℑ(ω4 − ω3 − ω5)

−z1
−|ω1|2

−z2 − λω1

−λω1

z3 + 2iℑ (λ (ω4 − ω5 − ω3)
)


+

1
u
P (5.7a)

N

f3ω5

ω6

ω7

 =
1
u

2 (f3 + ℜω8)
ω4 + ω5 − ω3

0
0

+
1
u2
P (5.7b)


N 1

uD 0 0 0
1
uD N + 1

u2L
1
uD 0 0

0 1
uD N + 1

u2L
1
uD 0

0 0 1
uD N + 1

u2L D
0 0 0 D L



z1
z2
z3
z4
z5

 =
1
u


0
0
0

4λz5
A2z5 − 2λz4 − 3ω7z3


+

1
u2
P (5.7c)

Proof. By direct (machine) calculation.⊓⊔
Remark 5.3.We comment on the relevant / irrelevant equations (5.7):

• The terms containing the generic symbolP and the term1
u

(
A2z5−2λz4−3ω7z3

)
on the right hand side of (5.7c) are referred to as irrelevant, the rest are referred to
as relevant. Observe that the relevant terms are all either principal in the number of
derivatives or leading order in powers of1

u . In particular, in the last line of (5.7c),
the termL(z5) is of order zero in powers of1u , so that all the terms on the right hand
side are irrelevant.
• If we just keep track of the terms that are leading order in powers of 1

u and ig-
nore the number of derivatives they contain, then the differential operatorsD,N,L
reduce to− 2

u e ∂
∂ξ

and ∂
∂u and ∂

∂u , see (5.6).
• The relevant terms on the right hand sides of (5.7) are linearin the components
of the unknownΨ = (f, ω, z) and their complex conjugates, withexactly oneex-
ception, namely−|ω1|2 in the sixth line of (5.7a). This term generates the trapped
spheres. Observe that this is the only equation in whichω2 appears in the relevant
part.
• The linear terms in the relevant part of the right hand sides of (5.7) are of two kinds.
Either there is an explicit factor ofe, λ, λ or there is a numerical factor (besides
powers of1u ). In the first case, we can make the factor small by requiring|A| ≤ |a|
and making|a| small. In the second case, we arrange the terms into a linear over R
matrix applied toΨ . We exploit the structure of this matrix, it motivates some of the
hypotheses of the energy estimate, see(E9), (E11a), (E11b) in Subsection 7.4.
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Proposition 5.3.LetΨ ♯ = (s, p, y), see(5.3b), and recall Definition 2.4. Then,s1s2
s3

 = P♯

(
s4
s5

)
= −uN

(
f1

f2

)
+ P♯ (5.8a)

p1

p2

p3

 = P♯

p4

p7

p8

 = −uN
 ω1

ω3

−ω4

+ P♯ (5.8b)

p5

p6

p9

 = P♯ =

 −L(ω7)− ω1

L(ω6)
uD(ω7)− uD(ω6) + ω4 − ω3 − 4λω7

+
1
u
P♯ (5.8c)

y1y2
y3

 = P♯ =

uD− 4λ L 0 0
ω7 uD− 2λ L 0
0 2ω7 uD L


z1z2z3
z4

+
1
u
P♯ (5.8d)

Proof. By direct (machine) calculation.⊓⊔
Remark 5.4.Every generic symbolP♯ that appears in (5.8), has no constant term as a
polynomial in the components ofΨ , Ψ and their first coordinate derivatives. There is no
constant term, becauseMa,A is a vacuum field.

Proposition 5.4.Let Ψ ♯ = (s, p, y), see(5.3b). The dual system(5.4b)takes the rele-
vant / irrelevant form:

L



s1
s2
s4
s5
p1

p2

p3

p4

p7

p8


=



0
0

e (p4 − p5) + e (p6 − p3)
i e (p4 − p5)− i e (p6 − p3)

y1
0
0
0

λ(p6 − p3)− λ(p4 − p5)
−λ(p6 − p3) + λ(p4 − p5)


+

1
u
P♯Ψ ♯ (5.9a)

N

s3p5

p6

p9

 =
1
u

s3 + p7 + p8
p4
p3

p7 + p8

+
1
u2
P♯Ψ ♯ (5.9b)

N + 1
u2L

1
uD 0

1
uD N + 1

u2L
1
uD

0 1
uD N + 1

u2L

y1y2
y3

 =
1
u2
P♯Ψ ♯ (5.9c)

Above, the symbolsP♯ are linear overR generic transformations, in the sense of Defi-
nition 5.1.

Proof. By direct (machine) calculation.⊓⊔
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Remark 5.5.The overall factorsuE anduE♯

appear in (5.4a) and (5.4b), so that these
systems are line by line (up to a permutation of the lines) equivalent to their rele-
vant / irrelevant counterparts in Propositions 5.2 and 5.4.

6. Formal Solutions

In this section we consider formal power series

[Ψ ](x) =
∞∑

k=0

( 1
u )k Ψ(k)(ξ, u) (6.1)

on Strip∞ ⊂ R4, see (4.1), where for eachk ≥ 0, the coefficient functionΨ(k) =
Ψ(k)(ξ, u) is a smooth field onR2 × (0,∞) taking values inR. By Proposition 5.3,
the associated formal constraint field[Ψ ♯ ] is itself a formal power series in1u , that is,
[Ψ ♯ ](x) =

∑∞
k=0(

1
u )k Ψ ♯(k)(ξ, u).

Remark 6.1.It also follows from Proposition 5.3 that, for eachk ≥ 0, the coefficient
functionΨ ♯(k) depends only onΨ(ℓ), 0 ≤ ℓ ≤ k.

The characteristic initial problem in Proposition 6.1 is motivated by [Chr].

Proposition 6.1.For all a,A 6= 0, u0 > 0, all smoothDATA (ξ, u) : R2 × (0,∞) → C
that vanish whenu < u0, there is a unique formal power series[Ψ ] on Strip∞, which
satisfies(5.4a)and[Ψ ♯ ] = 0 and (the formal characteristic initial conditions)

[Ψ ] = 0 whenu < u0 ω1(0) = DATA (6.2)

Moreover, for allk ≥ 0, the value ofΨ(k) at (ξ, u) ∈ R2× (0,∞) depends only on the
restriction ofDATA (ξ, u) and its derivatives of all orders to the half-open line segment
{ξ} × (0, u ] (formal finite speed of propagation). Explicitly,Ψ(0) is given by:

ω1(0) = DATA z5(0) = 0

ω7(0) = −∂−1
u ω1(0) ω2(0) = −∂−1

u |ω1(0)|2

z1(0) = − ∂
∂uω1(0) ω4(0) = −λ ∂−1

u ω1(0)

z2(0) = 2
(
e ∂

∂ξ + 2λ
)
∂−1

u z1(0) ω6(0) = 0

z3(0) = 2
(
e ∂

∂ξ + λ
)
∂−1

u z2(0)− ∂−1
u

(
ω7(0)z1(0)

)
f1(0) = e ∂−1

u ω1(0)

z4(0) = 2 e ∂
∂ξ ∂

−1
u z3(0)− 2∂−1

u

(
ω7(0)z2(0)

)
f2(0) = −i e ∂−1

u ω1(0)

ω3(0) = −∂−1
u z2(0)− λ ∂−1

u ω1(0) f3(0) = −ℜω8(0)

ω5(0) = −∂−1
u z2(0) f4(0) = −4 e ∂−1

u ℜω5(0)

ω8(0) = ∂−1
u z3(0)− 4i ∂−1

u ℑ(λω5(0)
)

f5(0) = 4 e ∂−1
u ℑω5(0)

(6.3)
wheree = ea,A andλ = λa,A are defined in(4.3)and ∂

∂ξ = 1
2

(
∂

∂ξ1 − i ∂
∂ξ2

)
, and

(
∂−1

u g
)
(u) =

∫ u

0

du′ g
(
u′
)
. (6.4)

We now prepare for the proof of Proposition 6.1, which appears on page 24.
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Definition 6.1. Leta,A 6= 0. Let

[Ma,A ](x) =
∑∞

k=0(
1
u )k Ma,A(k)(ξ, u)

be the formal expansion in1u for the Minkowski vacuum fieldMa,A, see(4.2), in which

[ 1
ρ ] = − 1

u + 1
u2 [S ] [S ] = −∑∞

k=0(
1
u )k A2(k+1) uk+1. (6.5)

Definition 6.2. Regard the components ofΨ(k) andΨ(k), k ≥ 0, and their formal first
coordinate derivatives, as an infinite family of independent abstract variables.
SetP0 = 0. The generic symbolPk, k ≥ 1, is an arbitrary polynomial in the com-
ponents ofΨ(ℓ) andΨ(ℓ), 0 ≤ ℓ ≤ k − 1, and all their first coordinate derivatives
( ∂
∂xµΨ(ℓ) and ∂

∂xµΨ(ℓ), µ = 1, 2, 3), whose coefficients are (complex) polynomials in
A, u, ea,A, λa,A, λa,A, and all their first coordinate derivatives. It is further required
that the polynomialPk have no constant term, that is,Pk vanishes whenΨ(ℓ) and

∂
∂xµΨ(ℓ) vanish for all0 ≤ ℓ ≤ k − 1 andµ = 1, 2, 3. We use the same symbolPk for
a vector or matrix all whose entries are polynomials of this kind.

Proposition 6.2.Substitute[Ma,A ] (see, Definition 6.1) forMa,A and[Ψ ] (see,(6.1))
for Ψ in (5.4a). Then[Ψ ] is a formal power series solution to(5.4a)if and only if its
coefficientsΨ(k), k ≥ 0, satisfy a system of the form

z1(k) = Pk k > 0 (6.6a)

z2(k) = Pk k > 0 (6.6b)

z3(k) = Pk k > 0 (6.6c)
∂

∂u z5(k) = Pk k ≥ 0 (6.6d)

(1− δk0)z4(k) = − 2
k−δk0

(
e ∂

∂ξ
+ 2λ

)
z5(k) + Pk k ≥ 0 (6.6e)

∂
∂u ω1(k) = −z1(k) + Pk k ≥ 0 (6.6f)

∂
∂u ω2(k) = −(2− δk0)ℜ

(
ω1(0)ω1(k)

)
+ Pk k ≥ 0 (6.6g)

∂
∂u ω3(k) = −z2(k)− λω1(k) + Pk k ≥ 0 (6.6h)

∂
∂u ω4(k) = −λω1(k) + Pk k ≥ 0 (6.6i)

ω5(k) = − 1
k+1

(
ω4(k)− ω3(k)

)
+ Pk k ≥ 0 (6.6j)

ω6(k) = Pk k > 0 (6.6k)

ω7(k) = Pk k > 0 (6.6l)
∂

∂u ω8(k) = z3(k) + 2iℑ (λ(ω4(k)− ω3(k)− ω5(k)
))

+ Pk k ≥ 0 (6.6m)

∂
∂u f1(k) = eω1(k) + Pk k ≥ 0 (6.6n)

∂
∂u f2(k) = −i eω1(k) + Pk k ≥ 0 (6.6o)

f3(k) = − 2
k+2 ℜω8(k) + Pk k ≥ 0 (6.6p)

∂
∂u f4(k) = 2 eℜ (ω4(k)− ω3(k)− ω5(k)

)
+ Pk k ≥ 0 (6.6q)

∂
∂u f5(k) = −2 eℑ (ω4(k)− ω3(k)− ω5(k)

)
+ Pk k ≥ 0 (6.6r)

Here,e = ea,A, λ = λa,A. In (6.6g), (6.6k), (6.6p), (6.6q), (6.6r), the generic symbol
Pk is real valued whenΨ(ℓ)(ξ, u) ∈ R for all 0 ≤ ℓ ≤ k.
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Proof. Substitute the formal series (6.1) into the relevant / irrelevant form of system
(5.4a) given in Proposition 5.2. Collect all coefficients ofcommon powers of1u . ⊓⊔
Lemma 6.1 just below is simpler than Proposition 6.1, because it assumesequations
(6.3) and it makes no statement about the formal constraint field [Ψ ♯ ].

Lemma 6.1.For all a,A 6= 0, u0 > 0, all smoothDATA (ξ, u) : R2 × (0,∞) → C
that vanish whenu < u0, there is a unique formal power series[Ψ ] on Strip∞, which
satisfies(5.4a)and

[Ψ ] = 0 whenu < u0 Ψ(0) is given by(6.3) (6.7)

Proof. Ψ(0), as given by (6.3), satisfies thek = 0 equations in (6.6). The coefficient
functionsΨ(k), k ≥ 1, are constructed by induction. For each stepk, equations (6.6a)
to (6.6r) are solved exactly in this order to obtainΨ(k). The right hand side is explicitly
known by induction and the “upper triangular” structure of (6.6a) to (6.6r). Whenever
∂

∂u appears on the left hand side, it is inverted using∂−1
u , because the constant of inte-

gration is zero by the first condition in (6.7). By induction,one also verifies thatΨ(k),
k ≥ 0, vanishes whenu < u0, so that the first condition in (6.7) is satisfied at all or-
ders. It is essential at precisely this point that the generic polynomialPk in Definition
6.2 has no constant term. Finally, by Proposition 6.2, thereexists a formal power series
solutions satisfying the hypothesis of the lemma. The construction given here is forced
at every step, and therefore generates a unique formal powerseries. ⊓⊔
Proof (of Proposition 6.1).We first prove existence. It suffices to show that the for-
mal power series[Ψ ] produced by Lemma 6.1 satisfies[Ψ ♯ ] = 0. (The formal finite
speed of propagation statement in Proposition 6.1 follows from an examination of the
construction of[Ψ ] in the proof of Lemma 6.1.) Note that

• [Ψ ♯ ] is a formal power series solution to the linear homogeneous system (5.4b).
• [Ψ ♯ ] = 0 whenu < u0.
• Ψ ♯(0) = 0 onR2 × (0,∞).

The first bullet follows from Proposition 2.3, because[Ψ ] is a formal power series
solution to (5.4a). The second bullet follows from the first condition in (6.7), which
implies [Φ ] = [Ma,A ] whenu < u0, and[Φ♯ ] = [M ♯

a,A ] = 0. For the third bullet,
note thatp5(0), y1(0), y2(0), y3(0), p6(0) all vanish onR2 × (0,∞) by the second
condition in (6.7). By the first two bullets and by equation (5.9a), we conclude, step
by step, thats1(0), s2(0), p1(0), p2(0), p3(0), p4(0), s4(0), s5(0), p7(0), p8(0) also
vanish. The first equation in (5.9b) givess3(0) = 0. It remains to show thatp9(0) = 0
onR2 × (0,∞). By (5.8c),

p9(0) = −2
(
e ∂

∂ξ
+ 2 λ

)
ω7(0) + 2 e ∂

∂ξω6(0) + ω4(0)− ω3(0).

The second condition in (6.7) implies( ∂
∂u )2p9(0) = 0. By the second bullet,p9(0) ≡ 0.

The three bullets imply, by induction onk ≥ 1, thatΨ ♯(k) = 0 on R2 × (0,∞). In
fact, at each stepk, one verifies, in the given order, thaty1(k), y2(k), y3(k) all vanish
by (5.9c),p1(k), p2(k), p3(k), p4(k) all vanish by (5.9a),p5(k), p6(k) both vanish
by (5.9b),p7(k), p8(k) both vanish by (5.9a),p9(k), s3(k) both vanish by (5.9b), and
s1(k), s2(k), s4(k), s5(k) all vanish by (5.9a). This concludes the existence proof.
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Uniqueness in Lemma 6.1 implies uniqueness in Proposition 6.1, because we now
show that (5.4a) and[Ψ ♯ ] = 0 and (6.2) together imply (6.3), which is the second
condition in (6.7). Condition (6.2) and thek = 0 equations in (6.6) imply (6.3), apart
from the formulas forω7(0), z2(0), z3(0), z4(0), ω6(0). The remaining five formulas
follow from the vanishing ofp5(0), y1(0), y2(0), y3(0) andp6(0), see (5.8c) and (5.8d).
Here,Ψ ♯(0) = (s(0), p(0), y(0)). ⊓⊔
Proposition 6.3.For all k,R ≥ 0, all 0 < |A| ≤ |a| ≤ 1, and allDATA ,

‖Ψ(k)‖CR(Q) ≤ pk,R

(‖DATA‖CR+2k+3(Q)

) Q = D4| a
A |(0)× (0, 2)

where[Ψ ] is the corresponding formal solution in Proposition 6.1, and pk,R : R → R,
is an infinite family, indexed byk,R ≥ 0, of universal polynomials without con-
stant term. Here,Dr(0) is the open disk of radiusr > 0 in the (ξ1, ξ2)-plane. Here
‖Ψ(k)‖CR(Q) = sup|α|≤R ‖∂αΨ(k)‖C0(Q), whereα ∈ N3

0.

Remark 6.2.The uniformity of the estimate ina, A, when0 < |A| ≤ |a| ≤ 1, will be
exploited later. In particular, it is compatible with taking the limita = A ↓ 0.

Proof. Observe that:

• ‖ea,A‖CR(Q) ≤ 17
2 and‖λa,A‖CR(Q) ≤ 17

2 for all R ≥ 0.
• ‖∂−1

u g‖CR(Q) ≤ 2 ‖g‖CR(Q) for all R ≥ 0 and all functionsg(ξ, u) onQ.

The existence of polynomialsp0,R, R ≥ 0, follow by direct inspection of (6.3). The
existence of polynomialspk,R, R ≥ 0, is shown by induction overk ≥ 0. At each
stepk ≥ 1, we use (6.6). By the inductive hypothesis and Definition 6.2there is a
polynomialp′k,R (depending only onk andR) so that each generic termPk on the right
hand sides of (6.6) satisfies‖Pk‖CR(Q) ≤ p′k,R

(‖DATA‖CR+2k+2(Q)

)
. We can assume

thatp′k,R has no constant term, becausePk does not have one (see, Definition 6.2). Now,
the existence ofpk,R,R ≥ 0 follows directly from estimating the non generic terms on
the right hand sides of (6.6a) to (6.6r), exploiting the upper triangular structure. Only in
one equation, (6.6e), a coordinate derivative appears.⊓⊔
Remark 6.3.Fix DATA and let[Ψa,A ] be the formal power series solution in Proposition
6.1. The indices have been added to make the dependence ona,A 6= 0 explicit. One
can show, by induction, thatΨA,A(k)(ξ, u), k ≥ 0, are polynomials inA. Just follow
the construction of[ΨA,A ] given in the proof of Lemma 6.1, and use the observation
thateA,A andλA,A are polynomials inA.

Let P be the parity field symmetry, see Remark 2.9. ThenP · [ΨA,A ] = [Ψ−A,−A ].
This is a direct consequence ofP · MA,A = M−A,−A, the uniqueness statement in
Proposition 6.1 and the fact thatω1(0) is P-even. Therefore, theP-even (P-odd) com-
ponents ofΨA,A(k), k ≥ 0, are even (odd) polynomials inA.

Let [Ψ0,0 ] = limA↓0 [ΨA,A ] (the limit is taken coefficient by coefficient). We have
[Φ0,0 ] = [M0,0 ] + u−M [Ψ0,0 ]. TheP-odd components all vanish. By inspection,
the e4, e5 components also vanish (see, Remark 2.9). Therefore,[Φ0,0 ] satisfies the
hypothesis of Proposition 2.4, in the sense of formal power series. The field[ Φ̃0,0 ] is a
formal solution to(subSHS), and[ Φ̃ ♯

0,0 ] = 0.

We now match constructions between two stereographic charts.
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Proposition 6.4.Choosea,A 6= 0. Pick DATA σ(ξ, u) as in Proposition 6.1, forσ =
−,+, and let[Ψσ ] be the associated solution in Proposition 6.1. The following state-
ments are equivalent:

• |ξ|2
ξ2 DATA σ

(
a
Aξ, u

)
= ξ2

|ξ|2 DATA−σ
(

a
A

1
ξ , u

)
whenξ 6= 0.

• Flip a
A
· [Φσ ] = [Φ−σ ] whenξ 6= 0. Here,[Φσ ] = [Ma,A ] + u−M [Ψσ ].

• Flip a
A
· [Ψσ ] = [Ψ−σ ] whenξ 6= 0.

Here,−σ = + whenσ = −, and conversely,−σ = − whenσ = +.

Proof. The equivalence of the last two bullets follows from Proposition 4.1, (b), and
the fact thatFlip a

A
commutes with multiplication byu−M . Each of the last two bullets

implies the first. Just look at howFlip a
A

acts on the componentω1. The first bullet im-
plies the last two, becauseFlip a

A
is a field symmetry, and by uniqueness in Proposition

6.1 (more precisely, by formal finite speed of propagation).⊓⊔
It is convenient (see Subsection 8.2) to make the

Definition 6.3. For all (ξ, u) ∈ R2 × (0,∞) with ξ 6= 0, set(
Flip a

A
· DATA

)
(ξ, u) = ξ2

ξ
2 DATA

(
a2

A2
1
ξ , u

)
Remark 6.4.Proposition 6.1, the main result of this section, is analogous to Theo-
rem 8.1, the main theorem of this paper. Proposition 6.1 concerns formal vacuum
fields [Φ ] = [Ma,A ] + u−M [Ψ ], Theorem 8.1 concerns classical vacuum fields
Φ = Ma,A + u−MΨ . They are solutions to an asymptotic characteristic initial value
problem that is motivated by [Chr]. Informally:

limu→−∞ Ψ(ξ, u, u) = Ψ(0)(ξ, u) (6.8a)

Ψ(ξ, u, u) = 0 whenu < u0 (6.8b)

with the understanding thatΨ(0) is given in terms ofDATA (ξ, u) by equations (6.3).
Equation (6.8b) stipulates thatΦ coincides with the Minkowski vacuum fieldMa,A

whenu < u0. On the other hand, (6.8a) is an asymptotic initial condition at “past null
infinity” u→ −∞. At this point, all the notation, definitions and concepts required for
Theorem 8.1 have been introduced. In can now be read on its own.

7. Energy Estimates

In this section, we prove an abstract local existence theorem for a general class of quasi-
linear symmetric hyperbolic systems, with a concrete breakdown criterion. Then, we
develop appropriate energy estimates. These tools are applied in Section 8.

Convention 7.1.In this section,

x = (x1, x2, x3, x4) = (ξ1, ξ2, u, u)

q = (q0, q1, q2, q3) = (t, ξ1, ξ2, u)
t = u+ u

q = (q1, q2, q3) = (ξ1, ξ2, u)
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LetDr(ξ) ⊂ R2 be the open disk of radiusr > 0 aroundξ and, generally,Br(p) ⊂ RN

be the open ball of radiusr > 0 around the pointp.

For any parameter vectora = (a1, . . . , ak) ∈ (R+)k, the notationX .a Y signifies
thatX ≤ C Y for a constantC = C(a) > 0 that depends only ona. Dropping the
subscripta, the notationX . Y meansY ≤ C Y for a universal constantC > 0.

7.1. Sobolev inequality.

Lemma 7.1.Let ∂q = ( ∂
∂q1 ,

∂
∂q2 ,

∂
∂q3 ). If b ∈ (0, 2], then for allC2-functionsf(q) =

f(q1, q2, q3) on the cylinderCYL = D1/4(0)×(0, b) ⊂ R3 which vanish forq3 < 1/4,

sup
q∈CYL

|f(q)| .
( ∑
|α|=2

‖∂α
q f‖2L2(CYL )

)1/2

, α ∈ N3
0.

Proof. Let B = D1/4(0) × {0} be the base ofCYL andS2 the unit sphere inR3. For
eachq ∈ CYL , let Γq ⊂ S2 be the set of all quotientsζ = p−q

|p−q| wherep ∈ B. Set
l(ζ) = |p− q|. We have

|f(q)| ≤ 1
|Γq|S2

∫
Γq⊂S2

dAS2(ζ)F (ζ)

where

F (ζ) =
∫ l(ζ)

0

dr r
∣∣∣ 〈ζ, H(f)

(
q + rζ

)
ζ
〉 ∣∣∣

since, Taylor’s theorem and the support properties off imply |f(q)| ≤ F (ζ) for all
ζ ∈ Γq. Here,H(f) is the Hessian off . LetCq ⊂ R3 be the convex hull ofB ∪ {q}.
By the Schwarz inequality,

|f(q)| ≤ 1
|Γq|S2

(∫
Γq⊂S2

dAS2(ζ)
∫ l(ζ)

0

1 dr
)1/2 (∫

Cq

d3y |H(f)(y)|2
)1/2

where,r2 has disappeared into the measured3y and|M | = (trMTM)1/2 is the Eu-
clidean matrix norm. Also, observe thatl(ζ) ≤ 3 and |Γq|S2 is bounded below by a
universal constant, for instanceπ/100. By construction,Cq ⊂ CYL , and the proof is
finished. ⊓⊔
Lemma 7.2.Let b ∈ [1, 2]. Then for allC2-functionsf(q) = f(q1, q2, q3) on the
cylinderCYL = D1/4(0)× (0, b) ⊂ R3,

sup
q∈CYL

|f(q)| .
( ∑
|α|≤2

‖∂α
qf‖2L2(CYL )

)1/2

, α ∈ N3
0. (7.1)

Proof. By reflection symmetry, it suffices to show (7.1) whenq ∈ CYL satisfiesq3 ≥
b
2 ≥ 1

2 . Fix a smooth transition functionψ = ψ(q3) : R → [0, 1] equal to0 on(−∞, 1
4 ]

and equal to1 on [ 12 ,∞). Then,

|f(q)|2 = |(ψf)(q)|2
Lemma 7.1

.
∑
|α|=2

‖∂α
q (ψf)‖2L2(CYL )

. ‖ψ‖2C2([0,1])

∑
|α|≤2

‖∂α
qf‖2L2(CYL ) ⊓⊔
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7.2. Finite speed of propagation for a general class of symmetric hyperbolic systems.
We show finite speed of propagation in the context of the following hypotheses:

(FS0) U ⊂ R4 is open andA = U ×Br(0) whereBr(0) ⊂ RP , 0 < r ≤ +∞, P ∈ N.
(FS1) Mµ(q,Θ), µ = 0, 1, 2, 3, is a symmetricP × P matrix onA. Moreover,h(q,Θ)

is anRP valued function onA. BothMµ andh areC1 onA and extend, with their
derivatives, continuously toA, andM0 > 0 onA.

(FS2) Θ1, Θ2 areC1-functions onU with values inBr(0) ⊂ RP , that are solutions to
the symmetric hyperbolic system

M(q,Θ)Θ = h(q,Θ), M = Mµ ∂
∂qµ . (7.2)

BothΘ1,Θ2 extend, with their derivatives, continuously toU .
(FS3) U is either the setConeor the intersectionCone∩ (R× Half).

Above, all the quantities are real.Cone is any set of the form{
(t,q) ∈ R4 : |q− q0|R3 < v|t1 − t|, t ∈ (t0, t1)

}
(7.3)

wherev > 0, q0 ∈ R3 andt0, t1 ∈ R with t0 < t1 are arbitrary, andHalf is any open
half-space inR3. We refer tov as the velocity of the setCone.

Lemma 7.3.Suppose(FS0), (FS1), (FS2), then the differenceΥ = Θ2 − Θ1 satisfies the
linear homogeneous symmetric hyperbolic system

M(q)Υ = H(q)Υ (7.4)

whereM(q) = M(q,Θ1(q)) andH(q) is a square matrix. Moreover,M(q), its first
derivatives andH(q) are continuous onU and extend continuously toU .

Proof. Adding and subtracting,

M(q,Θ1)Υ = −(M(q,Θ2)−M(q,Θ1)
)
Θ2 + h(q,Θ2)− h(q,Θ1).

SetΘs = (1 − s)Θ1 + sΘ2, and

Hij(q) = −
∑

k

( ∫ 1

0

ds
∂(Mµ)ik

∂Θj
(q,Θs(q))

)∂Θk
2

∂qµ
(q) +

∫ 1

0

ds
∂hi

∂Θj
(q, Θs(q)).

The proposition follows from the fundamental theorem of calculus. ⊓⊔
Suppose(FS3). In this case, let

S = (∂U) ∩ ((t0, t1)× R3
)

B = (∂U) ∩ ({t0} × R3
)

be the “lateral boundary” and “base” ofU . Note thatS is a piecewise smooth hypersur-
face inR4. Let θ = θµ dqµ be a smooth 1-form on the smooth components ofS, such
thatθ(X) > 0 for every vectorX pointingout of U .

Proposition 7.1.Given(FS0), (FS1), (FS2)and(FS3), the differenceΥ = Θ2−Θ1 vanishes
identically onU when

Υ |B = 0, (7.5a)

θµ Mµ(q,Θ1(q)) ≥ 0, along the smooth components ofS. (7.5b)
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Proof. We abbreviateM = M(q,Θ1(q)).
Define theC1 “energy current” vector field
jµ = ΥT MµΥ on U . By hypothesis,jµ

and its derivatives extend continuously to
U . For t ∈ [t0, t1], letE(t) be the integral
of the componentj0 overU ∩ ({t} ×R3

)
.

The Euclidean divergence theorem gives

E(t) =
∫
U∩C

∂µj
µ −

∫
S∩C

〈j, ν〉

S S

(t1, q0)

νν

B

t0

t

t1

U ∩ C

whereC = (t0, t) × R3, because, by (7.5a),E(t0) = 0. For U = Cone, see the
nearby figure. By (7.5b), the outward flux

∫
S∩C

〈j, ν〉 of j throughS∩C is positive. By
construction,∂µj

µ = ΥTKΥ , whereK = ∂µMµ +HT +H , sinceMµ is symmetric,
andΥ is a solution to (7.4). By Proposition 7.3,K is continuous onU and therefore
bounded. Also, there is a constantk > 0 such that|ΥTKΥ | ≤ kj0, becauseM0 is
strictly uniformly positive definite on the compact setU . It follows that

E(t) ≤
∫
U∩C

|ΥTKΥ | ≤ k

∫ t

t0

dsE(s),

for all t ∈ [t0, t1]. Consequently,E(t) = 0 on the interval[t0, t1]. In other words,
Υ = 0. ⊓⊔
Proposition 7.2.Let U = (t0, t1) × X , whereX ⊂ R3 is open, andt0, t1 ∈ R with
t0 < t1. Suppose(FS0), (FS1), (FS2)and letΥ = Θ2 − Θ1. Further suppose

(i) Υ |{t0}×X = 0.
(ii) M0 ≥ a and−b ≤ Mi ≤ b, i = 1, 2, 3, onA, for constantsa, b > 0.

Part 1.Setv∗ =
√

3 (b/a) > 0. ThenΥ vanishes at(t,q) ∈ U if

distR3

(
R3 \ X , q) > v∗ |t1 − t0|. (7.6)

Part 2.If, in addition,M3 ≥ 0 onA, thenΥ vanishes at(t,q) ∈ U if

distR3

(
Halfq ∩

(
R3 \ X ), q) > v∗ |t1 − t0| (7.7)

whereHalfq = {y ∈ R3 | y3 < q3}.
Proof (of Part 1).Let q ∈ X satisfy (7.6). Observe that, for the setCone⊂ U with
velocityv∗, base at timet0 and vertex at(t1,q), we have

θµ Mµ|S×Br(0) ≥ 0 (7.8)

by the choice ofv∗ and (ii). Here, the lateral boundaryS and the 1-formθ are just as in
the discussion above Proposition 7.1. We can now apply Proposition 7.1 toCone, and
concludeΥ |Cone = 0. ⊓⊔
Proof (of Part 2).Suppose thatM3 ≥ 0 onA. Let q ∈ X satisfy (7.7). The boundary
of the setCone∩ Halfq ⊂ U , whereConehas velocityv∗, base at timet0 and vertex
at (t1,q), has two smooth components. On the “round” one, the inequality (7.8) holds
again by the choice ofv∗, and on the “flat” one byθµ Mµ = M3 ≥ 0 for θ proportional
to (0, 0, 1, 0). We haveΥ |Cone∩Halfq = 0, by Proposition 7.1. ⊓⊔
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7.3. Existence / breakdown theorem.
Assumptions for the Existence / breakdown theorem: All the quantities here are real.

(EB0) LetU = (−∞, T )× R3, whereT ∈ R and letA = U ×B2(0) ⊂ R4 × RP .
(EB1) Mµ(q,Θ) is a symmetricP × P matrix onA. Particularly,M0 ≥ 1

2 .
(EB2) h(q,Θ) is anRP valued function onA.
(EB3) Bothh andMµ are smooth onA and their derivatives of all orders extend con-

tinuously toA.
(EB4) K ⊂ Q ⊂ R3 withK compact,Q open, such that on(−∞, T )×(R3\K)×B2(0),

the matrixMµ is constant and denoted by6Mµ andh(q,Θ) = 6H(t)Θ, where6H(t)
is a matrix depending only ont = q0. It is assumed,6M0 ≥ 1

2 . We can naturally
extendMµ andh, by 6Mµ and 6H(t)Θ, to (−∞, T )× (R3 \ K)× RP .

We now formulate and prove an existence theorem for the quasilinear symmetric hy-
perbolic system

M(q,Θ)Θ = h(q,Θ) M = Mµ ∂
∂qµ . (7.9)

Proposition 7.3.Suppose(EB0), (EB1), (EB2), (EB3), (EB4).

Part 1.For eacht0 < T , there is at1 ∈ (t0, T ] and a smooth solutionΘ : [t0, t1) ×
R3 → RP of (7.9)with trivial initial data,Θ(t0, · ) = 0, such thatsuppΘ ⊂ [t0, t1)×
Br(0) for some finiter > 0, and

Θ
(
[t0, t1)×Q

) ⊂ B1(0) ⊂ RP (7.10)

and such thatt1 6= T implies either one or both of:

(Break)1: Θ([t0, t1)×Q) 6⊂ B1(0) ⊂ RP .
(Break)2: The vector field∂q Θ is unbounded on[t0, t1)×Q.

Part 2.Suppose in addition thatM3 ≥ 0 onA, andh(q, 0) = 0 whenq3 < 1
2 . Then the

solutionΘ of Part 1 vanishes identically forq3 < 1
2 .

Proof (of Part 1).Fix a smooth transition functionψ = ψ(|Θ|) : R → [0, 1] which is
equal to 1 on(−∞, 4

3 ) and equal to 0 on(5
3 ,∞). It is for this reason thatB2(0) appears

in (EB0). Set

N = ψM + (1− ψ) 6M, g = ψ h+ (1− ψ) 6H Θ.

By construction,g and the symmetric matrixNµ are smooth onB = U ×RP , and their
derivatives of all orders extend continuously toB. Note thatN0 ≥ 1

2 onB and there is
a constantb > 0 such that−b ≤ Ni ≤ b, i = 1, 2, 3 on [t0, T ]× R3 × RP . The latter
statement follows from the fact thatNµ is constant (= 6Mµ) on the complement, in
[t0, T ]×R3×RP , of the compact set[t0, T ]×K×B2(0). Fix the velocityv∗ = 2

√
3 b

(see Proposition 7.2).
We want to reduce our existence / breakdown theorem to [Tay].To do this, fixL > 0

big enough so that

K ⊂ Cube def= [−L,L]3

distR3

(
∂Cube, K) > 1 + v∗ |T − t0|
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and smoothly extendN andg from (−∞, T )×Cube×RP to spatially periodic matrix
and vector valued functions on(−∞, T ) × R3 × RP . With these preliminaries, the
hypotheses of Proposition 2.1 on page 370, Proposition 1.5 on page 365 and Corollary
1.6 on page 366 in [Tay] are all satisfied, and there is aτ ∈ (t0, T ] and a spatially
periodic smooth solutionΘ : [t0, τ) × R3 → RP with trivial initial data att = t0 to
the symmetric hyperbolic system corresponding to the spatially periodic extension of
N andg, such that, ifτ 6= T , then the vector(

Θ, ∂q Θ
) ∈ RP ⊕ (R4 ⊗ RP

)
is unbounded on[t0, τ) × R3. (There is one caveat: [Tay], for convenience, considers
systems defined for all time. By direct inspection, his argument applies to any open
subinterval ofR.)

K K + (2L, 0, 0)

∂Cube+ (2LZ)3

Let J = K + (2LZ)3. By construction, the spatially periodic system introduced
in the last paragraph reduces to6MΘ = 6H(t)Θ, on (−∞, T ) × (R3 \ J ) × RP , and
admits the trivial solution. Intuitively, “signals can travel at most a distancev∗|T − t0|”,
which is less than the distance betweenK and∂ Cube. This intuition is formalized
by applying Proposition 7.2 to the open set(t0, τ − ǫ) × (R3 \ J ) for arbitrarily
small ǫ > 0. Consequently,Θ vanishes at every point(t,q) ∈ [t0, τ) × R3 with
distR3(J , q) > 1

2 + v∗|T − t0|, becauseΘ|t=t0 = 0. It follows from our choice
of L that the periodic solutionΘ vanishes in a neighborhood of[t0, τ)× (∂ Cube). For
this reason, and because of(EB4), the modified field

[t0, τ)× R3 ∋ q 7→
{

0, if q ∈ (R3 \ Cube)
Θ(q), if q ∈ Cube

∈ RP (7.11)

which we continue to callΘ, is a smooth solution to the non-periodic systemNΘ = g
with trivial initial data. Moreover, ifτ 6= T , then the vector(Θ, ∂q Θ) is unbounded.

Supposeτ 6= T . We show that(Θ, ∂q Θ) is bounded onV = [t0, τ)× (R3 \Q), and
consequently, unbounded on[t0, τ)×Q. For any timet2 ∈ (t0, τ), decompose

[t0, τ) × R3 = V1 ∪ V2 ∪ V3

V1 = [t0, τ)× (R3 \ Cube)
V2 = [t0, t2]× Cube
V3 = (t2, τ) × Cube

By (7.11), the vector(Θ, ∂q Θ) is bounded onV ∩ V1 and, by compactness, also on
V ∩ V2.
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Let
d = distR3(K, R3 \ Q) > 0.

To verify that(Θ, ∂q Θ) is bounded onV∩V3, we chooset2 ∈ (t0, τ) with v∗ |τ−t2| ≤
d/2. Intuitively, this choice means that “signals can travel atmost a distanced/2 in the
time interval(t2, τ)”, which is less than the distance betweenK andR3 \ Q. There
exists (see, for instance, [Tay2] ) a unique smooth solutionΘ2 : [t2, T ) × R3 → RP

to the linear system6MΘ2 = 6H(t)Θ2 with initial condition (Θ − Θ2)|t=t2 = 0. In
particular,(Θ2, ∂q Θ2) is bounded on the compact setV ∩ V3. By (EB4),Θ is a solution
to the same system on[t0, τ) × (R3 \ K). As in the last paragraph, Proposition 7.2
implies thatΘ = Θ2 on [t2, τ) × (R3 \ Q) ⊃ V ∩ V3. Consequently,(Θ, ∂q Θ) is
bounded onV ∩ V3, and we are done.

The final step is to remove the transition functionψ. Let

I =
{
t ∈ [t0, τ)

∣∣∣ Θ([t0, t]×Q) ⊂ B1(0) ⊂ RP
}
.

We show thatI = [t0, t1), wheret1 ∈ (t0, τ ]. First, t0 ∈ I since the initial data
vanishes. Second, ift′ ∈ I, then[t0, t′] ∈ I. Let t1 = sup I. If t1 = τ , thent1 6= I.
If t1 < τ , assume by contradictiont1 ∈ I. Then, the compact setΘ([t0, t1]×Q)
is contained in a ballBr(0) ⊂ RP of radiusr < 1. However,∂tΘ is bounded on
[t0, t1]×R3, sincesuppR3(∂tΘ)(t, · ) ⊂ Cube is compact for allt ∈ [t0, t1]. Therefore,
t1 + ǫ ∈ I for all sufficiently smallǫ > 0.

The smooth solution of (7.9) that we are looking for isΘ|[t0,t1)×R3 . Indeed, it has
trivial initial data, support contained in[t0, t1) × Cube and satisfies (7.10). Ifq ∈
[t0, t1) × Q, then|Θ(q)| ≤ 1 andψ(|Θ(q)|) = 1, by the definition oft1. In this case,
the systemNΘ = g reduces to (7.9). On[t0, t1)× (R3 \ K), (EB4) directly implies that
the system also reduces to (7.9).

If t1 6= T , there are two alternatives:t1 < τ ≤ T andt1 = τ < T . For the first, we
use the continuity ofΘ on [t0, t1]×Q to conclude that

Θ([t0, t1)×Q) = Θ([t0, t1]×Q) 6⊂ B1(0)

sincet1 /∈ I. That is, we have(Break)1. For the second,τ 6= T , and(Θ, ∂q Θ) is
unbounded on[t0, t1)×Q. SinceΘ is bounded,(Break)2 applies. The proof of Part 1 is
complete. ⊓⊔
Proof (of Part 2).Let Half = {q ∈ R3 | q3 < 1

2}. The assumptionh(q, 0) = 0, when
q3 < 1

2 , implies thatΘ1 = 0 is a solution toNΘ = g on (t0, t1)×Half . Also,Θ2 = Θ

is a smooth solution, and(Θ2 − Θ1)|{t0}×Half = 0. The assumptionM3 ≥ 0 onA
implies 6M3 ≥ 0 and consequently,N3 ≥ 0 onU × RP . At last, Part 2 of Proposition
7.2, applied to the open set(t0, t1 − ǫ) × Half with arbitrarily smallǫ > 0, forces
Θ2 −Θ1 = Θ to vanish on[t0, t1)× Half . ⊓⊔

7.4. Energy Estimate.
Assumptions for the energy estimate: All the quantities here are real.

(E0) U = I × O(b) whereO(b) = R2 × (0, b) ⊂ R3, b ∈ [1, 2] andI = (t0, t∗),
−∞ < t0 < t∗ ≤ −1.
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(E1) Mµ(q) is a symmetricP×P matrix onU . Particularly, for allq ∈ U , 1
2 ≤ M0 ≤ 2

andM3 ≥ 0. We assume the integerP is less than some big absolute constant, say
P ≤ 109.

(E2) H(q) is aP × P matrix onU .
(E3) Src(q) is anRP valued function onU .
(E4) Θ(q) is anRP valued function onU , which is a solution to the linear, inhomoge-

neous, symmetric hyperbolic system

M(q)Θ = H(q)Θ + Src(q), M = Mµ ∂
∂qµ . (7.12)

(E5) Fix a non-negative integerR. Then,Mµ, Θ (resp.H , Src) areCR+1 (resp.CR)
functions onU , all of whose derivatives of order≤ R + 1 (resp.≤ R) extend
continuously toU .

(E6) suppΘ(t, · ) andsupp Src(t, · ) are contained in a ball inR3 with radius indepen-
dent oft. Moreover,Θ andSrc vanish identically whenq3 < 1

2 .

Let RP = RP1 ⊕ RP2 ⊕ RP3 . We decompose

Θ = (Θ1, Θ2, Θ3), Src = (Src1, Src2, Src3).

EachP × P matrix is decomposed into nine blocks of sizePm × Pn, wherem,n =
1, 2, 3. Especially,

Mµ = (Mµ
mn)m,n=1,2,3, H = (Hmn)m,n=1,2,3. (7.13)

(E7) The matrixMµ is block-diagonal,Mµ = diag (Mµ
1 , M

µ
2 , M

µ
3 ), and(M2)ij =

µ(q) δij ( ∂
∂q0 + ∂

∂q3 ), i, j = 1, . . . , P2, for some functionµ.

(E8) 6Mµ are constant symmetricP×P matrices, with1
2 ≤ 6M0 ≤ 2, 6M1 = 0, 6M2 = 0

and 6M3 ≥ 0.
(E9) 6H(t) is aP × P matrix depending only ont with RP1 ⊕ RP2 ⊕ RP3 block-form

6H =
(6Hmn

)
m,n=1,2,3

=

 0 0 0
6H1 0 0
0 |t|−1 6H2 |t|−1 6H3


where6H1, 6H2, 6H3 are constant matrices,6H3 is symmetric and6H3 ≤ 0.

Definition 7.1. For every openX ⊂ R3, the energy off contained inX at timet is

Ek
X {f}(t) def

=
∑
|α|≤k

α∈N4
0

∫
X

d3q |∂αf(t,q)|2
(7.14)

and the supremum norm

Sup
(k)
X {f}(t) def

= sup
|α|≤k

α∈N4
0

sup
q∈X

|∂αf(t,q)| (7.15)

for any scalar, vector or matrix valuedCk-function f . As usual, we denote∂α =∏3
µ=0(∂µ)αµ where∂µ = ∂

∂qµ , for anyα = (αµ)µ=0,1,2,3 ∈ N4
0. The pointwise norm

| · | is always the Euclidean norm (for matrices,|A|2 = tr(ATA)).
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(E10) There are constantsc1 ≥ 0 andJ > 0 such that for allt ∈ I:

|t|2J+2 ER
O(b){Src1}(t)

|t|2J ER
O(b){Src2}(t)

|t|2J+2 ER
O(b){Src3}(t)

 ≤ c2
1,

(E11a) AssumeR ≥ 4. There is a constantc2 > 0 such that for allt ∈ I:

|t|2 ER
O(b){Mµ − 6Mµ}(t)

|t|2ER
O(b){H1n − 6H1n}(t)

ER
O(b){H2n − 6H2n}(t)

|t|2ER
O(b){H3n − 6H3n}(t)


≤ c2

2.

(E11b) AssumeR ≥ 0. There is a constantc2 > 0 such that for allt ∈ I:

|t| Sup
(max{1,R})
O(b) {Mµ − 6Mµ}(t)
|t| Sup

(R)
O(b){H1n − 6H1n}(t)

Sup
(R)
O(b){H2n − 6H2n}(t)

|t| Sup
(R)
O(b){H3n − 6H3n}(t)


≤ c2.

Proposition 7.4 (Energy Estimate).Suppose the hypotheses(E0) through (E10) hold,
and, also, either(E11a) or (E11b) holds. LetJ0 > 0 and assumeJ ≥ J0, see(E10).
Then, there are constantsc3(X) ∈ (0, 1), c4(X) > 0 depending only onX =(
R, J0, |6H1|, |6H2|, |6H3|

)
, such thatc2 ≤ c3(X) and|t∗|−1 ≤ c3(X) imply that

√
ER
O(b){Θ}(τ) ≤ c4(X)

|t0|J
√
ER
O(b){Θ}(t0) + c1

|τ |J (7.16)

for all τ ∈ I (see,(E0) for the definition ofI).

Proof. In the proof, we denoteER = ER
O(b) andSup(R) = Sup

(R)
O(b).

Preliminaries 1:For a functionf with values inRPi, i = 1, 2, 3, we define the
energy naturally associated to the linear symmetric hyperbolic system (7.12)

E0
i {f}(t) =

∫
O(b)

d3q
(
fTM0

i f
)
(t,q) , ER

i {f}(t) =
∑
|α|≤R

α∈N4
0

E0
i {∂αf}(t)

(7.17)
See, (7.13). This energy is comparable, by(E1), to the one defined in (7.14). Namely,

ER{f}(t) ≤ 2ER
i {f}(t), ER

i {f}(t) ≤ 2ER{f}(t). (7.18)

If R ≥ 2 andf is a vector or matrix valuedCR function, Lemma 7.2 implies:

Sup(R−2){f}(t) .R

√
ER{f}(t). (7.19)
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If α ∈ N4
0, |α| ≤ R andR ≥ 4 (to be used in the case(E11a)) implies

ER{f1f2}(t) .R ER{f1}(t)ER{f2}(t) (7.20)

E0
{

[∂α, f1]f2
}
(t) .R

∑
|β|=1

ER−1{∂βf1}(t)ER−1{f2}(t) (7.21)

whereasR ≥ 0 (to be used in the case(E11b)) implies

ER{f1f2}(t) .R

(
Sup(R){f1}(t)

)2
ER{f2}(t) (7.22)

E0
{

[∂α, f1]f2
}
(t) .R

∑
|β|=1

(
Sup(R−1){∂βf1}(t)

)2
ER−1{f2}(t) (7.23)

Inequalities (7.22) and (7.23) are direct consequences of the product rule. The in-
equalities (7.20) and (7.21), require, in addition,R ≥ 4 and the Sobolev inequality
(7.19). In fact, by the product rule,

ER{f1f2}(t) .R

∑
|α|+|β|≤R

∫
O(b)

d3q
∣∣∂αf1(t,q)

∣∣2 ∣∣∂βf2(t,q)
∣∣2

For each pair of multiindices(α, β) with |α|+ |β| ≤ R, at least one of|α| or |β| is less
than or equal toR− 2, sayα. Then, by the Sobolev inequality,

sup
q∈O(b)

|∂αf1(t,q)|2 .R ER{f1}(t)

Inequality (7.20) follows at once. This argument works forR ≥ 3. An entirely similar
argument gives (7.21), but withR ≥ 4.

Preliminaries 2:In this subsection,t ∈ I andα ∈ N4
0, |α| ≤ R, are arbitrary. We

apply∂α to (7.12) and obtain (all the derivatives make sense classically)

M(∂αΘ) = 6H ∂αΘ + (Sα
1 , S

α
2 , S

α
3 ) + ∂αSrc (7.24)

(Sα
1 , S

α
2 , S

α
3 ) def= ∂α

(
(H − 6H)Θ

)
+ [∂α, 6H ]Θ + [Mµ − 6Mµ, ∂α]∂µΘ.

If R ≥ 4, (7.20), (7.21) and(E9) imply that

E0{Sα
i } .R

{ 3∑
j=1

ER{Hij−6Hij}+ |6H2|2 + |6H3|2
|t|4 +

3∑
µ=0

ER{Mµ−6Mµ}
}
ER{Θ}.

If R ≥ 0, (7.22), (7.23) and(E9) imply that

E0{Sα
i } .R

{ 3∑
j=1

(
Sup(R){Hij − 6Hij}

)2 +
|6H2|2 + |6H3|2

|t|4

+
3∑

µ=0

(
Sup(R){Mµ − 6Mµ})2}ER{Θ}.
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If (E11a) or (E11b), it follows from the inequalities just above that

|t|2E0{Sα
1 }(t)

E0{Sα
2 }(t)

|t|2E0{Sα
3 }(t)

 .R c2
∗ E

R{Θ}(t) (7.25)

wherec∗ = max
{
c2, |t∗|−1(|6H2|2 + |6H3|2)1/2

}
.

Estimates:We derive the energy inequalities 7.33, stated below. Fori = 1, 2, 3,
define “energy currents” associated toΘ = (Θ1, Θ2, Θ3) (see(E4))

jµ
i [Θi](q) =

(
ΘT

i M
µ
i Θi

)
(q). (7.26)

(Warning: we never sum over repeated “lower” indices.) The important current identity

∂µj
µ
i [Θi] = ΘT

i (∂µM
µ
i )Θi + 2ΘT

i

(
Mµ

i ∂µΘi), (7.27)

follows from (Mµ
i )T = Mµ

i , see(E1). Forτ ∈ I, let τ− = max{t0, τ − 2}. Let

D1(τ) = D3(τ) =
{
(t,q) ∈ U ∣∣ t ∈ (τ−, τ)

}
(7.28)

D2(τ) = D1(τ) ∩ { q | q3 − q0 < b− τ}. (7.29)

For the casei = 2, see the nearby figure,
wheret0 < τ2 < t0 + b < τ1 < t∗. Energy
estimates are obtained by integrating (7.27) over
Di(τ) ⊂ U = I × O and applying the Euclidean
divergence theorem. The divergence theorem gen-
erates integrals over the boundary∂Di(τ), which
we now discuss. Recall(E6). Theq0 = τ bound-
ary contributesE0

i {Θi}(τ). There is no contri-
bution from theq3 = 0, by (E6). For i = 1, 3,
theq0 = τ− boundary contributes−E0

i {Θi}(τ−),
and the contribution fromq3 = b is non-negative,
by (E1). If i = 2, there is always a boundary con-
tribution fromq3 − q0 = b − τ and it vanishes by
(E7). If i = 2 andτ < t0 + b, there is an addi-
tional boundary contribution atq0 = t0 which is
≥ −E0

2{Θ2}(t0). t0

τ1

τ2

q
3

=
b

q
3

=
0

τ1 − b

D2(τ2)

D2(τ1)

t∗

The discussion of the last paragraph literally transposes fromΘi andjµ
i [Θi] to ∂αΘi

andjµ
i [∂αΘi], for |α| ≤ R. The currentjµ

i [∂αΘi] is C1 and extends, with its deriva-
tives, continuously toU . The preceding analysis of the boundary terms gives the general
inequalities

E0
i {∂αΘi}(τ)− ki(τ)E0

i {∂αΘi}(τ−) ≤
∫
Di(τ)

d4q ∂µj
µ
i [∂αΘi](q). (7.30)

for i = 1, 2, 3. Here, by definition,k1(τ) = k3(τ) = 1 for all τ , whereask2(τ) vanishes
whenτ− > t0 and is equal to1 whenτ− = t0. Summing over|α| ≤ R,

ER
i {Θi}(τ) − ki(τ)ER

i {Θi}(τ−) ≤
∫
Di(τ)

d4q
∑
|α|≤R

∂µj
µ
i [∂αΘi](q). (7.31)
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The current identity (7.27), with∂αΘi in the role ofΘi, and (7.24) imply

∂µj
µ
i [∂αΘi](q) (7.32)

= 2(∂αΘi)T

{( 3∑
j=1

6Hij (∂αΘj)
)

+ 1
2 (∂µM

µ
i )(∂αΘi) + (∂αSrci) + Sα

i

}
.

For i = 1, 2, we directly estimate the right hand side of (7.31), by usingSchwarz’s
inequality for the spatial part of the integral, and(E6), (E10), (7.25) and (7.18). Fori = 3,
we first exploit6H3 ≤ 0 (see(E9)) to drop the term2(∂αΘ3)T 6H33(∂αΘ3), and then go
on as before. We also use the estimate|∂µMµ| = |∂µ(Mµ − 6Mµ)| .R c2 |t|−1 ≤
c∗ |t|−1 that holds when either(E11a) or (E11b) is assumed (in the first case, we use
(7.19)). AbbreviatingEi = ER

i {Θi} andE = E1 + E2 + E3, we have for allτ ∈ I:

E1(τ) −E1(τ−) .X

∫ τ

τ−

dt
|t|
√

E1(t)
(
c∗
√

E(t) +
c1

|t|J
)

E2(τ) −E2(t0) .X

∫ τ

τ−
dt
√

E2(t)
(√

E1(t) + c∗
√

E(t) +
c1

|t|J
)

E3(τ) −E3(τ−) .X

∫ τ

τ−

dt
|t|
√

E3(t)
(√

E2(t) + c∗
√

E(t) +
c1

|t|J
) (7.33)

whereX is defined as in the proposition.
For eachA = (A1, A2, A3) ∈ (0,∞)3, define

J (A) =
{
t ∈ I

∣∣∣ sup
τ∈[t0,t]

|τ |2JEi(τ) ≤ A2
i , i = 1, 2, 3

}
AssumeA satisfies (recall thatJ ≥ J0 > 0, by assumption)

A1 > |t0|J
√

E1(t0) A1 >
C
J0

c1 A1 >
C
J0

c∗|A|
A2 > 2|t0|J

√
E2(t0) A2 > 8Cc1 A2 > 8C(A1 + c∗|A|)

A3 > |t0|J
√

E3(t0) A3 >
C
J0

c1 A3 >
C
J0

(A2 + c∗|A|)
(7.34)

where|A|2 = A2
1 + A2

2 + A2
3 and whereC = C(X) > 0 is the maximum of the three

constants of proportionality in the inequalities (7.33). It is a direct consequence of the
inequalities (7.33), (7.34) and the continuity ofI ∋ τ 7→ Ei(τ) thatJ (A) is an open
and closed sub-interval ofI which containst0. Therefore,J (A) = I. To see thatJ (A)
is open inI, first observe that for everyτ ∈ J (A), the inequalities (7.33), (7.34) imply
the strict inequalitiesEi(τ) < (Ai|τ |−J )2, and then use continuity.

For eachλ ≥ 0, set

A(λ) = λ
(
1 , 1 + 8C , 1 + C

J0
(1 + 8C)

)
.

The three rightmost inequalities in (7.34) are homogeneous(degree 1) inA, and hold
for A(λ), λ > 0, if and only if they hold forA(1), which is the case ifc∗ > 0 is
sufficiently small depending only onX , because it is true forc∗ = 0. The definition
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of c∗ right after (7.25) impliesc∗ ≤ (1 + |6H2|2 + |6H3|2)1/2 c3(X). Consequently, the
condition onc∗ holds ifc3(X) is suitably small. If

λ > λ0
def= 2|t0|J

√
E(t0) + max{8, J−1

0 }C c1 ≥ 0

then the remaining inequalities in (7.34) hold forA(λ), that isJ (A(λ)) = I. By the
definition ofJ (A), we haveJ (A(λ0)) = I. By (7.18), inequality (7.16) follows if
c4(X) is sufficiently big. ⊓⊔
Remark 7.1.Once the system of inequalities (7.33) has been established, the rest of the
argument is abstract, in the sense that it holds for any threefunctionsEi, i = 1, 2, 3,
satisfying (7.33).

7.5. Refined energy estimate.We proved a finite speed of propagation theorem for for-
mal power series vacuum fields[Ψ ], see Proposition 6.1. The refined energy estimate
obtained in this subsection plays a similar role for a classical vacuum fieldΨ .
To make the last statement more precise, recall that the energy estimate for the symmet-
ric hyperbolic system (7.12) was obtained by integrating the divergence current identity
(7.27) over appropriate open subsetsC ⊂ R4. We now construct more refined setsC
which allow us to estimate the energy “localized in the(ξ1, ξ2) plane”. We will be
guided by the basic requirement that the boundary integralsin the divergence theorem
have definite signs. That is, the boundary ofC must be non-timelike (with respect to the
symmetric hyperbolic system).

Convention 7.2.Until further notice, we use the coordinates

x = (x1, x2, x3, x4) = (ξ1, ξ2, u, u).

Recall the matrix differential operatorsA(Φ) andÂ(Φ) associated toΦ = (e, γ, w).
See, (2.5), (2.8). Supposeθ is a one-form and suppose (see, (2.2))

θµL
µ ≥ 0, θµN

µ ≥ 0, θµ

(
N D
D L

)µ

≥ 0 (7.35)

The last inequality is in the sense of Hermitian matrices. Then

θµAµ(Φ) ≥ 0, θµÂµ(Φ) ≥ 0. (7.36)

For eachx0 = (ξ0, u0, u0) ∈ R2×(0,∞)×(−∞, 0) and choice of constantsk0, k1, d >
0, whered < u0 andd < |u0|−1, set

C =
⋃

(u,u) ∈ B

(
Dr(u,u)(ξ0)× {(u, u)}

)
F =

⋃
(u,u) ∈ B

(
∂Dr(u,u)(ξ0)× {(u, u)}

)
where

B = (0, u0 − d)× (−∞,− 1
|u0|−1−d

) ⊂ R2,

r(u, u) = k0 + k1 |u0 − u| · ∣∣|u0|−1 − |u|−1
∣∣. (7.37)

74



39

More geometrically,C is a disk bundle over the baseB, andF the corresponding circle
bundle. The setC is an open subset ofR4. Note that,r : B → (k0, k0 + k1|u0|/|u0|), a
bounded set. The setC has piecewise smooth boundary. We concentrate on the smooth
pieceF ⊂ ∂C here. Letθ be a 1-form alongF whose kernel coincides with the tangent
space toF and for whichθ(X) > 0 if X is a vector pointing out ofC. We choose

θ =
2∑

i=1

ξ̂i dξi + k1

∣∣∣∣ 1
|u| −

1
|u0|

∣∣∣∣ du+ k1
|u0 − u|
|u|2 du, ξ̂i =

ξi − ξi
0

|ξ − ξ0| . (7.38)

Proposition 7.5.Letx ∈ F . If e3(x) > 0 and the inequality

k1 d ≥ 2 max
{ |u|√

e3

√
|e1|2 + |e2|2, |u|2

√
|e4|2 + |e5|2

}
(7.39)

holds atx, then(7.36)holds atx with θ given by(7.38).

Proof. If θµL
µ > 0 andθµN

µ > 0 anddet θµ

(
N D
D L

)µ
> 0, then (7.35) and therefore

(7.36) hold. The conditione3 > 0 impliesθµL
µ > 0. By (7.39),

ξ̂1e4 + ξ̂2e5 + k1 |u|−2 |u0 − u| ≥ k1d

2|u|2 > 0

which impliesθµN
µ > 0. Finally,e3 > 0 and (7.39) imply

e3 k1

∣∣∣|u|−1 − |u0|−1
∣∣∣ (ξ̂1e4 + ξ̂2e5 + k1 |u|−2 |u0 − u|

)
− ∣∣ξ̂1e1 + ξ̂2e2

∣∣2 > 0

and thereforedet θµ

(
N D
D L

)µ
> 0. ⊓⊔

Remark 7.2.Proposition 7.5 will be applied as follows. FixΦ, and consider symmetric
hyperbolic systems with differential operators given byA(Φ) or Â(Φ). Then, if the
assumptions of Proposition 7.5 are satisfied for all pointsx ∈ F ′ ⊂ F , the boundary
integral

∫
F ′〈j, ν〉, wherej is the energy current vector field, is non-negative.

Convention 7.3.Observe that the definitions ofC andF depend only on the parameters
k0, k1, d, ξ0, u0, u0. For the rest of this paper, the setsC andF are determined by the
specific choice of parameters

d = 10−3, k0 = 1
4 , k1 = 1

18d−1, u0 = − 1
2d−1, u0 = b+ d (7.40)

For eachb ∈ [1, 2] andξ0 ∈ R2, we denote the corresponding sets byC(ξ0, b) and
F(ξ0, b). The baseB is given byB = (0, b) × (−∞,−d−1) and the radius function
r(u, u) takes values in(1

4 ,
1
2 ) onB.

Recall the far field ansatz (see, Section 5)Φ = Ma,A + u−M Ψ , whereΨ = (f, ω, z).
The ansatz depends on the scaling parametersa andA.

Convention 7.4.For the rest of this paper, the parametersa,A ∈ R are restricted by

0 < |A| ≤ |a| ≤ 10−3 (7.41)
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Proposition 7.6.Let d be fixed as in(7.40). Letξ0 ∈ R2 andb ∈ [1, 2]. Assumea,A ∈
R satisfy(7.41). If, in addition,

|Ψ(x)| ≤ 5

at x = (ξ, u, u) ∈ F(ξ0, b) and |ξ| < 4 | a
A |, then the assumptions of Proposition 7.5

hold atx.

Proof. The first five components ofΨ satisfy |fi| ≤ |Ψ | ≤ 5. Consequently, the first
five components ofΦ satisfy

|u| |ei| ≤ |u|∣∣ρ−1
a,Aea,A

∣∣+ |u| ∣∣ 1
u2 fi

∣∣ ≤ |ea,A|+ 1
|u| |fi| ≤ 17

2 |a|+ 5d i = 1, 2

e3 = 1 + 1
u2 f3 ≥ 1− 1

|u|2 |f3| ≥ 1− 5d2 ≥ (3
4 )2

|u|2 |ei| = 1
|u| |fi| ≤ 5

|u| ≤ 5d i = 4, 5

In the first line, we use|ξ| < 4 | a
A |. The proposition follows by direct inspection.⊓⊔

Convention 7.5.For the rest of this subsection, we use coordinates

q = (q0, q1, q2, q3) =
(
t = u+ u , ξ1, ξ2, u

)
Assumptions for the refined energy estimate.d is defined in (7.40).

(RE0) I = (t0, t∗) where−∞ < t0 < t∗ < −d−1, ξ0 ∈ R2, b ∈ [1, 2],

U =
⋃
t∈I

(
{t} × O(ξ0, b, t)

)
⊂ R4

O(ξ0, b, t) =
⋃

u∈(0,b)

(
Dr′(t,u)(ξ0)× {u}

)
,

r′(t, u) = 1
4 + 1

18d |b+ d− u| · ∣∣2d− 1
u+|t|

∣∣.
(RE1) - (RE9) are formulated identically to(E1) - (E9).
(RE10), (RE11a), (RE11b) are formulated identically to(E10), (E11a), (E11b) with the un-

derstanding thatER
O(b) andSup

(R)
O(b) are replaced byER

O(ξ0,b,t) andSup
(R)
O(ξ0,b,t), see

(7.14) and (7.15).
(RE12) Let the 1-formθ be as in (7.38). Then,θµ Mµ ≥ 0 on

(∂U) ∩ (I × R2 × (0, b)
)

Remark 7.3.U is a bundle overI with fiberO(ξ0, b, t) ⊂ R3 at t ∈ I. The fiber is an
open disk bundle over theu-interval(0, b). An equivalent description of the fiber is

O(ξ0, b, t) =
{
q = (ξ1, ξ2, u) ∈ R3

∣∣∣ (ξ1, ξ2, u, t− u) ∈ C(ξ0, b)
}

for eacht ∈ I. It is important that

(∂U) ∩ (I × R2 × (0, b)
) ⊂ F(ξ0, b).

For eacht ∈ I, the mapr′(t, · ) : (0, b) → (1
4 ,

1
2 ) is decreasing.
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t = t∗

u
=
−
1

δ

t = − 1
δ

u
=

0

u
=

b

t = t0

Proposition 7.7 (Refined Energy Estimate).Suppose that the refined hypotheses(RE0)
through(RE10) and (RE12) hold, and, also, either(RE11a) or (RE11b) holds. LetJ0 > 0
and assumeJ ≥ J0, see(RE10). Then, there are constantsc3(X) ∈ (0, 1), c4(X) > 0
depending only onX =

(
R, J0, |6H1|, |6H2|, |6H3|

)
, such thatc2 ≤ c3(X) and|t∗|−1 ≤

c3(X) imply that

√
ER
O(ξ0,b,τ){Θ}(τ) ≤ c4(X)

|t0|J
√
ER
O(ξ0,b,t0)

{Θ}(t0) + c1

|τ |J . (7.42)

for all τ ∈ I (see,(E0) for the definition ofI).

Remark 7.4.We use the same names for the constants in the assumptions andstatements
of both energy estimates, Propositions 7.4 and 7.7. This wasdone for convenience, and
does not imply that there is any relationship between them.

Proof. This proof completely mimics the proof of Proposition 7.4 with a few modifi-
cations. First of all, our previous conventions thatER = ER

O(b) andSup(R) = Sup
(R)
O(b)

are replaced by the conventionsER = ER
O(ξ0,b,t) andSup(R) = Sup

(R)
O(ξ0,b,t). Also, the

definitions (7.17) are replaced by

E0
i {f}(t) =

∫
O(ξ0,b,t)

d3q
(
fTM0

i f
)
(t,q) , ER

i {f}(t) =
∑
|α|≤R

α∈N4
0

E0
i {∂αf}(t)

The inequalities (7.18), (7.19), (7.20), (7.21), (7.22), (7.23) still hold with these modifi-
cations. The only one that requires discussion is the Sobolev inequality (7.19). For this
purpose, letCYL = D 1

4
(0)× (0, b) andφ : CYL → O(ξ0, b, t) be the diffeomorphism

φ(ξ, u) =
(
ξ0 + 4 r′(t, u) ξ, u

)
. Then,

Sup
(R−2)
O(ξ0,b,t){f}(t) .R Sup

(R−2)
CYL {f ◦ φ}(t)

.R

√
ER

CYL {f ◦ φ}(t) .R

√
ER
O(ξ0,b,t){f}(t). (7.43)

The second inequality follows from Lemma 7.2. The first and third inequalities are
direct consequences of the chain rule, because all derivatives of order up toR−1 of the
Jacobians ofφ andφ−1 have finite sup-norms on their domains of definition depending
onlyonR, especially, independent ofξ0, b andt.

Observe that in (7.28), (7.29), the setU is now given as in(RE0). Estimate (7.30) still
holds. By construction,D1(τ) is a disk bundle over the(t, u)-rectangle(τ, τ−)×(0, b).
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The boundary∂D1(τ) has five components, four of them arising as disk bundles over
the boundary of therectangle, the fifth is a circle bundle over the interior. The treatment
of the first four components is unchanged. The fifth is accounted for by (RE12). The
domainsD2(τ) andD3(τ) are handled in the same way.

The rest of the proof is completely unchanged.⊓⊔

8. Classical Vacuum Fields

In Section 6 we have constructed formal power series vacuum fields[Ψ ] by solving an
initial value problem for (5.4a). The goal of this section isto prove the existence of an
actual, classical, vacuum fieldΨ , for which [Ψ ] is rigorously an asymptotic expansion.
This is accomplished in Theorem 8.1.

Convention 8.1.We adopt the conventions of Section 7. We use the coordinatesq =
(t,q) (see, Convention 7.1). Keep in mind thatu = u(q) = q0 − q3. To conveniently
translate between thex coordinate system (Sections 2 through 6) and theq coordinate
system (Sections 7 and 8), we abuse notation and writef(q) instead off(x(q)), for any
functionf . It is also implicit that partial derivatives are adapted tothe new coordinate
system. For example, the matrix differential operatorAµ(x(q), Ψ) ∂

∂xµ is abbreviated
asAµ(q, Ψ) ∂

∂qµ .

8.1. Preparatory Definitions and Estimates.The goal of this subsection is to make the
necessary definitions and estimates so that the Existence/Breakdown Theorem and the
Refined Energy Estimate can be applied to (5.4a) and (5.4b).

Convention 8.2.(5.4a) and (5.4b) are equivalent toreal symmetric hyperbolic systems
for R ∼= R31 and R̂ ∼= R32 valued fields, respectively. See, Remarks 2.8 and 5.1.
This equivalence will be implicit each time the Existence/Breakdown theorem and the
Refined Energy Estimate are applied to (5.4a) and (5.4b), or to equivalent systems.

Convention 8.3.In this section,Cm is a vector space overR with dimension2m. A
linear map fromCm to Cn is, by convention, linear overR. It can be represented either
as a2n× 2m real matrix, or as ann×m complex matrix which may have the complex
conjugation operatorC as matrix elements. We adopt similar conventions for the real
subspacesR ⊂ C5 ⊕ C8 ⊕ C5 andR̂ ⊂ C5 ⊕ C9 ⊕ C3.

Convention 8.4.The notationF (q, f, ∂qf, . . .) displays the explicit pointwise depen-
dence ofF on q, f(q), ∂qf(q), . . .

To put (5.4a) in the form required by Propositions 7.3 and 7.7, we use

(S1) a,A ∈ R satisfy Convention 7.4.
(S2) [Ψ ] =

∑∞
k=0(

1
u )k Ψ(k) is the formal power series solution in Proposition 6.1

corresponding toDATA (ξ, u) = DATA (q) which vanishes forq3 < 1
2 . Therefore,

[Ψ ] vanishes whenq3 < 1
2 by Proposition 6.1. Fix an integerK ≥ 0, and set

ΨK =
∑K+1

k=0 ( 1
u )k Ψ(k).
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(S3) The fieldΨ is expressed in terms of(h, σ, ℓ) by

Ψ = (f, ω, z) = ΨK + (h, σ, ℓ). (8.1)

LetΞ = (Ξ1, Ξ2, Ξ3) be the field given by

(Ξ1, Ξ2, Ξ3)

=
(
ℓ1, ℓ2, ℓ3, ℓ4, ℓ5

)⊕ (h1, h2, h4, h5, σ1, σ2, σ3, σ4, σ8

)⊕ (h3, σ5, σ6, σ7

)
There is a permutation matrixπ so that

(h, σ, ℓ) = π (Ξ1, Ξ2, Ξ3) (8.2)

The fieldΞ = (Ξ1, Ξ2, Ξ3) takes values inπ−1R ⊂ C5⊕C9⊕C4. The permutation
is required for Proposition 7.7, see(S6).

(S4) System (5.4a) is abbreviated asA(q, Ψ)Ψ = f(q, Ψ) (see, Convention 8.1). Some
of its properties are discussed in Remark 5.1. System (5.4a)is equivalent to

B(q, Ξ)Ξ = Q(q, Ξ)Ξ + Src(q) , B = Bµ ∂
∂qµ (8.3a)

B(q, Ξ) = π−1A(q, ΨK + πΞ)π (8.3b)

Q(q, Ξ)Π = π−1 d
ds

∣∣∣
s=0

∫ 1

0

ds′
(
−A(q, sπΠ)ΨK + f(q, ΨK + s′πΞ + sπΠ)

)
(8.3c)

(hereΠ is a dummy variable for a field likeΞ) with the source term

Src(q) = π−1
(
f(q, ΨK)−A(q, ΨK)ΨK

)
.

The transformationQ(q, Ξ) acting onπ−1R is linear overR. Note that the bracketed
expression in (8.3c) is a quadratic polynomial ins ands′. The operatordds

∣∣
s=0

∫ 1

0
ds′

selects certain combinations of its coefficients.

(S5) The matricesBµ andQ are affine linear (overR) in Ξ. Let
•
Bµ(q) and

•
Q(q) be the

R linear maps given by

•
Bµ(q)Π = d

ds

∣∣
s=0

Bµ(q, sΠ) ,
•
Q(q)Π = d

ds

∣∣
s=0

Q(q, sΠ)

We have,Bµ(q, Ξ) = Bµ(q, 0) +
•
Bµ(q)Ξ. Similarly forQ.

(S6) The three by threeC5 ⊕ C9 ⊕ C4 block-decomposition ofB is

B = diag(B1, B2, B3), B2 = 19 L, B3 = 14N,

andB1 is the5 × 5 Hermitian matrix operator on the left hand side of (5.7c). The
block-decomposition ofQ is denotedQ = (Qmn)m,n=1,2,3.

(S7) 6Q1, 6Q2, 6Q3 are constant9× 5, 4× 9, 4× 4 matrices. Their nonzero entries are (C
is the complex conjugation operator):

(6Q1)51 = −1 (6Q1)72 = −1 (6Q1)93 = 1
(6Q2)19 = −1− C (6Q2)27 = C (6Q2)28 = −1
(6Q3)11 = −2 (6Q3)22 = −1
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Observe that6Q3 is symmetric and6Q3 ≤ 0. Let 6Q(t) = (6Qmn)m,n=1,2,3 be the
C5 ⊕ C9 ⊕ C4 block matrix

6Q(t) =

 0 0 0
6Q1 0 0
0 |t|−1 6Q2 |t|−1 6Q3


(S8) 6Bµ are the constant, diagonal,C5 ⊕ C9 ⊕ C4 block matrices

6B = diag (U,U, U, U, V ) ⊕ 19 V ⊕ 14 U , 6B = 6Bµ ∂
∂qµ

whereU = ∂
∂q0 andV = ∂

∂q0 + ∂
∂q3 . Note that6B0 = 118, 6B1 = 6B2 = 0, 6B3 ≥ 0.

(S9) Let s(x) be the smooth function that vanishes whenx ≤ 0 and is equal toe−1/x

whenx > 0. Letψ = ψ(q) : R3 → [0, 1] be the smooth cutoff function

ψ(q) =
s
(
3− |Aa ξ|R2

)
s
(
3− |Aa ξ|R2

)
+ s
(|Aa ξ|R2 − 5

2

) s
(

3
4 − |q3 − 1|)

s
(

3
4 − |q3 − 1|)+ s

(|q3 − 1| − 2
3

)
whereξ = (ξ1, ξ2) = (q1, q2). Let

K = D3| a
A |(0)× (1

4 ,
7
4 ) ⊂ Q = D4| a

A |(0)× (0, 2)

By construction,suppR3 ψ ⊂ K andψ is equal to1 onD 5
2 | a

A |(0)× (1
3 ,

5
3 ). For each

integerR ≥ 0, the bound‖ψ‖CR(R3) .R 1 is independent ofa andA, see(S1).
(S10) Define

Mµ(q, Ξ) = ψBµ(q, Ξ) + (1− ψ) 6Bµ

H(q, Ξ) = ψQ(q, Ξ) + (1− ψ) 6Q(t)
h(q, Ξ) = H(q, Ξ)Ξ + ψ Src(q)

whereψ = ψ(q) is given in(S9).
(S11) If Ξ(1) andΞ(2) are both smooth solutions toBΞ = QΞ + Src, see(S4), then

their differenceΥ = Ξ(2) −Ξ(1) is a solution to

B(q, Ξ(1))Υ = GΥ

GΠ
def= d

ds

∣∣
s=0

(
Q(q, Ξ(1))(sΠ)−Bµ(q, sΠ) ∂Ξ(2)

∂qµ +Q(q, sΠ)Ξ(2)
)

(8.4)

whereG
(
q, Ξ(1), Ξ(2), ∂qΞ

(2)
)

acts onπ−1R linearly overR. The bracketed ex-
pression in (8.4) is affine linear ins. The operatordds

∣∣
s=0

selects the coefficient ofs.

Definition 8.1. Each entry to the left of the vertical bar is a generic symbol for a poly-
nomial (with complex coefficients) in the (components of the) quantities to the right and
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their complex conjugates.

J u−1

J 1 (That is, a generic symbol for a complex number)

H linear overR in Ψ(0)

H linear overR in A, e, λ

GK u−1, A, S, e, λ, Ψ(k)k=0...K+1, and their first derivatives

GK u−1, A, u, SK , e, λ, Ψ(k)k=0...K+1, and their first derivatives.
It has no constant term as a polynomial inΨ(k) and its derivatives.

There is no subscriptK on the generic symbolsJ , J , H, H because they represent
polynomials that arerequired, by definition, to be independent ofK. Precisely, neither
their coefficients nor their degrees depend onK. By contrast, the presence of the sub-
scriptK on the generic symbolsGK , GK indicates that they represent polynomials that
are allowed, by definition, to depend onK in an arbitrary manner. Precisely, their co-
efficients and degrees may be functions ofK.
Above,SK is defined byS = −∑K

k=0(
1
u )k A2(k+1)uk+1 + 1

uK+1SK , where as before
1
ρ = − 1

u + S
u2 , see(4.4)and (6.5).

Proposition 8.1.

Bµ(q, 0) = 6Bµ + u−1H + u−2GK (8.5a)

Q1n(q, 0) = 6Q1n(q) + u−1H+ u−1H + u−2GK (8.5b)

Q2n(q, 0) = 6Q2n(q) + H+ H + u−1GK (8.5c)

Q3n(q, 0) = 6Q3n(q) + (|t|−1 + u−1)J + u−2GK (8.5d)

and

Src1(q) = u−(K+2)GK (8.6a)

Src2(q) = u−(K+2)GK (8.6b)

Src3(q) = u−(K+3)GK (8.6c)

(hereSrc = (Src1,Src2,Src3) is theC5 ⊕ C9 ⊕ C4 decomposition) and

•
Bµ(q) = u−2J (8.7a)
•
Q1n(q) = u−1J (8.7b)
•
Q2n(q) = J (8.7c)
•
Q3n(q) = u−2J (8.7d)

Remark 8.1.This proposition is a detailed examination of large|u| behavior of the con-
stituents of the symmetric hyperbolic system (8.3a). To convey its significance, it is
helpful to suppress all but the∂∂q0 derivatives in (8.3a) and analyze the caricature scalar
ordinary differential equation

b
(
u, f

)
d
duf = q

(
u, f

)
f + s(u) (8.8)
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In this remark,u plays the role ofq0. Supposef(u) is a solution to this equation on
(−∞, T ), T < 0, with asymptotic datalimu→−∞ f(u) = 0 andb(u, f(u)) > 0. How
can we estimatef(u)? For allu1 < T ,

f(u1) =
∫ u1

−∞
du exp

(∫ u1

u

ds
q(s, f(s))
b(s, f(s))

)
s(u)

b(u, f(u))
(8.9)

If there were constantsA > 0 andb > c > 0 with

b(u, f(u)) ≥ b q(u, f(u)) ≤ c|u|−1 |s(u)| ≤ A|u|−2 (8.10)

for all u ∈ (−∞, T ), then (8.9) would imply

sup
u∈(−∞,T )

|f(u)| ≤ A

b− c

1
|T | (8.11)

The apparent difficulty is that the functions in (8.10) depend on the solutionf(u). How-
ever, if it can be shown that astrictly weakerbound than (8.11), say (8.11) withA
replaced by2A, implies (8.10), then an open-closed argument justifies (8.11). More
precisely, one would first cutoff−∞ by a finite value, argue by continuity, and then
remove the cutoff.
To apply this reasoning, assume, in analogy with (8.3a), that b, q are affine linear inf :

b(u, f) = b(u, 0) +
•
b(u) f

•
b(u) = ( ∂

∂f b)(u, 0)

q(u, f) = q(u, 0) +
•
q(u) f

•
q(u) = ( ∂

∂f q)(u, 0)

Also, in analogy with (8.5a), (8.5b), (8.7a), (8.7b), assume that there is a constantǫ > 0,
so that∣∣b(u, 0)− 6b∣∣ ≤ ǫ|u|−1

∣∣q(u, 0)
∣∣ ≤ ǫ|u|−1

∣∣•b(u)
∣∣ ≤ |u|−1

∣∣•q(u)
∣∣ ≤ |u|−1

For convenience, suppose6b = 1. The last inequality in (8.10) is an analog of (8.6a). If

ǫ, A, |T |−1 are sufficiently small, (8.12)

then (8.11), withA replaced by2A, implies (8.10), withb = 1
2 andc = 1

4 . It follows
from an open-closed argument that (8.11) is a genuine estimate forf(u).
To interpret (8.12) in the light of our analogy, observe thatthe generic symbolsH, H in
the second column in (8.5a), (8.5b) can be made small by making Ψ(0) (equivalently,
DATA ) and the angular scaling parametera small.
We conclude the present discussion with the following remarks:

• The analog of the step from (8.10) to (8.11) for the system (8.3a) is provided by the
energy estimate.
• Neglecting 6Q for the moment, (8.5d), (8.6c), (8.7d) are similar to (8.5b), (8.6a),
(8.7b), since|t|−1 + u−1 is O(u−2) asu → −∞ uniformly for u in a compact
set. The interpretation of (8.5c), (8.6b), (8.7c) is different, because (8.8) is not the
appropriate toy model problem for the equation satisfied byΞ2. In fact,Ξ2 satisfies
an ordinary differential equation along theshort integral curves ofL, so that lessu
decay is required.
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• The inequality forq in (8.10) remains true if we add any non-positive constant to
q. Analogously, the matrix6Q(t), see(S7), appearing in (8.5c), (8.5d), has only non-
positive eigenvalues. This is implicitly exploited in the proof of the energy estimate.

Remark 8.2.In (8.6a) all but the last component ofSrc1 are actuallyu−(K+3)GK . It is
to accommodate the last component that we truncated the formal power series[Ψ ] at
K + 1 rather thanK, see(S2).

Proof (of Proposition 8.1).The proof is by direct verification, using(S4), (S6), (S7),
Proposition 5.2, Remark 5.2 and Definition 5.1. See the Supplement to Proposition
8.1 (Appendix G). To give the flavor, we schematize the calculations for a few repre-
sentative cases. LetC be the complex conjugation operator. Now

matrix component
B1(q, 0)− 6B1 (4, 5) − 1

ue + 1
u2GK

Q22(q, 0)− 6Q22(q) (6, 5) −ω1(0)C − ω1(0) + 1
uGK

Q33(q, 0)− 6Q33(q) (1, 1) ( 2
u + 1

u2GK)− (− 2
|t| )

in agreement with (8.5a), (8.5c) and (8.5d).
To verify (8.6a), note thatSrc1 = GK has no constant term as a polynomial in

Ψ(k) and its first derivatives. This follows directly from the definition of Src and the
properties off given in (S4). If S is replaced bySK , see definition (8.1), thenSrc1 =
GK . There is an overallu−(K+2), by construction of the formal power series solution
[Ψ ]. This implies (8.6a). ⊓⊔

To put (5.4b) in the form required by Proposition 7.7, we use

(̂S1) LetΞ♯ = (Ξ♯
1, Ξ

♯
2, Ξ

♯
3) be the field given by

(Ξ♯
1, Ξ

♯
2, Ξ

♯
3)

= (y1, y2, y3)⊕ (s1, s2, s4, s5, p1, p2, p3, p4, p7, p8)⊕ (s3, p5, p6, p9)

whereΨ ♯ = (s, p, y) is the constraint field. There is a permutation matrixπ̂ so that

(s, p, y) = π̂ (Ξ♯
1, Ξ

♯
2, Ξ

♯
3).

The fieldΞ♯ = (Ξ♯
1, Ξ

♯
2, Ξ

♯
3) takes values in̂π−1R̂ ⊂ C3 ⊕ C10 ⊕ C4.

(̂S2) System (5.4b) is abbreviated aŝA(q, Ψ)Ψ ♯ = f̂(q, Ψ, ∂qΨ)Ψ ♯ (see, Convention
8.1). Some of its properties are discussed in Remark 5.1. System (5.4b) is equivalent
to the linear, homogeneous symmetric hyperbolic system

B̂(q, Ψ)Ξ♯ = Q̂(q, Ψ, ∂qΨ)Ξ♯ , B̂ = B̂µ ∂
∂qµ

B̂µ(q, Ψ) = π̂−1 Âµ(q, Ψ) π̂

Q̂(q, Ψ, ∂qΨ) = π̂−1 f̂ (q, Ψ, ∂qΨ) π̂

The transformation̂Q acting on̂π−1R̂ is linear overR. Moreover,̂Bµ depends affine
linearly overR onΨ , andQ̂ depends affine linearly overR onΨ ⊕ ∂qΨ .
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(̂S3) The three by threeC3 ⊕ C10 ⊕ C4 block-decomposition of̂B is

B̂ = diag
(
B̂1, B̂2, B̂3

)
, B̂2 = 110 L, B̂3 = 14N,

andB̂1 is the3× 3 Hermitian matrix operator on the left hand side of (5.9c).
(̂S4) ̂6Q1, ̂6Q2, ̂6Q3 are constant10× 3, 4× 10, 4× 4 matrices. Their nonzero entries are

(C is the complex conjugation operator):

(6Q̂1)5,1 = 1 (6Q̂2)1,9 = (6Q̂2)4,10 = −1

(6Q̂3)1,1 = −1 (6Q̂2)1,10 = (6Q̂2)2,8 = (6Q̂2)3,7 = (6Q̂2)4,9 = −C

Observe that6Q̂3 is symmetric and6Q̂3 ≤ 0. Let 6Q̂(t) = (6Q̂mn)m,n=1,2,3 be the
C3 ⊕ C10 ⊕ C4 block matrix

6Q̂(t) =

 0 0 0
6Q̂1 0 0
0 |t|−1 6Q̂2 |t|−1 6Q̂3

 .

(̂S5) 6B̂µ are the constant, diagonal,C3 ⊕ C10 ⊕ C4 block matrices

6B̂ = 13 U ⊕ 110 V ⊕ 14 U , 6B̂ = 6B̂µ ∂
∂qµ

with U , V as in(S8). Note that6B̂0 = 117, 6B̂1 = 6B̂2 = 0, 6B̂3 ≥ 0.

Definition 8.2. Each entry to the left of the vertical bar is a generic symbol for a poly-
nomial (with complex coefficients) in the (components of the) quantities to the right and
their complex conjugates.

G♯ u−1, A, S, e, λ, Ψ(0), Ψ − Ψ(0), and first derivatives

G♯
0 u−1, A, S, e, λ, Ψ(0), Ψ − Ψ(0)

G♯
1 like G♯, but it has no constant term as a polynomial inΨ − Ψ(0), ∂q

(
Ψ − Ψ(0)

)
G♯ u−1, A, u, S0, e, λ, Ψ(0), and first derivatives

whereS0 is defined byS = −A2u+ u−1S0, see(4.4)and (6.5).

Proposition 8.2.Supposê(S1) to (̂S5). Then

B̂µ(q, Ψ) = 6B̂µ + u−2G♯
0 (8.13a)

Q̂1n(q, Ψ, ∂qΨ) = 6Q̂1n(q) + u−2G♯ (8.13b)

Q̂2n(q, Ψ, ∂qΨ) = 6Q̂2n(q) + H + u−1G♯ (8.13c)

Q̂3n(q, Ψ, ∂qΨ) = 6Q̂3n(q) + (|t|−1 + u−1)J + u−2G♯ (8.13d)

Moreover,

Ξ♯
1, Ξ

♯
3, s1, s2, p1, p2, p3 = u−1G♯ + G♯

1 (8.14a)

s4, s5, p4, p7, p8 = u−1G♯ + uG♯
1 (8.14b)
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Finally, it is a consequence of(5.4b)that

L


s4
s5
p4

p7

p8

 =


e(p4 − p5) + e(p6 − p3)
i e(p4 − p5)− i e(p6 − p3)

0
λ(p6 − p3)− λ(p4 − p5)

−λ(p6 − p3) + λ(p4 − p5)

+ u−1 G♯ Ξ♯ (8.15)

Proof. The first part, (8.13), and the last part, (8.15), follow directly from Proposition
5.4, Remark 5.2 and Definition 5.1. It is entirely similar to the proof of Proposition 8.1.

To prove (8.14), writeΨ = Ψ(0) + (Ψ − Ψ(0)), and consider each object on the left
hand side of (8.14) as a polynomial inΨ − Ψ(0) and∂q(Ψ − Ψ(0)), with coefficients
possibly depending onΨ(0) and∂qΨ(0) (see, Proposition 5.3). The idea is that the
constant term of this polynomial is of the generic formu−1G♯. Everything else is of
the formG♯

1 or uG♯
1, respectively. The fact that the constant term is of the generic form

u−1G♯ is an essential part of the construction. It is the fact thatΨ(0) is built so that the
first term in the formal power series of the constraint field,Ψ ♯(0), vanishes (this follows
from the vanishing of the formal constraint field and Remark 6.1). ⊓⊔
Everything we have done in this section so far was to prepare for the next proposition
that provides a list of sufficient conditions under which theabstract propositions of
Section 7 can be applied to the various symmetric hyperbolicsystems that are required
for the proof of Theorem 8.1.

Proposition 8.3 (Main Technical Proposition).Fix K ≥ 0 as in (S2). Recall (S1)
through(S11)and (̂S1) through(̂S5). LetR ≥ 4 be an integer. Set

Y =
(
R, K, ‖DATA‖CR+2K+6(Q)

)
(8.16)

Let d = 10−3 be as in(7.40). Fix c′2 ∈ (0, 1) and T ∈ (−∞,−d−1). There are
constantsc6(R) ∈ (0, 1) andc7(Y ) ∈ (0, 1), non-increasing in all their arguments,
such that Parts 1, 2 and 3 below hold whenever

|a| ≤ c6(R) c′2 , ‖DATA‖CR+4(Q) ≤ c6(R) c′2 , |T |−1 ≤ c7(Y ) c′2 (8.17)

Part 1. The systemM(q, Ξ)Ξ = h(q, Ξ) in (S10)satisfies(EB0) through(EB4) of Sub-
section 7.3 and the assumptions of Part 2 of Proposition 7.3,with:

(EB0) - (EB4) T P Mµ(q,Θ) h(q,Θ) 6Mµ 6H(t) Q K
(S1) - (S10) T 31 Mµ(q, Ξ) h(q, Ξ) 6Bµ 6Q(t) Q K

The table indicates that the symbols in the first row, appearing in the general(EB0)
through (EB4), are given by the specific objects in the second row, appearing in (S1)
through(S10).

Part 2. If t0 < T andΞ : [t0, t0 + ǫ) × R3 → π−1R (ǫ > 0) is aC∞ solution to
M(q, Ξ)Ξ = h(q, Ξ) which vanishes identically att0, then

|t0|K+1 sup
ξ0∈R2

√
ER
O(ξ0,2,t0)

{Ξ}(t0) ≤ (c7(Y ))−1 (8.18)
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Here, the energyER
O(ξ,b,t) is defined as in the Refined Energy Estimate, Proposition 7.7.

Assumptions of Part 3.We distinguish three alternative systems, denoted by(Sys1),
(Sys2)and(Sys3), that are given in the columns of the table below. This part ofthe Propo-
sition applies to each of these systems individually. To evaluate the entries in the table,
we require the following information. First,

(Sys1): b = 2 ξ0 ∈ R2

(Sys2): b = 1 ξ0 ∈ D2| a
A |(0)

(Sys3): b = 1 ξ0 ∈ D2| a
A |(0)

Second, fixt0 < T and define the open set

V =
⋃

t∈(t0,T )

{t} × O(ξ0, b, t) ⊂ R4.

For (Sys1)and (Sys3)there is a single fieldΞ defined onV taking values inπ−1R. For
system(Sys2), there are two fields,Ξ(1) andΞ(2), of this kind. The various fields satisfy
the conditions:

(i) They areCp and their derivatives of order≤ p extend continuously toV. Here
p = ∞ for (Sys1), (Sys3)andp = 1 for (Sys2).

(ii) They are solutions to
M(q, Ξ)Ξ = h(q, Ξ) for (Sys1)

B(q, Ξ(i))Ξ(i) = Q(q, Ξ(i)) + Src(q) for (Sys2)

B(q, Ξ)Ξ = Q(q, Ξ) + Src(q) for (Sys3)

See(S4)and(S10).
(iii) They vanish whenq3 < 1

2 .
(iv) For all t ∈ (t0, T ), they satisfy

ER
O(ξ0,2,t){Ξ}(t) ≤ (c6(R)c′2)

2 for (Sys1)

Sup
(1)
O(ξ0,1,t){Ξ(i)}(t) ≤ c6(R)c′2 for (Sys2)

Sup
(1)
O(ξ0,1,t){Ξ}(t) ≤ c6(R)c′2 for (Sys3)

Conclusions of Part 3.To state the conclusions, recall the notationΥ = Ξ(2) − Ξ(1)

and the usageΨ ♯ for the constraint field associated toΨ = ΨK + π Ξ, see(S2). Finally,
Ψ ♯ = π̂ Ξ♯, as in (̂S1).

Conclusion 1:Ξ(V), Ξ(1)(V), Ξ(2)(V) ⊂ B1/2(0) ⊂ π−1R ∼= R31.

Conclusion 2:The assumptions(RE0) through (RE12) hold, with (RE11a) for (Sys1)and
(RE11b) for (Sys2)and (Sys3), provided that the symbols in the first column of the table
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below (appearing in the general(RE0) through(RE12)) are given by the specific objects
in the other three columns.

(RE0) - (RE12) (Sys1) (Sys2) (Sys3)

I = (t0, t∗) (t0, T ) (t0, T ) (t0, T )
b 2 1 1

(P1, P2, P3) (10, 15, 6) (10, 15, 6) (6, 18, 8)
Mµ(q) Mµ(q, Ξ(q)) Bµ(q, Ξ(1)(q)) B̂µ(q, Ψ(q))
H(q) H(q, Ξ(q)) G

(
q, Ξ(1), Ξ(2), ∂qΞ

(2)
)
Q̂(q, Ψ, ∂qΨ)

Src(q) ψ Src(q) 0 0
Θ(q) Ξ(q) Υ (q) Ξ♯(q)
6Mµ 6Bµ 6Bµ ̂6Bµ

6H(t) 6Q(t) 6Q(t) ̂6Q(t)
R R 0 0
c1 (c7(Y ))−1 0 0
c2 c′2 c′2 c′2
J K + 1 > 0 > 0
ξ0 ξ0 ξ0 ξ0

Conclusion 3:For (Sys3), if in additiont0 + 1 < T , then

sup
t∈(t0+1,T )

|t| Sup
(0)
O(ξ0,1,t){Ξ♯}(t) .Y

(
1 + sup

t∈(t0,T )

|t| Sup
(1)
O(ξ0,1,t){Ξ}(t)

)
(8.19)

Proof. We begin with a warning.

First Warning.In the course of this proof, we produce a finite chain of smallness as-
sumptions onc6(R) andc7(Y ). It is essential, for the purpose of showing that the far
field expansion is truly an asymptotic expansion to a classical solution of (5.4a), that
these smallness assumptions depend only onR andY , respectively. To give a repre-
sentative example, supposequantity .R c6(R). Then there is a legitimate smallness
assumption onc6(R) making, say,quantity ≤ 1. By contrast, there is no legitimate
smallness assumption associated toquantity .Y c6(R). We can take a more relaxed
attitude to the system (5.4b), because it is only necessary to demonstrate uniqueness.

Convention 8.5.In this proof, the constants of proportionality in.R and.Y are always
non-decreasing inR and the components ofY , respectively.

Overall Preliminaries.For alln ≥ 0 and0 ≤ k ≤ K+1 andβ ∈ N4
0 with |β| ≤ 1+R,

the following estimates hold on(−∞, T )×Q:

|∂βu−n| .(R,n) |t|−n |∂βA| = |A| δβ0 ≤ |a| |∂βu| ≤ 2

|∂βΨ(0)| .R c6(R) c′2 |∂βe| ≤ 17
2 |a| |∂βλ| ≤ 17

2 |a|
|∂βΨ(k)| .Y 1 |∂βS| .R 1 |∂βSK | .Y 1

Only the estimates onΨ(0) andΨ(k) require discussion. They follow from Proposition
6.3, and (8.16) and (8.17). See Definition 8.1 forSK .
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It follows from the estimates just above, the product rule and (8.17), that for all
α ∈ N4

0 with |α| ≤ R,

n = 0, 1 |t|n |∂α(u−(n+1)GK)| .Y |T |−1 .Y c7(Y ) c′2 (8.20a)

n = 1, 2 |t|K+n|∂α(u−(K+n)GK)| .Y 1 (8.20b)

n = 0, 1 |t|n |∂α(u−nH)| .R c6(R) c′2 (8.20c)

n = 0, 1 |t|n |∂α(u−nH)| .R |a| .R c6(R) c′2 (8.20d)

n = 0, 1, 2 |t|n |∂α(u−nJ )| .R 1 (8.20e)

|t| |∂α(|t|−1 + u−1)J | .R |T |−1 .R c7(Y ) c′2 (8.20f)

at every point of(−∞, T ) × Q. In this instance, the constants also depend on the
particular polynomial represented by the generic symbols.Observe that in the second
inequality, one does not use the property thatGK has no constant term as a polynomial
in Ψ(k) and its derivatives.

Second Warning.It is crucially important that whenever.R appears in an estimate (for
example, (8.20c), (8.20d), (8.20e), (8.20f)) that the generic symbol on the left hand side
has no subindexK, see Definition 8.1. On the other hand, whenever.Y appears (for
example, (8.20a), (8.20b)), the generic symbol on the left hand side is allowed to carry
a subindexK.

Preliminaries for Part 3.For Part 3, it is necessary to supplement the Overall Prelimi-
naries. Let(V1,V2) be the open cover ofV given by

V1 = V ∩ ((t0, T )×Q), V2 = V ∩ ((t0, T )× (R3 \ K)
)
.

The setsQ,K are defined in(S9).

• For(Sys1), observe that the Overall Preliminaries apply toV1. OnV2, we haveψ = 0,
and the equations simplify, see(S10). The estimate‖ψ‖CR(R3) .R 1, see(S9), will be
used on the transition region forψ.
• For (Sys2)we haveV = V1. In this case, the Overall Preliminaries will suffice.
• For (Sys3)we also haveV = V1. However, in addition to the Overall Preliminaries,
we require the estimates

|Ψ − Ψ(0)| , ∣∣∂q

(
Ψ − Ψ(0)

)∣∣ .Y 1 (8.21)

|t| |u−2G♯
0| , |t| |∂q(u−2G♯

0)| .Y |T |−1 .Y c7(Y ) c′2
n = 0, 1 : |t|n |u−(n+1)G♯| .Y |T |−1 .Y c7(Y ) c′2,

|H| . |a| . c6(R) c′2
|t| |(|t|−1 + u−1)J | .Y |T |−1 .Y c7(Y ) c′2.

onV . Estimate (8.21) follows from

Ψ − Ψ(0) =
K+1∑
k=1

( 1
u )k Ψ(k) + π Ξ (8.22)

and condition (iv) in the Proposition. The rest are consequences of (8.21) and the
Overall Preliminaries estimates.
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Proof of Part 1.One verifies(EB0) through(EB4) by direct inspection, apart from the
inequality in(EB1). However,

1
2 ≤ M0(q, Ξ) ≤ 2, M3(q, Ξ) ≥ 0, (8.23)

for all (q, Ξ) ∈ (−∞, T ) × R3 × B2(0) whenc6(R) andc7(Y ) are small enough.
HereB2(0) ⊂ RP as in(EB0), with P = 31. The first inequality in (8.23) completes the
verification of(EB1). The second inequality in (8.23) is used for the first supplemental
hypothesis in Part 2 of Proposition 7.3.

To check (8.23), recall from(S10) that

Mµ(q, Ξ) = ψBµ(q, Ξ) + (1− ψ) 6Bµ (8.24)

is a convex combination ofBµ and6Bµ on (−∞, T )×R3×B2(0). It suffices to verify
(8.23) forBµ and 6Bµ separately. For6Bµ, see(S8). ForBµ it suffices to verify

1
2 ≤ 1 + 1

u2 f3 ≤ 2, 1
2 ≤ 1 + 1

u2 (1 + 1
u2 f3) ≤ 2 (8.25)

for q ∈ suppR3 ψ ⊂ Q, see(S6) and Remark 5.2. Here,f3 is one of the components of
Ψ = ΨK + π Ξ = (f, ω, z), see(S3). To check (8.25), note that

|Ψ | ≤ |Ψ(0)|+ 1
|u|

K+1∑
k=1

1
|u|k−1 |Ψ(k)|+ |Ξ|.

The three terms are respectively.R c6(R) and.Y
1
|T | .Y c7(Y ) (see, Overall Pre-

liminaries) and≤ 2. By the choice ofc6(R) andc7(Y ) (see, the First Warning), we can
make

|Ψ | ≤ 3 , when (q, Ξ) ∈ (−∞, T )×Q×B2(0) (8.26)

Consequently,|f3| ≤ 3, and therefore, (8.25) holds because1
|u| ≤ 1

|T | ≤ d, see (7.40).
To validate the second supplemental hypothesis in Part 2 of Proposition 7.3, it is

necessary to show thath(q, 0) = ψ Src(q) = 0 for all q ∈ (−∞, T )×R3 with q3 < 1
2 .

To do this, observe thatΨK = 0 there, see(S2).

Remark 8.3.Later on, in the proof of Part 3, we need the analogous inequalities

1
2 ≤ B̂0(q, Ψ) ≤ 2, B̂3(q, Ψ) ≥ 0

for all (q, Ξ) ∈ (−∞, T )× R3 × B2(0), with the same smallness assumptions. These
inequalities can again be reduced to (8.25).

Proof of Part 2.To prove (8.18), rewriteM(q, Ξ)Ξ = h(q, Ξ) as

∂tΞ(q) =
(
M0(q, Ξ)

)−1
(
−
∑

i=1,2,3

Mi(q, Ξ)∂iΞ +H(q, Ξ)Ξ + ψ Src
)

(8.27)

Here,M0( · , Ξ) is invertible on an open neighborhood of{t0}×R3 in the set[t0, t0 +
ǫ)× R3. This is a consequence of (8.23), and the assumptionΞ(t0, · ) ≡ 0.

By repeated differentiation of (8.27) with respect tot, we obtain an expression for
∂m

t Ξ(q), for anym ≥ 1. Restrict the result to{t0} × R3 and simplify it using the
assumption∂βΞ(t0, · ) ≡ 0 for all β ∈ N4

0 with β0 = 0. In every surviving multi-
derivative∂βΞ(t0, · ) we must have1 ≤ β0 ≤ m − 1, and each one is recursively
expressed using∂n

t Ξ(t0, · ) with 1 ≤ n ≤ m− 1. This procedure generates an explicit
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expression for∂m
t Ξ(t0, · ) in terms of the quantities in (8.28) just below, and their

derivatives.
By differentiation with respect to the remaining coordinatesq, we find (inductively)

that for everyα ∈ N4
0 with |α| ≤ R, the function∂αΞ(t0, · ) is a polynomial in

(M0((t0, · ), 0))−1 as well as derivatives of order≤ R− 1 of

Mµ
(
(t0, · ), 0

)
, H

(
(t0, · ), 0

)
,

•
Mµ(t0, · ) ,

•
H(t0, · ) , ψ Src(t0, · ) (8.28)

This polynomial has no constant term as a polynomial inψ Src(t0, · ) and its deriva-
tives. This has two consequences. Consequence A,∂αΞ(t0, · ) vanishes onR3 \ K, by
the support ofψ. Consequence B,

|t0|K+1
∣∣∂αΞ(t0,q)

∣∣ .Y 1

for all q ∈ Q. To verify this inequality, check (using‖ψ‖CR(R3) .R 1 in (S9), the
first inequality in (8.23), Proposition 8.1 and the Overall Preliminaries) that the matrix
(M0((t0, · ), 0))−1 and the derivatives of order≤ R − 1 of all the terms in (8.28) are
bounded in absolute value onQ by .Y 1. At this point, we have

∣∣∂αΞ(t0,q)
∣∣ .Y 1.

To get the stated decay, use (8.6) (even though one can get a better result). It is here
that one exploits the fact that the expression for∂αΞ(t0, · ) has no constant term as a
polynomial inψ Src(t0, · ) and its derivatives.

The proof of Part 2 is completed by combining Consequences A and B with

ER
O(ξ0,2,t0)

{Ξ}(t0) .R

(
Sup

(R)
O(ξ0,2,t0)

{Ξ}(t0)
)2

and making a suitable choice ofc7(Y ) (see, the First Warning).

Proof of Part 3, Conclusion 1.Follows from condition (iv) in the Proposition, by suit-
able choice ofc6(R). For (Sys1), we also useR ≥ 2 and the Sobolev inequality (7.43).

Proof of Part 3, Conclusion 2.To start with, we check that(RE10) and(RE11a)or (RE11b)
hold, whenc6(R), c7(Y ) are made sufficiently small. We will freely use the Overall
Preliminaries, the Preliminaries for Part 3, Propositions8.1, 8.2, and the inequality

ER
O(ξ0,b,t){f}(t) .R

(
Sup

(R)
O(ξ0,b,t){f}(t)

)2
. (8.29)

• (Sys1): Let t ∈ (t0, T ). For (RE10), we have

|t|2K+4ER
O(ξ0,2,t){ψ Src1}(t) = |t|2K+4ER

O(ξ0,2,t){ψ u−(K+2)GK}(t) .Y 1

Therefore, the left hand side is≤ (c7(Y ))−2, whenc7(Y ) > 0 is small enough (see,
the First Warning). Similarly, forψ Src2 andψ Src3. In these two cases, one could
get a better decay estimate, but we don’t need it.
For (RE11a), we verify the first and second inequalities, the other two are similar. The
second goes

|t|2ER
O(ξ0,2,t)

{
H1n(q, Ξ)− 6Q1n

}
(t)

= |t|2ER
O(ξ0,2,t)

{
ψ
(
Q1n(q, 0)− 6Q1n

)
+ ψ

•
Q1n(q)Ξ

}
(t)

= |t|2ER
O(ξ0,2,t)

{
ψ
(

1
uH+ 1

uH + 1
u2GK

)
+ ψ 1

uJ Ξ
}
(t)

.R |t|2 ER
O(ξ0,2,t)

{
ψ
(

1
uH + 1

uH + 1
uJ Ξ

)}
(t) + |t|2ER

O(ξ0,2,t)

{
ψ 1

u2GK

}
(t)
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The first term is.R (c6(R)c′2)
2, the second is.Y (c7(Y )c′2)

2. Here, we use condi-
tion (iv) in the Proposition. By the First Warning, the result is≤ (c′2)2 if c6(R) and
c7(Y ) are small enough. The first goes

|t|2ER
O(ξ0,2,t)

{
Mµ(q, Ξ)− 6Bµ

}
(t)

= |t|2ER
O(ξ0,2,t)

{
ψ(Bµ(q, 0)− 6Bµ) + ψ

•
Bµ(q)Ξ

}
(t)

= |t|2ER
O(ξ0,2,t)

{
ψ ( 1

uH + 1
u2GK) + ψ 1

u2J Ξ
}
(t)

The estimate is completed just as above.
• (Sys2): There is nothing to check for(RE10). For (RE11b),

|t| Sup
(1)
O(ξ0,1,t)

{
Bµ(q, Ξ(1))− 6Bµ

}
(t)

= |t| Sup
(1)
O(ξ0,1,t)

{(
Bµ(q, 0)− 6Bµ

)
+

•
Bµ(q)Ξ(1)

}
(t)

= |t| Sup
(1)
O(ξ0,1,t)

{
1
uH + 1

u2GK + 1
u2J Ξ(1)

}
(t)

which is≤ c′2 whenc6(R) andc7(Y ) are made sufficiently small. It is important
here thatV = V1, see, the Preliminaries for Part 3. For the second, third andfourth
parts of(RE11b), observe that, by (8.4),

(G− 6Q)Π =
(
Q(q, 0)− 6Q(t)

)
Π +

( •
Q(q)Ξ(1)

)
Π

+ d
ds

∣∣
s=0

(
−Bµ(q, sΠ) ∂Ξ(2)

∂qµ +Q(q, sΠ)Ξ(2)
)
.

Therefore, for the second,

|t| Sup
(0)
O(ξ0,1,t)

{
G1n

(
q, Ξ(1), Ξ(2), ∂qΞ

(2)
)− 6Q1n(t)

}
(t)

= |t| Sup
(0)
O(ξ0,1,t)

{
1
uH+ 1

uH + 1
u2GK + 1

uJΞ(1) + 1
u2J ∂qΞ

(2) + 1
uJΞ(2)

}
(t)

which is≤ c′2 whenc6(R) andc7(Y ) are made sufficiently small. The third an fourth
inequalities in(RE11b) are checked in the same way.
• (Sys3): There is nothing to check for(RE10). For (RE11b),

|t| Sup
(1)
O(ξ0,1,t)

{
B̂µ(q, Ψ)− ̂6Bµ}

(t) = |t| Sup
(1)
O(ξ0,1,t)

{
1
u2G♯

0

}
(t)

|t| Sup
(0)
O(ξ0,1,t)

{
Q̂1n(q, Ψ, ∂qΨ)− ̂6Q1n

}
(t) = |t| Sup

(0)
O(ξ0,1,t)

{
1
u2G♯

}
(t)

Sup
(0)
O(ξ0,1,t)

{
Q̂2n(q, Ψ, ∂qΨ)− ̂6Q2n

}
(t) = Sup

(0)
O(ξ0,1,t)

{H + 1
u G♯

}
(t)

|t| Sup
(0)
O(ξ0,1,t)

{
Q̂3n(q, Ψ, ∂qΨ)− ̂6Q3n

}
(t)

= |t|Sup
(0)
O(ξ0,1,t)

{
( 1
|t| + 1

u )J + 1
u2G♯

}
(t)

which are all≤ c′2, whenc6(R) andc7(Y ) are made sufficiently small. It is important
here thatV = V1, see, the Preliminaries for Part 3.

We are now finished checking(RE10) and(RE11a)or (RE11b).
Next, we check(RE1). In order,(RE1) follows from

• (Sys1): inequalities (8.23), sinceΞ(q)∈ B 1
2
(0) ⊂ R31 for all q ∈ V by Conclusion 1.
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• (Sys2): the discussion of (8.25), Conclusion 1 andV = V1.
• (Sys3): Remark 8.3, Conclusion 1 andV = V1.

To check(RE12), we can assume|Ψ | ≤ 3 onV1, by (8.26) and Conclusion 1. By Propo-
sition 7.6 and(S1), this implies(RE12) for (Sys2)and(Sys3), becauseV = V1. For (Sys1),
we use convexity, see (8.24). TheψB term is again handled by Proposition 7.6, using
the support properties ofψ. It therefore suffices to verify that

θµ 6Bµ ≥ 0 on (∂V) ∩ ((t0, T )× R2 × (0, 2))

with θ defined by (7.38). This is a consequence ofθ(U) = k1|u0 − u|/|u|2 ≥ 0 and
θ(V ) = k1||u|−1 − |u0|−1| ≥ 0, see(S8)and (7.40).

(RE5) holds, by condition (i) in the Proposition, for(Sys1), (Sys2)and(Sys3). In partic-
ular, for (Sys2),G

(
q, Ξ(1), Ξ(2), ∂qΞ

(2)
)

isC0.
(RE4) holds, by condition (ii) in the Proposition, for(Sys1), (Sys2)and(Sys3). For(Sys2),

see(S11). For (Sys3), recall thatΨ ♯ solves (5.4b) becauseΨ solves (5.4a).
Note that condition (iii) in the Proposition and(S2) imply thatΨ = ΨK + π Ξ = 0

andΨ ♯ = 0 whenq3 < 1
2 . In particular,Src = 0 there. These facts imply(RE6) for

(Sys1), (Sys2)and(Sys3).
The remaining assumptions,(RE0), (RE2), (RE3), (RE7), (RE8), (RE9) are verified by

direct inspection.

Proof of Part 3, Conclusion 3.We have to prove

sup
t∈(t0+1,T )

|t| Sup
(0)
O(ξ0,1,t){Ξ♯}(t) .Y

(
1 + sup

t∈(t0,T )

|t| Sup
(1)
O(ξ0,1,t){Ξ}(t)

)
def= κ

It follows from the Overall Preliminaries, the Preliminaries for Part 3, as well as (8.14)
and (8.15) (see, Proposition 8.2) that onV = V1,

(A) |G♯| .R 1 by Definition 8.2

(B) |Ψ − Ψ(0)|, ∣∣∂q(Ψ − Ψ(0))
∣∣ .Y κ|t|−1 by (8.22)

(C) |G♯
1| .Y κ|t|−1 by (B), Definition 8.2

(D) |Ξ♯
1|, |Ξ♯

3|, |s1|, |s2|, |p1|, |p2|, |p3| .Y κ|t|−1 by (A), (C), (8.14a)

(E) |Ξ♯| .Y κ by (A), (C), (8.14a), (8.14b)

(F) |u−1G♯Ξ♯| .Y κ|t|−1 by (E), Definition 8.2

For each point(t1,q1) ∈ V with t1 > t0 + 1, consider the line segment

Seg =
(
(t1,q1)− R+(1, 0, 0, 1)

) ∩ {q ∈ R4
∣∣ q3 > 0}.

We haveSeg⊂ V . To see this, viewV as an open disk bundle over the(t, u)-rectangle
(t0, T )× (0, 1). The projection ofSegto the(t, u) plane is injective and contained in the
base, becauset1 ∈ (t0 + 1, T ). At each point in the image of the projection ofSeg, the
corresponding point onSegis contained in the fiber, because the radius functionr(u, u)
(see (7.37)) is a decreasing function ofu on the base for fixedu = t − u, and because
the endpoint(t1,q1) is contained in the fiber, by assumption.

By Conclusion 2,Ξ♯ is aC∞ solution toB̂Ξ♯ = Q̂Ξ♯ which vanishes whenq3 <
1
2 . In particular (8.15) holds. RecallL = e3

(
∂

∂q0 + ∂
∂q3 ), whereΦ = (e, γ, w), and
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1
2 ≤ e3 ≤ 2 (see(RE1)), and thatSegis an integral curve ofL. The last three sentences,
Seg⊂ V and (F) imply, by integrating the equation forp4 in (8.15) alongSeg, that

|p4| .Y κ |t|−1 (8.30)

on Segfor each endpoint(t1,q1) ∈ V with t1 > t0 + 1.
Finally, integrating the remaining equations in (8.15) along Seg, and using (8.30)

and (D), we obtain|s4|, |s5|, |p7|, |p8| .Y κ|t|−1 on all admissible segmentsSeg.
Therefore,|Ξ♯| .Y κ|t|−1 onV whent ∈ (t0 + 1, T ). ⊓⊔

8.2. Construction of classical vacuum fields.

Theorem 8.1.Let (ξ, u, u) be the usual coordinates on the truncated strip

Strip(1, λ) = R2 × (0, 1)× (−∞ , −λ−1
)

of width1, for eachλ > 0. Suppose0 < |A| ≤ |a|. Assume the functions

DATA σ(ξ, u) : R2 × (0,∞) → C

σ ∈ {−,+}, are smooth, vanish whenu < 1
2 , and are Pole-Flip compatible

DATA σ = Flip a
A
· DATA−σ (8.31)

for all (ξ, u) ∈ (R2 \ {0})× (0,∞), see Definition 6.3. Let[Ψσ ] be the formal power
series solution corresponding toDATA σ. Fix integersR ≥ 4,K ≥ 0 and anǫ ∈ (0, 1

2 ).
Set

B = (R, ǫ) , C =
(
R, ǫ, K, max

σ∈{−,+}
‖DATA σ‖

CR+2K+6(C(a, A, 2))
)

whereC(a,A, b) = D4| a
A |(0)× (0, b) for eachb > 0.

Let
b = b(B) c = c(C)

be constants in(0, 1). If b andc are made sufficiently small depending only onB and
C, respectively, then the Existence and Uniqueness statements below hold whenever

0 < |A| ≤ |a| ≤ b, max
σ∈{−,+}

‖DATA σ‖CR+4(C(a,A,2)) ≤ b (8.32)

Existence:
Part 1:There exists a pair(Ψ−, Ψ+) of Pole-Flip compatibleC1-fields

Ψσ : Strip(1, c) → R,
which are both solutions to(5.4a), vanish whenu < 1

2 , extend with their first derivatives

continuously toStrip(1, c) and satisfy

lim
u→−∞ |u|ǫ sup

α∈N4
0: |α|≤1

∥∥∥ ∂α
(
Ψσ − Ψσ(0)

)
( · , u)∥∥

C0(C(a,A,1)) = 0 (8.33)

Part 2:The constraint fields(Ψ−)♯, (Ψ+)♯ associated to the fields in Part 1 vanish, and

(Φ−, Φ+) =
(Ma,A + u−MΨ−, Ma,A + u−MΨ+

)
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are a pair of Pole-Flip compatible vacuum fields (see, Definition 2.2) with initial data
Ψσ(0).
Part 3:The fields in Part 1 are actually of classCR−3, and extend with their derivatives
of order≤ R− 3 continuously toStrip(1, c). Moreover

sup
u<−c−1

|u|K+1 sup
α∈N4

0
|α|≤R−3

∥∥∥∂α
(
Ψσ( · , u)−

K∑
k=0

Ψσ(k)( · )
uk

)∥∥∥
C0(C(a,A,1))

≤ 1
c

(8.34)
Uniqueness:Assume(Ψ−, Ψ+) and(Ψ̃−, Ψ̃+) have all the properties listed in Part 1.
Then they coincide onStrip(1, c

1+c) ⊂ Strip(1, c).

Remark 8.4.Part 1 asserts the existence of a solution onI ∪ II ∪ III . However, Unique-
ness in Theorem 8.1 refers only toI . We actually prove uniqueness onI ∪ II . By a
standard finite speed of propagation argument, which we do not carry out, the domain
of uniqueness can be extended toIII .

Strip (1, c) = I ∪ II ∪ III

Strip (1, c
1+c ) = I

III

II

u
=
−
1
c

u + u = − 1
c

u
=

0

u
=

1

u→
−∞

I
u
=
−
1
c
− 1

Remark 8.5.The DATA σ are given foru ∈ (0,∞), just for convenience. By construc-
tion, the restriction ofΨσ(0) to u ∈ (0, 1) depends only on the restriction ofDATA σ to
u ∈ (0, 1), see equations (6.3). It now follows from Uniqueness in Theorem 8.1 that
Ψ−, Ψ+ are determined onStrip(1, c

1+c ) by the restriction ofDATA σ to u ∈ (0, 1).

Proof. Theorem 8.1 is formulated in the coordinate system(ξ, u, u). Almost the entire
proof, however, is given in the coordinate systemq = (t, ξ, u), wheret = u+ u.

We assume(S1) through(S11) and (̂S1) through(̂S5), wherea, A, K in (S1) through
(S11) are identified with their occurrences in the statement of Theorem 8.1 and where
DATA in (S2) is identified with either one ofDATA σ, σ = −, +. By direct inspection, our
assumptions and identifications are consistent, when we make the legitimate smallness
assumptionb < 10−3, that ensures thata, A satisfy(S1). This condition is subsumed in
(8.37) below.

Convention 8.6.For the entire proof,c3( · ) andc4( · ), as well asc6( · ) andc7( · ) are
defined as in Proposition 7.7 (Refined Energy Estimate) and Proposition 8.3. Further-
more,c8(R) > 1 will always denote a constant, such that the Sobolev inequality

Sup
(R−2)
O(ξ0,b,t){f}(t) ≤ c8(R)

√
ER
O(ξ0,b,t){f}(t) (8.35)

holds for all(ξ0, b, t) ∈ R2 × [1, 2]× (−∞,−d−1) and all vector valuedCR functions
f . See (7.43) for the Sobolev inequality and (7.40) for the definition of d.
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The smallness condition onb. SetJ0 = ǫ, with ǫ as in Theorem 8.1, and

X =
(
R, J0, |6Q1|, |6Q2|, |6Q3|

)
X∗ =

(
0, J0, |6Q1|, |6Q2|, |6Q3|

)
X̂ =

(
0, J0, |̂6Q1|, |̂6Q2|, |̂6Q3|

)
where6Qi and̂6Qi are fixed as in(S7)and(̂S4), respectively. Also set

c′2(B) = 1
2 min

{
c3(X), c3(X∗), c3(X̂)

} ∈ (0, 1) (8.36)

The right hand side of (8.36) only depends onB, which justifies the notationc′2(B).
We impose the legitimate smallness condition

b < min
{
10−3, c6(R) c′2(B)

}
(8.37)

It is the only smallness condition onb in the entire proof.

The first smallness condition onc. Set

Y =
(
R,K, max

σ∈{−,+}
‖DATA σ‖CR+2K+6(Q)

)
T(C) = −1− max

{
1
d
,

1
c7(Y )c′2(B)

,

(
4 c8(R) (c4(X) + 1)
c′2(B)c6(R)c7(Y )

) 1
K+1

}
(8.38)

Observe thatC(a,A, 2) = Q whereQ is defined in(S9). Therefore,Y depends only on
C, and so does the right hand side of (8.38), justifying the notationT(C). We impose
the legitimate smallness condition

c <
1

|T(C)| + 2
(8.39)

There will be one more smallness condition onc, later in the proof.

Convention 8.7.The system (8.3a) corresponding toDATA σ will be denoted (8.3a)σ. We
sometimes suppress the superscriptσ and simply writeDATA and (8.3a), in which case
the discussion applies equally toDATA σ and (8.3a)σ for σ = −, +.

Convention 8.8.In every application of Proposition 8.3, thec′2 of Proposition 8.3 will
be thec′2(B) of (8.36).

Remark 8.6.We haveFlip a
A
· (Ma,A + u−MΨ

)
= Ma,A + u−M

(
Flip a

A
·Ψ) since

the transformationFlip a
A

is linear, mapsMa,A to itself and commutes with the matrix

u−M . In particular, ifΨ solves (5.4a), thenFlip a
A
· Ψ solves (5.4a).

Observe thatFlip a
A
·Ψσ

K = Ψ−σ
K , becauseDATA σ are Pole-Flip compatible, by assump-

tion. Therefore,Flip a
A
·(Ψσ

K +π Ξ
)

= Ψ−σ
K +Flip a

A
·(π Ξ). In particular, ifΞ solves

(8.3a)σ, thenπ−1 Flip a
A
· (πΞ) solves (8.3a)−σ.

Convention 8.9.For the rest of this proof, we consciously abuse notation andwrite
Flip a

A
· Ξ for π−1 Flip a

A
· (πΞ). See,(S3) for the definition ofπ.
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Guide.The proof now proceeds through a sequence of 10 steps. Each step begins with
a statement (in italics), that is then proven.

Step 1. The assumptions of Proposition 8.3 up to and including (8.17)are satisfied for
all T ≤ T(C), if DATA = DATA σ for σ = −, +.
By direct inspection. Recall thatc7( · ) is non-increasing in all its arguments.

Step 2. For eacht0 < T(C) there is at1(t0) ∈ (t0,T(C)] and a smooth solution

Ξt0 : [t0, t1(t0))× R3 → π−1R ∼= R31

to the systemM(q, Ξ)Ξ = h(q, Ξ), with trivial initial data,Ξt0(t0, · ) = 0, vanishing
identically forq3 < 1

2 , so thatt1(t0) 6= T(C) implies either one or both of (Break)1 or
(Break)2 (see Proposition 7.3).
Apply Parts 1 and 2 of Proposition 7.3, in the context of Part 1of Proposition 8.3, with
T = T(C).

Remark 8.7.Ξt0 is a 1-parameter family of solutions, parametrized byt0 < T(C).

Step 3.t1(t0) = T(C), for all t0 < T(C).
For eachξ0 ∈ R2, we introduce the set

J (ξ0, t0) =
{
t ∈ [t0, t1(t0))

∣∣∣ sup
τ∈[t0,t]

ER
O(ξ0,2,τ){Ξt0}(τ) ≤

(
c6(R)c′2(B)

)2}
It is an interval and closed as a subset of[t0, t1(t0)). By Part 2 of Proposition 8.3 and
by (8.38), √

ER
O(ξ0,2,t0)

{Ξt0}(t0) ≤
1

c7(Y ) |T(C)|K+1
≤ c6(R) c′2(B)

4
.

Therefore,t0 ∈ J (ξ0, t0). By continuity of the energy,J (ξ0, t0) contains at least one
point different fromt0. For everyt∗ ∈ J (ξ0, t0), t∗ > t0, the assumptions of Proposi-
tion 8.3, Part 3,(Sys1)are satisfied withT = t∗. It follows from Conclusion 1 that

Ξt0(q) ∈ B1/2(0) ⊂ R31 for all q ∈ ⋃t∈(t0,t∗){t} × O(ξ0, 2, t) (8.40)

By Conclusion 2 and

K + 1 ≥ J0, c′2(B) ≤ c3(X), t∗ < T(C) < −1/c′2(B) ≤ −1/c3(X)

we can apply the Refined Energy Estimate (7.42) in Proposition 7.7 in the context of
(Sys1). Combining (7.42) with Part 2 of Proposition 8.3, one obtains√

ER
O(ξ0,2,τ){Ξt0}(τ) ≤

2c4(X)
c7(Y ) |τ |K+1

≤ 2 c4(X)
c7(Y ) |T(C)|K+1

≤ c6(R) c′2(B)
2 c8(R)

≤ c6(R) c′2(B)
2

(8.41)

for all τ ∈ (t0, t∗). The second inequality is self-evident. For the third, use (8.38) again.
The continuity of the energyER

O(ξ0,2,τ){Ξt0}(τ) for τ ∈ [t0, t1(t0)) implies that
(8.41) holds forτ = t∗, and, consequently, for allτ ∈ J (ξ0, t0). It follows that
J (ξ0, t0) is also open as a subset of[t0, t1(t0)). The setJ (ξ0, t0) is nonempty, open
and closed as a subset of[t0, t1(t0)), and we concludeJ (ξ0, t0) = [t0, t1(t0)). The
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upshot is that (8.40) holds witht∗ replaced byt1(t0), for all ξ0 ∈ R2, and therefore
Ξt0

(
[t0, t1(t0))×Q

) ⊂ B1/2(0) ⊂ R31 because

[t0, t1(t0))×Q ⊂ [t0, t1(t0))× R2 × (0, 2) =
⋃

ξ0∈R2

⋃
t∈[t0,t1(t0))

{t} × O(ξ0, 2, t).

(8.42)
Now, (Break)1 (see Step 2) is excluded. The inclusion (8.42), the fact thatJ (ξ0, t0) =
[t0, t1(t0)) and the Sobolev inequality, (8.35), exclude (Break)2. By Step 2, we conclude
thatt1(t0) = T(C), for all t0 < T(C).

Remark 8.8.A byproduct of the proof of Step 3 is:

The inequality (8.41) holds for allτ ∈ [t0,T(C)) andξ0 ∈ R2. (8.43)

Convention 8.10 (for Steps 4 and 5).We introduce a new field that is used in the next
two steps. It is the restriction ofΞt0 to [t0,T(C)) ×W , where

W = D 5
2 | a

A |(0)× (0, 1) ⊂ R3

Consciously abusing notation, we will denote this new field by the same symbolΞt0 .
The new fieldΞt0 is smooth and extends, with all its derivatives, continuously to
[t0,T(C)) ×W ⊂ R4.

Step 4.Ξt0 is a solution to(8.3a), for eacht0 < T(C).
Define the open cover(W1,W2) of W ,

W1 = W ∩ (R2 × (0, 1
2 )
) W2 = W ∩ (R2 × (1

3 , 1)
)

If q ∈ W1, thenΞt0(q) = 0 (see, Step 2) andSrc(q) = 0 (see,(S2) and(S4)). In this
case,Ξt0 is self-evidently a solution to (8.3a). On the other hand, ifq ∈ W2, then
ψ(q) = 1 (see,(S9)). By direct inspection of(S10), the equationM(q, Ξ)Ξ = h(q, Ξ)
collapses to (8.3a).

Remark 8.9.Recall from Remark 7.3 that, for all(ξ0, b, t) ∈ R2 × [1, 2]× (−∞,− 1
d ),

the setO(ξ0, b, t) is a bundle over theu-interval(0, b) whose fibers are disks centered
at ξ0, with radii< 1

2 .

Step 5. For eacht0 < T(C), letΞσ
t0 be the solution to(8.3a)σ. Let

Y(t0) = [t0,T(C)) × {2
5 | a

A | < |ξ| < 5
2 | a

A |
}× (0, 1)

Z(t0) =
⋃

τ∈[t0,T(C))

⋃
| a

A |≤|ξ0|<2| a
A |

{τ} × O(ξ0, 1, τ) ⊂ Y(t0)

Note that bothΞσ
t0 andFlip a

A
· Ξ−σ

t0 (see, Convention 8.9) are defined onY(t0). We

claim thatΞσ
t0 = Flip a

A
·Ξ−σ

t0 onZ(t0) ⊂ Y(t0).
The argument is by finite speed of propagation. For any| a

A | ≤ |ξ0| < 2| a
A |, let

I(ξ0, t0) ={
t ∈ [t0,T(C))

∣∣∣ Ξσ
t0 = Flip a

A
· Ξ−σ

t0 on
⋃

τ∈[t0,t]

{τ} × O(ξ0, 1, τ) ⊂ Z(t0)
}
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Our goal isI(ξ0, t0) = [t0,T(C)), for each| a
A | ≤ |ξ0| < 2| a

A |. First of all,I(ξ0, t0) is
an interval that containst0, becauseΞσ

t0 andΞ−σ
t0 have trivial initial data. By continuity,

it is closed as a subset of[t0,T(C)). We now show thatI(ξ0, t0) is also open as a subset
of [t0,T(C)).
By the second to last inequality in (8.43), and by (8.35),

sup
τ∈[t0,T(C))

Sup
(1)
O(ξ0,1,τ){Ξσ

t0}(τ) ≤ 1
2 c6(R)c′2(B).

Let t′ ∈ I(ξ0, t0). By the definition ofI(ξ0, t0), and by continuity

sup
τ∈[t0,t∗)

Sup
(1)
O(ξ0,1,τ){Flip a

A
·Ξ−σ

t0 }(τ) ≤ 3
4 c6(R)c′2(B)

for somet∗ ∈ (t′,T(C)). The assumptions of Proposition 8.3, Part 3,(Sys2)are satisfied
with T = t∗, Ξ(1) = Ξσ

t0 , Ξ(2) = Flip a
A
· Ξ−σ

t0 . Conclusion 2 of Proposition 8.3

enables us to apply Proposition 7.7 (Refined Energy Estimate) for (Sys2), with J = 1
2 .

The assumptions of Proposition 7.7 are satisfied because

J = 1
2 ≥ J0, c′2(B) ≤ c3(X∗), t∗ < T(C) < −1/c′2(B) ≤ −1/c3(X∗).

(8.44)
In the present case, the Refined Energy Estimate (7.42) becomes

√
E0
O(ξ0,1,τ){Υ}(τ) ≤ c4(X∗)

|t0|1/2
√
E0
O(ξ0,1,t0)

{Υ}(t0) + 0

|τ |1/2

for all τ ∈ (t0, t∗), whereΥ = Ξσ
t0 − Flip a

A
· Ξ−σ

t0 . Furthermore, the energy on
the right hand side is zero. The vanishing of the energy on theleft hand side implies
[t0, t∗) ⊂ I(ξ0, t0). Hence,I(ξ0, t0) is an open subset of[t0,T(C)).

Convention 8.11 (for the remaining steps).We introduce a new field for the remaining
steps. For eacht0 < T(C) andσ ∈ {−,+}, it is the map (see, Convention 8.9)

[t0,T(C)) × R2 × (0, 1) → π−1R ∼= R31

q = (t, ξ, u) 7→
{
Ξσ

t0(q) if |ξ| < 2| a
A |

Flip a
A
·Ξ−σ

t0 (q) if |ξ| > 1
2 | a

A |
(8.45)

It is well defined on the flip-invariant[t0,T(C)) × {1
2 | a

A | < |ξ| < 2| a
A |
} × (0, 1),

which is contained inZ(t0) ∪
(
Flip a

A
· Z(t0)

)
by Step 5. It coincides withΞσ

t0 on the
setZ(t0) of Step 5. Consciously abusing notation, we will denote thisnew field by the
same symbolΞσ

t0 .

Step 6. For eacht0 < T(C) andσ ∈ {−,+},
Ξσ

t0 = Flip a
A
· Ξ−σ

t0 on [t0,T(C))× (R2 \ {0})× (0, 1)

The fieldΞσ
t0 : [t0,T(C)) × R2 × (0, 1) → π−1R is smooth, vanishes whenq3 < 1

2 ,
and extends, with its derivatives of all orders, continuously to [t0,T(C))×R2× [0, 1].
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Moreover, it is a solution to(8.3a)σ on its entire domain of definition and satisfies

sup
|ξ0|<2| a

A |
sup

τ∈(t0,T(C))

Sup
(R−2)
O(ξ0,1,τ){Ξσ

t0}(τ) ≤ 1
2 c6(R)c′2(B) (8.46a)

sup
|ξ0|<2| a

A |
sup

τ∈(t0,T(C))

|τ |K+1 Sup
(R−2)
O(ξ0,1,τ){Ξσ

t0}(τ) ≤
2c4(X)c8(R)

c7(Y )
(8.46b)

The main point before (8.46a) is thatFlip a
A

is a field configuration symmetry. The in-
equalities (8.46a), (8.46b) are consequences of (8.43) andthe Sobolev inequality (8.35).
Be aware that that theΞt0 in (8.43) is related to the presentΞσ

t0 by (8.45).

Step 7. For eacht0 < T(C) − 1 andσ ∈ {−,+},

sup
|ξ0|<2| a

A |
sup

τ∈(t0+1,T(C))

E0
O(ξ0,1,τ)

{(
Ξσ

t0

)♯}(τ) .(Y,J0)
1
|t0| .

where
(
Ξσ

t0

)♯
is the constraint field associated to the field(8.45).

For any|ξ0| < 2 | a
A | and anyt∗ ∈ (t0 + 1,T(C)), the assumptions of Proposition 8.3,

Part 3,(Sys3)are satisfied withT = t∗. By Conclusion 3,R ≥ 4, K ≥ 0, and (8.46b),

sup
τ∈(t0+1,t∗)

|τ | Sup
(0)
O(ξ0,1,τ)

{(
Ξσ

t0

)♯}(τ) .(Y,J0) 1.

By continuity, this holds fort = t0 + 1 as well. Therefore, the energy satisfies

|t0 + 1|2E0
O(ξ0,1,t0+1)

{(
Ξσ

t0

)♯}(t0 + 1) .(Y,J0) 1. (8.47)

By Conclusion 2, we can apply Proposition 7.7 (Refined EnergyEstimate) for(Sys3),
with J = 1

2 , I = (t0+1, t∗). The assumptions of Proposition 7.7 are satisfied, because

J = 1
2 ≥ J0, c′2(B) ≤ c3(X̂), t∗ < T(C) < −1/c′2(B) ≤ −1/c3(X̂).

The Refined Energy Estimate (7.42) and (8.47) imply

sup
τ∈(t0+1,t∗)

E0
O(ξ0,1,τ)

{(
Ξσ

t0

)♯}(τ) .(Y,J0)
1

|t0 + 1| .(Y,J0)
1
|t0| .

Step 8. For allσ ∈ {−,+} and all t1 ≤ t2 < T(C),

sup
|ξ0|<2| a

A |
sup

τ∈(t2,T(C))

E0
O(ξ0,1,τ){Ξσ

t2 −Ξσ
t1}(τ) .(Y,J0)

1
|t2|

For anyt∗ ∈ (t2,T(C)) and|ξ0| < 2| a
A |, the assumptions in Proposition 8.3, Part 3, for

(Sys2), are satisfied witht0 = t2, T = t∗ andΞ(1) = Ξσ
t1 , Ξ(2) = Ξσ

t2 . By Conclusion
2, we can apply Proposition 7.7 (Refined Energy Estimate) with J = 1

2 , see (8.44). The
Refined Energy Estimate (7.42) implies

E0
O(ξ0,1,τ){Ξσ

t2−Ξσ
t1}(τ) ≤

(
c4(X∗)

)2 |t2|E0
O(ξ0,1,t2)

{Ξσ
t1}(t2)

|τ | .(Y,J0)
1

|t2|2K+1

for all τ ∈ (t2, t∗). For the second inequality, see (8.46b).
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Step 9. There exist

Ξσ : (−∞,T(C)) × R2 × (0, 1) → π−1R, σ ∈ {−,+}

with Ξσ = Flip a
A
· Ξ−σ (see, Convention 8.9), that vanish whenq3 < 1

2 , areCR−3,
and extend, with their derivatives of all orders≤ R−3, continuously to(−∞,T(C))×
R2 × [0, 1]. Moreover, they are solutions to both(8.3a)σ and(Ξσ)♯ = 0, and

sup
|ξ0|<2| a

A |
sup

τ∈(−∞,T(C))

Sup
(R−3)
O(ξ0,1,τ){Ξσ}(τ) ≤ 1

2 c6(R)c′2(B) (8.48a)

sup
|ξ0|<2| a

A |
sup

τ∈(−∞,T(C))

|τ |K+1 Sup
(R−3)
O(ξ0,1,τ){Ξσ}(τ) .(Y,J0) 1 (8.48b)

sup
τ∈(−∞,T(C))

|τ |K+1 Sup
(R−3)
D4| a

A
|(0)×(0,1){Ξσ}(τ) .(Y,J0) 1 (8.48c)

1
2 ≤ B0(q, Ξ(q)) ≤ 2 for all q ∈ (−∞,T(C)) × R2 × (0, 1) (8.48d)

For eachβ ∈ (0, 1), introduce the compact set

Xβ = [T(C)− β−1,T(C)− β]×D2| a
A |(0)× [0, 1]

For every sequencetn → −∞, with tn < T(C) − β−1, the sequence of fieldsΞσ
tn

is,
by Step 8, a Cauchy sequence inL2(Xβ). SetΞσ|Xβ

= L2- limt→−∞ Ξσ
t . By (8.46a),

the 1-parameter familyΞσ
t with t < T(C) − β−1 is a bounded subset ofCR−2(Xβ),

the space ofπ−1R ∼= R31 valued functions of classCR−2 on the interior ofXβ , that
extend continuously, with their derivatives of all orders≤ R − 2, to the boundary. By
Arzela-Ascoli, there is a subsequence that converges inCR−3(Xβ). Therefore,Ξσ|Xβ

is inCR−3(Xβ). It follows thatΞσ isCR−3 on the interior of
⋃

β∈(0,1)Xβ , and extends
with its derivatives of all orders≤ R−3 continuously to

⋃
β∈(0,1)Xβ = (−∞,T(C))×

D2| a
A |(0)×[0, 1]. By construction,Ξσ = Flip a

A
·Ξ−σ onXβ∩(Flip a

A
·Xβ). Hence, the

pair of fieldsΞσ have uniqueCR−3 Pole-Flip compatible extensions to(−∞,T(C))×
R2 × (0, 1), which extend with their derivatives of all orders≤ R − 3 continuously to
(−∞,T(C)) × R2 × [0, 1], as required by Step 9.
It follows directly from Step 6, that the pairΞσ has all the desired properties, including
the bounds (8.48a), (8.48b) (recall thatR − 3 ≥ 1), with the exception of(Ξσ)♯ = 0,
(8.48c) and (8.48d). It is implicit in our construction thatfor eachβ ∈ (0, 1), there
is a sequencetn → −∞ so thatΞσ

tn
→ Ξσ in C1(Xβ), and therefore(Ξσ

tn
)♯ →

(Ξσ)♯ in C0(Xβ). Now, by step 7,(Ξσ)♯|Xβ
= 0, for all β ∈ (0, 1). By Pole-Flip

compatibility,(Ξσ)♯ = 0 everywhere. The estimate (8.48c) follows from (8.48b) when
|ξ| < 2| a

A |. For 1
2 | a

A | < |ξ| < 4| a
A |, it also follows from (8.48b), by using Pole-

Flip compatibility and Lemma F.1 in Appendix F. To verify (8.48d), observe that the
assumptions of Proposition 8.3, Part 3, for(Sys2), are satisfied for any|ξ0| < 2| a

A |,
t0 < T < T(C), Ξ(1) = Ξ(2) = Ξσ. By Conclusion 2,(RE1) holds in the context of
(Sys2), which implies (8.48d) forq ∈ (−∞,T(C))×D2| a

A |(0)× (0, 1), and for general
q by Pole-Flip compatibility.

Step 10. The fieldsΞσ in Step 9 are unique in the following sense: Suppose, for some
t1 < T(C), theC1-fields Ξ̃σ : (−∞, t1) × R2 × (0, 1) → π−1R are Pole-Flip
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compatible, extend with their first derivatives continuously to (−∞, t1] × R2 × [0, 1],
are solutions to(8.3a)σ, vanish whenq3 < 1

2 , and satisfy

lim
τ→−∞ sup

|ξ0|<2| a
A |
|τ |J0 Sup

(1)
O(ξ0,1,τ){Ξ̃σ}(τ) = 0 (8.49)

Then,Ξ̃σ = Ξσ on (−∞, t1)× R2 × (0, 1).
For every sufficiently negativeτ < t1, the assumptions of Proposition 8.3, Part 3, for
(Sys2), are satisfied for any|ξ0| < 2| a

A |, t0 < T = τ , Ξ(1) = Ξσ, Ξ(2) = Ξ̃σ. The
condition thatτ is sufficiently negative is used to verify hypothesis (iv) ofPart 3 of
Proposition 8.3. By Conclusion 2, we can apply (checking, the additional hypothesis
similarly to (8.44)) Proposition 7.7 withJ = J0. It follows from (7.42) that

E0
O(ξ0,1,τ)

{
Ξσ − Ξ̃σ

}
(τ) ≤ (

c4(X∗)
)2 |t0|2J0 E0

O(ξ0,1,t0)

{
Ξσ − Ξ̃σ

}
(t0)

|τ |2J0
.

We take the limitt0 → −∞, keepingτ fixed. By (8.48b) and (8.49), and the fact
that2J0 < 1, we conclude that the energyE0

O(ξ0,1,τ)

{
Ξσ − Ξ̃σ

}
(τ) = 0. Exploiting

the Pole-Flip compatibility,Ξσ(τ, · ) = Ξ̃σ(τ, · ) for all sufficiently negativeτ . To
demonstrate thatΞσ = Ξ̃σ on(−∞, t1)×R2×(0, 1), we make a closed-open argument
almost identical to the one in the proof of Step 5.

We finally return from theq = (t, ξ, u) to thex = (ξ, u, u) coordinate system, and
complete the proof of Theorem 8.1. Thex-set Strip(1, c) is contained in theq-set
(−∞,T(C)) × R2 × (0, 1), by the smallness condition (8.39).

Existence in Theorem 8.1follows from Step 9, withΨσ = Ψσ
K + π Ξσ. We only have

to check (8.33), (8.34) and conditions(⋆) and(⋆ ⋆) (see, Definitions 2.1 and 2.2), and
apply Proposition 2.2. Write

Ψσ( · , u)− Ψσ(0)( · , u) = 1
u

K∑
k=0

( 1
u )k Ψσ(k + 1)( · ) + π Ξσ( · , u)

Ψσ( · , u)−
K∑

k=0

( 1
u )k Ψσ(k)( · ) = 1

uK+1 Ψ
σ(K + 1)( · ) + π Ξσ( · , u)

The coefficient functionsΨσ(k + 1), appearing on the right hand sides, are estimated
using‖Ψσ(k + 1)‖CR+1(C(a,A,2)) .Y 1 (see, the Overall Preliminaries in the proof of
Proposition 8.3) andΞσ is estimated using (8.48c). Now, (8.33) follows. Also (8.34)
follows, with an additional legitimate smallness condition on c depending only on
(Y, J0). Condition(⋆) is a consequence of the inequality1

2 ≤ e3 ≤ 2 on Strip(1, c),
which follows from (8.48d). Here,e3 is a component ofΦσ = (e, γ, w) = Ma,A +
u−MΨσ. Finally, the equationL

(
e1e2 − e1e2

)
= −2γ2

(
e1e2 − e1e2

)
(a consequence

of the first two lines of (2.4)) implies thatℑ(e1e2) cannot change sign along the inte-
gral curves ofL, and thereforeℑ(e1e2) < 0 onStrip(1, c) because it is negative when
u < 1

2 . This implies(⋆ ⋆).

Uniqueness in Theorem 8.1follows from Step 10. ⊓⊔
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9. Conclusions

We assume, without further comment, the definitions and conventions of Section 2
through Section 6 and Theorem 8.1. However, see the Index of Notation, Appendix
A.

Proposition 9.1 (Asymptotic expansion).LetΦσ = Ma,A + u−MΨσ be the pair of
Pole-Flip compatible vacuum fields of Theorem 8.1 forK = 0. For eachL ≥ 0,

sup
α∈N4

0
|α|≤R−3

∥∥∥∂α
(
Ψσ( · , u)−

L∑
k=0

Ψσ(k)( · )
uk

) ∥∥∥
C0(C(a,A,1))

= O
( 1
|u|L+1

)

asu → −∞. In other words, the far field formal power series[Ψσ ] is an asymptotic
expansion forΨσ.

Proof. Observe that the conditions imposed on the dataa, A, DATA σ, R, ǫ in Theorem
8.1 are independent ofK. Therefore, Theorem 8.1 can be applied with the same data
for all K ≥ 0. For eachK ≥ 0, we obtain a pair of Pole-Flip compatible vacuum
fields onStrip(1, λK) ⊂ R4, whereλK > 0 depends onK through the vectorC in
Theorem 8.1. The vacuum fields corresponding to any pairK, K ′ ≥ 0 coincide for
sufficiently negativeu, by the uniqueness statement of Theorem 8.1. In particular,this
is true forK = 0,K ′ = L. The bound (8.34) for theK ′ = L vacuum field implies the
proposition. ⊓⊔

9.1. Three Points of View.It is helpful to consider the focusing of gravitational waves
from three perspectives, that yield three different pictures.

with scaling constantJ = A4

Field transformationC ◦ A

Isotropic scaling transformationJ

whereC(ξ) = a ξ

Regularized Picture(R)

High Amplitude Picture (H)

Finite Mass Picture (F)

First, recall from Section 3 that the Isotropic ScalingJ, the Anisotropic ScalingA and
the Angular Coordinate TransformationC are field symmetries (see, Definition 3.1).
Their isotropic respectively anisotropic character refers to their action on the frame and
the coordinate system. Both scalings are, at the level of theLorentzian metric, global
conformal transformations.

The pictures are fixed by the table

Regularized High Amplitude Finite Mass
Background Ma,A M1,1 M1,1

Data ησ
(
ξ, u

)
A−2 ησ

(
a
Aξ, u

)
A−2 ησ

(
a
Aξ, A−4u

)
Domain Strip

(
1, c
)

Strip
(
1, cA2

)
Strip

(
A4, cA−2

)
Hemisphere |ξ| < | a

A | |ξ| < 1 |ξ| < 1
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The Regularized Picture is the arena of Theorem 8.1. The other two are obtained, as
indicated above, by scaling. Row 1 displays the Minkowski background fields. Row 2
gives the functional form of the initial data at past null infinity. More precisely,

DATA σ
R(ξ, u) = ησ(ξ, u) Φσ

R = Ma,A + u−MΨσ
R (9.1a)

DATA σ
H(ξ, u) = A−2 ησ

(
a
Aξ, u

)
Φσ

H = M1,1 + u−MΨσ
H (9.1b)

DATA σ
F(ξ, u) = A−2 ησ

(
a
Aξ, A−4u

)
Φσ

F = M1,1 + u−MΨσ
F (9.1c)

The first equation gives two new names for theDATA σ(ξ, u) of Theorem 8.1. Row 3
displays the functional dependence of the domains on the scaling parameterA, with the
notationStrip(µ, λ) = R2 × (0, µ)× (−∞,−λ−1). Row 4 gives the size of theξ-disk
which, under stereographic projection, corresponds to onehemisphere ofS2.

9.2. Two Physical Regimes.There are two natural physical regimes. Informally, both
appear as limitsA ↓ 0 in the Regularized Picture, keeping the dataησ fixed. They are
distinguished by:

• 2D (Scaling) Limit: a = A ↓ 0.
• 4D (Scaling) Limit: a fixed,A ↓ 0.

(The 4D Limit breaks Pole-Flip compatibility ofησ. This will be discussed below.)

Definition 9.1. The2D Limit Assumptionsare the hypotheses, witha = A andǫ = 1
4 ,

of Theorem 8.1 onA, DATA σ = ησ, R andK up to and including condition(8.32).

Remark 9.1.Explicitly, the 2D Limit Assumptions are:R ≥ 4, K ≥ 0, ησ = 0 when
u < 1

2 , and

0 < |A| < b, ησ = Flip1 · η−σ, max
σ∈{−,+}

‖ησ‖CR+4(D4(0)×(0,2)) ≤ b

Here,b ∈ (0, 1) depends only onR. The constantc ∈ (0, 1) in Theorem 8.1 depends
only onR,K andmaxσ∈{−,+} ‖ησ‖CR+2K+6(D4(0)×(0,2)).
The conditions onησ : R2 × (0,∞) → C are independent ofA. Also the domain of
definitionStrip(1, c) of the vacuum field in Theorem 8.1 is independent ofA. Therefore,
Theorem 8.1 is consistent with the 2D Limit. The choiceǫ = 1

4 is just for concreteness.

Remark 9.2.The intuition behind the designations Regularized Pictureand High Am-
plitude Picture is immediately clear in the context of the 2DLimit. For the Regularized
picture, see Remark 6.3. In the High Amplitude Picture, the initial data at past null in-
finity for the corresponding family of vacuum fields isDATA σ

H(ξ, u) = A−2 ησ(ξ, u). It
grows unboundedly asA ↓ 0. The Finite Mass Picture will be discussed momentarily.

Remark 9.3.From our perspective, [Chr] investigates the 2D Limit (a = A) in the
Finite Mass Picture. Christodoulou’s small parameterδ > 0 is to be identified with
our A4. With this translation, the first equation in (9.1c) is precisely Christodoulou’s
“short pulse ansatz”. For [Chr], the “short pulse hierarchy” plays a central role (see
equation (24) on page 20 in [Chr], and the following discussion). In our approach,
this hierarchy plays no role at all. However, it can be recovered through the scaling
transformations required to go from the Regularized Picture to the Finite Mass Picture,
see (9.5c) and (9.6c) below. By contrast, our working picture, the Regularized Picture,
merely contains a dichotomy: theP-even components display one behavior, theP-odd
components another, see Remark 6.3 or (9.8). This dichotomydisappears in our 4D
Limit.
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9.3. Trapped Spheres.

Proposition 9.2.Make the 2D Limit Assumptions (Definition 9.1) withK = 0. Set

Λ(u1) = min
σ∈{−,+}

inf
ξ∈D4(0)

∫ u1

0

du |ησ(ξ, u)|2

SupposeΛ(u1) > 0 for someu1 ∈ (0, 1). Thenγσ
2 andγσ

6 are everywhere negative on
the sphere

Su,u : (u, u) =
(
u1, − 1

2 Λ(u1)A−2
)

wheneverA ∈ (0,b) is sufficiently small depending only onΛ(u1) andc. For instance,
A < 1

4

√
c min{1, Λ(u1)} will do. In other words,Su,u is a trapped sphere (see, Re-

mark 2.5).

Remark 9.4.Clearly, there is an infinite dimensional family of pairsησ, A satisfying the
assumptions of Proposition 9.2.

Proof. By (8.34), the componentsγσ
2 , γσ

6 of Φσ = MA,A + u−MΨσ satisfy:∣∣∣u2γσ
2 (ξ, u, u)−

(
+

A2u2

A2u− u
+ ωσ

2 (0)(ξ, u)
)∣∣∣ ≤ 1

c |u|∣∣∣u2γσ
6 (ξ, u, u)−

(
− u2

A2u− u
+ ωσ

6 (0)(ξ, u)
)∣∣∣ ≤ 1

c |u|
for all (ξ, u, u) ∈ D4(0)× (0, 1)× (−∞,−c−1), where (see equations (6.3))

ωσ
2 (0)(ξ, u) = −

∫ u

0

ds |ησ(ξ, s)|2 , ωσ
6 (0)(ξ, u) = 0

To find a trapped sphere, letu = −λA−2, whereλ > 0. Now, for all (ξ, u) ∈ D4(0)×
(0, 1) andcλ > A2:

If λ−
∫ u

0

ds |ησ(ξ, s)|2 +
A2

cλ
< 0 , then γσ

2 (ξ, u,−λA−2) < 0.

If − λ2

A2(A4 + λ)
+

A2

cλ
< 0 , then γσ

6 (ξ, u,−λA−2) < 0.
(9.2)

Proposition 9.2 is a direct consequence of (9.2) withλ = 1
2Λ(u1), if we also recall that

Flip1 does not change the sign ofγσ
2 andγσ

6 . ⊓⊔

9.4. The 2D Limit in the Finite Mass Picture for a Finite Duration Pulse. We make the
2D Limit Assumptions (Definition 9.1), and the assumptions for a finite duration pulse:

ησ : R2 × (0,∞) → C has support contained inR2 × (1
2 ,

3
4 ). (9.3a)∫ 3/4

1/2

du ησ(ξ, u) = 0 for all ξ andσ. (9.3b)
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Remark 9.5.Clearly, there is an infinite dimensional family of Pole-Flip compatibleησ

satisfying (9.3). The conditions (9.3) are equivalent to the condition thatησ(ξ, u) =
∂

∂uGσ(ξ, u) for a functionGσ : R2 × (0,∞) → C with suppGσ ⊂ R2 × (1
2 ,

3
4 ).

Remark 9.6.One can relax the conditions (9.3) by imposing suitable smallness condi-

tions for ησ on R2 × (3
4 ,∞) and for

∫ 3/4

1/2 du ησ(ξ, u), depending onA. In this case,
contrary to our current convention,ησ itself would have to be allowed to depend on
A, say polynomially. A smallness condition depending onA is an “open” condition, as
opposed to (9.3).

We begin with an informal discussion of the 2D Limita = A ↓ 0 in the Finite Mass
Picture. Fixu0 < 0. The shaded region in the figure (just below) isStrip(A4, |u0|−1).
For |A| small enough, it is contained inStrip(A4, cA−2), the domain, in the Finite Mass
Picture, on which the solution to Theorem 8.1 exists. RegionI is Minkowski space
M1,1. In the “pulse region”II , the solution grows unboundedly asA ↓ 0. Nevertheless,
as we will show, (9.3) implies that on each compactK ⊂ Strip(∞, |u0|−1) the far field
formal solution converges asA ↓ 0. Note that asA ↓ 0, the compactK is eventually
contained in the “after the pulse region”III = III 1 ∪ III 2. One would like to have an
analogous result for classical solutions. In this paper we take a step towards such a
result, by controlling the solution inIII 1, a strip moving and shrinking withA.

II

III
2

III
1

I

u
=

0

u
=

u 0
<

0

This figure uses
the Finite Mass Picture

u→
−∞

u
=

1
2 A 4

u
=

3
4 A 4

u
=

A 4

If
∫ 3/4

1/2 du |ησ(ξ, u)|2 is positive and independent ofξ andσ, the limit A ↓ 0 of the
formal power series solution is the field corresponding to a Schwarzschild spacetime,
whose future horizon is a level set ofu, with u < u0, when|u0| > 0 is sufficiently
small.

We use the notation

Ψσ
Picture and [Ψσ

Picture] =
∞∑

k=0

1
uk

Ψσ
Picture(k)(ξ, u)
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for the field and for the formal power series, where Picture= R, H, F. Let RH, HR,
FH, HF, FR, RF be the “transition matrices” between the different pictures, given by

RH = −HR = diag (3, 3, 4, 4, 4, 2, 4, 3, 3, 3, 2, 2, 4, 2, 3, 4, 5, 4) (9.4a)

FH = −HF = diag (4, 4, 8, 8, 8, 0, 4, 4, 4, 4, 4, 4, 8, −4, 0, 4, 8, 8) (9.4b)

FR = −RF = diag (1, 1, 4, 4, 4, −2, 0, 1, 1, 1, 2, 2, 4, −6,−3, 0, 3, 4) (9.4c)

Observe that FR= FH + HR. Then (use: the figure in Subsection 9.1, equations (9.1),
a = A and Definitions 3.2, 3.4, 3.5)

Ψσ
H (ξ, u, u) = AHRΨσ

R (ξ, u,A2u) (9.5a)

Ψσ
F (ξ, u, u) = AFHΨσ

H (ξ,A−4u,A−4u) (9.5b)

Ψσ
F (ξ, u, u) = AFRΨσ

R (ξ,A−4u,A−2u) (9.5c)

The coefficient functions of the formal power series transform according to

Ψσ
H (k)(ξ, u) = AHR−2k Ψσ

R (k)(ξ, u) (9.6a)

Ψσ
F (k)(ξ, u) = AFH+4k Ψσ

H (k)(ξ,A−4u) (9.6b)

Ψσ
F (k)(ξ, u) = AFR+2k Ψσ

R (k)(ξ,A−4u) (9.6c)

For allk ≥ 0, we have:

Ψσ
R (k)(ξ, u) is a polynomial inA (9.7a)

Ψσ
H (k)(ξ, u) is a polynomial inA−2 without constant term (9.7b)

Statement (9.7) is verified by induction overk. Just follow the construction of[Ψσ
R ]

and[Ψσ
H ] in the proof of Lemma 6.1, keeping in mind that the coefficientfunctions, in

the Regularized Picture, of the Minkowski background[MA,A ] depend polynomially
on A, and thatDATA σ

R is independent ofA. On the other hand, in the High Amplitude
Picture, the Minkowski background[M1,1 ] is independent ofA, while DATA σ

H is pro-
portional toA−2. Incidentally, (9.7a) has already been shown in Remark 6.3.There, it
was also shown that

P-even (P-odd) components ofΨσ
R (k)(ξ, u) are even (odd) polynomials inA (9.8)

The statement (9.8) also follows from (9.7a), (9.7b) and (9.6a), because thei-th com-
ponent ofΨσ

R(k)(ξ, u) is P-even (P-odd) if (RH)ii is even (odd). Furthermore,

thei-th component ofΨσ
R(k)(ξ, u) has degree≤ (RH)ii − 2 + 2k (9.9)

as a polynomial inA.

Lemma 9.1.The 18 components of eachΨσ
F (k)(ξ,A4u), k ≥ 0, are Laurent polynomi-

als inA2. If a component does not appear on the list

(ω1)σ
F(k)(ξ,A4u) k = 0, 1

(ω2)σ
F(0)(ξ,A4u)

(z1)σ
F(k)(ξ,A4u) k = 0, 1, 2, 3

(z2)σ
F(k)(ξ,A4u) k = 0, 1

(z3)σ
F(0)(ξ,A4u)

(9.10)

then it is an actual polynomial inA2 without constant term.
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Proof. By (9.4b), (9.6b), (9.7b), all the components are Laurent polynomials inA2. By
(9.4c), (9.6c), (9.7a), all those not in (9.10) are polynomials without constant term.⊓⊔
Lemma 9.2.Suppose(9.3). DefineU = R2×(3

4 ,∞) andΛσ(ξ) =
∫ 3/4

1/2
du|ησ(ξ, u)|2.

For (ξ, u) ∈ U , the functions in(9.10)are polynomials inA2, and:

(ω1)σ
F(0)(ξ,A4u) = 0 (z1)σ

F(2)(ξ,A4u) = 2 (e1,1
∂
∂ξ
− λ1,1) e1,1

∂
∂ξ
Λσ

(ω1)σ
F(1)(ξ,A4u) = 0 (z1)σ

F(3)(ξ,A4u) = O(A2)

(ω2)σ
F(0)(ξ,A4u) = −Λσ (z2)σ

F(0)(ξ,A4u) = 0 (9.11)

(z1)σ
F(0)(ξ,A4u) = 0 (z2)σ

F(1)(ξ,A4u) = −2 e1,1
∂
∂ξ
Λσ

(z1)σ
F(1)(ξ,A4u) = 0 (z3)σ

F(0)(ξ,A4u) = Λσ

where2 ∂
∂ξ

= ∂
∂ξ1 + i ∂

∂ξ2 ande1,1 = 1
2 (1 + |ξ|2) andλ1,1 = − 1

2 (ξ1 + iξ2).

Proof. By (9.6c), the equations (9.11) can be translated from the Finite Mass to the
Regularized Picture. In this proof, we work exclusively in the Regularized Picture. For
convenience, we suppress the R andσ indices as well as the argument(ξ, u). For ex-
ample,ω1(k) means(ω1)σ

R(k)(ξ, u). We use the shorthandse = eA,A andλ = λA,A

(see, (4.3)). Equivalently,e = Ae1,1 andλ = Aλ1,1. For all the equations in (9.11)
concerningzerothorder coefficient functions, use equations (6.3) and (9.6c). We only
note that onR2 × (0,∞),

z3(0) = −4(e ∂
∂ξ + λ)(e ∂

∂ξ + 2λ) ∂−1
u η − η ∂−1

u η + ∂−1
u |η|2

which reduces toz3(0) = Λσ onU . For the rest of (9.11), we use the equations

N(z1) + 1
uD(z2) = 1

u2

(
Sz1 − 2λz2 − ω6z1

)
+ 1

u3

(
2Sλz2 − 3ω1z3 + 6ω3z2 + 4ω8z1 − 4ω4z2

)
N(z2) + 1

uD(z3) = 1
u2

(
+ 2Sz2 − 2ω6z2

)
+ 1

u3

(− 2ω1z4 + 3ω3z3 + 2ω8z2 − 3ω4z3
)

L(ω1) = −z1 + 1
u 2 A2 ω1 + 1

u2

(− 2S A2 ω1 − 2ω1ω2

)
The first and third appear (5.4a). For the second, we use (5.4a) and the constraint equa-
tion y1 = 0. For the vector fieldsD,N , L, see (5.6). We obtain, in succession,

onR2 × (0,∞) onU
z1(1) = −A2u∂uη − 2(e ∂

∂ξ
− λ)z2(0) = 0

z2(1) = 2 A2 u z2(0)− 2 e ∂
∂ξ
z3(0) = −2 e ∂

∂ξ
Λσ

ω1(1) = −4(e ∂
∂ξ
− λ)(e ∂

∂ξ + 2λ)∂−1
u η = 0

+ A2 u η + A2 ∂−1
u η

z1(2) = (not needed) = 2 (e ∂
∂ξ
− λ) e ∂

∂ξ
Λσ

z1(3) = (not needed) = A2u z1(2)− 2
3 (e ∂

∂ξ
− λ)z2(2)

Forz1(3), we have also used thatω3(0), ω4(0), f1(0), f2(0) all vanish onU (see equa-
tions (6.3)). We know from (9.8) thatz1(3) is a polynomial inA2. It has no constant
term onU , becausee, λ andz2(2) are odd polynomials inA. Now, use (9.6c). ⊓⊔
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Lemma 9.3.Suppose(9.3). Each component of eachΨσ
F (k)(ξ, u), k ≥ 0, is a Laurent

polynomial inA2 and a polynomial inu whenu > 3
4A4.

Proof. By (9.3a) and the construction of the formal power series in the proof of Lemma
6.1, eachΨσ

R (k)(ξ, u) is a polynomial inu onU = R2× (3
4 ,∞). Also recall (9.7a) and

(9.8). The lemma now follows from (9.6c).⊓⊔
Let Ψ̂σ

F (k)(ξ, u) be the polynomial extension inu of Ψσ
F (k)(ξ, u) from u > 3

4A4 to

u > 0. Then, [ Ψ̂σ
F ] is a Pole-Flip compatible pair of formal solutions to (5.4a)on

Strip∞ with Minkowski background[M1,1 ], and[ Ψ̂σ ♯
F ] = 0.

Lemma 9.4.Suppose(9.3). Then,Ψ̂σ
F (0)(ξ, u) is a polynomial inA2. More precisely,

Ψ̂σ
F (0)(ξ, u) = (9.12)(
0, 0,−uΛσ, 0, 0, 0,−Λσ, 0, 0, 0, 0, 0, uΛσ, 0, 0, Λσ, 2 u e1,1

∂
∂ξ Λ

σ, 0
)

+O(A2)

Proof. By direct calculation. ⊓⊔
Proposition 9.3.Suppose(9.3). Each component of eacĥΨσ

F (k)(ξ, u), k ≥ 0, is simul-
taneously a polynomial inu andA2, for all (ξ, u) ∈ R2 × (0,∞).

Proof. They are polynomials inu by definition. The casek = 0 is covered by Lemma
9.4. The general case is shown by induction overk, using the fact that the equations
(6.6) hold with Minkowski background[M1,1 ]. In the present case, (6.6) are equations
for polynomials inu. The generic termsPk on the right hand sides in (6.6) are, by
the inductive hypothesis, polynomials inA2. When using (6.6a) through (6.6r) in this
order to determine the components ofΨ̂σ

F (k), only polynomials inA2 are generated.
If ∂

∂u appears on the left hand side, then the non-constant terms asa u-polynomial of

the corresponding component ofΨ̂σ
F (k) are determined uniquely by the right hand side.

The constant term of integration is determined by the restriction of Ψ̂σ
F to u = A4, that

is Ψ̂σ
F (k)(ξ,A4), which is itself a polynomial inA2, by Lemmas 9.1 and 9.2.⊓⊔

Proposition 9.4.Suppose(9.3). For eachk ≥ 0, let Ψ̂σ
F,A=0(k) be the constant term of

Ψ̂σ
F (k) as a polynomial inA2. Then[ Ψ̂σ

F,A=0 ] is the unique formal solution to(5.4a)
with Minkowski background[M1,1 ] and characteristic initial data

Ψ̂σ
F,A=0(0)(ξ, u) =(
0, 0,−uΛσ, 0, 0, 0,−Λσ, 0, 0, 0, 0, 0, uΛσ, 0, 0, Λσ, 2 u e1,1

∂
∂ξ Λ

σ, 0
)

(9.13a)

[ Ψ̂σ
F,A=0 ](ξ, 0, u) =


0
0
0
0
0

⊕


0

−Λσ

0
...
0

⊕


2
u2 (e1,1

∂
∂ξ
− λ1,1)e1,1

∂
∂ξ
Λσ

− 2
ue1,1

∂
∂ξ
Λσ

Λσ

0
0

 (9.13b)

Its coefficient functions are polynomials inu. Moreover,[ Ψ̂σ ♯
F,A=0 ] = 0.

Particularly, if Λσ(ξ) ≡ Λ is independent ofξ andσ, then it represents Schwarzschild
spacetime, with massm = 2−3/2Λ.
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Proof. The first part follows from Lemma 9.1, 9.2, 9.3, 9.4 and Proposition 9.3. In par-
ticular, (9.13a) follows from (9.12), and (9.13b) follows from (9.11).
If Λσ(ξ) ≡ Λ is independent ofξ andσ, thenΨ̂σ

F,A=0(0)(ξ, u) and[ Ψ̂σ
F,A=0 ](ξ, 0, u)

in (9.13a) and (9.13b) correspond to spherically symmetricinitial data for (5.4a) with
Minkowski background[M1,1 ]. Therefore,[ Ψ̂σ

F,A=0 ] is spherically symmetric, and
therefore, by a formal Birkhoff Theorem, a formal expansionof a Schwarzschild vac-
uum field. The componentγ2 of [M1,1 ] + u−M [ Ψ̂σ

F,A=0 ] vanishes on the sphere
(u, u) = (−Λ, 0), and therefore this sphere is a section of the Schwarzschildhorizon.
Its area is equal to2πΛ2, which gives the formula for the massm. ⊓⊔

The discussion of the formal solution[Ψσ
F ] is finished. We now turn to classical solu-

tions. The bound (8.34) implies that for allu < −c−1,

sup
α∈N4

0
|α|≤R−3

∥∥∥∂α
(
Ψσ

R ( · , u)−
K∑

k=0

Ψ̂σ
R (k)( · )
uk

)∥∥∥
C0(D4(0)×( 3

4 ,1))
≤ 1

c |u|K+1

This bound, in turn, implies the Finite Mass Picture bound (use (9.5c), (9.6c))

sup
α∈N4

0
|α|≤R−3

∥∥∥∂α
(
Ψσ

F ( · , u)−
K∑

k=0

Ψ̂σ
F (k)( · )
uk

) ∥∥∥
C0(D4(0)×( 3

4A4,A4))
≤ A2K−4R+8

c |u|K+1

whenu < −A2c−1. The power ofA on the right hand side arises as2K − 4R + 8 =
2(K + 1)− 4(R− 3)− 6. GivenR ≥ 4, we chooseK = 2R− 3. (Then, the constant
c depends only onR andmaxσ∈{−,+} ‖ησ‖C5R(D4(0)×(0,2)).) Altogether, we obtain:

Proposition 9.5.Suppose(9.3). For eachu0 < 0 and eachR ≥ 4, the limit asA ↓ 0 of

sup
u<u0

|u|2R−2 sup
α∈N4

0
|α|≤R−3

∥∥∥∂α
(
Ψσ

F ( · , u)−
2R−3∑
k=0

Ψ̂σ
F (k)( · )
uk

) ∥∥∥
C0(D4(0)×( 3

4A4,A4))

is zero. Here, the solutionΨσ
F , the functionŝΨσ

F (k), and theu-interval (3
4A4,A4) de-

pend onA. Under appropriate conditions (see, Proposition 9.4), theSchwarzschild vac-
uum field can be approximated arbitrarily closely on the strip III 1.

Remark 9.7.To obtain the last result, we had to explicitly calculate thefirst four orders
of the far field expansion, in particular for the componentz1.

So far, we have provided complete, detailed arguments for each of our statements. At
this point of the paper, the character of our discussion changes. For the rest of Section 9,
we sketch additional applications of our overall hybrid method and give informal argu-
ments to support our informal assertions. We will give rigorous discussions in another
place.
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9.5. 2D Limit in the Regularized Picture: beyond the far fieldregime. Theorem 8.1
produces vacuum fields onStrip(1, c), with c > 0 independent ofA (see, Remark 9.1).
In this subsection, we informally answer the question: How can one control these vac-
uum fields whenu > − 1

c and get closer to the (expected) singularity? The strategy,as
before, is to generate an appropriate formal solution to theinitial value problem (see
Section 6), and then to construct a classical solution by estimating its deviation from a
truncation of the formal solution. The far field expansion has run its course. We need
an expansion inA2.

In this subsection, we make the 2D Limit Assumptions (see, Definition 9.1), work
exclusively in the Regularized Picture, and suppress theR andσ indices. For example,
Φ meansΦσ

R.
In analogy with (5.2a), (5.2c), (5.3a), (5.3b), set

P = diag(1, 1, 0, 2, 2)⊕ diag(0, 0, 1, 1, 1, 0, 0, 0)⊕ diag(0, 1, 0, 1, 0) (9.14a)

P ♯ = diag(2, 2, 1, 1, 1)⊕ diag(1, 0, 0, 0, 0, 0, 1, 1, 1)⊕ diag(1, 0, 1) (9.14b)

Φ = AP
(
A−PΦ

)
(9.14c)

Φ♯ = AP ♯ (
A−P ♯

Φ♯
)

(9.14d)

The third line indicates that we wish to writeΦ asAP times anew field. In order not
to introduce yet another name, we write thenew fieldasA−PΦ. Similar for A−P ♯

Φ♯.
We make formal expansions ofA−PΦ in powers ofA2. The properties of the far field
expansion, for instance (9.7a) and (9.8), suggest that the ansatz (9.14) is consistent.
However, this must be checked.

A formal power series{ f } in A2 on an open subsetU ⊂ Strip∞ with values in a
vector spaceX is a formal sum

{
f
}

=
∞∑

ℓ=0

(
A2
)ℓ
f{ℓ}(x) (9.15)

For eachℓ ≥ 0, the coefficientf{ℓ} : U → X is smooth and independent ofA.

Let {A−PMA,A } be the formal expansion ofA−PMA,A in powers ofA2 (see,
Definition 4.1). It is defined onStrip∞ and takes values inR.

Our ansatz is to write the fieldA−PΦ as a formal series{A−PΦ } on some open set
U ⊂ Strip∞ with values inR. In this context, the far field ansatz (Section 5) becomes{

A−PΦ
}

=
{

A−PMA,A

}
+ u−M

{
A−PΨ

}
(9.16)

To define the associated formal constraint field, see Definition 2.4 and (5.3b), we fix
the weight functionsλ1, λ2, λ3, λ4 by (5.3c), as before. Then, by direct inspection,
{A−P ♯

Φ♯ } or, equivalently,{A−P ♯

Ψ ♯ } are also formal power series of the form
(9.15). They are defined onU and take values in̂R. For eachℓ ≥ 0, the coefficient
(A−P ♯

Φ♯){ℓ} is determined by(A−PΦ){m}, 0 ≤ m ≤ ℓ. Similar for(A−P ♯

Ψ ♯){ℓ}.
We want to formally solve the samecharacteristic initial value problemas before:

• (5.4a) withΨ andMA,A replaced byAP {A−PΨ } andAP{A−PMA,A },
• {A−P ♯

Ψ ♯ } = 0,
• formal asymptotic initial conditions (6.8a), (6.8b) with,say,u0 = 1

2 .
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It is understood thatDATA = η (see equations (6.3)) is fixed and independent ofA.

Remark 9.8.The meaning of the formal asymptotic initial condition (6.8a) is

∞∑
ℓ=0

(
A2
)ℓ lim

u→−∞
(
A−PΨ

){ℓ}(ξ, u, u) = A−P Ψ(0)(ξ, u).

Equality is in the sense ofR-valued formal power series inA2. The right hand side is
actually a polynomial inA2 of degree 1, see equations (6.3).

Constructing a solution{A−PΨ } to this formal initial value problem requires solv-
ing an infinite family of differential equations. All but a finite number of them are linear.
It is possible to arrange these equations so that, when they are solved step by step, the
“angular derivatives” ∂

∂ξ1 , ∂
∂ξ2 are only applied to functions that have already been

constructed. An essential ingredient is

D = O(A) N = ∂
∂u +O(A2) L = (1 + 1

u2 f3) ∂
∂u (9.17)

asA → 0. Here,O(Ak) stands forO(Ak) ∂
∂ξ1 + O(Ak) ∂

∂ξ2 , whenk = 1, 2. In this
sense, one only has to solve 2-dimensional problems in the(u, u) plane.

Observe that property (9.9) of the1u expansion implies that the coefficient function
(A−PΨ){ℓ}, ℓ ≥ 1 is of the orderO(|u|−ℓ+1) asu→ −∞. For this reason, we expect
that all the arguments in Section 8 can be applied, with minormodifications, when the
functionΨK in (S2) is replaced by the truncation

AP
K+2∑
ℓ=0

(
A2
)ℓ (

A−PΨ
){ℓ}

of AP {A−PΨ }. One should be able to conclude, in analogy with Theorem 8.1,that
both a classical solutionΨ and a formal power series solutionAP {A−PΨ } exist on
Strip(1, c), and that

A−PΨ −
K+1∑
ℓ=0

(
A2
)ℓ (

A−PΨ
){ℓ}, (9.18)

and all its partial derivatives up to some finite order, are estimated, in absolute value,
by≤ c−1 A2K+4 |u|−K−1 onStrip(1, c). Here, smallness conditions similar to those in
Theorem 8.1 must be made. In particular,c > 0 has to be sufficiently small.

The fact that the difference (9.18) goes to zero asA ↓ 0, uniformly onStrip(1, c),
means that the formalA2 expansion “has not yet been exhausted”. To better understand
what happens, let us examine the formal expansion in just a little more detail. We only
discuss the zeroth coefficient,(A−PΨ){0} or, equivalently,(A−PΦ){0}, see (9.16).
Seta = γ2{0}/e3{0} andb = γ6{0}. The constraint equationsu2{0} = u3{0} =
u6{0} = 0 and the equation∂

∂ue3{0} = 2e3{0}ℜγ8{0} derived from (5.4a) yield the
system ∂

∂ua = −2ab and ∂
∂ub = −2ab. The initial conditions (see, Remark 9.8)

e3{0} ω2{0} = u2 γ2{0} ω6{0} = u2(γ6{0} − 1
u )

u < 1
2 1 0 0

u→ −∞ 1 −∂−1
u |DATA |2 0
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select the unique solution

γ2{0}
e3{0} = 1

2h
∂

∂uh γ6{0} = 1
2h

∂
∂uh h(ξ, u, u) = u2 − (ϕ(ξ, u)

)2
(9.19)

whereϕ ≥ 0 andϕ2 = 2 ∂−1
u ∂−1

u |DATA |2. The solution (9.19) is defined onU0, where

Uǫ =
{
(ξ, u, u) ∈ Strip∞

∣∣ u < −ǫ− ϕ(ξ, u)
}

for everyǫ ≥ 0. The solution (9.19) and therefore the formal solution{A−PΦ } break
down atu = −ϕ(ξ, u) < 0, for example becauseγ6{0} diverges. Conversely, it can
be shown that the whole formal solution{A−PΦ } to the initial value problem exists
onU0, that is,no “earlier” breakdown occurs. At the formal level, the scalar curvature
invariants are in general unbounded asu ↑ −ϕ(ξ, u) < 0. We refer tou = −ϕ(ξ, u) <
0 as theformal (naive) singularity. Observe thatγ2{0} ≤ 0 andγ6{0} < 0 onU0.

It follows from the structure of the matrixP , in particular its nonzero entries, that the
componentse3{0}, γ1{0}, γ2{0}, γ6{0}, γ7{0}, γ8{0}, w1{0}, w3{0}, w5{0} of the
coefficient function(A−PΦ){0} satisfy the quasilinear symmetric hyperbolic system
and the constraints in Proposition 2.4. This system has beeninvestigated in situations
with higher symmetry, for example in [Sze]. In our present context, however, the fields
depend on all four coordinates. The collapse of the frame asA → 0, see (9.17), is
responsible for reducing the four-dimensional system to a family of two-dimensional
systems, one for eachξ. It is possible to quasi-explicitly solve these two-dimensional
systems near the formal singularity. That is, there is a formal solution given by an appro-
priate expansion in the “distance” from the formal singularity which is an asymptotic
expansion to the true classical solution (of the two-dimensional system). The behavior
of the solution to this two-dimensional system leads us to speculate that theA2 expan-
sion exhibits an instability close to the formal singularity. This instability appears to
drive the full four dimensional system into a new regime in which the classical vacuum
solution may display features of the BKL scenario. See, [BKL] and references therein.

We conclude this subsection with a further discussion of thefigure that appears at
the end of Section 1 (Introduction):

• Christodoulou [Chr] constructs strongly focused gravitational wave solutions onI
(see, Remark 9.3). Recall thatu ∼ − 1

A2 is the place where trapped spheres first
form, see Proposition 9.2.

• In this paper, the far field expansion has been used to construct vacuum fields on the
largerI ∪ II = Strip(1, c), wherec > 0 is sufficiently small. See, Theorem 8.1.

• TheA2 expansion outlined in this subsection allows one, using appropriate energy
estimates, to construct classical vacuum fields on at leastI∪ II ∪ III = Strip(1, ǫ′−1)∩
Uǫ. Here,ǫ, ǫ′ > 0 are arbitrary constants (in the figure,0 < ǫ < ǫ′), and|A| is
sufficiently small, depending onǫ, ǫ′. Moreover, the formalA2 power series solution
is an asymptotic expansion to the true classical solution asA → 0, uniformly on
I ∪ II ∪ III . In other words, theA2 expansion allows one to construct and control the
solution up to any “finite distance” from the formal singularity.
The justification of the last statement relies on the fact that a suitable truncation of
the A2 expansion is an approximate vacuum field, with error terms going to zero
uniformly on I ∪ II ∪ III as A → 0 (by a compactness argument). Furthermore,
these error terms decay quickly enough asu → −∞ to be “integrable”. See, the
discussion of (9.18).
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Remark 9.9.Motivated by [BK] and [AnRe], we expect that coupling the gravitational
field to a massless scalar field will make it possible to construct, under suitable generic
conditions, strongly focused solutions from past null infinity all the way into a piece of
the singularity.

Remark 9.10.Observe that:

• One only has to solvelinear equations to inductively construct the far field expan-
sion[Ψ ] in Lemma 6.1.
• By contrast, the construction of the leading term of theA2 expansion{A−PΨ }
requires the solution of anonlinear(effectively two-dimensional) system. In other
words, one is expanding around a non-trivial “background”.

9.6. 4D Limit. Recall that in the 2D Limit, theP-odd components of the coefficients
of the far field formal solution[ΦR ] go to zero asA → 0 (in the Regularized Picture).
On the other hand, theP-even components do not in general go to zero. See, Remark
6.3 or (9.8). This asymmetric feature of the 2D Limit disappears in the more general
4D Limit (see, Subsection 9.2), as one can see by looking at the far field expansion. It
is for the purpose of taking the 4D Limit that thetwoscaling parameters,a andA, have
been carried along through the whole paper.

To compare the 4D Limit with the 2D Limit, it is useful to formulate the second
smallness condition in (8.32) in a picture in which the Minkowski background and the
stereographic coordinatesξ are fixed (independent ofa andA), for example the High
Amplitude Picture. The smallness condition becomes

max
σ∈{−,+}

∥∥ ∂α DATA σ
H

∥∥
C0(D4(0)×(0,1))

≤ b
A2

∣∣∣ a
A

∣∣∣α1+α2

.

for all α = (α1, α2, α3) ∈ N3
0 with |α| ≤ R + 4. Notice that in the 4D Limit,| a

A | is a
large factor, and there is one factor for each “angular derivative”.

A. Index of Notation

This is a partial list of symbols used in this paper.It refers to their main / typical usage.
Warning: These symbols can have different meanings. However, these meanings will
always be made clear in each particular context.(For example, the entry for the symbol
S in the index below refers to equation (4.4), which corresponds to the main / typical
meaning of the symbolS in many sections of this paper. Nevertheless, the symbolS
stands for a field transformation in Section 3, and it stands for a set in the local context
of Proposition 7.1.) Symbols which only appear in the Appendices are not listed. In the
third column, a selected reference is given.

Symbol Typical Meaning See
(⋆), (⋆⋆) frame nondegeneracy conditionsDefinition 2.1
[A,B] = AB −BA commutator of operators
.p parameterp dependent bound Convention 7.1
A, a scaling parameters Definitions 3.5, 4.1
A, J, Z, C field transformations Section 3
A(Φ), f(Φ) constituents of(SHS) Definition 2.3
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Symbol Typical Meaning See
A(Ψ, x), f(Ψ, x) constituents of (5.4a) Proposition 5.1
Â(Φ), f̂(Φ, ∂xΦ) constituents of̂(SHS) Proposition 2.3
Â(Ψ, x), f̂(Ψ, ∂xΨ, x) constituents of (5.4b) Proposition 5.1
BΞ = QΞ + Src (S4) in Section 8
B̂Ξ♯ = Q̂Ξ♯ (̂S2) in Section 8
b, c small constants Theorem 8.1
C complex conjugation operator Convention 8.3
d Convention 7.3
DATA data at past null infinity Proposition 6.1
D,D,N,L complex frame vector fields Definition 2.1
Dr, Br open disk and open ball Convention 7.1
e, λ, ρ Definition 4.1
Ek
X {f}(t) energy Definition 7.1

Φ = (e, γ, w) R valued field Section 2
Φ♯ = (t, u, v) R̂ valued constraint field Definition 2.4
Flipα Pole-Flip transformation Definition 3.6
I, J intervals
J , J ,H, . . . ,G♯,. . . generic symbols Definitions 8.1, 8.2
jµ energy current vector field Section 7
K truncation index, see also ’ΨK ’ Theorem 8.1
λ1, λ2, λ3, λ4 weight functions Definition 2.3
M far field ansatz matrix Section 5
Ma,A, [Ma,A ] doubly scaled Minkowski field Definitions 4.1, 6.1
M(q,Θ)Θ = h(q,Θ) general symm. hyp. system Section 7
M(q, Ξ)Ξ = h(q, Ξ) a particular symm. hyp. system (S10) in Section 8
N set of integers> 0
N0 set of integers≥ 0
O(b),O(ξ0, b, t) families of subsets ofR3 (E0), (RE0) in Sec. 7
π, π̂ certain permutation matrices (S3), (̂S1) in Sec. 8
P parity field transformation Remark 2.9
P , P♯, Pk generic symbols Definitions 5.1, 6.2
∂α multi-derivative Definition 7.1
∂−1

u an integration operator (6.4)
∂x, ∂q, ∂q gradient operator w.r.t.x, q, q
∂
∂ξ = 1

2 ( ∂
∂ξ1 − i ∂

∂ξ2 ) Proposition 6.1
q = (q0, q1, q2, q3) coordinates Convention 7.1

= (t, ξ1, ξ2, u)
q = (q1, q2, q3) spatial components ofq Convention 7.1
Q,K general subsets ofR3 (EB4) in Section 7
Q,K particular subsets ofR3 (S9) in Section 8
R,H , F three pictures Section 9
R differentiability index Theorem 8.1
R, R̂ real vector spaces (2.1), (2.6)
ℜ,ℑ real / imaginary part operators
R, C the real and complex numbers
S (4.4)

114



79

Symbol Typical Meaning See

Sup
(k)
X {f}(t) supremum norm Definition 7.1

(SHS) , (̂SHS) , (subSHS) symmetric hyperbolic systems Section 2
Strip(µ, λ) family of open subsets ofR4 (4.1)
σ stereographic chart superscript Proposition 6.4
t time coordinate, equal tou+ u Convention 7.1
U general open subset ofR4 Section 2
Ξ,Ξ♯ π−1R andπ̂−1R̂ valued fields (S3), (̂S1) in Section 8
x = (x1, x2, x3, x4) coordinates Section 2

= (ξ1, ξ2, u, u) coordinates Section 2
ξ either(ξ1, ξ2) or ξ1 + iξ2

z = ℜz − iℑz complex conjugation
Ψ = (f, ω, z) R valued field (5.1)
[Ψ ], Ψ(k) formal power series, coefficients(6.1)
ΨK truncated formal power series (S2) in Section 8
Ψ ♯ = (s, p, y) R̂ valued constraint field Proposition 5.1
[Ψ ♯ ], Ψ ♯(k) formal power series, coefficientsSection 6

B. Generalized Vacuum Equations

Our main reference for this appendix is [Fr].

The vacuum Einstein equations, written in local coordinates x1, x2, x3, x4 on a
connected open setU in R4, are a nonlinear system of partial differential equations for
the ten metric tensor fieldsgµν . Namely,

Rγ
αγβ = 0 (B.1)

where,

Rδ
αγβ = ∂

∂xγ Γ
δ
βα − ∂

∂xβΓ
δ
γα + Γµ

βαΓ
δ
γµ − Γµ

γαΓ
δ
βµ −

(
Γµ

γβ − Γµ
βγ

)
Γ δ

µα

are the components of the Riemann curvature tensor for the Levi-Civita connection
Γ γ

µν = gγλΓµνλ:

Γµνλ = 1
2

(
∂

∂xµ gνλ + ∂
∂xν gµλ − ∂

∂xλ gµν

)
associated to the metricgµν .

There are patent mathematical advantages to introducing more fields and equations
that, in the presence of appropriate constraints, collapseto the vacuum Einstein equa-
tions. The purpose of this appendix is to introduce a particular generalized system of
vacuum equations and explain how it will be used. In this appendix and in Appendix C,
we work with real quantities. In Appendix D we employ a complex tetrad formalism,
see [NP], as in the main body of this paper.

Definition B.1. A generalized spacetimeis an open subsetU of R4 together with

• 16 frame fieldsEa
µ and the associated vector fields

Ea = Ea
µ ∂

∂xµ

It is assumed thatE1, E2, E3, E4 are frame vector fields. That is, they are linearly
independent tangent vectors at every point ofU .
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• A constant, symmetric matrixgab with three positive and one negative eigenvalues.
For our purposes, the matrixgab and its inversegab are

(
gab

)
=

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

 (
gab
)

=

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

 (B.2)

• 24 connection fieldsΓabc that are antisymmetric in the indicesb andc.
• 10 Weyl fieldsWabkℓ characterized by

Wabkℓ = −Wbakℓ Wajkℓ +Waℓjk +Wakℓj = 0

Wabkℓ = −Wabℓk gakWabkℓ = 0
Wabkℓ = Wkℓab

Convention B.1.Small Latin indicesa, b, c . . . are frame indices and always run from
one to four. Small Greek indicesλ, µ, ν . . . are coordinate indices and also always run
from one to four. Frame indices are raised and lowered with the constant tensorgab.

We associate to every generalized spacetime

• A Lorentzian metricg determined byg(Ea, Eb) = gab.
• A connection∇ specified by

g
(∇EaEb , Ec

)
= Γabc or, equivalently, ∇EaEb = Γab

cEc

whereΓab
c = gcdΓabd. The antisymmetry ofΓabc in the last two indices, expresses

the property that the connection∇ is compatible with the metric.
• 24 connection torsion fields

Tab
µ = Γab

cEc
µ − Γba

cEc
µ − Ea

(
Eb

µ
)

+ Eb

(
Ea

µ
)

(B.3)

They measure the deviation of∇ from the Levi-Civita connection for the metricg.
That is,Tab

µ vanishes if and only if

Γabc = 1
2

(
− g
(
Ea, [Eb, Ec]

)
+ g
(
Ec, [Ea, Eb]

)
+ g
(
Eb, [Ec, Ea]

))
• 36 curvature torsion fields

Ukℓab = Ea

(
Γbℓk

)− Eb

(
Γaℓk

)
+ Γbℓ

mΓamk − Γaℓ
mΓb m k −

(
Γa b

m − Γba
m
)
Γmℓk − Wkℓab

The curvature tensorRk
ℓab for the connection∇ is given by

Rk
ℓab = Ea

(
Γbℓ

k
)− Eb

(
Γaℓ

k
)

+ Γbℓ
mΓam

k − Γaℓ
mΓbm

k − (Γab
m − Γba

m − Tab
m
)
Γmℓ

k

= Tab
mΓmℓ

k + Uk
ℓab +W k

ℓab (B.4)
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whereTab
mEµ

m = Tab
µ. In the event thatTab

µ vanishes, the curvature torsion fields
Ukℓab measure the deviation of the Riemann curvature for the Levi -Civita connec-
tion from the Weyl tensorWkℓab.
The curvature tensorRkℓab for the connection∇ has the symmetries

Rkℓab = −Rℓkab Rkℓab = −Rkℓba

Warning.The customary pair exchange symmetry and cyclic identity donot neces-
sarily hold when the torsionTab

µ is not zero.
• 16 Bianchi fields

Vabijk = ∇iWabjk +∇kWabij +∇jWabki

or, equivalently, contracted Bianchi fields

Vbjk = gaiVabijk = ∇aWabjk

For the definition of∇iWabjk, see (B.5) below. The fieldsVabijk vanish if and only
if the Weyl tensorWabki satisfies the Bianchi identities with respect to the connec-
tion ∇. Similarly, the fieldsVbjk vanish if and only if the Weyl tensor satisfies the
contracted Bianchi identities with respect to the connection∇.

Remark B.1.The contracted Bianchi fields are equivalent to the Bianchi fields. This
fact is an immediate consequence of the following algebraicidentity. Suppose,Aabijk

is antisymmetric in the first two indices and totally antisymmetric in the last three. Set

Aaij = gbkAabijk A♯
akℓ = 1

2 ǫkℓijAa
ij

ThenAabijk = 1
2 ǫijk

ℓ
(
A♯

aℓb −A♯
bℓa +A♯

ℓab

)
.

Convention B.2.We defineE, Γ , W , T , U , V to be covariant tensors (vector field
valued in the case ofE andT ) onU whose components with respect to thefixed frame
Ea are given by

Ea = Ea
µ ∂

∂xµ T (Ea, Eb) = Tab
µ ∂

∂xµ

Γ (Ea, Eb, Ec) = Γabc U(Ea, Eb, Ec, Ed) = Uabcd

W (Ea, Eb, Ec, Ed) = Wabcd V (Ea, Eb, Ec) = Vabc

From this perspective:

• If X1, X2, X3 are vector fields onU , thenΓ (X1, X2, X3) = Xa
1 X

b
2 X

c
3 Γabc.

HereXi = Xa
i Ea for i = 1, 2, 3. In general,Γ (X1, X2, X3) 6= g(∇X1X2, X3).

• Covariant derivatives of all these tensors are well defined.For example,

∇iWabcd = Ei(Wabcd)−Γia
mWmbcd−Γib

mWamcd−Γic
mWabmd−Γid

mWabcm

(B.5)

Definition B.2. We refer to the system(
T, U, V

)
= 0 (B.6)

as thegeneralized vacuum field equations.
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Proposition B.1.A generalized spacetimeEa
µ, Γabc, Wabkℓ on an open subsetU of

R4 is a solution to the generalized vacuum field equations(B.6) if and only if∇ is the
Levi-Civita connection for the metricg, and the associated Riemann curvature tensor
coincides with the Weyl tensorW . In this event,g is a solution to the vacuum Einstein
equations(B.1) onU .

Proposition B.2.The tensorsT , U , V have the algebraic symmetries:

Tab
µ = −Tba

µ Vkab = −Vkba (B.7a)

Uabkℓ = −Ubakℓ V k
kb = 0 (B.7b)

Uabkℓ = −Uabℓk Vabc + Vbca + Vcab = 0 (B.7c)

They satisfy thegeneralized Bianchi equations(
T, U, V

)
= 0 (B.8)

where, by definition,

Ta
µ = ǫa

ijk
( ∇̂iTjk

µ − Um
kij Em

µ − Tjk
ν ∂

∂xν Ei
µ
)

(B.9a)

Ucab = ǫc
ijk
(∇iUabjk − Um

ijk Γmab + 1
3Vabijk − Tij

µ ∂
∂xµ Γkab

)
(B.9b)

Vjk = ∇bV
b
jk + Ua

mab W
mb

jk − 1
2Umjab W

abm
k (B.9c)

+ 1
2Umkab W

abm
j − 1

2Tab
µ ∂

∂xµW
ab

jk

Here ǫabcd is totally antisymmetric andǫ1234 = −1. Furthermore,∇̂i is the tensor
derivation that acts on frame indices as∇i and ignores coordinate indices. Explicitly,
∇̂iTjk

µ = Ei(Tjk
µ)− Γij

mTmk
µ − Γik

mTjm
µ.

Remark B.2.The generalized Bianchi equations (B.8) areidentities: they hold for all
generalized spacetimes. Both (B.6) and (B.8) are quadratically nonlinear. Each, has
exactly one linear term. Respectively,−Wkℓab and−Vabijk in the equationsU = 0 and
U = 0. The only coordinate index appears in theT = 0 andT = 0 equations. Observe
that, for fixedEa

µ, Γabc, Wabjk , the equations (B.8) are linear and homogeneous in
Tab

µ, Uabjk andVabijk .

Our goal is to construct physically interesting vacuum spacetimes. In this appendix
we have traded in the 10 traditional metric tensor fields for 50 frame, connection and
Weyl fields and an additional 76 connection torsion, curvature torsion and Bianchi
fields. How can this formalism be of any practical use? Not only are there 126 fields,
but both the generalized vacuum and Bianchi equations are overdetermined, since the
tensorV vanishes wheneverT andU both vanish.

Here is a rough outline of our strategy. Regard the frameEa
µ and general connection

Γijk as vector fields with values inR16 andR24 respectively. We conceptualize abstract
gauge conditions as fixed affine linear subspacesE ⊂ R16 andG ⊂ R24. The frame and
connection are gauge fixed whenEa

µ(p) ∈ E andΓijk(p) ∈ G for all pointsp ∈ U . No
conditions are imposed on the Weyl tensor. There are

dim E + dimG + 10 ≤ 50

independent gauge fixed frame, gauge fixed connection and Weyl fields. An abstract
gauge fixed, generalized spacetime is summarized by a fieldΦ on U taking values in
E ⊕ G ⊕ R10.

Abstract gauge conditions should have three properties:
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• Property B.1.They are always “locally realizable”. That is, near each point in every
spacetime there is a coordinate system and a frame such that the components of the
frame, with respect to the coordinate vector fields, and the components of the Levi -
Civita connection, with respect to the frame, lie in the gauge subspacesE andG. In
other words, abstract gauge conditions should not exclude,a priori, any spacetimes.

• Property B.2.They are “symmetric hyperbolic”. In the present context, a symmetric
hyperbolic system of partial differential equations for the column vectorv is a system

Aa Ea(v) = f

whereAa is a symmetric matrix andA3 + A4 is strictly positive definite. Now, pick
bases forE andG, and rewrite the 60 equationsT = 0 andU = 0 explicitly in terms
of the components of the fieldΦ. It is required that one can select exactlydim E
linear combinations of the 24 connection torsion equations(T = 0) and exactly
dimG linear combinations of the 36 curvature torsion equations (U = 0) equations
and 10 linear combinations of the 16 Bianchi equations (V = 0) which taken together
comprise a (quasilinear) symmetric hyperbolic system forΦ which we will refer to
as(SHS) .
Property B.2 is not just wishful thinking, as it may first appear. Only the principal
parts of (B.6),

Ea(Eb
µ)− Eb(Ea

µ)
Ej(Γkba)− Ek(Γjab)
Ei(Wabjk) + Ek(Wabij) + Ej(Wabki)

have to be considered in the quest for symmetric hyperbolic equations. Furthermore,
only the frame and connection fields in the principal parts have to be written out in
terms ofΦ. It is unnecessary to open up and look at the occurrences of the frame fields
inside the first order differential operatorsEa. At this level, it is required that there
are, in turn, linear combinations of the principal parts that are symmetric hyperbolic.
In principle, the fieldΦ, that contains all information about the generalized spacetime,
is now uniquely determined, given appropriate data, by(SHS) . However, there is an
important catch.(SHS) and the abstract gauge conditions imply that some part of the
tensorsT , U andV vanish, but not all. The remaining components are summarized
in theconstraint fieldΦ♯. If (SHS) is satisfied andΦ♯ vanishes, thenEa

µ, Γabc,Wabjk

is a solution to the generalized vacuum field equations.
• Property B.3.They are “dual symmetric hyperbolic”. If(SHS) is satisfied, it is re-

quired that, in an entirely similar way, judicious linear combinations of the general-
ized Bianchi equations (B.8) can be brought into the form of alinear, homogeneous
symmetric hyperbolic system forΦ♯ which we refer to aŝ(SHS) . In particular, if the
data for any well posed problem for the system̂(SHS) vanishes, then the constraint
fieldΦ♯ vanishes everywhere.

It is much simpler to carry out this general methodology in practice than to formulate it
in broad conceptual terms. Different problems require different gauges and symmetric
hyperbolic systems. In Appendix C, we introduce the wavefront gauge for Lorentzian
manifolds. In Appendix D, we fix the abstract wavefront gaugeand select symmetric
hyperbolic subsystems from the generalized vacuum and Bianchi equations that are
particularly suited to the problem we are solving in this paper.
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Proof (of the Generalized Bianchi Equations(B.8)).

• T = 0: Write T (X,Y ) = ∇XY −∇YX − [X,Y ]. Repeatedly exploiting the total
antisymmetry ofǫaijk and then using the Jacobi identity,

ǫaijk
(∇i∇jEk −∇j∇iEk −∇[Ei,Ej ]Ek

)
= ǫaijk

(
∇i

(
T (Ej , Ek)

)
+ T

(
Ei, [Ej , Ek]

))
It follows thatǫaijkRb

ijkE
µ
b = ǫaijk

(∇̂iTjk
µ +Tjk

bΓbi
cEc

µ−Tjk
ν ∂

∂xν Ei
µ
)
. Sub-

stituting (B.4) for the curvatureRb
ijk, the identityT = 0 follows.

• U = 0: Apply the operatorǫaijk∇i to the identity (B.4) in the form

Rbcjk = Ubcjk + Tjk
mΓmcb +Wbcjk

and use the standard Bianchi identity for the curvature tensor corresponding to a
connection with torsion,ǫaijk

(∇iRbcjk + Tij
ℓRbcℓk

)
= 0.

• V = 0: The divergence∇bV
b
jk = − 1

2

(∇a∇b −∇b∇a

)
W ab

jk. Express the com-
mutators in terms of the curvature tensor:

(∇c∇d −∇d∇c)Wabjk

= −Tcd
ℓ∇ℓWabjk −Rℓ

acdWℓbjk −Rℓ
bcdWaℓjk −Rℓ

jcdWabℓk −Rℓ
kcdWabjℓ

Substitute (B.4) for the curvature, contract indices, write out the covariant derivatives,
rearrange, collect terms and cancel to obtainV = 0. ⊓⊔

C. The Wavefront Gauge for Lorentzian Manifolds

Here, we introduce thegeometric wavefront gaugein the language of Lorentzian ge-
ometry. Theabstract wavefront gauge, in the language of generalized spacetimes, is
introduced in Appendix D.

Proposition C.1 (Geometric wavefront gauge).Every point on any Lorentzian
4-manifold(M, g) has an open neighborhood on which there are coordinates

(x1, x2, x3, x4) = (ξ1, ξ2, u, u)

and an oriented frame(E1, E2, E3, E4) such thatg(Ea, Eb) = gab, see(B.2), such
thatE3 andE4 are both future directed vector fields, and such that

(a) the coordinate functionsu andu are solutions to the eikonal equation, that is,
gabEa(u)Eb(u) = 0 andgabEa(u)Eb(u) = 0.

(b) the vector fieldE4 is minus the gradient ofu, that isg(E4, · ) = −du.
(c) the coordinatesξ1, ξ2 are constant along the integral curves ofE4.
(d) the functione3 = E4(u) is strictly positive and the vector fielde3E3 is minus the
gradient ofu, that isg(e3E3, · ) = −du.

(e)E4 ande3E3 are null geodesic vector fields.
(f) the frame vector fieldsE1 andE2 satisfy

g
(∇E4E1, E2

)
= 0

where∇ is the Levi-Civita connection.
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Proof (Informal).To start with, supposeM is Minkowski space. LetX = (X0,X) =
(X0, X1, X2, X3) ∈ R×R3 be standard Cartesian coordinates. For every fixedǫ > 0,
defineu, u : {X ∈ R4 : X0 > −ǫ} → R by

u(p) = sup
(−ǫ,X)∈I−(p)

X1 , u(p) = − inf
(−ǫ,X)∈I−(p)

X1.

Here,I−(p)
(
resp.,I+(p)

)
is the chronological past (future) ofp, that is, all points

that can be reached fromp by traveling along past (future) directed, piecewise smooth,
timelike curves. Note that

• by construction,u(p) ≤ u(q) andu(p) ≤ u(q) for all q ∈ I+(p),
• there is a sufficiently smallǫ > 0 and an open neighborhoodU ⊂M of the origin
X = 0, on whichu, u are smooth anddu, du are linearly independent.

It follows that,du anddu are timelike or null onU .
Supposedu is timelike at a pointp ∈ U . Then, the level setΣ of u passing through

p would be (locally) a smooth spacelike hypersurface. Ifq ∈ I+(p) is sufficiently close
to p, then every past directed timelike curve fromq intersectsΣ, and

u(q) = sup
(−ǫ,X)∈I−(q)

X1 = sup
p′∈Σ∩I−(q)

sup
(−ǫ,X)∈I−(p′)

X1 = sup
p′∈Σ∩I−(q)

u(p′) = u(p).

becauseI−(q) ∩H =
⋃

p′∈Σ∩I−(q) I
−(p′) ∩H , with H = {X ∈ R4 : X0 = −ǫ}.

This contradicts the assumption thatdu(p) is timelike. Therefore,du is null. Similarly,
du is null.

Now, fix a pointp0 on any Lorentzian manifoldM , and let(X0, X) be smooth local
coordinates that vanish atp, with −dX0 a future directed 1-form. Precisely the same
construction foru andu works on a suitably small neighborhoodU ⊂M of p0.

Define vector fieldsL andL byg(L, · ) = −du andg(L, · ) = −du. They are future
null. DefineE4 = L, e3 = L(u) > 0 andE3 = e−1

3 L. In particular,g(E3, E4) = −1.
Condition (e) is equivalent to∇LL = 0 and∇LL = 0. These are consequences of

the general fact that for any functionw, the acceleration∇WW of its gradient fieldW
is the gradient field of the function12g(W,W ).

LetK1 andK2 be spacelike, orthonormal vector fields, perpendicular toE3 andE4.
Define( E1

E2
) = ( cos α sin α

− sin α cos α )( K1
K2

) whereα satisfies the differential equationE4(α) =
− g(∇E4K1, K2

)
along the integral curves ofE4.

Let ξ1, ξ2 be functions on the level set ofu that goes throughp0, such that(ξ1, ξ2, u)
are local coordinates for this level set. SinceE4 is transverse to the level set,E4(u) > 0,
there is a unique extension ofξ1, ξ2 to a neighborhood ofp0 that satisfies the transport
equationsE4(ξ1) = E4(ξ2) = 0. Moreover,(ξ1, ξ2, u, u) are local coordinates.⊓⊔

Remark C.1.The spacelike vector fieldsE1 andE2 and the null geodesic vector field
E4 are tangent to each level set ofu. Each level set ofu is a union of null geodesics,
the lines of constantξ1, ξ2 andu.
Similarly,E1, E2 and the null geodesic vector fielde3E3 are tangent to each level set
of u. Each level set ofu is a union of null geodesics. They are, in general, not given by
the lines of constantξ1, ξ2 andu.
We refer to the intersections of level sets ofu andu aswavefronts. They are spacelike
and their tangent space is spanned byE1 andE2.
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Proposition C.2.Fix a coordinate system and frame as in the geometric wavefront
gauge of Proposition C.1. LetEa

µ be the components of the frame field with respect to
the coordinate system and letΓabc be the components of the Levi-Civita connection∇,

Ea = Ea
µ ∂

∂xµ , Γabc = g
(∇EaEb, Ec).

Then (
Ea

µ
)

=

∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 0 1
0 0 e3 0


where∗ is a generic symbol. Moreover,

(
Γa(bc)

)
=


∗ χ

11
χ

12
χ11 χ12 ⋆

∗ χ
21
χ

22
χ21 χ22 ⋆

∗ 0 0 ⋆ ⋆ ∗
0 ∗ ∗ 0 0 0


where the matrix indices(bc) run over the ordered sequence

(12), (31), (32), (41), (42), (34).

Here,χAB andχ
AB

are the second fundamental forms of the wavefronts in the normal
null directionsE4 andE3. As such,

χAB = χBA χ
AB

= χ
BA
.

Moreover, the entries filled with the generic symbol⋆ satisfy

ΓA34 = Γ3A4 A = 1, 2.

Proof. We first verify the 0’s and 1’s in these matrices. The entries of (Ea
µ) follow

directly from Proposition C.1, for example,E3(u) = du(E3) = −g(E4, E3) = 1 by
(b). The zeros in(Γabc) are accounted for by (f), by∇E4E4 = 0, see (e), and by the
fact that∇E3E3 is proportional toE3, see (e). Next,Γ123 − Γ213 = 0 (χ

12
= χ

21
)

andΓ124 − Γ214 = 0 (χ12 = χ21) follow, by (d) and (b), from[E1, E2](u) = 0 and
[E1, E2](u) = 0, respectively. Finally,ΓA34−Γ3A4 = 0 follows from[EA, E3](u) = 0.
⊓⊔

D. The Abstract Wavefront Gauge

In this Appendix, we leave the realm of Lorentz 4-manifolds,and speak exclusively in
the language of generalized spacetimes, as in Appendix B.

We now define theabstract wavefront gaugeand show that it has the Properties B.1
through B.3.

It is convenient to introduce the complex frame

(F1, F2, F3, F4) = (D,D,N,L), Fa = Fa
µ ∂

∂xµ

where

D = 2−
1
2 (E1 + iE2), D = 2−

1
2 (E1 − iE2), N = E3, L = E4.

These fields are sections of the complexified tangent bundle.
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Convention D.1.Let t be the constant matrix for whichFa
µ = ta

bEb
µ, andt−1 its

inverse. For every tensor fieldS in Appendix B with componentsSa1...an

b1...bm with
respect to the real frame(Ea), the corresponding components with respect to the com-
plex frame(Fa) are distinguished by boldface letters and defined by

Sa1...an

b1...bm = ta1
i1 · · · tan

inSi1...in

j1...jm(t−1) b1
j1

· · · (t−1) bm

jm
(D.1)

If the tensor fieldS also carries coordinate indices, they are unaffected by (D.1). An
equivalent statement to (D.1) is: ifS is the tensor field for which

S(Ea1 , . . . , Ean) = Sa1...an

b1...bmEb1 ⊗R · · · ⊗R Ebm

andS is extended complex linearly in itsn arguments, then

S(Fa1 , . . . , Fan) = Sa1...an

b1...bmFb1 ⊗C · · · ⊗C Fbm

The transformation (D.1) commutes with contraction of indices. Accordingly, the in-
dices of boldface fields have to be raised and lowered with

gab = gij(t−1) a
i (t−1) b

j gab = ta
itb

jgij

see (B.2) and (2.3). The complex componentsSa1...an

b1...bm are only introduced for
notational convenience. The corresponding tensor fieldS will, however, always be real,
in the sense that if all itsn arguments are real, then the result is real.

For the particular covariant tensorsE, Γ , W , T , U , V (see, Convention B.2), the
transformation (D.1) becomes

Fa
µ ∂

∂xµ = Fa Tab
µ ∂

∂xµ = T (Fa, Fb) (D.2a)

Γ abc = Γ (Fa, Fb, Fc) Uabcd = U(Fa, Fb, Fc, Fd) (D.2b)

Wabcd = W (Fa, Fb, Fc, Fd) Vabc = V (Fa, Fb, Fc) (D.2c)

Definition D.1. Let

Φ = (e, γ, w) : U → R ⊂ C5 ⊕ C8 ⊕ C5 see(2.1)

be a sufficiently differentiable field satisfying conditions(⋆) and(⋆⋆) in Definition 2.1.
TheAbstract Wavefront Gauge Spacetime

MΦ = (Fa
µ, Γabc, Wabcd )

is defined just as in Definition 2.1.

Remark D.1.Definition D.1 implicitly fixes abstract gauge conditions inthe sense of
Appendix B. The affine spacesE andG have real dimensions, respectively,7 and14.
That is, the fieldΦ has 31 real components.

Remark D.2.Observe that Proposition C.2 is the statement that the abstract wavefront
gauge in Definition D.1 is locally realizable in the sense of Appendix B (Property B.1).
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Proposition D.1.LetMΦ be an abstract wavefront gauge spacetime. Letλ1, λ2, λ3, λ4

be strictly positive weight functions onU . Then, there are unique fields

(t, u, v) : U → R ⊂ C5 ⊕ C8 ⊕ C5

(t, u, v) : U → R̂ ⊂ C5 ⊕ C9 ⊕ C3

(whereR andR̂ are defined in(2.1)and(2.6)) and such that

(
T(ab)

µ
)

=


i t1 i t2 0 0
t4 t5 0 0
t4 t5 0 0
− t1 − t2 t3 0
− t1 − t2 t3 0
t4 t5 − t3 0



(
U(ab)(jk)

)
=


u2 + u2 u7 − u8 u8 − u7 −u3 − u4 u4 + u3 u8 − u8

u9 −u7 −u6 u5 −u6 −u5

−u9 −u6 −u7 −u6 u5 −u5

−u1 u4 −u3 −u1 −u2 −u3 + u4

u1 −u3 u4 −u2 −u1 u4 − u3

u2 − u2 u7 + u8 u8 + u7 −u3 + u4 u4 − u3 u8 + u8



(
Va(jk)

)
=


1
λ2

(−v2 + v1)− 1
λ3
v3 − 1

λ4
v5

1
λ3

(v3 − v2)
1
λ2

(v2 − v1) + 1
λ3
v3

1
λ3

(v3 − v2) − 1
λ4

v5
1

λ3
(v3 − v3 − v2 + v2) 1

λ4
(−v4 + v3) 1

λ4
(−v4 + v3)

1
λ2

(−v2 + v2) 1
λ3
v3

1
λ3
v3

− 1
λ1

v1
1

λ2
v2

1
λ2

(−v2 + v1) + 1
λ3
v3

1
λ2
v2 − 1

λ1
v1

1
λ2

(−v2 + v1) + 1
λ3
v3

1
λ2

(v2 − v1) 1
λ2

(v2 − v1) 1
λ3

(v3 + v3 − v2 − v2)
− 1

λ1
v1 − 1

λ1
v1 − 1

λ2
(v2 + v2)


The matrix indices(ab), (jk) run over the ordered sequence

(12) (31) (32) (41) (42) (34)

Proof. In general, the tensorsT , U andV lie (pointwise) in spaces of real dimension
24, 36 and16, respectively (see, equations (B.7)). By direct inspection, the following
equations hold for every fieldΦ: T12

3 = 0 (1 real equation);T31
3 = 0 (2 real equa-

tions);Tab
4 = 0 (6 real equations);U3441 = U4134 (2 real equations);ℑU3132 = 0

(1 real equation);ℑU4142 = 0 (1 real equation). Consequently, the associated ten-
sorsT , U andV lie in subspaces of real dimension24 − 9 = 15, 36 − 4 = 32 and
16 − 0 = 16, respectively. By construction, the matrices on the right hand sides of the
equations above lie in these subspaces. The linear map from(t, u, v)⊕ (t, u, v) to these
matrices has maximal rankdimRR + dimR R̂ = 31 + 32 = 63. Since this is equal to
15 + 32 + 16, the fields(t, u, v) and(t, u, v) exist and are unique.⊓⊔
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Proposition D.1 defines a unique “splitting” of the nonzero components of(T, U, V )
into two sets,(t, u, v) and(t, u, v). This splitting and the role of the weight functions
λi is clarified by the following proposition and the subsequentremarks.

Proposition D.2.For every choice of strictly positive weight functionsλ1, λ2, λ3, λ4

onU , the system of equations
(t, u, v) = 0

is equivalent to the system(SHS) , A(Φ)Φ = f(Φ), in Definition 2.3, which is a (quasi-
linear) symmetric hyperbolic system for the fieldΦ = (e, γ, w) providede3 > 0. In
particular, the abstract wavefront gauge of Definition D.1 has Property B.2.

Proof. The equivalence of(t, u, v) = 0 with the symmetric hyperbolic system(SHS)
in Definition 2.3 is by direct (machine) verification. For a sample calculation, see the
proof of Proposition D.3. ⊓⊔
Remark D.3.The term “symmetric” is a slight misnomer, in the sense that the matrices
Aµ(Φ) determining the principal partAµ(Φ) ∂

∂xµ are complex Hermitian rather than
real symmetric.

Remark D.4.(SHS) is of a form which is particularly suited to constructing solutions.
The reason is that the first two blocksA1(Φ), A2(Φ) of the principal part, correspond-
ing to the principal parts oft = 0 andu = 0, are diagonal and onlyL orN appear.

Remark D.5.Note that

(
Principal Part Operator

) 
v1

v2

v3

v4

v5

 =



N D

LD N D

LD N D

D N D

LD

λ1×
λ2×

λ3×
λ4×

L




w1

w2

w3

w4

w5



The dotted lines in the schematic diagram for the5 × 5 matrix on the right hand side
indicate that the overlapping entries are the sumsλiL + λi+1N . Each

(
N D
D L

)
block is

symmetric hyperbolic, and consequently, so is the5 × 5 matrix for any choice of the
strictly positive weight functions.

Remark D.6.The weights have a natural interpretation in terms of energies. The en-
ergy current naturally associated to(SHS) , A(Φ)Φ = f(Φ), is the vector fieldjµ =
Φ†Aµ(Φ)Φ. Estimates are obtained by applying the divergence theoremto

∂µj
µ = Φ†(∂µAµ)Φ+ 2ℜ(Φ†f(Φ)

)
.

The energies are integrals over the spacelike components ofthe boundary. The functions
λ1, λ2, λ3, λ4 appear in the boundary integrals and play the role of weightsfor the
componentsw1, w2, w3, w4, w5.

Proposition D.3.Let λ1, λ2, λ3, λ4 be strictly positive weight functions onU . The
components of(t, u, v) are given by(2.7) in Definition 2.4. The fieldΦ♯ = (t, u, v) :
U → R̂ is called theconstraint field associated toΦ = (e, γ, w).
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Proof. By direct (machine) calculation. We make a sample calculation:

it1
(1)= T12

1

(2)= Γ 12
cFc

1 − Γ 21
cFc

1 − F1(F2
1) + F2(F1

1)
(3)= Γ 12

1F1
1 + Γ 12

2F2
1 + Γ 12

3F3
1 + Γ 12

4F4
1

− Γ 21
1F1

1 − Γ 21
2F2

1 − Γ 21
3F3

1 − Γ 21
4F4

1 − F1(F2
1) + F2(F1

1)
(4)= Γ 122F1

1 + Γ 121F2
1 − Γ 124F3

1 − Γ 123F4
1

− Γ 212F1
1 − Γ 211F2

1 + Γ 214F3
1 + Γ 213F4

1 − F1(F2
1) + F2(F1

1)
(5)= −Γ 112F2

1 + Γ 142F3
1 − Γ 212F1

1 − Γ 241F3
1 − F1(F2

1) + F2(F1
1)

(6)= −(γ3 + γ4)e1 + γ2e4 − (−γ4 − γ3)e1 − γ2e4 −D(e1) +D(e1)

(1) by Proposition D.1; (2) by equations (D.2a) and (B.3); (3) by the Einstein summation
convention; (4) by lowering frame indices, using the first matrix in equation (2.3); (5)
by antisymmetry of(Γ ajk) in the last two indices andF4

1 = 0, see Definition 2.1; (6)
by Definition 2.1. The result of this sample calculation matches with Definition 2.4. ⊓⊔
The generalized vacuum field equations (B.6) reduce, in the abstract wavefront gauge,
to (SHS) andΦ♯ = 0, see Proposition D.1. How can we ensure that a solution to(SHS)
also satisfiesΦ♯ = 0? The answer is given in Proposition D.4.

Proposition D.4.Assume thatΦ = (e, γ, w) satisfiese3 > 0 and solves(SHS)or, equiv-
alently, (t, u, v) = 0. Let the Latin indices inTa

µ, Uabc, Vab denote components of
the fields(B.9) with respect to the complex frame fieldFa (see, Convention D.1). The
subsystem of the generalized Bianchi equations(B.8) given by


T4

1

T4
2

T1
3

T2
1

T2
2

⊕



U414
1
2 (U412 + U434)

U214

U114

U223

U123
1
2 (U112 + U134)
1
2 (U212 + U234)

U332


⊕
 V41

1
2 (V12 + V34)

V23

 = 0 (D.3)

is equivalent to the system̂(SHS) , Â(Φ)Φ♯ = f̂(Φ, ∂xΦ)Φ♯, in Proposition 2.3, which
is a linear homogeneous symmetric hyperbolic system forΦ♯ = (t, u, v). In particular,
the abstract wavefront gauge of Definition D.1 has Property B.3.

Proof. By assumption,(t, u, v) = 0. The equivalence of (D.3) with the linear, homoge-
neous symmetric hyperbolic system̂(SHS) is by direct (machine) verification.⊓⊔

E. Symmetries: Proofs

In this section, we prove that the field transformations introduced in Section 3 are field
symmetries (see, Definition 3.1).
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Recall from Section 3 the definition of a field transformationS. In this Appendix we
take a slightly different perspective and regardx ∈ U andx′ ∈ U ′ as two sets of (global)
coordinates on the same 4-dimensional manifold. Similarly, we regardΦ, Λ, Fa,∇,W
and their primed counterparts as objects on this 4-manifold. Here,∇ is the connection
associated withΓ , andW is viewed as a 4-covariant tensor (see, Appendix B and
Convention D.1). Field transformations are defined, in thisAppendix, through their
action on the coordinatesx, the complex frame vector fieldsFa, the connection∇, the
4-covariant tensorW , and the strictly positive weight functionsΛ. The definitions ofJ,
A given below are equivalent to the corresponding definitionsin Section 3. Those ofC,
Z are slight generalizations, becauseC1, C2 andζ are allowed to depend on(x1, x2, x4).

Convention E.1.For the rest of this appendix, it is implicitly assumed thatx′ = S · x
is a local diffeomorphism onR4. With this understanding, it is unnecessary to specify
the ranges of thex andx′, because the discussion is purely algebraic. A dot,· , always
denotes a group action.

Angular coordinate transformationC. Let C1(x1, x2, x4),C2(x1, x2, x4) be functions.

x′ = C · x =
(
C1(x1, x2, x4), C2(x1, x2, x4), x3, x4

)
C · ∇ = ∇(

C · F)
a

µ ∂
∂(x′)µ = Fa

µ ∂
∂xµ C ·W = W

C · Λ = Λ

U(1) transformationZ. Let ζ = ζ(x1, x2, x4) ∈ U(1).

x′ = Z · x = x Z · ∇ = ∇(
Z · F)

a

µ ∂
∂(x′)µ =

(
ζ F1

µ, ζ−1 F2
µ, F3

µ, F4
µ
)

∂
∂xµ Z ·W = W

Z · Λ = Λ

Global Isotropic ScalingJ. Let J > 0 be a constant.

x′ = J · x = (x1, x2, Jx3, Jx4) J · ∇ = ∇(
J · F)

a

µ ∂
∂(x′)µ = J−1 Fa

µ ∂
∂xµ J ·W = J2W

J · Λ = Λ

Global Anisotropic ScalingA. Let A 6= 0 be a constant.

x′ = A · x = ( 1
Ax

1, 1
Ax

2, x3, A2x4) A · ∇ = ∇(
A · F)

a

µ ∂
∂(x′)µ =

(
1
A F1

µ, 1
A F2

µ, 1
A2 F3

µ, F4
µ
)

∂
∂xµ A ·W = A2W

A · Λ = diag(1,A2,A4,A6)Λ

Remark E.1.The action on the frame induces a global conformal transformation of the
associated metric:C · g = g, Z · g = g, J · g = J2g, A · g = A2g.

Remark E.2.C, Z, J, A preserve the wavefront gauge and, consequently, induce an ac-
tion onΦ = (e, γ, w). We illustrate this important fact by three examples. First,(

A · F)
3

µ ∂
∂(x′)µ = A−2 F3

µ ∂
∂xµ = A−2

(
e4

∂
∂x1 + e5

∂
∂x2 + ∂

∂x4

)
= A−2

(
e4 A−1 ∂

∂(x′)1 + e5 A−1 ∂
∂(x′)2 + A2 ∂

∂(x′)4
)
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compatible with the wavefront gauge. Necessarily,(A · e)i = A−3 ei for i = 4, 5.
Second, abbreviatingF ′a = A · Fa, we have

(A · w)5 = (A ·W )
(
F ′3, F

′
2, F

′
3, F

′
2

)
= A−6 (A ·W )

(
F3, F2, F3, F2

)
= A−6 A2 W

(
F3, F2, F3, F2

)
= A−4 w5.

Third, abbreviatingF ′a = Z · Fa

(Z · Γ )(F ′1, F
′
1, F

′
2) = (Z · g)((Z · ∇)F ′

1
F ′1, F

′
2) = ζ g

(∇F1F1, F2) + F1(ζ)

(Z · Γ )(F ′1, F
′
3, F

′
4) = (Z · g)((Z · ∇)F ′

1
F ′3, F

′
4) = ζ g

(∇F1F3, F4)

which is consistent with the wave front gauge if and only if(Z · γ)3 = ζγ3 + 1
2 F1(ζ)

and(Z · γ)4 = ζ−1γ4 + 1
2 F2(ζ−1). By direct calculation, the present definitions ofC,

Z, J, A are seen to be equivalent to those in Section 3 (generalizations in the case ofC
andZ).

Proposition E.1.LetS be one ofC, Z, J, A. Then, separately:

• (⋆) and(⋆⋆) are preserved (see, Definition 2.1).
• (t, u, v) = 0 if and only if(S · t, S · u, S · v) = 0.
• (t, u, v) = 0 if and only if(S · t, S · u, S · v) = 0.

In particular,S is afield symmetryin the sense of Definition 3.1.

Proof. Let Riem be the Riemann curvature tensor associated tog, considered as a 4-
covariant tensor. For eachS, there are complex functionsκ1, κ2, κ3, κ4 and a constant
Ω > 0 such thatκ1κ2Ω

2 = κ3κ4Ω
2 = 1 and

(S · Fa)µ ∂
∂(x′)µ = κa Fa

µ ∂
∂xµ a = 1, 2, 3, 4

S · ∇ = ∇ S · g = Ω2g S ·Riem = Ω2 Riem S ·W = Ω2W

We abbreviateF ′a = S · Fa = κa Fa. By the definition ofT ,U , V in Appendix B,

(S · T )µ(F ′a, F
′
b)

∂
∂(x′)µ = κaκb T

µ(Fa, Fb) ∂
∂xµ (E.1)

(S · U)(F ′a, F
′
b, F

′
c, F

′
d) = Ω2κaκbκcκd

(
U(Fa, Fb, Fc, Fd) (E.2)

+ g(Fa, Fb)T µ(Fc, Fd) 1
κa

∂κa

∂xµ

)
(S · V )(F ′a, F

′
b, F

′
c) = κaκbκc V (Fa, Fb, Fc) (E.3)

By the definition of(t, u, v) and(t, u, v) in Proposition D.1,

C Z J A
t = 0 ⇐⇒ S · t = 0 andt = 0 ⇐⇒ S · t = 0 true true true

u = 0 ⇐⇒ S · u = 0 andt = 0 ⇐⇒ S · t = 0 true true true
v = 0 ⇐⇒ S · v = 0 andv = 0 ⇐⇒ S · v = 0 true true true true

where

• in the case oft andt we use (E.1), observing that ∂
∂(x′)µ is proportional to ∂

∂xµ for
µ = 1, 2, 3, 4 if S is one ofZ, J, A,
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• in the case ofu andu we use (E.2), observing that∂κa

∂xµ = 0 for a, µ = 1, 2, 3, 4 if
S is one ofC, J, A,
• in the case ofv andv we use (E.3) and the transformation law forΛ.

The remaining cases are discussed separately.Case 1:If S = C, we have

∂
∂xa = ∂C1

∂xa
∂

∂(x′)1 + ∂C2

∂xa
∂

∂(x′)2 (a = 1, 2) ∂
∂x3 = ∂

∂(x′)3

such thatt = 0 ⇐⇒ C · t = 0 andt = 0 ⇐⇒ C · t = 0 follow from Proposition D.1.
Case 2:If S = Z, note that for alla, b, c, d,

g(Fa, Fb)T µ(Fc, Fd) 1
κa

∂κa

∂xµ = g(Fa, Fb)
∑

i=1,2 T
i(Fc, Fd) 1

κa

∂κa

∂xi

by the structure of the torsion-matrix (last column vanishes) and ∂κa

∂x3 = 0. Because
of κ3 = κ4 = 1 and the termg(Fa, Fb), the expression vanishes unless(a, b) =
(1, 2), (2, 1). At this point, one verifies directly that

(t, u) = 0 =⇒ Z · u = 0, (Z · t,Z · u) = 0 =⇒ u = 0,
(t, u) = 0 =⇒ Z · u = 0, (Z · t,Z · u) = 0 =⇒ u = 0

This concludes the proof.⊓⊔

F. An Estimate for Pole-Flip

Lemma F.1.LetB ⊂ R2 be open. For all0 < r1 < r2 let

A(r1, r2) =
{
(ξ, u, u) ∈ R4 : (u, u) ∈ B, r1 < |ξ| < r2

}
.

For all |α| ≥ 1, all integersR ≥ 0, and allCR-fieldsΦ : A(|α|r1, |α|r2) →R,∥∥Flipα · Φ
∥∥

CR(A( |α|r2
, |α|

r1
))

.(R,r1,r2)

∥∥Φ‖CR(A(|α|r1, |α|r2)) (F.1)

For Flipα, see Definition 3.6. The same estimate holds for theCR norms on the image
of the setsA( |α|r2

, |α|r1
) andA(|α|r1, |α|r2) under the change of coordinates fromx =

(ξ, u, u) to q = (t, ξ, u), see Convention 7.1.

Remark F.1.The point here is that the constant in (F.1) is independent of|α| ≥ 1 and
B. Lemma F.1 is used in Step 9 of the proof of Theorem 8.1. If Theorem 8.1 would
be stated with the additional conditiona = A, then Lemma F.1 would not appear in its
proof.

Proof. Without loss of generality, we can assumeα ≥ 1, becauseFlipα = Flip−α.
Let Cα be the angular coordinate transformation (Definition 3.2) given byC(ξ) = αξ.
Let F be the angular coordinate transformation withC(ξ) = ξ−1. Let Z be theU(1)
transformation (Definition 3.3) withζ(ξ) = −ξ/ξ. We haveFlipα = Z◦Cα◦F◦C1/α =
Cα ◦ Z ◦ F ◦ C1/α. DecomposeΦ = (e, γ, w) = Φ1 ⊕ Φ2 whereΦ1 = (e1, e2, e4, e5)
andΦ2 = (e3, γ1, . . . , γ8, w1, . . . , w5). Introduce the notationǫ(1) = 1 andǫ(2) = 0.
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For allβ = (β1, β2, 0, 0) ∈ N4
0 with |β| ≤ R, all 0 < a < b, all λ > 0, all 0 ≤ r ≤ R,

all N = 1, 2, and all fieldsΦ,

‖∂β(Cλ · Φ)N‖C0(A(λa,λb)) = λǫ(N)−|β| ‖∂βΦN‖C0(A(a,b))

‖(Cλ · Φ)N‖Cr(A(λa,λb)) ≤ λǫ(N)−r ‖ΦN‖Cr(A(a,b)) for 0 < λ ≤ 1

‖(F · Φ)N‖Cr(A(b−1,a−1)) .(R,a,b) ‖ΦN‖Cr(A(a,b))

‖(Z · Φ)1‖Cr(A(a,b)) .(R,a,b) ‖Φ1‖Cr(A(a,b))

‖(Z · Φ)2‖Cr(A(a,b)) .(R,a,b) ‖Φ1‖Cr(A(a,b)) + ‖Φ2‖Cr(A(a,b))

SetX = (R, r1, r2). The above estimates imply

‖∂β(Flipα · Φ)2‖C0(A( α
r2

, α
r1

))

= ‖∂β((Cα ◦ Z ◦ F ◦ C 1
α
) · Φ)2‖C0(A( α

r2
, α

r1
))

= α−|β|‖∂β((Z ◦ F ◦ C 1
α
) · Φ)2‖C0(A( 1

r2
, 1

r1
))

.X α−|β|‖((F ◦ C 1
α
) · Φ)1‖C|β|(A( 1

r2
, 1

r1
)) + α−|β|‖((F ◦ C 1

α
) · Φ)2‖C|β|(A( 1

r2
, 1

r1
))

.X α−|β|‖(C 1
α
· Φ)1‖C|β|(A(r1,r2)) + α−|β|‖(C 1

α
· Φ)2‖C|β|(A(r1,r2))

.X α−1‖Φ1‖C|β|(A(αr1,αr2)) + ‖Φ2‖C|β|(A(αr1,αr2))

.X ‖Φ‖C|β|(A(αr1,αr2))

Similarly,‖∂β(Flipα · Φ)1‖C0(A( α
r2

, α
r1

)) .X ‖Φ‖C|β|(A(αr1,αr2)). Together,

‖∂β(Flipα · Φ)‖C0(A( α
r2

, α
r1

)) .X ‖Φ‖C|β|(A(αr1,αr2))

The last estimate, and the fact that∂∂x3 and ∂
∂x4 both commute withFlipα, imply

Lemma F.1. ⊓⊔

G. Supplement to Proposition 8.1.

Here we make explicit all the polynomialsJ , J ,H, H (see, Definition 8.1) that appear
in Proposition 8.1. In particular, it will be clear, by inspection, that these polynomials
are independent ofK, as required. We use theC5 ⊕ C9 ⊕ C4 block-notation, as in(S6)
and(S7), and the complex conjugation operatorC.

• Recall that, for eachµ, the square matricesBµ
1 (q, 0),Bµ

2 (q, 0) andBµ
3 (q, 0) are5×5,

9× 9 and4× 4, respectively. See(S6).
In equation (8.5a), we haveBµ

i (q, 0) − 6Bµ
i = u−2GK (that is,H = 0) for all

i = 1, 2, 3 andµ = 0, 1, 2, 3, except in the cases(i, µ) = (1, A) with A = 1, 2, when

B1
1(q, 0)− 6B1

1 = 1
u


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −e
0 0 0 −e 0

 + 1
u2GK = 1

uH + 1
u2GK

and similar forB2
1(q, 0)− 6B2

1 .

130



95

• For (8.5b), (
Q11 − 6Q11

∣∣∣Q12 − 6Q12

∣∣∣Q13 − 6Q13

)
− 1

u2GK

= 1
u


0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 4λ 0 · · · 0 0 0 0 0
0 0 −3ω7(0) −2λ A2 0 · · · 0 0 0 0 −3 z3(0)


• For (8.5c),(

Q21 − 6Q21

∣∣∣Q22 − 6Q22

∣∣∣Q23 − 6Q23

)
− 1

uGK

=



0 · · · · · · 0 e 0 0 0 0 0 0 0 0
0 · · · · · · 0 −ie 0 0 0 0 0 0 0 0
0 · · · · · · 0 0 0 −eC+ eC+ 0 0 −eC+ 0 0
0 · · · · · · 0 0 0 eC− eC− 0 0 −eC− 0 0
0 · · · · · · 0 0 0 0 0 0 0 0 0 0
0 · · · · · · 0 −C+ ω1(0) 0 0 0 0 0 0 0 0
0 · · · · · · 0 −λ 0 0 0 0 0 0 0 0
0 · · · · · · 0 −λC 0 0 0 0 0 0 0 0
0 · · · · · · 0 0 0 C− λ C− λ 0 0 C− λ 0 0


where the operatorsC+ ϕ andC− ϕ are defined byϕ+ ϕC andi(ϕ− ϕC), respec-
tively, whereϕ is any complex valued function.

• For (8.5d) (
Q31 − 6Q31

∣∣∣Q32 − 6Q32

∣∣∣Q33 − 6Q33

)
− 1

u2GK

=
(

1
|t| + 1

u

)0 · · · · · · 0 0 0 1 + C 2 0 0 0
0 · · · · · · 0 −C 1 0 0 1 0 0
0 · · · · · · 0 0 0 0 0 0 0 0
0 · · · · · · 0 0 0 0 0 0 0 0


• For (8.7b), (8.7c), (8.7d), recall from Remark 5.1 thatf(q, Ψ) is a quadratic poly-

nomial inΨ , Ψ without constant term. Letf(q, Ψ) = f(1)(q, Ψ) + f(2)(q, Ψ) be its
decomposition into homogeneous (overR) parts. By definition (8.3c),

d
ds

∣∣
s=0

Q(q, sΞ)Π = d2

ds1 ds2

∣∣
(s1,s2)=0

1
2 π

−1 f(2)
(
q, π(s1Ξ + s2Π)

)
It follows from direct inspection of (5.5b) thatf(2)(q, Ψ) is a polynomial inΨ , Ψ
whose coefficients are Laurent polynomials in1

u , with complex coefficients. Now
one reads off from (5.7) that the Laurent polynomials have the structure recorded in
(8.7b), (8.7c) and (8.7d).

• For (8.7a), recall from Remark 5.1 thatA(q, Ψ) is affine linear (overR) in Ψ . Let
Aµ(q, Ψ) = Aµ

(0)(q, Ψ) + Aµ
(1)(q, Ψ) be its decomposition into homogeneous parts.

By (8.3b), we haved
ds

∣∣
s=0

Bµ(q, sΞ) = π−1 Aµ
(1)(q, π Ξ)π. Writing out the result

in the notation(h, σ, ℓ) = π (Ξ1, Ξ2, Ξ3) of (8.2), we obtain forµ = 0 andµ = 3,

d
ds

∣∣
s=0

Bµ(q, sΞ) = diag
(
0, 1

u4 h3,
1
u4h3,

1
u4 h3,

1
u2 h3

)⊕ ( 1
u2h3 19

)⊕ 04×4
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and forµ = A = 1, 2,

d
ds

∣∣
s=0

BA(q, sΞ)

=


1

u3 hA+3
1
u3hA 0 0 0

1
u3 hA

1
u3hA+3

1
u3 hA 0 0

0 1
u3hA

1
u3 hA+3

1
u3hA 0

0 0 1
u3 hA

1
u3hA+3

1
u2 hA

0 0 0 1
u2hA 0

⊕ 09×9 ⊕
(

1
u3 hA+3 14

)
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The BKL Conjectures for
Spatially Homogeneous Spacetimes

Michael Reiterer, Eugene Trubowitz

Department of Mathematics, ETH Zurich, Switzerland

Abstract: We rigorously construct and control a generic class of spatially homogeneous
(Bianchi VIII and Bianchi IX) vacuum spacetimes that exhibit the oscillatory BKL
phenomenology. We investigate the causal structure of these spacetimes and show that
there is a “particle horizon”.

1. Introduction

The goal of this paper is to rigorously construct and explicitly control a generic class of
solutionsΦ = α ⊕ β : [0,∞) → R3 ⊕ R3, with independent variableτ ∈ [0,∞) and
with1 (α1 + α2 + α3)|τ=0 < 0, to the autonomous system of six ordinary differential
equations

0 = − d
dτ αi − (βi)2 + (βj)2 + (βk)2 − 2βjβk (1.1a)

0 = − d
dτ βi + βiαi (1.1b)

for all (i, j,k) ∈ C def= {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, subject to the quadratic constraint2

0 = α2α3 +α3α1 +α1α2− (β1)2− (β2)2− (β3)2 +2β2β3 +2β3β1 +2β1β2 (1.1c)

Here,α = (α1, α2, α3), β = (β1, β2, β3). The system (1.1) are the vacuum Einstein
equations for spatially homogeneous (Bianchi) spacetimes, see Proposition 2.1.

The pioneering calculations and heuristic picture of Belinskii, Khalatnikov, Lifshitz3

[BKL1] and Misner [Mis] suggest that a generic class of solutions to (1.1) are oscilla-
tory asτ → +∞ and that the dynamics of one degree of freedom is closely related
to the discrete dynamics of the Gauss mapG(x) = 1

x − ⌊ 1
x⌋, a non-invertible map

1 If τ 7→ Φ(τ) is a solution to (1.1), so isτ 7→ −Φ(−τ). The condition(α1 +α2 +α3)|τ=0 < 0 breaks
this symmetry. Solutions to (1.1) with(α1 + α2 + α3)|τ=0 < 0 do not break down in finite positive time,
that is, they extend to[0,∞). A proof of this fact is given later in this introduction.

2 As a quadratic form onR3 ⊕ R3, the right hand side of (1.1c) has signature(+,+,−,−,−,−).
3 The work of Belinskii, Khalatnikov, Lifshitz concerns general (inhomogeneous) spacetimes, but relies

on intuition about the homogeneous case.
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from (0, 1) \Q to itself. Every element of(0, 1) \Q admits a unique infinite continued
fraction expansion

〈k1, k2, k3, . . .〉 =
1

k1 + 1
k2+ 1

k3+...

(1.2)

where(kn)n≥1 are strictly positive integers. The Gauss map is the left-shift,

G
(〈k1, k2, k3, . . .〉

)
= 〈k2, k3, k4, . . .〉 (1.3)

Rigorous results about spatially homogeneous spacetimes have been obtained by
Rendall [Ren] and Ringström [Ri1], [Ri2]. See also Heinzleand Uggla [HU2]. We
refer to the very readable paper [HU1] for a detailed discussion.

The first rigorous proofs that there exist spatially homogeneous vacuum spacetimes
whose asymptotic behavior is related, in a precise sense, toiterates of the Gauss map,
have been obtained recently by Béguin [Be] and by Liebscher, Härterich, Webster and
Georgi [LHWG]. These theorems apply to a dense subset of(0, 1) \Q. A basic restric-
tion of both these works is that the sequence(kn)n≥1 has to be bounded, a condition
fulfilled only by a Lebesgue measure zero subset of(0, 1)\Q. The results of the present
paper apply to any sequence(kn)n≥1 that grows at most polynomially. The correspond-
ing subset of(0, 1) \Q has full Lebesgue measure one.

We point out some properties of the system (1.1a), (1.1b), not assuming (1.1c):

(i) The right hand side of (1.1c) is a conserved quantity.
(ii) If τ 7→ Φ(τ) is a solution, so isτ 7→ p Φ(pτ + q), for all p, q ∈ R.
(iii) The signatures(sgnβ1, sgn β2, sgnβ3) are constant.
(iv) d

dτ |β1β2β3|2 = 2(α1 + α2 + α3)|β1β2β3|2.
(v) We have4 d

dτ (α1 + α2 + α3) ≥ −3|β1β2β3|2/3.

If in addition we assume (1.1c), then:

(vi) d
dτ (α1 + α2 + α3) = α2α3 + α3α1 + α1α2 ≤ 1

3 (α1 + α2 + α3)2.

Let Φ = α⊕β be any solution to (1.1), that is (1.1a), (1.1b), (1.1c), on the half-open
interval[0, τ1) with 0 < τ1 <∞. Setα/ = α1 + α2 + α3 and supposeα/(0) < 0. Then

α/(τ) ≤ −|α/(0)|/(1 + 1
3 |α/(0)|τ) < 0 for all τ ∈ [0, τ1) (1.4)

by (vi). Consequently,|β1β2β3| is bounded, by (iv), andα/ is bounded below, by (v), on
[0, τ1). The constraint (1.1c) implies that5 (α1)2 +(α2)2 +(α3)2 ≤ 6 |β1β2β3|2/3 +α/2

is bounded. Now (1.1b) implies that(β1)2 + (β2)2 + (β3)2 is bounded. Therefore,
solutions to (1.1) withα/(0) < 0 can be extended to[0,∞). The solutions considered
in this paper belong to this general class. We are especiallyinterested in theirτ → +∞
asymptotics.

4 (β1)2 +(β2)2 +(β3)2−2β2β3−2β3β1−2β1β2+3|β1β2β3|2/3 ≥ 0 holds for allβ1, β2, β3 ∈ R,
see [HU1]. The only nontrivial cases areβ1, β2, β3 > 0 or β1, β2, β3 < 0. In these cases, the inequality is
a direct consequence of the polynomial identity

x6 + y6 + z6 − 2y3z3 − 2z3x3 − 2x3y3 + 3x2y2z2 =

1
2

`
x2+y2+z2+yz+zx+xy

´“
(y−z)2(y+z−x)2+(z−x)2(z+x−y)2+(x−y)2(x+y−z)2

”
5 Use2(α2α3 + α3α1 + α1α2) = α/2 − (α1)2 − (α2)2 − (α3)2.
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For every solution to (1.1) withα/(0) < 0, as in the last paragraph, the half-infinite
interval [0,∞) actually corresponds to afinite physical duration of the associated spa-
tially homogeneous vacuum spacetime (given in Proposition2.1). In fact, an increasing
affine parameter along the timelike geodesics orthogonal tothe level sets ofτ is given
by τ 7→ ∫ τ

0
exp(1

2

∫ s

0
α/)ds, with uniform upper bound6|α/(0)|−1, by (1.4).

In this paper, we consider only solutions to (1.1) for whichβ1, β2, β3 6= 0 (also
called Bianchi VIII or IX models). We now give an informal description of the solu-
tions that we construct, the phenomenological picture of [BKL1]. The structure of each
of these solutions is described by three sequences of compact subintervals(Ij)j≥1,
(Bj)j≥1, (Sj)j≥1 of [0,∞), for which:

(a.1) The left endpoint ofI1 is the origin, and the right endpoint ofIj , henceforth
denotedτj , coincides with the left endpoint ofIj+1, for all j ≥ 1. Setτ0 = 0.

(a.2)
⋃

j≥1 Ij = [0,∞), that is,limj→+∞ τj = +∞.
(a.3) Bj is contained in the interior ofIj , and0 < |Bj | ≪ |Ij |, for all j ≥ 1.
(a.4) Sj is the closed interval of all points betweenBj andBj+1, for all j ≥ 1.

Here is a picture:

Ij

Bj+1 Sj+1Bj

Ij+1

Sj

τj τj+1

Let S3 be the set of all permutations(a,b, c) of the triple (1, 2, 3). The solution is
further described by a sequence(πj)j≥1 in S3, with πj = (a(j),b(j), c(j)), so that:

(b.1) OnIj , the componentsβb(j), βc(j) are so small in absolute value that the local
dynamics ofΦ = α ⊕ β is essentially unaffected ifβb(j), βc(j) are set equal to
zero in the four equations (1.1a) and (1.1c).

(b.2) OnIj \ Bj, the componentβa(j) is so small in absolute value that the local dy-
namics ofΦ = α ⊕ β is essentially unaffected ifβa(j) is set equal to zero in the
four equations (1.1a) and (1.1c). The componentβa(j) is not smallonBj , but the
mixed productsβa(j)βb(j) andβa(j)βc(j) are still small.

(b.3) Items (b.1) and (b.2) imply that mixed products of components ofβ are small on
all of [0,∞), and that all three components ofβ are small on

⋃
j≥1 Sj .

(b.4) a(j) 6= a(j + 1) for all j ≥ 1.
(b.5) None of the properties listed so far distinguishesb(j) from c(j). By (b.4), this

ambiguity can be consistently eliminated by stipulatingb(j) = a(j + 1).

We can draw the following heuristic consequences from the eight heuristic properties
above.Separately on each intervalSj , j ≥ 1:

(c.1) The components ofα are essentially constant, by (1.1a) and (b.3), andlog |β1|,
log |β2|, log |β3| are essentially linear functions with slopesα1, α2, α3, by (1.1b).

(c.2) The constraint (1.1c) essentially reduces toα2α3 + α3α1 + α1α2 = 0. As be-
fore, we requireα/ = α1 + α2 + α3 < 0. Furthermore, we make the generic
assumption that all components ofα are nonzero. These conditions imply that
two components ofα are negative, one component ofα is positive, and the sum
of any two is negative.

(c.3) The single positive component ofα has to beαb(j) = αa(j+1). In fact, we know
that |βa(j+1)| is very small onSj but is not small onBj+1. Therefore, the slope
of log |βa(j+1)|, which isαa(j+1) by (c.1), has to be positive onSj .
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(c.4) By the last three items and (b.4), there is at most one point in Sj where|βa(j)| =
|βa(j+1)|. By (b.1), (b.2), there is such a point, because|βa(j)| is going from not
small to small onSj , and|βa(j+1)| is going from small to not small onSj . By
convention, this point isτj .

Separately on each intervalIj , j ≥ 1 (in particular onBj ⊂ Ij):

(d.1) αa(j) + αb(j) andαa(j) + αc(j) are essentially constant, by (1.1a), (b.1), and
they are both negative, by (c.1), (c.2). Also,log |βa(j)βb(j)|, log |βa(j)βc(j)| are
essentially linear functions with slopesαa(j) +αb(j) andαa(j) +αc(j), by (1.1b).

(d.2) Essentially(αa(j) +αb(j))(αa(j) +αc(j)) = (αa(j))2 +(βa(j))2, by (1.1c). Since
the left hand side is essentially constant by (d.1), so is theright hand side.

(d.3) By (d.1), it only remains to understand the behavior ofαa(j), βa(j). By (1.1a), we
essentially have

d
dτ αa(j) = −(βa(j))2 d

dτ βa(j) = αa(j)βa(j) (1.5)

A special solution isαa(j) = − tanh τ andβa(j) = ± sech τ = ±(cosh τ)−1.
The general solution is obtained from the special solution by applying the affine
symmetry transformation (ii) above, withp > 0. SinceBj is essentially the in-
terval on which|βa(j)| is not small, see (b.2), we must havep ∼ |Bj |−1 (here∼
means “same order of magnitude”). See [BKL1], Section 3, in particular pages
534 and 535.

(d.4) Recall (c.1). By (d.3), we haveαa(j)|Sj−1 = −αa(j)|Sj , since the hyperbolic
tangent just flips the sign. Therefore, by (d.1), the net change acrossBj of the
components ofα, from right to left, is given by

αa(j)|Sj−1 = αa(j)|Sj − 2αa(j)|Sj

αb(j)|Sj−1 = αb(j)|Sj + 2αa(j)|Sj

αc(j)|Sj−1 = αc(j)|Sj + 2αa(j)|Sj

These equations make sense only forj ≥ 2, sinceS0 has not been defined.

In this paper, we turn the heuristic picture of [BKL1], sketched above, into a mathemat-
ically rigorous one, globally on[0,∞), for a generic class of solutions. The first step is
to construct a discrete dynamical system, that maps the stateΦ(τj) to the stateΦ(τj−1)
at the earlier timeτj−1 < τj , for all j ≥ 1. That is, the construction proceeds from
right-to-left, beginning atτ = +∞. We refer to the discrete dynamical system maps as
transfer maps.

For eachj ≥ 0, two components ofβ(τj) have the same absolute value, see (c.4),
andΦ(τj) satisfies the constraint (1.1c). Therefore, the states of the discrete dynamical
system have 4 continuous degrees of freedom. By the symmetry(ii), the transfer maps
commute with rescalings. Taking the quotient, one obtains a3-dimensional discrete
dynamical system. The three “dimensionless” quantities that we use to parametrize the
discrete states are denotedfj = (hj , wj , qj). Morally, they are interpreted as follows:

• hj ∼ |Bj|/|Ij | > 0. In the billiard picture of [Mis], it is the dimensionless ratio of
the collision and free-motion times. By (a.3), one has0 < hj ≪ 1. In fact,hj is the
all-important small parameter in our construction. It goesto zero rapidly asj →∞.
This is necessary for us to make a global construction on[0,∞). The precise rate
depends on the sequence(kn)n≥1. The rate is the same as in Proposition 4.4, up to
even smaller corrections.
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• The components ofα are essentially constant onSj and subject to the reduced con-
straint equation in (c.2). Thus, modulo the scaling symmetry (ii), only one degree of
freedom is required to parametrizeα|Sj . We usewj ≈ −(αb(j)/(αa(j)+αb(j)))|Sj .
By (c.2) and (c.3), we havewj > 0. The left-to-right discrete dynamics ofwj (which
is opposite to the right-to-left direction of our transfer maps) is closely related to a
variant of the Gauss map, sometimes referred to as theBKL mapor Kasner map.

• The meaning ofqj will be explained in a more indirect way. As pointed out above,
the left-to-right dynamics ofwj is related to the Gauss map, which is a non-invertible
left-shift, see (1.3). The non-invertibility of the Gauss map seems to be at odds with
the invertible dynamics of the system of ordinary differential equations (1.1). The
parameterqj is introduced so that thejoint left-to-right discrete dynamics of(wj , qj)
is closely related to the left-shift ontwo-sidedsequences(kn)n∈Z of strictly positive
integers, which is invertible. Accordingly, the right-to-left transfer maps are related
to the right shift on two-sided sequences(kn)n∈Z.

This concludes the informal discussion. We emphasize that the notation used above is
specific to the introduction. In particular,(Ij)j≥1, (Bj)j≥1, (Sj)j≥1 do not appear in
the main text. Starting from Section 2, all the notation is introduced from scratch.

We now state simplified, self-contained versions of our results. References to their
stronger counterparts are given. Here is a short guide:

Definition 1.1 (equivalent to Definition 3.12).Introduces the state vectorsΦ⋆(π, f , σ∗)
of the 3-dimensional discrete dynamical system. The dynamics of the signature vec-
tor σ∗ is trivial, by (iii), but it affects the dynamics of(π, f) in a non-trivial way.

Definition 1.2 (this is Definition 3.16).Introduces explicit mapsPL, QL, λL that turn
out to be very good approximations to the transfer maps. It isshown in Section 4 that
iterates ofQL can be understood in terms of the Gauss map / continued fractions and,
by a change of variables, in terms of solutions to certain linear equations.

Definition 3.19 (only in the main text).The essential smallness condition onh > 0 is
quantitatively encoded in an open subsetF ⊂ (0, 1)× (0,∞) × ((0,∞) \ {1}). It
determines the domain of definition of the transfer maps.

Proposition 1.1 (slimmed-down version of Proposition 3.3). It asserts the existence of
transfer maps. The pair(PL, Π) and the triple(PL, Π, Λ) constitute the transfer
maps for the 3-dimensional and 4-dimensional systems, respectively, and they are
very close to(PL,QL) and(PL,QL, λL). Explicit error bounds and precise esti-
mates for the transfer solution appear only in the full version, Proposition 3.3.

Theorem 1.1 (simplified version of Theorems 6.2, 6.3).Gives a generic class of iterates
to (PL, Π) that are super-exponentially close to iterates of(PL,QL). That is, it
asserts the existence of solutions to the 3-dimensional discrete dynamical system.

The overview is as follows. Every solution to the 3-dimensional discrete dynamical
system as in Theorem 1.1 can be lifted to a unique solution to the 4-dimensional dis-
crete dynamical system, up to an overall scale, through the mapΛ in Proposition 1.1.
This solution corresponds to the sequence of states(Φ(τj))j≥0 in the informal discus-
sion. Proposition 1.1 gives solutions to (1.1) on compact intervals that connect next-
neighbor states. Symmetry (ii) is used to translate these compact intervals and place
them next to each other, beginning atτ = 0, just like the(Ij)j≥1 in the informal dis-
cussion. As in (a.2) of the informal discussion, the union ofthese intervals is indeed
[0,∞), and a semi-global solution to (1.1) is obtained. To see this, denote the states
by λj Φ⋆(πj ,gj , σ∗) with λj > 0 andπj ∈ S3 andgj = (h′j , w

′
j , q

′
j) ∈ F , where

j ≥ 0. One hasλj = Λ[πj+1, σ∗](gj+1)λj+1 ≥ λj+1 by the definition ofΛ and
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h′j ∈ (0, 1) by the definition ofF . In particular, the sequence of products(λjh′j)j≥0 is
bounded from above byλ0 > 0. By Proposition 1.1, the length of each of the intervals
is bounded from below by(2λ0)−1 > 0.

Definition 1.1 (State vectors).Let π = (a,b, c) ∈ S3 and σ∗ ∈ {−1, +1}3 and
f = (h, w, q) ∈ (0,∞)2×R. LetΦ⋆ = Φ⋆(π, f , σ∗) = α⊕ β ∈ R3⊕R3 be the vector
given by(sgnβ1, sgn β2, sgnβ3) = σ∗ and by

αa = −1 h log | 12βa| = − 1+w
1+2w (1 + h log 2)

αb = w
1+w h log | 12βb| = − 1+w

1+2w (1 + h log 2)

αc = −w − µ h log |12βc| = −(1 + w)q − w(1+w)
1+2w − 1+3w+w2

1+2w h log 2

whereµ = µ(π, f , σ∗) ∈ R is uniquely determined by requiring that(1.1c)holds.

Definition 1.2 (Approximate transfer maps).Introduce three maps

PL : S3 × (0,∞)3 → S3 ((a,b, c), f) 7→ (a′,b′, c′)

QL : (0,∞)3 → (0,∞)2 × R f 7→ (hL, wL, qL)

λL : (0,∞)3 → (0,∞) f 7→ λL

wheref = (h, w, q) andqL = num1L/denL andhL = num2L/denL, and:

• if q ≤ 1:

(a′,b′, c′) = (c,a,b) num1L = (1 + w)(1 − q)− h log 2 + hw log(2 + w)

wL = 1
1+w num2L = h(2 + w)

λL = 2 + w denL = (1 + w)(q − h log 2) + h(3 + w) log(2 + w)

• if q > 1:

(a′,b′, c′) = (b,a, c) num1L = (1 + w)(q − 1− h log 2)− hw log 2+w
1+w

wL = 1 + w num2L = h(2 + w)

λL = 2+w
1+w denL = (1 + w)− h log 2 + h(3 + 2w) log 2+w

1+w

Observe thatdenL > 0.

Proposition 1.1 (Transfer maps).Fix σ∗ ∈ {−1, +1}3 andπ = (a,b, c) ∈ S3. There
exist maps6

Π [π, σ∗] : F → (0,∞)2 × R and Λ[π, σ∗] : F → [1,∞)

such that for everyλ > 0 and f = (h, w, q) ∈ F , the solution to(1.1) starting at
λΦ⋆(π, f , σ∗) at time0 passes throughλ′ Φ⋆(π′, f ′, σ∗) at an earlier timeτ ′ < 0, with
1
2 ≤ hλ |τ ′| ≤ 3. Heref ′ = Π [π, σ∗](f) andλ′ = λΛ[π, σ∗](f) andπ′ = PL(π, f).
Schematically, the transition is

λΛ[π, σ∗](f) Φ⋆

(
PL(π, f), Π [π, σ∗](f), σ∗

)
←− λΦ⋆(π, f , σ∗)

Furthermore (informal):Π and Λ are approximated by the mapsQL and λL, with
errors that go to zero exponentially ash ↓ 0 (for fixedw, q). See Proposition 3.3

6 Caution: The mapsΠ cannot immediately be iterated / composed, because(0,∞)2 × R 6⊂ F .
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Theorem 1.1.Fix σ∗ ∈ {−1, +1}3 andπ0 ∈ S3. Fix constantsD ≥ 1, γ ≥ 0. Suppose
the vectorf0 = (h0, w0, q0) ∈ (0,∞)3 satisfies

(i) w0 ∈ (0, 1) \Q andq0 ∈ (0,∞) \Q.
(ii) kn ≤ D max{1, n}γ for all n ≥ −2, where the two-sided sequence of strictly

positive integers(kn)n∈Z is given by

(1 + q0)−1 = 〈k0, k−1, k−2, . . .〉 w0 = 〈k1, k2, k3, . . .〉
(iii) 0 < h0 < A♯ whereA♯ = A♯(D, γ) = 2−56D−4(4(γ + 1))−4(γ+1).

Thenf0 andπ0 are the first elements of a unique sequence(fj)j≥0 in F and a unique
sequence(πj)j≥0 in S3, respectively, withπj = PL(πj+1, fj+1) and fj = QL(fj+1)
for all j ≥ 0. Furthermore, there exists a sequence(gj)j≥0 in F such that for allj ≥ 0,

gj = Π [πj+1, σ∗](gj+1) and πj = PL(πj+1,gj+1)

and, withρ+ = 1
2 (1 +

√
5),

‖gj − fj‖R3 ≤ exp
(
− 1

h0
A♯ ρ

((D−1j)1/(γ+1))
+

)
If γ > 1 andD > 1

log 2
γ

γ−1 , then the set of all vectorsf0 ∈ (0,∞)3 that satisfy (i), (ii),
(iii) has positive Lebesgue measure.

The class of solutions that we construct is generic in the sense of the last sentence
of Theorem 1.1. It would be desirable to have a stronger genericity statement, namely
a genericity statement for “theg0 rather than thef0”.

For the causal structure and particle horizons, see Proposition 2.2 and Section 7.

It is a pleasure to thank J. Fröhlich, G.M. Graf and T. Spencer for their support and
encouragement.

2. Spatially homogeneous vacuum spacetimes

Proposition 2.1.Letα⊕β : (τ0, τ1)→ R3⊕R3 be a solution to(1.1)and letΩ ⊂ R3

be open, with Cartesian coordinatesx = (x1, x2, x3). Fix anyτ∗ ∈ (τ0, τ1) and let

v1 =
∑3

µ=1 v1
µ(x) ∂

∂xµ v2 =
∑3

µ=1 v2
µ(x) ∂

∂xµ v3 =
∑3

µ=1 v3
µ(x) ∂

∂xµ

be three smooth vector fields onΩ that are a frame at each point and satisfy

[vj, vk] = βi(τ∗) vi onΩ

for all (i, j,k) ∈ C def
= {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Introduce

e0 = eζ(τ) ∂
∂τ ei = eζi(τ)vi i = 1, 2, 3

ζ(τ) = ζ1(τ) + ζ2(τ) + ζ3(τ) ζi(τ) = − 1
2

∫ τ

τ∗
ds αi(s) i = 1, 2, 3

on the domain(τ0, τ1)×Ω ⊂ R4. Then, the Lorentzian metricg with inverse

g−1 = −e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

is a solution to the vacuum Einstein equationsRic(g) = 0 on (τ0, τ1)×Ω.
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Proof. In this proof, everywhere(i, j,k) ∈ C. It follows from d
dτ e−2ζi = αie

−2ζi and
ζi(τ∗) = 0 and (1.1b) thatβi(τ) = βi(τ∗)e−2ζi(τ). Now, by direct calculation,

[e0, ei] = − 1
2eζαiei [ej, ek] = eζβiei

Let∇ be the Levi-Civita connection associated tog. Then, for alla, b, c = 0, 1, 2, 3,

g
(∇eaeb, ec

)
= 1

2

(
g
(
[ea, eb], ec

)− g
(
[eb, ec], ea

)
+ g
(
[ec, ea], eb

))
By direct calculation,

∇e0e0 = 0 ∇eiei = 1
2eζαie0

∇e0ei = 0 ∇ejek = 1
2eζ(+βi − βj + βk)ei

∇eie0 = 1
2eζαiei ∇ekej = 1

2eζ(−βi − βj + βk)ei

and

Riem(ei, ej, ei, ej)

= 1
4e2ζ

(
(+βi − βj − βk)(+βi − βj + βk) + 2βk(+βi + βj − βk) + αiαj

)
Riem(e0, ea, ei, ej)

= 1
4e2ζδak

(
(−βi + βj − βk)αi + (+βi − βj − βk)αj + 2αkβk

)
Riem(e0, ea, e0, ei)

= − 1
4e2ζ δai

(
2 d

dτ αi − (αj + αk)αi

)
Furthermore,Riem(ea, eb, ec, ed) = 0 unless{a,b} = {c,d} with a 6= b. The Rie-
mann curvature tensor is completely specified by these identities and by its algebraic
symmetries. It follows that

Ric(e0, e0) = − 1
2e2ζ d

dτ (α1 + α2 + α3) + 1
2e2ζ(α2α3 + α3α1 + α1α2)

Ric(e0, ei) = 0

Ric(ei, ei) = + 1
2e2ζ d

dτ αi + 1
2e2ζ

(
+ (βi)2 − (βj)2 − (βk)2 + 2βjβk

)
Ric(ej, ek) = 0

The right hand sides of the first and third equation vanish by (1.1a) and (1.1c). ⊓⊔
Proposition 2.2.In the context of Proposition 2.1, letγ : (τ ′0, τ

′
1) → (τ0, τ1) × Ω be

a smooth curve given byγ(τ) = (τ, γ♯(τ)), whereγ♯ is a curve onΩ. Let g♯ be the
Riemannian metric onΩ defined byg♯(va, vb) = δab for all a,b = 1, 2, 3. If γ is
non-spacelike with respect tog, then the length ofγ♯ with respect tog♯ is bounded by

Lengthg♯(γ♯) ≤
∫ τ ′1

τ ′0

dτ max
(i,j,k)∈C

e−ζj−ζk (2.1)

The integral on the right hand side may be divergent.
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Proof. Write the velocity d
dτ γ as

∂
∂τ +

∑3
i=1 X ivi = e−ζe0 +

∑3
i=1 X ie−ζiei

with smooth coefficientsX i = X i(τ). By assumption,γ is non-spacelike:

0 ≥ g( d
dτ γ, d

dτ γ) = −e−2ζ +
∑3

i=1(X
i)2e−2ζi

Consequently,
∑3

i=1(X
i)2 ≤ max(i,j,k)∈C e−2ζj−2ζk . Now, the claim follows from

Lengthg♯(γ♯) =
∫ τ ′1

τ ′0

dτ
√

g♯( d
dτ γ♯, d

dτ γ♯) =
∫ τ ′1

τ ′0

dτ

√∑3
i=1(X

i)2

⊓⊔

3. Construction of the transfer maps

Let (τ0, τ1) ⊂ R be a finite or infinite open interval, parametrized byτ ∈ (τ0, τ1)
(“time”). In this paper, the unknown field is a vector valued mapΦ ∈ C∞((τ0, τ1), R6):

Φ = α[Φ] ⊕ β[Φ] : (τ0, τ1)→ R3 ⊕ R3 (3.1)

If no confusion can arise, we just writeΦ = α⊕ β.

Definition 3.1. To every fieldΦ = α ⊕ β ∈ C∞((τ0, τ1), R6), every constanth > 0
and everyn ∈ R3, associate a field

a[Φ,h, n]⊕ b[Φ,h, n]⊕ c[Φ,h, n] : (τ0, τ1)→ R3 ⊕ R3 ⊕ R

by

ai[Φ,h, n] = −h d
dτ αi − (niβi)2 + (njβj − nkβk)2 (3.2a)

bi[Φ,h, n] = −h d
dτ βi + βiαi (3.2b)

c[Φ,h, n] =
∑

(i,j,k)∈C
(
αjαk − (niβi)2 + 2njnkβjβk

)
(3.2c)

for all (i, j,k) ∈ C. For later use, it is convenient to introduce, for allm, n ∈ R3,

ai[Φ,h, n, m] = ai[Φ,h, n]− ai[Φ,h, m]

= −(niβi)2 + (njβj − nkβk)2 + (miβi)2 − (mjβj −mkβk)2
(3.3)

Definition 3.2.

B1 = (1, 0, 0) B2 = (0, 1, 0) B3 = (0, 0, 1) Z = (1, 1, 1)

These vectors will play the role of the vectorn ∈ R3 that appears in Definition 3.1.

Proposition 3.1 (Global symmetries).Let χ : (τ0, τ1) → (τ ′0, τ
′
1) be a linear diffeo-

morphism between finite or infinite intervals,χ(τ) = pτ + q with p > 0, and letA > 0
be a constant. Then

(a, b, c)
[
A (Φ ◦ χ), 1

pAh, n
]

= A2
(
(a, b, c)[Φ,h, n] ◦ χ

)
for all fieldsΦ = α⊕ β ∈ C∞((τ ′0, τ ′1), R6), all constantsh > 0 and alln ∈ R3.
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Corollary 3.1. In Proposition 3.1, the field(a, b, c)[A (Φ◦χ), 1
pAh, n] vanishes iden-

tically on (τ0, τ1) if and only if(a, b, c)[Φ,h, n] vanishes identically on(τ ′0, τ
′
1).

Remark 3.1.The equations(a, b, c)[Φ, 1, Z] = 0 are identical to (1.1). The equations
(a, b, c)[Φ,h, Z] = 0 are equivalent to (1.1), for anyh > 0, by Corollary 3.1.

Proposition 3.2.Recall Definition 3.1. For allΦ = α ⊕ β ∈ C∞((τ0, τ1), R6), all
h > 0 and alln ∈ R3, we have

0 =− h d
dτ c +

∑
(i,j,k)∈C

(
− αjak − αkaj + 2(ni)2βibi − 2njnkβjbk − 2njnkβkbj

)
(3.4)

with (a, b, c) = (a, b, c)[Φ,h, n]. In particular, if (a, b) = 0 identically on(τ0, τ1),
thenc vanishes identically on(τ0, τ1) if and only ifc vanishes at one point of(τ0, τ1).

Proof. Replace all occurrences ofa, b and c on the right hand side of (3.4) by the
respective right hand sides of (3.2). Then, verify that everything cancels. ⊓⊔
Definition 3.3. For all h > 0 and all vectorsΦ = α⊕β ∈ R3⊕R3 with β1, β2, β3 6= 0,
defineAm[Φ] ∈ (0,∞) andϕm[Φ] ∈ R by

Am[Φ] =
√
|αm|2 + |βm|2 > |αm| ≥ 0

ϕm[Φ] = − arcsinh αm

|βm|

for all m = 1, 2, 3. Equivalently,

αm = −Am[Φ] tanhϕm[Φ] (3.5a)

βm = (sgnβm) Am[Φ] sech ϕm[Φ] (3.5b)

Furthermore, defineξm[Φ,h] ∈ R by

ξm[Φ,h] = h log
∣∣ 1
2βm

∣∣
for all m = 1, 2, 3. Furthermore, for allm,n = 1, 2, 3, introduce the abbreviations

αm,n[Φ] = αm + αn ξm,n[Φ,h] = ξm[Φ,h] + ξn[Φ,h]

If no confusion can arise, we drop the explicit dependence[Φ] or [Φ,h]. For instance,
we writeAm = Am[Φ]. If Φ is not an element ofR3 ⊕ R3, but rather a function of the
real variableτ with values inR3 ⊕R3, with β1, β2, β3 6= 0 everywhere, thenAm, ϕm,
ξm, ξm,n, αm,n, with m,n = 1, 2, 3, are functions ofτ , too. In this case, we define the
additional functionsθm[Φ,h], m = 1, 2, 3, through

ϕm[Φ](τ) = 1
h

(
τ − θm[Φ,h](τ)

)
Am[Φ](τ)

Remark 3.2.In the context of Definition 3.3, we have, for allm = 1, 2, 3:

h |ϕm| = −ξm + h log
(
| 12αm|+

√
|12αm|2 + exp( 1

h2ξm)
)
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Lemma 3.1.Recall Definitions 3.1, 3.2, 3.3. For allh > 0 and all Φ = α ⊕ β ∈
C∞((τ0, τ1), R6) such thatβ1, β2, β3 never vanish on(τ0, τ1), we have

d
dτ

(
Ai

θi

)
=

1
(Ai)2

( 1
h (Ai)2 tanhϕi

1
h (Ai)2 sechϕi

ϕi tanhϕi − 1 sinhϕi + ϕi sechϕi

)(
ai[Φ,h, Bi]
−σi bi[Φ,h, Bi]

)
for i = 1, 2, 3 andσi = sgnβi ∈ {−1, +1}. The matrix on the right hand side has
determinant1h (Ai)2 coshϕi 6= 0.

Proof. We haveai[Φ,h, Bi] = −h d
dτ αi − (βi)2 andbi[Φ,h, Bi] = −h d

dτ βi + αiβi.
Replace all occurrences ofαi andβi by the right hand sides of (3.5), respectively. Use
d
dτ ϕi = 1

Ai
( d
dτ Ai)ϕi + 1

hAi(1− d
dτ θi). Now, solve for d

dτ Ai and d
dτ θi. ⊓⊔

Remark 3.3.So far, we have stated all definitions and propositions for aC∞-field Φ =
α ⊕ β, defined on an open interval. This was just for convenience. We will, from now
on, use these definitions and propositions even when theC∞-requirement is not met,
or when the field is defined on, say, a closed interval rather than an open interval. It will
be clear in each case, that the respective definition or proposition still makes sense.

Definition 3.4. SetS3 = {(1, 2, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (1, 3, 2), (2, 1, 3)}, the
set of all permutations of(1, 2, 3).

Definition 3.5. For all σ∗ ∈ {−1, +1}3 letD(σ∗) be the set of allΦ = α⊕β ∈ R3⊕R3

with
(
sgnβ1, sgnβ2, sgnβ3

)
= σ∗. For all τ0, τ1 ∈ R with τ0 < τ1 let E(σ∗; τ0, τ1)

be the set of all continuous mapsΦ : [τ0, τ1]→ D(σ∗).

Definition 3.6. For all π = (a,b, c) ∈ S3 andh > 0 andσ∗ ∈ {−1, +1}3 define two
functionsD(σ∗)×D(σ∗)→ [0,∞) by

dD(σ∗),(π,h)(Φ, Ψ) = max
{ ∣∣Aa[Φ]−Aa[Ψ ]

∣∣ ,
∣∣h ϕa[Φ]

Aa[Φ] − h ϕa[Ψ ]
Aa[Ψ ]

∣∣ ,∣∣αb,a[Φ]− αb,a[Ψ ]
∣∣ ,
∣∣ξb,a[Φ,h]− ξb,a[Ψ,h]

∣∣,∣∣αc,a[Φ]− αc,a[Ψ ]
∣∣ ,
∣∣ξc,a[Φ,h]− ξc,a[Ψ,h]

∣∣ }
and

d/D(σ∗),h(Φ, Ψ) = max
i=1,2,3

{∣∣αi[Φ]− αi[Ψ ]
∣∣, ∣∣ξi[Φ,h]− ξi[Ψ,h]

∣∣}
Then(D(σ∗), dD(σ∗),(π,h)) and(D(σ∗), d/D(σ∗),h) are metric spaces.

Definition 3.7. For all π ∈ S3 andh > 0 andσ∗ ∈ {−1, +1}3 andτ0, τ1 ∈ R with
τ0 < τ1 define a functionE(σ∗; τ0, τ1)× E(σ∗; τ0, τ1)→ [0,∞) by

dE(σ∗;τ0,τ1),(π,h)(Φ, Ψ) = supτ∈[τ0,τ1] dD(σ∗),(π,h)(Φ(τ), Ψ(τ))

Then(E(σ∗; τ0, τ1), dE(σ∗;τ0,τ1),(π,h)) is a metric space.

Lemma 3.2.Letπ = (a,b, c) ∈ S3 andh > 0 andσ∗ ∈ {−1, +1}3. Supposeh ≤ 1.
LetC, D ≥ 1 be constants. Then, for allΦ, Ψ ∈ D(σ∗) such that

C−1 ≤ Aa[X ] ≤ C D−1 ≤ h |ϕa[X ]| ≤ D

for bothX = Φ andX = Ψ and such thatsgnϕa[Φ] = sgn ϕa[Ψ ], we have:
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(a) d/D(Φ, Ψ) ≤ 23C2D dD(Φ, Ψ)
(b) If exp(− 1

hC−2D−1) ≤ 2−6C−4D−2, thendD(Φ, Ψ) ≤ 25C3D d/D(Φ, Ψ)

Here,dD = dD(σ∗),(π,h) andd/D = d/D(σ∗),h.

Proof. In this proof,A, B, α, ξ play the roles ofAa, hϕa/Aa, αa, ξa, respectively.
To show (a), letP : (0,∞)× R→ R2, (A, B) 7→ (α(A, B), ξ(A, B)), where

α(A, B) = −A tanh( 1
hAB) ξ(A, B) = h log(1

2A sech( 1
hAB))

This is a diffeomorphism. The JacobianJ of P is given by

J =

(
∂α
∂A

∂α
∂B

∂ξ
∂A

∂ξ
∂B

)
=

(
− 1

hAB sech2( 1
hAB)− tanh( 1

hAB) − 1
hA2 sech2( 1

hAB)
h
A −B tanh( 1

hAB) −A tanh( 1
hAB)

)
Let pi = (Ai, Bi) ∈ (0,∞) × R and set(αi, ξi) = P (pi), wherei = 0, 1. Setγ(t) =
(A(t), B(t)) = (1− t)p0 + tp1 wheret ∈ [0, 1]. We have( α1−α0

ξ1−ξ0

)
= M

(
A1−A0
B1−B0

)
with M =

(
M00 M01
M10 M11

)
=
∫ 1

0 dt J(γ(t))

SupposeC−1 ≤ Ai ≤ C and(CD)−1 ≤ |Bi| ≤ CD andsgnB0 = sgn B1. Then,
C−1 ≤ A(t) ≤ C and (CD)−1 ≤ |B(t)| ≤ CD for all t ∈ [0, 1]. Observe that
|ϕ sech2 ϕ| ≤ 1

2 for all ϕ ∈ R. We have|Mij | ≤ 2C2D for all i, j ∈ {0, 1}. This
implies (a).
We show that under the assumptions of (b), we have| detM | ≥ 2−3C−1, and therefore
|(M−1)ij | ≤ 24C3D for all i, j ∈ {0, 1}. This would imply (b). We have| detM | ≥
|M00M11| − |M01M10|. Setϕ(t) = 1

hA(t)B(t). We have|ϕ(t)| ≥ 1
hC−2D−1. By the

assumption of (b), we havee−|ϕ(t)| ≤ 2−6C−4D−2, for all t ∈ [0, 1]. We will also use
the general inequalities0 ≤ 1 − tanh |ϕ| ≤ 2e−2|ϕ| and|ϕ sech2 ϕ| ≤ 4|ϕ|e−2|ϕ| ≤
4e−|ϕ|. We have| −ϕ sech2 ϕ− tanhϕ| ≥ tanh |ϕ| = 1− (1− tanh |ϕ|) ≥ 2−1. The
last inequality holds for allt ∈ [0, 1] and implies|M00| ≥ 2−1, becauseϕ has constant
sign. We have|M11| ≥ 2−1C−1 and|M10| ≤ 2CD and|M01| ≤ 2−4C−2D−1. This
implies| detM | ≥ 2−3C−1. ⊓⊔
Definition 3.8. LetX = D(σ∗) or X = E(σ∗; τ0, τ1). For all δ ≥ 0 andΦ ∈ X and
π ∈ S3 andh > 0, setBX ,(π,h)[δ, Φ] = {Ψ ∈ X | dX ,(π,h)(Φ, Ψ) ≤ δ}.
Definition 3.9 (The reference fieldΦ0). For all π = (a,b, c) ∈ S3, f = (h, w, q) ∈
(0,∞)3, σ∗ ∈ {−1, +1}3 let Φ0 = Φ0(π, f , σ∗) : R→ D(σ∗) be given by

Aa[Φ0](τ) = 1 (3.6a)

θa[Φ0,h](τ) = 0 (3.6b)

αb,a[Φ0](τ) = −(1 + w)−1 (3.6c)

αc,a[Φ0](τ) = −(1 + w) (3.6d)

ξb,a[Φ0,h](τ) = −1− h log 2− (1 + w)−1 τ (3.6e)

ξc,a[Φ0,h](τ) = −(1 + w)q − h log 2− (1 + w) τ (3.6f)

(see Definition 3.3) for allτ ∈ R.

Remark 3.4.The fieldΦ0 is, up to renaming, given by equation (3.12) in [BKL1].
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Lemma 3.3.LetΦ0 be as in Definition 3.9. Then(a, b, c)[Φ0,h, Ba] = 0 onR.

Proof. Let α = α[Φ0], β = β[Φ0], ξ = ξ[Φ0,h]. We have(aa, ba)[Φ0,h, Ba] = 0 by
Lemma 3.1. Forp ∈ {b, c}, we haveaa[Φ0,h, Ba]+ap[Φ0,h, Ba] = −h d

dτ αa,p = 0,
that is ap[Φ0,h, Ba] = 0. We also haveβ−1

a ba[Φ0,h, Ba] + β−1
p bp[Φ0,h, Ba] =

− d
dτ ξa,p + αa,p = 0, that isbp[Φ0,h, Ba] = 0. Finally, c[Φ0,h, Ba] = −α2

a − β2
a +

αa,bαa,c = −A2
a + αa,bαa,c = 0. Here,Aa = Aa[Φ0]. ⊓⊔

Definition 3.10.For all f = (h, w, q) ∈ (0,∞)3 set

τ−(f) = −(1− 1
2+w

)
min{1, q} < 0

τ+(f) = 1 + 1
w > 0

Lemma 3.4 (Technical Lemma 1).Letπ = (a,b, c) ∈ S3, f = (h, w, q) ∈ (0,∞)3,
σ∗ ∈ {−1, +1}3 and fixδ > 0, ǫ− ∈ (0,−τ−), ǫ+ ∈ (0, τ+) whereτ± = τ±(f). Set

τ0− = τ− + ǫ− < 0 Φ0 = Φ0(π, f , σ∗)
∣∣
[τ0−,τ0+]

(3.7a)

τ0+ = τ+ − ǫ+ > 0 E = E(σ∗; τ0−, τ0+) (3.7b)

ThenΦ0 ∈ E . Furthermore, if the inequality

δ ≤ 2−4 min
{
1, w, ǫ−, ǫ+

τ+τ0+

}
(3.8)

holds, then for allΦ = α⊕ β ∈ BE,(π,h)[δ, Φ0] the estimates

max
{|βb|2, |βc|2, |βbβa|, |βcβa|

} ≤ 24 exp
(− 1

4h min{1, ǫ−, ǫ+
τ+
})

|Aa[Φ]− 1| ≤ 2−1

|ϕa[Φ]| ≤ 1
h2(1 + |τ |)

|βa| ≤ 2

hold on[τ0−, τ0+].

Proof. The following estimates hold for the components ofΦ, for all τ ∈ [τ0−, τ0+]:

|βbβa| = 4 exp
(

1
hξb,a

)
≤ 4 exp

(
1
hξb,a[Φ0,h] + 1

hδ
)

≤ 2 exp
(− 1

h − 1
h(1 + w)−1τ + 1

hδ
)

≤ 2 exp
(− 1

h − 1
h(1 + w)−1τ− + 1

hδ
)

≤ 2 exp
(− 1

h + 1
h(2 + w)−1 + 1

hδ
)

≤ 2 exp
(− 1

4h

)
|βcβa| = 4 exp

(
1
hξc,a

)
≤ 4 exp

(
1
hξc,a[Φ0,h] + 1

hδ
)

≤ 2 exp
(− 1

h (1 + w)q − 1
h (1 + w)τ + 1

hδ
)

≤ 2 exp
(− 1

h (1 + w)q − 1
h (1 + w)(τ− + ǫ−) + 1

hδ
)

≤ 2 exp
(− 1

h (1 + w)q + 1
h

(1+w)2

2+w q − 1
h ǫ− + 1

hδ
)

≤ 2 exp
(− 1

2h ǫ−
)
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|ϕa| = 1
hAa|τ − θa|

≤ 1
h (1 + δ)

(|τ | + δ
)

≤ 1
h

(|τ |+ δ|τ |+ 2δ
)

≤ 1
h2(1 + |τ |)

|βa|−1 = |Aa|−1 coshϕa

≤ 2 exp
(|ϕa|

)
≤ 2 exp

(
1
h |τ |+ 1

hδ|τ |+ 1
h2δ

)
|βb| = |βbβa| · |βa|−1

≤ 4 exp
(− 1

h − 1
h(1 + w)−1τ + 1

h |τ |+ 1
hδ|τ | + 1

h3δ
)

≤ 4 exp
(

1
h max

{− 1− 2+w
1+w τ0− − δτ0−, −1 + w

1+w τ0+ + δτ0+

}
+ 1

h3δ
)

≤ 4 exp
(

1
h max{−ǫ− − δτ0−,− ǫ+

τ+
+ δτ0+}+ 1

h3δ
)

≤ 4 exp
(− 1

h
15
16 min{ǫ−, ǫ+

τ+
}+ 1

h3δ
)

≤ 4 exp
(− 1

2h min{ǫ−, ǫ+
τ+
})

The last step usesδ ≤ 2−3 ǫ+
τ+

. In the caseǫ+ ≥ 1
2τ+, this follows fromδ ≤ 2−4. If

ǫ+ ≤ 1
2 τ+, then this follows fromδ ≤ 2−4 ǫ+

τ+τ0+
, becauseτ0+ = τ+− ǫ+ ≥ 1

2τ+ ≥ 1
2 .

|βc| = |βcβa| · |βa|−1

≤ 4 exp
(− 1

h (1 + w)q − 1
h (1 + w)τ + 1

h |τ |+ 1
hδ|τ |+ 1

h3δ
)

≤ 4 exp
(− 1

h (1 + w)q

+ 1
h max

{− (2 + w + δ)τ0−,−(w − δ)τ0+

}
+ 1

h3δ
)

≤ 4 exp
(− 1

h (1 + w)q + 1
h (2 + w)|τ−| − 1

h(2 + w + δ)ǫ− + 1
h4δ

)
≤ 4 exp

(− 1
h2ǫ− + 1

h4δ
)

≤ 4 exp
(− 1

h ǫ−
)

This concludes the proof.⊓⊔

Lemma 3.5.Recall Definitions 3.1 and 3.2. We have

aa[Φ,h, Z, Ba] = +β2
b + β2

c − 2βbβc

ab[Φ,h, Z, Ba] = −β2
b + β2

c − 2βaβc

ac[Φ,h, Z, Ba] = +β2
b − β2

c − 2βaβb

for all (a,b, c) ∈ S3.

Remark 3.5.Lemma 3.5 displays the differences between the equationsa[Φ,h, Z] =
0 anda[Φ,h, Ba] = 0. Lemma 3.4 gives bounds for the terms that appear in these
differences. Informally, they tend exponentially to zero ash ↓ 0. This quantifies a basic
guiding intuition of [BKL1].
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Definition 3.11.For all vectorsΦ = α ⊕ β ∈ R3 ⊕ R3 with β1, β2, β3 6= 0, all π =
(a,b, c) ∈ S3 and allh > 0, define four real numbers by

I1[Φ,h, π] = − 1
h aa[Φ,h, Z, Ba] tanhϕa[Φ]

I2[Φ,h, π] =
(
Aa[Φ]

)−2
aa[Φ,h, Z, Ba]

(
1− ϕa[Φ] tanh ϕa[Φ]

)
I(3,p)[Φ,h, π] = 1

hap[Φ,h, Z, Ba] + 1
haa[Φ,h, Z, Ba]

wherep ∈ {b, c}. If Φ is not an element ofR3 ⊕ R3, but rather a function with values
in R3⊕R3, withβ1, β2, β3 6= 0 everywhere, thenI1, I2, I(3,b), I(3,c) are functions, too.

Lemma 3.6 (Technical Lemma 2).In the context of Lemma 3.4, ifδ > 0 satisfies(3.8),
then, for allΦ, Ψ ∈ BE,(π,h)[δ, Φ0] and allS ∈ {1, 2, (3,b), (3, c)}, the estimates∣∣IS [Φ]

∣∣ ≤ 211 max{1, 1
h , 1

h |τ |} exp
(− 1

4h min{1, ǫ−, ǫ+
τ+
}) (3.9a)∣∣IS [Φ]− IS [Ψ ]

∣∣ ≤ 217
(
max{1, 1

h , 1
h |τ |}

)2 exp
(− 1

4h min{1, ǫ−, ǫ+
τ+
})dE(Φ, Ψ)

(3.9b)

hold on[τ0−, τ0+]. Here,IS [Φ] = IS [Φ,h, π], IS [Ψ ] = IS [Ψ,h, π] anddE = dE,(π,h).

Proof. In this proof, we simplify the notation by suppressingh > 0 and abbreviating

M = exp(− 1
4h min{1, ǫ−, ǫ+

τ+
}) M1 = max{1, 1

h , 1
h |τ |}

Lemmas 3.4, 3.5 imply
∣∣ai[Φ,h, Z, Ba]

∣∣ ≤ 26M , i = 1, 2, 3, and|ϕa[Φ]| ≤ 22M1 and
(Aa[Φ])−2 ≤ 22. This implies (3.9a). To show (3.9b), observe that (herep,q ∈ {b, c})∣∣ϕa[Φ]− ϕa[Ψ ]

∣∣ ≤ 1
h |Aa[Φ]−Aa[Ψ ]| |τ |+ 1

h |Aa[Φ]θa[Φ]−Aa[Ψ ]θa[Ψ ]|
≤ 1

h (1 + |τ |)|Aa[Φ]−Aa[Ψ ]|+ 1
h2|θa[Φ]− θa[Ψ ]|

≤ 22M1 dE(Φ, Ψ)∣∣ξa[Φ]− ξa[Ψ ]
∣∣ ≤ h| log Aa[Φ]− log Aa[Ψ ]|

+ h | log coshϕa[Φ]− log coshϕa[Ψ ]|
≤ 23hM1 dE(Φ, Ψ)∣∣βp[Φ]βa[Φ]− βp[Ψ ]βa[Ψ ]
∣∣ ≤ 1

h max
{|βp[Φ]βa[Φ]|, |βp[Ψ ]βa[Ψ ]|}

× ∣∣ξa,p[Φ]− ξa,p[Ψ ]
∣∣

≤ 24M1M dE (Φ, Ψ)∣∣βp[Φ]− βp[Ψ ]
∣∣ ≤ 1

h max
{|βp[Φ]|, |βp[Ψ ]|}∣∣ξp[Φ]− ξp[Ψ ]

∣∣
≤ 1

h22M1/2
( ∣∣ξa,p[Φ]− ξa,p[Ψ ]

∣∣+ ∣∣ξa[Φ]− ξa[Ψ ]
∣∣ )

≤ 26M1M
1/2 dE(Φ, Ψ)∣∣βp[Φ]βq[Φ]− βp[Ψ ]βq[Ψ ]

∣∣ ≤ 29M1M dE (Φ, Ψ)

Consequently, fori = 1, 2, 3,∣∣ai[Φ,h, Z, Ba]− ai[Ψ,h, Z, Ba]
∣∣ ≤ 211M1M dE(Φ, Ψ)

With these estimates, (3.9b) follows. Observe thatR → R, x 7→ x tanhx is Lipschitz
with Lipschitz-constantL > 0 determined byL tanhL = 1, in particularL < 2. ⊓⊔
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Definition 3.12.For all π = (a,b, c) ∈ S3 andf = (h, w, q) ∈ (0,∞)2×R (we don’t
requireq > 0 here) andσ∗ ∈ {−1, +1}3, let Φ⋆ = Φ⋆(π, f , σ∗) ∈ D(σ∗) be given by

αa[Φ⋆] = −1 ξa[Φ⋆,h] = − 1+w
1+2w (1 + h log 2)

αb[Φ⋆] = w
1+w ξb[Φ⋆,h] = − 1+w

1+2w (1 + h log 2)

αc[Φ⋆] = −w − µ ξc[Φ⋆,h] = −(1 + w)q − w(1+w)
1+2w − 1+3w+w2

1+2w h log 2

and

µ = (1 + w)
(
β2

1 + β2
2 + β2

3 − 2β2β3 − 2β3β1 − 2β1β2

)|β=β[Φ⋆] (3.10)

Definition 3.13.For all π = (a,b, c) ∈ S3, σ∗ ∈ {−1, +1}3 letH(π, σ∗) ⊂ D(σ∗)
be the set of all vectorsΦ = α⊕ β ∈ D(σ∗) with

|βa| = |βb|
∑

(i,j,k)∈C
(
αjαk − (βi)2 + 2βjβk

)
= 0 (3.11a)

0 < αb < −αa

(
αb + |αa|

)
log |βa/αa| < αb log 2 (3.11b)

Lemma 3.7.Letπ = (a,b, c) ∈ S3 andσ∗ ∈ {−1, +1}3. The setH(π, σ∗) ⊂ D(σ∗)
is a smooth 4-dimensional submanifold. The map

(0,∞)3 × R→ H(π, σ∗)
(λ,h, w, q) 7→ λΦ⋆(π, (h, w, q), σ∗)

(3.12)

is a diffeomorphism. Its inverse is given by

w = −αb/(αa + αb) 1
h = − 1+2w

1+w log |βa/αa|+ w
1+w log 2 (3.13a)

λ = −αa q = − 1
1+w h log |βc/αa| − w

1+2w

(
1 + h log 2

)
(3.13b)

Proof. H(π, σ∗) is the graph of a smooth map from an open subset ofR4 toR2. Namely
the map given by solving (3.11a) for(αc, βb) in terms of(αa, αb, βa, βc), whose do-
main is given by (3.11b) and appropriate sign conditions inherited fromD(σ∗). The
map (3.12) is well-defined, i.e.λΦ⋆(π, (h, w, q), σ∗) ∈ H(π, σ∗). The map (3.13) is
well-defined, because the two right hand sides in (3.13a) andthe first right hand side in
(3.13b) are positive, by (3.11b). By direct calculation, the two maps are inverses.⊓⊔
Definition 3.14.For all f = (h, w, q) ∈ (0,∞)3 set

τ1−(f) =

{
− 1+w

3+w q − 1
3+w h log 2 if q ≤ 1

− 1+w
3+2w − 1+w

3+2w h log 2 if q > 1
< 0

τ1+(f) = (1 + h log 2) 1+w
1+2w > 0

Definition 3.15.For all π = (a,b, c) ∈ S3 and f = (h, w, q) ∈ (0,∞)3 andσ∗ ∈
{−1, +1}3 let Φ1 = Φ1(π, f , σ∗) : R→ D(σ∗) be given by

Aa[Φ1](τ) = Aa[Φ⋆] αp,a[Φ1](τ) = αp,a[Φ⋆]
θa[Φ1,h](τ) = θa[Φ⋆,h] ξp,a[Φ1,h](τ) = ξp,a[Φ⋆,h] + (τ − τ1+)αp,a[Φ⋆]

for all τ ∈ R andp ∈ {b, c}. Here,τ1+ = τ1+(f) andΦ⋆ = Φ⋆(π, f , σ∗).
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Lemma 3.8.For all π = (a,b, c) ∈ S3, f = (h, w, q) ∈ (0,∞)3, σ∗ ∈ {−1, +1}3,
setΦ0 = Φ0(π, f , σ∗) andΦ1 = Φ1(π, f , σ∗) andτ1+ = τ1+(f) anddD = dD(σ∗),(π,h)

andd/D = d/D(σ∗),h. Then

(a) |βa[Φ1](τ1+)| = |βb[Φ1](τ1+)|
(b) c[Φ1,h, Z](τ1+) = 0, see Definitions 3.1 and 3.2 forc andZ, respectively
(c) d/D(Φ0(τ1+), Φ1(τ1+)) ≤ 27 max{1 + w,h} exp(− 1

2h min{1, w + q})
(d) dD(Φ0(τ), Φ1(τ)) ≤ (1 + |τ − τ1+|

)
dD(Φ0(τ1+), Φ1(τ1+)) for all τ ∈ R

Proof. We discuss (c) only. By direct calculation,

αa[Φ0](τ1+)− αa[Φ1](τ1+) = −X ξa[Φ0,h](τ1+)− ξa[Φ1,h](τ1+) = −Y

αb[Φ0](τ1+)− αb[Φ1](τ1+) = +X ξb[Φ0,h](τ1+)− ξb[Φ1,h](τ1+) = +Y

αc[Φ0](τ1+)− αc[Φ1](τ1+) = +X + µ ξc[Φ0,h](τ1+)− ξc[Φ1,h](τ1+) = +Y

with X = −1 + tanh
(

1
hτ1+

)
andY = h log

(
1 + exp(−2 1

hτ1+)
)
. The estimates

|X | ≤ 2 exp(−2 1
hτ1+) ≤ 2 exp(− 1

h)

|Y | ≤ h exp(−2 1
hτ1+) ≤ h exp(− 1

h)

|µ| ≤ (1 + w)26 exp(− 1
2h min{1, w + q})

imply (c). ⊓⊔
Definition 3.16.This is, verbatim, Definition 1.2 in the Introduction.

Lemma 3.9.In the context of Definition 3.16, the identities

λL = 1− αa,a′ [Φ0](τ1−) = 1− αa,a′ [Φ0](τ) (3.14a)

wL = −(αa,a′[Φ0](τ1−)
)−1 = −(αa,a′ [Φ0](τ)

)−1
(3.14b)

h
hL

= 1+2wL

1+wL

(− τ1− + h log λL

)− h log 2 (3.14c)

qL = 1
1+wL

(
hL log λL − hL

h ξa,c′ [Φ0,h](τ1−) + hL

h τ1− − wL(1+wL)
1+2wL

− 1+3wL+(wL)2

1+2wL
hL log 2

) (3.14d)

hold, whereΦ0 = Φ0(π, f , σ∗) andτ1− = τ1−(f) andτ ∈ R. Furthermore,(
ξa[Φ0,h]− ξa′ [Φ0,h]

)
F = τ − τ1− − 2h log

(
1 + e2τ/h

)
F (3.15)

for all τ ∈ R, where

F =

{
1

3+w q ≤ 1
1+w
3+2w q > 1

(3.16)

Proof. By direct calculation. In each case, distinguishq ≤ 1 andq > 1. ⊓⊔
Definition 3.17.For all f = (h, w, q) ∈ (0,∞)3 set

τ∗(f) =

{
q

1+w if q ≤ 1
1 if q > 1
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Definition 3.18.For all f = (h, w, q) ∈ (0,∞)3 set

K(f) = 240
(

1
h

)2 max{( 1
w )2, w3} max{(1

q )2, q} exp
(− 1

h2−7τ∗(f)
)

(3.17)

Definition 3.19.LetF be the open set of allf = (h, w, q) ∈ (0,∞)3 for which

q 6= 1 K(f) < 1 h < 2−7τ∗(f) (3.18)

Proposition 3.3.For all π = (a,b, c) ∈ S3, σ∗ ∈ {−1, +1}3, there areunique maps

Π = Π [π, σ∗] : F → (0,∞)2 × R
Λ = Λ[π, σ∗] : F → [1,∞)

τ2− = τ2−[π, σ∗] : F → (−∞, 0)

so that for allf = (h, w, q) ∈ F (see Definitions 3.5, 3.7, 3.9, 3.10, 3.12, 3.14, 3.16 )

(a) ‖Π(f)−QL(f)‖R3 ≤K(f)
(b) |Λ(f)− λL(f)| ≤K(f)
(c) τ−(f) < τ2−(f) < 1

2τ1−(f) and|τ2−(f)− τ1−(f)| ≤K(f)
(d) Π , Λ andτ2− are continuous
(e) if we setτ2− = τ2−(f), τ2+ = τ1+(f), π′ = (a′,b′, c′) = PL(π, f), λ = Λ(f)

andf ′ = (h′, w′, q′) = Π(f), then1
2 ≤ τ2+ − τ2− ≤ 3 and there is a smooth field

Φ = α⊕ β ∈ E = E(σ∗; τ2−, τ2+)

that satisfies
(e.1)(a, b, c)[Φ,h, Z] = 0 on [τ2−, τ2+]
(e.2)Φ(τ2+) = Φ⋆(π, f , σ∗) andΦ(τ2−) = λΦ⋆(π′, f ′, σ∗), in particular

Φ(τ2+) ∈ H(π, σ∗) and Φ(τ2−) ∈ H(π′, σ∗)

(e.3) |βa[Φ](τ)| ≥ |βa′ [Φ](τ)| for all τ ∈ [τ2−, 1
2τ1−(f)] with equality iffτ = τ2−

(e.4)dE,(π,h)(Φ, Φ0) ≤K(f), whereΦ0 = Φ0(π, f , σ∗)|[τ2−,τ2+]

(e.5)supτ∈[τ2−,τ2+] max{αb,c[Φ], αc,a[Φ], αa,b[Φ]}(τ) ≤ −2−2 min{w2, w−1}
Proof. The main part of this proof is the construction of the fieldΦ that appears in (e).
To make the proof more transparent, we replace some numerical constants in (3.17) and
(3.18) by the components of a parameter vectorℓ = (ℓ1, . . . , ℓ8) ∈ R8. In the course
of the construction ofΦ, we require a finite number of inequalities of the formℓ ≥ ℓ′.
Each inequality of this kind is marked by(•) and isassumed to hold for the rest of
the proof, once it has been stated. At the end of the construction, we check that the
particular parameters appearing in (3.17) and (3.18) satisfy all these inequalities.
Let π = (a,b, c) ∈ S3 andσ∗ ∈ {−1, +1}3. Fix anyf = (h, w, q) ∈ (0,∞)3 with
q 6= 1 andh ≤ 1. Setτ∗ = τ∗(f). For anys = (s1, . . . , s7) ∈ R7, set

X(s) = X(s1, . . . , s7) =

2s1
(

1
h

)s2 ×
{

( 1
w )s3 if w ≤ 1

ws4 if w > 1

}
×
{

(1
q )s5 if q ≤ 1

qs6 if q > 1

}
× exp

(
1
hs7τ∗

)
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Basic properties ofX(s). The quantityX(s) is positive, non-decreasing in each of its
seven arguments (recall0 < h ≤ 1), andX(s)X(s′) = X(s + s′) for all s, s′ ∈ R7,
andX(0, . . . , 0) = 1. Also, we haveτ∗ ≥ X(−1, 0, 0,−1,−1, 0, 0).
Basic smallness assumptions.Introduce a parameter vectorℓ = (ℓ1, . . . , ℓ8) ∈ R8 with

(ℓ1, . . . , ℓ7) ≥ (0, 0, 0, 0, 0, 0,−∞) and ℓ8 ≥ 0 (•)1
Our basic assumptions on the vectorf = (h, w, q) are:

q 6= 1 K def= X(ℓ1, . . . , ℓ7) < 1 h < 2−ℓ8τ∗ (3.19)

Observe that our previous assumptionsq 6= 1 andh ≤ 1 are subsumed in (3.19).
Abbreviations.τ± = τ±(f) andτ1± = τ1±(f) andτ2+ = τ1+(f) and

τ0− = 1
2τ1− + 1

2 τ− < 0 τ0+ = τ1+ > 0

andD = D(σ∗) andE = E(σ∗; τ0−, τ0+) andΦ0 = Φ0(π, f , σ∗)|[τ0−,τ0+] andΦ1 =
Φ1(π, f , σ∗)|[τ0−,τ0+] andΦ⋆ = Φ⋆(π, f , σ∗) anddE = dE,(π,h) anddD = dD,(π,h) and
d/D = d/D,h andBE [ · , · ] = BE,(π,h)[ · , · ] andπ′ = (a′,b′, c′) = PL(π, f).
Preliminaries 1.Introduceǫ− andǫ+ by τ0− = τ− + ǫ− andτ0+ = τ+ − ǫ+, just as in
Lemma 3.4. We have

ǫ+ = τ+ − τ1+ = 1+w
1+2w

(
1 + 1

w − h log 2
)

ǫ− = 1
2 (τ1− − τ−) =

{
1

2(3+w)

(
1+w
2+w q − h log 2

)
if q < 1

1+w
2(3+2w)

(
1+w
2+w − h log 2

)
if q > 1

Requireℓ8 ≥ 2 (•)2. Thenh log 2 ≤ h ≤ 2−2 min{1, q}, and (recall thatτ+ = 1 + 1
w )

2−2 ≤ ǫ+/τ+ ≤ 1 2−5 ≤ ǫ−/τ∗ ≤ 2−1

andǫ− ∈ (0,−τ−) andǫ+ ∈ (0, τ+), as required by Lemma 3.4. We have

−1 < τ− < τ0− < τ1− < 0 < 1
2 < τ0+ = τ1+ = τ2+ < min{2, τ+}

Set

δ
def= 2−9 min{1, w} τ∗ = X(−9, 0,−1, 0, 0, 0, 0) τ∗ ≥ X(−10, 0,−1,−1,−1, 0, 0)

(3.20)
This impliesδ ≤ 2−4 min{1, w, ǫ−, ǫ+

τ+τ0+
}, the main hypothesis of Lemma 3.4. This

lemma will be applied later.
Preliminaries 2.Requireℓ8 ≥ 7 (•)3. Then

dE(Φ0, Φ1) ≤ 22dD(Φ0(τ1+), Φ⋆) ≤ 211d/D(Φ0(τ1+), Φ⋆)

≤ 218(1 + w) exp
(− 1

2h min{1, q}) ≤ 218(1 + w) exp
(− 1

2hτ∗
)

≤ X(19, 0, 0, 1, 0, 0,−2−1) ≤ 2−2δ X(31, 0, 1, 2, 1, 0,−2−1) (3.21)

The first and third inequality follow from (d) and (c) in Lemma3.8, respectively, us-
ing supτ∈[τ0−,τ0+](1 + |τ − τ1+|) ≤ 22. The second inequality follows from Lemma
3.2 (b), with C = D = 2. Its assumptions are satisfied, becauseh ≤ 2−7 and
Aa[Φ0](τ1+) = 1 andhϕa[Φ0](τ1+) = τ1+ ∈ [ 12 , 2] andξa[Φ⋆,h] ∈ [− 3

2 ,− 1
2 ] and

|βa[Φ⋆]| ≤ 2 exp(− 1
2h ) < 1 andAa[Φ⋆] ∈ [1, 2] and0 ≤ h|ϕa[Φ⋆]|+ξa[Φ⋆,h] ≤ 2−3
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(see Remark 3.2) andh |ϕa[Φ⋆]| ∈ [ 12 , 2] andsgnϕa[Φ⋆] = − sgnαa[Φ⋆] = +1, and
becauseℓ8 ≥ 7 impliesh ≤ 2−7 and thereforeexp(− 1

h2−3) ≤ 2−12.
Require(ℓ1, . . . , ℓ7) ≥ (31, 0, 1, 2, 1, 0,−2−1) (•)4. Then, by (3.19),

Φ1 ∈ BE [2−2δ, Φ0] (3.22)

Construction ofΦ. Define a mapP : BE [δ, Φ0]→ BE [δ, Φ0], Ψ 7→ P (Ψ) by

Aa[P (Ψ)](τ) −Aa[Φ1](τ) =
∫ τ

τ0+
dτ ′ I1[Ψ,h, π](τ ′) (3.23a)

θa[P (Ψ),h](τ) − θa[Φ1,h](τ) =
∫ τ

τ0+
dτ ′ I2[Ψ,h, π](τ ′) (3.23b)

αp,a[P (Ψ)](τ) − αp,a[Φ1](τ) =
∫ τ

τ0+
dτ ′ I(3,p)[Ψ,h, π](τ ′) (3.23c)

ξp,a[P (Ψ),h](τ) − ξp,a[Φ1,h](τ) =
∫ τ

τ0+
dτ ′′

∫ τ ′′

τ0+
dτ ′ I(3,p)[Ψ,h, π](τ ′) (3.23d)

for all p ∈ {b, c} andτ ∈ [τ0−, τ0+]. To make sure thatP is well defined, we require
(ℓ1, . . . , ℓ7) ≥ (28, 2, 1, 1, 1, 0,−2−7) (•)5, in which case Lemma 3.6 (see Preliminar-
ies 1) implies the uniform estimates

|IS [Ψ,h, π]| ≤ X(12, 1, 0, 0, 0, 0,−2−7) ≤ 2−6δ X(28, 1, 1, 1, 1, 0,−2−7) ≤ 2−6δ
(3.24a)

|IS [Ψ,h, π]−IS [Ψ ′,h, π]| ≤ 2−5X(24, 2, 0, 0, 0, 0,−2−7)dE (Ψ, Ψ ′) ≤ 2−5dE(Ψ, Ψ ′)
(3.24b)

on the interval[τ0−, τ0+], for all Ψ, Ψ ′ ∈ BE [δ, Φ0] and allS ∈ {1, 2, (3,b), (3, c)}.
Sincesupτ∈[τ0−,τ0+] |τ − τ0+| ≤ 4, we have:

• Aa[P (Ψ)] > 1
2 on [τ0−, τ0+], which makesP (Ψ) a well defined element ofE .

• Each right hand side of (3.23) is≤ 2−2δ, henceP (Ψ) ∈ BE [12δ, Φ0].
• The mapP is Lipschitz-continuous with constant≤ 1

2 .

The metric spaceBE [δ, Φ0] is nonempty and complete. By the Banach Fixed Point
Theorem, the contractionP admits a unique fixed point

Φ ∈ BE [ 12δ, Φ0] (3.25)

Proof that the fixed point satisfies(a, b, c)[Φ,h, Z] = 0. The fixed pointΦ is smooth.
We haveΦ(τ0+) = Φ1(τ0+) = Φ⋆ andc[Φ,h, Z](τ0+) = 0, by Lemma 3.8 (b), and
becauseτ0+ = τ1+. SetΨ = P (Ψ) = Φ in (3.23) and differentiate with respect toτ .
The result of differentiating (3.23a) and (3.23b) can be written as

d
dτ

(
Aa

θa

)
=

1
(Aa)2

( 1
h (Aa)2 tanhϕa

1
h(Aa)2 sechϕa

ϕa tanhϕa − 1 sinhϕa + ϕa sech ϕa

)
×
(

aa[Φ,h, Ba]− aa[Φ,h, Z]
−(σ∗)a ba[Φ,h, Ba] + (σ∗)a ba[Φ,h, Z]

)
whereAa = Aa[Φ], θa = θa[Φ,h], ϕa = ϕa[Φ], becauseba[Φ,h, Ba] = ba[Φ,h, Z].
Now, Lemma 3.1 impliesaa[Φ,h, Z] = ba[Φ,h, Z] = 0. Differentiation of (3.23c)
gives d

dτ αp,a[Φ] = 1
hap[Φ,h, Z, Ba]+ 1

haa[Φ,h, Z, Ba]. Together withaa[Φ,h, Z] =
0 and the general identityap[Φ,h, Ba] + aa[Φ,h, Ba] = −h d

dτ αp,a[Φ], we obtain
ap[Φ,h, Z] = 0. Differentiating (3.23d) and simplifying the result with (3.23c) gives
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d
dτ ξp,a[Φ,h] = αp,a[Φ] which, byba[Φ,h, Z] = 0, impliesbp[Φ,h, Z] = 0. Now,
Proposition 3.2 and the fact thatc[Φ,h, Z](τ0+) = 0 imply thatc[Φ,h, Z] = 0 identi-
cally on[τ0−, τ0+].
Estimates onΦ. By the fixed point equationP (Φ) = Φ and by (3.21) and (3.24a),

dE(Φ0, Φ) ≤ dE(Φ0, Φ1) + dE(Φ1, P (Φ))

≤ X(19, 0, 0, 1, 0, 0,−2−1) + X(16, 1, 0, 0, 0, 0,−2−7)

≤ X(20, 1, 0, 1, 0, 0,−2−7) (3.26)

We require(ℓ1, . . . , ℓ7) ≥ (20, 1, 0, 1, 0, 0,−2−7) (•)6, which impliesdE(Φ0, Φ) ≤K.
To apply Lemma 3.2 (a), setJ = [τ0−, 1

2τ1−] ⊂ [τ0−, τ0+] andC = 2 andD =
12 max{1, q−1}. We check the assumptions of Lemma 3.2. The inequalities

C−1 ≤ Aa[X ] ≤ C D−1 ≤ h |ϕa[X ]| ≤ D

hold for bothX = Φ0(τ) andX = Φ(τ), for all τ ∈ J . The inequality forAa follows
from Aa[Φ0](τ) = 1 and the bounddE(Φ0, Φ) ≤ δ ≤ 2−9. To check the inequality for
ϕa, observe thathϕa[Φ0](τ) = τ ∈ J ⊂ [−(D/2),−(D/2)−1], see the definitions of
τ− andτ1−. Furthermore, for allτ ∈ J , we have

|hϕa[Φ]− hϕa[Φ0]| ≤ |τ | |Aa[Φ]− 1|+ Aa[Φ] |θa[Φ,h]| ≤ 4δ ≤ (2D)−1

This implieshϕa[Φ](τ) ∈ [−D,−D−1] andsgnϕa[Φ0](τ) = sgnϕa[Φ](τ) = −1 for
all τ ∈ J . Now, Lemma 3.2 (a) and23C2D ≤ X(9, 0, 0, 0, 1, 0, 0) imply for all τ ∈ J

d/D(Φ0(τ), Φ(τ)) ≤ 23C2D dE (Φ0, Φ) ≤ X(29, 1, 0, 1, 1, 0,−2−7) def= M (3.27)

Construction ofτ2−. Recall thata′ = c if q < 1 anda′ = b if q > 1. By (3.15),(
ξa[Φ0,h]− ξa′ [Φ0,h]

)
F = τ − τ1− − T1 (3.28a)(

ξa[Φ,h]− ξa′ [Φ,h]
)
F = τ − τ1− − T2 (3.28b)

for all τ ∈ J , whereF is given by (3.16), and

T1 = T1(τ) = 2h log
(
1 + e2τ/h

)
F

T2 = T2(τ) = T1 −
(
ξa[Φ,h]− ξa[Φ0,h]

)
F +

(
ξa′ [Φ,h]− ξa′ [Φ0,h]

)
F

For all τ ∈ J we have0 < T1 ≤ 2h e2τ/hF ≤ 2h eτ1−/hF ≤ MF and therefore
|T2| ≤ 3MF ≤ 3

2M. Estimate

distR
(
τ1−, R \ J ) = min

{
1
2 |τ1−|, ǫ−

} ≥ 2−5τ∗ ≥ X(−6, 0, 0,−1,−1, 0, 0)

Therefore, the condition(ℓ1, . . . , ℓ7) ≥ (37, 1, 0, 2, 2, 0,−2−7) (•)7 yields

|T2| ≤ 1
2distR

(
τ1−, R \ J ) (3.29)

for all τ ∈ J . Set

τ2− = sup
{

τ ∈ J ∣∣ ξa[Φ,h](τ) ≤ ξa′ [Φ,h](τ)
}

(3.30)

The set on the right is nonempty, by (3.28b) and (3.29), it containsτ0−. We haveτ2− ∈
(τ0−, 1

2τ1−) ⊂ J and, by continuity,ξa[Φ,h](τ2−) = ξa′ [Φ,h](τ2−), and |τ2− −
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τ1−| ≤ 3
2M. For all τ ∈ [τ2−, 1

2τ1−], we have|βa[Φ](τ)| ≥ |βa′ [Φ](τ)| with equality
iff τ = τ2−. The condition(ℓ1, . . . , ℓ7) ≥ (31, 1, 0, 1, 1, 0,−2−7) (•)8 implies|τ2− −
τ1−| ≤K.
Estimates onΦ0. For all τ ∈ J , we have

|αa[Φ0](τ) − 1| = | tanh 1
h |τ | − 1| ≤ 2 exp(− 2

h |τ |
)

|ξa[Φ0,h](τ) − τ | = ∣∣h log(2 cosh 1
h |τ |) − |τ |

∣∣ ≤ h exp
(− 2

h |τ |
)

exp(− 2
h |τ |

) ≤ exp(− 1
h |τ1−|

) ≤ exp(− 1
h2−2τ∗

) ≤ 2−29M

These estimates will be used without further comment.
Construction ofλ. SetλL = λL(f) and recall (3.14a). Set

λ = −αa′ [Φ](τ2−) (3.31)

Then,

|λ− λL| ≤
∣∣αa′ [Φ](τ2−)− αa′ [Φ0](τ2−)

∣∣+ ∣∣αa′ [Φ0](τ2−)− αa′ [Φ0](τ1−)
∣∣

+
∣∣αa′ [Φ0](τ1−) +

(
1− αa,a′ [Φ0](τ1−)

)∣∣
≤ ∣∣αa′ [Φ](τ2−)− αa′ [Φ0](τ2−)

∣∣
+
(∣∣αa[Φ0](τ2−)− 1

∣∣+ ∣∣αa[Φ0](τ1−)− 1
∣∣)+

∣∣1− αa[Φ0](τ1−)
∣∣ ≤ 2M

See (3.27). Require(ℓ1, . . . , ℓ7) ≥ (32, 1, 0, 2, 1, 0,−2−7) (•)9. Then4M(1 + w) ≤
K ≤ 1 and|λ− λL| ≤ 1

2 (1 + w)−1K. In particularλ ≥ λL − (1 + w)−1 ≥ 1.

We now construct the components off ′ = (h′, w′, q′).
Construction ofw′. Require(ℓ1, . . . , ℓ7) ≥ (32, 1, 0, 2, 1, 0,−2−7) (•)10 and set

w′ =
αa[Φ](τ2−)
−αa,a′[Φ](τ2−)

> 0 (3.32)

To check that the denominator is nonzero and thatw′ > 0, note that for allτ ∈ J :∣∣αa,a′ [Φ](τ) − αa,a′[Φ0](τ)
∣∣ ≤ 2M

|αa[Φ](τ) − 1| ≤ ∣∣αa[Φ](τ) − αa[Φ0](τ)
∣∣+ ∣∣αa[Φ0](τ)− 1

∣∣ ≤ 2M

and4M ≤ X(−1, 0, 0,−1, 0, 0, 0)≤ 1
1+w ≤ |αa,a′ [Φ0](τ)| and4M ≤ 1. Hence,

|αa,a′[Φ](τ) − αa,a′[Φ0](τ)| ≤ 1
2 |αa,a′ [Φ0](τ)| |αa[Φ](τ) − 1| ≤ 1

2

In particular,αa,a′ [Φ](τ2−) ≤ 1
2αa,a′ [Φ0](τ2−) < 0 and αa[Φ](τ2−) > 0. Conse-

quently,w′ is well defined and positive. Recall (3.14b) and estimate

|w′ − wL| ≤
∣∣∣ αa[Φ](τ2−)
αa,a′[Φ](τ2−)

− αa[Φ0](τ2−)
αa,a′ [Φ](τ2−)

∣∣∣+ ∣∣∣ αa[Φ0](τ2−)
αa,a′ [Φ](τ2−)

− αa[Φ0](τ2−)
αa,a′[Φ0](τ2−)

∣∣∣
+
∣∣∣ αa[Φ0](τ2−)
αa,a′[Φ0](τ2−)

− 1
αa,a′ [Φ0](τ2−)

∣∣∣
≤ 2wLM + 4w2

LM + wLM ≤ 23(1 + w)2M ≤ 1
2X(6, 0, 0, 2, 0, 0, 0)M
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We require(ℓ1, . . . , ℓ7) ≥ (35, 1, 0, 3, 1, 0,−2−7) (•)11. Hence|w′−wL| ≤ 1
2K ≤ 1

2 .
Construction ofh′. Let λ andw′ be given by (3.31) and (3.32). Set

µ = 1+2w′
1+w′

(− ξa[Φ,h](τ2−) + h log λ
)− h log 2

Recall (3.14c) and estimate∣∣µ− h
hL

∣∣ ≤ 1+2w′
1+w′

∣∣− ξa[Φ,h](τ2−) + h log λ + τ1− − h log λL

∣∣
+
∣∣1+2w′

1+w′ − 1+2wL

1+wL

∣∣ ∣∣τ1− − h log λL

∣∣
≤ 2
∣∣τ1− − τ2−

∣∣+ 2
∣∣τ2− − ξa[Φ0,h](τ2−)

∣∣
+ 2
∣∣ξa[Φ0,h](τ2−)− ξa[Φ,h](τ2−)

∣∣+ 4h |λ− λL|+ 4 |w′−wL|
(1+wL)2

≤ 22M + M + 2M + 23M + 24M ≤ 25M

For the second inequality, use(1+2w′) ≤ 2(1+w′) andλ, λL ≥ 1
2 and|τ1−| ≤ 1 and

|h log λL| ≤ |τ∗ log λL| ≤ 1, see (3.19), and1 + w′ ≥ 1
2 (1 + wL). By inspection,

h
hL
≥ 1+w

2+w min{1, q} ≥ X(−1, 0, 0, 0,−1, 0, 0)

To make sure thatµ > 0, we require(ℓ1, . . . , ℓ7) ≥ (36, 1, 0, 1, 2, 0,−2−7) (•)12, so
that25M ≤ 1

2X(−1, 0, 0, 0,−1, 0, 0)K ≤ 1
2

h
hL

, that is|µ − h
hL
| ≤ 1

2
h
hL

andµ > 0.
Set

h′ = h/µ > 0 (3.33)

Requireℓ8 ≥ 7 (•)13, so thath ≤ X(−7, 0, 0, 0,−1, 0, 0) and∣∣h′ − hL

∣∣ = hh/hL

µ

(
hL

h

)2 ∣∣µ− h
hL

∣∣ ≤ 1
2 X(2, 0, 0, 0, 1, 0, 0)M

We require(ℓ1, . . . , ℓ7) ≥ (31, 1, 0, 1, 2, 0,−2−7) (•)14. Then|h′ − hL| ≤ 1
2K ≤ 1

2 .
Construction ofq′. Set

q′ = 1
1+w′

(
h′ log λ− h′

h ξc′ [Φ,h](τ2−)− w′(1+w′)
1+2w′ − 1+3w′+(w′)2

1+2w′ h′ log 2
)

(3.34)

Recall (3.14d) and estimate

|q′ − qL|
≤ ∣∣ 1

1+w′h′ log λ− 1
1+wL

hL log λL

∣∣
+
∣∣ 1
1+w′

h′
h ξc′ [Φ,h](τ2−)− 1

1+wL

hL

h

(
ξa,c′ [Φ0,h](τ1−)− τ1−

)∣∣
+
∣∣ w′
1+2w′ − wL

1+2wL

∣∣+ ∣∣ 1+3w′+(w′)2

(1+w′)(1+2w′) h′ − 1+3wL+(wL)2

(1+wL)(1+2wL) hL

∣∣
≤ 1

1+w′h′
∣∣ log λ− log λL

∣∣+ 1
1+w′

∣∣h′ − hL

∣∣ log λL +
∣∣ 1
1+w′ − 1

1+wL

∣∣hL log λL

+ 1
1+w′

h′
h

∣∣ξc′ [Φ,h](τ2−)− ξc′ [Φ0,h](τ2−)
∣∣+ 1

1+w′
∣∣h′
h − hL

h

∣∣ ∣∣ξc′ [Φ0,h](τ2−)
∣∣

+
∣∣ 1
1+w′ − 1

1+wL

∣∣ hL

h

∣∣ξc′ [Φ0,h](τ2−)
∣∣

+ 1
1+wL

hL

h

∣∣ξc′ [Φ0,h](τ2−)− ξa,c′ [Φ0,h](τ1−) + τ1−
∣∣

+
∣∣ w′
1+2w′ − wL

1+2wL

∣∣+ ∣∣ 1+3w′+(w′)2

(1+w′)(1+2w′) − 1+3wL+(wL)2

(1+wL)(1+2wL)

∣∣h′ + ∣∣h′ − hL

∣∣
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≤ 23
∣∣λ− λL

∣∣+ ∣∣h′ − hL

∣∣(1 + w) + 4 |w
′−wL|

(1+wL)2 (1 + w)

+ 2hL

h

∣∣ξc′ [Φ,h](τ2−)− ξc′ [Φ0,h](τ2−)
∣∣+ ∣∣h′h − hL

h

∣∣ ∣∣ξc′ [Φ0,h](τ2−)
∣∣

+ 2 |w
′−wL|

(1+wL)2
hL

h

∣∣ξc′ [Φ0,h](τ2−)
∣∣+ hL

h

∣∣ξa,c′ [Φ0,h](τ2−)− ξa,c′ [Φ0,h](τ1−)
∣∣

+ hL

h

∣∣ξa[Φ0,h](τ2−)− τ2−
∣∣+ hL

h

∣∣τ2− − τ1−
∣∣

+ 2 |w
′−wL|

(1+wL)2 + 23 |w′−wL|
(1+wL)2 +

∣∣h′ − hL

∣∣
≤ 24M + X(2, 0, 0, 1, 1, 0, 0)M + X(5, 0, 0, 1, 0, 0, 0)M
+ X(2, 0, 0, 0, 1, 0, 0)M + X(6, 1, 0, 1, 1, 1, 0)M
+ X(9, 0, 0, 1, 1, 1, 0)M + X(3, 0, 0, 1, 1, 0, 0)M
+ X(1, 0, 0, 0, 1, 0, 0)M + X(2, 0, 0, 0, 1, 0, 0)M

+ 23M + 25M + X(1, 0, 0, 0, 1, 0, 0)M

≤ 1
2X(11, 1, 0, 1, 1, 1, 0)M

For the third inequality, usehL ≤ X(1, 0, 0, 0, 1, 0, 0)h ≤ 2 andh′ = h/µ ≤ 2hL ≤
22 andλ, λL ≥ 1

2 and|h log λL| ≤ 1 andlog λL ≤ 1 + w and(1 + w′) ≥ 1
2 (1 + wL).

For the fourth inequality, use(1 + w) ≤ X(1, 0, 0, 1, 0, 0, 0) and |w′−wL|
(1+wL)2 ≤ 22M and∣∣ξc′ [Φ0,h](τ2−)

∣∣ ≤ ∣∣ξa,c′ [Φ0,h](τ2−)
∣∣+ ∣∣ξa[Φ0,h](τ2−)− τ2−

∣∣+ |τ2−|
≤ X(3, 0, 0, 1, 0, 1, 0) + 1 + 1 ≤ X(5, 0, 0, 1, 0, 1, 0)

We require(ℓ1, . . . , ℓ7) ≥ (40, 2, 0, 2, 2, 1,−2−7) (•)15, such that|q′−qL| ≤ 1
2K ≤ 1

2 .
The maximum ofαb,c, αc,a, αa,b. Require(ℓ1, . . . , ℓ7)≥ (24, 1, 2, 2, 0, 0,−2−7) (•)16.
ThenX(20, 1, 0, 1, 0, 0,−2−7) ≤ 2−3(1+w)−1 min{w2, 1}. By the inequality (3.26),
we havedD(Φ0(τ), Φ(τ)) ≤ 2−3(1 + w)−1 min{w2, 1}, for all τ ∈ [τ0−, τ0+]. Hence,

αa,p[Φ] ≤ αa,p[Φ0] + dD(Φ0, Φ) ≤ −(1 + w)−1 + dD(Φ0, Φ) ≤ −2−1(1 + w)−1

αb,c[Φ] ≤ αa,b[Φ] + αa,c[Φ]− 2αa[Φ] ≤ αa,b[Φ] + αa,c[Φ] + 2Aa[Φ]

≤ 22dD(Φ0, Φ) + αa,b[Φ0] + αa,c[Φ0] + 2Aa[Φ0] ≤ −2−1(1 + w)−1w2

for all τ ∈ [τ0−, τ0+] and allp ∈ {b, c}.
Definition of the mapsΠ , Λ and τ2−. Set(ℓ1, . . . , ℓ7) = (40, 2, 2, 3, 2, 1,−2−7) and
ℓ8 = 7. With this choice, all inequalities(•) hold. The constantK defined by (3.19)
coincides withK(f), defined by (3.17). Furthermore, a vectorf = (h, w, q) ∈ (0,∞)3
satisfies our basic assumption (3.19) if and only iff ∈ F . Therefore, we can set

Π [π, σ∗] : F → (0,∞)2 × R f 7→ right hand sides of ((3.33), (3.32), (3.34))

Λ[π, σ∗] : F → [1,∞) f 7→ right hand side of (3.31)

τ2−[π, σ∗] : F → (−∞, 0) f 7→ right hand side of (3.30)

Properties (a), (b), (c) and (e) in Proposition 3.3 are by construction, where it is under-
stood that the fixed pointΦ of the mapP , whose domain of definition is[τ0−, τ0+], has
to be restricted to the subinterval[τ2−, τ2+] to comply with the statement in Proposition
3.3 (e). The statements of (e.1), (e.3), (e.4), (e.5) have already been discussed in this
proof. EquationΦ(τ2+) = Φ⋆ in (e.2), withΦ⋆ = Φ⋆(π, f , σ∗), follows from the fixed
point equationP (Φ) = Φ, see (3.23), and fromΦ1(τ1+) = Φ⋆ andτ0+ = τ1+ = τ2+.
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EquationΦ(τ2−) = λΦ⋆(π′, f ′, σ∗) in (e.2) withf ′ = (h′, w′, q′) is equivalent to (re-
call b′ = a)

αa′ [Φ](τ2−) = −λ (3.35a)

αa[Φ](τ2−) = λ w′
1+w′ (3.35b)

αc′ [Φ](τ2−) = λ (−w′ − µ′) (3.35c)
1
hξa′ [Φ,h](τ2−) = log λ + 1

h′
{− 1+w′

1+2w′ (1 + h′ log 2)
}

(3.35d)

1
hξa[Φ,h](τ2−) = log λ + 1

h′
{− 1+w′

1+2w′ (1 + h′ log 2)
}

(3.35e)

1
hξc′ [Φ,h](τ2−) = log λ + 1

h′
{− (1 + w′)q′ − w′(1+w′)

1+2w′ − 1+3w′+(w′)2

1+2w′ h′ log 2
}

(3.35f)

with µ′ = (1 + w′)
(
β2

1 + β2
2 + β2

3 − 2β2β3 − 2β3β1 − 2β1β2

)|β=β[Φ⋆(π′,f ′,σ∗)]. By
inspection: (3.35a) follows from (3.31); (3.35b) follows from (3.31) and (3.32); (3.35e)
follows from (3.33); (3.35f) follows from (3.34); (3.35d) follows from (3.35e) and
the discussion following (3.30). These five equations andc[Φ,h, Z](τ2−) = 0 imply
(3.35c). We have now checked (e.2). We now discuss (d).
Continuity of the mapsΠ , Λ andτ2−. Fix fΨ = (hΨ , wΨ , qΨ ) ∈ F . Let r > 0 and
let fΥ = (hΥ , wΥ , qΥ ) ∈ F with ‖fΨ − fΥ ‖R3 ≤ r. All the objects and abbreviations
that have been introduced for a single element ofF before, now come in two versions,
one associated to each offB ∈ F with B = Ψ, Υ . By convention, these two versions
are distinguished by a superscriptB. For instance,τB

0+ = τB
+1 = τB

2+ = τ+1(fB) and
ΦB

0 = Φ0(π, fB , σ∗)|[τB
0−,τB

0+] andEB = E(σ∗; τB
0−, τB

0+) and so forth. Following this

convention, the contraction mapping fixed points are denoted ΦB ∈ EB. However, we
also writeΦΨ = Ψ andΦΥ = Υ . Supposer ≤ 1

2 |qΨ − 1|. Then

0 6= sgn(qΨ − 1) = sgn(qΥ − 1) (3.36)

Define χ : R → R by χ(τ) = hΥ

hΨ (τ − τΨ
0+) + τΥ

0+. Introduce four closed inter-
vals IB = [τB

0−, τB
0+], B = Ψ, Υ , andIΞ = [χ−1(τΥ

0−), τΨ
0+] andI = IΨ ∩ IΞ .

Observe thatχ(IΞ) = IΥ . By Proposition 3.1, the fieldΞ = Υ ◦ (χ|IΞ ) satisfies
(a, b, c)[Ξ,hΨ , Z] = 0 on IΞ . RecallJ B = [τB

0−, 1
2τB

1−] ⊂ IB and|τB
2− − τB

1−| ≤
1
2distR(τB

1−, R \ J B), see (3.28b) and (3.29). SetJ = J Ψ ∩ J Ξ ⊂ I with J Ξ =
χ−1(J Υ ). If r > 0 is sufficiently small, then

τΨ
2− ∈ J and χ−1(τΥ

2−) ∈ J
These inclusions have similar proofs. We only verifyτΨ

2− ∈ J . We haveτΨ
2− ∈ J Ψ and

|χ(τΨ
2−)− τΥ

1−| ≤ |χ(τΨ
2−)− χ(τΨ

1−)|+ |χ(τΨ
1−)− τΥ

1−|
≤ hΥ

hΨ
1
2distR(τΨ

1−, R \ J Ψ ) + |χ(τΨ
1−)− τΥ

1−| (3.37)

The right hand side of (3.37) is a continuous function offΥ ∈ F (with fΨ fixed)
and is equal to1

2distR(τΥ
1−, R \ J Υ ) > 0 when fΥ = fΨ . Therefore (3.37) is<

distR(τΥ
1−, R \ J Υ ) if r > 0 is small enough. Henceχ(τΨ

2−) ∈ J Υ , that isτΨ
2− ∈ J Ξ .

SetD = DΨ = DΥ = D(σ∗) andE = E(σ∗; I) andΦ0 = Φ0(π, fΨ , σ∗)|I . Equiva-
lently, Φ0 = ΦΨ

0 |I . AbbreviatedX = dX ,(π,hΨ ) for X = E ,D anddXB = dXB ,(π,hB)
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for B = Ψ, Υ . By (3.25), we havedEB (B, ΦB
0 ) ≤ 1

2δB for B = Ψ, Υ . If r > 0 is
sufficiently small, then

dE(Ψ |I , Φ0) ≤ δΨ and dE (Ξ|I , Φ0) ≤ δΨ (3.38)

The first follows fromdE(Ψ |I , Φ0) ≤ dEΨ (Ψ, ΦΨ
0 ) ≤ 1

2δΨ . The second follows from

dE(Ξ|I , Φ0) ≤ dE(Υ ◦ χ|I , ΦΥ
0 ◦ χ|I) + dE(ΦΥ

0 ◦ χ|I , Φ0)

≤ max{1, hΨ

hΥ } dEΥ (Υ, ΦΥ
0 ) + dE(ΦΥ

0 ◦ χ|I , Φ0)

≤ max{1, hΨ

hΥ } 1
2δΥ + dE(ΦΥ

0 ◦ χ|I , Φ0) (3.39)

and because the right hand side of (3.39) is a continuous function of fΥ ∈ F (with fΨ

fixed), see (3.20), that is equal to12δΨ whenfΥ = fΨ .
BothX = Ψ |I andX = Ξ|I satisfy(a, b, c)[X,hΨ , Z] = 0 onI,

Aa[X ](τ) = Aa[X ](τΨ
0+) +

∫ τ

τΨ
0+

dτ ′ I1[X,hΨ , π](τ ′) (3.40a)

θa[X,hΨ ](τ) = θa[X,hΨ ](τΨ
0+) +

∫ τ

τΨ
0+

dτ ′ I2[X,hΨ , π](τ ′) (3.40b)

αp,a[X ](τ) = αp,a[X ](τΨ
0+) +

∫ τ

τΨ
0+

dτ ′ I(3,p)[X,hΨ , π](τ ′) (3.40c)

ξp,a[X,hΨ ](τ) = ξp,a[X,hΨ ](τΨ
0+) + αp,a[X ](τΨ

0+) (τ − τΨ
0+) (3.40d)

+
∫ τ

τΨ
0+

dτ ′′
∫ τ ′′

τΨ
0+

dτ ′ I(3,p)[X,hΨ , π](τ ′)

for all p ∈ {b, c} andτ ∈ I. By (3.24b), (3.38), (3.40) and bysupτ∈I |τ−τΨ
0+| ≤ 4, we

havedE(Ψ |I , Ξ|I) ≤ 23dD(Ψ(τΨ
0+), Ξ(τΨ

0+)) + 2−1dE(Ψ |I , Ξ|I), and consequently

dE(Ψ |I , Ξ|I) ≤ 24dD(Ψ(τΨ
0+), Ξ(τΨ

0+)) = 24 dD
(
Φ⋆(π, fΨ , σ∗), Φ⋆(π, fΥ , σ∗)

)
In particular,dE(Ψ |I , Ξ|I)→ 0 asfΥ → fΨ . Furthermore,

dD
(
λΨ Φ⋆(π′, f ′Ψ , σ∗), λΥ Φ⋆(π′, f ′Υ , σ∗)

)
= dD

(
Ψ(τΨ

2−), Ξ(χ−1(τ Υ
2−))

)
≤ dD

(
Ψ(τΨ

2−), Ψ(χ−1(τΥ
2−))

)
+ dD

(
Ψ(χ−1(τΥ

2−)), Ξ(χ−1(τ Υ
2−))

)
≤ dD

(
Ψ(τΨ

2−), Ψ(χ−1(τΥ
2−))

)
+ 24 dD

(
Φ⋆(π, fΨ , σ∗), Φ⋆(π, fΥ , σ∗)

)
By the last inequality, if we can show thatχ−1(τΥ

2−) → τΨ
2− asfΥ → fΨ , thenτΥ

2− →
τΨ
2− andλΥ → λΨ and f ′Υ → f ′Ψ . In other words, to show thatΠ , Λ andτ2− are

continuous, it suffices to show thatχ−1(τΥ
2−)→ τΨ

2− asfΥ → fΨ .
By the discussion after (3.32), we haveαa[Ψ ](τ) ≥ 1

2 andαa,a′[Ψ ](τ) ≤ 0 for all
τ ∈ J ⊂ J Ψ . Hence, for allτ ∈ J ,

d
dτ

(
ξa[Ψ,hΨ ]− ξa′ [Ψ,hΨ ]

)
= αa[Ψ ]− αa′ [Ψ ] = 2αa[Ψ ]− αa,a′ [Ψ ] ≥ 1

Hence,|τ − τΨ
2−| ≤

∣∣ξa[Ψ,hΨ ](τ)− ξa′ [Ψ,hΨ ](τ)
∣∣ if τ ∈ J . Setτ = χ−1(τΥ

2−) ∈ J :

|χ−1(τΥ
2−)− τΨ

2−| ≤
∣∣ξa[Ψ,hΨ ](χ−1(τΥ

2−))− ξa′ [Ψ,hΨ ](χ−1(τΥ
2−))

∣∣
≤ 2 d/D,hΨ

(
Ψ(χ−1(τΥ

2−)), Ξ(χ−1(τΥ
2−))

)
(3.41)
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The last inequality follows fromξa[Ξ,hΨ ](χ−1(τΥ
2−)) = ξa′ [Ξ,hΨ ](χ−1(τΥ

2−)) and
the triangle inequality. SincefΥ → fΨ impliesdE(Ψ |I , Ξ|I) → 0, also the right hand
side of (3.41) goes to zero, that is,|χ−1(τΥ

2−)− τΨ
2−| → 0, as required.

Uniqueness ofΠ , Λ and τ2−. Suppose we have two triplesΠi, Λi, τ2−,i with i =
1, 2. Let f ∈ F and letΦi be the corresponding fields in (e). By (e.1) and (e.2) and
the local uniqueness for solutions to ODE’s, we haveΦ1 = Φ2 on the intersection
of their domains of definition[max{τ2−,1(f), τ2−,2(f)}, τ2+]. Observe thatτ−(f) <
τ2−,1(f), τ2−,2(f) < 1

2τ1−(f), by (c). By (e.3), we haveτ2−,1(f) = τ2−,2(f). By (e.2),
we haveΠ1(f) = Π2(f), Λ1(f) = Λ2(f). ⊓⊔
Remark 3.6.In Proposition 3.3, the signature vectorσ∗ appears to play a passive role.
However, observe thatΦ⋆ = Φ⋆(π, f , σ∗) in (e.2) depends on it in a crucial way, see
Definition 3.12. For instance, whileαa[Φ⋆] andαb[Φ⋆] do not depend onσ∗ at all, and
βi[Φ⋆], i = 1, 2, 3 only in a trivial way through their signs, the componentαc[Φ⋆] does
depend onσ∗ in a more important way, because the right hand side of (3.10)does. That
σ∗ plays a role is not surprising, after all it distinguishes Bianchi VIII and IX.

4. The approximate epoch-to-epoch and era-to-era maps

This section is logically self-contained, and the notationis introduced from scratch. Its
goal is to study two maps, denotedQR andER, that we informally refer to (following
[BKL1]) as the epoch-to-epochand era-to-eramaps. The two maps are related, the
second is some iterate of the first. The subscriptR is for right (as opposed toleft). For
the moment, the definition ofQR is taken for granted without motivation. To understand
its role, see Part 3 of Proposition 4.4 and its proof.

Definition 4.1 (Epoch-to-epoch map).Set

QR : (0,∞) \Q→ (0,∞) \Q

w 7→ QR(w) =

{
1
w − 1 if w < 1
w − 1 if w > 1

For everyw ∈ (0,∞) \Q, set

QR{w}(q,h) =
(

num1
den

,
num2
den

)
where, ifw < 1,

num1 = 1 + w + h log 2− h(1 + 2w) log(1 + 1
w ) (4.1a)

num2 = h (4.1b)

den = (1 + w)(1 + q + h log 2)− h(2 + w) log(1 + 1
w ) (4.1c)

and, ifw > 1,

num1 = (1 + w)(1 + q + h log 2)− h(2 + w) log(1 + 1
w ) (4.2a)

num2 = hw (4.2b)

den = 1 + w + h log 2− h(1 + 2w) log(1 + 1
w ) (4.2c)

159



28

Here, we regardQR{w} as a pair of rational functions overR of degree one in the pair
of abstract variables(q,h). Finally, for all w ∈ (0,∞) \Q and all integersn ≥ 0, set

Qn
R(w) =

(QR ◦ · · · ◦ QR︸ ︷︷ ︸
n

)
(w)

Qn
R{w} = QR{Qn−1

R (w)} ◦ · · · ◦QR{Q2
R(w)} ◦QR{QR(w)} ◦QR{w}

Warning:Qn
R{w} is not then-fold composition ofQR{w} with itself.

The goal of this section is to understand the bulk behavior ofQn
R{w} for largen ≥ 0.

Definition 4.2. The floor function isR ∋ x 7→ ⌊x⌋ = max{n ∈ Z |n ≤ x}.
Definition 4.3 (Era-to-era map). DefineER : (0, 1) \ Q → (0, 1) \ Q by ER(w) =
Q⌊1/w⌋

R (w). For everyw ∈ (0, 1) \ Q, denote byER{w} the pair of rational functions

overR given byER{w} = Q⌊1/w⌋
R {w}. Finally, for all w ∈ (0, 1) \Q and all integers

n ≥ 0, set

En
R(w) =

( ER ◦ · · · ◦ ER︸ ︷︷ ︸
n

)
(w)

En
R{w} = ER{En−1

R (w)} ◦ · · · ◦ ER{E2
R(w)} ◦ ER{ER(w)} ◦ ER{w}

Lemma 4.1.For all integersm, n ≥ 0,

• Qm+n
R {w} = Qm

R {Qn
R(w)} ◦Qn

R{w} for w ∈ (0,∞) \Q
• Em+n

R {w} = Em
R {En

R(w)} ◦ En
R{w} for w ∈ (0, 1) \Q

Proposition 4.1.Letw ∈ (0, 1) \Q. Then, for every integer1 ≤ r ≤ ⌊ 1
w ⌋,

Qr
R{w}(q,h) =

(
num1r

denr
,
num2r

denr

)
(4.3)

where

num1r = (1 + w)
(
r + rq − q

)
+ hA1(w, r) (4.4a)

num2r = h
(
w + 1− wr

)
(4.4b)

denr = (1 + w)(1 + q) + hA2(w, r) (4.4c)

and where

A1(w, r) =
(
2r − 1 + wr − w

)
log 2− (2r − 1 + wr + w

)
log(1 + 1

w )

+
∑r−1

k=1

(
1 + 2k − 2k2w − w

)
log
(
1 + w

1−kw

)
+ r

∑r−1
k=1

(
(2k − 1)w − 2

)
log
(
1 + w

1−kw

) (4.5a)

A2(w, r) = (1 + wr) log 2− (2 + w) log(1 + 1
w )

+
∑r−1

k=1

(
(2k − 1)w − 2

)
log
(
1 + w

1−kw

) (4.5b)

Furthermore,ER(w) = 1
w − ⌊ 1

w⌋, that is,ER is the Gauss map, and

ER{w}(q,h) =
(

num1⌊1/w⌋
den⌊1/w⌋

,
num2⌊1/w⌋
den⌊1/w⌋

)

160



29

Remark 4.1.In equation (4.5), we have0 ≤ w
1−kw ≤ 1 for all 1 ≤ k ≤ r − 1.

Proof. Let w ∈ (0, 1) \ Q. We show (4.3) by induction over1 ≤ r ≤ ⌊ 1
w⌋. Ther = 1

base case of the induction argument,QR{w}(q,h) = (num11/den1, num21/den1),
is by direct inspection, using (4.1). The induction step becomes the identity

QR{Qr−1
R (w)}

(
num1r−1
denr−1

, num2r−1
denr−1

)
=
(

num1r

denr
, num2r

denr

)
(4.6)

for all 2 ≤ r ≤ ⌊ 1
w ⌋. To calculateQR{Qr−1

R (w)}( · ), use formulas (4.2), since
Qr−1

R (w) = 1
w − r + 1 > 1. Observe that (4.6) follows from the identities

λ num1r =
(
1 + ( 1

w − r + 1)
)(

denr−1 + num1r−1 + num2r−1 log 2
)

− num2r−1

(
2 + ( 1

w − r + 1)
)
log(1 + w

1−(r−1)w )

λ num2r = num2r−1

(
1
w − r + 1

)
λ denr = denr−1

(
1 + ( 1

w − r + 1)
)

+ num2r−1 log 2

− num2r−1

(
1 + 2( 1

w − r + 1)
)
log(1 + w

1−(r−1)w )

whereλ = 2 + 1
w − r > 2. To verify each of these identities, divide both sides byλ,

and usenum2r−1 = hwλ, to obtain the equivalent identities

num1r = denr−1 + num1r−1 + num2r−1 log 2
− h(3w + 1− rw) log(1 + w

1−(r−1)w )

num2r = h(1− rw + w)
denr = denr−1 + hw log 2− h(3w + 2− 2rw) log(1 + w

1−(r−1)w )

The last three identities are verified directly.⊓⊔

The following lemma will be used later.

Lemma 4.2.For everyw ∈ (0, 1) \Q and every integerr with 1 ≤ r ≤ ⌊ 1
w⌋,

0 ≤ A1(w, r) − rA2(w, r) + log 2 ≤ 6 1
w

−8 log(1 + 1
w ) ≤ A2(w, r) ≤ 0

Here,A1 andA2 are defined by(4.5).

Proof. Observe thatrw ≤ 1. Calculate{
A1(w, r) − rA2(w, r) + log 2

}
w = w2(r − 1) log 2 + rw(1 − rw) log 2

+ (1− w)w log(1 + 1
w ) + w

∑r−1
k=1

(
2k(1− kw) + (1− w)

)
log(1 + w

1−kw )

By inspection, the right hand side is non-negative, and bounded by

≤ 3 + 1
r

∑r−1
k=1

(
2k(1− kw) + (1− w)

)
w

1−kw ≤ 6
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We haveA2(w, r) ≤ 0, becauserw ≤ 1, the sum of the first two terms on the right
hand side of (4.5b) is non-positive, and the third term is non-positive. Estimate

|A2(w, r)| ≤ (2 + w) log(1 + 1
w ) + 2

∑r−1
k=1 log(1 + w

1−kw )

≤ 3 log(1 + 1
w ) + 2

∑r−1
k=1

w
1−kw ≤ 3 log(1 + 1

w ) + 2
(
1 +

∫ r−1

0 dk w
1−kw

)
≤ 3 log(1 + 1

w ) + 2
(
1− log(1− (r − 1)w)

) ≤ 8 log(1 + 1
w )

since2 < 3 log 2 ≤ 3 log(1 + 1
w ) and− log(1 − rw + w) ≤ − log w = log 1

w ≤
log(1 + 1

w ). ⊓⊔

Proposition 4.2.For everyw ∈ (0, 1)\Q, everyp > 0 and every integer1 ≤ r ≤ ⌊ 1
w⌋,

let (µ′, ν′) be the pair of rational functions overR in the pair of abstract variables
(µ, ν) given implicitly by(

p′ +
µ′

ν′
,

1 + w′

ν′
)

= Qr
R{w}

(
p +

µ

ν
,

1 + w

ν

)
wherew′ = Qr

R(w) = 1
w − r andp′ = r − p/(1 + p), that is(p′, 0) = Qr

R{w}(p, 0).
Thenµ′ is actually a linear polynomial overR in µ, andν′ is actually a linear polyno-
mial overR in the pair(µ, ν). Explicitly(

µ′
ν′

)
=

1
w

(− 1
1+p 0
1 1 + p

)(
µ
ν

)
+

1
w

(
A1(w, r) − p′ A2(w, r)

A2(w, r)

)
(4.7)

The first and second entries of the vector

1
w

(
A1(w, r) − p′ A2(w, r)

A2(w, r)

)
(4.8)

are bounded in absolute value by≤ 24( 1
w )2 and≤ 23 1

w log(1 + 1
w ), respectively.

Proof. Equation (4.7) follows from equation (4.3). To check the bounds, observe that

A1(w, r) − p′A2(w, r) =
(
A1(w, r) − r A2(w, r) + log 2

)
− log 2 + p

1+p A2(w, r)

Now, use Lemma 4.2 andlog 2 ≤ 1
w andlog(1 + 1

w ) ≤ 1
w . . ⊓⊔

Definition 4.4. For every sequence of strictly positive integers(kn)n≥0, we denote the
associated infinite continued fraction by

〈k0, k1, . . .〉 =
1

k0 + 1
k1+...

∈ (
1

k0+1 , 1
k0

) \Q

Every element of(0, 1) \Q has a unique continued fraction expansion of this form.

We now show that whenh = 0, the era-to-era maps can be realized as a left-shift
operator on two-sided sequences of positive integers.
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Proposition 4.3.Fix any two-sided sequence(kn)n∈Z of strictly positive integers and
define two-sided sequences(pn)n∈Z and(wn)n∈Z by

1
1+pn

= 〈kn, kn−1, kn−2, . . .〉 wn = 〈kn+1, kn+2, kn+3 . . .〉 (4.9)

Thenwn+1 = ER(wn) and(pn+1, 0) = ER{wn}(pn, 0) for all n ∈ Z, andEn
R(w0) =

wn andEn
R{w0}(p0, 0) = (pn, 0) for all n ≥ 0.

Proof. UseER(w) = 1
w − ⌊ 1

w ⌋ andER{w}(p, 0) = (⌊ 1
w ⌋ − 1 + 1

1+p , 0). ⊓⊔
Definition 4.5. Fix any two-sided sequence(kn)n∈Z of strictly positive integers and
define(pn)n∈Z and (wn)n∈Z by (4.9). For every integern ≥ 0, let (µn, νn) be the
pair of linear polynomials overR in the abstract variables(µ0, ν0), with coefficients
depending only on the fixed sequence(kn)n∈Z, given implicitly by(

pn +
µn

νn
,

1 + wn

νn

)
= En

R{w0}
(
p0 +

µ0

ν0
,

1 + w0

ν0

)
(4.10a)

or by the equivalent recursive prescription(
pn+1 +

µn+1

νn+1
,

1 + wn+1

νn+1

)
= ER{wn}

(
pn +

µn

νn
,

1 + wn

νn

)
(4.10b)

By Proposition 4.2, equation(4.10b)is Vn+1 = XnVn + Yn, whereVn = (µn, νn)T

and

Xn =
1

wn

(− 1
1+pn

0
1 1 + pn

)
Yn =

1
wn

(
A1(wn)− pn+1A2(wn)

A2(wn)

)
Here,A1(w) = A1(w, ⌊ 1

w ⌋) andA2(w) = A2(w, ⌊ 1
w⌋), see equations(4.5).

Example 4.1.We consider Definition 4.5 whenkn = 1 for all n ∈ Z. Thenwn = pn =
w for all n ∈ Z, wherew = 1

2 (
√

5 − 1) ∈ (0, 1) \ Q. We havew2 + w − 1 = 0 and
⌊ 1

w⌋ = 1 and

Xn =
( −1 0

1 + w 2 + w

)
Yn =

( −2 log(1 + w)
(2 + w) log 2− (6 + 4w) log(1 + w)

)
for all n ≥ 0. It follows thatµn+2 = µn for all n ≥ 0, that is,µ2n = µ0 andµ2n+1 =
−µ0−2 log(1+w). There are uniqueλ1 = λ1(µ0) andλ2 = λ2(µ0), depending only on
µ0, such thatν2n+2−λ1 = (2+w)2(ν2n−λ1) andν2n+3−λ2 = (2+w)2(ν2n+1−λ2).
That is,ν2n = (2 + w)2n(ν0 −λ1) + λ1 andν2n+1 = (2 + w)2n(ν1 −λ2) + λ2. Here,
ν1 = (2 + w)ν0 + (1 + w)µ0 + (2 + w) log 2− (6 + 4w) log(1 + w).

Definition 4.6 (Propagator).Let (pn)n∈Z, (wn)n∈Z, (Xn)n≥0 be as in Definition 4.5.
Then for all integersn ≥ m ≥ 0, let Pn,m = Xn−1 · · ·Xm. Explicitly,

Pn,m =
(

an−1 · · ·am 0∑n−1
ℓ=m xℓ cn−1 · · · cm

)
wherexℓ = cn−1 · · · cℓ+1bℓaℓ−1 · · · am whenevern− 1 ≥ ℓ ≥ m, and for allℓ ≥ 0,

Xℓ =
(

aℓ 0
bℓ cℓ

)
aℓ =

−1
wℓ(1 + pℓ)

bℓ =
1
wℓ

cℓ =
1 + pℓ

wℓ
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In this definition, a sequence of dots· · · indicates that indices increase towards the left,
one by one. A product of the formFk · · ·Fj is equal to one ifk = j − 1. In particular,
Pn,n =

(
1 0
0 1

)
.

Lemma 4.3.In the context of Definition 4.5, we haveVn = Pn,0V0 +
∑n−1

ℓ=0 Pn,ℓ+1Yℓ.

Lemma 4.4.Recall Definition 4.6. For all integersn ≥ m ≥ 0, we have

1
2 ≤ wn−1

wm−1
(−1)m+nan−1 · · · am ≤ 2 (4.11a)

(1− δmn) 1
4 ≤ wn−1

w2
m−1

(
wn−2 · · ·wm−1

)2 ∑n−1
ℓ=m xℓ ≤ 2 (4.11b)

1
2 ≤ wn−1

wm−1

(
wn−2 · · ·wm−1

)2
cn−1 · · · cm ≤ 2 (4.11c)

Moreover,

wn−2 · · ·wm−1 ≤ |ρ−|n−m−1 = ρ−n+m+1
+ when n ≥ m ≥ 0 (4.12)

Here,ρ± = 1
2 (1±√5) are the roots of the polynomialρ2−ρ−1. Observe that|ρ−| < 1.

In this lemma, a sequence of dots· · · indicates that indices increase towards the left,
one by one. A product of the formFk · · ·Fj is equal to one ifk = j − 1.

Proof. In this proof, abbreviatevℓ = 1/(1 + pℓ+1) = 〈kℓ+1, kℓ, kℓ−1 . . .〉. We have

(−1)m+nan−1 · · · am =
vn−2 · · · vm−1

wn−2 · · ·wm−1
· wm−1

wn−1
(4.13a)

xm = cn−1 · · · cm+1bm =
wn−2 · · ·wm

vn−2 · · · vm
· w2

m−1

wn−1
·
( 1

wn−2 · · ·wm−1

)2

(4.13b)

cn−1 · · · cm =
wn−2 · · ·wm−1

vn−2 · · · vm−1
· wm−1

wn−1
·
( 1

wn−2 · · ·wm−1

)2

(4.13c)

wheren ≥ m in (4.13a) and (4.13c) andn > m in (4.13b). Each right hand side is
written as a product of positive quotients, whose first factor is contained in the closed
interval[ 12 , 2], see Proposition A.1 (a) of Appendix A. This implies (4.11a)and (4.11c).
If n = m, the sum in (4.11b) vanishes and the estimate is trivial. Supposen > m.
We havesgnxℓ = (−1)ℓ+m. If, in addition, ℓ satisfiesn − 2 ≥ ℓ ≥ m, we have
|xℓ+1|/|xℓ| = vℓvℓ−1 = vℓ(v−1

ℓ − ⌊v−1
ℓ ⌋) ≤ 1

2 , that is 1
2 |xℓ| ≥ |xℓ+1|. Therefore, the

alternating sum in (4.11b) is non-negative and bounded fromabove by its first summand
xm > 0 and from below byxm + xm+1 ≥ xm − |xm+1| ≥ 1

2xm. Actually, xm+1 is
only defined whenn ≥ m + 2, but 1

2xm is a lower bound for alln ≥ m + 1. Now,
estimatexm, which is the left hand side of (4.13b).
Inequality (4.12) is a consequence of Proposition A.1 (b).⊓⊔
Warning: In the next proposition, the sequences(wj)j∈Z and(pj)j∈Z do not have the
property thatwj and(1 + pj)−1 always lie in(0, 1) \Q. Rather, they lie in(0,∞) \Q.
However, in the proof of Proposition 4.4, the auxiliary sequences(w∗

n)n∈Z and(p∗n)n∈Z
do have the property thatw∗

n and(1 + p∗n)−1 always lie in(0, 1) \ Q. The discussion
beginning with Proposition 4.3 and ending just above will beapplied to the auxiliary
sequences.

Proposition 4.4.For all w0 ∈ (0, 1) \Q andq0 ∈ (0,∞) \Q, introduce
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• a two sided sequence of strictly positive integers(kn)n∈Z by

(1 + q0)−1 = 〈k0, k−1, k−2, . . .〉 w0 = 〈k1, k2, k3, . . .〉
• (Era Pointer)J : Z→ Z byJ(0) = 0 andJ(n + 1) = J(n) + kn+1

• (Era Counter)N : Z→ Z byN(0) = 0 andN(j + 1) = N(j) + χJ(Z)(j), where
χJ(Z) is the characteristic function of the imageJ(Z) ⊂ Z; equivalently

N(j) = min{n ∈ Z | J(n) ≥ j} (4.14)

• sequences(wj)j∈Z and(pj)j∈Z by (observe thatw0 is defined consistently)

wj = 〈kN(j)+1, kN(j)+2, . . .〉+ J
(
N(j)

)− j (4.15a)

pj = 〈kN(j)−1, kN(j)−2, . . .〉+ kN(j) + j − J
(
N(j)

)− 1 (4.15b)

Part 1. Thenp0 = q0 andwj , pj > 0 andQR(wj) = wj+1 andQR{wj}(pj, 0) =
(pj+1, 0) for all j ∈ Z, andQj

R(w0) = wj andQj
R{w0}(q0, 0) = (pj , 0) for all j ≥ 0.

Part 2. Letρ+ = 1
2

(
1 +
√

5
)

and set

C(w0, q0) = supn≥0 (n + 1)ρ−2n
+ kn max{kn−1, kn−2} ∈ [1,∞]

SupposeC(w0, q0) < ∞. Fix any 0 < h0 ≤ 2−14(C(w0, q0))−1. Then, there are
sequences(qj)j≥0, (hj)j≥0 of real numbers such that for everyj ≥ 0, the denominator
appearing in the pair of rational functionsQR{wj}, given by(4.1c)or (4.2c), is strictly
positive at(qj ,hj), and

(qj+1,hj+1) = QR{wj}(qj ,hj)

or (qj ,hj) = Qj
R{w0}(q0,h0). For all j ≥ 0,

• 0 < hj ≤ 26 h0 ρ
−2N(j)
+ and

1
4
≤ hj

h0

1 + w0

1 + wj

N(j)−1∏
ℓ=0

1
wJ(ℓ)wJ(ℓ−1)

≤ 4

• qj ∈ (0,∞) \ Z and|qj − pj| ≤ 212 h0 N(j) ρ
−2N(j)
+ kN(j)

• qj ∈ (0, 1) if and only ifpj ∈ (0, 1) if and only ifj − 1 ∈ J(Z)
• max{ 1

wj
, wj ,

1
qj

, 1
|qj−1| , qj} ≤ 24 max{kN(j)−2, kN(j)−1, kN(j), kN(j)+1}

Part 3. Let the mapQL : (0,∞)3 → (0,∞)2 ×R be given as in Definition 3.16. Then
the sequences(hj)j≥0, (wj)j≥0, (qj)j≥0 in Part 2 satisfy for allj ≥ 0:

(hj , wj , qj) = QL(hj+1, wj+1, qj+1)

Example 4.2.In Part 1 of Proposition 4.4, suppose the continued fractionexpansions
begin as follows:(1 + q0)−1 = 〈1, 2, . . .〉 andw0 = 〈3, 1, 2, 4 . . .〉. Then,

j −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
χJ(Z)(j) 1 0 1 1 0 0 1 1 0 1 0 0 0 1

N(j) −2 −1 −1 0 1 1 1 2 3 3 4 4 4 4
J(N(j)) −3 −1 −1 0 3 3 3 4 6 6 10 10 10 10
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Proof (of Proposition 4.4).Two basic properties ofJ andN are, for allj ∈ Z:

• N ◦ J is the identity; consequentlyJ(N(j)) = j if and only if j ∈ J(Z)
• J(N(j)) ≥ j andJ(N(j)− 1) ≤ j − 1 by (4.14); consequently

j ≤ J(N(j)) ≤ kN(j) + j − 1 (4.16)

The second bullet implieswj > 0 andpj > 0, for all j ∈ Z. The first bullet implies
thatwj ∈ (0, 1) if and only if j ∈ J(Z). Therefore, we have

QR(wj) =

{
1

wj
− 1 if j ∈ J(Z)

wj − 1 if j /∈ J(Z)
QR{wj}(pj, 0) =

{
( 1
1+pj

, 0) if j ∈ J(Z)
(1 + pj , 0) if j /∈ J(Z)

In the casej /∈ J(Z), we haveN(j + 1) = N(j), and thereforewj+1 = wj − 1 and
pj+1 = pj + 1, as required. In the casej ∈ J(Z), we haveN(j + 1) = N(j) + 1 and
J(N(j + 1)) = J(N(j) + 1) = J(N(j)) + kN(j)+1 = j + kN(j)+1, which implies

wj+1 = 〈kN(j)+2, kN(j)+3, . . .〉+ kN(j)+1 − 1 = 1
wj
− 1

pj+1 = 〈kN(j), kN(j)−1, . . .〉 = 1
1+pj

as required.Part 1 is checked.
To provePart 2, we first construct two sequences(qj)j≥0 and(hj)j≥0. Then we verify
that they have the desired properties. Below, a sequence of dots · · · in any product of
the formFm · · ·Fn indicates that indices increase towards the left, one by one. The
product is equal to one ifm = n − 1. Define sequences(w∗

n)n∈Z and (p∗n)n∈Z by
w∗

n = wJ(n) ∈ (0, 1) \Q andp∗n = pJ(n) ∈ (0,∞) \Q. Equivalently,

1
1+p∗n

= 〈kn, kn−1, kn−2, . . .〉 w∗
n = 〈kn+1, kn+2, kn+3, . . .〉

so thatw∗
n+1 = ER(w∗

n) and (p∗n+1, 0) = ER{w∗
n}(p∗n, 0), by Proposition 4.3. Let

(V ∗
n )n≥0, with V ∗

n = (µ∗n, ν∗n)T , as in Definition 4.5, be the solution toV ∗
n+1 =

X∗
nV ∗

n + Y ∗
n for all n ≥ 0 with µ∗0 = 0 andν∗0 = (1 + w∗

0)/h0 > 0, where

X∗
n =

1
w∗

n

(− 1
1+p∗n

0
1 1 + p∗n

)
Y ∗

n =
1

w∗
n

(
A1(w∗

n)− p∗n+1 A2(w∗
n)

A2(w∗
n)

)
Let (Vj)j≥0, with Vj = (µj , νj)T , be given byV0 = V ∗

0 and for allj ≥ 1 by Vj =
X∗

N(j)−1V
∗
N(j)−1 + Yj , where

Yj =
1

w∗
s

(
A1(w∗

s , j − J(s))− pj A2(w∗
s , j − J(s))

A2(w∗
s , j − J(s))

) ∣∣∣∣
s=N(j)−1

The functionsA1 andA2, on the right hand side, are well defined at(ws, j − J(s)),
wheres = N(j) − 1, because1 ≤ j − J(s) ≤ kN(j) = ⌊1/w∗

s⌋. The following two
observations will be used later on:

• Recall (4.15b). For allj ≥ 1, s = N(j)−1, we havepj = (j−J(s))−p∗s/(1+p∗s),
and consequently the estimates after (4.8) apply toYj , j ≥ 1. They also apply toY ∗

n ,
n ≥ 0, becausep∗n+1 = ⌊1/w∗

n⌋ − p∗n/(1 + p∗n).
• YJ(n) = Y ∗

n−1 for all n ≥ 1, and consequentlyVJ(n) = V ∗
n . The last identity is

also true whenn = 0, becauseJ(0) = 0.
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As in Definition 4.6, setP ∗
n,m = X∗

n−1 · · ·X∗
m for all n ≥ m ≥ 0. For all j ≥ 1,

s = N(j)− 1, Lemma 4.3 implies

Vj = X∗
s

(
P ∗

s,0V
∗
0 +

∑s−1
ℓ=0 P ∗

s,ℓ+1Y
∗
ℓ

)
+ Yj = P ∗

s+1,0V
∗
0 +

∑s−1
ℓ=0 P ∗

s+1,ℓ+1Y
∗
ℓ + Yj

The last equation, the estimates after (4.8), and the estimates in Lemma 4.4 imply

|µj | ≤ 25

w∗
s

s∑
ℓ=0

1
w∗

ℓ

(4.17a)

νj ≥ 1
2w∗

s

( 1
w∗

s−1 · · ·w∗−1

)2
(

w∗
−1ν0 − 28

s∑
ℓ=0

(
w∗

ℓ−1 · · ·w∗
−1

)2 log
(
1 +

1
w∗

ℓ

))
(4.17b)

νj ≤ 2
w∗

s

( 1
w∗

s−1 · · ·w∗
−1

)2
(

w∗
−1ν0 + 26

s∑
ℓ=0

(
w∗

ℓ−1 · · ·w∗
−1

)2 log
(
1 +

1
w∗

ℓ

))
(4.17c)

for all j ≥ 1 ands = N(j)− 1. All three estimates are also true whenj = 0, s = −1.
AbbreviateC = C(w0, q0) ≥ 1. We havekn ≤ Cρ2n

+ for all n ≥ 0. Estimate

28∑s
ℓ=0

(
w∗

ℓ−1 · · ·w∗
−1

)2 log
(
1 + 1/w∗

ℓ

)
≤ 28w∗

−1

∑∞
ℓ=0(ρ+)−2ℓ+2 log(2 + kℓ+1) see inequality (4.12)

≤ 28w∗
−1

∑∞
ℓ=0(ρ+)−2ℓ+2(2 + log kℓ+1)

≤ 213w∗
−1

(
1 + logC

) ≤ 213w∗
−1C ≤ 2−1w∗

−1
1
h0
≤ 2−1w∗

−1ν0

Hence, for allj ≥ 0,

1
4
≤

w∗
N(j)−1

w∗
−1

(
w∗

N(j)−2 · · ·w∗
−1

)2 h0

1 + w∗
0

νj ≤ 4 (4.18)

Define sequences(hj)j≥0 and(qj)j≥0 byhj = (1+wj)/νj > 0 andqj = pj +µj/νj.
These definitions are consistent whenj = 0. Observe that1+wj ≤ 2+J(N(j))−j ≤
1+kN(j) ≤ 2/w∗

N(j)−1. Therefore, the estimates (4.12), (4.17), (4.18) imply forj ≥ 1:

1
4
≤ hj

Hj
≤ 4 where Hj = h0

1 + wj

1 + w∗
0

N(j)−1∏
ℓ=0

(
w∗

ℓ w∗
ℓ−1

)
(4.19a)

Hj ≤ 2h0

(∏N(j)−2
ℓ=0 w∗

ℓ

)(∏N(j)−2
ℓ=−1 w∗

ℓ

) ≤ 24 h0 ρ
−2N(j)
+ (4.19b)

|qj − pj| ≤ 27h0

w∗
N(j)−1

(N(j)−1∑
ℓ=0

1
w∗

ℓ

)N(j)−1∏
ℓ=0

(w∗
ℓ w∗

ℓ−1) ≤ 212 h0 N(j) ρ
−2N(j)
+ kN(j)

The left hand sides are also less than or equal to the right hand sides whenj = 0. Using
(4.15b), one estimates

distR(pj , Z) = distR
(〈kN(j)−1, kN(j)−2, . . .〉, {0, 1})

≥ min
{ 1

kN(j)−1 + 1
,

1
kN(j)−2 + 2

} ≥ 1
3 max{kN(j)−1, kN(j)−2}
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By the definition ofC and by the assumptionh0 ≤ 2−14C−1, we have|qj − pj | ≤
3
4distR(pj , Z) < distR(pj , Z) for all j ≥ 0. Therefore,qj ∈ (0,∞) \ Z. Moreover,
qj ∈ (0, 1) iff pj ∈ (0, 1) iff kN(j) + j − J(N(j)) − 1 = 0 iff J(N(j) − 1) = j − 1
iff N(j)− 1 = N(j − 1) iff j − 1 ∈ J(Z).
For everyj ≥ 0,

wj ≤ J(N(j))− j + 1 ≤ kN(j)

1/wj ≤ kN(j)+1 + 1

qj ≤ pj + 1 ≤ kN(j) + j − J(N(j)) + 1 ≤ kN(j) + 1(
distR(qj , Z)

)−1 ≤ 4
(
distR(pj , Z)

)−1 ≤ 12 max{kN(j)−1, kN(j)−2}

Finally, we show that for allj ≥ 0,

(a) the denominator ofQR{wj}, given by (4.1c) or (4.2c), is strictly positive at(qj ,hj)
(b) (qj+1,hj+1) = QR{wj}(qj ,hj)

For all j ≥ 0, we have

2hjkN(j)+1 ≤ 2(26h0ρ
−2N(j)
+ )(Cρ

2N(j)+2
+ ) ≤ 29h0C ≤ 2−5

This implieshj log(1 + 1/wj) ≤ 2hjkN(j)+1 < 2−1, which by inspection of (4.1c)
and (4.2c) implies (a). To show (b), observe that by construction of (V ∗

n )n≥0,

(
p∗n+1 +

µ∗n+1

ν∗n+1

,
1 + w∗

n+1

ν∗n+1

)
= ER{w∗

n}
(
p∗n +

µ∗n
ν∗n

,
1 + w∗

n

ν∗n

)
for all n ≥ 0, see Definition 4.5 and Proposition 4.2. SinceVJ(n) = V ∗

n for all n ≥ 0
and since⌊1/w∗

n⌋ = kn+1 = J(n + 1)− J(n), the last equation is equivalent to

(qJ(n+1),hJ(n+1)) = QJ(n+1)−J(n)
R {wJ(n)}(qJ(n),hJ(n)) (4.20)

By Proposition 4.2 and by the construction of(Vj)j≥0, for all j ≥ 1, s = N(j)− 1,

(
pj +

µj

νj
,

1 + 1/w∗
s − j + J(s)
νj

)
= Qj−J(s)

R {w∗
s}
(
p∗s +

µ∗s
ν∗s

,
1 + w∗

s

ν∗s

)
Since1/w∗

s−j+J(s) = wj , this implies(qj ,hj) = Qj−J(s)
R {wJ(s)}(qJ(s),hJ(s)), for

all j ≥ 1, s = N(j)−1. The last identity and (4.20) imply(qj ,hj) = Qj
R{w0}(q0,h0)

for all j ≥ 0, which is equivalent to (b).
To provePart 3, check that for allj ≥ 0 the following implication holds:

wj+1 = QR(wj)
(qj+1,hj+1) = QR{wj}(qj ,hj)

}
=⇒ QL(hj+1, wj+1, qj+1) = (hj , wj , qj)

To make this calculation, distinguish the casesj ∈ J(Z) and j /∈ J(Z), and recall
wj , qj ∈ (0,∞) \ Z and thatwj ∈ (0, 1) iff j ∈ J(Z) iff qj+1 ∈ (0, 1). ⊓⊔
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5. An abstract semi-global existence theorem

This section is logically self-contained, and the notationis introduced from scratch. The
objects in this section are abstractions of concrete objects that appear in other sections
of this paper. This relationship is reflected in the choice ofnotation: abstract objects are
named after their concrete counterparts, whenever possible.This section is an indepen-
dent unit. Definitions in other sections are irrelevant hereand must be ignored.

Definition 5.1. For every integerd ≥ 1, denote by‖ · ‖ the Euclidean distance inRd.
SetB[δ, f ] = {g ∈ Rd | ‖g− f‖ ≤ δ} for everyδ ≥ 0 and everyf ∈ Rd.

Proposition 5.1.Fix an integerd ≥ 1. Suppose:

(a) F ⊂ Rd is a nonempty open subset andBF = {(δ, f) ∈ [0,∞)×F ∣∣B[δ, f ] ⊂ F}.
(b) Πj : F → Rd is a continuous map, for every integerj ≥ 1.
(c)QL : F → Rd andErr : BF → [0,∞) andLip : BF → [0,∞) are maps such

that for all (δ, f) ∈ BF :

supj≥1 supg∈B[δ,f ] ‖Πj(g)−QL(g)‖ ≤ Err(δ, f) (5.1a)

supg,g′∈B[δ,f ], g 6=g′
‖QL(g)−QL(g′ )‖

‖g− g′ ‖ ≤ Lip(δ, f) (5.1b)

(d) (δj , fj)j≥0 is a sequence inBF so thatfj−1 = QL(fj) for all j ≥ 1, and so that∑∞
n=j+1

{∏n−1
k=j+1 Lip(δk, fk)

}
Err(δn, fn) ≤ δj (5.2)

for all j ≥ 0.

Then, there exists a sequence(gj)j≥0 with gj ∈ B[δj , fj ] ⊂ F such that for allj ≥ 1:

gj−1 = Πj(gj)

Proof. For all integers0 ≤ j ≤ ℓ, set

Eℓ
j =

∑ℓ
n=j+1

{∏n−1
k=j+1 Lip(δk, fk)

}
Err(δn, fn) ∈ [0,∞)

ThenEj = limℓ→∞ Eℓ
j is the left hand side of (5.2). Observe thatEj

j = 0 andEℓ
j ≤

Ej ≤ δj by (d). Moreover,Eℓ
j−1 = Lip(δj , fj)Eℓ

j + Err(δj , fj) when1 ≤ j ≤ ℓ.

For all integers0 ≤ m ≤ ℓ, let (A)m,ℓ be the statement:There is a finite sequence
gm,ℓ = (gm,ℓ

j )m≤j≤ℓ with gm,ℓ
j ∈ B[Eℓ

j , fj ] ⊂ B[δj , fj ] ⊂ F for all m ≤ j ≤ ℓ, such

thatgm,ℓ
ℓ = fℓ andgm,ℓ

j−1 = Πj(g
m,ℓ
j ) whenm + 1 ≤ j ≤ ℓ. Observe that if (A)m,ℓ is

true, then the sequencegm,ℓ is unique.
For every fixedℓ ≥ 0, we show by induction overm, one-by-one fromm = ℓ down to
m = 0, that (A)m,ℓ is true. The base case (A)ℓ,ℓ is trivial. For the induction step, let1 ≤
m ≤ ℓ and suppose (A)m,ℓ is true. Definegm−1,ℓ by gm−1,ℓ

j = gm,ℓ
j ∈ B[Eℓ

j , fj ] ⊂
B[δj , fj ] ⊂ F whenm ≤ j ≤ ℓ, and setgm−1,ℓ

m−1 = Πm(gm−1,ℓ
m ) = Πm(gm,ℓ

m ) ∈ Rd.

The statement (A)m−1,ℓ is true, ifgm−1,ℓ
m−1 ∈ B[Eℓ

m−1, fm−1], which follows from

‖gm−1,ℓ
m−1 − fm−1‖ = ‖Πm(gm,ℓ

m )−QL(fm)‖
≤ ‖Πm(gm,ℓ

m )−QL(gm,ℓ
m )‖ + ‖QL(gm,ℓ

m )−QL(fm)‖
≤ Err(δm, fm) + Lip(δm, fm)Eℓ

m = Eℓ
m−1
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We have shown that (A)m,ℓ is true for all0 ≤ m ≤ ℓ. For all integers0 ≤ j ≤ ℓ, set
gℓ

j = g0,ℓ
j ∈ B[δj , fj ], whereg0,ℓ = (g0,ℓ

j )0≤j≤ℓ is the sequence in (A)0,ℓ. For every
fixed j ≥ 0, the sequencegj = (gℓ

j)ℓ≥j in the compactB[δj , fj ] has a convergent
subsequence(gℓ

j)ℓ∈Lj , whereLj ⊂ [j,∞)∩Z is infinite. One may chooseL0 ⊃ L1 ⊃
. . ., that isLj−1 ⊃ Lj for all j ≥ 1. Pick a sequence(ℓj)j≥0 with ℓj ∈ Lj for all j ≥ 0,
such thatℓj−1 < ℓj for all j ≥ 1. SetL = {ℓj | j ≥ 0}. By construction, all but a finite
number of elements ofL are inLj , for everyj ≥ 0. That is,(gℓ

j)ℓ∈L∩[j,∞) converges.
Setgj = limℓ→∞, ℓ∈L∩[j,∞) gℓ

j ∈ B[δj , fj ]. For allj ≥ 1,

Πj(gj) = limℓ→∞, ℓ∈L∩[j,∞) Πj(gℓ
j)

= limℓ→∞, ℓ∈L∩[j,∞) gℓ
j−1 = gj−1

becauseΠj is continuous by (b). ⊓⊔

6. Main Theorems

In this section,τ∗, K, F are given just as in Definitions 3.17, 3.18, 3.19, andQL is the
map in Definition 3.16.

Definition 6.1. Let ‖ · ‖ be the Euclidean distance inR3. For everyδ ≥ 0 and every
f ∈ R3, setB[δ, f ] = {g ∈ R3 | ‖g− f‖ ≤ δ}.
Definition 6.2. LetF ⊂ (0,∞)3 be as in Definition 3.19. For allζ ≥ 1 set

BζF =
{
(δ, f) ∈ [0,∞)×F | B[ζδ, f ] ⊂ F} and BF = B1F

Lemma 6.1.For all (δ, f) ∈ BF set

W (δ, f) = max{ 1
w−δ , w + δ, 1

q−δ , 1
|q−1|−δ , q + δ} ∈ [1,∞)

W (f) = W (0, f) = max{ 1
w , w, 1

q , 1
|q−1| , q} ∈ [1,∞)

wheref = (h, w, q). Then:

(a) W (g) ≤W (δ, f) for all g ∈ B[δ, f ].
(b) If (δ, f) ∈ B2F ⊂ BF thenW (δ, f) ≤ 2W (f).

Lemma 6.2.LetErr : BF → [0,∞) be given by

Err(δ, f) = 240
(

1
h−δ

)2
W (δ, f)5 exp(− 1

h2−9W (δ, f)−2
)

wheref = (h, w, q). Then for all(δ, f) ∈ BF , we haveK(g) ≤ Err(δ, f) for all
g ∈ B[δ, f ] ⊂ F (see Definition 3.18).

Proof. Let g = (h′, w′, q′) ∈ B[δ, f ]. Thenτ∗(g) ≥ 1
2W (g)−2 and0 < h− δ ≤ h′ ≤

h + δ ≤ 2h and 1
h′ ≥ 1

2h . Hence,K(g) ≤ 240( 1
h−δ )2W (g)5 exp(− 1

h2−9W (g)−2).
Now use Lemma 6.1 (a).⊓⊔
Lemma 6.3.LetQL be as in Definition 3.16. SetLip : BF → [0,∞), Lip(δ, f) =
213W (δ, f)3. Then‖QL(g) −QL(g′ )‖ ≤ Lip(δ, f) ‖g− g′ ‖ for all g,g′ ∈ B[δ, f ].
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Proof. Let f = (h, w, q). If g = g′, there is nothing to prove. Supposeg 6= g′. In
Lemma B.1 of Appendix B, setf1 = (h1, w1, q1) = g and f2 = (h2, w2, q2) =
g′. Observe that0 < hi ≤ 1 by g,g′ ∈ B[δ, f ] ⊂ F . Sinceδ < |q − 1|, either
q, q1, q2 < 1 or q, q1, q2 > 1. We havewmax ≤ max{W (g), W (g′)} andqmax ≤
max{W (g), W (g′)} andq−1

min = max{q−1
1 , q−1

2 } ≤ max{W (g), W (g′)}. Now use
log(2 + wmax) ≤ 1 + wmax and Lemma 6.1 (a). ⊓⊔

Theorem 6.1 (Main Theorem 1).Recall the definitions ofPL and QL (Definition
3.16),F (Definition 3.19),Π (Proposition 3.3),BζF (Definition 6.2),W (Lemma 6.1),
Err (Lemma 6.2),Lip (Lemma 6.3). Suppose:

(a) (fj)j≥0, with fj = (hj , wj , qj) ∈ F , satisfiesfj−1 = QL(fj) for all j ≥ 1.
(b) The sequence(δj)j≥0 given by

δj =
∞∑

ℓ=j+1

{ ℓ−1∏
k=j+1

216W (fk)3
}

247
(

1
hℓ

)2
W (fℓ)5 exp

(
− 1

hℓ
2−11W (fℓ)−2

)

satisfiesδj <∞ and(δj , fj) ∈ B2F for all j ≥ 0.
(c) π0 ∈ S3 and(πj)j≥0 is the unique sequence inS3 that satisfiesπj−1 = PL(πj , fj)

for all j ≥ 1.
(d) σ∗ ∈ {−1, +1}3.
Then, there exists a sequence(gj)j≥0 with gj ∈ B[δj , fj ] ⊂ F such that for allj ≥ 1:

gj−1 = Π [πj , σ∗](gj) and πj−1 = PL(πj ,gj)

Proof. We use Proposition 5.1, with the understanding that the abstract objects of
Proposition 5.1 in the left column are given by the special objects in the right column:

d 3
F F as in Definition 3.19

Πj Π [πj , σ∗], see Proposition 3.3 and the hypotheses Theorem 6.1 (c), (d)
QL QL|F , withQL as in Definition 3.16
Err Err as in Lemma 6.2
Lip Lip as in Lemma 6.3

(δj , fj) (δj , fj) as in hypotheses Theorem 6.1 (a) and (b)

We check that the assumptions (a), (b), (c), (d) of Proposition 5.1 are satisfied:

(a) The definitions ofBF in Proposition 5.1 and in Definition 6.2 are consistent.
(b) Π [πj , σ∗] : F → (0,∞)2 × R ⊂ R3 is continuous, by Proposition 3.3.
(c) The domains of definition ofQL|F andErr andLip are just as required by Propo-

sition 5.1 (c). For all(δ, f) ∈ BF andg,g′ ∈ B[δ, f ] ⊂ F andj ≥ 1,

‖Π [πj , σ∗](g)−QL|F(g)‖ ≤K(g) ≤ Err(δ, f)

‖QL|F(g)−QL|F(g′ )‖ ≤ Lip(δ, f) ‖g− g′ ‖

by Proposition 3.3 (a) and by Lemmas 6.2 and 6.3. That is, (5.1a) and (5.1b) hold.
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(d) By assumption,(δj , fj) ∈ B2F ⊂ BF for all j ≥ 0. Hence1
2hj ≤ hj − δj and,

by Lemma 6.1 (b), we haveW (δj , fj) ≤ 2W (fj). Consequently, for allj ≥ 0,∑∞
ℓ=j+1

{∏ℓ−1
k=j+1 Lip(δk, fk)

}
Err(δℓ, fℓ)

=
∑∞

ℓ=j+1

{∏ℓ−1
k=j+1 213W (δk, fk)3

}
240
(

1
hℓ−δℓ

)2
W (δℓ, fℓ)5

× exp
(− 1

hℓ
2−9W (δℓ, fℓ)−2

)
≤∑∞

ℓ=j+1

{∏ℓ−1
k=j+1 216W (fk)3

}
247
(

1
hℓ

)2
W (fℓ)5 exp

(− 1
hℓ

2−11W (fℓ)−2
)

The last expression is equal toδj , and (5.2) is checked.

Now, Theorem 6.1 follows from Proposition 5.1.⊓⊔

Theorem 6.2 (Main Theorem 2).Suppose the vectorf0 = (h0, w0, q0) satisfies the
assumptions of Proposition 4.4, that is

w0 ∈ (0, 1) \Q C(w0, q0) <∞ (6.1a)

q0 ∈ (0,∞) \Q 0 < h0 ≤ 2−14(C(w0, q0))−1 (6.1b)

Let(kn)n∈Z andJ : Z→ Z (Era Pointer) andN : Z→ Z (Era Counter) and(wj)j∈Z,
(qj)j≥0, (hj)j≥0 be just as in Proposition 4.4. Introduce the sequence(fj)j≥0 by

fj = (hj , wj , qj) ∈ (0,∞)3

Introduce sequences(Hj)j≥0 and(Kj)j≥0 by

Hj = h0
1+wj

1+w0

∏N(j)−1
ℓ=0 wJ(ℓ)wJ(ℓ−1) > 0

Kj = max{kN(j)−2, kN(j)−1, kN(j), kN(j)+1} ≥ 1

Suppose:

(a) Hj < 2−21(Kj)−2 for all j ≥ 0.

(b) 271
(

1
Hj

)2
(Kj)5 exp

(− 1
Hj

2−21(Kj)−2
)

< 1 for all j ≥ 0.

(c) The sequence(δ/ j)j≥0 given by

δ/ j =
∞∑

ℓ=j+1

{ ℓ−1∏
k=j+1

228(Kk)3
}

271
(

1
Hℓ

)2 (Kℓ)5 exp
(
− 1

Hℓ
2−21(Kℓ)−2

)
> 0

satisfiesδ/ j ≤ 2−4Hj <∞.
(d) π0 ∈ S3 and(πj)j≥0 is the unique sequence inS3 that satisfiesπj−1 = PL(πj , fj)

for all j ≥ 1.
(e) σ∗ ∈ {−1, +1}3.
Then(δ/ j , fj) ∈ B2F for all j ≥ 0 and there exists a sequence(gj)j≥0 with gj ∈
B[δ/ j , fj ] ⊂ F such that for allj ≥ 1:

gj−1 = Π [πj , σ∗](gj) and πj−1 = PL(πj ,gj)
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Proof. By Proposition 4.4 and by hypotheses (a), (c) in Theorem 6.2,for all j ≥ 0:

2−2Hj ≤ hj ≤ 22Hj (6.2a)

max{ 1
wj

, wj ,
1
qj

, 1
|qj−1| , qj} ≤ 24Kj (6.2b)

2−4(Kj)−1 ≤ min{wj , qj , |qj − 1|}
2δ/ j ≤ 2−1 min{wj , qj , |qj − 1|,hj}

Hence,B[2δ/ j, fj ] ⊂ (0,∞)3 for every j ≥ 0. Furthermore, for allj ≥ 0 and all
(h′, w′, q′) ∈ B[2δ/ j , fj ] ⊂ (0,∞)3, we haveq′ 6= 1 and

2−3Hj ≤ 2−1hj ≤ hj − 2δ/ j ≤ h′ ≤ hj + 2δ/ j ≤ 2hj ≤ 23Hj (6.3a)

and

max
{

1
w′ , w

′, 1
q′ ,

1
|q′−1| , q

′}
≤ max

{
1

wj−2δ/ j
, wj + 2δ/ j ,

1
qj−2δ/ j

, 1
|qj−1|−2δ/ j

, qj + 2δ/ j

}
≤ 2 max

{
1

wj
, wj ,

1
qj

, 1
|qj−1| , qj

} ≤ 25 Kj

(6.3b)

The last two estimates (6.3) implyτ∗(h′, w′, q′) ≥ 2−11(Kj)−2 and

K(h′, w′, q′) ≤ 271
(

1
Hj

)2(Kj)5 exp
(− 1

Hj
2−21(Kj)−2

)
< 1

The last inequality is hypothesis (b) in Theorem 6.2. Furthermore,

h′ ≤ 23Hj < 2−18(Kj)−2 ≤ 2−7τ∗(h′, w′, q′)

The second inequality is hypothesis (a) in Theorem 6.2. These estimates are true for
all (h′, w′, q′) ∈ B[2δ/ j , fj ], and thereforeB[2δ/ j , fj ] ⊂ F for all j ≥ 0, in particular
fj ∈ F (see Definition 3.19). In other words,(δ/ j , fj) ∈ B2F .
The last result and the fact thatfj−1 = QL(fj) for all j ≥ 1 (see Proposition 4.4)
imply that Theorem 6.2 follows from Theorem 6.1, if we can show thatδj ≤ δ/ j for all
j ≥ 0, whereδj is given as in Theorem 6.1. The inequalityδj ≤ δ/ j is a consequence of
W (fℓ) ≤ 24Kℓ and2−2Hℓ ≤ hℓ ≤ 22Hℓ, wherej, ℓ ≥ 0. ⊓⊔
Theorem 6.3 (Main Theorem 3).Fix constantsD ≥ 1, γ ≥ 0. Suppose the vector
f0 = (h0, w0, q0) ∈ (0,∞)3 satisfies

(i) w0 ∈ (0, 1) \Q andq0 ∈ (0,∞) \Q.
(ii) kn ≤ D max{1, n}γ for all n ≥ −2, with (kn)n∈Z as in Proposition 4.4, that is

(1 + q0)−1 = 〈k0, k−1, k−2, . . .〉 w0 = 〈k1, k2, k3, . . .〉
(iii) 0 < h0 < A♯ whereA♯ = A♯(D, γ) = 2−56D−4(4(γ + 1))−4(γ+1).

Then

• The assumptions(6.1)and (a), (b), (c) of Theorem 6.2 hold.
• Setρ+ = 1

2 (1 +
√

5). The sequence(δ/ j)j≥0 in Theorem 6.2 satisfies for allj ≥ 0:

δ/ j ≤ exp
(− 1

h0
A♯ρ

N(j)
+

)
and N(j) ≥ (D−1j

)1/(γ+1)
(6.4)

whereN : Z→ Z (Era Counter) is the map in Proposition 4.4.
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If γ > 1 andD > 1
log 2

γ
γ−1 , then the set of all vectorsf0 ∈ (0,∞)3 that satisfy (i), (ii),

(iii) has positive Lebesgue measure.

Proof. Preliminaries.The following facts will be used without further comment:

• a−xxb ≤ ( b
e log a

)b
for all real numbersa > 1, b > 0, x ≥ 0 wheree = exp(1).

• ab ≤ cd for all real numbers1 ≤ a ≤ c and0 ≤ b ≤ d.

• 1 < ρ+ < 2 and1 < e log ρ+ < 2 wheree = exp(1) andρ+ = 1
2 (1 +

√
5).

Fix D ≥ 1 and γ ≥ 0 as in Theorem 6.3. For all 5-tuples of real numberss =
(s1, s2, s3, s4, s5) ≥ (0, 0, 0, 1, 0), setA(s) = 2−s1−s2γD−s3(s4(γ + 1))−s5(γ+1).
Observe that0 < A(s) ≤ 2−s1 ≤ 1 andA(s) ≤ A(s′) if s ≥ s′.
Basic smallness assumptions.kn ≤ D max{1, n}γ for all n ≥ −2 andh0 < A(κ).
The vectorκ = (κ1, κ2, κ3, κ4, κ5) ≥ (0, 0, 0, 1, 0) will be fixed during the proof.
Estimates 1.Recall Proposition 4.4 andρ+ = 1

2 (1 +
√

5). For allj ≥ 0, n ≥ 0:

C(w0, q0) = supn≥0(n + 1)ρ−2n
+ kn max{kn−1, kn−2}

≤ 2D2 supn≥0 ρ−2n
+ max{1, n}2(γ+1)

≤ 2D2(γ + 1)2(γ+1) = A(1, 0, 2, 1, 2)−1

J(n) =
∑n

ℓ=1 kℓ ≤ D
∑n

ℓ=1 ℓγ ≤ Dnγ+1

j ≤ J(N(j)) ≤ DN(j)γ+1

N(j) ≥ (D−1j)1/(γ+1)

Hj ≤ 24 h0 ρ
−2N(j)
+ see (4.19)

Hj ≥ 2−1h0

∏N(j)−1
ℓ=0 (kℓ + 1)−1(kℓ+1 + 1)−1

≥ 2−1h0

∏N(j)−1
ℓ=0 (2D(ℓ + 1)γ)−2 ≥ 2−1h0 max{1, 2DN(j)γ}−2N(j)

Kj ≤ D(N(j) + 1)γ ≤ D2γ max{1, N(j)}γ

HjK
2
j ≤ 24+2γD2h0ρ

−2N(j)
+ max{1, N(j)}2γ

≤ 24+2γD2h0 supn≥0 ρ−2n
+ max{1, n}2(γ+1)

≤ 24+2γD2h0 (γ + 1)2(γ+1) = h0 A(4, 2, 2, 1, 2)−1

Requireκ ≥ (25, 2, 2, 1, 2). ThenHj < 2−21(Kj)−2 andh0 ≤ 2−14(C(w0, q0))−1.
Estimates 2.Let (δ/ j)j≥0 be as in Theorem 6.2. We claim that with proper choice ofκ:

(A) δ/J(n) ≤ 2−5h0

(
2D(n + 1)γ

)−2(n+1) exp(− 1
h0

A(κ)ρn+1
+ ) for all n ≥ 0.

(B) δ/ j ≤ 2−4Hj andδ/ j ≤ exp(− 1
h0

A(κ) ρ+
N(j)) for all j ≥ 0.

We first check (A)=⇒ (B). Note thatδ/ j ≥ δ/ j+1, j ≥ 0. Fix any j ≥ 0. Setn =
N(j+1)−1 ≥ 0. By (A), by j ≥ J(n) (see the line before (4.16)) and byn+1 ≥ N(j),

δ/ j ≤ δ/J(n) ≤ 2−5h0

(
2D(n + 1)γ

)−2(n+1) exp(− 1
h0

A(κ)ρn+1
+ )

≤
(
2−5h0 max{1, 2DN(j)γ}−2N(j)

)
exp(− 1

h0
A(κ)ρN(j)

+ )

See the second bullet in the preliminaries. On the right handside, both factors are≤ 1
(useh0 < A(κ) ≤ 1). By the lower bound onHj derived above, claim (B) follows.
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We now check (A). For alln ≥ 0:

δ/J(n)

=
∑∞

m=n

∑J(m+1)
ℓ=J(m)+1

{∏ℓ−1
k=J(n)+1 228(Kk)3

}
271
(

1
Hℓ

)2 (Kℓ)5

× exp
(
− (221HℓK

2
ℓ

)−1
)

≤∑∞
m=n

∑J(m+1)
ℓ=J(m)+1

(
215 max1≤k≤ℓ Kk

)3ℓ+2( 1
2Hℓ

)2 exp
(
− (221HℓK

2
ℓ

)−1
)

≤∑∞
m=n km+1

(
215+γD(m + 1)γ

)3J(m+1)+2( 1
h0

)2(2D(m + 1)γ
)4(m+1)

× exp
(
− 2−25−2γD−2 1

h0
ρ
2(m+1)
+ (m + 1)−2γ

)
≤ ( 1

h0

)2∑∞
m=n+1

(
215+γDmγ

)(10Dmγ+1) exp
(
− 2−25−2γD−2 1

h0
ρ2m
+ m−2γ

)
Since25 1

h0
(2D(n + 1)γ)2(n+1) ≤ 1

h0
(26Dmγ)2m for all m ≥ n + 1, we have

S(n) def= δ/J(n) 25 1
h0

(2D(n + 1)γ)2(n+1)

≤ ( 1
h0

)3∑∞
m=n+1

(
215+γDmγ

)(12Dmγ+1) exp
(
− 2−25−2γD−2 1

h0
ρ2m
+ m−2γ

)
≤ ( 1

h0

)3∑∞
m=n+1 exp

(
12Dmγ+1 log

(
215+γDmγ

)− 2−25−2γD−2 1
h0

ρ2m
+ m−2γ

)
≤ ( 1

h0

)3∑∞
m=n+1 exp

(
29D2(γ + 1)mγ+2 − 2−25−2γD−2 1

h0
ρ2m
+ m−2γ

)
The second term in the argument of the exponential dominatesthe first term, if we
requireκ ≥ (35, 2, 4, 3

2 , 3). More precisely, the absolute value of the second term is at
least twice the absolute value of the first term. In fact,

235+2γD4(γ + 1) supm≥1 ρ−2m
+ m3γ+2

≤ 235+2γD4
(

3
2 (γ + 1)

)3(γ+1) = A(35, 2, 4, 3
2 , 3)−1 ≤ A(κ)−1 ≤ 1

h0

Therefore,

S(n) ≤ ( 1
h0

)3∑∞
m=n+1 exp

(
− 2−26−2γD−2 1

h0
ρ2m
+ m−2γ

)
Moreover,226+2γD2 supm≥1 ρ−m

+ m2γ ≤ 226+2γD2(2(γ + 1))2(γ+1) = 2−2A−1
∗ ,

whereA∗ = A(28, 2, 2, 2, 2). Requireκ ≥ (28, 2, 2, 2, 2). Thenh0 ≤ A∗ and

S(n) ≤ ( 1
h0

)3∑∞
m=n+1 exp

(− 4 1
h0

A∗ρm
+

)
≤ exp

(− 1
h0

A∗ρn+1
+

)((
1
h0

)3 exp
(− 1

h0
A∗
))∑∞

m=1 exp
(− 2ρm

+

)
We have

∑∞
m=1 exp

(− 2ρm
+

) ≤ 1
2

∑∞
m=1 ρ−m

+ = 1
2 (ρ+ − 1)−1 = 1

2ρ+ ≤ 1. Require
κ ≥ (56, 4, 4, 2, 4). Thenh0 ≤ A(κ) ≤ A(56, 4, 4, 2, 4) = A2

∗, and(
1
h0

)3 exp
(− 1

h0
A∗
) ≤ ( 1

h0

)3 exp
(− ( 1

h0
)1/2

) ≤ 8!h0 ≤ 216h0 ≤ 1
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SinceA∗ ≥ A(κ), we haveS(n) ≤ exp(− 1
h0

A(κ)ρn+1
+ ). Fix κ = (56, 4, 4, 2, 4). All

the inequalities forκ hold, and claim (A) is proved. LetA♯ = A(56, 0, 4, 4, 4), as in the
statement of Theorem 6.3. SinceA♯ ≤ A(κ), the conditionh0 < A♯ in the statement
of Theorem 6.3 implies the conditionh0 < A(κ) used in this proof.
So far, we have verified the estimate (6.4), and we have verified the assumptions The-
orem 6.2 (a), (c) and (6.1). In the assumption Theorem 6.2 (b), the casesj ≥ 1 follow
from Theorem 6.2 (a), (c). SinceH0 = h0 andK0 ≤ D, the remainingj = 0 case in
Theorem 6.2 (b) follows from

271( 1
H0

)2(K0)5 exp(− 1
H0

2−21(K0)−2) ≤ 271( 1
h0

)2D5 exp(− 1
h0

2−21D−2)

≤ 271( 1
h0

)2D5 8!
(
h0221D2

)8 ≤ 2255D21h6
0 ≤ (h0/A♯)6 < 1

Lebesgue measure of the set of admissiblef0. The set of allf0 = (h0, w0, q0) ∈ (0,∞)3
that satisfy (i), (ii), (iii) is a product(0,A♯)×Fw×Fq (depending onD andγ), where
Fw ⊂ (0, 1) \ Q andFq ⊂ (0,∞) \ Q. Both (0,A♯) andFq have positive measure,
becauseA♯ > 0 and (1

2 , 2
3 ) \ Q ⊂ Fq. In fact, if q0 ∈ (1

2 , 2
3 ), then1/(1 + q0) =

1/(1 + 1/(1 + 1/(1 + x))) with x = (2q0 − 1)/(1− q0) ∈ (0, 1), that isk0 = k−1 =
k−2 = 1 ≤ D. Supposeγ > 1 andD > (log 2)−1γ/(γ − 1). Let G(x) = 1

x − ⌊ 1
x⌋ be

the Gauss map from(0, 1) \ Q to itself. We havekn+1 = ⌊1/Gn(w0)⌋ for all n ≥ 0.
For alln ≥ 0, set

Xn =
{
w0 ∈ (0, 1)\Q ∣∣ Gn(w0) < D−1(n+1)−γ

}
= G−n

( (
0, D−1(n+1)−γ

)\Q)
whereG−n is then-th inverse image of sets. LetµG be the probability measure on
(0, 1)\Q with density(log 2)−1(1+x)−1 (with respect to the Lebesgue measure). It is
well-known thatµG(X) = µG(G−1(X)) for all measurableX ⊂ (0, 1)\Q. Therefore,

µG(Xn) = µG

( (
0, D−1(n + 1)−γ

) \Q
)

= 1
log 2 log

(
1 + 1

D(n+1)γ

) ≤ 1
log 2

1
D(n+1)γ

Let Xc
n be the complement ofXn in (0, 1) \Q. Then

⋂
n≥0 Xc

n ⊂ Fw, sincew0 ∈ Xc
n

implieskn+1 = ⌊1/Gn(w0)⌋ ≤ 1/Gn(w0) ≤ D(n + 1)γ . We have

µG(Fw) ≥ µG(
⋂

n≥0 Xc
n) = 1− µG(

⋃
n≥0 Xn) ≥ 1−∑n≥0 µG(Xn)

≥ 1− 1
D log 2

∑
n≥0

1
(n+1)γ ≥ 1− 1

D log 2

(
1 +

∫∞
1

x−γdx
)

= 1− 1
D log 2

γ
γ−1 > 0

Consequently, also the Lebesgue measure ofFw is positive. ⊓⊔

7. Causal structure and particle horizons

In this section we show that the spatially homogeneous vacuum spacetimes correspond-
ing to those solutions of (1.1) that are obtained by combining Theorems 6.2 and 6.3 and
Propositions 3.1 and 3.3, have “particle horizons” (see [Mis] for this notion), contra-
dicting a conjecture in [Mis].

Theorem 7.1.LetD, γ, f0 = (h0, w0, q0) be as in Theorem 6.3. Letfj = (hj , wj , qj),
πj , σ∗ andgj be as in Theorem 6.2. Adopt the remaining notation of Theorems 6.2 and
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6.3. Denote the components ofgj ∈ F by (h′j , w
′
j , q

′
j). Recall thath′j ∈ (0, 1).

Fix a constantλ0 > 0. Setτ0 = 0. Introduce sequences(λj)j≥0 and(τj)j≥0 by

λj = λj−1

{
Λ[πj , σ∗](gj)

}−1 ∈ (0, λ0] for all j ≥ 1

τj = τj−1 + (h′jλj)−1
{
τ1+(gj)− τ2−[πj , σ∗](gj)

}
for all j ≥ 1

Then:

(a) τj > τj−1 for all j ≥ 1 andlimj→∞ τj = +∞.
(b) The solution to(1.1)with initial dataΦ(0) = λ0 Φ⋆(π0,g0, σ∗) exists for allτ ≥ 0,

that isΦ = α⊕ β : [0,∞)→ D(σ∗), andΦ(τj) = λj Φ⋆(πj ,gj , σ∗) for all j ≥ 0.
(c) For all j ≥ 1 we have the bound

Mj
def= supτ∈(τj−1,τj) max(i,j,k)∈C αj,k[Φ](τ) ≤ −2−2λj min{(w′

j)
2, (w′

j)
−1}

Setζi(τ) = − 1
2

∫ τ

0 ds αi(s) for i = 1, 2, 3 (see Proposition 2.1) and for alls ≥ 0 set

L(s) def=
∫∞

s
dτ max(i,j,k)∈C exp

(− ζj − ζk
)

(see the right hand side of(2.1) in Proposition 2.2). ThenL(s) ≤ L(0) < ∞ and
lims→∞ L(s) = 0.

Proof. Proposition 3.3 implies12 ≤ h′jλj(τj − τj−1) ≤ 22 andτj ≥ τj−1 + (2λ0)−1,
which implies (a). Theorems 6.2, 6.3, and Propositions 3.1,3.3 imply (b). Proposition
3.3 (e.5) implies (c). Estimate

L(0) ≤∑∞
ℓ=1

∫ τℓ

τℓ−1
dτ exp

(
1
2

∫ τ

0 dτ ′ max(i,j,k)∈C αj,k[Φ](τ ′)
)

≤∑∞
ℓ=1

∫ τℓ

τℓ−1
dτ exp

(
1
2

∑ℓ−1
m=1

∫ τm

τm−1
dτ ′ max(i,j,k)∈C αj,k[Φ](τ ′)

)
≤∑∞

ℓ=1(τℓ − τℓ−1) exp
(

1
2

∑ℓ−1
m=1(τm − τm−1)Mm

)
≤ 22∑∞

ℓ=1(h
′
ℓλℓ)−1 exp

(
− 2−4

∑ℓ−1
m=1(h

′
m)−1 min{(w′

m)2, (w′
m)−1}

)
By Theorem 6.2, we have(δ/ j , fj) ∈ B2F andgj ∈ B[δ/ j , fj ] for all j ≥ 0. Hence,
1
2hj ≤ h′j ≤ 2hj and 1

2wj ≤ w′
j ≤ 2wj . Proposition 3.3 (b) impliesΛ[πj , σ∗](gj) ≤

1 + λL(gj) ≤ 3 + w′
j ≤ 3(1 + wj) andλ−1

ℓ ≤ λ−1
0

∏ℓ
k=1 3(1 + wk). Therefore,

L(0) ≤ 23(λ0)−1∑∞
ℓ=1(hℓ)−1

(∏ℓ
k=1 3(1 + wk)

)
× exp

(
− 2−7

∑ℓ−1
k=1(hk)−1 min{(wk)2, (wk)−1}

)
≤ 25(λ0)−1∑∞

m=0

∑J(m+1)
ℓ=J(m)+1(Hℓ)−1(27 max1≤k≤ℓ Kk)ℓ

× exp
(
− 2−17(1− δℓ1)(Hℓ−1)−1(Kℓ−1)−2

)
(7.1)

whereHj andKj are as in Theorem 6.2, andδℓ1 is a Kronecker delta. See (6.2). In the
exponential, we have bounded the sum overk = 1, . . . , ℓ−1 from below by itsk = ℓ−1
summand ifℓ ≥ 2 and by zero otherwise. The sum overℓ = J(m) + 1, . . . , J(m + 1)
haskm+1 ≤ D(m + 1)γ many terms. By the proof of Theorem 6.3, for everym ≥ 0,
the following estimates, uniformly inℓ = J(m) + 1, . . . , J(m + 1), hold:
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• (Hℓ)−1 ≤ 2(h0)−1(2D(m + 1)γ)2(m+1)

• (27 max1≤k≤ℓ Kk)ℓ ≤ (27+γD(m + 1)γ)D(m+1)γ+1

• (Hℓ−1)−1 ≥ 2−4(h0)−1ρ2m
+ whereρ+ = 1

2 (1 +
√

5)
• (Kℓ−1)−2 ≥ D−22−2γ(m + 1)−2γ

By these estimates, in particular the fact that(Hℓ−1)−1 grows at least exponentially in
m, the right hand side of (7.1) is finite, andL(0) <∞. ⊓⊔

A. Bounds for a particular product of continued fractions

This appendix is entirely self-contained, the notation is completely local. Its single pur-
pose is to prove Proposition A.1 below, which is used in the proof of Lemma 4.4.

Definition A.1. For all integersm and n and all sequences(xi)i∈I whereI ⊂ Z,
definexm:n to be the ordered sequencexm, xm+1, . . . , xn−1, xn if m ≤ n and the
empty sequence ifm > n. In the first case, it is required that[m, n]∩Z ⊂ I. Similarly,
definexm::n to be the ordered sequencexm, xm−1, . . . , xn+1, xn if m ≥ n and the
empty sequence ifm < n. In the first case, it is required that[n, m] ∩ Z ⊂ I.

Definition A.2 (Continued fractions). For every integern ≥ 0 and every finite se-
quence of strictly positive integers(ki)1≤i≤n set recursively

〈k1:n〉 =
{

0 n = 0(
k1 + 〈k2:n〉

)−1
n ≥ 1

∈ [0, 1] ∩Q

For every infinite sequence(ki)i≥1 of strictly positive integers, set

〈k1, k2, . . .〉 = lim
n→∞〈k1:n〉 ∈ (0, 1) \Q

Example A.1.〈 〉 = 〈k1:0〉 = 0 and〈k1〉 = 〈k1:1〉 = 1/k1 and〈k1, k2〉 = 〈k1:2〉 =
1/(k1 + 1/k2).

Definition A.3 (Fibonacci numbers).F1 = F2 = 1 andFn = Fn−1 + Fn−2, n ≥ 3.

Proposition A.1. For every two-sided sequence of strictly positive integers(ki)i∈Z, de-
fine two-sided sequences(vi)i∈Z and (wi)i∈Z by vi = 〈ki, ki−1, ki−2, . . .〉 andwi =
〈ki, ki+1, ki+2, . . .〉. Then, for all integersM < N :

(a) 1
2 ≤

∏N
i=M+1(vi/wi) ≤ 2

(b)
∏N

i=M+1 wi ≤ (FN−M+1)−1 ≤ (1
2 (
√

5− 1))N−M−1

The proof of Proposition A.1 is given at the end of this appendix.

Definition A.4. LetP0( ) = 1 andP1(x1) = x1 and for alln ≥ 2, set

Pn(x1:n) = x1Pn−1(x2:n) + Pn−2(x3:n) (A.1)

Example A.2.P2(x1:2) = 1 + x1x2 andP3(x1:3) = x1 + x3 + x1x2x3 andP4(x1:4) =
1 + x1x2 + x3x4 + x1x4 + x1x2x3x4.

Lemma A.1. Recall Definition A.4. For all integersn ≥ 0, we have:
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(a) Pn is a polynomial of degreen, jointly in itsn arguments, with coefficients in{0, 1}
(b) Pn is a polynomial of degree 1, separately in each of itsn arguments
(c) Pn(1, . . . , 1) = Fn+1

(d) Pn(x1:n) = Pn(xn::1) for all x1, . . . , xn ∈ R
(e) 〈k1:n〉 = Pn−1(k2:n)/Pn(k1:n) for all strictly positive integers(ki)1≤i≤n, n ≥ 1

Proof. (a) through (e) are all shown by induction, using (A.1). To show (d), observe
that (d)0, (d)1, (d)2 and (d)3 hold. For the induction step, letn ≥ 4 and suppose (d)0

through (d)n−1 hold. Then, using only (A.1) and the induction hypothesis,

Pn(x1:n)− Pn(xn::1)
= x1Pn−1(x2:n) + Pn−2(x3:n)− xnPn−1(xn−1::1)− Pn−2(xn−2::1)
= x1Pn−1(xn::2) + Pn−2(xn::3)− xnPn−1(x1:n−1)− Pn−2(x1:n−2)

= x1

(
xnPn−2(xn−1::2) + Pn−3(xn−2::2)

)
+
(
xnPn−3(xn−1::3) + Pn−4(xn−2::3)

)
− xn

(
x1Pn−2(x2:n−1) + Pn−3(x3:n−1)

)− (x1Pn−3(x2:n−2) + Pn−4(x3:n−2)
)

Verify that all the terms cancel, by the induction hypothesis. This implies (d)n. To show
(e), observe that (e)1 holds. Letn ≥ 2 and suppose (e)n−1 holds. Then,

〈k1:n〉 =
(
k1 + 〈k2:n〉

)−1
=
(

k1 +
Pn−2(k3:n)
Pn−1(k2:n)

)−1

=
Pn−1(k2:n)

k1Pn−1(k2:n) + Pn−2(k3:n)

Now, (A.1) implies (e)n. ⊓⊔
Lemma A.2. For all integersm− 1 ≤M < N ≤ n and allxm, . . . , xn ∈ [1,∞),

2 PM−m+1(xm:M )Pn−M (xM+1:n)− PN−m+1(xm:N )Pn−N (xN+1:n) ≥ 0 (A.2)

Moreover, ifm = M +1, then the factor2 on the left hand side can be dropped, that is,

Pn−M (xM+1:n)− PN−M (xM+1:N )Pn−N (xN+1:n) ≥ 0 (A.3)

Proof. In this proof, we use the recursion relation (A.1) and the reflected recursion
relation that is obtained by applying Lemma A.1 (d) to all three terms of (A.1). FixM
andN . Inequality (A.2) is proved by induction overm andn, wherem ≤ M + 1 and
n ≥ N . Denote the left hand side of (A.2) byQm,n. Then,

QM+1,N = PN−M (xM+1:N ) ≥ 0
QM+1,N+1 = 2 PN+1−M (xM+1:N+1)− PN−M (xM+1:N )xN+1

= PN−M (xM+1:N )xN+1 + 2 PN−1−M (xM+1:N−1) ≥ 0
QM,N = 2 xMPN−M (xM+1:N )− PN−M+1(xM :N )

= xMPN−M (xM+1:N )− PN−M−1(xM+2:N )
≥ xMxM+1PN−M−1(xM+2:N )− PN−M−1(xM+2:N ) ≥ 0

QM,N+1 = 2 xMPN+1−M (xM+1:N+1)− PN−M+1(xM :N )xN+1

= 2 xMxN+1PN−M (xM+1:N ) + 2 xMPN−1−M (xM+1:N−1)
− xMPN−M (xM+1:N )xN+1 − PN−M−1(xM+2:N )xN+1

≥ xMxN+1PN−M (xM+1:N )− PN−M−1(xM+2:N )xN+1

≥ xMxN+1xM+1PN−M−1(xM+2:N )− PN−M−1(xM+2:N )xN+1 ≥ 0

These four cases and the two recursion relations
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• Qm,n = xmQm+1,n + Qm+2,n whenm ≤M − 1 andn ≥ N
• Qm,n = xnQm,n−1 + Qm,n−2 whenm ≤M + 1 andn ≥ N + 2

imply (A.2). Inequality (A.3) is shown in an entirely similar way. ⊓⊔
Proof (of Proposition A.1).Recall (d), (e) in Lemma A.1. Letm− 1 ≤M < N ≤ n.

N∏
i=M+1

〈ki::m〉
〈ki:n〉 =

N∏
i=M+1

Pi−m(ki−1::m)
Pi−m+1(ki::m)

· Pn−i+1(ki:n)
Pn−i(ki+1:n)

=
PM−m+1(kM ::m)
PN−m+1(kN ::m)

· Pn−M (kM+1:n)
Pn−N(kN+1:n)

=
PM−m+1(km:M )
PN−m+1(km:N )

· Pn−M (kM+1:n)
Pn−N (kN+1:n)

The right hand side is≥ 1
2 , by inequality (A.2). Now, letm → −∞ andn → +∞ to

obtain
∏N

i=M+1(vi/wi) ≥ 1
2 . By symmetry, we also have

∏N
i=M+1(wi/vi) ≥ 1

2 . This
implies (a) in Proposition A.1. Similarly, using (A.3),

N∏
i=M+1

〈ki:n〉 = Pn−N (kN+1:n)
Pn−M (kM+1:n)

≤ 1
PN−M (kM+1:N )

≤ 1
PN−M (1, . . . , 1)

Let n→ +∞ to obtain
∏N

i=M+1 wi ≤ 1/FN−M+1. ⊓⊔

B. The modulus of continuity of the mapQL introduced in Definition 3.16

Lemma B.1.LetQL : (0,∞)3 → (0,∞)2 × R be the map introduced in Definition
3.16. For allfi = (hi, wi, qi) ∈ (0,∞)3 with 0 < hi ≤ 1, i = 1, 2, with f1 6= f2, such
thatq1 andq2 are either both< 1 or both> 1,

‖QL(f2)−QL(f1)‖R3

‖f2 − f1‖R3
≤
{

212q−2
min log(2 + wmax) if q1, q2 < 1

211qmax if q1, q2 > 1

Here,wmax = max{w1, w2} andqmax = max{q1, q2} andqmin = min{q1, q2}.
Proof. We prove the following claim, which implies the Lemma:Each of the nine par-
tial derivatives ofQL : f = (h, w, q) 7→ QL(f) is bounded in absolute value by{

210q−2 log(2 + w) if f ∈ (0, 1]× (0,∞)× (0, 1)
29q if f ∈ (0, 1]× (0,∞)× (1,∞)

> 1 (B.1)

Let 0 < h ≤ 1 andq 6= 1. Let (hL, wL, qL) = QL(f) and letnum1L, num2L, denL

be as in Definition 3.16. We first estimate the partial derivatives ofqL = num1L/denL

andhL = num2L/denL. Each ofnum1L, num2L, denL is of the form

L1(w, q) + L2(w, q)q + L3(w, q)h + L4(w, q)h log λL(f)

with λL(f) = 1 + 1/wL(f) as in Definition 3.16 and withLi(w, q) = ai(q)w + bi(q)
whereai(q) and bi(q) are constant separately forq < 1 and forq > 1 and satisfy
−3 ≤ ai(q), bi(q) ≤ 3, wherei = 1, 2, 3, 4. Let k = 1, 2 andnumkL = L1 + L2q +
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L3h + L4h log λL anddenL = L′1 + L′2q + L′3h + L′4h log λL with Li = aiw + bi

andL′i = a′iw + b′i (Warning: the prime doesnot denote a derivative). Then(
∂
∂xnumkL

)
denL −

(
∂
∂xdenL

)
numkL

=



(L3 + L4 log λL)(L′1 + L′2q)− (L′3 + L′4 log λL)(L1 + L2q) if x = h

+(a1 + a2q + a3h + a4h log λL)(b′1 + b′2q + b′3h + b′4h log λL)
−(a′1 + a′2q + a′3h + a′4h log λL)(b1 + b2q + b3h + b4h log λL)
+h
{
L4

(
L′1 + L′2q + L′3h)− L′4

(
L1 + L2q + L3h)

}
∂

∂w log λL

if x = w

L2(L′1 + L′3 h + L′4h log λL)− L′2(L1 + L3 h + L4h log λL) if x = q

Recall that|h| ≤ 1 and|ai|, |a′i|, |bi|, |b′i| ≤ 3 and|Li|, |L′i| ≤ 3(1+w) andlog λL ≥ 0.

• If q < 1, then| ∂
∂w log λL| ≤ (1 + w)−1 and∣∣( ∂

∂xnumkL

)
denL −

(
∂
∂xdenL

)
numkL

∣∣
≤


36(1 + w)2(1 + log λL) if x = h

18(3 + log λL)2 + 54(1 + w) if x = w

18(1 + w)2(2 + log λL) if x = q

 ≤ 210(1 + w)2 log(2 + w)

For the second inequality, use12 ≤ log λL ≤ 1 + w and(log λL)2 ≤ 1 + w.
• If q > 1, then| log λL| ≤ 1 and| ∂

∂w log λL| ≤ (1 + w)−2 anda′2 = b′2 = 0 and∣∣( ∂
∂xnumkL

)
denL −

(
∂
∂xdenL

)
numkL

∣∣
≤


72(1 + w)2 q if x = h
270 q if x = w

27(1 + w)2 if x = q

 ≤ 29 (1 + w)2 q

To finish the proof, observe thatdenL ≥ (1+w)min{1, q} > 0. Each partial derivative
of qL = num1L/denL andhL = num2L/denL is bounded in absolute value by (B.1).
And so are the partial derivatives ofwL, because∂wL/∂h = ∂wL/∂q = 0, and because
∂wL/∂w = −(1 + w)−2 if q < 1 and∂wL/∂w = 1 if q > 1. ⊓⊔
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