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Abstract

This thesis comprises three mathematically rigorous papers about the vacuum Ein-
stein equations. Their respective titles and abstracts are:

A formalism for analyzing vacuum spacetimes: The Einstein vacuum equations in the
formulation developed by Newman, Penrose and Friedrich are expressed in terms of
a Lie superbracket. Differential identities are derived from the super Jacobi identity.
This perspective clarifies the covariance properties of the equations. The equations
are intended as a tool for the analytic study of vacuum spacetimes.

Strongly Focused Gravitational Waves: Christodoulou proved that trapped spheres can
form in evolution from a generic initial state, through the focusing of gravitational
waves. His work is the motivation for the present paper, in which we consider the
same physical problem, using very different mathematical methods. Our approach is
based on a controlled “far field expansion”. By a systematic use of scaling symme-
tries, we regularize Christodoulou’s singular “short pulse method”, rigorously track
vacuum solutions by the far field expansion and exhibit trapped spheres that first ap-
pear deep inside the far field region. Our presentation is self-contained. In the final
section, we present a detailed outline of the construction of another, more subtle, ex-
pansion that allows us to continue the solutions beyond the far field region to within
any fixed “finite distance” from the (expected) singularity. From a methodological
perspective, the underlying aim of this paper is the development of a general method
for constructing solutions to the vacuum Einstein equations by controlled expan-
sions.

The BKL Conjectures for Spatially Homogeneous Spacetimes: We rigorously construct
and control a generic class of spatially homogeneous (Bianchi VIII and Bianchi IX)
vacuum spacetimes that exhibit the oscillatory BKL phenomenology. We investigate
the causal structure of these spacetimes and show that there is a “particle horizon”.

These are three collaborations with Dr. Eugene Trubowitz.



Zusammenfassung

Diese Dissertation umfasst drei mathematisch rigorose Arbeiten iiber die Einstein-
schen Vakuumfeldgleichungen, nimlich:

Ein Formalismus zur Untersuchung von Vakuumraumzeiten: Fiir die Newman-Penrose-
Friedrich Formulierung der Einsteinschen Vakuumfeldgleichungen wird eine Lie-
Super-Klammer eingefiihrt. Wichtige differentielle Identitédten dieser Formulierung
folgen aus der Super-Jacobi-Identitit. Durch diesen Zugang werden die Kovarian-
zeigenschaften der Gleichungen deutlich gemacht.

Stark fokussierte Gravitationswellen: Christodoulou hat gezeigt, dass das Fokussieren
von Gravitationswellen zur Entstehung von “trapped spheres” fiihren kann. In der
vorliegenden Arbeit untersuchen wir dasselbe physikalische Phdnomen, verwen-
den dazu aber andere mathematische Methoden, insbesondere rigorose Fernfeld-
Entwicklungen. Mittels geeigneter Skalierungen regularisieren wir Christodoulous
“short pulse method” und zeigen, dass “trapped spheres” bereits tief in der Fern-
feldzone entstehen konnen. Schliesslich skizzieren wir eine zweite Entwicklung, die
es erlaubt, die Losungen auch jenseits der Fernfeldzone zu kontrollieren. Ziel die-
ser Arbeit ist es auch, eine allgemeine Methode fiir die rigorose Konstruktion von
Vakuumraumzeiten durch Entwicklungen zu erarbeiten.

Die BKL-Vermutungen fiir rdumlich homogene Raumzeiten: Wir konstruieren eine
generische Familie von raumlich homogenen (Bianchi VIII und Bianchi IX) Vaku-
umraumezeiten, die BKL-artige Oszillationen aufweisen. Wir untersuchen die kausa-
le Struktur dieser Raumzeiten und zeigen, dass sie “Teilchenhorizonte” haben.

Diese drei Arbeiten entstanden in Zusammenarbeit mit Dr. Eugene Trubowitz.
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General Introduction

This thesis comprises three papers:

[RT1] A formalism for analyzing vacuum spacetimes (p. 15-36)
[RT2] Strongly Focused Gravitational Waves (p. 37-132)
[RT3] The BKL Conjectures for Spatially Homogeneous Spacetimes (p. 133-181)

These are three collaborations with Dr. Eugene Trubowitz.

This thesis is a mathematically rigorous piece of work in theoretical physics. The
common topic of [RT1], [RT2], [RT3] are the vacuum Einstein equations. The main
mathematical methods used are: differential geometry and the language of vector bun-
dles [RT1]; quasilinear symmetric hyperbolic systems and expansions [RT2]; ordinary
differential equations [RT3].

The three papers are included in their entirety, each with a dedicated technical in-
troduction, and with a separate list of references. The purpose of the present general
introduction is to put these works in a common, wider context, to explain their mu-
tual relationships, and foremost to emphasize the original scientific contributions, by
a comparison with existing literature. Original scientific contributions are highlighted
visually and thus easy to spot.

Fix a real, constant, symmetric matrix (g®?) with signature (—, +, +, +). Let O(1, 3)
be the 6-dimensional group of real matrices (A,°) with g**A,™ A, = g™, the ho-
mogeneous Lorentz group. Here and in the rest of this introduction, small Latin indices
always run over the ordered set {1, 2, 3,4}.

A spacetime (all the discussion here is local) is a pair (M, [ E']), where M is a four
dimensional manifold, E = (E1, B9, E3, E,) is a frame of vector fields on M, and two
frames belong to the same equivalence class [ F'] iff the associated field g*° E, ® Ej, is

the same. Equivalently, [E] = {AE | A: M — O(1,3)}, where (AE), = AL Ey.

The spacetime metric g is given by g(E,, Ey) = g and depends only on [ E].
Here, (gq) is the matrix inverse of (g2°). The inverse metric is the field g** E, ® Ej,.

A spacetime is flat iff there is a representative frame £ such that the vector field
commutators [E,, Fy], a,b = 1,2, 3,4, all vanish identically. Equivalently, given any
representative frame F, the spacetime is flat iff there isa A : M — O(1, 3) for which



the commutators [(AE),, (AE)] all vanish identically. The integrability condition for
this first order differential system' for A is the vanishing of

Rmnab = Em(Fnab) - En(Fmab) + Fnazpméb - Fmazrnfb + (an,e - anZ)FEab

with (I},,") determined by [E,,, En] = (In’ — D) Eg and Ty g™ + L™ g™ =
. ¢
0. Equivalently, I',,,," = % " (Cmna — Camn + Canm) Where [En,, En] = Cnag® Ep.
By construction, the field (Rmmb) represents the equivalent concepts: obstruction
to integrability of the flatness condition; measure of deviation from flatness; curvature.
It is called Riemann curvature.

The Riemann curvatures associated to two equivalent frames E and AF are related
in a pointwise manner, R(AE)mnab/lbd = AmkAnZAaCR(E)kgcd. Thus, at each point,
the Riemann curvature can be analyzed by the group representation theory of O(1, 3).
It decomposes invariantly into a sum of three pieces, that transform according to three
irreducible real representations of O(1, 3), denoted (0, 0) and (1,1) and (2,0) ® (0, 2),
with dimensions 1 and 9 and 10, respectively. In the context of four-dimensional geom-
etry, the three pieces in this invariant decomposition have the following names:

(Riemann curvature) =

(Trace of Ricci curvature) @ (Traceless Part of Ricci curvature) & (Weyl curvature)
= Scalar curvature
Einstein proposed to interpret spacetimes for which the Riemann curvature is purely
of type (2,0) @ (0, 2), that is purely a Weyl curvature, as physical vacuum spacetimes.
By the above discussion, this is a representative-independent condition for a spacetime.
Equivalently,

Vacuum Einstein Equations: R,q." =0 foralla,b=1,2,3,4.

A fundamental property of the vacuum Einstein equations is causality, that is, finite
speed of propagation. To discuss causality properly, local gauge-transformations have
to be taken into account. Causality of the vacuum Einstein equations may be exhibited
by a process known as hyperbolic reduction (essentially, complete gauge fixing, and
deriving hyperbolic partial differential equations). Such a reduction yields L?-type es-
timates, usually referred to as energy estimates, a basic analytic tool to gain rigorous
control over the solutions.

The traditional hyperbolic reduction of the vacuum Einstein equations uses the har-
monic gauge®. It was used by Choquet-Bruhat [CB] to obtain a rigorous local existence
and uniqueness theorem.

An alternative hyperbolic reduction uses the Newman-Penrose-Friedrich orthonor-
mal frame formalism. Newman and Penrose [NP] introduced the basic unknown fields
of this formalism (frame, connection, Weyl curvature) and the corresponding vacuum

! Modulo the O(1, 3)-condition g®® A, ™ Ap™ = g™™, the system [(AE)q, (AE)p] = 0 is equivalent to
the linear system En(/lab) + AgtT0% = 0 for A.

2 Coordinates (z*) 1u=0,1,2,3 satisfy the harmonic gauge with respect to a metric g = g, dz# ®@ dz¥
iff 8, (9"”+/—g) = 0 for all v. Here, g is the determinant of the matrix (guv)u,v=0,1,2,3. The harmonic
gauge bears some similarity to the Lorentz gauge of electromagnetism.



Einstein equations . Their equations are not independent, but satisfy general differential
identities, that were derived by Friedrich [Fr].

In [RT1], the vacuum Einstein equations as formulated by Newman and Pen-
rose [NP] are expressed in terms of a Lie superbracket. The general differential
identities of Friedrich [Fr] are derived from the associated super Jacobi identity.
Special care is taken to exhibit the covariance properties of the equations.

The first hyperbolic reduction in the Newman-Penrose-Friedrich formalism was dis-
covered by Friedrich [Fr]. He showed, by choosing a particular gauge, that the vacuum
equations contain a symmetric hyperbolic subsystem® that determines the evolution of
all unknown fields (frame, connection, Weyl curvature). To show that the remaining
equations, called constraints, are also fulfilled, he used the general differential identi-
ties. The importance of [Fr] is the insight that a hyperbolic reduction in the Newman-
Penrose-Friedrich formalism is at all possible, using symmetric hyperbolic systems.
The particular gauge introduced in [Fr] is secondary, and is not used in this thesis.

The discussion below makes frequent reference to characteristic coordinates. A func-
tion u on a spacetime with nonvanishing differential, du # 0, is characteristic iff
it solves the eikonal equation, g"°E,(u)Ey(u) = 0. The eikonal equation depends
only on the equivalence class [ E']. It is a Hamilton-Jacobi equation, and the associated
Hamiltonian equation of motion is the geodesic equation. Explicitly, the gradient vector
field g°*E, (u) Ej, is tangent to the level sets of u, and its integral curves are (affinely
parametrized) null geodesics. Hence, the level sets of u are ruled by null geodesics.

Gauges in which one of the four coordinates are characteristic appear, for example,
in [BBM] and in [Fr].

A gauge in which rwo of the four coordinates are characteristic, sometimes called
double-null-gauge, is a natural choice for some problems in general relativity*. See
[KN] and [Chr]. Many calculations and estimates are conveniently done in this gauge.
However, in the absence of a hyperbolic reduction directly in the double-null gauge,
rigorous works using this gauge had to carry out parts of the argument (local existence)
in a different gauge, say the harmonic gauge. This technical detour can be avoided:

In [RT2], a hyperbolic reduction for the Newman-Penrose-Friedrich formalism
is given directly in the double-null-gauge, using symmetric hyperbolic systems.

The geometric notion of a closed trapped surface was introduced by Penrose [Pen].
The definition of this notion assumes that the spacetime is time-oriented: at each point,
a choice is made which half of the light cone is future-directed, and this choice is made
in a continuous way. A closed 2-dimensional surface in a time-oriented spacetime is
trapped iff, every tangent space to the surface is spacelike, and the traces of both future-
directed null second fundamental forms> are negative everywhere on the surface. The
original definition of Penrose [Pen] is more direct: “[...] a closed, spacelike, two-surface

3 For a general discussion of quasilinear symmetric hyperbolic systems, see [Tay].

4 A basic example are the coordinates ¢ + 7+ 2m log(r/(2m) — 1) and t —r — 2m log(r/(2m) — 1) on
Schwarzschild spacetime, when r > 2m > 0. Here, (¢, r') are two of the standard Schwarzschild coordinates.

5 A spacelike 2-dimensional surface can locally always be written as the intersection of the zero-level sets
of two functions u and u, both solutions to the eikonal equation, g2° Eq (u) Ep(u) = g*® Eq (u) Ep(u) = 0,
with du and du pointwise linearly independent. The two null second fundamental forms describe the extrinsic
geometry of the spacelike 2-dimensional surface with respect to these two zero-level sets.



[...] with the property that the two systems of null geodesics which meet [the surface]
orthogonally converge locally in future directions at [the surface].” A closed trapped
surface diffeomorphic to the two-sphere S2, will be referred to as a trapped sphere.

The prototypical trapped spheres in a vacuum spacetime are the SO(3) orbits in-
side the horizon of a Schwarzschild spacetime. Closed trapped surfaces appear in the
formulation of Penrose’s incompleteness theorem [Pen].

Christodoulou [Chr] has proved that trapped spheres can form in evolution through
the focusing of incoming gravitational waves. To be sure, the spacetimes constructed in
[Chr] are solutions to the vacuum Einstein equations, and the theorems in [Chr] apply
to a generic class of initial data (in particular, there are no assumptions of symmetry).

[RT2] contains a new and logically independent proof of the main results of
[Chr], including the formation of trapped spheres. [RT2] is based on exactly
the same physical mechanism/the same geometrical setup that was exploited
in [Chr]. However, the proof of [RT2] uses only a combination of traditional
and well-known tools, in particular symmetric hyperbolic systems and formal
expansions, thereby achieving a technical simplification over [Chr].

The focusing of gravitational waves in [Chr] is implemented by a dedicated geomet-
ric optics argument, called short pulse method in [Chr]. It is instructive to first consider
an idealized limiting case: an infinitely short (or instantaneous) pulse. This discussion
uses spherically symmetric non-vacuum spacetimes. The bearing of this discussion on
[Chr] and [RT2], which deal with vacuum spacetimes without assumptions of symme-
try, is explained afterward.

On the manifold M = {(u, 7,0, ¢) € R x (0,00) x (0,7) x (0,2m)} set

Ey =0, + %(1 — 2r_1m(g)) Oy Ey =119,
E2 = —8, E4 = (TSinQ)_18¢
and use
0 —-100
@ -1 000
@) =10 010
0 001

The function m = m(w) is assumed to be given, with dm/du > 0. Observe that
E = (F4, Es, E5, Ey) is a frame. By direct calculation:

R = 2koky  with ko = 0a1 7 Hy/dm/du

The coordinate u is a characteristic coordinate, g*°E, (u) Ey(u) = 0. The spacetime
(M,[ E]) is spherically symmetric, and R,." = 2kqk; are the Einstein Equations
with a null fluid matter field, because the wave vector field (k,) is null, gk, ky = 0.
This spacetime was introduced by Vaidya [Vai]. From now on,

{0 ifu<0

. mo > 0 constant
mgo ifu>0 (o )

The corresponding spacetime will be referred to as the distributional Vaidya spacetime.
Then, 2k, ki, = 28410517~ 2mo 6 (u) has singular support on the incoming characteristic



hypersurface u = 0. The spacetime (M, [E]) is vacuum when u < 0 (Minkowski
spacetime) and u > 0 (Schwarzschild spacetime in Eddington-Finkelstein coordinates
with mass my).

The level sets of (u,7) as a map M — R x (0,00) are spheres with area 4772,
and hence are trapped iff® Ey(r) < 0 and Fa(r) < 0, thatis, u > 0 and r < 2my.
Therefore, in the distributional Vaidya spacetime, trapped spheres form in evolution.
Recall that this is a non-vacuum spacetime.

The null fluid term 2k, k;, in the distributional Vaidya spacetime may be interpreted
as a massless radiation, possibly gravitational radiation. Therefore, heuristically speak-
ing, one may attempt to high-frequency-modify the distributional Vaidya spacetime
near v = 0 to obtain a vacuum spacetime. Necessarily, one has to abandon spherical
symmetry (Birkhoff theorem).

The distributional Vaidya spacetime is not discussed in [Chr], but could serve as
a natural motivation for [Chr], or at least some aspects of it. In fact, the spacetimes
constructed in [Chr] do also contain a complete Minkowskian past cone, the boundary
of which ‘carries’ a wave. This wave is non-spherical, and purely gravitational, in the
sense that it is a solution to the vacuum Einstein equations. The technical implementa-
tion of this picture is the short pulse method of [Chr]. In [Chr], the Minkowskian region
and the pulse region are considered.

[RT2] in addition controls the transition from the pulse region to the (approxi-
mate) Schwarzschild region. This result is established under certain natural as-
sumptions. In particular, the ‘incoming energy per unit solid angle’ in the finite-
duration pulse is spherically symmetric. See Section 9 of [RT2].

The distributional Vaidya spacetime gives a simple, intuitive picture for some aspects
of the focusing problem, but not all aspects. In particular, it gives no direct information
about the short pulse region itself.

In [Chr], the short pulse method is presented as a self-consistent way of introducing
a small parameter 6 > 0 into the problem. More precisely, it is a self-consistent scheme
of bounds for all the unknown quantities in terms of 4. Many quantities in [Chr] have
bounds of the form O(6~%), with a > 0. The limit (of the bound) as 6 | 0 does not
exist, it is singular. Whether this is necessarily so, or whether it is possible to define
in a mathematically meaningful way the actual limit, is not discussed in [Chr]. Can the
0 | 0 limit be regularized?
The next statement is formulated in the coordinate system (&%, €2, u, ) that is used in
[RT2]. The first two are ‘angular coordinates’, the last two characteristic coordinates.
The small parameter 2 in [RT2] is equivalent to § of [Chr] through § = A*.

[RT2] uses (dependent and independent) variables for which the limit 2 | 0 ex-
ists / is regular, and for which the equations remain symmetric hyperbolic even at
A = 0. The inverse metric g*° E, ® E}, degenerates from signature (—, +, +, +)
to (—,0,0,+), which causes all partial derivatives with respect to £*, £ to drop
out. For each value of the now passive parameters (¢*,£2), one obtains 1 + 1 di-
mensional symmetric hyperbolic systems with respect to just u, u. The solutions
fo these systems break down, along a curve in the (u,u)-plane that is explicitly
calculated in [RT2] in terms of the data at past null infinity.

% This uses the implicit assumption that /1 + E9 determines the future direction.



The A = 0 solutions have a degenerate frame (rank 2 rather than rank 4). There-
fore, they are not spacetimes, and their breakdown does not describe the breakdown
of vacuum spacetimes. However, in Subsection 9.5 of [RT2], an informal but careful
argument is given to the effect that the vacuum spacetimes of [RT2] can be extended,
using nothing more than the methods of [RT2], to within any ‘finite distance’ of the
A = 0 breakdown. No statement is made about later ‘times’. Nevertheless, the informal
argument, and the heuristic picture that comes with it, together identify a direction for
promising future research. Subsection 9.5 stands apart from the rest of [RT2], and will
not be discussed further in this introduction.

A few more details about [RT2] will now be given. To keep things reasonably short,
the following compromises are made. The vacuum spacetimes of [RT2] are discussed
in terms of just the 16 components of an orthonormal frame E = (E4, Es, E3, Ey).
The components of the connection and Weyl curvature are ignored, even though in the
Newman-Penrose-Friedrich formalism they are on an operationally equal footing with
the frame, and are treated as such in [RT2]. A single stereographic-type coordinate
patch (£1,£2) € R? is mentioned for the two-sphere. It is implicit that two such patches
are used to cover the two-sphere, and that everything is compatible on the overlap. It is
assumed that the vacuum spacetimes have been shown to exist beforehand, and they are
just described here. The discussion is incomplete and a little informal.

The discussion uses the conventions of the High Amplitude Picture with a = 2 in
Section 9 of [RT2], because it is the simplest to explain. (All the technical parts of [RT2]
are done using another picture, the Regularized Picture, because it is much better suited
for making calculations. The two pictures are equivalent, and are related by scaling
symmetries of the Newman-Penrose-Friedrich formalism, see Section 9 [RT2].)

Set M = {(x“),l:172,3’4 = (fl,fg,y, u) € R? x (0, 1) X (—OO,’LL())} with ug < 0.
The components of the frame vector fields £, = Ea“au are

£%00 010 0
v [xx00 we (100 0
(E")= 1,401 W) =100 0 -1
000 00-1 0

Entries with asterisk % can be nonzero. Some of them are necessarily nonzero, because
E is a frame. The entry E,® > 0. The seemingly wrong signature of (g??) is explained
by the fact that the frame vector fields are complex (this is convenient!). The complex
conjugate of (Ey, By, E3, E4) is (Eo, 1, E3, E,). Therefore, g°*E, ® E, is real and
has signature (—, +, +, +). The asterisk pattern of (E,") is discussed in more detail a
few paragraphs down from here.

Let M', M"" C M be the subsets given by 0 < u < % and % < u < 1, respectively.
Then (M’,[ E']) is flat/Minkowskian, (M", [ E']) carries the gravitational wave.

More precisely, the subset M’, on which

p e +ip~le 00

(BH) = ple —ip~le 00 p=u—u
o 00l o= (14 (€ +(€))

is isometric to a subset of Minkowski spacetime: u = 2~ V/2(t +7), u = 27 1/2(t — 1),
with standard Minkowskian time ¢ and radius 7, and standard stereographic coordinates

10



(€Y, £2). Therefore, the past light cone ¢ + r < 0 in Minkowski spacetime can be
smoothly attached to (M, [ E]).

There is a map’ DATAy : R? x (0,1) — C with

lim uz(E'l1 — p_le) = lim iu2(E12 — Z'p_le) = efogd@’ DATAH (&1, €2, )

U——00 U——00

The limits are taken at constant & L 52, u. Here, u — —oo0 is interpreted as past null
infinity, and DATAy; is interpreted as initial data at past null infinity. More informally,
DATAp describes the incoming radiation. Necessarily, DATAy = 0 when u < % Given
the Minkowskian data on M’, the map DATAy uniquely determines (M, [ F']). To make
rigorous sense of the last statement, technical assumptions about the decay as u — —oco
of various unknowns are made in [RT2]. These assumptions are not discussed here.

A minimal requirement for the uniqueness statement in the last paragraph is the
complete fixing of the gauge degrees of freedom. Here, the asterisk pattern of (E,")
comes in. The three zeros in the third (resp. fourth) column imply that u (resp. u)
solves the eikonal equation and that its gradient® is —E,3Es (resp. —E4). The two zeros
in the lower-left corner imply that ¢!, £2 are transported along Ej. Thus, two eikonal
equations and two transport equations, together with the Minkowskian data on M’
and the additional assumption lim,_,_ E,® = 1, fix the coordinates. An additional
condition is needed to also fix the frame, because there still is the local U(1) gauge
degree of freedom (E1, Ey) — (et Ey, e~ Es,), but this is not discussed here.

If F is rescaled by a constant positive factor, it will still satisfy the vacuum Einstein
equations. To satisfy the gauge conditions, u and u have to be rescaled by the inverse
of the same factor. Therefore, the initial assumption that u has range (0, 1) is a choice
of scale. That is, the coordinate-width of the wave is fixed to ~ 1.

Let |DATAg|| (the amplitude) be equal to a suitable C"™™ norm of DATAy, that also
takes into account the two patches for the two-sphere. The value of m is technical. The
results of [RT2] apply with m = 10.

There is no smallness condition on the amplitude ||DATAy|| in [RT2], in fact the
analysis is tailored to large amplitude. The theorems of [RT2] control / assert existence
of the vacuum spacetime for u € (—o0, ug), with ug < 0 becoming more negative as
the amplitude grows. More precisely:

[RT2] yields |ug| ~ ||DATAg|| as ||DATAy || — oo.

Whether the statement |ug| ~ |[DATAg||" as || DATAg || — oo can be proved for some
k € (0,1) is not known, but x = 1 may well be optimal. By comparison, [Chr] only
directly implies the weaker statement with? k = 2.

7 The subscript in DATAy is for High Amplitude Picture. See Section 9 of [RT2].

8 The gradient of f : M — R is the vector field g*® E, (f) Ey,.

9 To make this conclusion, the vacuum spacetimes of [Chr] have to be expressed in the same gauge,
by a straightforward global rescaling. There are two remarks. First, in [Chr] the range of u is actually a
finite interval, but the results are uniform in the left (i.e. more negative) endpoint of the interval. Second,
the amplitude ||[DATAg || can be taken to be a C7 norm in [Chr], as opposed to C''0 in [RT2]. Thus, from
this particular point of view, [Chr] is stronger than [RT2]. However, in view of the fact that the focusing of
gravitational waves is an infrared problem, this remark is technical.
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The vacuum Einstein equations are a system of nonlinear partial differential equa-
tions. There are two simplifications that are commonly used to facilitate /allow a rig-
orous quantitative treatment. One is perturbation theory (a small parameter) and this is
used in [RT2]. The other is symmetry (dimensional reduction) and this is used in [RT3].

In [RT3], the spacetimes are spatially homogeneous, Bianchi type VIII and IX. The
vacuum Einstein equations become a nonlinear system of six ordinary differential equa-
tions and one propagating algebraic constraint, namely the following equations with
n = (ny,ng,ns) = (1,1,1):

( )2+ (n282)* + (n35)* — 2n2ns (3253
Loy = —(n2f)® + (n363)* + (n151)? — 2n3n1 B3
(n3f3)” +

Loz = —(ngf3)* + (n161)? + (n2fa)? — 2n1n21 B2
%/31 = b
EﬂQ Baca

%ﬁs = Bsas
0 = azaz + azag + ajas — (n151)% — (n2f2)? — (n3Bs)?
+ 2nan3fafs + 2n3ni1 Bz 81 + 2n1ne B Ba

(Other values n = (n1,ng, ng) are used later.) The condition (a + ag + ag)|r=0 < 0
breaks the 7 — —7 symmetry and implies that the solutions a(7), 3(7) € R? exist for
all 7 > 0, with a; +as + a3 < 0. However, the half-infinite interval 7 > 0 corresponds
to a finite physical duration of the associated spatially homogeneous vacuum spacetime.

In [RT3]7 ﬁ1a527ﬂ3 7& 0.

The pioneering calculations and heuristic picture of Belinskii, Khalatnikov, Lifshitz
[BKL] and Misner [Mis] suggest that a generic class of solutions are oscillatory as

T — 400 and that the dynamics of one degree of freedom is closely related to the
discrete dynamics of the Gauss map G(z) = L — [1], a non-invertible map from

(0,1) \ Q to itself. Every element of (0,1) \ Q admits a unique infinite continued
fraction expansion

1
< 1, 2, 3, > kl

1
ka+ k3-1¢-

where (ky,)n>1 are strictly positive integers. The Gauss map is the left-shift,

G ((kr, kg, kg, - )) = (ka, kg, s, - )

Rigorous results about spatially homogeneous spacetimes have been obtained by
Rendall [Ren] and Ringstrom [Ril], [Ri2]. See also Heinzle and Uggla [HU1]. See
[HU2] for a detailed discussion.

The first rigorous proofs that there exist spatially homogeneous vacuum spacetimes
whose asymptotic behavior is related, in a precise sense, to iterates of the Gauss map,
have been obtained by Béguin [Be] and by Liebscher, Héarterich, Webster and Georgi
[LHWG]. These theorems apply to a dense subset of (0,1) \ Q. A basic restriction of
both these works is that the sequence (k,,),>1 has to be bounded, a condition fulfilled
only by a Lebesgue measure zero subset of (0,1) \ Q.

12



The results of [RT3] apply to any sequence (k,)n>1 that grows at most polyno-
mially. The corresponding subset of (0,1) \ Q has full Lebesgue measure one.

The structure of each solution constructed in [RT3] can be informally described by
a sequence (7;);>0, With0 =79 <7 < ... < T7j_1 <7; <...and lim; . 7; = o0,
and by a sequence (a;);>1 witha; € {1,2,3} and a; # a;; forall j > 1. These two
sequences specify a semi-global approximation scheme: for each j > 1 the vacuum
Einstein equations n = (nq,n2,n3) = (1,1,1) on [r;_1,7;] are approximated by
n = (1,0,0)ifa; = 1, by n = (0,1,0) ifa; = 2, by n = (0,0,1) ifa; = 3.
(The three approximate systems are explicitly solvable.) This scheme is good enough
to construct semi-global solutions. To make rigorous sense of this, it is shown in [RT3]
that the accumulated error stays finite as one is coming in from 57 — 400, or 7 — 400
that is.

To explain the role of (k,),>1, suppose the sequence (a;);>1 contains the segment
(...,2,1,2,1%,3,1,3,1%,2,3,2%,1%,3,1,3,1,...)

The element a; has been marked by an asterisk iff a;_; # a; ;. The leftmost element
and the rightmost element are not marked, because it was assumed that the next element
to the left of the segment is 1, and the next to the right is 3. The elements of the sequence
(kn)n>1 measure the distance between neighboring asterisks. In the present example,
(kn)n>1 contains the segment (...,4,1,2,1,...).

In [Mis], billiard game jargon is introduced to informally describe the dynamics:
the billiard ball is in free motion near 7;_1, a short but finite-duration billiard bounce
occurs somewhere in [Tj,l, Tj}, the billiard ball is again in free motion near 7;, and so
forth. There are three walls, labeled 1, 2, 3, respectively. The bounce in [Tj,l, Tj] is off
the wall labeled a;.

In [RT3], a dimensionless parameter h; > 0 is defined. Essentially, h; is the du-
ration of the billiard bounce in [7;_1,7;], divided by |7; — 7;_1|. Proving rigorously
the validity of the semi-global approximation scheme goes hand in hand with decay
estimates for h;, as j — +o0.

It is shown in [RT3] that, under appropriate smallness conditions,
oD/
hj:O((%(l—i-\/g)) 2D7) ) as  j— 400
Here, D > 1 and v > 0 are constants such that k, < Dn" foralln > 1.

A basic question regarding the causal structure is whether, for every pair of points
p,p’ in the spatially homogeneous spacetime, there is a point ¢ that lies in the causal
future of both p and p’. (Here, future corresponds to increasing 7.) If the answer to this
question is negative, the spacetime is said to have a particle horizon.

All spatially homogeneous vacuum spacetimes constructed in [RT3] have parti-
cle horizons.

The heuristic work of Belinskii, Khalatnikov, Lifshitz [BKL] concerns very general
(inhomogeneous) spacetime singularities. It heavily relies on intuition about the homo-
geneous case. The existence of particle horizons in the homogeneous case, established
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in [RT3] under certain smallness assumptions, seems to be a necessary condition for
the homogeneous case to have any bearing on the inhomogeneous case.

The solutions constructed in [RT3] are generic in the sense that ‘they depend on
the right number of free parameters’ (for a precise statement, see [RT3]). It would be
desirable to have a stronger genericity statement.
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A formalism for analyzing vacuum spacetimes

Michael Reiterer, Eugene Trubowitz
Department of Mathematics, ETH Zurich, Switzerland

Abstract: The Einstein vacuum equations in the formulation develdpetlewman,
Penrose [NP] and Friedrich [Fr] are expressed in terms ofasuperbracket. Differ-
ential identities are derived from the super Jacobi idgniihis perspective clarifies
the covariance properties of the equations. The equatiensi@nded as a tool for the
analytic study of vacuum spacetimes.

1. Introduction

In this paper, we discuss a formalism that is suited to théyaisaof solutions to the
Einstein vacuum equations. In this formalism, the vacuuoa#igns

e become a quasilinear, first order system of partial difféaéequations, that
e are quadratically nonlinear, and
e through gauge-fixing, can be brought into symmetric hyplctborm.

Newman and Penrose [NP] introduced the basic unknown fididki® formalism
(frame, connection, Weyl curvature) and the corresponHBingtein vacuum equations.
Their equations are not independent, but satisfy genefateltial identities, that were
derived by Friedrich [Fr].

Friedrich [Fr] showed, by choosing an appropriate gaugs ttte vacuum equations
contain a symmetric hyperbolic subsystem that determireee\tolution of all unknown
fields. To show that the remaining equations, caltedstraints are also fulfilled, he
used the general differential identities.

In this paper, the vacuum equations as formulated by NewmdriPanrose are ex-
pressed in terms of a Lie superbracket, see (5.1) and (5i#).gEneral differential
identities, see (5.6b), are derived from the associatedrsigcobi identity. We take
special care to exhibit the covariance properties of thetous.

We used a forerunner of the present formalism to analyzegtydocused gravi-
tational waves, see Appendix B of [RT]. The point of the refipeesentation of this
paper is the derivation of the equations in Section 8 fromraariant point of view.
They are intended to be used as a tool in the analysis of otieblgms in classical
general relativity.

Important remark\We expect that there is a close relationship between themofi
a Cartan connection, see [Sh], and the formalism of thispagech is not made here.
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This relationship ought to be clarified. However, we havemwsued this relationship,
since the equations of Section 8 can be derived without it.

2. A Lie Superalgebra Identity

We recall the definition of a real Lie superalgebra:

Definition 2.1. A (non-associative}.,-graded real algebra(L = Lo & Ly, [+, -]),
with even partd., and odd partd.,, satisfying for allzy € Ly, , z2 € Ly,, x3 € Ly,
(@) [z1, 22] € Ly with € = k1 + k2 (mod 2)

(b) [z1, 2] = (1) *%2 [, 2]

(©) (=D)MFs [z, [z, w3]] + (=1)"F [, [z, 21]] + (=1)"F2 23, 21, 22]] = 0

is called areal Lie superalgebran this context][ -, -] is the Lie superbracket, (b) is
super skew-symmetry, and (c) is the super Jacobi identity.

Let (L = Lo ® Ly, [-, -]) be a Lie superalgebra as above. Sgt= L, x L; and
A1 = L1 x Lo, thatisA, = Ly x Loy forall ¢ € Z-.

Definition 2.2. For ¢ € Z», let
DY Ay x Ay — Ay (z,y) — Dy
where

21 = Y2 — 65[[331,1/1]]

DOy =2 =(z,25) € A with {
» Y (21,22) € Ao 2y = €gfw1, y2] + €eyr, x2]

(2.1)

forall x = (z1,22) € Ay and ally = (y1,y2) € Ay. Here,ep = 1 ande; = %

Equation (2.1) is consistent, becausec Li, o € Lo, y1 € Ly, y2 € Loy imply
21 € Lyyq, 29 € Ly, as required.

Convention 2.1From now on, we will drop the superscrigty), (1) on the operatoP,
with the understanding that "the arguments determine thersaript”.

Proposition 2.1.D,D,x = 0 forall z € A,
Proof. Lety = D,z andz = D,y. We have to show that = 0. We have

Y1 = To — %ﬂxl,xlﬂ (2.2a)

Y2 = [21, 22] (2.2b)
and therefore

z1=y2 — [r1,01] = %[[9017 [z1, z1]] (2.2¢c)

22 = [z1,y2] + [w1, 22] = [@1, [21, 22]] — 3[[o1, 21], 22] + [w2,22]  (2.2d)
Recalling thatzy € Ly andzs € Lo, the super skew symmetry (b) and the su-
per Jacobi identity (c) in Definition 2.1 impljy, [z1,21]] = 0, [z2,22] = 0 and
[[x1, z1], x2] = 2[z1, [z1, z2]]. For example,

0 = [z1, [z1, z2]] + [22, [z1, z1]] — [21, [z2, 21]]
= [z1, [z1, 22]] — [[z1, 21], 22] + [21, [21, 22]]

Thereforez = 0. O

16



Remark 2.1In Section 5 the abstract equatidn.z = 0 for the unknown "field"z €
Ay will be interpreted as "Einstein vacuum equations”. Thegetao many equations.
The system is apparently overdetermined. The remedy islémity of Proposition 2.1,
that holds for allz € A;.

3. Diamonds

Convention 3.1In this paper, all manifolds are real, smooth and finite disi@mal. For
any fiber bundler : E — B, the fiber ovep € B is denoted byt, = 7—*({p}).
For any sectionX € I'(E) the mapX : B — FE is given byp — X, € E,. For
any vector bundler : £ — B we denote byF*, Sym? E, S F, the dual bundle, the
subbundle of symmetric elements Bf® E, and the sphere bundle associated vith
That s, forp € B, we have(S E), = (E, \ {0})/R. Finally, End(E) = E* ® E'is
the endomorphism bundle associated with

Convention 3.2For a bundler : E — B we denote by (E) the algebraic direct sum
of all tensor products of andE*.

For therest of this paper, fix

e a4-dimensional manifold/,
e areal vector bundley : V — M with 4 dimensional fibers,
e asection) € I'(S Sym? V*) with signature(—, +, +, +).

In other words§$) defines aconformalLorentzian inner product on each fiberiof
Definition 3.1. For every integek > 0, let P* be the set of all map$,

O: D(T(V)) = DAV @ T(V)) (3.1)

so that for allu, v € I'(T(V)), all representativeg € I'(Sym? V*) of the conformal
Lorentzian inner product € I'(SSym? V*), and allY € I"(V®¥), we require, with
Convention 3.3 below:

(a) ¢ is linear overR,

(b) Oy mapsC*> (M) — C>°(M)andI(V) — I'(V)andI'(V*) — I'(V*),
©) Oy (u®v) = Oyu) @v+u® (Oyv),

(d) 0I = 0if I € I'(End(V)) is the identity on the fibers &f,

(€) Oh = p ® b for someu € I'(AFV*).

The vertical subspac®® c P* is the set of alk) € P* such thatOf = 0 for all
fec=(M).

Convention 3.3For eachy” € I'(V®*) andu € I'(T(V)) set

Oyu =iy (Qu) € I'(T(V))
Hereiy is interior multiplication byY” acting on the first factors ofQu.
Remark 3.10bserve thafy acts on the ring’>° (M) as a derivation, by (c).

Remark 3.2Every element ofP* can be written as a finite sum of "pure” elements
6 ® ¢, whered € I'(A*V*) and¢ € P°. The Leibniz rule (c) fo# @ ¢ reads

(@0 (u@v)=0® (Qu)@v+0®@u® (Ov)
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Remark 3.3LetZ be anindex setZ| = 4. Let ), a € Z, be local sections of that

are a frame for fibers of . Let \(*), a € Z, be the dual frame. For evety € P* and
Y € I'(V®*), property (d) in Definition 3.1 implies

0=0vI =0y (A @ Fo)) = (0vyA¥) @ Floy + A" @ (Oy Flo))

Consequently(Oy A(@)(F)) = =A@ (0y Fy,)) for all a,b € Z. Now, the Leibniz
rule (c) implies

(Ov&)(Z) = Oy (£(2)) — (0 Z) (3.2)
forall¢ e I'(V*)andZ € I'(V).

Definition 3.2. Letm, k1, ..., k¢ > 0 be integers, and = k; + ... + kg. The multi
(k1,. .., ke¢) wedge product operator shifted by is the linear map

N ke F((A’“V*)®(A’“V*)®---®(N‘W*)®T(V))

.....

- F((/\mV*) ® NV @ T(V))

determined by @11 @ R Q@u — ER (1/1 A-- ~/\1/g) ®@u. Setg, ..k, = Ag)kz
Remark 3.4We have

/\kl,k2+k3/\§£fl)€3 = Nky ko,ks
ONig ks = /\;(CI;,)%O
forany () € Pk,
Proposition 3.1.For all ¢ € P*, ¢ € P!, set

[0, $] = Ak,eOP — (—1)* Age $O (3.3)
Then [0, ¢] € P*+* and moreover(Py & Py, [-, -]) is a Lie superalgebra, with
Py = @kzoevenpk andP; = @kzooddpk'

Proof. To see thaf¢, ¢§] € P¥*¢, consider first the special case wher= ¢ = 0. In
this casg0, ¢] = O¢ — $ 0. Properties (a), (b), (d) in Definition 3.1 hold. The Leibniz
rule (c) holds:

[0, ¢](u®v) = 0P (u®@v) — PO(u @)
= 0(($u) ®v) + O(u® ($v)) = ¢ ((Ou) ® v) = F(u @ (Ov))
= (0fu) @ v+ ($u) ® (Ov) + (Ou) ® (Pv) +u® (OPv)
— (#0u) ® v — (Qu) ® ($v) — ($u) @ (Ov) —u @ ($Ov)
= ([0, ¢$]u) ® v +u e ([0, $]v)
For property (), note that there areyi € C>° (M) such that)h = ph andPh = 4b.

[0, 916 = O(b) — $(uh) = (Os)b + it — (Fr)b — phty = (Osh — Fp)b

Therefore, (e) holds. For general/, (a), (b) and (d) still hold. For the Leibniz rule
(c), observe that both sides of (3.3) are bilinear dvén ¢ and¢. It therefore suffices
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to consider the case wheh = 0 ® Q¢ and¢ = # @ ¢q, wheredo, $o € P° and
6 € I'(A*V*) andg € I'(A*V*). In this case,
[0, 6] = Ak 0@ Go (P @ $o) — (—1)* e f ® $o(0 @ Oo)
=OAP)R[Co,Po] + (9 A (Qoﬁ)) ® Po — ((¢09> A ﬁ) ® Qo (3.4)

Each term separately satisfies the Leibniz rule (the firstgrtbe special case= ¢ =
0), and (c) holds. Property (e) also follows from (3.4).
Toseethaf-, -] : P* x P! — P**+¢ s a Lie superbracket, observe that

[$,0] = Aex$fO — (1) Age O
= (=)' (Age 0% — (1) Api $0)
= (-0, 9]
Let Oy € PF1, Oy € PF2, O3 € PFs. Then
[01, [02, O3] = Mky ko tks 1 Akaiks 0203 — (—1)2F3 Apy ky ks O1 Akig ko 0302

— (1) Rt R) A kg ey Ak ey 020301

+ (1)t thako n )k Ak ks 030201
By Remark 3.4,
(=1)F*2[01, [02, Os]]

= (=D)FF Ap b ks 010203 — (= 1)FF2 AL, 1o 1 020301
— (=1)kstkitk) Ay 010300 + (—1)F2RIFk) A 030201

Adding,

(=D)*1%3 [0, [O2, O3] + (=1)*2F1[02, [03, O1]] + (—1)*2*2[03, [O1, 02]] = 0
]

Convention 3.4The symbol7 denotes a finite index set. The sétand its length.7 |
may change from occurrence to occurrenBeldface small Latin indices, b, . .. take
values in7. Boldface Capital Latin indices are multiindices, thatiements of7* for
somek > 0. The length of a multindeA = (ay,...,a;) will be denotedA| = k.
We write Xa = Xa, ® --- ® X,,, for various types of objects’.

Definition 3.3. Let 7 be an index set and lex, By, ..., B, be 7-multiindices such
that |A| = Bq| + ...+ |By| = k. LetA = (a;,...,a;) and letB4||---||B; =
(by,...,by) be the concatenation @, throughB,. Set

B,---B b b
AAPTP = i D sen(m)dana, M Gag, (3.5)
TESE

The index sel is implicit in (3.5)and will be specified every time it is used.

Remark 3.5A,BCAgPE = A,PEC where|A| = |B| + |C| = |D| + |E| + |C]|.
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Remark 3.6Let ) € P*, Y € I'(V®*) andz € I'(T(V)). Then
[2®,0v] = —(Ov2) ® (3.6)
as operators acting afi(7 (V)), and[ -, -] is the commutator of operators.

Remark 3.7Equation (3.3) is equivalent to

iy, [[O’ ¢ﬂ
= AABC (iYB®YC<>¢ - iYC®YB¢<>) (37&)
= AAP (OvaPve — PveOvs) — AAPEP (0, voore + AA"P 00, ey

(3.7b)

HereYs,..., Yy, are any sections df. Moreover,7 = {1,...,k + ¢} andA =
(1,...,k + ¢), see Convention 3.4. Thg-multiindices have lengthA| = k + ¢,
|B| = k, |C| = ¢. Also, i is interior multiplication as in Convention 3.3.

To check (3.7b), use (3.6) witi = Y andz = Y and apply it tofu. Then,

Yo @ (OygPu) — Ove (Yo @ $u) = —(OyvpYe) @ Pu

Both sides are sections &f(V®* @ A‘V* @ T(V)). Contracting the first with the
second factors, we obtain (since diamonds commute with contras)io

ive (Ovs Pu) — Ovg (ivePu) = —ioy, ve (Pu)

This is equivalent to (SinCa,ivy = ivsave)
IYs®Yo (<>¢U) =QOvs (¢Ycu) - (¢<>VBYC) u (3.8)

With Remark 3.7, we obtain the following corollary of Profims 3.1.
Corollary 3.1. Forall ¢ € P! andY;,Y; € I'(V),

%[[070]]3/1@3’2 = (iY1®Y2 - in®Y1)<><>

= <>Y1 <>Y2 - <>Y2<>Y1 - <><>y1 Yo—O0vy Y1

Definition 3.4. g(V, $) is the subbundle dind (V') whose fiberap € M isall A
End(V), for which there is a\ € R so that

hp(AYhYZ) + hp(YhAYQ) = )\hp(Yl,Y2) (3-9)

forall Y;,Ys € V. Hereh, € (Sym* V*), is a representative fofy,,. For eachk > 0,
set

RF = D(AFV* @ g(V,9))

Remark 3.8The definition of the vector bundlgV, §) does not depend on the choice
of arepresentativig. The fibers ofy(V, ) have dimension 7. Each fiber is a Lie algebra
isomorphic to the Lie algebra of the groljp, x O(1,3), the direct product of the
multiplicative group of positive real numbers with the Lotzgroup.
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Proposition 3.2.For all ¢ € P¥ andY € I'(V®*) andZ € I'(V) set
BOWZ=0vZ € T'(V)
ThenB(Q)y € I'(g(V, $))  I'(End(V)) and3(Q) € R*. The map
g: PF—RE
O = B(0)
is a bijection.

Proof. First, 3(¢) € I'(A*V* ® End(V)) becaused(0)y Z is linear overC> (M) in
bothY and Z, by the assumption th&t € P%. We have to show that(¢) € R. Let
h be a representative @f. Then

0= Oy (h(Z1, Z2))
= (Ovh)(Z1, Z2) +5(Qv Z1, Z2) + b(Z1, Oy Za)
= u(Y)h(Z1, Z2) + b(B(0)y Z1, Z2) + b(Z1, B(0)y Z2)

forall Z,,Z, € I'(V), andu as in (e) of Definition 3.1. Hencg(O) € R*. Also,

e Jisinjective. In fact,3(0) = 0 implies that® annihilates functions, sections of
and, by equation (3.2), sections¥éf. By (a), (c) in Definition 3.1, we havé = 0.
e (is surjective. Giver” € R, set

Ovf=0 OvZ =027 (Ové)(Z) =€y 2)

forall f € C>®(M), Z € I'(V), ¢ € I'(V*) and ally € I'(V®*). Together with
(a),(c) in Definition 3.1, they uniquely determidg u for all w € I'(7(V)), and
(b), (d), (e) in Definition 3.1 are automati¢.c P* satisfies3(0) = 7.

O

4. From Diamonds of degree one to Lorentzian Geometry

In this section, we characterize the element$éfthat correspond to Lorentzian ge-
ometries. Conversely, we show that every Lorentzian méh(focally) arises from an
element ofP!. The Einstein vacuum equations are reinterpreted as ¢onslion ele-
ments ofP!, to motivate their reformulation in Section 5.

This section is outside the overall technical developmétitie paper. Its purpose is to
connect the present formalism with traditional approaches

Proposition 4.1.For all ¢ € P! there is a unique vector bundle homomorphism
EY: V ->TM orequivalently, &°eI'(V*®@TM) (4.1)
such that£°(Y))(f) = Oy (f) forall Y € I'(V) and f € C>(M).

Proof. The operatof)y acts as a derivation ofi** (1) and is linear ove€'>° (M) in
Y, by Definition 3.1. O
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Definition 4.1. A ¢ € P! is callednon-degeneratéand only if£¢ is a vector bundle
isomorphism. The canonical extensior€ffrom V to 7 (V') is also denoted by

0 T(V)— T(TM)
The extension is a vector bundle isomorphism determined by

e E0(f) = fforall f € C>(M)
e E0(umv) = &%) ®EC(v) forall u,v € I'(T(V))
o E9(Iy) = Irpr wherely, € T'(End(V)), Irar € I'(End(T'M)) are the identities

Proposition 4.2.Let ) € P! be non-degenerate. LEt= £° and set
VO DN(T(TM)) - NT*M @ T(TM))  Viu= g(ogfl(X)g-l(u))
forall X € I'(TM) andu € I'(T(TM)). ThenV? is a connection on the tensor

bundle7 (T'M) such that for allX € I'(T'M),

e V? is linear overR
o V& f=X(f)forall f € C=(M)
o V$ mapsC®(M) — C®°(M), ['(TM) — I'(TM)andI'(T*M) — I['(T*M)
e Vi(u®v) = (Viu) @ v +u® (Vo) forall u,v € I'(T(TM))
e VOI = 0wherel € I'(End(TM)) is the identity.
Proof. By direct verification. O

Lemma4.l.Let O € P! be non-degenerate. L&T = VO, £ = &%, Forall X; €
(TM),i=1,2,andv € I'(T(TM)) and correspondingd; = £-1(X;) € I'(V),
i=1,2,andz = E-(v) € I(T(V)):

(a) (leng - VXQVX1 - VVXIXQ*VX2X1)/U = %g(ﬂov O]]Y1®Y2Z)
(b) [0, 0] € P? if and only ifV is torsion-free

Let h be a representative fofy and letOh = p ® b as in (e) of Definition 3.1. Let
v=~E(u) e I'(T*M). For all X; andY; as above; = 1,2,and all f € C*°(M):

© Vx, (E(efh)) = e/ (df +v)(X1) E(H)
(d) dv(X1, X2) b — V(VX1X2 - Vx, X1 — [Xl’Xz])fJ =3[0, Olviov:b

Proof. We verify (a) through (d):

(a) The left hand side is equal & (Oy, Oy, — Ov,Ovi — Qoy, va—0y,v1)2), DY the
definition of V = V¢, see Proposition 4.2. Now use Corollary 3.1.
(b) Letv € C*°(M) in (a). Thenz = v. We obtain—Vr(x, x,)v = 5[0, Olviev,v-
The torsionT” of V vanishes if and only if, 0] € P2.
(©)
Vx, (E(e'h)) = e/ df(X1) E(h) + ! Vx, (E(B))
Vx, (E(0) = E(Qe-1(xb) = E(LET(X1))h) = v(X1) E(H)
(d) Letz =bhin (a). Thernv = £(h). Rewrite the result using (c) witfi = 0.
This concludes the proof.O
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Convention4.1Let 7 : E — B be a vector bundle. For evely € I'(End(E)) we
denote bytr(S) € C*°(B) its trace as a linear map.

Proposition 4.3.Let M be simply connected. Léte P! and suppose

(a) ¢ is non-degenerate
(b) 5[0, 0] € PT
(c) tr(Yyv,»y,) = 0forall Y1,Y, € I'(V), where

T = 6(3[0.0]) € R?

Fix any representativg’ for £, and let0h’ = p ® b’ asin (e) of Definition 3.1.

Part 1:The 1-formv = £°(u) € I'(T*M) is exacty = —df with f € C>(M).

Part 2:Let h be a representative of. ThenV? is the Levi-Civita connection for the
Lorentzian metric€® (h) € I'(Sym? T*M) if and only ifh = e/ +<y’ for someC' € R.
Part 3:The associated Riemann curvatut® is given by

RO(X1, X2) X3 =& (TY1®Y2Y3) € I(TM) (4.2)

forall X; € I'(TM) andY; = (£°)"Y(X;) e I'(V),i=1,2,3.

Remark 4.1Part 2 of Proposition 4.3 implies thafhere is a representativig of §,
unique up to an overall constant multiplicative factor, Bubat V® is the Levi-Civita
connection fol£ (b). In particular, the assignmest— £°(h) is canonical (indepen-
dent of the choice aof’), modulo an overall constant multiplicative factor.

Proof. We use Lemma 4.1 with the understanding that the represenfatr $ in
Lemma 4.1 i¢y’. Thenv in Lemma 4.1 coincides with in Proposition 4.3.

Part 1: (b) implies tha¥ ¢ is torsion-free by Lemma 4.1.(b). Theiv (X1, X2)b' =
1[0, 0lviev,h’ by Lemma 4.1.(d). Contracting witth’)~! gives4 dv(Xy, Xs) =
351 ([0, Olyv,@v,b’) wherei denotes interior multiplication. That is, both factors
of ([0, Olviev,b’) € I'(Sym* V*) are contracted witlih')~* € I'(Sym® V). LetZ,
F,) andA@, a € T, be as in Remark 3.3. Léi,, be the components df, that is,

b = hapA@ @ A® andh’ = h**F,) ® F;), where(h®) is the inverse ofh,). By
direct calculation,

% i(h’)*1 ([[07 OHY1®Y2b/) = ([[07 <>]]Y1®Y2 )‘(a>)(F(a)) = _/\(a) ([[07 <>]]Y1®Y2 F(a))
= —2tr (Ty1®y2)

For the last equality, bear in mind thaf¢, ¢] and?" coincide in their actions on sec-
tions of V. It follows from the last identity thadv (X1, X5) = —3 tr (7y, &y, ), which
vanishes for allX;, Xo € I'(T'M) by (c). Thereforedr = 0. SinceM is simply con-
nected, there is, by the Poincare Lemmayfan C>° (M) with df = —v.

Part 2:V¢ is torsion-free V¢ is compatible with the Lorentzian metidife'’) if and
onlyif ' = f + C for someC € R, see Lemma 4.1.(c).

Part 3: Use Lemma 4.1.(a) with= X3 and recall thak® is torsion-free. O

Remark 4.2To connect the Lie superalgebraidenfiy, [0, O]] = 0 with the classical
algebraic and differential Bianchi identities f&°, we derive an identity. First of all,
suppose that € P! and¢ € P2. Then? = 3(¢) € R? is defined. Let7 = {1,2,3}.
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ForallY; € I'(V),i € J,andZ € I'(V), we have for any7-multindex C with
icl=2,

Woavoez (0T) = ivueve (09Z) — ivoey, ($0Z) — Oryovi 2
Multiply by A oP€, whereA = (1,2, 3), sum and obtain, by equation (3.7a),
AL Civ0veez (0T) = [0, $lva Z — AAbCQTYCYbZ

In the special case wheid, 0] € P? and when} = 1[0, 0], the first term on right
hand side vanishes by the Lie superalgebra idefdity ¢, ¢]] = 0. The left hand side
is linear overC> (M) in Z, and so must be the right hand side)lis non-degenerate,
the last observation implies the "algebraic Bianchi idegriti

AAPCTY Y, =0

whereY = ﬁ(%[[(}, <>]}). Consequently, we also have the "differential Bianchi iitgh

AAPCivi ovonz (0r) =0

Finally, if ¢ satisfies all the assumptions of Proposition 4.3, then waiolihe tradi-
tional Bianchi identities for the associated Riemann cumaR?.

Proposition 4.4.Let M be simply connected, and assume we are given

(a) a vector bundle isomorphisgh: V. — T M
(b) a representativ§ for $

Leth’ = § in Proposition 4.3. Then, there is a uniqgge € P! which satisfies the
assumptions of Proposition 4.3 such ti#&t = ¢ and such thaj: = 0 in Proposition
4.3.

Remark 4.30bserve that (a) and (b) induce the Lorentzian mefiig) on M. Con-
versely, every Lorentzian metric arises locally from sudwoastruction.

Proof. We use Lemma 4.1 with the understanding that the represenfatr © in
Lemma4.1igj. Thenv in Lemma 4.1 coincides with in Proposition 4.3.

We first prove existence. The canonical extensiofi iom V to 7 (V) is also denoted
byg : T(V) — T(T'M) (just as in Definition 4.1). Le¥ be the Levi-Civita connec-
tion associated witlf (f}) € I'(Sym? T* M), a metric with signaturé—, +, +, +). For
allY e I'(V)andu € I'(T(V)), setOyu = & (Vg (v)& (u)) € I'(T(V)). By direct
inspection,y) € P! (see Definition 3.1). Thef = £° andy¥ = V. In particular,
¢ is non-degenerate. Lemma 4.1.(b) implies thatQ] € P2, because&v® = VY is
torsion-free. Lemma 4.1.(c) implies = 0 because&vV® = Y is compatible with the
metricg (§). Now Lemma 4.1.(d) implieg [0, 0]y, oy, § = 0 for all Y1, Y>. This im-
pliestr(Ty,ov,) = 0, wherel” = (1[0, 0]). This concludes the existence proof. To
prove uniqueness, assume there are two gueh P'. Then their€® = ¢ coincide,
and theirvV® coincide, because they are the Levi-Civita connectiontfersame metric
E°(}) by Proposition 4.3. Then the twis must be the same.O

Proposition 4.5.Let M be simply connected. Lét € P! be non-degenerate. The fol-
lowing are equivalent:
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(a) ¢ satisfies the assumptions of Proposition 4.3, and the astsatL orentzian mani-
fold is Ricci-flat

() 5[0, 0] € Pl

(c) there is an € PZ_ such that} = 1[0, 0] and [0, ¢] =0

See Definition 5.1 below fdPZ,.

Proof. (c) implies (b), and conversely, (b) implies (c) by settihg- %[[0, 0] and using
the super Jacobi identity to conclude tfiat ¢] = 2[0, [0, 0]] = 0. The equivalence
of (a) and (b) follows by comparing for each row of the follagitable the correspond-
ing condition/assumption in Proposition 4.3 and Definittoh:

Proposition 4.3 | Definition 5.1 withg = 1[0, 0], k = 2
(b) the assumptiorp € P7
alg. Bianchi identity forR® and (4.2) €)
(c) (b)
Ricci flatness and (4.2) (c.2)

This concludes the proof.O

5. Reformulation of the Einstein vacuum equations

In the next definition, the index sgt = {1,....k+ 1} andA = (1,...,k+ 1), and
B is a-multiindex of lengthB| = &.

Definition 5.1. The "vacuum subspacePt,. c P¥, k = 2,3, 4, is the set of all) €
Pk such that the associatéd = 5(0) € R satisfies for ally; € I'(V), i € J,

(@) AABYy, Y. =0

(b) tr(Yyg) =0forB =(1,...,k)
(c.2) fork = 2: C(T") = 0 whereC is the contraction operator for the index pdi, 4)
(c.3) fork = 3: C(Y @ h~—1) = 0 whereC contracts(1, 5), (3,6) and (4, 7)

In (c.2) we regard’” as a section ofV*)®3 @ V 2> A2V* @ g(V, 9).
In (c.3) we regard”®h ' as a section ofV )24 @ VE3 5 A3V*@g(V, H)®@Sym? V.
Here, b is any representative ¢j. All contractions are natural pairings df" with V*.

See Definition 6.1 and Proposition 6.1 for a discussioR{f in index notation.

We now adopt verbatim, from Section 2, the definition®pfA, and A;, with the
understanding that, = Py, and Ly = Py, see Proposition 3.1. In particular, for all
¢=(0,4) e P x P2 C A and¥’ = (', §’') € P? x P3 C Ay, we have

Do# = (4 - 310,01, [0:91) eP’xPic A (51a)
Dot = (¢ =[0,0'L [0,9'1+[0",9])  €P*xP'cA  (51b)
The Einstein vacuum equations are now reformulated as:

Find 4 € P' x P such thaDy 4 = 0. (5.2)
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Remark 5.1Proposition 4.5 justifies the expressiaeformulationof the Einstein vac-
uum equations”. Notice that, in contrast to Proposition %& do not requirev to be
non-degenerate. Degenerate solutions may not be physictdtesting in themselves.
However, they can be used as a mathematical tool, to cohsteacby non-degenerate
solutions.

We now derive algebraic and differential identities.

Lemma 5.1.For all (k,¢) € {(1,2),(2,2),(1,3)},all ¢ € P* and all $ € P&, we
have[0, ¢] € PEEL.

Proof. In this proof, the index sef = {1,...,k+ ¢} andA = (1,...,k + ¢). First
show that[, ] € P**“. Equations (3.7b), (3.8) and Definition 5.1.(a) fore Pl
imply

[0, $lyvau = AAC (iYB®Yc (OPu) — Pve (OYBU)> (5.3)

We have used thaf? = (¢) € R’ satisfiesY? Z = ¢y Z forall Y € I'(V®)
andZ € I'(V). The assumptiofp € P¢ implies that} f = 0 for all f € C>(M),
and consequently by equation (5.8%, ¢]f = 0 for all f € C>(M). Therefore,
[0.9] € PL*.

We can now defing? = (¢) € R andT®¢] = 5([0, ¢]) € R¥+¢. Equation
(5.3)withu = Z € I'(V) is equivalent to

Tx[[/ng = AAPCivaeveaz (0T7) (5.4)

Here 0T is a section of V*)®k+41D) @ V' 5 ARV @ AV @ g(V, H). We now
check that[¢, ¢] € PEEE, by showing (a), (b) in Definition 5.1 fof¢, ¢]. When

vac

(k,¢) = (1,2) we also have to check (c.3).

e The totally antisymmetric part of the right hand side of eqra(5.4) with respect
toYi,...,Yiis, Z vanishes by (a) fofp € PL,.. Therefore, (a) holds faf0, ¢].

e Oy, commutes with natural contractions (pairingsiofwith V*). Therefore, (b)
for ¢ € PL,.and equation (5.4) imply (b) fdi), ¢].

This concludes the proof whek, ¢) € {(2,2),(1,3)}. From here(k, ¢) = (1, 2).

e We must show (c.3). We must show ti&(r'[¢:¢1 2 h=1) = 0, whereC contracts
the index-pairg1,5), (3,6), (4, 7) (see the explanation at the end of Definition 5.1).
By writing out the sum on the right hand side of (5.4) (thers|&(1, 2)| = 3 terms),
we see that it suffices to show that the contractions

(3,5),(2,6),(4,7) or (2,5),(1,6),(4,7) or (1,5),(3,6),(4,7) (5.5)

of (0T?) @ bh~! € I'(V*)®* @ V%) all vanish. Recall that there isjac I'(V*)
such that)h = 1 ® h. Consequentlyp(h~—!) = —pu ® (h~1). By the Leibniz rule,

(0r?) @ (b7 = (0+ne ) (T? 2bh7)
The contractions listed in (5.5) indeed vanish, becalise PZ.. In the first set of

pairings, the contractio(B, 5) suffices. In the second2, 5) suffices. In the third,
(3,6) and(4, 7) together suffice, by (b) and (c.2) fgrc P2,
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This concludes the proof.O

Proposition 5.1.For all ¢ € P! x PZ and all¢’ € P? x P3,,

Do# € P? x Pl (5.6a)
DeDo# =0 (5.6b)
Do € P> x Phoe (5.6¢)

Proof. Equations (5.6a) and (5.6¢) follow from Lemma 5.1, equati®®b) follows
from Proposition 2.1. O

Remark 5.2Equations (5.6a) and (5.6b) are, respectively, algebnadt differential
identities for the left hand side of the equatiDg ¢ = 0.

6. Components and Multiindices

In this section, the previous constructions are made ctambseintroducing local coor-
dinates and components. For this purpose, fix

an index sef with |Z| =4

a constant symmetric matr(¥.s)q.vez With signature(—, +, +, +)
anopenset/ C M

a coordinate diffeomorphism: U — U C R*, p — (p"(p))u=1.2,3.4
a representative of ) overU

sectionsF, of V overU, a € Z, such thab(F,), F(s)) = gab

Convention 6.1We denote by(g®), sz the inverse of gub ). bez-
Convention 6.2(A(*)),¢7 are the sections df * overU dual to(F(,))acz-
Convention 6.3Standard Cartesian coordinategorc R* are denotedz”),,—1 2.3 4.

Convention 6.4Small Latin indices take values in the index $eCapital Latin indices
are multiindices, that is, elementsdf for somek > 0. For exampleA = (ay ... ax)
whereay, ..., a; € Z. The length of a multiindex will be denoted Ipyt| = k. More-
over,A 4 2% is introduced just as in Definition 3.3, with the understagdhat ordinary
Latin indices refer to the index sgt = 7.

Convention 6.5For any multiindex4 = (a; . .. ax), Write F( 4) = F(q,) @ ® Flq,).

Definition 6.1. S* is the real vector space of alb, 7) = (54", 74m"), WhereA is an
Z-multiindex of lengthA| = k andm,n € Z andu = 1,2, 3,4, such that

(a) o, T are totally antisymmetric in their firgt lower indices,
(b) TA’mean + TAnlgl’m - %TAflg'mn Where|A| =k

The "vertical subspace’S* is the set of al(o, 7) € S* such that
(©)o=0
The "vacuum subspaces’,., 2 < k < 4, is the set of allo, 7) € S¥ such that

(d) A P75" = 0where|4| = |[B| =k +1
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(e) TAmegén + 7_Anlglm =0 Where‘A| =k
(f.2)fork =2: 740" =0
(f3) fork = 3: gmeabnmn =0

Remark 6.1Property (e) in Definition 6.1 impliesa,,” = 0.
Remark 6.2We havedimg S* = 11(}) anddimz S§ = 7(}) and
dimg SZ,. = 10 dimg S5, = 16 dimg S = 6
Let P*(U) be defined just as in Definition 3.1, witli instead of M. Similarly for
Pk (U) andPL(U).
Proposition 6.1.Part 1 Let ¢ € P*(U). Set
(0)a" 0 p= Oy " (6.1a)
(79 am" 0 p) iy = Oy Fim) (6.1b)
Then(c®,79) € C>=(U, S*).
Part 2 For all (o°,79) € C>=(U, S*) there is a uniqué) € P*(U) so that(6.1) hold.

Part3 (¢°,7°) € C> (U, %) ifand only if ¢ € Pk (U).
Part4 (c9,7°) € 0> (U, Sk, if and only ifO € PE(U).

Remark 6.3For all ¢ € P*(U), equations (6.1) imply that for afi € C>(U):

<>F(A)f = ((UO)AM %(f Opil)) cp (62&)
Oy A™ = —((19)an" 0 p) A (6.2b)
Proof (Proposition 6.1)Recall that) = g,,A\(*) @ \(%) is a representative fa§ overlU.
Part 1: Usedh = 1 ® b, whereu € T'(A*V*|y), substituteh = g, A @ A and use
the Leibniz rule to show th{:«TO)Amé o p)gen + ((TQ)A/ 0 p)Gme = —M(F(A)) Gmn-

Multiply with ¢™”, sum and obtaim%((ro)AX o p) = u(F(a). This implies (b)

in Definition 6.1. Part 2: Equations (6.1b), (6.2a) and (§ ®@igether with (a), (c) in
Definition 3.1 determin& uniquely. Properties (b), (d), (e) in Definition 3.1 are then
automatic. This proves existencgis unique, because for evegye P*(U), the equa-
tions (6.1) imply (6.2a), (6.2b). Part 3: P¥ (U) iff Of = 0forall f € C=(U) iff

% =0, by equation (6.2a). Part 4 follows from Definition 5.1

Proposition 6.2.Let O € P*(U), ¢ € P(U). The superbrackel), ¢] € P4 (U)
has the components

(1091, = AABC((UO)BUag,, (09" —(09)c" 3% (GO)BH)

e 4 4 0
_AAB E(TO)BC (U¢)€El +AAbDC(T¢)C'b (O'Q)gDM

and

(r10:21) 4.,

n

=A,BC ((UQ)BM%(T%Cmn - (U¢)Cua%(70)3m")
+A4PC ((T¢)Cm£(TO)an - (TQ)BWZ(M)C/L)

. ‘ n Y n
— AAPE ()5 (1) + AP () (1) enm
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The multiindices have length
Al=k+¢ |Bl=k [Cl=¢ |Dl=k-1 |E[=(-1
Proof. By direct calculation, using (3.7b) and Proposition 6.1u&ipn (3.7b) with
Y; = F(,,) andA = (a1 .. . ap4¢) implies
[0, $lrayu= ALBC (OF<B> ($Feyu) = $re, (<>F<B>u))
_ AABCE¢(<>F(B)F<C))7F<E>“+ AAbDCO(ng(C)F(b))A,F(D)u
= A,P¢ (0F<B> (P Feyu) = Fre, (OF(BW))
- AABCE((TQ)BCZ 0 )P Fluy Fom U
+ALPPC ((T¢ )Cb[ © p) O F sy, Fipy U

To calculater[9-?] setu = p* and use (6.1) and (6.2) repeatedly. To calcutdfe?],
setu = F(m) O

Propositions 6.1 and 6.2 enable us to write down all the éopmbf Section 5 explicitly.
See Section 8.

7. Covariance

For this section, fix

M, V, $just as at the beginning of Section 3

another such triplé7, V.9

open subsets ¢ M andU c M

a diffeomorphismy) : U—U

e avector bundle isomorphis: W= I7|[7 — W = V|y so thatry 0 ¢ = o7

We require that

e for each representatieof $ overU, ¢(E) € I'(Sym® W*) is a representative for
$H overU.

Convention 7.1As always, there is a canonical extensionpab a vector bundle iso-

morphism7 (W) — 7 (W), which we also denote as For every sectiom € 7 (W)
we denote bys(u) = ¢ o u o9~ ! the corresponding section @f(17).

Let P*(U) andP*(U) be defined just as in Definition 3.1.
Proposition 7.1.For all ¢ € P*(U) and allY € I'(W®*) anda € T (W), set
Ot = ¢~ (Oyu) (7.1)

whereY = qb(f:) € F(W~®’“) andu = ¢(i) € I'(T(W)). Then® € P*(U). The map
PHU) — PHU), 0= 0 =9¢71(0)

« is a bijection that map®* (U) — P (U) andPL(U) — PELU),
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o [671(01),671(02)] = 67" ([01, 02]) for all 01, 0> € PH(D).
Proof. By construction. O
We will now spell out the transformation lagy — O (see Proposition 7.1) in compo-
nents. For this purpose, we fix additional objects, as at ¢éiggniming of Section 6:

e Zand(gap)
e p:U —U CR*andhand(F,))

o /:U —UcR*andhand(F,))
Define
e \: U—u by the following commuting diagram:

W L (7.2)
o— 1]
U——=u
o 2:U— (0,00) by N
h=0¢""(h) (20p)7" (7.3)
e amatrix valued magA;), ,cz onif by
Floy= ¢~ (Fi)) (4% 0 p) (7.4)

e the componentd,” € C> (Z]) of the inverse of the Jacobian gfby

T = (a (x 1)ﬂ) ox orequivalently, (;Zx*)J." =6" (7.5)

Convention 7.2Standard Cartesian coordinatesiénc R4 and/ ¢ R* are denoted
(xH) y=1,2,3,4 @nd(z#),,=1 2,3 4 respectively.

Remark 7.1Equations (7.3), (7.4) ang{ F(4), F(3)) = Jab E(ﬁ(a), ﬁ@) = gap iMmply
gab = gre (F4%) (54%) (7.6)
oni. In other words(%/l“b) is a Lorentz transformation matrix.

Proposition 7.2.Let§ € P’“(U) and{ = ¢~1(0) € PF(U). Let(o,7) and (3, 7) be
the components df ¢ and ¢, respectively, as in Proposition 6.1. (These componests ar
functions ori/ and/.) We have ot/

5 = (05" o x) AP 0t 772
Tam " = %(TB]QZ o X)ABAAkm/lg" + #(03” o X)ABAJuu(aiu Al ) A" (7.7b)

HereA = (a1 - ak), B = (bl c.. bk), ABA = Ablal ce. Abkak andA,™ = ggu/labgbn
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Remark 7.2Sety = y ! andK,* = ;Z-¢" and® = 2o p andA?, = A% o .
Then (7.7) is equivalent to

Gl op=0p" AP LK, (7.8a)
Tam" 00 = gz ToR AP AAF LA + &5 05V AP A (35 AY) A (7.8b)
Proof (Proposition 7.2)Calculate
o, 0P =05, 7"
= (AP 40p) <~>¢>*1(F<B>) ((XA)H epe l/))
= (4%40p) (<>F<B) (ko P)) o1
= (A%405) (08”52 (1)) opos

Compose withp—! from the right, and obtain equation (7.7a). To show (7.76& u

(Fam™ ©P) Fony = O, Flom)

(see equation (6.1b)) and calculate
(Fam" 0 7) ¢~ (Floy) (4% 0 )
= (4740 ) Qosrny) (67" (Flay) (A% 0 /37)
= (A% 4 0p) {(Akm 07) Qo1 (P @ (Fiky) + 67 (Fiy) O (ry) (A 0 ﬁ)}
= (4% 40 9){ (45 0 7) 67 (Orsy Fit))

+ (Ors) ('m0 x 0 p) ) 0 }o (Fuo)
= (45, oﬁ){(/lkm o p)(rBrt 0 pot)

+ (o8 (At ox ™)) 0o} 671 (F)
= (47 40 p){ (4" 0 5) (731" 0 p o ¥)

+ (5% A"m) 0 5) (08" 32 (X)) o pow} 67 (Fio)

From both sides, factor out™! (F{;), compose withp~" from the right, and obtain
(7.7b). O

8. Instruction manual

The purpose of this section is to state, in a self-contaimetiraady-to-use manner,
definitions and propositions that express the reformul&iedtein vacuum equations
(5.2), in explicit coordinate/index notation on an opensattofR*.

For this section, fix
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e asimply connected open subget- R*
e anindexsef with |Z| =4
e a constant symmetric matriyqs)q, ez With signaturg —, +, +, +)

The statementsof all definitions and propositions in this section are cogtglly self-
contained and make no reference to previous sections. Tduspion the other hand,
rely on the previous sections. We consider Definition 3.3)«@ations 6.1, 6.3, 6.4 and
Definition 6.1 as being part of this section.

In the next propositiond, B, C, D areZ-multiindices with length
Al=IBl=2 |C][=3 [D|=4
Proposition 8.1.Part 1:For all 4 = ((E, '), (0, W)) € C>=(U, S x S2,.) set

Tal = —A L% (Eb" D Eb F,,fEe“) (8.1a)
UAmn = WAmn - AAAbC (Ebua%rcmn + cherln - Fbcepémn) (81b)
Vem" = Act <Eb“a%WAm" + Dot Wam" — Do Wae" — 2FAZWEbmn)

(8.1c)
Thend’ = ((T,U), (0,V)) isin C>(U, S? x S3,.). In other words, there is a map
C>(U, S x S20) — C>(U, S* x Sie) (8.2)

¢— ¢

which we again write a®y 4 = ¢'.
Part 2:For all

4= ((E,F), (va)) € OOO(Z/{?SI X S\?ac)
¢ = ((T,U),(0,V)) € C=(U, 5% x Sise)

not necessaril®’ = Dy ¢, set

T = AC”A( — B 55 Ta + Ta¥ 52 By + 204 T — UAbeEZH) (8.32)

Uem" = Vom™ — A" (Eb” ZUnm™ = Ta" 5% Tom™ + U The" (8.3b)

oxH

— Ty Ua™ — 2T Unp™ + UAbeFZmn>

Vpm" = Ap™® (Eb” O Vem™ + Vom Tot™ — Tom Vo™ + 3 UCZWmen) (8.3c)

OxH

+ ApAB (TA“ 22 Wam" + Wam Uae™ — Uam Wpe™ — 2 FA[‘/Ean)

Thend” = ((T,44), (0,)) isin C>°(U, S® x Si)- In other words, there is a map
(U, St x S\?ac) x C=(U, 5% x S\?ac) — O™ (U, 5% x S\jlac) (8.4)
(4.4)— ¢

which we again write aDe ¢’ = ¢".
Part 3:For all 4 € C*>(U, S x S2,),

DeDe® =0 (8.5)
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Proof. Warning, in this proof we consciously abuse notation, thalsyisU andV” are
both given two meanings.

Let K be the 4-dimensional real vector space spanned by elerfigp{$.cz. We use
the previous sections, with the understanding ffatV, $) at the beginning of Section
3andU, p, b, F,) at the beginning of Section 6 are:

M = U c R* with trivial bundleV = U x K

p: U =U — U the identity transformation

Flay:U > 2 — (2,k)) €U x K constant sections

9 is defined by declaring to be a representative, Whey€l (), F (1)) = Jab-

Part 1: We identify# = ((E,T"), (0, W)) € C*>=(U, S x SZ,,) with the corresponding
¢ € P x P2, inthe sense of Proposition 6.1. Let= Dy & € P? x P? be given by
equation (5.1a). By Proposition 54, € P2 x P2, Identify 4’ with the corresponding
¢ = ((T,U0),(0,V)) € C=(U, S?* x S3,0), in the sense of Proposition 6.1. It follows
from equation (5.1a) and Proposition 6.2 tiiat/, V' are given by equations (8.1). For
the last term in (8.1c), recall thatA -’41, = A*™"I,...", see Definition 3.3.

Part 2: Analogous to Part 1, using equation (5.1b).

Part 3: This is now a corollary of Proposition 5.1

The Einstein vacuum equations are reformulated as:
Find 4 € C°° (U, S* x S2,) such thaDy 4 = 0. (8.6)

Remark 8.1By the proof of Proposition 8.1, the coordinate construttdD and the
abstract construction d» coincide. Therefore, (5.2) and (8.6) are equivalent.

Proposition 8.2.Supposé = ((E, '), (0, W)) € C>=(U, S* x SZ,) satisfies
Do =0

and (E,") is invertible as a matrix at each point &f, so that the four vector fields
E, = Ea“a%, a € Z, are a frame for each fiber &ft/.

Part 1:v € I'(T*U) given byv(E,) = —11,," is exacty = —d f with f € C*°(U).
Part 2: The Lorentzian metrig on i/ given byg(E., Ey) = efg. has Levi-Civita
connectionV g, E,, = Ion " En.

Part 3:The associated Riemann curvature is giveni¥,, Ep) E, = Wapm " Ex. In
particular, the Ricci-curvature vanishes.

Proof. We adopt the conventions in the proof of Proposition 8.1pugotd including the
four bullets. We identify¢ = ((E, I"), (0, W)) with the corresponding = (0, ¢) €
P x P2, in the sense of Proposition 6.1. Recall Proposition 4.finden 4.1 and
(6.2a). Observe that

e O € P!is non-degenerate, becaude,”) is invertible, and€® (F,)) = E,. In
fact, for everyy € C>(U) we haveE,(q) = E." 32:q = Or,,,q-

e (a) in Proposition 4.5 holds, becausé = i/ is simply connected) € P! is
non-degenerate, (c) in Proposition 4.5 holdIhy# = 0, and (c) implies (a).
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Leth" in Proposition 4.3 be given by (F,), F(3)) = gap, and letOh’ = @ b’. Then
the 1-formv € I'(T*U) in Proposition 4.3 is given by(E,) = u(F,)) = —1I.,.".

For the last equality, user,,,h’" = u(F(,))h’ and equations (6.1) and (6.2).

We apply Parts 1, 2, 3 of Proposition 4:3.= —df with f € C>(U). V° is the
Levi-Civita connection ofy = £°(efb’) = ef€°(Y'), andg(E,, Ey) = e/ gap. The
connectionV%aEm = E%(Oru, Fimy) = E9(Tum" Fn)) = Tam" E,. The Riemann
curvature iSR(Ea,Eb)Em = %50([[070]]F((1)®F(b>F(m)) = 60(¢F(@®F(1,)F(m)) =

EC(Wapm "F(n)) = Wabm" Er. The Ricci-curvature vanishes by,,,,,” = 0. O

Proposition 8.3.Supposé £, ).z is a frame for each fiber dft/ and the Lorentzian
metricg given byg(F,, Ep) = gas is Ricci-flat. Thery arises from a solution to

De# =0
as in Proposition 8.2.

Proof. We adopt the conventions in the proof of Proposition 8.1,aiprid including
the four bullets. Define a vector bundle isomorphigmV — TU by ¢ (F(,)) = E
Let)j be given by (F(a), F(»)) = gap- Itis arepresentative of. Thend (§)(E,, Ep) =
B (Flay: Fio)) = gab = 9(Ea, Ey), thatis,g = & (). Let O € P! be as in Proposition
4.4. Then( satisfies the assumptions of Proposition £8,= &, 0 = 0, and the
Lorentzian metric associated with(see Remark 4.1) i8(§) = g, which by assump-
tion is Ricci-flat. By (a)=- (c) in Proposition 4.5 (recall th&t is simply connected)
there is &) € P2,.so thaté = (0, ) satisfiesDy 4 = 0. Identify 4 € P! x P2 with
the corresponding = (( 0 79,(0,7%)) € C=(U, S* x SZ,), in the sense of Propo-
sition 6.1. Then(0©)," 52 = £%(Fu)) = §(Fla)) = Ea, thatis, (09)." = E.".
Moreover,y = 0 in Proposition 8.2 and we can chooge- 0. Then they's in Proposi-
tion 8.2 and 8.3 coincide.O

Proposition 8.4.LetU C R* be open. We use Convention 7.2. LetA) be a pair,

o Y: U—Ua diffeomorphism N
o (A%)aper = 2(L")q ez Wheref2 : U — (0,00) and (L% )q,pez IS @ matrix
valued map o/ such thaty,, = greL* L.
and let
e J,/ be given by(7.5)
To each) = (o, 7) € C=(U, S*) we associat® = (5,7) € C* (U, S*) by equations
(7 7). or, equivalently(7.8). To eachd = (0, ¢) € C>(U, Sk x Sk+1) we associate
= (0,¢) € C=(U, S* x S¥1). Then:
Part 1L:Forall O € C=(U,S*), ¢ € C(U,S* x S and¥’ € C°(U, S? x S3,0):
(@ O € C>=U, S%) ifand only |f<> € cw(u Sk)
(b) 0 € (U, S{) if and only itfo) € 0> (L{ Sk
(c) # € C=(U, S x 52, andD.Q D,Q
(d) ¢ € C®(U, 52 x S3,) andD’Q’ = Do
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Especially# is a solution to(8.6)on/ if and only if is a solution to(8.6)on/.

Part 2:The composition o(fx, A) and(x, ) wherey : U — U and A is defined or,
is given by(y o X, (A o X)A). The inverse tdy, A) is (x 1, A=* o x1).

Proof. We adopt the conventions in the proof of Proposition 8.1,aiprid including
the four bullets. We make the same conventions for all gtiestwith tildes. We use
Section 7, with the understanding that the diffeomorphism U=U—-U=U

is given byy = x, and the vector bundle isomorphism: UxK —UxK maps
(z, k(a)) to (x(2), k) A°a(2)). With these definitionsy, £2, A%, J," as defined in
Section 7 coincide witly, §2, A%, J,* in Proposition 8.4. In other words, the diagram
(7.2) commutes, and equations (7.3), (7.4), (7.5) hold.

e We verify equation (7.4): For evefly € U,
(60 Flay)s = 6T, kay) = (X(@), ki A%a(®)) = (Fpy 0 X)7 A% (T)

Thatis,¢ o ﬁ(a) = (Fp) o x) A®,. Compose withp~! from the left to obtain (7.4).
e \We verify equation (7.3):

¢~ (0)(Flay, Fn)) = 0(6(Fa)), 6(F))) 0 X = (0(Fay, Fley) 0 x) A*a A%
= g A = 0g,, = QQH(ﬁ(a)vﬁ(b))

We identify abstract diamonds and their components, in émses of Proposition 6.1.
With this understanding, the maps

o C(U,S*) H~C°°(L~{, Sk, & +— { in Proposition 8.4
o PF(U) — PFU), O — ¢~ (0) in Proposition 7.1

coincide, by Proposition 7.2. Part 1: Now (a), (b) follow ftoProposition 6.1 and
Proposition 7.1. The first statements in (c) and (d) followanir(a) and (b). The sec-
ond statements in (c) and (d) follow from Remark 8.1, equisti®.1) and the fact that
the map( — O commutes with the Lie superbracket, see Proposition 711.2Paet
U, ¢ andzp ¢> be the dlffeomorphlsm and vector bundle isomorphism cprmdmg to

the pairg(x, 4) and(x, ) Thenthe paify o, (Ao X)A) corresponds tgho ¥, ¢ o .
Now, Part 2 follows from Proposition 7.1.00

We conclude this section with a few remarks:

Remark 8.2The (coordinate) first order differential operat@rsn Part 1 and Part 2 of
Proposition 8.1 are classically defined whgrand ¢’ are of clas<C*. Especially, the
left hand side of the Einstein vacuum equatiopé = 0 is well defined for any$ of
classC!. By continuity, the differential identity (8.5) holds fovery ¢ of classC?2.

Remark 8.3It is essential to observe that there is a canonical subfiesmaf the for-
malism of this paper, which informally speaking is obtairm®dputting all they €
I'(V*)andv € I'(T*M) to zero. More precisely, at the beginning of Section 3, we
choose a sectioh, = I'(Sym? V*) with signature(—, +, +, +) instead of a confor-
mal section§). From this point on, every representativespis replaced byhy. Then,

in (e) of Definition 3.1 we also require that = 0. Definition 3.4 forg(V, $) is re-
placed by a Definition ofj(V, hy) by puttingA = 0 in (3.9), giving a vector bundle
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with fibers of dimension 6, and the definition &" is changed accordingly. In this
subformalism, condition (c) in Proposition 4.3 is vacudbdefinition 6.1.(b) is replaced

bY Tam’gen + Tan‘gem = 0. (The new condition differs from the old condition by
T4¢* = 0.) Remark 6.2 is replaced bjimg S* = 10(;;) anddimg S% = 6(;), while
dimg Sk . is unchanged. Now = 1 in (7.3). We emphasize the consequences that the
subformalism has for Proposition 8.1. In Part 1, we have #vecondition/,,,,”" = 0,

and the new conclusiofis,,,”" = 0. In Part 2, we have the new conditiohs,,”" = 0
andUy,,™ = 0, and the new conclusidifc,,” = 0. Finally, Propositions 8.2 and 8.3
as well as all the other propositions hold for the subforsmaliwith the understanding
that in Proposition 8.4 = 1.

Remark 8.4The discussion of Appendix B to [RT] is a precursor to the falism of
this paper, more precisely to the subformalism elaboratéd Remark 8.3. To compare
the two developments, one must be aware that:

e The ordering of the indices may differ.
e Combinatorial factors may differ.
e In contrast to [RT], indices are neither raised nor lowerethis paper.
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Strongly Focused Gravitational Waves
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Abstract: Christodoulou [Chr] proved that trapped spheres can foravaitution from
a generic initial state, through the focusing of gravitaibwaves. His work is the mo-
tivation for the present paper, in which we consider the sphysical problem, using
very different mathematical methods. Our approach is baseal controlled “far field
expansion”. By a systematic use of scaling symmetries, welagize Christodoulou’s
singular “short pulse method”, rigorously track vacuunusiohs by the far field expan-
sion and exhibit trapped spheres that first appear deepeitis&far field region. Our
presentation is self-contained. In the final section, wesemea detailled outline of the
construction of another, more subtle, expansion that allesvto continue the solutions
beyond the far field region to within any fixed “finite distahdeom the (expected)
singularity. From a methodological perspective, the ulyiley aim of this paper is the
development of a general method for constructing solutionthe vacuum Einstein
equations by controlled expansions.

1. Introduction

Formal and controlled (perturbation) expansions are comimals in mathematics and
physics. In general relativity, see, for example, [AnREBM], [Cha]. This paper is
a first step in the development of a hybrid method, combinargh&l expansions and
simple tools from the theory of hyperbolic partial diffeti@hequations (such as energy
estimates), to construct generic classical solutionsdae#ituum Einstein equations, for
a wide variety of well posed problems with natural small paegers. The purpose of
this paper is to illustrate the methodology, by carryingut im all detail for a concrete,
physically interesting situation.

Christodoulou [Chr] showed that strongly focused graigtal waves, coming in
from past null infinity, generate trapped spheres. One ofitbst important innovations
of [Chr] is the introduction of a small parameteand a picture in whicld represents
the duration of a spherical pulse traveling along a null hgpdace. The amplitude
of the pulse is scaled so that, roughly speaking, the totainring energy per unit
advanced time is proportional %;) Christodoulou refers to this picture as his “short
pulse method”. This physical setup triggered our interethis problem.
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To illustrate our approach, we shall construct stronglyged gravitational wave so-
lutions to the vacuum Einstein equations by means of cdattexpansions that exhibit
trapped spheres.

In Christodoulou’s picture, the limid | 0 is singular, and “the initial data are no
longer confined to a suitable neighborhood of trivial daka’this paper we adopt from
the outset a different (regularized) picture, in which tghisra small paramet&f # 0,

a regular limit2l — 0, and the initial data is contained in a small ball around zero
These apparently contradictory pictures can be recongiiedct they are equivalent,
see Section 9, in particular Remark 9.3. The relationshgjvisn by settingy = 2* and
using the one-parameter group of exact (anisotropic)rsgatansformations, indexed
by 2 # 0, that is introduced in Section 3.

The construction of spacetimes in [Chr] and [ChrKI] adoptstrctly geometric
formalism and emphasizes the classical geometric poineof,\n which the unknown
field is a Lorentzian metric on a manifold, subject to the wamiEinstein field equations
Ricci = 0. In this paper we use the formalism of Friedrich [Fr] and NewnPenrose
[NP], in which the unknown field is a tripleE, I, W) of (a priori unrelated) fields,
where
d

xH

e [ = (E,") are the components of a franig, = E," 57 that is declared, by fiat,
to be an orthonormal Lorentz frame,
e ' = (Iy.) are the components of a connecti@rwith respect to the frame,

o W = (Waea) are the components of a Weyl field with respect to the frdfme

In this formalism, one associates(tB, I, W) three additional field§T", U, V') that are
quadratic expressions ifi, I', W and their first derivatives, see Appendix B. Deriva-
tives of E only appear irfil’, those ofl" only in U, those ofi¥ only in V. Here:

e T isthe torsion ofv,
e U is the difference between the curvatur&oaind the Weyl fieldV,
o V = (Vapijr) WhereVopiir = ViWasit + ViWabki + Vi Wapij -

The vacuum Einstein field equations becoffieU, V') = 0. In fact, to every solution
(E, IWV) of these equations one can canonically associate a solettiRicci = 0,
and conversely every solution Ricci = 0 arises locally in this manner. We emphasize
that the equation&l’, U, V) = 0

e are a quasilinear, first order system of partial differdmttpuations, that
e are quadratically nonlinear, and
e through gauge-fixing, can be brought into symmetric hypigiborm, see [Fr].

In sharp contrast to the geometric approach tailore®itxi = 0 of [Chr] and
[ChrKI], we find it advantageous to ignore the geometric eontof (7, U, V) = 0
altogether. In this paper, geometry appears only in the ditation of the problem and
the interpretation of the final results.

We have tried to present our construction in a transparent faith as many details
as possible, so that it is accessible to the general readkeouwtiany specific back-
ground in general relativity or hyperbolic partial diffat&al equations. For example,
we include the derivation of the singléf) Sobolev inequality that is used. In fact,
the discussion, up to the formation of trapped spheres tiegnself contained, apart
from the reference, in the proof of Proposition 7.3, to [Tiy]a simple local existence
theorem for quasilinear symmetric hyperbolic systems @dfon the product of a time
interval with a torus. For these reasons, this paper is lothge it might be. We have,
however, omitted lengthy, but straight forward, directifieations (typical of general
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relativity) of many equations and algebraic identities. Wéve included an index of
notation (Appendix A).

This paper naturally divides into two parts, one algebraid the other analytic.
The algebraic part culminates in the three Propositions®2, 5.4 that we refer to
as the relevant/irrelevant form of the equations. This festhibits the essential con-
stituents that have to be treated carefully (relevant tgrarsd sweeps everything else
into “generic terms” about which only general structuradpperties need to be known
(irrelevant terms). The relevant part dictates the analifsat follows. Everything is
organized around it. For example, the energy estimategoBition 7.4 and 7.7, are
designed to accommodate the most delicate terms in thearglpart of the equations.
One payoff of the lengthy algebraic preliminaries is thatdinalysis can be carried out,
for formal solutions in Section 6 and for classical solutgn Sections 7 and 8, with
elementary tools.

The rest of this introduction is an overview of the conterftth@ paper. The alge-
braic part comprises Appendices B, C, D and Sections 2, 3, #,tbe reader is not
concerned about the derivation of the equations, he/sheezhthe self-contained
Sections 2, 3, 4, 5. Alternatively, the natural order is BDC2, 3, 4, 5. We now discuss
the algebraic appendices and sections of this paper:

e Appendix B is a self-contained review of the general forsralof Friedrich [Fr] and
Newman-Penrose [NP] of the vacuum Einstein equations.

e Appendix C introduces a gauge adapted to the focusing prglitethe language of
Lorentzian geometry. This gauge requires two coordinatasdw to be solutions
to the eikonal equation (also called null or characteristiordinates). The other
two coordinates are denotéd, £2 that may be interpreted as “angular coordinates”.
Also, there are four frame vector fields: two future-direlatell vector fields that are
tangent to the level sets afandu, respectively, and two spacelike vector fields that
span the tangent space to the intersections of the levedfsendu. It is shown that
this gauge is locally realizable. That is, every point onrgusorentzian manifold
has a neighborhood on which such coordinates and frame ciantrbéuced. More
colloquially, no spacetimes are left out.

e Appendix D reinterprets and abstracts the gauge of Appe@dis a set of (point-
wise) affine linear algebraic constraints on the unknownsl’, W). We introduce
afield® = (e,~, w), with 31 real components, that takes values in the affine gauge
subspace at each point. Thiss the basic unknown field that appears throughoutthe
paper. The equation{d”, U, V') = 0 splitinto two parts. The first part is a quasilinear
symmetric hyperbolic system fdr, referred to agsHs). The second part (constraint
equations) is writtemb* = 0, whered* is the associated “constraint field”, wigi2
real components. Itis an important fact that for every sofup of (sHs), the associ-
atedd! is a solution to a linear homogeneous symmetric hyperbgsitesn referred
to as(SHS). Therefore, the basic strategy carried out in Sections 68aisdo first
construct a solutiow to (sHs) for which & vanishes initially, and then u$eHs)to
show that* vanishes everywhere.

It follows from the equivalence off’, U, V') = 0 andRicci = 0 and from the lo-
cal realizability of the gauge, that to every solutiénof (SHs) and®* = 0 one
can canonically associate a solutiorRizci = 0, and conversely every solution to
Ricci = 0 arises locally in this way.

e In Section 2, which can be read independently of Appendic&s, B, we write out
(SHS), the constraint field! and(SHS) explicitly. Observe the simple structure of the
principal part of(sHS), equation (2.5). The reader may be put off by the multi-page
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equations of Section 2. However, he or she should not beutiaged, because later,
in Propositions 5.2, 5.3, 5.4, we will derive the more traargpt relevant/irrelevant
forms of these equations, mentioned above.

Section 3 introduces a number of exact symmetry transfoomsabf the equations
of Section 2. In particular, the global anisotropic scahgDefinition 3.5) plays a
central role for everything we do.

In Section 4 we define a two-parameter family of fieli, o on the open subset
(&, u,u) € Strip,, = R? x (0,00) x (—00,0) C R* that are solutions, in the role of
&, to (sHs)and the constraint equations!, o is obtained fromM; ; by applying
the scaling symmetries of Section 3. For all parameter wadu@l # 0, the field
M, o corresponds to Minkowski space. The fami¥,, o will be the starting point
for our expansion (see below).

In Section 5 we make a change of variables and wWrite M, o +u~ ¥, whereM

is a diagonal matrix with strictly positive integral ensiand? is the new unknown
field. We make a similar change of variab®s= v~ ¥* for the constraint field.
Then we rewritgsHs) and(SHS) in terms of& and¥!. This section completes the
algebraic part of the paper with the relevant/irrelevantfof the equations fo¥
and?!. Notice that only terms that are either principal in the nemi derivatives
or leading order in powers o}j are written out explicitly. The rest is summarized in
symbolic form, that keeps track of only certain overall stawal properties. There-
fore, equations (5.7), (5.8), (5.9) deserve the name retéiraelevant form. It may
be surprising that the there are only two nonlinear term&énrélevant part on the
right hand side of equation (5.7). The one appearing in thtditze of (5.7¢) is actu-
ally irrelevant, see Remark 5.3. The one in the sixth linesof 4) generates trapped
spheres.

We now discuss the analytic part of the paper.

In Section 6 the unique formal soluti¢® | = [M, o]+u =™ [¥] onstrip,, C R* to
a formal characteristic initial value problem f@Hs)and|[&*] = 0 is constructed.
The asymptotic characteristic initial value problem is ivetted by [Chr]. Data is
prescribed on

— the characteristic hypersurfage= 0,

— the asymptotic characteristic hypersurface> —oo (past null infinity).

The data along = 0 is [¥] = 0 or, equivalently]# | = [ M, o |. The data along
u — —oo Is generic and consists of two real valued functions depenoin (&, ).

In this paper, we will consistently use the notation

£ = S0 (3" FR)Ew)

for a formal power series i with coefficient functionsf (), defined for(¢, w, u)

in the operstrip.,, C R* introduced above. The expansion param%tdx, morally,
the distance to past null infinity. For this reason, we redezxtpansions of this kind
as far field expansions. Formaliyn,,, o, u[® — M, o] = ¥(0) is the asymp-
totic initial data at past null infinity, constructed out diettwo free functions via
the constraint equations. All the coefficient functiahg:), ¥ = 0,1,2,... can be
written down explicitly. Trapped spheres already appeah&lowest order term.
The formal solution and the relevant/irrelevant form of #gwations are used in
the subsequent sections to construct a unique classicaigosuch that the formal
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expansion is an asymptotic expansion to this classicatieoluAt the conclusion of
Section 6, all the notation, definitions and concepts reglfior the statement of the
main theorem of this paper (Theorem 8.1) have been intradicean now be read
on its own.

In Section 7 we collect all the analytical tools that are igeflifor the proof of The-
orem 8.1. More precisely, standard results about symmiggperbolic systems are
adapted to the very specific applications we have in mindahtiqular, finite speed
of propagation, a local existence theorem with a breakdaiterion, and energy
estimates. The long list of hypotheses for the energy estsn@ee Subsection 7.4)
are dictated by the relevant/irrelevant form of the equesidVe then prove a re-
fined (localized) version of the energy estimate (Propmsifi.7) that exploits finite
speed of propagation. This is done by using the €¥%), b, t) that are introduced
in Subsection 7.5 to capture the causal structure of theisohu It is this refined
energy estimate that is applied in Section 8. Observe thaid?ition 7.7 is actu-
ally an energy estimate forlmear, inhomogeneous symmetric hyperbolic system,
which in Section 8 is used in a self-consistent manner toiolata estimate for the
nonlinearproblem.

In Section 8 we write? = Wi + (Error). Here?k is the truncation of the formal
power series solution at ordé + 1. Proposition 8.3 states in particular that the
quasilinear symmetric hyperbolic system for (Error) $etssthe hypotheses for the
refined energy estimate. More generally, Proposition 88iges a list of sufficient
conditions under which the abstract propositions of Sectican be applied to the
various symmetric hyperbolic systems that are requirethfproof of Theorem 8.1.
Its setup, formulation and proof are lengthy, even sometduibus, but elementary.
The section concludes with the formulation and proof of Tkeen8.1, which states
the existence and uniqueness of a classical solution tdhdm@cteristic initial value
problem for(sHs)and@*® = 0, under appropriate smallness conditions. The solution
is constructed on

Strip(1,¢) = R? x (0,1) x (—o0,—c™!) C Strip

wherec > 0 is a constant. Roughly speaking, Theorem 8.1 says that

b= Tio (1) 6k + O(phmr)  (w——o0)

We show thatc can be chosen independent?f+# 0. Therefore, this theorem is

compatible with the limil — 0.

In Section 9 we extract a number of corollaries of Theorem 8.1

— Proposition 9.1 states that the far field formal power séses asymptotic ex-
pansion for the classical solution of Theorem 8.1 inil, see the figure below.
In this sense, the solution is quasi-explicit. Using thisute we can systemat-
ically exploit Theorem 8.1 by transferring properties of ttormal solution to
corresponding properties of the classical solution.

— The high point of [Chr] is the demonstration that stronglgdeed gravitational
waves generate trapped spheres. In Proposition 9.2 we eedog result by
showing that trapped spheres form at the end of regidimat is, atu ~ A2,
using the fact that they appear in the lowest order term ofdireal expansion.

— Proposition 9.5 states that for special initial conditidhe solutions of Theorem
8.1 become arbitrarily close to the Schwarzschild solutiorihe upper edge of
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region! (v = 1). This would be used in conjunction with a controlled pertur
bation expansion around the Schwarzschild/ Kerr familydostruct the global
exterior of a black hole. Our proof of this fact uses four temwhthe expansion.

—p(&,u) formal (naive) singularity

u =
u=—c—p(§u)

— In Subsection 9.5 we sketch a method for continuing the swisitout of the
“far field region”1 U Il using a more powerful expansion2h The expansion in
2 around the regular limi®l — 0 is both more fundamental and more subtle.
It is an expansion around a two parameter family of decoygidly nonlinear
two dimensional systems. Higher order term&liran be constructed and con-
trolled. The expansion breaks dowmat —p (&, u), wherep can be explicitly
expressed in terms of the initial data and does not deperfl &ee the figure.
Even though all the details are not carried out, the methbthspaper together
with the expansion if?l suffice to extend Theorem 8.1 fronu 11 to the larger
domaini Ut Ui, wheree, ¢ > 0 are arbitrary constants ai| is sufficiently
small depending on, €.

— In [Chr] solutions are constructed onln this paper, we rigorously construct
solutions oni U 1, and outline their extension tou 11 U 1l . Furthermore, in
Subsection 9.6 we obtain a class of solutions distinct froat of [Chr], corre-
sponding to more general initial data at past null infinitiisTclass arises from
the limit2l — 0 with a > 0 fixed.

We appreciate the great effort that Demetrios Christodoutwested over many
years to nurture the mathematical study of general retat@tiETH Zurich.

We thank Lydia Bieri, Joel Feldman, Horst Knorrer and Mattohmann for en-
couragement and helpful conversations.

2. A Reformulation of the Vacuum Einstein Equations

Our method for constructing solutions to the vacuum Einstgjuations has two parts.
The first is algebraic, the second analytic. Here, we pretbenpurely algebraic part.
It is a reformulation of the vacuum Einstein equations teatdrefully tailored to the
constructive analytic tools used in the second, purelyydicgbart.

This section compresses the intuition and logic of the tlesairely Appendices B,
C and D into elementary, but very lengthy, totally unmotehand, to the contemporary
eye, unsightly, definitions and statements.
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Let
($1,$2,I3,I4) = (517£2agau)

be a coordinate system on the open subset R*, and
@(x) = (¢1<‘T> ) @Q(I) ) @3(.1’)) - (e(x) ) ’Y(I) ) w(x))
any sufficiently differentiable field oty taking values in
R={(e,7,w) eCPaC3®C® | e3, €4, €5, 12, %6 €R }, (2.1)

a real vector space of dimension 31. Throughout this pagerthe complex conjugate
of z € C.

Remark 2.1Later on, the complex coordinate= ¢! + i£2 will play the role of an
“angular” coordinate. See, for instance, Remark 4.1.

Definition 2.1. To any sufficiently differentiable fietdl : / — R, satisfying the condi-
tions

() : e3>0
(k%) : S(e1®) #0

at every point ot/, we associate three fields,", I'qji, Wa;r and a complex frame

F, = Faﬂa‘z—u onl{. Here and below, small Latin and small Greek indices run from
one to four. The fields are uniquely determined by:

° Fajk = _Fakj andWabjk = _Wabkj andWabjk = _Wbajk-

€1 €2 00
wy e1 ea 00
(Fa ) B €4 €5 01
0 0 e30
Y3+ V7 Ve M 72 8~ V4
(Tagry) = —74 — 73 Y6 7T V2 71 74 + 73
a(4k) =7 0 0 —w+7 7m—-7 w+7s
0 Y5 s 0 0 0
w3 + W3 Wy — Wy wa — Wo w3 — W3
Wy Wy 0 0 —ws — Wy
— Wy 0 ws — W3 0 — Wy
(Wangr ) = s 0 —w, w0 o
— Wo — W3 0 0 w1 Wa
w3 — W3 —Wyg — Wy wWo w2 w3 + W3

The matrix indicegab), (jk) run over the ordered sequence
(12) (31) (32) (41) (42) (34)

The complex frame is written as:
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o (Fy,Fy, F3, Fy) = (D, D, N, L) or, equivalently,
D:ela;gl“'e?aig? 5 N=€4%+65%+% 5 L:egai, (22)
The vector fieldsV and L are always real.
Proposition 2.1.The fieldW ;. has the symmetries

Wapik = =Wk Wike + Wagie + Ware; =0
Woabit = Wiikap g Wik =0

where the matrixg,;, and its inversez®® are given by

010 0 010 0
(100 o0 wy _ [100 0

() = {00 0 -1 (8”) =100 0 -1 (2.3)
00-1 0 001 0

That is,W ;. has the algebraic properties of a Weyl field.
Proof. By direct inspection. O

Remark 2.2Later on it will be important to drofyx ). That is, to allow the frame to
collapse.

The next definition singles out an important class of fields) and relates them to
Ricci-flat Lorentzian manifolds, that is, vacuum spacetime

Definition 2.2. A field® : i/ — R is avacuum field when:

e Conditions(x) and (x x) are all satisfied at every point @f.
e The Levi-Civita connection for the complex linear megriont/{ is given by

g(Vp, Fj, Fy) = Lo

whereg(F,, Fy) = g., (see(2.3) and

g(Vr, Fj, Fy) 4 %(— g(Fu, [Fy, Fy]) + g(Fy, [Fa, Fj]) + g(F;, [FkaaD)

e The Riemann tensor for the Levi-Civita connection is given b

def
Rupje = g([VFj,VFk]Fb = Vir;, 7 Fb,s Fa) = Wapjk

Consequently, the Ricci curvature vanishes, s\Wg, ;1. is traceless.

e The coordinate functiong and« are both solutions to the eikonal equation. More
precisely,es N and L are null geodesic vector fields that are minus the gradiehts o
u andu.

Remark 2.3For anyR-valued field® satisfying the conditionéx) and(* %) the metric
given byg(F,, F;) = gas is real in the sense thgi{ X,Y) is real wheneveX andY
are real vector fields. Over the reals, it has signaturet, +, +). Bear in mind that
gqp are the components with respect to ttwemplexframe F,. If @ is a vacuum field,
then(l, g) is a Ricci-flat Lorentzian manifold, that is, a solution te tracuum Einstein
equations.

44



Remark 2.41tis natural to ask whether all Ricci-flat Lorentzian maidf®arise, at least
locally, in this way. The answer to this question is given pp&ndices C and D.

Remark 2.5Assumed®(z) is a vacuum field. Declaré + N to be future directed.
Let S, ., be the intersection of the level setswfindu, which by Definition 2.2 are
null hypersurfaces. The traces of the future-directedrsg:fondamental forms o, .,
relative to the level sets of andu are given byg(VpL, D) + g(V5L, D) = 27,
andg(VpN, D) + g(V5N, D) = 2v5. By (2.1), they are real, as they should be. By
definition, S, ., is atrapped surfacavhen~, and~s are strictly negative everywhere
on S,,.. Equivalently,s, ., is trapped if an infinitesimal shift of,, ,, along eitherL
or N (both future-directed null vector fields, orthogonaldg,) induces a pointwise
decrease of the area element.

The basic examples of (closed) trapped surfaces in a vacpacetme are the spherical
SO(3) orbits inside the horizon of a Schwarzschild spacetimes&ldrapped surfaces
appear in the the formulation of Penrose’s incompleterfessrem, see [Pen].

We need a criterion for a field to be a vacuum field. To this erelpvake two more
definitions.

Definition 2.3. Suppose, conditiofk) is satisfied at every point of the domain Let
@(x) = (e(z), v(z), w(z)) : U — R be a sufficiently differentiable field, and let the
weights\1, A2, A3, A4 be strictly positive functions dd. TheQuasilinear Symmetric
Hyperbolic System(sHs) for the field®(z) is

AD)D = (D) (2.4)

Here,A(?) = A1 (D) ® Ax(P) ® As(P) is the first order, matrix differential operator,
with coefficients that are affine linear functions (o#&rof @, given by

A(®) = diag (L, L, N, L, L) (2.5a)
Ay(®) = diag (L, L, L, L, N, N, N, L) (2.5b)
MN AD 0 0 0
MD ML+ XN XD 0 0
0 0 0 D ML

Observe that the “angular” operator®, D only appear inA3(®). Also,
fi1 fio fi3

f(P) = £1(P) @ £2(P) @ f3(P) = S 2
f51 fao f53

is the quadratically nonlinear vector valued function givey

—e172 —é1m
— €272 — €271

fi1 =4 €3 2R s *
2R ( —e1a+e1ys + 6173) *
2R ( — €274 + €25 + 6273) *
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— 27172 — w1

- |”Y1|2 — V272 *
+ Y174 — 715 — Y2773 — W2

— Y274 + 7275 + V371

b= - Y37+ VaYe — V56 — V5V8 T V5 Vs — V6V3 + VrVa — V75 T Wa
— 676 — 6 2R s — 7] *
= 2767 — 378 + V77Vs — Ws
— 2y37a + 27375 + V373 + ¥aTs — 14V5 — V574 + W3
-\ (371103 — 6y3wsy + Yewy — 4ygwy + 474102)
— A1 (4y2ws + 4yswy + Y5w1)
£y = — X2 (271w4 — 3y3ws + 2y6w2 — 29swW2 + 3Y,ws)

— A2 (372ws3 + 2y4ws 4 25w + Yrwr) — Az (V1ws + 3vews + 27,wy)
— A3 (272ws + 3v5w3 + 2y7w2) — Aa(3y3ws + dvswa + 25wy + F4ws)

—-A4(72ug — 2y4wy4 4 4ysw4 +'377HB)

Definition 2.4. Let®(z) = (e(x),~(z), w(z)) : U — R be a sufficiently differentiable
field, and let\{, \2, A3, A4 be strictly positive weight functions @n. The associated
constraint field

tl (5% U1
P (z) = (Bi(2), Pi(a), Ph(x)) = (H(a), u(z), v(@)) = | : |@| : | e
is Ug U3
onY/ taking values in
R={(tu,0)eCCOC'@C® | t;, tn R} (2.6)

is given by

=23 (D(@1) +1ys +&174)
— 25 (D(e2) + 8273 + €27y4)
t; =< D(e3) —e3y3 + €37, + €375 (2.7a)
D(es) — N(e1) — 177 — 1% + €175 — €178
D(es) — N(ea) — e2yr — a6 + €275 — €278
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D(v2) — D(m) + w2 — 37174 — 1173 — 71273 + 71274
D(74) + D(v3) — w3 + 2y374 + 7177 — V2%6 + V373 + V474
D(y3) = D(7,) + N(72)

— w3 + 27371 — 27474 + 7177 + 72% — V278 — 278
D(#,) = D(v3) = N(n)
uj = + 37178 + 27373 — 27374 — M1%6 — M8 — V277 (2.7b)
D(vs) — L(v7) — v2¥7 — ¥a¥s + 575 — Y573 — 1671
L(ve) — D(v5) — w3 + 7197 + 7276 — V375 — V574 — V575
D(vs) = N(73) — 27376 + 7378 — 137s + V477 + V674
N (1) + D(y8) 4+ wa — 2y377 + 1476 + V4Y8 — 147Vs + V774
D(v7) — D(v6) — wa + 37377 + ¥4%6 — Y673 + 1774

M ( D(wr) + L(w2) + 4vows + 4yswy + Y5w1)

vj =13 Ao D(ws) + L(ws) 4 3y2ws + 2y4wa + 2y5w2 + y7w1) (2.7¢)
A3( D(w3) + L(ws) + 272ws + 3y5w3 + 2y7w2)

Proposition 2.2.Suppose, condition(g) and (x x) are all satisfied at every point of.
Then, the field?(x) is a vacuum field if and only if there exist strictly positiveight
functionsAy, Az, Az, A4 on such that?(x) is a solution to the quasilinear symmetric
hyperbolic systensHs)and the constraint field* () = 0 everywhere oi.

Proof. Follows from the Appendices B, C, D. See, PropositionsB.1,D.2,D.3. O

Remark 2.6Proposition 2.2, together with Definition 2.2, is a reforatidn of the vac-
uum Einstein equations. When does the solutioto a well posed problem fasHs)
also satisfyd! = 0?

Proposition 2.3.Suppose, that conditiofx) is satisfied and there are strictly positive
weight functions\;, A2, A3, A4 on/, such thatb(z) is aC? solution to(sHs). Then, the
constraint field®! is a classical solutlon to the “dualHomogeneous, Linear (over
R) Symmetric Hyperbolic System(SHS):

A(D) P! = 1(®,0,0)

In particular, if the data for any well posed problem for trye;sen‘(SHS)vanlshes then

the constraint fields () vanishes everywhere. Herd,(®) = A; & A, @ A is the
first order, matrix differential operator

A, = diag (L, L, N, L, L) (2.8a)
A, = diag (L, L, L, L, N, N, L, L, N) (2.8b)
1 1 1
SN+%L 5D 0
Ay — LD iN+iL LD (2.8¢)
17 1 1
0 LD LIN+LiL
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and?(qﬁ, 0, ®) is a linear (overR) transformation acting ob* = (¢, u, v):

/f\ll /f\12 /f\13
£(0,0,0)9" = (hobhaof)o! = [ @ [da| @ [da]| :
?51 ?92 ?33

where® has been suppressed on the right hand side, and

10 = { (=6 + 278)ts — Tql3 — 542—2? - ng—gé + ezuz + e3us
(V3 — va +y5)ts — Yata — Vyla — E3 52 ou T E1U3 — €1l + e1us — €1l
(V3 — Y4+ Y5)ta — yats — Vi 15 — 352 ou T €2u3 — €l + e2us — Exlc
£jp @ =
— 352 + H58 — 3ypus + T + Lo
— ty 91 — g3 2 8%’ — Yau1 + Y51 — Y31 — 22Uz — Y1Us — Yalls — 35 U2
— 13 aazf + tBa_; + YU — Yau1 + YsU1
— 279u3 + Y Us + Y1Us — Y1U5 + YolUs — )\%Uz
+t3 873 — t3 D Ny (v3 — 4 + 75)u1 + yriug + 13 — 292ug + YolUs — Y1Ug
- t4§—’gi - t56—§§ — yrus + Yela — 2Y6Us — 278Us + 27gUs
+ yrue + Yt + Y57 — YsUs — Yalg + YsUg + Y3Ug
+ 14 ggi’ + fs% + Y6z — Y + Fous + Yrls
— 296U6 + Y5U7 — Y5ls + Y3l — TalUo + V5o + 3= U2
— 35 878 — Y3uU2 + YUz — Y5Uo + Y3U3 + Yals — Y5Ua
— V4T — 273U6 + T4lls — Y2UT — V1Us — 351
— 13 %f + Y3U2 — Yauz + YsU2 — YaUuz + Y5U3 — Y34
+ 2v3u5 — Y4us + Yalle — VU7 — Y2us + Al—svs
+ty 22 et — ta 6gf +1t5 Sgs 5% 588 — 3yTur + Yelr
+ Yeus + Y7Us — 3y6uUy — 2YsUy + YUy + %403
fi3 @ = — it ?9?12 ito 9% e His gy Gug t4aa—1g11 — 15 (?;gzl

— 27t + 2 (t3@) + 2 (Elul)
— 29ty + 28 (t3 662) + 2 (521“)

+ 3wszuq + 2wous + 4w2u;3 — 2woug + 4wy ug + wig

[ e = Ee+ Eas =T + (2N () + ()7L (h2) on

+[(55)°D (h2) + 5598 = 3574 — 3;75)v2 — 57103
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?23 Pf = — ity %?13 — itg%—?zs + tg%—u; - t4%% — 5 %2“2?
+ 2wquy + 3wsus — 3wsue + 2waug + 2woug
+[= 21— 21+ (5)D () ]un
+[- %72 - ,\%76 + ,\%78 + %ﬁs + (,\—12)2N (A2) + (,\1—3)2L (A3) Jva
+ 51— oV — 57+ (55)°D (A3) Jus
fy3 0 = — ity %?f - itQ%—ZJé‘ + ts%—f - t4%1£13 - t5%—?§
+ wsuy — 2waus + 2waug — dwyug + 3wsug
- %77’01 +[- %’75 + (Al—.kg)ZE (A3) v
Fl= 21— v — s+ agTs + (55)PN () + (55)°L (M) Jus

Proof. Follows from the Appendices B, C, D. See, Proposition D 4.

Remark 2.7Write A (®) = A* ;2. = (A" & A" @ As*) ;2. Explicitly,

oxh

)\164 )\161 0 0 0

)\151 )\264 )\261 0 0

A= e, diag(0,0,1,0,0)® esdiag(0,0,0,0,1,1,1,0)®| 0 Moy Azeq Azer O
0 0 )\351 )\464 )\461

0 0 0 Mep O

A3=ezdiag(1,1,0,1,1)@esdiag(1,1,1,1,0,0,0,1)P eszdiag(0, A1, A2, Az, As)
A'= diag(0,0,1,0,0)® diag(0,0,0,0,1,1,1,0)& diag(A1, A2, A3, A, 0)

The matricesA* are Hermitian matrices whose entries are linear (R)eunctions of
&, = e. The matrixA3 + A* is strictly positive definite by the requirement > 0 of
condition(x). We see tha{sHs)is truly a quasilinear, symmetric hyperbolic system. An
entirely similar discussion applies @HS). See [John], [Tay], for linear and quasilinear
symmetric hyperbolic systems (in the sense of Friedrichs).

Remark 2.8By definition, the fieldsp and®* take values iR = R3! andR = R32,
respectively. The left and right hand sidegfis) are inR, becausds,, fy1, f51, fao,
fs2, marked by x , are real. The left and right hand sides(ﬁlﬁl\S) are inR. In other
words,(SHS)is equivalent to aeal quasilinear symmetric hyperbolic system forRH
valued field, an@SHS)is equivalent to @eal linear homogeneous symmetric hyperbolic
system for aR3? valued field.

Remark 2.9Letp be the parity transformatiofi - ®)(z) = (—1)* &(x) with

A = diag(1,1,0,0,0) @ diag(0,0,1,1,1,0,0,0) & diag(0, 1,0, 1,0).
The fieldp - @ solves(sHs)if and only if & solves(sHs). The constraintt - ¢)* = 0
if and only if #* = 0. Clearly,p o % = Identity, and® splits naturally into 13-

even and 73-odd components. If th§8-odd components af vanish atr € U, that is
(B - D)(z) = P(x), then(sHs)implies thatL(es) = L(es) = 0 atx.
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Proposition 2.4.Supposéx). Set all thel3-odd componentsy, ez, v3, Y4, V5, W2, W4,
and the twd]3-even components,, e; of the field® equal to zero, and introduce the

fieldd = e; @ (v1,72, 76, V7, 78) @ (w1, ws, ws). In this case, the frame collapses to
D=0,N= % andL = e3% and the systensHs) reduces to

A(®)® = £(P)  (subSHS)

A(?) = Nadiag(L,L,N,N,L)® diag(AM N, AoaL + A3N, A\qL)
(@)

f(P) = f31 @ (fio, foz, foo, 12, fao) @ (fi3, f33, f53) (see, Definition 2.3)

Itis, separately for each, a quasilinear symmetric hyperbolic system@dn the (u, u)
plane. The componentsu, uz, us, ug, v1, v3 of & vanish.(SHS) reduces to a linear
(overR), homogeneous symmetric hyperbolic systenbfor= (us, us, uy, us, ug) Svs.

Corollary 2.1. Supposep is a solution to any well posed problem f@Hs), such that
all its 3-odd components and, e5 vanish initially. Then, they vanish everywhere.

3. Symmetries

A field transformation S with respect to the open subsetsi/’ of R* consists of

e adiffeomorphism frond/ to U/,

e amap from field® = (e,y,w) : U — R tofields®’ = (¢/,+', ') : U — R,

e a map from strictly positive weight functions = (A1, A2, A3, A1) onUf to strictly
positive weight functionsl’ = (X}, A5, A5, X)) onld’.

Letz, =’ be Cartesian coordinates dhandi/’. We write
¥=8-x P)=(S-d)(z) A@)=(S-A)()

In this section S will always be linear over real valued functions in its antmn ¢ and
A. Thatis,

(S-(f?) (@) = F(S7"-2) (S-D)(a') , (S-(fA)() = f(S™" ') (S- A)(a)

forall f € C(U,R). ThereforeS acts pointwise. For this reason, it suffices to make a
local analysis. For the rest of this section, we make themapian that:’ = S -z isa
local diffeomorphism orR*. With this understanding, it is unnecessary to specify the
domaind/ andi{’.

Definition 3.1. A field transformatiort is afield symmetry if:

e (x) and(x«) are preserved (see, Definition 2.1).
e ¢ satisfiegsHs)on/ if and only if.S - ¢ satisfiegsHs)oni/’.
e &% vanishes ow/ if and only(S - ¢)* vanishes o/’

Itis implicit in the last two statements that the weightappear ort/ and the weights
S - A appear on{’. For a field symmetny, it follows that® is a vacuum field oty if
and only ifS - @ is a vacuum field oty’.

As in Section 2, letr = (2!, 22, 23, 2*) = (¢', €2, u, u). We now define a number of
field transformations.
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Definition 3.2. Angular coordinate transformation €. Let ¢!, ¢2 be real functions.
¥=¢C-x= (Q:l(élll z?), €2 (2t 2?), 23, z4)

ey (") G (@) en(®) |, _g 1 A=1,2

QJ‘Q)

Q}‘Q?

( ) ep+3(2) ’x:tl.z/ A=1,2

(6/37’)/771) 7/1 )(I ) - (63,’)/,107/1)(¢ L. .I/)
We will also use the notatioty(¢) = €1(¢) + i€? (&), wheref = ¢ + 2,

@A+3( ') =

£#

Definition 3.3. U (1) transformation 3. Let¢ = ((z*, 2?) € U(1).

¥=3z=x

0
0
X 3 D() 0
?(2') = (3-B)(a') = (A b(z) 0le| 20O f@e|o
0 0
0 0 0
0
LEIN(Q) N

A = diag(1,1,0,0,0, 2,0,1,-1,-1,0,-2,0, 2,1,0,—1,-2)
A(a') = (3-N)@) = A@)[,_5-1.,

Here D(C) = (e1 527 + eag22)(¢) and N (¢) = (eagar + es522)(Q)-
Definition 3.4. Global Isotropic ScalingJ. LetJ > 0 be a constant.

1

2 A~ 3 o~ 4
x , 22, a3, Jath)

Joz=(z
)= @) = 0@ |,
A= (~1)diag(1,1,0,1,1, 1,1,1,1,1,1,1,1, 2,2,2,2,2)
A(a) =@ M) =A@) |,

=31z

@' (x

Definition 3.5. Global Anisotropic Scaling®l. Let®l # 0.
=z = (gat, &P, 2P, At
P(a') = (A-D)(a') = D(x)| _y 1,
A= (-1)diag(2,2,0,3,3, 0,0,1,1,1,2,2,2, 0,1,2,3,4)
A'(a") = (- A)(a") = diag(1, A%, A, A%) Alw) | _y s,

The transformatiof plays a central role in this paper. For a sample calculaten,
the proof of Proposition 4.1.

Proposition 3.1.¢, 3, J, 2 are field symmetries.
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Proposition 3.1 is proven in Appendix E. We will now define aldiéional transforma-
tion. It is a composition of two field symmetries, and therefibself a field symmetry.

Definition 3.6. Pole-Flip transformation Flip,,. Leta # 0 be a constant. The Pole-
Flip transformationFlip , is the composition of & (1) transformation and an angular
coordinate transformation. Precisely,

Flip, =30 ¢C where  ((&) = —

m ‘m

e©) =%

and¢ = &' +i¢? ande(g) = €1(¢) +i€3(¢).

Remark 3.1With this choice of¢ and¢, we have¢ ' 0 30¢ = 37l and€Co ¢ =
Identity. ThereforeFlip,, o Flip,, = Identity. The field symmetrylip , will be used
to match constructions between two “angular” coordinatehms. For Minkowskig
will be stereographic coordinates (scaledd)ybased on the north and south poles.

4. The Doubly Scaled Minkowski Field M, o

Fix the coordinategr!, 22, 23, x1) = (¢, €%, u, u) as in the preceding sections. For all
pairsp, A > 0, set

strip (g, A) = R? x (0, ) x (=00, =A71)

) (4.1)
Strip o, = Strip (00, 00) = R* X (0, 00) X (—00,0)
Definition 4.1. For all a, 2 # 0, let M, g : Strip,, — R (see(2.1)) be the field
0
—1 2
_ Pas A
paél €q,2 71‘2[)\ 0
R pa,m a,2 0
? paﬂj €q,2 —1 X
Moo = 1 @ | Paau M g5 | 0 (4.2)
0
0 = 0
0 “Pa 0
0
0

Here¢ = ¢' +i¢* and
poauw) =Wu—u  eu(@) =51+ %) Aa@=-3¢ 43
We will often consciously suppress the subscriptd on the functiong, e and\. Set
S(u,u) = % +u. (4.4)

The decompositio% = f% + U—Sz will be used over and over again.

Proposition 4.1.For all a, 2l # 0:

(@) Mg o = (CoA)- My onstip,,, where€(§) = a&.
(b) Moo = Flip o - Mqa o ONStrip, N {€ # 0}.

(€) Mg =3J - Mg onstrp ., forall J > 0.

(d) M, o is avacuum fieldon strip ., (see, Definition 2.2).
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(e) The Lorentzian manifold associatedAd, o is isometric to the open subset of
Minkowski space given bi¢.5) below. For this reason, we refer 11, o as the
doubly scaled Minkowski field.

Here, &, A, J andFlip , are field transformations defined in Section 3.

Proof. For (a), setC, = diag(a,a,1,a,a) ® 1g @ 15 and letA be the matrix in
Definition 3.5. Then,
((@ o) -Ml,l)(:c”) = (¢ (A- M171))(x”)
= Ca (Ql . Ml,l)(l'/)
=Gt Ml,l(x)|$:g[—1.m/:s21—1.(¢—1.z//)
— Ca Q[A Ml,l (%f//,ﬂ”, %u”)
:Ma,ﬁl(zﬂ)
Similarly for (b) and (c). Part (d) is also verified by direateulation. It suffices to check
(d) for M; 1, because the general case follows from (a) and PropositibnRcall

that the definition of a vacuum field is independent of the chaf weight functions
A1, ..., \. For (e), see Remark 4.1 belowO

o/ =C—1.g/

Remark 4.1The Riemann curvature tensor of the Lorentzian manifold@aged to
the vacuum field\, o = (e, v, w) onstip, vanishes, because= 0 (see, Definition
2.2). Itis isometric to the open subset of Minkowski spacegiby

{(XO,X) eR xR | |X° < [X|, X ¢ {0} x {0} x [o,oo)} (4.5)

where(X?, X) are the standard Minkowski coordinates, and

Xl 5 Efl
1 1 Ay —u ¢
0 2 2 u
= Au +u X = 5 22 ¢2
ﬁ|m|( et x3) V2RI 1+ 2 “iZHQ
-1+ %[

The level sets ofi = 272 [2| (X — |X|) < 0 andu = 22| [(X° + [X|) > 0 are
null hypersurfaces. They intersect in a standard spheradifis|X| = 22 |32 |p, with

the north pole removed, on whic%lf is the standard stereographic coordinate system.
The southern hemisphere correspondsg te< | |.

Remark 4.2The limit My o = limg o Mg e €Xists onstip .. By taking the limit

of (d) in Proposition 4.1, it is a solution tsHS) with M&O = 0. Observe that the
associated frame is degenerate, becduse 0 here. (See, Proposition 2.4.)

Remark 4.3For eacha # 0, the limit M, o = limgy o M, o €xists onstip.,. By
taking the limit of (d) in Proposition 4.1, it is a vacuum fielthe Lorentzian mani-
fold associated to\,,  is isometric to the open subset of Minkowski space given by
{1X° < |IX], X+ X3 < 0}:

S

L(XO+ X3 =u L (XX =utud|E? X =—\2u %51
2 V2 - a? X2 l§2
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Observe that- (X )% +|X|? = —2uu. The fieldM, ¢ is independent of andy, that is,
translation invariant in these directions. The level séts@andu are null hypersurfaces.
They intersect in standard Euclidean planes.

5. The Far (Weak) Field Ansatz

Fix the coordinate systerfx!, 22, 23, 2*) = (£, €2, u,u) on the infinitely wide strip
strip,, C R4, see (4.1), and make the far (“past null infinity”) field Arsat

b(z) = Maa(z) + u M (z) (5.1
onU. See, (4.2) for the definition 0¥1, o (z). Here,
diag(2,2,2,3,3) @ diag(1,2,2,2,2,2,2,3) & diag(1, 2, 3,4, 4)

U(z) = (Vi(2), Pa(2), T3(2)) = (f(2), w(z), 2(z)) € R

Our basic Ansatz (5.1), Minkowski plus asymptotically shearrections (assuming,
U = O(1) asu — —o0), is completely naive. The only subtlety, lies in the chaite
the diagonal matrix\/ that prescribes the far field asymptotics of the system, and i
ultimately a statement about the physics of propagatingitgtéonal waves. Anyone
who has made formal or rigorous perturbative calculatioreastructions in classical
or quantum physics knows from experience that one must “pitty the expansion”
until, “one sees what is going on”. We have followed this iiadal route to the matrix
M . However, the only real justification is that it works.

<
I

In this section we bring the equations of Section 2 into avesié/ irrelevant form
that exhibits the essential constituents that have to kaetecarefully, and sweeps
everything else into “generic terms” that we don’t need tolmuch about.
Proposition 5.1.In this proposition, ignore Definition 2.4, and regafdz) and®* (x)
as independent, sufficiently differentiable fieldssef ., with values inR andR, re-
spectively. Set

M = diag(2,2,2,3,3) @ diag(1,2,2,2,2,2,2,3) ® diag(1, 2, 3, 4,4) (5.2a)
FE = diag(4,4,4,6,6) @ diag(2,4,4,4,4,4,4,6) & diag(0,0,0,0,0)  (5.2b)
= diag(2,2,2,3,3) @ diag(2,2,2,2,2,2,3,3,3) ® diag(0, —1,-2)  (5.2c)

En = diag(4,4,4,6,6) @ diag(4,4,4,4,4,4,6,6,6) & diag(2, 2, 2) (5.2d)
and

D(z) = M, g[(x) +u M y(r) U(z)eR (5.3a)

P (z) = u M W(z) vtz) e R (5.3b)

\j(w) = u? j=1,2,3,4 (see, Definition2.3) (5.3c)

The systems (see, Section®)d)® = f(®) and A (®) & = £(®, 0,P) P for & and
&* are equivalent to the following systems foand¥*:

Aoz, V)V = fou(z,¥) (5.4a)
Ka@‘ (I: l*p) Wﬂ = /fa,ﬁl(xy v, azw) Wﬁ (54b)
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whereA , o (z,¥) = A¥ o (2, 7)52; and A, o (v, ¥) = A% y (z,¥) 52 and

AL (2, 0) = u (u=MA*(@)u~M) (5.53)
fa(2, ) = uP M (= A*@) (5l M) @ + £(®) — A*(@) 52 M2

(5.5b)

Al (2, 0) = uP (u M AR (@) u M) (5.5¢)

f,a(z, ¥, 0,0) = oM ( — AM®) (52 u M) +§(®,0,0) u-M”) (5.5d)

In (5.5), @, 9,2 have to be expressed in term&lo@w using(5.3a) We will sometimes

drop thea, 2 and write A (z, W), f(z, V), A(z,¥), f(z, ¥, 0,¥). They are notationally
distinguished fronA (@), £(2), A(P), f(P, 0,P) by the number of arguments.

Remark 5.1The matriceA* (z, ¥), K“(a:, ¥) are Hermitian, so that (5.4a) and (5.4b)
are also symmetric hyperbolic. They are affine linear (®jefunctions of the field?.
The linear (overR) transformatiorf(:c,w, 0,¥) depends affine linearly (ovéR) on

¥ @ 0, ¥. On the other handx, ¥) is a quadratic polynomial in the component¥of
¥ without constant term. There is no constant term, becadsey is a vacuum field.
By direct inspection, neither derivatives ef o nor derivatives of\, o appear in the
term A% (9) 52: M, 2. See, (2.5) and (4.2).

Definition 5.1. Let S be defined as in equatiqd.4)

e P is a generic symbol for a quadratic polynomial in the compuse®f the fieldg
and¥ without constant term, whose coefficients are (complex)raohials in%, 2,
S, €420 Aa,Qh Aa,?l-

e P%is a generic symbol for a polynomial in the components of éidd and¥ and
all their first order coordinate derivatives, whose coeéfittis are (complex) polyno-
mials in % A, S, eqn, Ao, Ag 2, and all their first order coordinate derivatives.

We use the same symbdtsand P*? for a vector or matrix all of whose entries are
polynomials of this kind.

Remark 5.2The vector fieldsD, N and L corresponding t& = M, o + =M are:

D= ~Zeadst FenaS st h(figh+ k)
N = 2+ & (fagd + fs72) (5.6)
_ 9 14 0
L = @-F?fg@
Here,a@Z = 3 (g8 +ige)

Below,e = e, o andX = X, .
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Proposition 5.2.Let ¥ = (f,w, z). The systeng5.4a)takes the relevant/irrelevant
form:

fi ew1
fa —tewp
fa 26%((4}4 — W3 —UJ5)
f5 —29%(&)4 — W3 —LU5) 1
Llw | = —21 + =P (5.7a)
w2 —lw1|? “
w3 —Z9 — le
w4 —)\wl
ws zZ3 +22S()\ ((.U4 — Ws5 7@5))
I3 . 2(f3+Rws) .
A el I Bl =P (5.7b)
wr 0
N %D 0 0 0 2 0
%5 N + #L %D 0 0 22 1 0
0 1D N+&HL iD 0f === 0
0 0 1D N+LL D] |z) ¢ AXzs
0 0 0 D L) \%s A?z5 — 224 — Bwrz3
+ %77 (5.7¢)
u

Proof. By direct (machine) calculation.O

Remark 5.3We comment on the relevant/irrelevant equations (5.7):

e The terms containing the generic symoand the terny- (A%z5 — 224 — 3wrz3)
on the right hand side of (5.7c) are referred to as irrelevthetrest are referred to
as relevant. Observe that the relevant terms are all eitiiregipal in the number of
derivatives or leading order in powers gf In particular, in the last line of (5.7c),
the termL(z;) is of order zero in powers of, so that all the terms on the right hand
side are irrelevant.

o If we just keep track of the terms that are leading order in q*mmf% and ig-
nore the number of derivatives they contain, then the difféal operator®, N, L
reduce to-2 e a% and % and -, see (5.6).

e The relevant terms on the right hand sides of (5.7) are lilretlne components
of the unknown? = (f,w, z) and their complex conjugates, wiéxactly oneex-
ception, namely-|w; |2 in the sixth line of (5.7a). This term generates the trapped
spheres. Observe that this is the only equation in whiglappears in the relevant
part.

e The linear terms in the relevant part of the right hand sid¢S.@) are of two kinds.
Either there is an explicit factor af, A\, A or there is a numerical factor (besides
powers of%). In the first case, we can make the factor small by requifjo< |al
and makinga| small. In the second case, we arrange the terms into a liveaiRo
matrix applied taZ. We exploit the structure of this matrix, it motivates soniéhe
hypotheses of the energy estimate, @8 (E11a), (E11b)in Subsection 7.4.
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Proposition 5.3.Let¥* = (s, p, y), see(5.3b) and recall Definition 2.4. Then,

S1 s ?

sy | = P! <4> = —uN (_1> + P* (5.8a)
s3 S5 f2

b1 yz w1

D2 = 'Pﬁ s = —ulN w3 | + ’Pﬁ (58b)
b3 bs —Wyq

Ps —L(wr) — @ 1

e | = Pt = _ L(we) + =P*  (5.8c)
Do uD(wr) —uD(wg) + wyg — w3 — 4Awy “

v uD—4X _L _ 0 0\ ()

p| = Pt = wr uD-2X L O||2]+-P (5.8d)
Y3 0 2wy uD L Zi “

Proof. By direct (machine) calculation.O

Remark 5.4Every generic symbo]iti that appears in (5.8), has no constant term as a
polynomial in the components @f, ¥ and their first coordinate derivatives. There is no
constant term, becaugel,, o is a vacuum field.

Proposition 5.4.Let ¥ = (s,p,y), see(5.3b) The dual syster(b.4b)takes the rele-
vant/irrelevant form:

S1 0
52 0
54 .9(2_74 —ps) + e (Ps — Pp3)
S5 ie(py —ps) —ie(Ps — p3)
2 Y1 Loty
L - — P 5.9a
o 0 + =P (5.9a)
p3 0
P4 0
p7 A(ps —P3) — A(pa — Ps)
D8 ~X([Ps — p3) + APy — ps)
s3 53+ p7 + Ps
1 B 1
N[Ps| = 2 Pa + —Phwt (5.9b)
Pe u P3 u?
Do D7 +Ds
N+ZL 1D 0 v 1
ip N+LL 1D y2 | = 5Pt (5.9¢)
0 1D N+LL) \w) "

Above, the symbolB? are linear overR generic transformations, in the sense of Defi-
nition 5.1.

Proof. By direct (machine) calculation.O
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Remark 5.5The overall factors:Z andv®* appear in (5.4a) and (5.4b), so that these
systems are line by line (up to a permutation of the lines)ivadgnt to their rele-
vant/irrelevant counterparts in Propositions 5.2 and 5.4.

6. Formal Solutions

In this section we consider formal power series

= > (H)Fw(k)(E ) (6.1)

k=0

onstip,, C R*, see (4.1), where for eadh > 0, the coefficient function (k) =
w(k)(&,u) is a smooth field oiR? x (0, c0) taking values inR. By Proposition 5.3,
the associated formal constraint figld* | is itself a formal power series i, that is,

4 ]( Zk 0 (k)& w).

Remark 6.11t also follows from Proposition 5.3 that, for eaéh> 0, the coefficient
function?#(k) depends only o (¢), 0 < ¢ < k.

The characteristic initial problem in Proposition 6.1 istivated by [Chr].

Proposition 6.1.For all a, 2 # 0, u, > 0, all SmoothpATA (£, 1) : R? x (0,00) — C
that vanish whem < wu, there is a unique formal power serig¥ | on strip ., which
satisfieg5.4a)and [ ¥* | = 0 and (the formal characteristic initial conditions)

(7] =0 whenu < u, w1(0) = DATA (6.2)

Moreover, for allk > 0, the value of? (k) at (¢, u) € R? x (0, 00) depends only on the
restriction of DATA (¢, u) and its derivatives of all orders to the half-open line segine
{&} x (0,u] (formal finite speed of propagation). Explicitliy(0) is given by:

w1(0) = DATA 25(0) =0

wr(0) = =9, 'w1(0) w2(0) = =8, w1 (0)]?
21(0) = f%wl(()) wq(0) ==X a;lf(o)
22(0) = 2(e +2X) 8_121(0) we(0) =0

23(0) = 2(efe + A) 9, '22(0) — 0, ' (wr(0)21(0))  f1(0) = edy 'wi(0)
24(0) = zedE L 23(0) — 20, (wr(0)22(0)) f2(0) = —ied, 'wi(0)
w3(0) = 22(0) = X9, 'w1(0) f3(0) = —Rws(0)

ws(0) = 22(0) f4(0) = —4ed; ' Rws(0)
wg(0) = ( )741'8;18()@5(0)) f5(0) = 4ed, ' Sws(0)

(6.3)
wheree = e, 9 and\ = \, o are defined ir(4.3)and6% = %(% — ia%z), and

(9 ") (w) = /jdu’ 9(u). (6.4)

We now prepare for the proof of Proposition 6.1, which appearpage 24.
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Definition 6.1. Leta, %A # 0. Let
[(Maa](x) = 3020(5)" Maa(k)(E u)
be the formal expansion rb for the Minkowski vacuum fielt,, o, see(4.2), in which

(3] = -4+ [S] [S] = = 320(5)F AR gt (6.5)
Definition 6.2. Regard the components®@fk) and¥ (k), k > 0, and their formal first
coordinate derivatives, as an infinite family of indeperadrstract variables.

SetPy = 0. The generic symbdP,, £ > 1, is an arbitrary polynomial in the com-

ponents of/(¢) and¥(¢), 0 < ¢ < k — 1, and all their first coordinate derivatives

(32-%(0) and 522 ¥ (¢), 1 = 1,2,3), whose coefficients are (complex) polynomials in
A, u, €490 Aa,2, Ag,2, and all their first coordinate derivatives. It is furtherqeired
that the polynomialP,, have no constant term, that i%;, vanishes whew (¢) and
52w (¢) vanish forallo < ¢ < k — 1 andy = 1,2, 3. We use the same symiR) for

a vector or matrix all whose entries are polynomials of thisk

Proposition 6.2.Substitutg M, o | (see, Definition 6.1) faM,, o and[ ¥ | (see(6.1)
for ¥ in (5.4a) Then[¥ ] is a formal power series solution {&.4a)if and only if its
coefficients (k), k > 0, satisfy a system of the form

z1(k) = Py k>0 (6.6a)
z2(k) = Pg k>0 (6.6b)
z3(k) = Px k>0 (6.6c)
(1= 6ro)za(k) = =55 (e 6% +2X) z5(k) + Py k>0 (6.6e)
%wl(k) =—z1(k)+ Px k>0 (6.6f)
w2 (k) = =(2 = 0k0) R(w1(0) wi (k) ) + Py k>0 (6.69)
ax w3(k) = —2a(k) = Awi (k) + Py, k>0 (6.6h)
o wa(k) = =Awi (k) + Py k>0 (6.6i)
ws(k) = =7 (wa(k) — w3 (k) ) + Pr k>0 (6.6))
we (k) = Py k>0 (6.6k)
wr(k) =Py k>0 (6.6l)
e ws(k) = z3(k) + 20 (A(wa(k) — w3(k) —ws(k))) +Pr k>0 (6.6m)
a%fl(k) =  ew(k)+ Py k>0 (6.6n)
ax fa(k) = —iew (k) + Py k>0 (6.60)
f3(k) = =335 Ruws(k) + Py, k>0 (6.6p)

% fa(k) = 2eR (wa(k) — ws(k) — ws(k)) + Py k>0 (6.6q)
a f5(k) = —2e S (wa(k) — wa(k) — ws(k)) + Py k>0 (6.61)

Here,e = eq 0, A = Ay 2. In (6.60) (6.6Kk), (6.6p) (6.6q) (6.6r), the generic symbol
Py, is real valued whew (¢) (¢, u) € Rforall 0 < ¢ < k.
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Proof. Substitute the formal series (6.1) into the relevant/@veht form of system
(5.4a) given in Proposition 5.2. Collect all coefficientcommon powers o%. O

Lemma 6.1 just below is simpler than Proposition 6.1, beealiassumegquations
(6.3) and it makes no statement about the formal constraial[f¢* |.

Lemma 6.1.For all a, 2 # 0, u, > 0, all smoothpATA (¢, u) : R? x (0,00) — C
that vanish whem < u, there is a unique formal power serig¥ | on strip ., which
satisfieg5.4a)and

[Z] =0 whenu < u, ¥ (0) is given by(6.3) (6.7)

Proof. ¥(0), as given by (6.3), satisfies tiie= 0 equations in (6.6). The coefficient
functions¥ (k), k > 1, are constructed by induction. For each stepquations (6.6a)
to (6.6r) are solved exactly in this order to obt#ifk). The right hand side is explicitly
known by induction and the “upper triangular” structure 86@) to (6.6r). Whenever
a% appears on the left hand side, it is inverted uﬁg@, because the constant of inte-
gration is zero by the first condition in (6.7). By inductiame also verifies thak (k),

k > 0, vanishes whem < wu,, So that the first condition in (6.7) is satisfied at all or-
ders. It is essential at precisely this point that the gerolynomialP;. in Definition
6.2 has no constant term. Finally, by Proposition 6.2, tleeists a formal power series
solutions satisfying the hypothesis of the lemma. The cansbn given here is forced
at every step, and therefore generates a unique formal Emries. O

Proof (of Proposition 6.1)We first prove existence. It suffices to show that the for-
mal power serie$¥ | produced by Lemma 6.1 satisfigg® | = 0. (The formal finite
speed of propagation statement in Proposition 6.1 folloasifan examination of the
construction of ¥ | in the proof of Lemma 6.1.) Note that

e [W*]is a formal power series solution to the linear homogenegstes (5.4b).
o [¥#] = 0whenu < uy.
e UH(0) =00nR? x (0, 00).

The first bullet follows from Proposition 2.3, becaugsg| is a formal power series
solution to (5.4a). The second bullet follows from the firendition in (6.7), which
implies[®] = [ M,.a] Whenu < u,, and[&* ] = [Maﬁ’m] = 0. For the third bullet,
note thatps(0), 11(0), y2(0), y3(0), ps(0) all vanish onR? x (0, cc) by the second
condition in (6.7). By the first two bullets and by equation9¢), we conclude, step
by step, thats1(0), s2(0), p1(0), p2(0), p3(0), p4(0), s4(0), s5(0), p7(0), ps(0) also
vanish. The first equation in (5.9b) giveg0) = 0. It remains to show thaiyg(0) = 0
onRR? x (0, c0). By (5.8c),

po(0) = —2(e & +2X) wr(0) + 2 e Fws(0) + wa(0) —ws(0).

The second conditionin (6.7) implié%)gpg(()) = 0. By the second bullefiy (0) = 0.
The three bullets imply, by induction on> 1, that##(k) = 0 onRR? x (0, 00). In
fact, at each step, one verifies, in the given order, that(k), y2(k), ys3(k) all vanish
by (5.9¢),p1(k), p2(k), ps(k), pa(k) all vanish by (5.9a)ps(k), ps(k) both vanish
by (5.9b),p7(k), ps(k) both vanish by (5.9ahy(k), s3(k) both vanish by (5.9b), and
s1(k), s2(k), s4(k), ss(k) all vanish by (5.9a). This concludes the existence proof.
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Uniqueness in Lemma 6.1 implies uniqueness in Propositibnk@cause we now
show that (5.4a) anfl¥] = 0 and (6.2) together imply (6.3), which is the second
condition in (6.7). Condition (6.2) and thie= 0 equations in (6.6) imply (6.3), apart
from the formulas fotw7(0), 22(0), 23(0), 24(0), we(0). The remaining five formulas
follow from the vanishing op5(0), y1(0), y2(0), y3(0) andps (0), see (5.8c) and (5.8d).
Here,#(0) = (s(0), p(0),y(0)). O

Proposition 6.3.For all k&, R > 0, all 0 < || < |a| < 1, and allDATA,
[ (k)lorie) < prr([DATA|crizrs(g)) Q = Dyj2(0) x (0,2)

where[ ¥ ] is the corresponding formal solution in Proposition 6.1dan,  : R — R,

is an infinite family, indexed by, R > 0, of universal polynomials without con-
stant term. HereD,.(0) is the open disk of radius > 0 in the (¢!, £2)-plane. Here
1@ (F)llcr(@) = supjai<r 0¥ (K)l[co(0), Wherea € NG.

Remark 6.2The uniformity of the estimate in, 2, when0 < || < |a| < 1, will be
exploited later. In particular, it is compatible with tagithe limita = 2 | 0.

Proof. Observe that:

o ||ea’g[||cR(Q) < 17 andH)\ag(”CR(Q) < % forall R > 0.
o 10 gller(e) < 2lgllen(g) forall R > 0 and all functiong) (¢, w) on Q.

The existence of polynomiajs r, R > 0, follow by direct inspection of (6.3). The
existence of polynomialg, z, R > 0, is shown by induction ovek > 0. At each
stepk > 1, we use (6.6). By the inductive hypothesis and Definition tB&e is a
polynomialp;, ;, (depending only ok and R) so that each generic terf), on the right
hand sides of (6.6) satisfigi® || cr (o) < P} g (/[DATA[|cri2i+2(g)). We can assume
thatp), , has no constant term, becatgedoes not have one (see, Definition 6.2). Now,
the existence ofy z, R > 0 follows directly from estimating the non generic terms on
the right hand sides of (6.6a) to (6.6r), exploiting the uggangular structure. Only in
one equation, (6.6e), a coordinate derivative appedrs.

Remark 6.3Fix DATA and let] ¥, o | be the formal power series solution in Proposition
6.1. The indices have been added to make the dependence&los 0 explicit. One
can show, by induction, thalty o (k)(&, ), & > 0, are polynomials irR(. Just follow
the construction of Wy g | given in the proof of Lemma 6.1, and use the observation
thategy o andgy o are polynomials irel.

Let 3 be the parity field symmetry, see Remark 2.9. THer{ Wy o ] = [P_o -2 .
This is a direct consequence $f- Mgy o = M _g g, the uniqueness statement in
Proposition 6.1 and the fact that(0) is J3-even. Therefore, th§8-even (3-odd) com-
ponents offy o (k), k > 0, are even (odd) polynomials .

Let [Wy 0] = limy o [Pa | (the limit is taken coefficient by coefficient). We have
[@o0] = [Moo] +uM[¥,]. TheP-odd components all vanish. By inspection,
the e4, e5; components also vanish (see, Remark 2.9). Therefdrgy | satisfies the
hypothesis of Proposition 2.4, in the sense of formal powses. The field $y ] is a

formal solution tasubSHS), and[@f’o] =0.

We now match constructions between two stereographicshart
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Proposition 6.4.Choosea, 2l # 0. Pick DATA? (¢, w) as in Proposition 6.1, for =
—,+, and let[ 77 | be the associated solution in Proposition 6.1. The follgstate-
ments are equivalent:

. E—fDATA”(%& u) = % DATA ™~ (g ¢, u) when¢ # 0.
o Flip, - [97] = [977 ] when¢ # 0. Here,[ 97 ] = [ Moo ] +uM[P7].
e Flip, - [¥7] =[¥~7]when{ # 0.

Here,—o = 4+ wheno = —, and conversely;-0 = — wheno = +.

Proof. The equivalence of the last two bullets follows from Profiosi4.1, (b), and
the fact thaflip « commutes with multiplication by ~?!. Each of the last two bullets
implies the first. Just look at hoflip 2 actson the component . The first bullet im-
plies the last two, becausdip a is a field symmetry, and by uniqueness in Proposition
6.1 (more precisely, by formal finite speed of propagatior).

Itis convenient (see Subsection 8.2) to make the
Definition 6.3. For all (¢, u) € R? x (0, 00) with £ # 0, set

(Flip o - DATA) (€, u) = g—.jDATA(gl—z & u)

Remark 6.4Proposition 6.1, the main result of this section, is analsgto Theo-
rem 8.1, the main theorem of this paper. Proposition 6.1 earscformal vacuum
fields [@] = [Maa] + u~M[¥], Theorem 8.1 concerns classical vacuum fields
@ = M,.o +u~M@. They are solutions to an asymptotic characteristic initddue
problem that is motivated by [Chr]. Informally:

limy oo (&, 1, u) = P(0)(&,u) (6.8a)

V(& u,u) =0 whenu < u, (6.8b)
with the understanding tha&t(0) is given in terms oDATA (¢, u) by equations (6.3).

Equation (6.8b) stipulates thet coincides with the Minkowski vacuum field1, o
whenu < u,. On the other hand, (6.8a) is an asymptotic initial conditib “past null

infinity” « — —oo. At this point, all the notation, definitions and conceptsuieed for
Theorem 8.1 have been introduced. In can now be read on its own

7. Energy Estimates

In this section, we prove an abstract local existence tireéoea general class of quasi-
linear symmetric hyperbolic systems, with a concrete kieak criterion. Then, we
develop appropriate energy estimates. These tools areedpplSection 8.

Convention 7.11n this section,
x = (wl’ $27 ‘/L.37 $4) = (51? 62? u7 u)

a=(d". ¢ )=t &, & u
t=u-+u

a=(¢", ¢ ¢*) = (", & v

62



27

Let D,.(€) C R? be the open disk of radius> 0 around¢ and, generallyB,.(p) c RY
be the open ball of radius> 0 around the poinp.

For any parameter vectar = (a1, ...,ax) € (Ry)¥, the notationX <, Y signifies
that X < CY for a constanC = C(a) > 0 that depends only oa. Dropping the
subscriptz, the notationX’ < Y meansy” < C'Y for a universal constard > 0.

7.1. Sobolev inequality.
Lemma 7.1.Letdq = (57, g2, 5o5)- If b € (0, 2], then for all C*-functionsf(q) =
f(q', ¢*, ¢*) onthe cylindecyL = D, ,4(0) x (0,b) C R? which vanish fog* < 1/4,

1/2
sup |f(a)] < ( Z ||83fH%2(CYL)) ) a € Ng.
qeCYL |a=2
Proof. Let B = D;,4(0) x {0} be the base ofyL andS? the unit sphere ifR?. For
eachq € cvL, letI'y C S? be the set of all quotient$ = o—a Wherep € B. Set
1(¢) = |p — q|]- We have

f@l < e [ s F©

where

F(¢) = /0 arr (¢ HN(@+r¢)¢)|

since, Taylor’s theorem and the support propertieg ahply |f(q)| < F(¢) for all
¢ € I'y. Here,H(f) is the Hessian of . Let Cyq C R? be the convex hull oB U {q}.
By the Schwarz inequality,

@l < i ([ s [C1a) ([ avirnmr)”

where,? has disappeared into the measdtg and|M| = (tr M7 M)'/2 is the Eu-

clidean matrix norm. Also, observe thdt) < 3 and|l4|s= is bounded below by a
universal constant, for instaneg 100. By constructionC, C cyL, and the proof is
finished. O

Lemma7.2.Letb € [1,2]. Then for allC2-functionsf(q) = f(q',¢% ¢*) on the
cylindercyL = Dy ,4(0) x (0,b) C R?,

1/2
swp f@l S (X 105Fleeny) 5 @eN; (7D)

q€eCYL a]<2
Proof. By reflection symmetry, it suffices to show (7.1) where cyL satisfies;® >
b > 1 Fix a smooth transition function = v (¢*) : R — [0, 1] equal to0 on (—oo, 1]
and equal td on [}, cc). Then,

Lemma 7.1
f@P =lwhH@ < > 05 @Az
|| =2
S 190820, Z 105 f1172cviy O

o <2
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7.2. Finite speed of propagation for a general class of sytrimieyperbolic systems.
We show finite speed of propagation in the context of the falg hypotheses:

(FS0) U C R*is open andd = U x B,.(0) whereB,.(0) C R”,0 < r < 400, P € N.

(FS1) M*(q,0), n = 0,1,2,3, is asymmetrid® x P matrix on.A. Moreoverh(q, ©)
is anR” valued function ond. Both M* andh areC* on A and extend, with their
derivatives, continuously tel, andM° > 0 on A.

(FS2) ©1, O, areC*-functions ori/ with values inB,.(0) C RP, that are solutions to
the symmetric hyperbolic system

M(q,0)0 = h(q,0), M =M"2 (7.2)

dgh *

Both @1, O, extend, with their derivatives, continuouslyZio
(FS3) U is either the se€oneor the intersectio@onen (R x Half).

Above, all the quantities are re&oneis any set of the form
{(t,a) eR*: |a—aqoles < vltr —t], t € (to,12)} (7.3)

wherev > 0, qo € R? andty, t; € R with ¢ty < t; are arbitrary, andialf is any open
half-space irR3. We refer tov as the velocity of the s&@one.

Lemma 7.3.Supposerso), (FS1), (FS2), then the differenc&® = ©, — O, satisfies the
linear homogeneous symmetric hyperbolic system

M(q)T = H(q)T (7.4)

whereM(q) = M(q, ©1(¢)) and H(q) is a square matrix. MoreoveM (q), its first
derivatives and{ (¢) are continuous ot/ and extend continuously 6.

Proof. Adding and subtracting,
M(q, 01)T = —(M(q, ©2) — M(q,01)) O3 + h(q, O2) — h(q,61).
SetO; = (1 — s) O1 + sO2, and

o ! O 0% ! ; Ohi
o) =~ 3 ( | a0 2G5t o) 3R + [ s g 0.0

The proposition follows from the fundamental theorem otahls. O
Suppose&rsa3). In this case, let
S = (oU) N ((to,t1) x R?)
B = (o) N ({to} x R?)

be the “lateral boundary” and “base” &f Note thatS is a piecewise smooth hypersur-
face inR*. Letd = 6, dg* be a smooth 1-form on the smooth componentS,auch
thatd(X') > 0 for every vectorX pointingoutof /.

Proposition 7.1.Given(Fso), (FS1), (Fs2)and(Fs3), the differenc&” = ©,—6, vanishes
identically on/ when

Tlp =0, (7.5a)
6, M"(q,61(q)) > 0, alongthe smooth componentsSf (7.5h)
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Proof. We abbreviat?M = M(q, ©1(q)). (t1,q0) t
Define theC! “energy current”vector field /N
j* = TYTMH*Y onU. By hypothesis;j*
and its derivatives extend continuously to
U. Fort € [ty,t], let E(t) be the integral
of the componenf’ over/ N ({t} x R?).
The Euclidean divergence theorem giveg

E(t):/ ém'“f/ (,v) o to
unc snc

whereC' = (to,t) x R3, because, by (7.5af/(t;) = 0. Fori{ = Cong see the
nearby figure. By (7.5b), the outward flgfgmc(j, v) of j throughSNC'is positive. By
constructiong,j* = YT KT, whereK = 9,M* + HT + H, sinceM* is symmetric,
and? is a solution to (7.4). By Proposition 7.5 is continuous ori{ and therefore
bounded. Also, there is a constant> 0 such tha??K7| < k;°, becauséM’ is
strictly uniformly positive definite on the compact 8&tit follows that

t
E(t) < / ITTKY| < k/ ds E(s),
unc

to

for all ¢t € [to,t1]. ConsequentlyE(t) = 0 on the intervallto,¢1]. In other words,
Y=0 0O

Proposition 7.2.LetU = (to,t1) x X, wherexX C R? is open, andy,t; € R with
to < t1. SUPPOSEFSO), (FS1), (FS2)and letT = ©y — @;. Further suppose

() Tlgtoyxx = 0. B
(i) M® > gand—b < M* < b, i =1,2,3, onA, for constants, b > 0.

Part 1.Setv* = /3 (b/a) > 0. Then? vanishes att, q) € U if
distgs (R*\ X, q) > v* [t1 —to|. (7.6)
Part 2.If, in addition,M? > 0 on 4, then vanishes att, q) € U if
dists (Wfqm (R3\ X), q) > v [t — to (7.7)

whereHalf, = {y € R3[|y < ¢*}.

Proof (of Part 1).Let q € X satisfy (7.6). Observe that, for the sevne C U/ with
velocity v*, base at timeé, and vertex att,, q), we have

0, M¥|sxB,0) >0 (7.8)

by the choice ob* and (ii). Here, the lateral boundasyand the 1-forn® are just as in
the discussion above Proposition 7.1. We can now apply Ritbgo 7.1 toCone and
concludel |g5c = 0. O

Proof (of Part 2).Suppose thavI® > 0 on A. Letq € X satisfy (7.7). The boundary
of the setConen Half, C ¢, whereConehas velocityv*, base at timé, and vertex
at(¢1,q), has two smooth components. On the “round” one, the inetyy&!i8) holds
again by the choice af*, and on the “flat” one by, M* = M? > 0 for 6 proportional
t0 (0,0, 1,0). We havel'|ggrammar, = 0, by Proposition 7.1. O
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7.3. Existence / breakdown theorem.
Assumptions for the Existence / breakdown theorem: All thergities here are real.

(EBO) LetU = (—o0,T) x R3, whereT € Rand letd = U x By(0) C R* x RP.

(EB1) M*(q, ©) is a symmetric® x P matrix on.A. Particularly M° > %

(EB2) h(q,©) is anR’ valued function onA.

(EB3) Both h andM* are smooth o4 and their derivatives of all orders extend con-
tinuously to.A.

(EB4) K C Q C R?with K compactQ open, such that ofi-co, T') x (R3\ K) x B2(0),
the matrixM* is constant and denoted B§[* andh(q, ©) = H (t) ©, whereH (t)
is a matrix depending only oh= ¢°. It is assumed¥I’ > % We can naturally
extendM* andh, by MI* and /4 (¢)©, to (—oo, T) x (R3\ K) x RF.

We now formulate and prove an existence theorem for the lijeeai symmetric hy-
perbolic system
M(¢,0)6 = h(q.0) M=M"2 (7.9)

B
Proposition 7.3. SUppOSEEBO), (EB1), (EB2), (EB3), (EB4).
Part 1.For eachty < T, there is at1 € (to,T] and a smooth solutio® : [to, 1) X

R? — RP of (7.9)with trivial initial data, O(to, - ) = 0, such thatupp © C [to,t1) x
B,.(0) for some finite- > 0, and

O([to, t1) x Q) C B1(0) C R” (7.10)
and such that, =# T implies either one or both of:

(Break)1: @([ﬁo,tl) X Q) ¢ Bl(O) C RP.
(Break)2:  The vector field, © is unbounded ofty, ¢1) x Q.

Part 2.Suppose in addition th&* > 0 on A, andh(q,0) = 0 wheng® < 3. Thenthe
solution® of Part 1 vanishes identically fof* < .

Proof (of Part 1).Fix a smooth transition functiop = ¢(|©|) : R — [0, 1] which is
equal to 1 or{—oo, 3) and equal to 0 o3, co). It is for this reason thaB, (0) appears
in (EBO). Set

N=yM+1A-¢)M, g=vh+(1-9¢)AO.

By constructiong and the symmetric matriN“ are smooth o8 = I/ x R”, and their
derivatives of all orders extend continuouslyBoNote thaiN°? > % on 3 and there is
aconstanb > 0 such that-b < N < b, = 1,2,3 0n[to, T] x R? x R”. The latter
statement follows from the fact th&* is constant{£ I¥I*) on the complement, in
[to, T] x R? x R”, of the compact séty, 7] x K x Bo(0). Fix the velocityv* = 2v/3b
(see Proposition 7.2).

We want to reduce our existence / breakdown theorem to [Taydo this, fixL > 0
big enough so that

K C Cube &' [-L, L]

distrs (0 Cube, ) > 14 v* [T — to
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and smoothly extentl andg from (—oo, T') x Cube x R” to spatially periodic matrix
and vector valued functions of-o0o,7) x R? x RY. With these preliminaries, the
hypotheses of Proposition 2.1 on page 370, Propositionri fgiage 365 and Corollary
1.6 on page 366 in [Tay] are all satisfied, and there is @ (to, 7] and a spatially
periodic smooth solutio® : [tg, 7) x R? — R with trivial initial data att = t, to
the symmetric hyperbolic system corresponding to the albatperiodic extension of
N andg, such that, ifr # T, then the vector

(©,0,0) € R ¢ (R*®R")

is unbounded offtg, 7) x R3. (There is one caveat: [Tay], for convenience, considers
systems defined for all time. By direct inspection, his argatrapplies to any open
subinterval ofR.)

K K+ (2L,0,0)

dCube + (2L7Z)3

Let J = K + (2LZ)3. By construction, the spatially periodic system introdiice
in the last paragraph reducesM© = H# (t)O, on(—oo,T) x (R?\ J) x R”, and
admits the trivial solution. Intuitively, “signals can wel at most a distance* |1 — ¢!,
which is less than the distance betwedérand 9 Cube. This intuition is formalized
by applying Proposition 7.2 to the open gé§, 7 — ¢) x (R® \ J) for arbitrarily
smalle > 0. Consequently® vanishes at every poir(t,q) € [ty,7) x R? with
distgs (J, @) > & + v*|T — to|, becaused|,—;, = 0. It follows from our choice
of L that the periodic solutio® vanishes in a neighborhood @f, 7) x (0 Cube). For
this reason, and because(®B4), the modified field

0, if g € (R?\ Cube)

RP 7.11
O(q), if q € Cube < (7.11)

[tO,T)xR3 3 q — {

which we continue to calb, is a smooth solution to the non-periodic systBi® = ¢

with trivial initial data. Moreover, ifr # T, then the vecto(©, 9, ©) is unbounded.
Suppose # T'. We show thate, 9, ©) is bounded oV = [to, 7) x (R*\ Q), and

consequently, unbounded @@, 7) x Q. For any timet, € (¢o, 7), decompose

[to,7) x R® =V, UV, UVs
V1 = [to, 7) x (R*\ Cube)
Vs = [to, 2] x Cube
Vs = (t2,7) x Cube

By (7.11), the vecto(©, 9, ©) is bounded orV NV, and, by compactness, also on
VNV,
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Let
d = distgs(IC, R*\ Q) > 0.

To verify that(©, 9, ©) is bounded oV NVs, we chooseé; € (tg, 7) with v* |7 —t5] <
d/2. Intuitively, this choice means that “signals can travahaist a distancé/2 in the
time interval (to, 7)", which is less than the distance betweérandR? \ Q. There
exists (see, for instance, [Tay2]) a unique smooth solufign [t2,T) x R3 — R
to the linear systen1©, = M (t)©, with initial condition (& — ©3)|;=;, = 0. In
particular,(©2, 0, ©2) is bounded on the compact 3&t) V5. By (EB4), © is a solution
to the same system dy, 7) x (R \ K). As in the last paragraph, Proposition 7.2
implies that® = ©, on[t2,7) x (R*\ Q) D VN Vs. Consequently®, 9, O) is
bounded oV N V3, and we are done.

The final step is to remove the transition functibnLet

T-— {t e [to,7) ‘ O([to, ] x Q) C By(0) C RP}.

We show thatZ = [to,t1), wheret; € (to, 7). First, tp € Z since the initial data
vanishes. Second, if € Z, then[ty,t'] € Z. Lett; = supZ. If t; = 7, thent; # Z.
If ¢, < 7, assume by contradiction € Z. Then, the compact séd([to, 1] x Q)
is contained in a balB,(0) ¢ R” of radiusr < 1. However,d;0 is bounded on
[to, t1] xIR?, sincesuppgs (9:0)(t, - ) C Cubeis compact for alt € [to, ¢1]. Therefore,
t1 + € € 7 for all sufficiently smalle > 0.

The smooth solution of (7.9) that we are looking foG$;, ;,)xrs. Indeed, it has
trivial initial data, support contained ifto,¢;) x Cube and satisfies (7.10). I €
[to,t1) x Q, then|©(q)| < 1 andy(|©(q)|) = 1, by the definition oft;. In this case,
the systenN© = g reduces to (7.9). Ofto, t1) x (R? \ K), (EB4) directly implies that
the system also reduces to (7.9).

If t; # T, there are two alternatives; < 7 < T andt; = 7 < T. For the first, we
use the continuity o® on [to, t1] x Q to conclude that

O([to,t1) x Q) = O([to,t1] x Q) ¢ Bi1(0)

sincet; ¢ Z. That is, we haveBreak);. For the secondr # T, and(©, 9, 0) is
unbounded offtg, t1) x Q. Since® is bounded(Break ), applies. The proof of Part 1 is
complete. O

Proof (of Part 2).Let Half = {q € R®|¢® < 1}. The assumptioi(q,0) = 0, when
7 < % implies that®; = 0 is a solution tdN© = g on (t¢, t1) x Half. Also,0, = ©
is a smooth solution, an@®s — O1)|(¢,}xHar = 0. The assumptio®M? > 0 on A

impliesI¥I® > 0 and consequentliN® > 0 onl/ x R¥. At last, Part 2 of Proposition
7.2, applied to the open séty, t1 — €) x Half with arbitrarily smalle > 0, forces
O, — ©1 = O tovanish ortg, t1) x Half. O

7.4. Energy Estimate.
Assumptions for the energy estimate: All the quantitieelae real.

(E0) U = T x O(b) whereO(b) = R? x (0,b) C R3, b € [1,2] andZ = (to,t"),
—o00 < tp < t* < —1.
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(E1) M*(q) is a symmetrid® x P matrix on/. Particularly, for ally € U, % <M°<2
andM?’gz 0. We assume the integét is less than some big absolute constant, say
P <107

(E2) H(gq)is aP x P matrix onl{.

(E3) Src(q) is anR” valued function oi/.

(E4) O(q) is anR” valued function ord/, which is a solution to the linear, inhomoge-
neous, symmetric hyperbolic system

M(q)© = H(q)© + Src(q), M = M52 (7.12)

(E5) Fix a non-negative integgk. Then,M*, O (resp.H, Src) areCE+! (resp.C'T)
functions oni/, all of whose derivatives of ordex R + 1 (resp.< R) extend
continuously td/.

(E6) supp O(t, - ) andsupp Src(t, - ) are contained in a ball iR* with radius indepen-
dent of¢. Moreover,© andSrc vanish identically when® < 3.

LetRY = RPr @ R™> ¢ RPs. We decompose

O = (04, O3, O3), Src = (Srcy, Srcy, Srcs).
EachP x P matrix is decomposed into nine blocks of siPg x P,, wherem,n =
1,2, 3. Especially,

M#H = (M;le7L)m,n=1,2,37 H = (Hmn)m,n=1,2,3- (713)
(E7) The matrixM* is block-diagonalM* = diag (M{', M4, ML), and(M,);; =

1(9) 6ij (3% + 3%). 4 = 1,..., P, for some function..

(E8) NI* are constant symmetrie x P matrices, withk < WI° <2, ¥MI' = 0, ¥I* = 0

andlVI® > 0.
(E9) H(t)is aP x P matrix depending only onwith R”* @ R"> @ R block-form

0 0 0
H = (ﬂmn),m n=1,2,3 = Hl 0 0
S O [t~ 2 [t|~ A5

where#, H-, H5 are constant matricegls is symmetric andq; < 0.

Definition 7.1. For every openY’ C R3, the energy of contained inX at timet is

k def 3419 2
PnO® Y [ daorsia)

<k (7.14)
aGNé
and the supremum norm
; def o
suply {f}(t) = sup sup [0 f(t,q)| (7.15)
|a|<k qeX
aeNé

for any scalar, vector or matrix valued*-function f. As usual, we denotg® =
[T _0(9,)* whered,, = 527, foranya = (a,,),=0,1,2,3 € N§. The pointwise norm
| - | is always the Euclidean norm (for matriced|? = tr(AT A)).
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(E10) There are constants > 0 andJ > 0 such that for alt € 7:
[t[*7*2 BS ) {Sre} (1)
2d Eg(b){srCQ}(t) < ¢,
[t[>72 B5 ) {Sres ()
(E11a) AssumeRR > 4. There is a constarb > 0 such that for alk € Z:

[t ES ) {M* — NI} (t)
t|* ES iy { Hin — Hin }(t) o
B8y {Han = Han}(t) [~
[t|* ES iy { Han — Hsn }(t)

(E11b) AssumeR > 0. There is a constart > 0 such that for alt € Z:

max{1,R
] supyp P (M — M (t)

[t Suntiy, {Hin — Hun b (1)
SUPEQR()Z;){HZn - ﬂQn}(t)

R
] Supy(y) { Han — Hsn } (1)

Proposition 7.4 (Energy Estimate).Suppose the hypothesgs) through (10) hold,
and, also, eitherEe11a) or (E11b) holds. LetJ, > 0 and assume/ > .J,, See(E10).
Then, there are constanis(X) € (0,1), ca(X) > 0 depending only onX =
(R, Jo, | 1|, |H2|, |H3]), such thaics < c3(X) and|t*|~! < c3(X) imply that

lto]” \/ E§ 1) {€}(to) + €1

|’

BB, {6}(1) < ea(X) (7.16)

for all 7 € Z (see o) for the definition ofZ).

Proof. In the proof, we denot&” = Eg(b) andsup(®®) = SUpE_%).

Preliminaries 1:For a functionf with values inR”?, i = 1,2,3, we define the
energy naturally associated to the linear symmetric hygarbystem (7.12)

BUNO = [ @a(M)ea) o BRI = 3 EHOSHO
o®) lal<R
aeNé
(7.17)
See, (7.13). This energy is comparable(#w, to the one defined in (7.14). Namely,

ERfyt) <2BH{fH(1), B HE) <2ER{f}1). (7.18)

If R > 2 andf is a vector or matrix valued@” function, Lemma 7.2 implies:

sup "2 {F1(t) Sr o\ ER{FI(). (7.19)
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If « € N3, |a| < RandR > 4 (to be used in the cage11a) implies

E*{f1f2}(t) Sr ER{f1}(t) E"{f2}(t) (7.20)
E°{ (0% hlf2 }(t) Sk Y ERHO A1} (8) ERTH{ 23 (1) (7.21)
|B]=1

whereask > 0 (to be used in the cage11b)) implies

ER{fif23(t) Sr (sup P {f11(1)* ER{f2)(1) (7.22)
E{0% filf2 }(t) Sk Z (SUP(Rfl){aﬁfﬂ(t))g ERH 2} (t) (7.23)
[B]=1

Inequalities (7.22) and (7.23) are direct consequencelseoptoduct rule. The in-
equalities (7.20) and (7.21), require, in additidh,> 4 and the Sobolev inequality
(7.19). In fact, by the product rule,

EMffb0) Sk ) / a0 fu(t, )2 07 falt, )
lal+]BI<R

For each pair of multiindice§y, 3) with |a| + |3| < R, at least one ofa| or ] is less
than or equal ta? — 2, say«. Then, by the Sobolev inequality,

sup_ 0%t @)? Sk ER{A}0)
q

Inequality (7.20) follows at once. This argument works foe> 3. An entirely similar
argument gives (7.21), but witk > 4.

Preliminaries 2:In this subsection;, € Z anda € N§, |a| < R, are arbitrary. We
applyo“ to (7.12) and obtain (all the derivatives make sense clalbg)c

M(9°6) = H 9°6 + (53, S, S§) + 9°Src (7.24)
(5, S, 55) E'o*((H - H)©) + [0, H]O + [M¥ — MI*,0°9,6
If R >4, (7.20), (7.21) ange9) imply that

3 2 2 3
EO{S?} <r {ZER{HU__ﬁij}+ﬁqzl|+w+;ER{M;t_Mlt}} ER{@}.

Jj=1

If R >0, (7.22), (7.23) ange9) imply that

3 2 2
EO{S%} <p {Z Sup( ){H —ﬁw}) |H2| |:“4|H3‘
J=1

3
+ Z (Sup(R){M“ — M“})Q} ER{o}.

n=0
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If (E11a)0r (E11b), it follows from the inequalities just above that
[t[> E°{STH(1)
E%{S5}(t) ¢ Sr <2 ER{O}(t) (7.25)
[t]> E°{S5}(t)
wherec, = max {ca, |t*|71(|Ha|* + |H3]*)"/?}.

Estimates:We derive the energy inequalities 7.33, stated below.iFer 1,2, 3,
define “energy currents” associateddo= (01, O, O3) (SEE(E4))

Jt[eil(a) = (67 M} 6:)(q). (7.26)
(Warning: we never sum over repeated “lower” indices.) Thpartant current identity
9,4'105] = O] (9,M!") ©; +20] (M!' 9,0;), (7.27)
follows from (M}*)” = M}, seeE1). Forr € Z, letr_ = max{to, 7 — 2}. Let
Di(1) =Ds(r) = {(t7q) clU | te (7',,7')} (7.28)
Dyo(r)=Di(r)N{q|¢®—¢" <b—7}. (7.29)
For the casei = 2, see the nearby figure, .
wherety < 7 < to+b < 7 < t*. Energy
estimates are obtained by integrating (7.27) over 1
D;(1) C U =T x O and applying the Euclidean Da(r1)

divergence theorem. The divergence theorem gen-
erates integrals over the bound&®;(7), which
we now discuss. Recalts). The¢” = 7 bound-

ary contributese?{©;}(r). There is no contri- =0

bution from theq¢® = 0, by (E6). Fori = 1,3,

theq” = 7_ boundary contributes E?{©,}(7_), it o
and the contribution from?* = b is non-negative, o o,
by (e1). If i = 2, there is always a boundary con-

tribution fromg® — ¢° = b — 7 and it vanishes by

(E7). If i = 2 andT < ty + b, there is an addi- T2

tional boundary contribution at’ = ¢, which is Da(72)

> ~E{62}(t0). to

The discussion of the last paragraph literally transpases ®; and;!‘[©;] to 96,
andj![0%©;], for |a| < R. The currentj![0°©;] is C*! and extends, with its deriva-
tives, continuously t&/. The preceding analysis of the boundary terms gives thergene
inequalities

EN0°0;}() — ki(1) B} {00 }(7-) S/ d'q 0,5f'10°6i)(q).  (7.30)

Di(T)

fori = 1,2, 3. Here, by definitionk; (7) = ks(7) = 1for all 7, whereas:(7) vanishes
when7_ > ¢, and is equal td when7_ = t,. Summing ovefa| < R,

Ef{0:}(r) — ki(7) Bf{Oi}(r-) S/ dlq Y 9u0°6i).  (7.31)

Di(7) lal<R
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The currentidentity (7.27), with*©; in the role of©;,, and (7.24) imply

Oji [0°0i](q) (7.32)

= 2<aa@i>T{ (31 (0°0,)) + 1@ M1)0%00) + 0°Srey) + S?}-

j=1

Fori = 1,2, we directly estimate the right hand side of (7.31), by uSichwarz’s
inequality for the spatial part of the integral, a@d), (E10), (7.25) and (7.18). Far= 3,
we first exploit/f3 < 0 (see(E9)) to drop the tern2(0°03)* ﬂgg(a"‘@g) and then go
on as before. We also use the estim@gM*| = [9,(M* — MI*)| <g co || <
c. |t|~! that holds when eithe€11a) or (E11b) is assumed (in the first case, we use
(7.19)). Abbreviatingg; = EZ{©;} andE = E; + E, + E3, we have for allr € Z:

\t| VE (C*\/—+ |t|J)
Eo(7) — Es(to) gx/ dt /Ba(t) ( 1) + c. VE(1) %) (7.33)

SANNG) ( 2(8) + e VE() + I:T)

E (1) —Ei(7-) Sx

E;3(7) — E3(7-) <x B

whereX is defined as in the proposition.
For eachd = (A4, Az, A3) € (0,00)3, define

J(A):{tef

sup |72 Ei(r) < A7, i=1,2,3}
TE[to,t]

AssumeA satisfies (recall thal > J, > 0, by assumption)

A > ‘tO‘J\/El(tQ) A > %Cl A > %CHA‘
As > 2|t0|J\/ Eg(to) Ay > 8Ccy As > 80(141 + C*|A‘) (7.34)
Az > ‘tQ‘J\/Eg(to) Az > %Cl Az > (AQ + C*‘AD

where|A|? = A2 + A% + A3 and wherel' = C(X) > 0 is the maximum of the three
constants of proportionality in the inequalities (7.38)sla direct consequence of the
inequalities (7.33), (7.34) and the continuity®f> 7 — E;(7) thatJ(A) is an open
and closed sub-interval @which containg,. Therefore,7(A) = Z. To see thay7 (A)
is open inZ, first observe that for every € 7(A), the inequalities (7.33), (7.34) imply
the strict inequalitie®; (1) < (A;|7|~/)?, and then use continuity.

For each\ > 0, set

A(A):)\( 14+8C,1+ < (1+80))

The three rightmost inequalities in (7.34) are homogenédegree 1) in4, and hold
for A(\), A > 0, if and only if they hold forA(1), which is the case it. > 0 is
sufficiently small depending only oX, because it is true fot, = 0. The definition
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of c, right after (7.25) implie. < (1 + |H2|? + |H3]*)*/? c3(X). Consequently, the
condition onc,. holds ifc3(X) is suitably small. If

A > Xo Z2lto]”/Elto) + max{8, J; '} Cc; > 0
then the remaining inequalities in (7.34) hold f&f\), that is 7 (A()\)) = Z. By the
definition of 7(A), we haveJ(A(\o)) = Z. By (7.18), inequality (7.16) follows if
c4(X) is sufficiently big. O

Remark 7.10nce the system of inequalities (7.33) has been establiiedest of the
argument is abstract, in the sense that it holds for any tlueetionsE;, i = 1,2, 3,
satisfying (7.33).

7.5. Refined energy estimaté/e proved a finite speed of propagation theorem for for-
mal power series vacuum field# |, see Proposition 6.1. The refined energy estimate
obtained in this subsection plays a similar role for a ctadsiacuum field?.

To make the last statement more precise, recall that thggestimate for the symmet-
ric hyperbolic system (7.12) was obtained by integratirgdivergence current identity
(7.27) over appropriate open subsétg R*. We now construct more refined seéts
which allow us to estimate the energy “localized in igé, £2) plane”. We will be
guided by the basic requirement that the boundary integrdte divergence theorem
have definite signs. That is, the boundargahust be non-timelike (with respect to the
symmetric hyperbolic system).

Convention 7.2Until further notice, we use the coordinates

r = (xlv LEQ, I3, I4) = (‘517 527 Qv U).
Recall the matrix differential operatoss(®) and A (¢) associated t@ = (e, ~, w).
See, (2.5), (2.8). Supposés a one-form and suppose (see, (2.2))

I
6.0 >0,  O.N0 S0, 6, (% lg) >0 (7.35)

The last inequality is in the sense of Hermitian matricegmh
0,A"(®@) >0,  6,A"®)>0. (7.36)

For eachry = (&, ug, uo) € R?x (0, 00) x (—o0, 0) and choice of constants, k1,0 >
0, whered < u, andd < |ug| !, set

c= U (Drww@) = {wu)})
(u,u) € B

F= U (001w x {@ww)})

(u,u) € B
where
B = (O,QO—D) X (—w,—m) CRQ,
r(u,u) = ko + k1 lug — u| - Huo|fl — |u\*1|. (7.37)
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More geometricallyC is a disk bundle over the ba#e andF the corresponding circle
bundle. The sef is an open subset @*. Note thaty : B — (ko, ko + k1|ug|/|uol), @
bounded set. The séthas piecewise smooth boundary. We concentrate on the smooth
pieceF C OC here. Lety be a 1-form along- whose kernel coincides with the tangent
space taF and for whichd(X') > 0 if X is a vector pointing out of. We choose

2 . .
50 g 1 lup — uf o8-8
0= &de" +k |———|dutk du, &= . (7.38)
E Hllul uol b fup? € — &l
Proposition 7.5.Letz € F. If e3(x) > 0 and the inequality
u
o=z max{'Te—lg [erP + ezl ul veal? + |85|2} (7.39)

holds atx, then(7.36)holds atz with 6 given by(7.38)

Proof. If ,L# > 0 and@, N* > 0 anddet 6, (% 7)" > 0, then (7.35) and therefore
(7.36) hold. The conditioas > 0 impliesé,L* > 0. By (7.39),

k10

@e4+é§65+/€1 Ju| =2 Jug — u| > W >0

which impliesf, N* > 0. Finally,e3 > 0 and (7.39) imply

_ _ _ 2
63k1‘|u\ L g 1‘ (Ele4+?e5+k1 | 2\g0—@\)—\§1e1+§2e2| >0

and thereforelet 0, (¥ )" > 0. O

Remark 7.2Proposition 7.5 will be applied as follows. Fix and consider symmetric

hyperbolic systems with differential operators given Ay®) or f&(@). Then, if the
assumptions of Proposition 7.5 are satisfied for all paints 7/ C F, the boundary
integralff, (4,v), wherej is the energy current vector field, is non-negative.

Convention 7.30bserve that the definitions 6fandF depend only on the parameters
ko, k1,9, &, ug, uo. For the rest of this paper, the set€ andF are determined by the
specific choice of parameters

0=10"%  ko=3% ki=%0', w=-3"" wu=>b+0 (7.40)

For eachb € [1,2] and&, € R2, we denote the corresponding setsiyy, b) and
F(&,b). The baseB is given byB = (0,b) x (—oc, —0~1) and the radius function

r(u,u) takes valuesiti:, 1) on 5.

Recall the far field ansatz (see, Sectio®5y M, o +u~ ¥, where¥ = (f,w, z).
The ansatz depends on the scaling parametersi2.

Convention 7.4For the rest of this paper, the parameters, 2l € R are restricted by

0< A < Ja|] < 1073 (7.41)
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Proposition 7.6.Let 0 be fixed as ir{7.40) Let&, € R? andb € [1,2]. Assumer, A €
R satisfy(7.41) If, in addition,
W(z)] <5

atr = (§,u,u) € F(&,b) and|[¢| < 4[], then the assumptions of Proposition 7.5
hold atz.

Proof. The first five components aF satisfy|f;| < || < 5. Consequently, the first
five components of satisfy

lul [es] < Jul|pg weam| + ul |22 fi| < leaa] + \—i\|fz‘| <Hla|+50 i=1,2
63=1+u—12f321—ﬁ|f3|21—5022(%)2

lul® lei| = | fil < oy < 50 i=4,5

In the first line, we us¢| < 4|g|. The proposition follows by direct inspectionO
Convention 7.5For the rest of this subsection, we use coordinates
a=(" ¢, @) =(t=u+u, & & v
Assumptions for the refined energy estimats.defined in (7.40).
(RE0) T = (to,t*) Where—oo < tq < t* < -7, & eR2, be(l,2),

u=J (1t x oo,b,1)) R

tel

0b,t) = | (D (o) x {u}),
u€(0,b)
r(tu) =1+ 1510+ 0—ul- |20 - E—jltl |.

(RE1) - (RE9) are formulated identically t(e1) - (E9).
(RE10), (RE11la), (RE11b) are formulated identically t¢e10), (E11a), (E11b) with the un-

derstanding thatif , andsup),(), are replaced byE% ., andsups(. ), see
(7.14) and (7.15).
(RE12) Let the 1-formd be as in (7.38). Therd,, M* > 0 on
(0U) N (I x R? x (0,b))

Remark 7.31/ is a bundle ovef with fiber O(&,b,t) C R3 att € Z. The fiber is an
open disk bundle over the-interval (0, b). An equivalent description of the fiber is

O6o,b,t) = {a = (€ € w) € B | (€', €% u 1 —w) €Clo.D) |
for eacht € 7. Itis important that
(OU)N (I xR? x (0,b)) C F(&,b).

For eacht € Z, the map/(t, - ) : (0,b) — (1, 1) is decreasing.
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Proposition 7.7 (Refined Energy Estimate)Suppose that the refined hypotheses)
through(Re10) and (Re12) hold, and, also, eitheRe11a) or (RE11b) holds. LetJy, > 0
and assumég > Jy, see(RE10). Then, there are constants(X) € (0,1), c4(X) >0
depending only oX = (R, Jo, |H1], | A2, |Hs|), such thatc, < c3(X) and|t*|~* <
c3(X) imply that

[tol” \/ B8 ¢ .10y 1O} (t0) + €1
E§ e 510}(T) < ca(X) \/ o . (7.42)

for all 7 € 7 (seeEo0) for the definition off).

Remark 7.4We use the same names for the constants in the assumptiosiserdents
of both energy estimates, Propositions 7.4 and 7.7. Thisdeas for convenience, and
does not imply that there is any relationship between them.

Proof. This proof completely mimics the proof of Proposition 7.4wa few modifi-
cations. First of all, our previous conventions tia = Ef,) andsup'™ = SUpg?b)

are replaced by the conventios¥' = Ef . , , andsup®) = Supgglzom). Also, the
definitions (7.17) are replaced by

EXNf () = d3q (fTM2f)(¢, , ER E2{9*
(1}) /O oy Fa Um0 G0 ER a0
ozENé

The inequalities (7.18), (7.19), (7.20), (7.21), (7.22)28) still hold with these modifi-
cations. The only one that requires discussion is the Seloéguality (7.19). For this
purpose, letyL = D%(O) x (0,b) and¢ : cyL — O(&o, b, t) be the diffeomorphism

P& u) = (& + 47 (t,u) &, u). Then,
SUPEORéo%t {/}H(t) Sk SUpCYL 2){f o ¢}(t)
EE S oo} t) Sr\JES e, 50U HD). (7.43)

The second inequality follows from Lemma 7.2. The first aniddtinequalities are
direct consequences of the chain rule, because all dexgadif order up td? — 1 of the
Jacobians of and¢—! have finite sup-norms on their domains of definition depemdin
onlyon R, especially, independent ¢f, b andt.

Observe thatin (7.28), (7.29), the #£is now given as ifRE0). Estimate (7.30) still
holds. By construction); () is a disk bundle over th@, u)-rectangle(r, 7—) x (0, b).
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The boundary)D; () has five components, four of them arising as disk bundles over
the boundary of theectangle, the fifth is a circle bundle over the interior. The treatment
of the first four components is unchanged. The fifth is acaeifior by (RE12). The
domainsDs(7) and D3 (7) are handled in the same way.

The rest of the proof is completely unchangedl

8. Classical Vacuum Fields

In Section 6 we have constructed formal power series vacleldsfi? | by solving an
initial value problem for (5.4a). The goal of this sectiotagprove the existence of an
actual, classical, vacuum field, for which[¥ ] is rigorously an asymptotic expansion.
This is accomplished in Theorem 8.1.

Convention 8.1We adopt the conventions of Section 7. We use the coordinates
(t,q) (see, Convention 7.1). Keep in mind that= u(q) = ¢ — ¢*. To conveniently
translate between thecoordinate system (Sections 2 through 6) andgtibeordinate
system (Sections 7 and 8), we abuse notation and \ititfeinstead off (z(q)), for any

function f. It is also implicit that partial derivatives are adaptedtte new coordinate

system. For example, the matrix differential operaddt(z(q), 7) 52 is abbreviated
asAk(q, V) -

8.1. Preparatory Definitions and Estimate§he goal of this subsection is to make the
necessary definitions and estimates so that the Existersa@own Theorem and the
Refined Energy Estimate can be applied to (5.4a) and (5.4b).

Convention 8.2(5.49) and (5.4b) are equivalentreal symmetric hyperbolic systems
for R = R3! andR = R3? valued fields, respectively. See, Remarks 2.8 and 5.1.
This equivalence will be implicit each time the Existenae@&kdown theorem and the
Refined Energy Estimate are applied to (5.4a) and (5.4b), eqtiivalent systems.

Convention 8.3In this section,C™ is a vector space ov& with dimension2m. A
linear map froniC™ to C" is, by convention, linear oveéR. It can be represented either
as a2n x 2m real matrix, or as an x m complex matrix which may have the complex
conjugation operatof’ as matrix elements. We adopt similar conventions for the rea

subspace® C C* & C® & C® andR C C° ¢ C° & C3.

Convention 8.4The notationF'(q, f,d,f,...) displays the explicit pointwise depen-
dence off’ ong, f(q), 9,f(q), - -.

To put (5.4a) in the form required by Propositions 7.3 andwWe’use

(S1) a,2l € R satisfy Convention 7.4.

(s2) (W] = ZZO:O(%)k ¥ (k) is the formal power series solution in Proposition 6.1
corresponding t®ATA (¢, u) = DATA(q) which vanishes fog® < i. Therefore,

[¥] vanishes whe® < % by Proposition 6.1. Fix an integdk > 0, and set

Ui = Yhlg (3w (k).
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(S3) The field? is expressed in terms ¢k, o, £) by
U = (fvaz) = Uxg + (h707‘€)' (81)
Let = = (=1, 55, =3) be the field given by

(Z1, 52, F3)

= <£17€27€3a£47£5) 2 (h’la h2a h47 h5701a 02, 03704708) 3] (h’370-570'670—7)
There is a permutation matrixso that
(h,O,g) = 71'(51,52,53) (82)

Thefield= = (5, 53, Z3) takes values in~'R C C*@C°®C*. The permutation

is required for Proposition 7.7, sess).
(s4) System (5.4a) is abbreviated Aq, V) ¥ = f(q,¥) (see, Convention 8.1). Some
of its properties are discussed in Remark 5.1. System (&4ajuivalent to

(8.3a)

B(¢,5)5 = Q(¢,5) 5 +Src(q) , B=B':
(8.3b)

B(q,2)=7'A(q,¥x +73) 7

1

Q((LE)H:W*I% 0/ ds'(—A(q,st)J/K—l—f(q,WK—i—s'WE—I—SWH))
5=0 Jo

(8.3¢)

(herell is a dummy variable for a field lik&’) with the source term
Src(q) = 7' (£(q, Uk) — A(q, Uk )Pk).

The transformation) (¢, =) acting onr~ 'R is linear oveiR. Note that the bracketed
expression in (8.3c¢) is a quadratic polynomia$iands’. The operatoﬁis |s=O fol ds’
selects certain combinations of its coefficients. . .

(s5) The matrice8B* and( are affine linear (oveR) in =. Let B#(¢) andQ(q) be the
R linear maps given by

Br(q)T = L| _ Bi(gsT) , Q@) = L[ _ Qg s)

We haveB*(q, =) = B¥(q,0) + é“(q) =. Similarly for Q).
(s6) The three by thre€> @ C° @ C* block-decomposition aB is

B = diag(Bl,Bg,B3)7 B2 = ]].9 L, B3 = ]].4 N,

and B, is the5 x 5 Hermitian matrix operator on the left hand side of (5.7¢)eTh

block-decomposition of) is denoted? = (Qn)m,n=1,2,3-
(S7) @1, P2, Ps are constar x 5,4 x 9, 4 x 4 matrices. Their nonzero entries are (

is the complex conjugation operator):

(@1)s1 =—1 (@1)72 = —1 (@1)o3 =1
(@2)19=-1-C (@2)27 =C (@2)2s = —1
(@3)11 = —2 (@3)22 = —1
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Observe that)s is symmetric and?s < 0. Let @(t) = (@mn)m,n=1,2,3 be the
C® & C? & C* block matrix

0 0 0
@)= (@ 0 0
0 [t17'@2 [t~ @3

(s8) B* are the constant, diagondl? @ C° @ C* block matrices

B =diag (U,U,U,U,V) © 1oV & 1L,LU , B=B'z:

whereU = 5% andV = % + 525. Note thaBB” = 1,5, B' = B* =0, B*> > 0.

(s9) Let s(x) be the smooth function that vanishes wher< 0 and is equal te—1/*
whenz > 0. Lety) = 9(q) : R® — [0, 1] be the smooth cutoff function

b= = 2e) (3 ~Ia® ~ 1)
S 126lme) + 5(1 %€l — ) G~ 17 — 1) +5( ~ 11~ 3)

where¢ = (¢, &%) = (¢', ¢%). Let

K=Dagx (11 € Q=Dyg(0)x (0.2)
By constructionsuppgs ¢» C K andy is equal tol on D4 ((0) x (3,2). Foreach
integerR? > 0, the bound|v||crgs) Sr 1 is independent of and®(, seg(s1).

(s10) Define
M¥(q, =) =¢yB"(¢,Z) + (1 —¢) B
h(q, =) = H(q, Z)= + 1) Src(q)

(1)

wherey = 1¥(q) is given in(s9).
(s11) If =1 and=® are both smooth solutions B = = Q = + Src, see(s4), then

their differencel’ = = — =) js a solution to

B(g,ZM)Y = GY
=@

a4 SZO(Q@,E(”)(sﬂ)—Bﬂ(msﬂ) S + Qq, sIT) 5<2>) (8.4)

whereG(q, =1, 2@ 9,=2)) acts onr~ 'R linearly overR. The bracketed ex-
pression in (8.4) is affine linear i1 The operatorf—s ’5:0 selects the coefficient 6f

Definition 8.1. Each entry to the left of the vertical bar is a generic symboldf poly-
nomial (with complex coefficients) in the (components gfdhantities to the right and
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their complex conjugates.
Jut
J |1 (Thatis, a generic symbol for a complex number)
H | linear overR in ¥(0)
‘H | linear overRin 2A, e, A
G| u™t, A, S, e, A\, U(k)p=o..k+1, and their first derivatives

Grlu™t, A u, Sk, e, X\, ¥(k)r—o..x+1, and their first derivatives.
It has no constant term as a polynomialiiik) and its derivatives.

There is no subscripk” on the generic symbol§, J, H, H because they represent
polynomials that areequired by definition, to be independent &f. Precisely, neither
their coefficients nor their degrees dependinBy contrast, the presence of the sub-
script K on the generic symbolx , G i indicates that they represent polynomials that
are allowed, by definition, to depend @hin an arbitrary manner. Precisely, their co-
efficients and degrees may be function&of

Above,Sy is defined bys = — Y5 (L)F 2Dyt 4 LG where as before

2 =+ + >, see(4.4)and(6.5)

Proposition 8.1.

B¥(q,0) = B* + u M+ w0k (8.5a)
Qin(q,0) = @inle) + v 'H+u'H + u Gk (8.5b)
Q2,(¢,0) = Qon(q) + H+ H + u Gk (8.5¢)
Q3n(0,0) = @anle) + (t"+u™HT + u Gk (8.5d)
and
Srei(g) = u TG (8.6a)
Srea(q) = u= KT Gy (8.6b)
Sres(q) = uEHIG L (8.6¢)

eresrc = Irc;, Srce, Srcs) Is the D (&) ecomposmon an
(hereSrc = (Srcy, Src,, Sres) is theCS & C? @ C d ition) and

B'(q) = u?J (8.7a)
Quulg) = u™'T (8.7b)
Qula) = T (8.7¢)
Qunlg) = u™27 (8.7d)

Remark 8.1This proposition is a detailed examination of latgebehavior of the con-
stituents of the symmetric hyperbolic system (8.3a). Tovegrits significance, it is
helpful to suppress all but thggﬁ derivatives in (8.3a) and analyze the caricature scalar

ordinary differential equation

b(u,f) £f = a(u, f) f+s(u) (8.8)
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In this remarku plays the role of,’. Supposef(u) is a solution to this equation on
(—o0,T), T < 0, with asymptotic datéim,_,_ f(u) = 0 andb(u, f(u)) > 0. How
can we estimat¢ (u)? For allu; < T,

flu) = /oc du e (/ as EEZZ %%) b(zi%)) (6:9)

If there were constantd > 0 andb > ¢ > 0 with

bu, f(u)) b a(u, f(u) <clul™"  s(u)] < Afu|™ (8.10)

forall u € (—o0, T), then (8.9) would imply

swp | flu)] < 2 (8.11)

u€(—o0,T) b—c m

The apparent difficulty is that the functions in (8.10) deghen the solutiory (). How-
ever, if it can be shown that strictly weakerbound than (8.11), say (8.11) with
replaced by2 A, implies (8.10), then an open-closed argument justifies1(8.More
precisely, one would first cutoff-oco by a finite value, argue by continuity, and then
remove the cutoff.

To apply this reasoning, assume, in analogy with (8.3a),lthg are affine linear iry:

blu, /) = b(u,0) + b(u) f B(u) = (£)(u,0)
a(u, f) = a(u,0) +a(w) f a(u) = (#7a)(u,0)

Also, in analogy with (8.5a), (8.5b), (8.7a), (8.7b), assuhat there is a constant> 0,
so that

b(u,0) = B| <elu|™"  |a(w,0)] <eul"" [bu)| < [ul"|q(u)| < |u|™*
For convenience, suppoBe= 1. The last inequality in (8.10) is an analog of (8.6a). If
e, A, |T|7' are sufficiently small, (8.12)

then (8.11), withA replaced by A, implies (8.10), withh = % andc = i. It follows

from an open-closed argument that (8.11) is a genuine etifoaf (u).

To interpret (8.12) in the light of our analogy, observe thatgeneric symbol&, H in

the second column in (8.5a), (8.5b) can be made small by rgakif) (equivalently,
DATA) and the angular scaling parametesmall.

We conclude the present discussion with the following réssar

e The analog of the step from (8.10) to (8.11) for the systei®&(8s provided by the
energy estimate.

e Neglecting® for the moment, (8.5d), (8.6¢), (8.7d) are similar to (8,58)6a),
(8.7b), sincelt|~! + vt is O(u—?) asu — —oo uniformly for u in a compact
set. The interpretation of (8.5c), (8.6b), (8.7c) is diéet, because (8.8) is not the
appropriate toy model problem for the equation satisfiectbylin fact, =, satisfies
an ordinary differential equation along tkkortintegral curves of., so that less
decay is required.
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e The inequality forq in (8.10) remains true if we add any non-positive constant to
q. Analogously, the matrix)(t), see(s7), appearing in (8.5c), (8.5d), has only non-
positive eigenvalues. This is implicitly exploited in theopf of the energy estimate.

Remark 8.2In (8.6a) all but the last component8fc, are actuallyu~ (K +3) G . Itis
to accommodate the last component that we truncated theafgrower serie$? | at
K + 1 rather thank, see(s2).

Proof (of Proposition 8.1)The proof is by direct verification, using4), (S6), (S7),
Proposition 5.2, Remark 5.2 and Definition 5.1. See the Supeht to Proposition
8.1 (Appendix G). To give the flavor, we schematize the calbohs for a few repre-
sentative cases. Lét be the complex conjugation operator. Now

matrix |componerit

B¥(¢,0) — BT (4,5) —le+ %QK
Q22(q,0) — @22(q)| (6,5) |-wi(0)C

Q33(q,0) — @33(q)| (1,1) (2+ %

in agreement with (8.5a), (8.5c) and (8.5d).

To verify (8.6a), note thaBrc;, = Gx has no constant term as a polynomial in
¥ (k) and its first derivatives. This follows directly from the defion of Src and the
properties off given in(s4). If S is replaced byS, see definition (8.1), the8rc, =
Gr. There is an overalk—(K+2) | by construction of the formal power series solution
[¥]. This implies (8.6a). O

—wy
gK)

2
u

To put (5.4b) in the form required by Proposition 7.7, we use
(S1) Let 5f = (=%, 5%y, 5%3) be the field given by
(E%, 2%, 2%3)
= (yla Y2, yS) 5> (517 52, 54, 557p17p27p37p47p77p8) 5% (537p5:p67p9)
where¥® = (s, p,y) is the constraint field. There is a permutation matriso that

(57p7y) = %(Eﬁlv Eﬁ?v Eﬁ3)

The field=f = (2%, 55, =%3) takes values ik 'R C C3 @ C0 @ C*.

(S2) System (5.4b) is abbreviated as(q, ¥)W! = f(q,¥,d,¥)¥* (see, Convention
8.1). Some of its properties are discussed in Remark 5.1e®y$.4b) is equivalent
to the linear, homogeneous symmetric hyperbolic system

B(q.0) 5 = Q. v.00) ZF | B=B/jl
B'(q,¥) =71 Al(q,¥) 7
Qq, ¥, 0,0) =7 £(q,0,9,9) 7

The transformation) acting ori: 'R is linear oveiR. MoreoverB* depends affine
linearly overR on¥, and(@ depends affine linearly ové& on¥ & 0,V
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(S3) The three by thre€® @ C° & C* block-decomposition oB is
ﬁzdiag(§1,§2,§3), §2:]110L7 /353:]14]\77

andB; is the3 x 3 Hermitian matrix operator on the left hand side of (5.9c¢).

(S4) @1, @2, @3 are constant0 x 3, 4 x 10, 4 x 4 matrices. Their nonzero entries are
(C'is the complex conjugation operator):

(@1)s51 =1 (@2)1.0 = (@2)1,10 = 1
(@3)11 = —1 (@2)1.10 = (@2)2.8 = (@2)3.7 = (P2)a0 = —C
<0

Observe tha@3 is symmetric an d@
C? @ C'% @ C* block matrix

0 0 0
Qt) = (@1 0 0 )
0 [t7'@2 [t| @5

(S5) B* are the constant, diagon&l? & C1° & C* block matrices

ﬁ:lgU@hoV@hU , ﬁ:fb’“ i

Ogq+

with U7, V as in(ss). Note thatB® = 1,7, B' = B> =0, B® > 0.

Definition 8.2. Each entry to the left of the vertical bar is a generic symboldf poly-
nomial (with complex coefficients) in the (components gfdhantities to the right and
their complex conjugates.

GHut, A S, e, A, ¥(0), ¥—w(0), and first derivatives
Gilut, 2, S, e, A, w(0), ¥ —¥(0)
Gt | like G*, but it has no constant term as a polynomialéin- ¥ (0), 9, (¥ — ¥(0))
G ut, A, u, So, e, A, ¥(0), and first derivatives
wheresS is defined bys = —%u + u~'Sy, see(4.4)and (6.5).
Proposition 8.2.Supposegsi)to (S5). Then

BY(q,¥) = B +u2g) (8.13a)
Qin(0,7,0,%) = P1n(q) +u2g (8.13b)
Qon(0,7,0,%) = Qonla) + H  +u G (8.13c)
Qan(@,0,00) = @anle) + (| +u )T +u G (8.13d)

Moreover,
Ef, B3, 51, 82, pr,op2. p3=u 'GP+ G (8.14a)
s4, 85, pa, 7, Ps = u " G +u Gt (8.14b)
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Finally, it is a consequence db.4b)that

S4 e(Dy, —ps) + e(Pg — ps3)

S5 ie(Py —ps) —ie(Psg — Pp3)
Llps|= 0 +u gt et (8.15)

pr A(ps —P3) — A(pa — Ps)

8 _A(Z_%’ —p3) + XDy — ps)

Proof. The first part, (8.13), and the last part, (8.15), follow dikegfrom Proposition
5.4, Remark 5.2 and Definition 5.1. It is entirely similar be toroof of Proposition 8.1.

To prove (8.14), write/ = ¥(0) + (¥ — ¥(0)), and consider each object on the left
hand side of (8.14) as a polynomialin— ¥ (0) andd, (¥ — ¥(0)), with coefficients
possibly depending o#(0) and d,¥(0) (see, Proposition 5.3). The idea is that the
constant term of this polynomial is of the generic form'G*. Everything else is of
the formgii oru gﬁ, respectively. The fact that the constant term is of the gefierm
u~'G* is an essential part of the construction. It is the fact ) is built so that the
first term in the formal power series of the constraint figlé(0), vanishes (this follows
from the vanishing of the formal constraint field and Remadk.6 O

Everything we have done in this section so far was to premarth& next proposition

that provides a list of sufficient conditions under which #iestract propositions of
Section 7 can be applied to the various symmetric hyperbgtems that are required
for the proof of Theorem 8.1.

Proposition 8.3 (Main TechniAcaI Proposition).Fix K > 0 as in (s2). Recall (s1)
through(si1)and(si)through(ss). Let R > 4 be an integer. Set

Y = (R, K, ||DATA||CR+2K+6(Q)) (816)

Leto = 1072 be as in(7.40) Fix ¢, € (0,1) andT € (—o0,—0"1). There are
constantscs(R) € (0,1) ander(Y) € (0,1), non-increasing in all their arguments,
such that Parts 1, 2 and 3 below hold whenever

la| <cs(R)chy , [|DATA[lcrtso) < cs(R)cy , [T|™" <er(Y)ch, (8.17)
Part 1. The systerM(q, =) = = h(q, =) in (S10)satisfiegeB0) through(EB4) of Sub-
section 7.3 and the assumptions of Part 2 of PropositionwitB,

(EBO)-(EB4) | T | P | M¥(q,0) | h(q,0) | MI" | i(t) | Q| K
(sD-(s10) [T 31 [MF(q,Z) [ h(q, Z) | B" [ @(1) [ Q[ K

The table indicates that the symbols in the first row, appeaim the generalEso)
through (EB4), are given by the specific objects in the second row, appganisi)
through(s10)

Part 2. If tg < T and = : [to,to + €) x R® — 7R (¢ > 0) is a C*° solution to
M(q, =) = = h(g, =) which vanishes identically a, then

40 s BB (ZH00) < (er(Y) (8.18)
0E
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Here, the energyfg(&b_’t) is defined as in the Refined Energy Estimate, Proposition 7.7.

Assumptions of Part 3.We distinguish three alternative systems, denotecsiat)
(Sys2)and(sys3) that are given in the columns of the table below. This patthefPropo-
sition applies to each of these systems individually. Téuewa the entries in the table,
we require the following information. First,

(Sys1): b=2 & € R?
(Sys2): b=1 §o € Dyj2(0)
(Sys3): b=1 §o € Dy2(0)

Second, fixy < T and define the open set

V= |J {t} x0@.bt) c R.

te(to,T)

For (sys1)and (Sys3)there is a single fieldE defined orl taking values int~!R. For
systenisys2) there are two fields= (1) and Z(?), of this kind. The various fields satisfy
the conditions:

(i) They areC” and their derivatives of ordex p extend continuously t¥. Here
p = oo for (Sys1) (Sys3)andp = 1 for (Sys2)
(ii) They are solutions to

M(q, £)=E = h(q, E) for (Sys1)

B( ,E(i))E(i) = Q(q, E(i)) + Src(q) for (sys2)

B(g¢, £)= = Q(¢, =) + Src(q) for (sys3)
Segs4) and (S10)

(iii) They vanish wheq® < 1.
(iv) Forall ¢t € (to,T), they satisfy

Eg e 20 1ZH(1) < (co(R)ch)? for (sys1)
supyle, 1.0 12V H(E) < ca(R)ch for (Sys2)
Swle, 1.0 {ZH(E) < co(R)ch for (sys3)

Conclusions of Part 3.To state the conclusions, recall the notatibn= = — =1
and the usagé* for the constraint field associated fo= ¥ + 7 =, see(s2). Finally,
gt =7 =t asin(si).

Conclusion 1:=(V), EW(V), Z@ (V) C By;2(0) € n~'R = R3L.

Conclusion 2:The assumption&eo) through(Re12) hold, with (RE11a) for (Sys1)and
(RE11b) for (Sys2)and (Sys3) provided that the symbols in the first column of the table
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below (appearing in the gener@eo) through(Re12)) are given by the specific objects
in the other three columns.

(REOQ) - (RE12) (Sys1) (Sys2) (Sys3)

Z = (to,t%) (to,T) (to,T) (to,T)
b 2 1 1

(Pl, P, P3) (107 15, 6) (107 15, 6) 6,18, 8)

Mi(g) |M*(q,Z(g)| B(q,5V(g) |B"q,%(q))
H(q) || H(q.2(q) |G(¢,ED,2®,0,2@))|Q(q, ¥, 0,%)

Src(q) 1 Sre(q) 0 0
O(q) Z(a) Y(q) =Hq)
M B B B
H(t) Q(t) Q) At)

R R 0 0
c1 (cr(Y))~! 0 0
Co CIQ C/2 C/Q
J K+1 >0 >0
€o €o €o €o

Conclusion 3for (sys3) if in additionty + 1 < T', then

0 = 1 -
sup \t|SupEQg§07lﬁt){;ﬁ}(t) <y <1 + sup |t|SUp§9250,1,t){5}(t)) (8.19)
te(to+1,T) tE(to,T)

Proof. We begin with a warning.

First Warning.In the course of this proof, we produce a finite chain of snesinas-
sumptions oreg (R) andcz(Y). It is essentialfor the purpose of showing that the far
field expansion is truly an asymptotic expansion to a classiclution of (5.4a), that
these smallness assumptions depend onlyRa@andY’, respectively. To give a repre-
sentative example, suppogeaniity <r cs(R). Then there is a legitimate smallness
assumption oreg(R) making, saygquantity < 1. By contrast, there is no legitimate
smallness assumption associatedidanity <y cg(R). We can take a more relaxed
attitude to the system (5.4b), because it is only neceseatgrnonstrate uniqueness.

Convention 8.5In this proof, the constants of proportionality{tz and<y are always
non-decreasing if® and the components &f, respectively.

Overall PreliminariesFor alln > 0 and0 < k < K +1andg € N§ with |3| < 1+ R,
the following estimates hold oft-c0, T') x Q:

‘aﬂuin‘ /S(R,n) |t|7n \BBQH = ‘Q[| 6,80 < |(1| ‘aﬁ,l_” <2
0°W(0) Sreo(Ryey  [0%] < 0°A < Y
0°W (k)| Sy 1 9°8| < 1 995kc| <y 1

Only the estimates o#(0) and¥ (k) require discussion. They follow from Proposition
6.3, and (8.16) and (8.17). See Definition 8.1 5.
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It follows from the estimates just above, the product ruld .17), that for all
a € N} with |o| < R,

n=0,1 " 0% (u="TVGr)| Sy 1T Sy er(Y)ey,  (8.20a)
n=1,2 [t5F70% (= EFG )| <y 1 (8.20b)
n=0,1 t™ [0%(u™"H)| <r cs(R)ch (8.20c)
n=0,1 [t]"10%(uw"H)| Sk lal Skes(R)ch (8.20d)
n=0,1,2 [t"10%(u"T)| <rl (8.20€)

101t~ +u )T Sk T Srer(Y)cy  (8.200)

at every point of(—oco,T) x Q. In this instance, the constants also depend on the
particular polynomial represented by the generic symi@bserve that in the second
inequality, one does not use the property @at has no constant term as a polynomial
in ¥ (k) and its derivatives.

Second Warnindt is crucially important that whenevet ; appears in an estimate (for
example, (8.20c), (8.20d), (8.20e), (8.20f)) that the gersymbol on the left hand side
has no subindeX, see Definition 8.1. On the other hand, wheneverappears (for
example, (8.20a), (8.20b)), the generic symbol on the kfichside is allowed to carry
a subindexx.

Preliminaries for Part 3For Part 3, it is necessary to supplement the Overall Prelimi
naries. LetV,V») be the open cover af given by

Vi =V ((t,T) x Q), Vo =V ((to, T) x (R*\ K)).
The setxQ, K are defined ins9).

e For(sys1) observe that the Overall Preliminaries applytoOn ), we have) = 0,
and the equations simplify, se10) The estimatdiv || crgs) Sr 1, segs9), will be
used on the transition region fgr.

e For(sys2)we havey = V. In this case, the Overall Preliminaries will suffice.

e For(Sys3)we also have’ = V. However, in addition to the Overall Preliminaries,
we require the estimates

W —w(0)] , |0,(¥—w(0)] Sy 1 (8.21)
[t [u=2Gh] , [t]18(u=2G)| Sy 1T Sy ex(Y)
n=0,1: [t [u="TIGE <y T Sy er(Y) b,

H| < lal S es(R) )
[t + e )T Sy 1T Sy en(Y) b
onV. Estimate (8.21) follows from
U —U(0) = Kf(%)ku“/(k) +7TE (8.22)

k=1

and condition (iv) in the Proposition. The rest are consages of (8.21) and the
Overall Preliminaries estimates.
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Proof of Part 1.0ne verifiesEB0) through(EB4) by direct inspection, apart from the
inequality in(eB1). However,

3<M%q,5) <2, M%¢E) >0, (8.23)
forall (¢, =) € (—00,T) x R® x By(0) whencg(R) andc,(Y) are small enough.
HereB»(0) C R asin(EBo), with P = 31. The firstinequality in (8.23) completes the
verification of(EB1). The second inequality in (8.23) is used for the first supgletal

hypothesis in Part 2 of Proposition 7.3.
To check (8.23), recall frons10)that

M*(q,Z) = ¢vB*(q,5) + (1 —¢) B* (8.24)

is a convex combination @* andB* on (—oco, T') x R? x By(0). It suffices to verify
(8.23) forB* andB* separately. FoB*, see(ss). For B* it suffices to verify

1<1+ %<2, 1<1+L(1+L5)<2 (8.25)

for q € suppps ¥ C Q, seese)and Remark 5.2. Herg is one of the components of
U ="Ug+7mE = (fw,z),segs3) To check (8.25), note that

1 K+1 1 _
2 < O+ S e )]+ 2]

The three terms are respectively; cs(R) and<y % <y ¢c7(Y) (see, Overall Pre-

liminaries) and< 2. By the choice ots(R) andc;(Y) (see, the First Warning), we can
make
@] <3, when (¢,Z) € (—00,T) x Q x Bs(0) (8.26)

Consequently,fs| < 3, and therefore, (8.25) holds becaﬁpg ﬁ <0, see (7.40).

To validate the second supplemental hypothesis in Part Zagdition 7.3, it is
necessary to show thatg, 0) = ¢ Src(q) = 0forall ¢ € (—o0, T') x R3 with ¢* < 1.
To do this, observe that, = 0 there, sees2).

Remark 8.3Later on, in the proof of Part 3, we need the analogous iné&psal
1<Bqv) <2, Bq¥)>0

forall (¢, Z) € (=00, T) x R? x By(0), with the same smallness assumptions. These
inequalities can again be reduced to (8.25).

Proof of Part 2.To prove (8.18), rewritdVI(q, =)

(1]

= h(q,=) as

8,2(g) = (M°(q, 2)) " ( ~ Y Mi(¢.5)aE+H(q,5)E +v Src) (8.27)
i=1,2,3

Here,MY( -, =) is invertible on an open neighborhood{@f} x R3 in the setlty, to +
€) x R3. This is a consequence of (8.23), and the assumi@p, - ) = 0.

By repeated differentiation of (8.27) with respect:fave obtain an expression for
0m=(q), for anym > 1. Restrict the result tdty} x R3 and simplify it using the
assumptiod’ = (ty, -) = 0 for all 3 € N§ with 5, = 0. In every surviving multi-
derivatived’ = (to, - ) we must havel < 3, < m — 1, and each one is recursively
expressed using;* = (to, - ) with 1 < n < m — 1. This procedure generates an explicit
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expression foo]*=(ty, - ) in terms of the quantities in (8.28) just below, and their
derivatives.

By differentiation with respect to the remaining coordesj, we find (inductively)
that for everya € N3 with |a| < R, the functiond®=(to, -) is a polynomial in
(M°((tg, -),0))~* as well as derivatives of ordef R — 1 of

M ((to, -),0) . H((to, -),0) , MP(to, ) , H(to, ") . ¥Src(t, ) (8.28)

This polynomial has no constant term as a polynomial fBrc(to, - ) and its deriva-
tives. This has two consequences. Consequend@ A(ty, - ) vanishes oiR? \ K, by
the support ofy. Consequence B,

‘t0|K+1 {8a5(t0,q)| gy 1

for all q € Q. To verify this inequality, check (usinf)||crgsy Sr 1 in (S9), the
first inequality in (8.23), Proposition 8.1 and the Overakliinaries) that the matrix
(M°((tg, -),0))"* and the derivatives of ordet R — 1 of all the terms in (8.28) are
bounded in absolute value @by <y 1. At this point, we havéd*=(to, q)| Sy 1.
To get the stated decay, use (8.6) (even though one can gétea tesult). It is here
that one exploits the fact that the expressiond® (¢, - ) has no constant term as a
polynomial iny Src(to, - ) and its derivatives.

The proof of Part 2 is completed by combining Consequencesd®Bawith

- R = 2
Ef ey 200 {Z}Ht0) Sk (Su gk, 5400 {5} (t0))
and making a suitable choice of(Y) (see, the First Warning).

Proof of Part 3, Conclusion 1Follows from condition (iv) in the Proposition, by suit-
able choice ots(R). For(sys1) we also us&? > 2 and the Sobolev inequality (7.43).

Proof of Part 3, Conclusion Zlo start with, we check th@ke10) and(RE11a) or (RE11b)
hold, whencg(R), c7(Y') are made sufficiently small. We will freely use the Overall
Preliminaries, the Preliminaries for Part 3, Propositi8ris 8.2, and the inequality

EE el F®) Sk (Supbit, 4o (F3(1)% (8.29)

e (Sysly Lett € (to,T). For(RE10), we have
PR ES 6y 0.0 STCLHE) = 1K TES o 0 0 {u” FFIGRY(E) Sy 1

Therefore, the left hand side #§ (c7(Y)) 2, whenc;(Y) > 0 is small enough (see,
the First Warning). Similarly, for) Src, and+ Srcs. In these two cases, one could
get a better decay estimate, but we don't need it.

For (Re11a), we verify the first and second inequalities, the other tveosamilar. The
second goes

t]? Eg(go,z,t){Hln(% Z) = Qi }(t)

— 1P BB g 2.0 {0 (Q1n(0,0) = @1a) + ¥ Q1 (0)Z} (1)
= |t E§ ey o {0 (EH+ L H + HGk) + ¢ T Z}(t)
Sk |t|2 Eg(50,2,t){w(%H + %H + %jE)}(t) + |75|2 Eg(go,z,t){w u—lng}(t)
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The first term is<r (c(R)ch)?, the second iy (c7(Y)ch)2. Here, we use condi-
tion (iv) in the Proposition. By the First Warning, the resal< (c)? if cg(R) and
c7(Y) are small enough. The first goes

1 ES ey 0.0 {M* (g, 5) — B* } ()
= [t] BE§ ¢y 2.0 {/(B*(g,0) — B*) +¢B”(q Z}Ht)
= [t B¢y o 1V (EH + ung) +¢ 5T S})

The estimate is completed just as above.
e (Sys2) There is nothing to check fgre10). For (RE11b),

1 -
[t supye, 1 {B"(q. 2V) — B} (1)
1 . =
= 153}, 1.0 { (B"(0.0) = B*) + B () 2V} (1)
= [t Sump (g, 1.0 {5 + 220K + 2T V(1)
which is < ¢}, whencg(R) andc7(Y) are made sufficiently small. It is important

here thaty = Vy, see, the Preliminaries for Part 3. For the second, thirdfemdh
parts of(RE11b), observe that, by (8.4),

(G~ @) IT = (Q(g.0) — Q)T + (Qg) EV) 11
+ & s 0(—Bu(q,3H o5

dsls=

(g,sII) 5(2)).

Therefore, for the second,

It] SUpo(go 1 t){Gln (Qa H(l) =@ ,0, H(2>) @M(t)}(t)
=t 3up§§2€0’17t){;H + i+ LG +1g2W 4 L 79,23 + Lg=® (1)

which is< ¢}, whencg(R) andcr (Y') are made sufficiently small. The third an fourth
inequalities in(RE11b) are checked in the same way.
e (Sys3) There is nothing to check fgre10). For (RE11b),

[t suplole, 1.4y {B" (¢, %) — B }(t) = [t supy)e, 1 o {255 H(1)
[t SupG e, 1.0 A Q1n (@, 0g®) — Py }(E) = [t S0, 1 {2 G H(D)
Sup e, 1.0y { Q2 (0.0, 0,%) — @, } (1) =SB, 1 o M + LG} (1)
[t SunSle, 1.0y { @an (0., 0g) — (s, } (1)
= [t| suple, 1 o { (& + 1T + HG* (1)

which are ali< ¢4, whencgs (R) andc(Y') are made sufficiently small. Itis important
here thaty = V), see, the Preliminaries for Part 3.

We are now finished checkirfge10) and(RE11a) Or (RE11b).
Next, we checkrei). In order,(RE1) follows from

o (Sys1) inequalities (8.23), sinc&(q) € B1(0) C R3! for all ¢ € V by Conclusion 1.
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e (Sys2) the discussion of (8.25), Conclusion 1 and-= V.
e (Sys3) Remark 8.3, Conclusion 1 and= V.

To checkRE12), we can assumi@| < 3 on ), by (8.26) and Conclusion 1. By Propo-
sition 7.6 ands1), this implies(Re12) for (Sys2)and(Sys3) because®’ = V. For (Sys1)

we use convexity, see (8.24). Thid term is again handled by Proposition 7.6, using
the support properties af. It therefore suffices to verify that

0,B*>0 on (V)N ((to,T) x R? x (0,2))

with ¢ defined by (7.38). This is a consequenc @) = ki|u, — u|/|u|?> > 0 and
O(V) = ky|lu|~' — |uo| ™| > 0, see(s8)and (7.40).

(RES5) holds, by condition (i) in the Proposition, fgys1) (Sys2)and(Sys3) In partic-
ular, for(sys2) G(¢, =V, 2, 9,2@) is C°.

(RE4) holds, by condition (ii) in the Proposition, fggys1) (Sys2)and(Sys3) For(Sys2)
see(s11) For(sys3) recall that?!? solves (5.4b) becaudesolves (5.4a).

Note that condition (iii) in the Proposition angk) imply that¥ = ¥ + 7= =0
and?? = 0 wheng® < % In particular,Src = 0 there. These facts implyes) for
(Sys1) (Sys2)and(Sys3)

The remaining assumption&Eo), (RE2), (RE3), (RE7), (RE8), (RE9) are verified by
direct inspection.

Proof of Part 3, Conclusion 3/Me have to prove

0 — 1 — def
sup |t S“pgoggn,u){:u}(t) <y (1 + sup |t Supggzé()717t){:}(t) ) “ K
te(to+1,T) te(to,T)

It follows from the Overall Preliminaries, the Preliminesifor Part 3, as well as (8.14)
and (8.15) (see, Proposition 8.2) that¥r= V),

(A) IG% <r 1 by Definition 8.2

(B) @ —w(0)|, |9,(¥ —w(0)| Sy slt|™" by (8.22)

(©) G| <y k|t|™! by (B), Definition 8.2

D) =511 1251, [s1]s 52l pals [pal, ps| Sy wlE" by (A), (C), (8.14a)

(E) 2% <y & by (A), (C), (8.14a), (8.14b)
(F) lu='G =¥ <y k|t|”' by (E), Definition 8.2

For each pointt1,q1) € V with ¢; > ¢, + 1, consider the line segment
Seg = ((thql) - R+(170707 1)) N {q € R4 | q3 > 0}

We haveseg C V. To see this, view’ as an open disk bundle over tfieu)-rectangle
(to,T) x (0,1). The projection oBegto the(¢, «) plane is injective and contained in the
base, because € (to + 1,T"). At each point in the image of the projectiongdy the
corresponding point ogegis contained in the fiber, because the radius functignu)
(see (7.37)) is a decreasing functionuobn the base for fixed = ¢ — u, and because
the endpointty, q;) is contained in the fiber, by assumption.

By Conclusion 2,=% is aC* solution toB=Z* = Q=% which vanishes wheg® <
3. In particular (8.15) holds. Recall = e3(525 + 525), Whered = (e, v, w), and

92



57
% < ez < 2 (see(RE1)), and thatsegis an integral curve of.. The last three sentences,
SegC V and (F) imply, by integrating the equation fer in (8.15) alongseg that
[pa] Sy w |t (8.30)

on segfor each endpoinfty, q1) € V with ¢; > to + 1.

Finally, integrating the remaining equations in (8.15)ng®eg and using (8.30)
and (D), we obtair|s4|, [ss|, |p7], [ps| Sy k|t|~! on all admissible segmenteg
Therefore)=%| <y x|t|~ onV whent € (t, +1,T). O

8.2. Construction of classical vacuum fields.

Theorem 8.1.Let (&, u, u) be the usual coordinates on the truncated strip
Strip(1,A) = R? x (0,1) x (—o0, =A7")
of width1, for eachA > 0. Suppos® < || < |a|]. Assume the functions
DATA (&,u) : R? x (0,00) — C
o € {—,+}, are smooth, vanish when< % and are Pole-Flip compatible
DATA? = Flip% - DATA ™7 (8.31)

forall (¢,u) € (R?\ {0}) x (0, c0), see Definition 6.3. LétZ7 | be the formal power
series solution corresponding tTA“. Fix integersk > 4, K > 0 and ane € (0, %).
Set

B = (R,G) ) C: (R, €, K, ael?é,}i} HDATAU||CR+2K+6(C(Q’Q172)))

whereC(a, 2, b) = Dy 2((0) x (0,b) for eachb > 0.
Let
b =b(B) c=c(0)

be constants irf0, 1). If b andc are made sufficiently small depending only Brand
C, respectively, then the Existence and Uniqueness staterinelow hold whenever

0< | <la] <D, r?ax} [IDATA? ||cr+a(c(am,2)) < b (8.32)
oe{—,+ )
Existence:
Part 1:There exists a paif@ —, ¥+) of Pole-Flip compatible_! -fields
w7 Strip(l,¢c) — R,

which are both solutions t5.4a) vanish whem < % extend with their first derivatives
continuously tdStrip (1, ¢) and satisfy

lim |uf¢  sup HGQ(W”—W"(O))(-,u)||CO(C(G79171))=O (8.33)

umTee aeNG: |al<1
Part 2:The constraint fieldé¥ ~)#, (#*)* associated to the fields in Part 1 vanish, and

(@,07) = (Moo +uMI™, Moo +u M)
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are a pair of Pole-Flip compatible vacuum fields (see, DatiniR.2) with initial data
w7 (0).

Part 3:The fields in Part 1 are actually of clags™ 3, and extend with their derivatives
of order< R — 3 continuously tdtrip (1, ¢). Moreover

K

(k) (- 1

swp o<t sup o (v - QU e

w<—c—1 aeNd — U co(c(a,21,1)) c
|| <R—3

o (8.34)
Uniqueness:Assumg¥ —,¥*) and (¥ ~, ¥ ™) have all the properties listed in Part 1.

Then they coincide o8trip (1, 1) C Strip(1, c).

Remark 8.4Part 1 asserts the existence of a solutior orl U Il . However, Unique-
ness in Theorem 8.1 refers only toWe actually prove uniqueness orJ Il . By a
standard finite speed of propagation argument, which we tlearoy out, the domain
of uniqueness can be extendedita

Strip(1,¢) =1 Ul Ul

>, Strip(1, 1$5) =1
7 n
N 1 Z
utu=—g N
N
N
7/ & %
1] ~, \EY
¢ 7
%
ay
|
&
NQ

Remark 8.5The DATA? are given foru € (0, o0), just for convenience. By construc-
tion, the restriction off? (0) tou € (0, 1) depends only on the restriction bATA? to

u € (0,1), see equations (6.3). It now follows from Uniqueness in Tero8.1 that
¥, Ut are determined oBtrip (1, 1) by the restriction 0bATA? tow € (0,1).

Proof. Theorem 8.1 is formulated in the coordinate systém, v). AlImost the entire
proof, however, is given in the coordinate systees (¢, &, u), wheret = u + u.

We assumesi) through(si1) and (S1) through(ss), wherea, 2, K in (s1) through
(s11) are identified with their occurrences in the statement ofofém 8.1 and where
DATA in (S2)is identified with either one aATA?, 0 = —, +. By direct inspection, our
assumptions and identifications are consistent, when we teklegitimate smallness
assumptiorb < 1073, that ensures that, 2 satisfy(s1). This condition is subsumed in
(8.37) below.

Convention 8.6For the entire proofes (- ) andca( - ), as well ascg (- ) ander (- ) are
defined as in Proposition 7.7 (Refined Energy Estimate) aodd3ition 8.3. Further-
more,cs(R) > 1 will always denote a constant, such that the Sobolev inégual

Suply e pey {FHE) < es(R) \JEE o o {F}(1) (8.35)

holds for all(&, b,t) € R? x [1,2] x (—oo, —0~1) and all vector valued’** functions
f. See (7.43) for the Sobolev inequality and (7.40) for thenit&din of 0.
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The smallness condition dn Set.J, = ¢, with € as in Theorem 8.1, and

X = (R7 J07 ‘@1‘7 ‘@2|7|@3‘)
X* = (0,0, @1, 2], 1@s])
X = (0, Jo, @1“@2‘: |@3|)

where@; and@i are fixed as ins7)and(sa), respectively. Also set
ch(B) = L min {c3(X), c3(X*), c3(X)} € (0,1) (8.36)

The right hand side of (8.36) only depends Bnwhich justifies the notation)(B).
We impose the legitimate smallness condition

b < min{107%, cg(R)ch(B)} (8.37)
Itis the only smallness condition dnin the entire proof.
The first smallness condition @n Set

Y = (R7 K, UEH{IZE?i} ||DATAU||CR+2K+6(Q))

1

= —1— max E 1 deg(R) (ca(X) + 1)\ FFT
T(C) =-1 {a’ c7(Y)ch(B)’ (C/Q(B)CG(R)C’{(Y) ) } (8.38)

Observe tha€ (a, 2, 2) = Q whereQ is defined ins9). ThereforeY” depends only on
C, and so does the right hand side of (8.38), justifying thextimh T/(C'). We impose
the legitimate smallness condition

1

There will be one more smallness conditiongtiater in the proof.

Convention 8.7The system (8.3a) correspondingtara® will be denoted (8.34) We
sometimes suppress the superscripind simply writeDATA and (8.3a), in which case
the discussion applies equallymata? and (8.34d) for o = —, +.

Convention 8.8In every application of Proposition 8.3, tieé of Proposition 8.3 will
be thec), (B) of (8.36).

Remark 8.6We haveFlip , - (Moo + u™ME) = My o +u™™M (Flip% -¥) since
the transformatioﬂr‘lip% is linear, maps\, o to itself and commutes with the matrix
w~ M., In particular, if¥ solves (5.4a), theRlip, - ¥ solves (5.4a).

Observe thaFlip% ‘U7 =W,.7, becaus®ATA“ are Pole-Flip compatible, by assump-
tion. ThereforeFlip . - (P +7E) =w.° +Flipg - (7 Z). In particular, if= solves
(8.3ay, thenz—! Flip, - (7Z) solves (8.3a)°.

Convention 8.9For the rest of this proof, we consciously abuse notation arité
Flip, - = forn~ ! Flipy - (7=). See(s3)for the definition ofr.
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Guide.The proof now proceeds through a sequence of 10 steps. Egrbeagins with
a statement (in italics), that is then proven.

Step 1. The assumptions of Proposition 8.3 up to and inctu@ril7)are satisfied for
all 7 < T(C), if DATA = DATA? foro = —, +.
By direct inspection. Recall that ( - ) is non-increasing in all its arguments.

Step 2. For eachy < T(C) thereis at1(to) € (to, T(C)] and a smooth solution
Etg : [to,tl(to)) X RB — 7T71’R, = Rgl

to the systenM (¢, =)= = h(q, =), with trivial initial data, =, (¢, - ) = 0, vanishing
identically forg® < % so thatt; (ty) # T(C) implies either one or both oB(eak); or
(Break),, (see Proposition 7.3).

Apply Parts 1 and 2 of Proposition 7.3, in the context of Part Rroposition 8.3, with
T ="T(C).

Remark 8.7=, is a 1-parameter family of solutions, parametrizedpy:. T(C).
Step 3¢ (ty) = T(C), forall ty < T(C).
For eacht, € R?, we introduce the set

T(.to) = {t € [to,ta(t)) | suwp BB, o {50 }(7) < (es(R)ch(B))*}

TE[to,t]

It is an interval and closed as a subsefigft; (¢9)). By Part 2 of Proposition 8.3 and
by (8.38),

= 1 (R)c. (B
\/Eg(£0’2’t°){:t0}(to) = c7(Y)|T(C)|K+1 = ol )462( )

Thereforety € J(&o,to). By continuity of the energy7 (&, to) contains at least one
point different fromt,. For everyt* € 7 (&, to), t* > to, the assumptions of Proposi-
tion 8.3, Part 3(sys1)are satisfied witl” = ¢*. It follows from Conclusion 1 that

Zi(q) € Bip(0) C R forall g€ Ucq )it x O60,2,1)  (8.40)
By Conclusion 2 and
K+1=Jy, c(B)<c3(X), t"<T(C) <-1/cy(B) < —1/c3(X)

we can apply the Refined Energy Estimate (7.42) in Propasiti@ in the context of
(Sys1) Combining (7.42) with Part 2 of Proposition 8.3, one obgain
. 2C4 (X) 2 Cy (X)
EER =) < <
VEB a2 {500 < e < Symr
_ co(R)chy(B) _ co(R)ch(B)
2 Cg (R) - 2

(8.41)

forall 7 € (to,t*). The second inequality is self-evident. For the third, 88g) again.
The continuity of the energng(go_’Q’T){Eto}(r) for 7 € [to,t1(to)) implies that
(8.41) holds forr = t*, and, consequently, for alt € J(&,to). It follows that
J (o, to) is also open as a subset[of, t1(t9)). The set7 (&, to) is nonempty, open
and closed as a subset [f, ¢1(t0)), and we conclude (§o,t0) = [to, t1(to)). The
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upshot is that (8.40) holds with replaced byt (¢), for all £, € R2, and therefore

Z ([to, t1(to)) x Q) C Byj2(0) C R3! because

[to, t1(to)) x © C [to,ta(to)) x R? x (0,2) = [ J U {8 x0.21).
0€ER? t€to,t1(to))
(8.42)
Now, (Break), (see Step 2) is excluded. The inclusion (8.42), the factdh@b, to) =
[to, t1(to)) and the Sobolev inequality, (8.35), exclu@esgk),. By Step 2, we conclude
thattl(to) = T(C), for all ty < T(C)

Remark 8.8A byproduct of the proof of Step 3 is:
The inequality (8.41) holds for afl € [ty, T(C)) and¢, € R2. (8.43)

Convention 8.10 (for Steps 4 and $Ye introduce a new field that is used in the next
two steps. Itis the restriction d, to [to, T(C)) x W, where

W = D3+ (0) x (0,1) C R’

Consciously abusing notation, we will denote this new figidle same symbat;,.
The new fieQEto is smooth and extends, with all its derivatives, continlypus
[to, T(C)) x W C R4,

Step 4.=, is a solution to(8.3a) for eachty < T(C).
Define the open coveéV;, Ws) of W,

Wi =Wwn (R?x (0,3)) W =Wn (R? x (3,1))
If g € Wy, thenZ},(¢) = 0 (see, Step 2) an8rc(q) = 0 (see,(S2) and(s4). In this
case,=y, is self-evidently a solution to (8.3a). On the other handy iE s, then
¥(q) = 1 (see,(s9). By direct inspection ofs10) the equatioM(q, =)= = h(q, =)
collapses to (8.3a).

Remark 8.9Recall from Remark 7.3 that, for &lfo, b, ¢) € R? x [1,2] x (—o0, —3),
the setO (&, b, t) is a bundle over the-interval (0, b) whose fibers are disks centered
at&o, with radii < 3.

Step 5. For eachy < T(C), let =7 be the solution t¢8.3ay . Let

Yto) = [to, T(C)) x {21&] < I¢] < 3I&[} x (0,1)
Z)= U U %017 C Vit

T€[to,T(C))  |5gI<[éo|<2[5]

Note that both={ and Flip% - Z,,7 (see, Convention 8.9) are defined P(t,). We
claim that=y = Flip, - =; 7 onZ(to) C Y(to).
The argument is by finite speed of propagation. For[ghy< |{o| < 2[5/, let
Z(&osto) =
{t € [to. T(C)) | 57, = Flip, - 5,7 on | {r} x O, 1.7) C Z(to)}

TE[to,t]
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Our goalisZ (o, to) = [to, T(C)), for each|g| < || < 2|5 Firstof all,Z(&o, to) is
an interval that containg, becausé&y, and=, “ have trivial initial data. By continuity,
itis closed as a subset g, T(C)). We now show thaf (£, to) is also open as a subset
of [tg, T(C)).

By the second to last inequality in (8.43), and by (8.35),

1 =0
sup  suppyle, 1 {50 }(T) < es(R)ch(B).
TE[to,T(C))

Lett' € Z(&o, to). By the definition ofZ (&, to), and by continuity

1 . R
sup_ SWipe, 1+ {Flipg - 2.7 Hr) < 3 es(R)ch(B)
TE|to,t*
forsomet* € (¢/, T(C)). The assumptions of Proposition 8.3, Parsgs2)are satisfied
with 7 = ¢, =1 = =7, =@ = Flip, - ;7. Conclusion 2 of Proposition 8.3
enables us to apply Proposition 7.7 (Refined Energy Estinfiatésys2) with J = %
The assumptions of Proposition 7.7 are satisfied because

J=3>h (B <es(XT), 1" <T(C) < ~1/ch(B) < ~1/es(X").

(8.44)
In the present case, the Refined Energy Estimate (7.42) lecom
Ito|1/2 E(%(&)_l t“){T}(to) +0
VEb(e1n{THT) < ea(XT) \/ 7172
forall 7 € (to,t*), whereT = =7 — Flip, - Z,,7. Furthermore, the energy on

the right hand side is zero. The vanishing of the energy onetdand side implies
[to, t*) C Z(&o,to). HenceZ (&, to) is an open subset ¢fy, T(C)).

Convention 8.11 (for the remaining stepdje introduce a new field for the remaining
steps. For eachy < T(C) ando € {—, +}, itis the map (see, Convention 8.9)

[to, T(C)) x R? x (0,1) — 7 'R = R

g=(tEu) {55'0@) if || < 2|2

o\ It (8.45)
Flip, - 5,,7(q) if |¢ > /2]

It is well defined on the flip-invariarity, T(C)) x {1]&| < [¢] < 2|&]} x (0,1),

which is contained irg (to) U (Flip - Z(to)) by Step 5. It coincides wittEy, on the
setZ(ty) of Step 5. Consciously abusing notation, we will denote tiei& field by the
same symbakEy .

Step 6. For eachy < T(C) ando € {—, +},
=y, =Flipg - 5,7 on  [to, T(C)) x (R*\ {0}) x (0,1)

The field=7 : [to, T(C)) x R? x (0,1) — 'R is smooth, vanishes whef < 1,
and extends, with its derivatives of all orders, continupts [t, T(C)) x R? x [0, 1].
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Moreover, it is a solution t@§8.3a) on its entire domain of definition and satisfies

sup sup Supggf,)u){E& (1) < 3 c(R)chy(B) (8.46a)
[€ol<2|g| TE(t0,T(C)) '
(R=2) (=0 2¢4(X)es(R)
sup sup |75 sup MELHT) £ ———FF— (8.46b)
€0 <2|&| TE€(to,T(C)) O(€o,1,7) Lt c7(Y)

The main point before (8.46a) is thEiip% is a field configuration symmetry. The in-
equalities (8.46a), (8.46b) are consequences of (8.43harBobolev inequality (8.35).
Be aware that that the}, in (8.43) is related to the preseBf, by (8.45).

Step 7. For eachy < T(C) —1andeo € {—,+},

‘ 0 —o b 1
sup sup Eoo1,n i (Z0) 1) Sevio ol
[€ol<2]g| TE(to+1,T(C)) 0

Where(E,‘ZO)ﬁ is the constraint field associated to the fi¢8d45)
Forany[&| < 2[g| and anyt* € (to + 1, T(C')), the assumptions of Proposition 8.3,
Part 3,(sys3)are satisfied with" = ¢*. By Conclusion 3R > 4, K > 0, and (8.46b),

0 —O ﬁ
sup |7 supdie, 1 L (E0) 1) S 1
TE(to+1,t*) '

By continuity, this holds fot = ¢y, + 1 as well. Therefore, the energy satisfies

N
to + 1|2 Eg(goﬁljtoﬂ){(:to) Fto+1) Sy L (8.47)

By Conclusion 2, we can apply Proposition 7.7 (Refined Ené&sgymate) for(Syss)
with J = 1, T = (to+1,t*). The assumptions of Proposition 7.7 are satisfied, because

J=1>Jy,  c(B)<cy(X), " <T(C)< —1/ch(B) < —1/cs(X).

The Refined Energy Estimate (7.42) and (8.47) imply

0 —c f 1 1
sup E A= (7) Stvin) 77 S(vido) T
re(tob1 %) O(&o,1, ){( to) } (Y, Jo) lto + 1| (Y, Jo) \t0|

Step 8. Forallr € {—,+}andallt; <t < T(C),

1
sup sup  Eoe,1.m150 — S0HT) St 1
€ol<2|&| re(ta,T(Cy) OO ! (570 g, ]
Foranyt* € (to, T(C)) and|&| < 2|4, the assumptions in Proposition 8.3, Part 3, for
(Sys2) are satisfied withy = ¢, T = t* and=() = =7, =2 = =7 . By Conclusion
2, we can apply Proposition 7.7 (Refined Energy Estimate) Wit % see (8.44). The
Refined Energy Estimate (7.42) implies

2 Il B ey, (57} 02) _ !
~(Y,Jo) ‘752|27K+1

B¢y 1. (=0 = E7}(0) < (ea(X7) =

forall 7 € (t2, t*). For the second inequality, see (8.46b).
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Step 9. There exist
27 : (00, T(C)) x R? x (0,1) — 77 'R, oce{-,+}

with 7 = Flip, - =7 (see, Convention 8.9), that vanish whgn< 1, areCE-3,

and extend, with their derivatives of all ordersR — 3, continuously td—oco, T(C')) x
R? x [0, 1]. Moreover, they are solutions to bof®.3ay and(=°)% = 0, and

sup sup SupggR(gj)lj){E”}(T) < 1cg(R)cy(B)  (8.48a)
[€ol <2l 5| TE(—00,T(C))
sup sup |7 K+ SupEQR(gj)lj){E”}(T) Sevige) 1 (8.48b)
[€ol<2]5 | TE(—00,T(C))
sup 7|+ Sup;iT:T(O)X(Oyl){EU}(T) Sevige) 1 (8.48c)
T€(—00,T(C)) =
1 <B%4q, Z(q)) < 2forallg € (—o0, T(C)) x R* x (0,1) (8.48d)

For each3 € (0, 1), introduce the compact set
X5 = [T(C) — 871, T(C) — 5] x Dyyg((0) x [0,1]

For every sequendg, — —oo, With ¢, < T(C) — 37!, the sequence of fields; is,
by Step 8, a Cauchy sequencelif(X;s). Set=7|x, = L*-lim;_._ 57. By (8.46a),
the 1-parameter familgy with t+ < T(C) — 57! is a bounded subset 612 (x;),
the space ofr~!R = R3! valued functions of clas§*~2 on the interior ofX, that
extend continuously, with their derivatives of all ordefsRk — 2, to the boundary. By
Arzela-Ascoli, there is a subsequence that convergésin®(X;). Therefore =7 | x,
isinC*3(Xp). Itfollows that=7 is C*~? on the interior ofJ 5 ;) A5, and extends
with its derivatives of all orders: R—3 continuouslytd J; , ;) A = (—o0, T(C))x

D2|%|(0)x[0, 1]. By construction=? = Flip%-E*" OnXgﬂ(Flip%~X5). Hence, the
pair of fields=? have uniques 3 Pole-Flip compatible extensions e oo, T(C)) x

R? x (0,1), which extend with their derivatives of all ordersR — 3 continuously to
(=00, T(C)) x R? x [0, 1], as required by Step 9.

It follows directly from Step 6, that the pa” has all the desired properties, including
the bounds (8.48a), (8.48Db) (recall thiat- 3 > 1), with the exception of=7)* = 0,
(8.48c) and (8.48d). It is implicit in our construction tHat eachs € (0,1), there

is a sequence, — —oo so that=f — =7 in C'(Xp), and thereford =7 )* —
(27)%in C°(X3). Now, by step 7(=7)*x, = 0, forall 3 € (0,1). By Pole-Flip
compatibility,(7)* = 0 everywhere. The estimate (8.48c) follows from (8.48b) when
€] < 2|&|. For 3% < |¢| < 4]%], it also follows from (8.48b), by using Pole-
Flip compatibility and Lemma F.1 in Appendix F. To verify 48d), observe that the
assumptions of Proposition 8.3, Part 3, {eys2) are satisfied for any| < 2|5/,

to < T < T(C), M = 52 = =7, By Conclusion 2(rRe1) holds in the context of
(sys2) which implies (8.48d) foy € (—o0, T(C)) x Dy 2 (0) x (0, 1), and for general
q by Pole-Flip compatibility.

Step 10. The fieldS” in Step 9 are unique in the following sense: Suppose, for some
t; < T(C), the Clfields =7 : (—o0,t;) x R? x (0,1) — 7 'R are Pole-Flip
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compatible, extend with their first derivatives continugus (—oo, ;] x R? x [0, 1],
are solutions tq8.3ay, vanish wher® < % and satisfy

lim sup 7|7 S“p8250,1,7){§0}(7) =0 (8.49)

T gol<2l %

Then,=7 = 7 on(—oo, 1) x R? x (0, 1).

For every sufficiently negative < t;, the assumptions of Proposition 8.3, Part 3, for
(Sys2) are satisfied for anio| < 2|&|, to < T =7, 2 = 27, 2@ = =7, The
condition thatr is sufficiently negative is used to verify hypothesis (iv)Rdrt 3 of
Proposition 8.3. By Conclusion 2, we can apply (checking,ddditional hypothesis
similarly to (8.44)) Proposition 7.7 witli = .Jy. It follows from (7.42) that

. o2 o7 B {57 - 27} ()
Bdgonm {57 = 27}(r) < (ea(x™)’ O(Eo,l\fl)m :

We take the limitty — —oo, keepingr fixed. By (8.48b)~and (8.49), and the fact
that2J, < 1, we conclude that the enerdg}, . , ,\{Z7 — =7 }(7) = 0. Exploiting

the Pole-Flip compatibility=?(, -) = Z7(r, -) for all sufficiently negativer. To
demonstrate thaf° = =7 on(—o0,t;)xR?x (0, 1), we make a closed-open argument
almost identical to the one in the proof of Step 5.

We finally return from the; = (¢,£,u) to thex = (£, u,u) coordinate system, and
complete the proof of Theorem 8.1. Theset Stip(1,c) is contained in the;-set
(—00, T(C)) x R? x (0, 1), by the smallness condition (8.39).

Existence in Theorem 8ftllows from Step 9, with?? = ¥7. + 7 =7. We only have
to check (8.33), (8.34) and conditiofs) and (x x) (see, Definitions 2.1 and 2.2), and
apply Proposition 2.2. Write

wo(u) = W(0) (-, u) = éo(%)k ok +1)(-) +mE(-u)

(5 u) - i(%)kw"(k)ﬂ) = g V(K +1)(0) +7Z7(- )

The coefficient functiong? (k + 1), appearing on the right hand sides, are estimated
using |7 (k + 1)|lcr+1ca,n,2)) Sy 1 (see, the Overall Preliminaries in the proof of
Proposition 8.3) ancE” is estimated using (8.48c). Now, (8.33) follows. Also (§.34
follows, with an additional legitimate smallness condition ¢ depending only on
(Y, Jo). Condition(x) is a consequence of the inequalgyg es < 2 onStrip(1,c),
which follows from (8.48d). Heregs is a component 007 = (e,v,w) = Mg o +

u~ M. Finally, the equatiord (e1€; — €1e2) = —272 (e182 — €1€2) (@ consequence

of the first two lines of (2.4)) implies thak(e;e2) cannot change sign along the inte-
gral curves ofZ, and therefor@(elég) < 0onsStrip(1, c) because it is negative when

u < 3. This implies(x *).

Uniqueness in Theorem 8fdllows from Step 10. O
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9. Conclusions

We assume, without further comment, the definitions and eotwns of Section 2
through Section 6 and Theorem 8.1. However, see the Indexotdtidn, Appendix
A.

Proposition 9.1 (Asymptotic expansion)Let#° = M, o + u~ ¥ be the pair of
Pole-Flip compatible vacuum fields of Theorem 8.1Kok 0. For eachL > 0,

L

QSER% ‘ c (;[/U( ) = kZ:O %) ‘ co(c(a,21,1)) - O(M%H)
lo|<R-3

asu — —oo. In other words, the far field formal power seripg? | is an asymptotic
expansion fo?.

Proof. Observe that the conditions imposed on the dat4, DATA?, R, ¢ in Theorem

8.1 are independent df. Therefore, Theorem 8.1 can be applied with the same data
for all K > 0. For eachK > 0, we obtain a pair of Pole-Flip compatible vacuum
fields onstrip (1, A\¢) C R*, whereAx > 0 depends orK through the vector” in
Theorem 8.1. The vacuum fields corresponding to any fairK’ > 0 coincide for
sufficiently negative:, by the uniqueness statement of Theorem 8.1. In partichiar,

is true forK = 0, K’ = L. The bound (8.34) for th&” = L vacuum field implies the
proposition. O

9.1. Three Points of Viewit is helpful to consider the focusing of gravitational wave
from three perspectives, that yield three different piesur

Regularized Picture(R)

Field transformatior€ o 2
where€(§) = a

High Amplitude Picture (H)

Isotropic scaling transformatidh
with scaling constar§y = 2*

Finite Mass Picture (F)

First, recall from Section 3 that the Isotropic Scalfnghe Anisotropic Scalingl and
the Angular Coordinate Transformatia@hare field symmetries (see, Definition 3.1).
Their isotropic respectively anisotropic character refertheir action on the frame and
the coordinate system. Both scalings are, at the level oEthientzian metric, global
conformal transformations.

The pictures are fixed by the table

|| Regularized | High Amplitude \ Finite Mass
Background M Mg M
Data (& w) | AP (g6 w) | A7 (5E A )
Domain Strip (1, c) Strip (17 CQIZ) Strip (Ql“, 091*2)
Hemisphere || [¢] < || €] <1 €] <1
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The Regularized Picture is the arena of Theorem 8.1. The tileeare obtained, as
indicated above, by scaling. Row 1 displays the Minkowskikggound fields. Row 2
gives the functional form of the initial data at past nullnity. More precisely,

DATAR (&, 1) = 07 (€, u) b% = Moo +u Mg (9.1a)
DATAR (&, u) = A2 07 (&€, u) Y = My, +u Moy (9.1b)
DATAZ (&, u) = A 207 (2&, A w) D% = My1 +u Mug (9.1c)

The first equation gives two new names for twaA“ (£, u) of Theorem 8.1. Row 3
displays the functional dependence of the domains on tHggearamete®l, with the
notationstrip (1, A) = R? x (0, ) x (—oo0, —A~!). Row 4 gives the size of thedisk
which, under stereographic projection, corresponds tchengisphere 052.

9.2. Two Physical Regime§.here are two natural physical regimes. Informally, both
appear as limit€l | 0 in the Regularized Picture, keeping the datafixed. They are
distinguished by:

e 2D (Scaling) Limita =2 | 0.

e 4D (Scaling) Limit « fixed, 2 | 0.

(The 4D Limit breaks Pole-Flip compatibility of”. This will be discussed below.)

Definition 9.1. The2D Limit Assumptionsare the hypotheses, with= 2 ande = 1,
of Theorem 8.1 oRl, DATA? = 17, R and K up to and including conditio(8.32)

Remark 9.1Explicitly, the 2D Limit Assumptions areR > 4, K > 0, n° = 0 when
u< %, and

0 <[] <D, n? =Flipy -0~ 7, max |97 ||cr+a(p,0)x(0,2)) < b
06{774'}
Here,b € (0, 1) depends only o. The constant € (0, 1) in Theorem 8.1 depends
onIy OnR, K andmaxge{,7+} ||770HCR+2K+6(D4(0)><(072)).
The conditions om?° : R? x (0,00) — C are independent ¢l Also the domain of
definitionstrip (1, c) of the vacuum field in Theorem 8.1 is independeriloT herefore,
Theorem 8.1 is consistent with the 2D Limit. The chaice 1 is just for concreteness.

Remark 9.2The intuition behind the designations Regularized Picturé High Am-
plitude Picture is immediately clear in the context of theldbit. For the Regularized
picture, see Remark 6.3. In the High Amplitude Picture, thtal data at past null in-
finity for the corresponding family of vacuum fieldsoaTa %, (¢, u) = A2 77 (&, u). It
grows unboundedly & | 0. The Finite Mass Picture will be discussed momentarily.

Remark 9.3From our perspective, [Chr] investigates the 2D Limit £ 2() in the
Finite Mass Picture. Christodoulou’s small parameétes 0 is to be identified with
our 2*. With this translation, the first equation in (9.1c) is peaty Christodoulou’s
“short pulse ansatz”. For [Chr], the “short pulse hierafcplays a central role (see
equation (24) on page 20 in [Chr], and the following discoiski In our approach,
this hierarchy plays no role at all. However, it can be recedehrough the scaling
transformations required to go from the Regularized Péctarthe Finite Mass Picture,
see (9.5¢) and (9.6¢) below. By contrast, our working pettine Regularized Picture,
merely contains a dichotomy: tfjg-even components display one behavior,3hedd
components another, see Remark 6.3 or (9.8). This dichottisappears in our 4D
Limit.
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9.3. Trapped Spheres.
Proposition 9.2.Make the 2D Limit Assumptions (Definition 9.1) with= 0. Set

Aw,) = /Oﬂl du 17 (§, w)|”

min inf
o€{—,+} £€D4(0)
Supposel(u,) > 0 for someu; € (0,1). Theny§ and~¢ are everywhere negative on
the sphere
Suw:  (wu) = (ug, — 5 Awy) A7)

wheneveRl € (0, b) is sufficiently small depending only effu, ) andc. For instance,
2 < 1y/c min{1, A(x,)} will do. In other words,S,, ., is a trapped sphere (see, Re-
mark 2.5).

Remark 9.4Clearly, there is an infinite dimensional family of paifs, 2 satisfying the
assumptions of Proposition 9.2.

Proof. By (8.34), the componentsy, 7 of 7 = Mg o + u~ MW7 satisfy:

‘umé’(&@,u) - (+ % +wg(0)(§,u))‘ < ﬁ
|t (€ me) = (- ﬁz_u +g0)€w)| < ﬁ

forall (&, u,u) € D4(0) x (0,1) x (—oo, —c™ '), where (see equations (6.3))

WO u) = /jds\n%f,sw L GO0)(Ew =0

To find a trapped sphere, let= —\21~2, whereX > 0. Now, for all (&, u) € D4(0) x
(0,1) ande) > 2A%:

a 2
If )\—/ ds\n”(ﬁ,s)\g-i—c— <0 , then 5(&u, —AA?) < 0.
0

- o (9.2)

I L
RN | or

<0 , then ~g(&u, —AA"2%) < 0.

Proposition 9.2 is a direct consequence of (9.2) with %A(gl), if we also recall that
Flip, does not change the signgf andyg. O

9.4. The 2D Limit in the Finite Mass Picture for a Finite Dui@t Pulse. We make the
2D Limit Assumptions (Definition 9.1), and the assumptiocorsd finite duration pulse:

n° : R? x (0,00) — C has support contained * x (1, 2). (9.3a)

3/4
/ dun’(&,u) = 0forall € ando. (9.3b)
1/2
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Remark 9.5Clearly, there is an infinite dimensional family of Poleg-tiompatible;”
satisfying (9.3). The conditions (9.3) are equivalent te tondition that)” (¢, u) =
2.G7 (¢, u) for a functionG? : R? x (0,00) — C with supp G € R? x (3, 3).

Remark 9.60ne can relax the conditions (9.3) by imposing suitable braa$ condi-
tions forn? onRR? x (2, 00) and forfl%4 dun’(&,u), depending orl. In this case,
contrary to our current convention? itself would have to be allowed to depend on
2, say polynomially. A smallness condition dependingRois an “open” condition, as
opposed to (9.3).

We begin with an informal discussion of the 2D Limait= 20 | 0 in the Finite Mass
Picture. Fixuy < 0. The shaded region in the figure (just belowisp (2%, [uo| ).
For|2(| small enough, it is contained #wip (A*, cA~2), the domain, in the Finite Mass
Picture, on which the solution to Theorem 8.1 exists. RegitsmMinkowski space
M ;1. Inthe “pulse regionfl, the solution grows unboundedly &s| 0. Nevertheless,
as we will show, (9.3) implies that on each compAct Strip (0o, |ug| 1) the far field
formal solution converges & | 0. Note that ag( | 0, the compaci is eventually
contained in the “after the pulse regiom” = 1 ; U Il . One would like to have an
analogous result for classical solutions. In this paper ake & step towards such a
result, by controlling the solution im 1, a strip moving and shrinking wit#.

This figure uses
the Finite Mass Picture

If ff/; du [n°(¢,u)|? is positive and independent gfanda, the limit A | 0 of the

formal power series solution is the field corresponding te@lw&rzschild spacetime,
whose future horizon is a level set of with u < wug, when|ug| > 0 is sufficiently

small.

We use the notation

ag g - 1 a
Phicture and [Phicture] = E uk Peicture k) (€, )
k=0
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for the field and for the formal power series, where PictardR, H, F. Let RH, HR,
FH, HF, FR, RF be the “transition matrices” between the déife pictures, given by
RH= —HR = diag (3,3,4,4,4, 2,4,3,3,3,2,2,4, 2, 3,4,5,4) (9.4a)
FH = —HF = diag (4,4,8,8,8, 0,4,4,4,4,4,4,8, —4, 0,4,8,8) (9.4b)
FR= —RF=diag(1,1,4,4,4, —2,0,1,1,1,2,2,4, —6,—3,0, 3,4) (9.4c)

Observe that FR= FH + HR. Then (use: the figure in Subsection 9.1, equations (9.1),
a = 2 and Definitions 3.2, 3.4, 3.5)

UG (6 u,u) = ARTE (€, u, Au) (9.5a)
W (€ u,u) = AW (E, A, A M) (9.5b)
W2 (& u,u) = ATRTG(E A Mu, A %) (9.5¢0)
The coefficient functions of the formal power series transfaccording to
WG (k) (& w) = ANTRBL(R) (€ ) (9.62)
E(k)(€ w) = AT g (k) (€, A ) (9.6b)
GE (k) (& w) = ATREROZ(R) (€, 24 w) (9.6¢)
For allk > 0, we have:
Ug (k) (&, w) is a polynomial irR( (9.7a)
WG (k)(€, ) is a polynomial irRl~2 without constant term (9.7b)

Statement (9.7) is verified by induction ovier Just follow the construction diZg |
and[¥g ] in the proof of Lemma 6.1, keeping in mind that the coefficiemictions, in
the Regularized Picture, of the Minkowski backgrouud o o | depend polynomially
on¥, and thaiDATA %, is independent o2(. On the other hand, in the High Amplitude
Picture, the Minkowski backgrour{d\1, ; | is independent o¥(, while DATA Y, is pro-
portional to2~2. Incidentally, (9.7a) has already been shown in RemarkTéare, it
was also shown that

PB-even (B-odd) components oFg (k) (&, u) are even (odd) polynomials i (9.8)

The statement (9.8) also follows from (9.7a), (9.7b) ané43.because theth com-
ponent of¥ % (k) (&, u) is B-even @B-odd) if (RH),; is even (odd). Furthermore,

thei-th component o#7, (k) (¢, u) has degreel (RH);; — 2 + 2k (9.9)

as a polynomial irl.

Lemma 9.1.The 18 components of eaéld (k) (&, 2%u), k > 0, are Laurent polynomi-
als in22. If a component does not appear on the list

(wl)g(k:)(fa Ql4@) k= Oa 1
(w2)Z(0)(&, A*w)
(20)F (k) (€, AMw) k=0,1,2,3 (9.10)
(22) (k) (&, AMu) k=01
)

(z)2(0)(€. A'u

then it is an actual polynomial if(? without constant term.
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Proof. By (9.4b), (9.6b), (9.7b), all the components are Laurehtpamials in2(2. By
(9.4¢), (9.6¢), (9.7a), all those not in (9.10) are polynaiswithout constant term.O

Lemma 9.2.Suppos€9.3). Definell = R? x (%, oo) andA“ (& f3/4 duln® (& u)|?
For (&,u) € U, the functions ir(9.10)are polynomials ir2(?, and

(w1)Z(0)(&, Au) = (20)F (2)(&, A'w) =2 (1157 — Avy) e jz A7
(WEME A ) =0 (21)E(3)(& AMw) = O(A?)

(w2)E(0)(&, A'u) = (22)F(0)(&,A"w) =0 (9.11)
(2)E0)(&A') =0 (2)F(1)(€ AMu) = —2e11 547

DEMEA ) =0 (23)F(0)(& Aw) = A7

whereQB% = g2 +ige ander; = 5(1+ [€*) and Ay = —5(&" +i€?).

Proof. By (9.6c), the equations (9.11) can be translated from thé&e&~Mass to the
Regularized Picture. In this proof, we work exclusivelyle tRegularized Picture. For
convenience, we suppress the R anthdices as well as the argumegt u). For ex-
ample,w; (k) meansw)g(k)(§, ). We use the shorthands= eg o andA = Ay o
(see, (4.3)). Equivalently, = 20e; ; andA = 2\, ;. For all the equations in (9.11)
concerningzerothorder coefficient functions, use equations (6.3) and (9\8€) only
note that oriR? x (0, ),

23(0) = —4(e 6% +)(e 6% +2X) 0, ' —nd, '+ 9, Il
which reduces ta;(0) = A% onU. For the rest of (9.11), we use the equations
N(z1) + L1D(z) = L (S21 — 2X20 — we21)
+ # (ZS)\zg — 3w 23 + bwszzo + dwgz — 4@422)
N(2z2) + 1D(z3) = 55 (+ 2522 — 2we22)
+ #( — 2w124 + w32z + 2wsz2 — 3W4z3)
L(w1) = —z1 + %29{2&11 + ul_z( —28A%w; — 2w1w2)

The first and third appear (5.4a). For the second, we use)(@mMkthe constraint equa-
tiony; = 0. For the vector field®, N, L, see (5.6). We obtain, in succession,

onRR2 x (0, c0) onU
21(1) | = —A2udyn — 2(e 8% —A)z2(0) =0
2(1) —Zleuzg(O)—Qeiz;;(O) ——2e /1"
w1(1) —4(e )\)(e +2X)9,'n | =0
+ QlQ wn + A 0, 1
21(2) | = (not needed) =2(e a% ~Ae i A°
21(3) | = (not needed) =Auz(2) - 2(e 2 N)2(2)

Forz1(3), we have also used thag (0), w4(0), f1(0), f2(0) all vamsh onU (see equa-
tions (6.3)). We know from (9.8) that; (3) is a polynomial in2(2. It has no constant
term onU, because, A andz,(2) are odd polynomials ifll. Now, use (9.6¢). O
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Lemma 9.3.Suppos€9.3). Each component of eadf (k)(£,w), k > 0, is a Laurent
polynomial in%* and a polynomial inw wheny > 3%,

Proof. By (9.3a) and the construction of the formal power seriebéyroof of Lemma
6.1, eachrg (k) (&, w) is a polynomial inu on U = R? x (2, 00). Also recall (9.7a) and
(9.8). The lemma now follows from (9.6c¢).0

Let W2 (k) (€, u) be the polynomial extension i of W2 (k)(¢, u) fromu > 32A* to

u > 0. Then,[@,g‘} is a Pole-Flip compatible pair of formal solutions to (5.4en)
Strip . With Minkowski background M 1 |, and[ ¥¢ “1=0.

Lemma 9.4.Suppos€9.3). Then,@g(o)(f, u) is a polynomial ir(?. More precisely,

e (0)(€w) = (9.12)
(0707 —QAU,O,O, 07 —AU,O,O,O,O,O,QAU, 0707A0a2ﬂel,1 %Aavo) +O(Q[2)

Proof. By direct calculation. O

Proposition 9.3.Suppos€9.3). Each component of ea@f(k)(g,g), k >0, is simul-
taneously a polynomial in and2(?, for all (¢,u) € R? x (0, 00).

Proof. They are polynomials im by definition. The casé = 0 is covered by Lemma
9.4. The general case is shown by induction dveusing the fact that the equations
(6.6) hold with Minkowski backgroundM ; |. In the present case, (6.6) are equations
for polynomials inu. The generic term$;, on the right hand sides in (6.6) are, by
the inductive hypothesis, polynomials%?. When using (6.6a) through (6.6r) in this
order to determine the components@ﬁ(k), only polynomials in? are generated.

If a% appears on the left hand side, then the non-constant terias-g®lynomial of

the corresponding component@;(k) are determined uniquely by the right hand side.
The constant term of integration is determined by the regn of ¢ to u = 21, that
iswg(k)(&, A1), which is itself a polynomial irl?, by Lemmas 9.1 and 9.2.0

Proposition 9.4.Suppos€9.3). For eachk > 0, let @,{gzo(k) be the constant term of

w¢Z (k) as a polynomial irR(2. Then[@gmzo] is the unique formal solution t(b.4a)
with Minkowski backgrounfiM ; ] and characteristic initial data

Ve a—o(0)(& ) =
(0,0, —uA?,0,0, 0,—A47,0,0,0,0,0,uA”, o,o,AU,MeM%A”,o) (9.13a)

0 0 . Z (e1,1 (% —A11)ern é% A°
_ 0 -4 ~Zeyy 2 A7
[FEap)E0u)=0|a]| O |a e (9.13b)
0 : 0
0 0 0

Its coefficient functions are polynomialsin Moreover,[f/,‘:”gl:o] =0.
Particularly, if A7(¢) = Ais independent of ando, then it represents Schwarzschild
spacetime, with mass = 273/2 4.
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Proof. The first part follows from Lemma 9.1, 9.2, 9.3, 9.4 and Pripms9.3. In par-
ticular, (9.13a) follows from (9.12), and (9.13b) followsim (9.11).

If A7(¢) = Ais independent of ando, then@gﬁzo(o)(f,g) and[@gﬂzo](g,o,u)

in (9.13a) and (9.13b) correspond to sphericaily symmatitial data for (5.4a) with
Minkowski background M i ]. Therefore,[@gmzo} is spherically symmetric, and
therefore, by a formal Birkhoff Theorem, a formal expansiéa Schwarzschild vac-
uum field. The component, of [M; ] + u=M [@Em:o] vanishes on the sphere
(u,u) = (—A,0), and therefore this sphere is a section of the Schwarzskhiidon.
Its area is equal tBr A2, which gives the formula for the mass. O

The discussion of the formal solutid@g | is finished. We now turn to classical solu-
tions. The bound (8.34) implies that for all< —c~!,

1

clu|K+1

K =, .
s o (a0 - ) | <
|o|<R-3

C0(Da(0)x(2,1))

This bound, in turn, implies the Finite Mass Picture bourgg((8.5c), (9.6c¢))

K ~
o’(k)( . ) Q[2K—4R+8
sup ‘80‘ e(-,u) — PR ‘ < —
ol S W SN
la]<R—3

whenu < —22c~!. The power of2 on the right hand side arises 28 — 4R + 8 =
2(K +1) —4(R—3) — 6. GivenR > 4, we choosél = 2R — 3. (Then, the constant
c depends only ot andmaxge(— 1} [|77[|csr (D, (0)x (0,2))-) Altogether, we obtain:

Proposition 9.5.Suppos€9.3). For eachuy < 0 and eachR > 4, the limit as( | 0 of

2R-3 =

sup [ul2"-2  sup ’aa(gj’g(,’u)_ 3 spg(kg(.))’ |
u<ug aeNd —  u co(Da(0)x (324,2))
|o|<R-3

is zero. Here, the solutio®?, the functionsiZ (k), and theu-interval (32, A%) de-
pend orRl. Under appropriate conditions (see, Proposition 9.4), 8ohwarzschild vac-
uum field can be approximated arbitrarily closely on thegstni .

Remark 9.7To obtain the last result, we had to explicitly calculatefils four orders
of the far field expansion, in particular for the component

So far, we have provided complete, detailed arguments fdr ebour statements. At
this point of the paper, the character of our discussiongésri-or the rest of Section 9,
we sketch additional applications of our overall hybrid hoet and give informal argu-
ments to support our informal assertions. We will give ries discussions in another
place.
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9.5. 2D Limit in the Regularized Picture: beyond the far fieddime. Theorem 8.1
produces vacuum fields @wip (1, c), with ¢ > 0 independent of( (see, Remark 9.1).
In this subsection, we informally answer the question: Haew ane control these vac-
uum fields when, > —% and get closer to the (expected) singularity? The strategy,
before, is to generate an appropriate formal solution tarttial value problem (see
Section 6), and then to construct a classical solution kignasing its deviation from a
truncation of the formal solution. The far field expansiois han its course. We need
an expansion if(.

In this subsection, we make the 2D Limit Assumptions (sedinion 9.1), work
exclusively in the Regularized Picture, and suppresdtlamdo indices. For example,
& meansbs,.

In analogy with (5.2a), (5.2c¢), (5.3a), (5.3b), set

P = diag(1,1,0,2,2) & diag(0,0,1,1,1,0,0,0) & diag(0,1,0,1,0)  (9.14a)
Pt = diag(2,2,1,1,1) @ diag(1,0,0,0,0,0,1,1,1) & diag(1,0,1)  (9.14b)
» = A" (A ") (9.14c)
ot — A7 (AP ) (9.14d)

The third line indicates that we wish to write as2” times anew field In order not

to introduce yet another name, we write thew fieldasA—F®. Similar for2A—F* ¢+,
We make formal expansions &f & in powers of22. The properties of the far field
expansion, for instance (9.7a) and (9.8), suggest thatribata (9.14) is consistent.
However, this must be checked.

A formal power serieq f} in 22 on an open subsét C strip, with values in a
vector spaceX is a formal sum

[e.e]

{ry =3 @) r{e} @) (9.15)

£=0
For eacly > 0, the coefficientf{¢} : U/ — X is smooth and independentf

Let { AP Mg o } be the formal expansion &~F Mg o in powers of2? (see,
Definition 4.1). It is defined ostrip ., and takes values iR.

Our ansatz is to write the fieRl="'® as a formal serie§2 "¢ } on some open set
U C strip o with values inR. In this context, the far field ansatz (Section 5) becomes

{aFo} = {A "My} +uM{A "0} (9.16)

To define the associated formal constraint field, see Defini#i.4 and (5.3b), we fix
the weight functions\i, X2, A3, Ay by (5.3c), as before. Then, by direct inspection,
{A=P'®*} or, equivalently,{ 27"} are also formal power series of the form
(9.15). They are defined ad and take values ilR. For each/ > 0, the coefficient
(A~F" %) {¢} is determined by2A~F®){m}, 0 < m < ¢. Similar for (A~ F*w){¢}.

We want to formally solve the sanoharacteristic initial value probleras before:

e (5.4a) with? and Mg o replaced byt { A=Pw } and2AP { A~F My o 1,
o {ATwEY =y,
o formal asymptotic initial conditions (6.8a), (6.8b) witay,u, = %
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Itis understood thabATA = 7 (see equations (6.3)) is fixed and independent.of

Remark 9.8The meaning of the formal asymptotic initial condition (&) &

S @) tim_ @))€ = 2 R0,

=0

Equality is in the sense d?-valued formal power series @2. The right hand side is
actually a polynomial i2(? of degree 1, see equations (6.3).

Constructing a solutiof 21~ ¥ } to this formal initial value problem requires solv-
ing an infinite family of differential equations. All but a fie number of them are linear.
It is possible to arrange these equations so that, when tieesolved step by step, the
“angular derivatives"a%, 6;22 are only applied to functions that have already been

constructed. An essential ingredient is
D=0@) N=2+0@) L=0+%f)2 (9.17)

as2 — 0. Here,O(¥) stands forO(A*) 52r + O(A*) 527, whenk = 1,2. In this
sense, one only has to solve 2-dimensional problems i(uthe) plane.

Observe that property (9.9) of th};eexpansion implies that the coefficient function
(A=Pw){£}, ¢ > 1is of the ordeiO(|u|~**') asu — —oc. For this reason, we expect
that all the arguments in Section 8 can be applied, with minodifications, when the
function¥ in (s2)is replaced by the truncation

K+2

Aw” 3 (22)" (AP {0

£=0

of AT {A~F¥ }. One should be able to conclude, in analogy with TheoremtBt,
both a classical solutio# and a formal power series soluti@f { 21~ ¥ } exist on

strip(1, ¢), and that
K+1

wFe — ST (@) (@) {e, (9.18)
=0
and all its partial derivatives up to some finite order, ataegted, in absolute value,
by < ¢t A2K+4 |y|=K~1 onstrip (1, c). Here, smallness conditions similar to those in
Theorem 8.1 must be made. In particutar; 0 has to be sufficiently small.

The fact that the difference (9.18) goes to zer®as 0, uniformly onstrip (1, ¢),
means that the formal? expansion “has not yet been exhausted”. To better understan
what happens, let us examine the formal expansion in jutiierdiore detail. We only
discuss the zeroth coefficier®~"¥){0} or, equivalently,(2A~-"®){0}, see (9.16).
Seta = 42{0}/e3{0} andb = ~4{0}. The constraint equations,{0} = u3{0} =
ug{0} = 0 and the equatiog%eg{o} = 2e3{0} RN3{0} derived from (5.4a) yield the
systemZa = —2ab and-Zb = —2ab. The initial conditions (see, Remark 9.8)

| es{0} | w2{0} = u®72{0} | we{0} = u*(16{0} — )

u< g 1 0 0
U — —00 1 —0,, '|DATA|? 0
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select the unique solution

2 2
el =5 Zh w60 =% &h hGuu) =’ = (p(6w)”  (9.19)

wherep > 0 andy® = 29, '9, ' [DATA|2. The solution (9.19) is defined @n, where

2

U, = {(ﬁ,g,u) € Strip o | u < —e—cp(ﬁ,y)}

for everye > 0. The solution (9.19) and therefore the formal solutj@—"® } break
down atu = —¢(&,u) < 0, for example because; {0} diverges. Conversely, it can
be shown that the whole formal solutigrl =@ } to the initial value problem exists
onl, that is,no “earlier” breakdown occursAt the formal level, the scalar curvature
invariants are in general unboundedas —p(€, u) < 0. We refer tou = —¢(&, u) <

0 as theformal (naive) singularityObserve that2 {0} < 0 andys{0} < 0 onlp.

It follows from the structure of the matrik, in particular its nonzero entries, that the
componentss {0}, 11{0}, 72{0}, %6{0}, 77{0}, 7s{0}, w1{0}, w3{0}, ws{0} of the
coefficient function(2A~"®){0} satisfy the quasilinear symmetric hyperbolic system
and the constraints in Proposition 2.4. This system has iwestigated in situations
with higher symmetry, for example in [Sze]. In our presentteat, however, the fields
depend on all four coordinates. The collapse of the fram& as 0, see (9.17), is
responsible for reducing the four-dimensional system tarailf of two-dimensional
systems, one for each It is possible to quasi-explicitly solve these two-dimiensl
systems near the formal singularity. That is, there is a &wsulution given by an appro-
priate expansion in the “distance” from the formal singiijawhich is an asymptotic
expansion to the true classical solution (of the two-dint@red system). The behavior
of the solution to this two-dimensional system leads us axsfate that th&(> expan-
sion exhibits an instability close to the formal singuharithis instability appears to
drive the full four dimensional system into a new regime irichithe classical vacuum
solution may display features of the BKL scenario. See, [B&hd references therein.

We conclude this subsection with a further discussion offithere that appears at
the end of Section 1 (Introduction):

e Christodoulou [Chr] constructs strongly focused grawtaél wave solutions on
(see, Remark 9.3). Recall that~ —% is the place where trapped spheres first
form, see Proposition 9.2.

e In this paper, the far field expansion has been used to canstrauum fields on the
largert Ul = swip (1, ¢), wherec > 0 is sufficiently small. See, Theorem 8.1.

e Thef? expansion outlined in this subsection allows one, using@pjate energy
estimates, to construct classical vacuum fields on atieast/i = strip(1,¢'~1)N
U.. Here,e, ¢ > 0 are arbitrary constants (in the figulie,< ¢ < ¢€’), and|2| is
sufficiently small, depending an¢’. Moreover, the formal(?> power series solution
is an asymptotic expansion to the true classical solutio®f as 0, uniformly on
LUl Ui, In other words, th@(? expansion allows one to construct and control the
solution up to any “finite distance” from the formal singutgr
The justification of the last statement relies on the fact ¢hsuitable truncation of
the 2% expansion is an approximate vacuum field, with error termingyto zero
uniformly on1 Ut U as% — 0 (by a compactness argument). Furthermore,
these error terms decay quickly enoughuas- —oo to be “integrable”. See, the
discussion of (9.18).
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Remark 9.9Motivated by [BK] and [AnRe], we expect that coupling the gtational
field to a massless scalar field will make it possible to carstunder suitable generic
conditions, strongly focused solutions from past null iitfill the way into a piece of
the singularity.

Remark 9.100bserve that:

e One only has to solvinear equations to inductively construct the far field expan-
sion[¥]inLemma6.1.

e By contrast, the construction of the leading term of ffeexpansion{ 20="v }
requires the solution of aonlinear (effectively two-dimensional) system. In other
words, one is expanding around a non-trivial “background”.

9.6. 4D Limit. Recall that in the 2D Limit, th&3-odd components of the coefficients
of the far field formal solutiori® 5 ] go to zero agl — 0 (in the Regularized Picture).
On the other hand, th8-even components do not in general go to zero. See, Remark
6.3 or (9.8). This asymmetric feature of the 2D Limit disagein the more general
4D Limit (see, Subsection 9.2), as one can see by lookingedfathfield expansion. It
is for the purpose of taking the 4D Limit that theo scaling parameters,and?(, have
been carried along through the whole paper.

To compare the 4D Limit with the 2D Limit, it is useful to forrate the second
smallness condition in (8.32) in a picture in which the Minlski background and the
stereographic coordinatésare fixed (independent af and®(), for example the High
Amplitude Picture. The smallness condition becomes

ag+tasz

max || 0® DATAY || <P ’3
ce{mt} HlCco(Da(0)x(0,1)) = Q2 |9
forall a = (a1, 2, a3) € Nj with || < R + 4. Notice that in the 4D Limit| & | is a
large factor, and there is one factor for each “angular dévig”.

A. Index of Notation

This is a partial list of symbols used in this pagéerefers to their main/typical usage.
Warning: These symbols can have different meanings. Howéese meanings will
always be made clear in each particular conté¢kor example, the entry for the symbol
S in the index below refers to equation (4.4), which corresjsoto the main/typical
meaning of the symbad¥ in many sections of this paper. Nevertheless, the symbol
stands for a field transformation in Section 3, and it stands fset in the local context
of Proposition 7.1.) Symbols which only appear in the Appeeslare not listed. In the
third column, a selected reference is given.

Symbol Typical Meaning See

(%), (%) frame nondegeneracy conditionDefinition 2.1
[A,B] = AB — BA | commutator of operators

<p parametep dependent bound | Convention 7.1

A a scaling parameters Definitions 3.5,4.1
A,3,3, ¢ field transformations Section 3

A(D), £(D) constituents ofsHS) Definition 2.3
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Symbol

Typical Meaning

See

AW, z), £(¥, )

A(@), £(®,0,9)

AW, 2), £(W, 0,0, x)
Z=QEZ + Src

B=t = Q=¢

b, c

C

?

DATA

D.D,N,L

D,, B,

e,A\p

ER{f}(®)

D = (e,7,w)

P = (t,u,v)

Flip,,

Z,J

J T H,....Gt ..

jy,

K

A1, A2, Az, A

M

Ma,Qla [Ma,Ql]
M(q,0)0 = h(q,0)
ymEE:Mmﬂ

Ny
O(E)' 0(507 b7 t)
T, T

B
P, P, Py

8_1
Oz, Og, Og
0

A = mOOR
m s L

Q»—A
< .

a @,

B

constituents of (5.4a)
constituents ofsHS)
constituents of (5.4b)

small constants
complex conjugation operator

data at past null infinity
complex frame vector fields
open disk and open ball

energy
R valued field
R valued constraint field
Pole-Flip transformation
intervals
generic symbols
energy current vector field
truncation index, see als@’
weight functions
far field ansatz matrix
doubly scaled Minkowski field
general symm. hyp. system
a particular symm. hyp. system
set of integers> 0
set of integers> 0
families of subsets dR?
certain permutation matrices
parity field transformation
generic symbols
multi-derivative
an integration operator
gradient operator w.r.t;, ¢, q
— l(i _ ZL)

2\ 5T ¢z
coordinates

spatial components a@f

general subsets @&

particular subsets d&3

three pictures

differentiability index

real vector spaces
real/imaginary part operators
the real and complex numbers

Proposition 5.1
Proposition 2.3
Proposition 5.1
(S4)in Section 8
(S2)in Section 8
Theorem 8.1
Convention 8.3
Convention 7.3
Proposition 6.1
Definition 2.1
Convention 7.1
Definition 4.1
Definition 7.1
Section 2
Definition 2.4
Definition 3.6

Definitions 8.1, 8.2
Section 7
Theorem 8.1
Definition 2.3
Section 5
Definitions 4.1, 6.1
Section 7

(S10)in Section 8

(E0), (REO) in Sec. 7
(S3), (S1)in Sec. 8
Remark 2.9
Definitions 5.1, 6.2
Definition 7.1

(6.4)

Proposition 6.1
Convention 7.1

Convention 7.1
(EB4) in Section 7
(S9)in Section 8
Section 9
Theorem 8.1

(2.1), (2.6)

(4.4)
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Symbol Typical Meaning See
Supgé“){f}(t) supremum norm Definition 7.1
(SHS), (SHS), (subSHS) | symmetric hyperbolic systems | Section 2
strip (1, \) family of open subsets d* (4.1)
o stereographic chart superscript Proposition 6.4
t time coordinate, equalto + v | Convention 7.1
U general open subset Bf Section 2
=, =t 7~'R and7~ 'R valued fields | (S3) (S1)in Section 8
x = (2%, 22,23, 2*) | coordinates Section 2

= (€Y,€% u,u) coordinates Section 2
I3 either(¢!,£€2) or ¢t +ig?
zZ=Rz—-1i8z complex conjugation
U= (fw,2) R valued field (5.1)
[P], w(k) formal power series, coefficients(6.1)
Uy truncated formal power series | (S2)in Section 8
vt = (s,p,y) R valued constraint field Proposition 5.1
[Wh], wh(k) formal power series, coefficients Section 6

B. Generalized Vacuum Equations

Our main reference for this appendix is [Fr].

The vacuum Einstein equations, written in local coordisatg 22, 22, 2* on a
connected open sétin R*, are a nonlinear system of partial differential equatiats f
the ten metric tensor fieldg,,,. Namely,

Rlovg =0 (B.1)
where,
1 _ 0 4 o] 4 § VA et L §
Rlonp = a?rﬁa - era + F[l;arw - Féarﬂu - (Fﬁﬂ o F}M)F/m

are the components of the Riemann curvature tensor for thiedieita connection
F;’Zu = gVA[‘uV)\:

_ 1 9 9 9
L = 5(35m90x + 557 9ux — 5= 9uv)

associated to the metrig,, .

There are patent mathematical advantages to introducimg fisdds and equations
that, in the presence of appropriate constraints, collap$ee vacuum Einstein equa-
tions. The purpose of this appendix is to introduce a pdeicgeneralized system of
vacuum equations and explain how it will be used. In this agpeand in Appendix C,
we work with real quantities. In Appendix D we employ a conxptietrad formalism,
see [NP], as in the main body of this paper.

Definition B.1. A generalized spacetimés an open subsét of R* together with
e 16 frame fields~," and the associated vector fields

E, = EJ'3%

a  Qxr

It is assumed thakt,, Fs, E3, E, are frame vector fields. That is, they are linearly
independent tangent vectors at every poirt{of
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e A constant, symmetric matriy;, with three positive and one negative eigenvalues.
For our purposes, the matrix,;, and its inverseg/®® are

10 0 O 100 O
o100 wy  [o010 0

(gab)_ 000 —1 (g )_ 00 0 —1 (B.2)
00-1 0 00-1 0

e 24 connection field$,;. that are antisymmetric in the indicésandc.
e 10 Weyl field$V 1, characterized by

Wabke = —Whake Wajke + Waejr + Ware; =0

Wabke = —Waper 9" Wapke = 0

Wabke = Wieab
Convention B.1Small Latin indicesz, b, ¢ .. .are frame indices and always run from
one to four. Small Greek indices u, v ...are coordinate indices and also always run
from one to four. Frame indices are raised and lowered wilctnstant tensay,;.

We associate to every generalized spacetime

e A Lorentzian metrigy determined by)(E., Eb) = gab-
e A connectionV specified by

9(VE,Ey, E.) = Lape or,equivalently, Vg, E, = [,°E.
wherel,, = ¢°@ 4. The antisymmetry of ;. in the last two indices, expresses
the property that the connecti@nis compatible with the metric.
e 24 connection torsion fields

T = Tw B — T B — Eo(By") + Ep(E.") (B.3)

They measure the deviation & from the Levi-Civita connection for the metric
Thatis, T,," vanishes if and only if

Fabc - % ( - g(Ea7 [Eb7 EC]) + g(E67 [Eav Eb]) + g(Eb7 [EC7 Ea]))
e 36 curvature torsion fields

Uktasr = Ea(Doex) — Ep(Lack)
+ FblmFa'mk - FaZmFbmk - (Fa bm - Fbam)[‘m@k - kaab

The curvature tensak®,,; for the connectiofV/ is given by

RFyoy = Eo(Ind®) — By (Lud®)
+ Fbémramk - aémFbmk - (Fabm - Fbam - abm)[‘m/C
= Ty Tpnd® + UF gy + Wy (B.4)
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whereTy,,™" E¥ = T,". In the event thal,;,”* vanishes, the curvature torsion fields
Ureap Mmeasure the deviation of the Riemann curvature for the L8Wia connec-
tion from the Weyl tensoW¢qp -

The curvature tensaR., for the connectior’V has the symmetries

Rieat = — Rokab Rypab = — Riepa

Warning.The customary pair exchange symmetry and cyclic identitpaloneces-
sarily hold when the torsiof,,;” is not zero.
e 16 Bianchi fields

Vavije = ViWapie + ViiWapij + Vi Wapki
or, equivalently, contracted Bianchi fields
Vijie = 9" Vavije = V*Wapjk

For the definition ofV; W1, see (B.5) below. The fieldig,;;,. vanish if and only

if the Weyl tensoni¥/;x; satisfies the Bianchi identities with respect to the connec-
tion V. Similarly, the fieldsV; ;. vanish if and only if the Weyl tensor satisfies the
contracted Bianchi identities with respect to the conmecy.

Remark B.1The contracted Bianchi fields are equivalent to the Bian&id$i. This
fact is an immediate consequence of the following algelidgintity. Supposed .p;;x
is antisymmetric in the first two indices and totally antisyetric in the last three. Set

Aaij = gbkAabijk’ Aikg - %EkeijAaij
ThenAuijr = 3 €ijr’ (A?Leb - Agea + Agab)'
Convention B.2We defineE, I', W, T, U, V to be covariant tensors (vector field

valued in the case df andT’) oni/ whose components with respect to theed frame
E, are given by

E, = B2 T(E,, Ey) = Tyt 2

a g OxH
F(an Eb, Ec) = Fabc U(Eaa Eb, Eca Ed) = Uabcd
W(E(m Eb, Eca Ed) = Wabcd V(Ea7 Eb7 Ec) = Vabc

From this perspective:

o If X1, Xo, X3 are vector fields ot/ then'(Xy, Xo, X3) = X¢ X8 XS Fape.
HereX, = X?F, fori =1,2,3. Ingeneral (X1, X3, X3) # g(Vx, X2, X3).
e Covariant derivatives of all these tensors are well defifred example,

viVVabcd = Ei<Wabcd) - Fiamebcd - FibmWamcd - FicmWabmd - Fidm Wabcm
(B.5)

Definition B.2. We refer to the system
(T,U,V) =0 (B.6)

as thegeneralized vacuum field equations
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Proposition B.1. A generalized spacetim&,”, .., Wapke ON an open subsét of

R* is a solution to the generalized vacuum field equati@6) if and only if V is the
Levi-Civita connection for the metrig, and the associated Riemann curvature tensor
coincides with the Weyl tensd¥ . In this eventy is a solution to the vacuum Einstein
equationgB.1)on!/.

Proposition B.2. The tensorg’, U, V have the algebraic symmetries:

Tl = —Tyat Viab = —Viba (B.7a)
Uabke = —Ubare VE =0 (B.7b)
Uabke = —Uaber Vabe + Voca + Vear = 0 (B.7¢)
They satisfy thgeneralized Bianchi equations
(T, 4,9)=0 (B.8)
where, by definition,
T = I (VT — UM iy B — Tii” 5% Ei*) (B.9a)
Year = €% (ViUabje — U™ ik Dnab + 2 Vavije — Tij" 5% Thav ) (B.9b)
Vi = VoVl + Ut W™k — 2Upjap W™, (B.9c)
+ LUy W™ — LT S22 W%,
Here €qpeq 1S totally antisymmetric andio3qs = —1. Furthermoreﬁi is the tensor

derivation that acts on frame indices &8; and ignores coordinate indices. Explicitly,
Vil = Ei(Tj") — i " Tk — L™ Ty

Remark B.2The generalized Bianchi equations (B.8) @entities they hold for all
generalized spacetimes. Both (B.6) and (B.8) are quadiltinonlinear. Each, has
exactly one linear term. RespectivelyiV;.¢q, and— Vo451 in the equation/ = 0 and
i1 = 0. The only coordinate index appears in fie= 0 and¥ = 0 equations. Observe
that, for fixedE,", I'upe, Wanjk, the equations (B.8) are linear and homogeneous
Tav", Uavjr and V.

n

Our goal is to construct physically interesting vacuum spiages. In this appendix
we have traded in the 10 traditional metric tensor fields foframe, connection and
Weyl fields and an additional 76 connection torsion, cumatiorsion and Bianchi
fields. How can this formalism be of any practical use? Noy @k there 126 fields,
but both the generalized vacuum and Bianchi equations a®letermined, since the
tensorV” vanishes whenevé&r andU both vanish.

Here is a rough outline of our strategy. Regard the frdfyféand general connection
I';jx as vector fields with values R*® andR?* respectively. We conceptualize abstract
gauge conditions as fixed affine linear subspacesR'% andg c R?*. The frame and
connection are gauge fixed whé&h (p) € £ andl;;;(p) € G for all pointsp € U. No
conditions are imposed on the Weyl tensor. There are

dim€& +dimG +10 < 50

independent gauge fixed frame, gauge fixed connection andl fisls. An abstract
gauge fixed, generalized spacetime is summarized by adi@d/ taking values in
E®GaRY.

Abstract gauge conditions should have three properties:
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e Property B.1.They are always “locally realizable”. That is, near eacmpai every
spacetime there is a coordinate system and a frame sucthéeabtponents of the
frame, with respect to the coordinate vector fields, and @meponents of the Levi -
Civita connection, with respect to the frame, lie in the gasgbspaces andg. In
other words, abstract gauge conditions should not exclugdpri, any spacetimes.

e Property B.2.They are “symmetric hyperbolic”. In the present contextymmsetric
hyperbolic system of partial differential equations fog ttolumn vector is a system

A E,(v) = f

whereA® is a symmetric matrix and® + A* is strictly positive definite. Now, pick
bases fo€ andg, and rewrite the 60 equatiofis5= 0 andU = 0 explicitly in terms
of the components of the field. It is required that one can select exaatliyn £
linear combinations of the 24 connection torsion equati@hs= 0) and exactly
dim G linear combinations of the 36 curvature torsion equatiéhs=( 0) equations
and 10 linear combinations of the 16 Bianchi equatidns< 0) which taken together
comprise a (quasilinear) symmetric hyperbolic system#favhich we will refer to
as(SHS).

Property B.2 is not just wishful thinking, as it may first appeOnly the principal
parts of (B.6),

E.(Ey") — Ey(E")
Ej(I'ba) — Ex(Ljab)
E;(Wajk) + Ex(Wapis) + E;(Wapk:)

have to be considered in the quest for symmetric hyperbqliagons. Furthermore,
only the frame and connection fields in the principal partgeha be written out in
terms ofd. Itis unnecessary to open up and look at the occurrences fifetime fields
inside the first order differential operataks,. At this level, it is required that there
are, in turn, linear combinations of the principal parts @ symmetric hyperbolic.

In principle, the fieldp, that contains all information about the generalized spyaes

is now uniquely determined, given appropriate data(3mgs) . However, there is an
important catch¢sHs) and the abstract gauge conditions imply that some part of the
tensorsl’, U andV vanish, but not all. The remaining components are sumntirize
in theconstraint field®?. If (sHs)is satisfied and! vanishes, the,”, [, Wabjk

is a solution to the generalized vacuum field equations.

e Property B.3.They are “dual symmetric hyperbolic”. [EHs) is satisfied, it is re-
quired that, in an entirely similar way, judicious lineamaioinations of the general-
ized Bianchi equations (B.8) can be brought into the form lifiear, homogeneous
symmetric hyperbolic system fdr* which we refer to agsHS). In particular, if the
data for any well posed problem for the systéns) vanishes, then the constraint
field & vanishes everywhere.

Itis much simpler to carry out this general methodology iagpice than to formulate it
in broad conceptual terms. Different problems requirestdéht gauges and symmetric
hyperbolic systems. In Appendix C, we introduce the wavefgauge for Lorentzian
manifolds. In Appendix D, we fix the abstract wavefront gaage select symmetric
hyperbolic subsystems from the generalized vacuum andcBiaguations that are
particularly suited to the problem we are solving in thisgap
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Proof (of the Generalized Bianchi Equatiofi 8)).

e T=0:WriteT'(X,Y) = VxY — Vy X — [X, Y]. Repeatedly exploiting the total
antisymmetry o&*“/* and then using the Jacobi identity,

eaijk <VivjEl€ - VjviElc - V[E«;,Ej]Ek)
— ¢aiik (V1 (T(E], Ek)> + T(EI: [E]7 Ek‘}))

It follows thate®7x RV, B = e%0% (V, Ty + Tji" Dy B! — Tji” 5% E;*). Sub-
stituting (B.4) for the curvatur&®,, the identityT = 0 follows.
o i = 0: Apply the operatoe®*V; to the identity (B.4) in the form

Ricjr = Usejic + Tji" Timev + Whejk
and use the standard Bianchi identity for the curvatureaiensrresponding to a
connection with torsions®“* (V; Ry.cji + Tijszcgk) =0.
e U = 0: The divergenc&, V", = —%(V,V, — V, Vo)W ;. Express the com-
mutators in terms of the curvature tensor:
(VCVd — Vdvc)wabjk
=- cdevZWa,bjk — Reachijk - Rebchaéjk — Rejcdwa,bék - Rekchabjé

Substitute (B.4) for the curvature, contract indices,awitit the covariant derivatives,
rearrange, collect terms and cancel to ob%@is- 0. O

C. The Wavefront Gauge for Lorentzian Manifolds

Here, we introduce thgeometric wavefront gaugae the language of Lorentzian ge-
ometry. Theabstract wavefront gaugen the language of generalized spacetimes, is
introduced in Appendix D.

Proposition C.1 (Geometric wavefront gauge).Every point on any Lorentzian
4-manifold(M, g) has an open neighborhood on which there are coordinates

(QEI,IQ,I3,I4) = (51’527Q7 u)

and an oriented framéFE,, Fs, E5, FE4) such thatg(E,, FEy) = ga, se€(B.2), such
that £5 and E, are both future directed vector fields, and such that

(a) the coordinate functions and « are solutions to the eikonal equation, that is,
9" Ba (1) By (u) = 0 and g™ E, (u) Ey (u) = 0.

(b) the vector fieldZ, is minus the gradient af, thatisg(E4, - ) = —du.

(c) the coordinates!, £2 are constant along the integral curves Bf.

(d) the functiores = E4(uw) is strictly positive and the vector fietd E5 is minus the
gradient ofu, thatisg(esEs, - ) = —du.

(e) E4 andes B3 are null geodesic vector fields.

(f) the frame vector fieldg&, and E; satisfy

g(VE4E1, Eg) =0

whereV is the Levi-Civita connection.
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Proof (Informal).To start with, suppos@/ is Minkowski space. LeX = (X° X) =
(X9 X1 X2 X?) € R x R3 be standard Cartesian coordinates. For every fixed),
defineu,u: {X € R*: X% > —¢} — Rby

ulp)=  sup X', wlp)= - inf X"
v (e X)el~(p) W)=~ 0

Here,I~(p) (resp.,I(p)) is the chronological past (future) of that is, all points
that can be reached fromby traveling along past (future) directed, piecewise sinpot
timelike curves. Note that

e by constructionu(p) < u(q) andu(p) < u(q) forall ¢ € It (p),
o there is a sufficiently smad > 0 and an open neighborhodd C M of the origin
X =0, on whichu, u are smooth andu, du are linearly independent.

It follows that,du anddu are timelike or null orUU.

Supposelu is timelike at a poinp € U. Then, the level set’ of u passing through
pwould be (locally) a smooth spacelike hypersurface.d4f 17 (p) is sufficiently close
to p, then every past directed timelike curve frgrmtersects¥’, and

u(q) = sup X'=  sup sup X'= sup  w(®)=u).
(—eX)el~(q) p'eXNI~(q) (—eX)el~(p) p'eXni=(q)

becausd ~(¢) N H = U csni-( I~ ) N H, with H = {X € R* : X° = —¢}.
This contradicts the assumption thiat(p) is timelike. Thereforedw is null. Similarly,
du is null.

Now, fix a pointp, on any Lorentzian manifold/, and let( X°, X) be smooth local
coordinates that vanish at with —dX° a future directed 1-form. Precisely the same
construction for, andu works on a suitably small neighborhobdc M of pq.

Define vector fieldd andL by g(L, - ) = —duandg(L, - ) = —du. They are future
null. DefineEy = L, e3 = L(u) > 0 andF3 = e ' L. In particularg(Es, E4) = —1.

Condition (e) is equivalentt&¥ . L = 0 andV L = 0. These are consequences of
the general fact that for any functien the acceleratio¥ W of its gradient fieldi//
is the gradient field of the functioglg(W, Ww).

Let K, and K be spacelike, orthonormal vector fields, perpendiculdt@andE;.
Define( ’5; ) = (Lo, smay( ﬁ; ) whereq satisfies the differential equatidiy (o) =
—9(VEe, K1, K3) along the integral curves df;.

Let&?, €2 be functions on the level set afthat goes throughy, such thaté?, €2, u)
are local coordinates for this level set. Siriceis transverse to the level séty (u) > 0,
there is a unique extension &f, £2 to a neighborhood gf that satisfies the transport
equations, (£1) = E4(€%) = 0. Moreover,(¢1, €2, u, u) are local coordinates.O

Remark C.1The spacelike vector fieldg; and £, and the null geodesic vector field
E, are tangent to each level setwfEach level set ofi is a union of null geodesics,
the lines of constargt', £2 andu.

Similarly, £, E> and the null geodesic vector fietd F5 are tangent to each level set
of u. Each level set of. is a union of null geodesics. They are, in general, not given b
the lines of constargt', £2 andu.

We refer to the intersections of level setsuoindw aswavefronts They are spacelike
and their tangent space is spanneddyyand Es.
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Proposition C.2.Fix a coordinate system and frame as in the geometric wanefro
gauge of Proposition C.1. Lét,” be the components of the frame field with respect to
the coordinate system and IE};. be the components of the Levi-Civita conneclign

Ea - Eau %7 Fabc - g(anEb, Ec)-
Then
* % 00
W _ [**x00
(B") = {1207
00e30

where x is a generic symbol. Moreover,

* Xll X12 X11 X12 *

a(be) « 0 0 * * "

0« = 0 0 O

where the matrix indice@c) run over the ordered sequence
(12), (31), (32), (41), (42), (34).
Here,xap andy , , are the second fundamental forms of the wavefronts in thenalr
null directionsE, and E’5. As such,
XAB = XBA Xap = Xpa-
Moreover, the entries filled with the generic symiosatisfy
I'p34 = T34 A=1,2

Proof. We first verify the 0's and 1's in these matrices. The entrie$m@,") follow
directly from Proposition C.1, for examplé&s(u) = du(F3) = —g(E4, Es) = 1 by
(b). The zeros i1 ,.) are accounted for by (f), bV z, E, = 0, see (e), and by the
fact thatV g, E5 is proportional toEs, see (e). Next/ 23 — [213 = 0 (&2 = Km)
andlas — Io1a = 0 (x12 = x21) follow, by (d) and (b), from[E;, Es](u) = 0 and
[En, Es](u) = 0, respectively. Finally ass — 544 = 0 follows from[E 4, Es](u) = 0.
O

D. The Abstract Wavefront Gauge

In this Appendix, we leave the realm of Lorentz 4-manifolatsd speak exclusively in
the language of generalized spacetimes, as in Appendix B.

We now define thabstract wavefront gaugend show that it has the Properties B.1
through B.3.

Itis convenientto introduce the complex frame
(FI’F27F37F4):(D7E7N7L)7 Fa:FM a

where
D=2"3(F +iE,), D=2 73(F —iE), N=EFE;, L=E,.
These fields are sections of the complexified tangent bundle.
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Convention D.1Let ¢ be the constant matrix for whicR,”* = t,’E,*, andt~! its
inverse. For every tensor fielel in Appendix B with componentS‘al“_anbl“'bm with
respect to the real fram(é, ), the corresponding components with respect to the com-
plex frame(F,) are distinguished by boldface letters and defined by

by...bm ] in
Sal...a ! :talll "'tanl SLl

n in

J1eedm (t—l)j1b1 . (t—l)jmbm (D.1)

If the tensor fieldS also carries coordinate indices, they are unaffected by)(IAn
equivalent statement to (D.1) is:$fis the tensor field for which

S(Ea1 PR Ean,) = Sal.A.an,blmmebl XR -+ QR Ebm
andSs is extended complex linearly in itsarguments, then
S(Fam SRS Fan) = Sal».-an,blmbmFbl ®c -+ ®c Fp,,

The transformation (D.1) commutes with contraction of aedi. Accordingly, the in-
dices of boldface fields have to be raised and lowered with

gab = gij (t_l)ia(t_l)jb 8ab = taitbjgij

see (B.2) and (2.3). The complex componesys_ . "’ are only introduced for
notational convenience. The corresponding tensor feldll, however, always be real,
in the sense that if all its arguments are real, then the result is real.

For the particular covariant tensofs I', W, T', U, V (see, Convention B.2), the
transformation (D.1) becomes

F,'52: =F, To! 52 = T(Fa, Fy) (D.2a)
Fabc:F(FayFvac) Uabcd:U(Fa»Fb’FmFd) (D2b)
Wabcd :W(Faan;Fde) Vubc :V(FaanaFc) (DZC)

Definition D.1. Let
b =(e,v,w): U >R cCCaClacC® see(2.1)

be a sufficiently differentiable field satisfying condigg®) and (x«) in Definition 2.1.
TheAbstract Wavefront Gauge Spacetime

Md" - (Fauv ]-‘abm Wabcd)
is defined just as in Definition 2.1.
Remark D.1Definition D.1 implicitly fixes abstract gauge conditionstire sense of
Appendix B. The affine space&sandg have real dimensions, respectivelyand 14.

That is, the fieldP has 31 real components.

Remark D.20bserve that Proposition C.2 is the statement that theaabstiavefront
gauge in Definition D.1 is locally realizable in the sense ppAndix B (Property B.1).
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Proposition D.1. Let Mg be an abstract wavefront gauge spacetime iet\o, A3, \y
be strictly positive weight functions @h Then, there are unique fields

(tuov): U— R cC CCaClaqC®
(t,u,v): U — R cCaCaC?

(whereR andR are defined in2.1)and(2.6) and such that

ity it 0 O
ts ts 0 0
ta  ts 0 0

AN
(T(“b) ) Tt —t2 t3 0O
-4 —t 3 0
y t5 —t30

Uz + Uz U7 —Ug ug — U7 —Uz — Uy Ug + Uz Ug — Ug

Ug —Uy —Ug Us —Ug —Us
(U(ab)(jk)) _| —uw —us Uy —Uug us —us

—uj Ug —us —u —Uy  —U3+ Uy

[ —us Uy —uy U Uy — U3

Uo — Uy U7 + Ug U + Uy —U3 + Uy Uy — U3 U + Ug

%2(—02 +v1) — )\1*353 —)%455 713(03 — v9)
1 (= - i 1 (5 . 1
(Vaim) = Fplz— v b e a BT A
E(U?’ — 03 — V2 +’Uz) E(—U4+’l}3) E(—U4+’U3)
)\LQ(—’UQ —‘—62) %353 /\LS’Ug
7)\*1101 712_3 %(7EQ+U1)+ )\1?53
g m o fwra s
)\—2(02—’01) o 02—51) E(U3+03—U2_E2)

_%1,01 _Alﬁl _)\LZ(UQ —Fig)
The matrix indicesab), (jk) run over the ordered sequence
(12) (31) (32) (41) (42) (34)

Proof. In general, the tensofB, U andV lie (pointwise) in spaces of real dimension
24, 36 and 16, respectively (see, equations (B.7)). By direct inspegtibe following
equations hold for every field: T1,°> = 0 (1 real equation)Ts;® = 0 (2 real equa-
tions);Tab4 = 0 (6 real equationsltJssq1 = Uy134 (2 real equations)s Uszyzz = 0

(1 real equation) Uy142 = 0 (1 real equation). Consequently, the associated ten-
sorsT’, U andV lie in subspaces of real dimensiad — 9 = 15, 36 — 4 = 32 and

16 — 0 = 16, respectively. By construction, the matrices on the rigirichsides of the
equations above lie in these subspaces. The linear map(franv) @ (¢, u, v) to these
matrices has maximal rankimg R + dimg R = 31 + 32 = 63. Since this is equal to

15 + 32 4 16, the fields(t, u, v) and(t, u, v) exist and are unique.O
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Proposition D.1 defines a unique “splitting” of the nonzeoconponents of 7', U, V)
into two sets(t, u, v) and (¢, u, v). This splitting and the role of the weight functions
A; is clarified by the following proposition and the subsequentarks.

Proposition D.2. For every choice of strictly positive weight functioRg A2, A3, Ay
onU, the system of equations
(t,u,0) =0

is equivalent to the systeg@Hs), A(®)® = f(P), in Definition 2.3, which is a (quasi-
linear) symmetric hyperbolic system for the fidld= (e,~,w) providedes > 0. In
particular, the abstract wavefront gauge of Definition DdsHProperty B.2.

Proof. The equivalence oft,u,v) = 0 with the symmetric hyperbolic systeaHs)
in Definition 2.3 is by direct (machine) verification. For argale calculation, see the
proof of Proposition D.3. O

Remark D.3The term “symmetric” is a slight misnomer, in the sense thathatrices

A () determining the principal parA*(®) 83, are complex Hermitian rather than

real symmetric.

Remark D.4(sHs) is of a form which is particularly suited to constructingsodns.
The reason is that the first two blocls (@), A»(®) of the principal part, correspond-
ing to the principal parts aof = 0 andu = 0, are diagonal and onl¥; or N appear.

Remark D.5Note that

>\1><
0y NMID | xox w1
D|L
02 N ?‘ _A3X w2
Principal Part Operator v | = DIL (T~ w3
N |D s X
b4 BT i
b5 1N |D Ws
D|L

The dotted lines in the schematic diagram for the 5 matrix on the right hand side
indicate that the overlapping entries are the sugis+ \; 1 V. Each(% D) block is
symmetric hyperbolic, and consequently, so isihe 5 matrix for any cﬁoice of the
strictly positive weight functions.

Remark D.6The weights have a natural interpretation in terms of eesrgihe en-
ergy current naturally associated (8Hs), A(®)? = f(P), is the vector fieldj* =
o7 A+ (d) d. Estimates are obtained by applying the divergence thetwem

Ot = P19, A")D + 2R (DF(D)).

The energies are integrals over the spacelike componethts bbundary. The functions
A1, A2, A3, A4 appear in the boundary integrals and play the role of weifgrtshe
componentsv; , wa, w3, W4, Ws.

Proposition D.3.Let A1, A2, A3, Ay be strictly positive weight functions @u. The
components oft, u, v) are given by(2.7)in Definition 2.4. The field* = (t,u,v) :
U — R is called theconstraint field associated t@ = (e, v, w).
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Proof. By direct (machine) calculation. We make a sample calatati
(151 ) T
@1, F, — Iy F - Fi(Fo') + Fo(F ')
D, T+ DR, I2°Fs' +I'p'Fyt
—I'y'Fi' = 'y ’Fo' — Iy °F3' — Iy *Fy' — F(Fp') + Fo(Fy ')
@ 1y9oF, ! 4 Dy Fy' — I F3' — IgsFy!

— IyoF ' — Doy Fo' + Do F3' + DopsFy' — Fi(Fa') + Fo(Fr )
g —I110F2" + TioF3' — TopoFy' — Doy F3' — Fi(Fo') + Fo(Fy )
6 _ _ _ _ _
@ — (13 +74)€1 + v2e4 — (=72 —F3)e1 — y2e4 — D(€1) + D(er)
(1) by Proposition D.1; (2) by equations (D.2a) and (B.3)8the Einstein summation
convention; (4) by lowering frame indices, using the firstmxan equation (2.3); (5)
by antisymmetry of I, ) in the last two indices anB,' = 0, see Definition 2.1; (6)
by Definition 2.1. The result of this sample calculation mhagswith Definition 2.4. O

The generalized vacuum field equations (B.6) reduce, inlsgact wavefront gauge,
to (sHs)and®? = 0, see Proposition D.1. How can we ensure that a solutigars)
also satisfie®* = 0? The answer is given in Proposition D.4.

Proposition D.4. Assume thab = (e, v, w) satisfies; > 0 and solvegsHs)or, equiv-
alently, (t,u,v) = 0. Let the Latin indices ir€,", 4., L., denote components of
the fields(B.9) with respect to the complex frame figlg (see, Convention D.1). The
subsystem of the generalized Bianchi equat{@8) given by

g1y
. (12 + Sysq)
Ty Uo1g
T Mi1q PP
TP e 1lo23 S| 2(Bi24+Vsa) | =0 (D.3)
Tyt 3103 W3
T2 %(11112 + Ly34)
5 (a1 + Usz4)
A330

is equivalent to the systef@Hs), A(d)d¢ = f(®, 0,$)%*, in Proposition 2.3, which
is a linear homogeneous symmetric hyperbolic systendfor (¢,u,v). In particular,
the abstract wavefront gauge of Definition D.1 has Proper8. B

Proof. By assumption(t, u, v) = 0. The equivalence of (D.3) with the linear, homoge-
neous symmetric hyperbolic systéams)is by direct (machine) verification.o

E. Symmetries: Proofs

In this section, we prove that the field transformationsidtrced in Section 3 are field
symmetries (see, Definition 3.1).
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Recall from Section 3 the definition of a field transformatfonin this Appendix we
take a slightly different perspective and regard i/ andz’ € U4’ as two sets of (global)
coordinates on the same 4-dimensional manifold. Similargregardp, A, F,, V, W

and their primed counterparts as objects on this 4-manifddde,V is the connection
associated with/", and W is viewed as a 4-covariant tensor (see, Appendix B and
Convention D.1). Field transformations are defined, in #yipendix, through their
action on the coordinates the complex frame vector fields,, the connectiorV, the
4-covariant tenso’, and the strictly positive weight functiont The definitions off,

21 given below are equivalent to the corresponding definitini®ection 3. Those of,

3 are slight generalizations, becawse ¢? and( are allowed to depend dnt, 22, 2%).

Convention E.1For the rest of this appendix, it is implicitly assumed that= S - =

is a local diffeomorphism of*. With this understanding, it is unnecessary to specify
the ranges of the andz’, because the discussion is purely algebraic. A doglways
denotes a group action.

Angular coordinate transformatio@. Let ¢! (z!, 22, 2*), €2(2!, 22, 2*) be functions.
2=¢.x= ((’Zl(xl 22 2h), e2(xt, 22, 2t), 23, ac4) ¢c.v=V
m
(€-F)," 50097 = Fa'' 5% C-W=Ww
c- A=A

U(1) transformation3. Let ¢ = ((z', 2%, 2%) € U(1).

d=3 ==z 3-V=V
(3 ’ F)a”@(?")“ - (C Fl ’ Cil FQ#a F3u7 F4H) 831" 3) W =W
3-4=41
Global Isotropic Scalingy. LetJ > 0 be a constant.
/:3- *(1’1 z?, 323, Jat) Jj-v=vV
(-F), s =37 Fa''5n Iw=3w
J-A=A
Global Anisotropic Scalingl. Let2( # 0 be a constant.
2/ le—(mxl, 1a?, 2%, W) A-V=V
(A-F), " 5o = (3 B, %F2 » e B, Fal) 50 AW =AW

- A = diag(1,A2, A%, A5) A

Remark E.1The action on the frame induces a global conformal transfition of the
associated metri€ - g =g, 3-g=g9, J-9=3%g, A-g=A%g.

Remark E.2¢, 3, J, 2 preserve the wavefront gauge and, consequently, induce-an a
tion on® = (e, v, w). We illustrate this important fact by three examples. First

(A-F)," ()(T’)/ = AP Fs" 50 = A2 (ea 5o + 5 55 + 557)
=A% (a7 5iGyr + A 50y + A 50)
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compatible with the wavefront gauge. Necessafiy,- e); = 2 3e; fori = 4,5.
Second, abbreviating!, = 2 - F,,, we have
(A-w)s = (A W) (Fj, Fy, Fy, F3) =275 (A-W)(F3, Fy, Fs, )
= 9[76 Q[Q W(F3, FQ, 1’7‘37 Fg) = Q[74 Ws.

Third, abbreviating?, = 3 - F,

(3-D)(FL, Fi, F3) = (3-9)((3- V) F{, F3) = Cg(Vr F1, F2) + Fi(C)

(3 : F)(Fl/7 F?i» in) =(3 g)((3 : V)F{Fé’Fi) = CQ(VF1F37F4)
which is consistent with the wave front gauge if and onl3f- v)3 = (v3 + 3 F1(¢)
and(3 - v)s = ("' + 2 F2(¢71). By direct calculation, the present definitionsehf

3,3, % are seen to be equivalent to those in Section 3 (generalisith the case af
and3).

Proposition E.1.Let S be one o, 3, J, 2. Then, separately:

e (x) and (x«) are preserved (see, Definition 2.1).
o (t,u,v) =0ifandonlyif(S-t, S-u, S-v)=0.
e (t,u,v) =0ifandonlyif(S-t, S-u, S-v)=0.
In particular, S is afield symmetryin the sense of Definition 3.1.

Proof. Let Riem be the Riemann curvature tensor associateg tmnsidered as a 4-
covariant tensor. For eact there are complex functions, ko, k3, k4 and a constant
2 > 0 such thate; ko 62% = k3ryef2? =1 and

(S- Fa)“ﬁ =ra Fo'5% a=1,2,34
S-V=V S-g= 2% S - Riem = £2? Riem S-W=02*Ww
We abbreviatd”! = S - F,, = k, F,. By the definition ofl’, U, V in Appendix B,
(S-T)"(F,, Fy) a(f/)u = Kakp TV (Fy, Fb)a% (E.1)

(S-U)(E!, FLF'\F}) = Q%kokprcka (U(Fa, Fy, o, Fy) (E.2)

o+ g(Fay Fy) T*(Fo, Fa) i 352 )
(S-V)(FL, Fy, FL) = kaipke V(Fo, Fy, FL) (E.3)
By the definition of(t, u, v) and(¢, u, v) in Proposition D.1,

| ¢[3 |3 |2

t=0<«= S-t=0andt=0 < S-t=0 true| true| true

u=0 <= S-u=0andt=0 < S-t=0 |true true| true

v=0 <= S-v=0andv=0 < S.v=0|true|true|true| true
where

e in the case of andt we use (E.1), observing th%?,—)M is proportional toa% for
w=1,234if Sisone of3, J, 2,
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e in the case oft andu we use (E.2), observing thgts = 0 fora, pu = 1,2,3,4if
S isone of¢, J, 2,
e inthe case ob andv we use (E.3) and the transformation law far

The remaining cases are discussed separ&labe 11f S = ¢, we have

o _ o¢t_9 o¢? _ 9 _ 9 9
0z — 0z® O(a/)! + 0z O(a’)2 (a = 172) - -

suchthat=0 < ¢-t=0andt =0 < €-t = 0follow from Proposition D.1.
Case 2iIf S = 3, note that for al, b, ¢, d,

9(Fa, Fy) TH(Fe, Fa) - 55 = g(Fa, Fy) Yy, TH(Fe, Fa) =52

Kq OTH Kq Oxt

by the structure of the torsion-matrix (last column vanghend2£¢ = 0. Because
of k3 = k4 = 1 and the termy(F,, F;), the expression vanishes unlgasb) =
(1,2), (2,1). At this point, one verifies directly that

(tbuy=0 = 3-u=0, B-t3-u)y=0 = u=0,
(t,u) =0 = 3-u=0, 3-t3-u)=0 = u=0

This concludes the proof.O

F. An Estimate for Pole-Flip
Lemma F.1.Let B ¢ R? be open. For alh < r; < r; let
A(ry,re) = {(f,g,u) eR* : (wu) € B, m <[] < 1"2}.
For all |a| > 1, all integersRk > 0, and allC®-fields® : A(|a|ry, |a|rs) — R,

IFlipo - @l onatal 1oty Scrarvrs) [ Ploncadalr tairy (F1)

For Flip ,, see Definition 3.6. The same estimate holds foxtfienorms on the image
of the setsA(12l, 120} and A(|a|ry, |a|r2) under the change of coordinates fram=

ro? T

(¢,u,u)toq = (t,&,u), see Convention 7.1.

Remark F.1The point here is that the constant in (F.1) is independefitjof 1 and
B. Lemma F.1 is used in Step 9 of the proof of Theorem 8.1. If Téeo8.1 would
be stated with the additional conditian= 2, then Lemma F.1 would not appear in its
proof.

Proof. Without loss of generality, we can assume> 1, becausd-lip,, = Flip_,,.
Let €, be the angular coordinate transformation (Definition 3i2¢gby (&) = af.
Let § be the angular coordinate transformation witff) = ¢=*. Let 3 be theU(1)
transformation (Definition 3.3) witti(¢) = —¢/€. We haveFlip,, = 30C0F08, ), =
€n030F0¢, Decompos® = (e,v,w) = ¢ © P, whered; = (e1, ez, €4, ¢€5)
and®, = (es,y1,...,7s,wn, ..., ws). Introduce the notation(1) = 1 ande(2) = 0.
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Forall 3 = (B1,32,0,0) € N3 with |3] < R,all0 <a < b,allA>0,al0<r <R,
all N = 1,2, and all fieldsp,

10°(€x - D) nllco(amransy) = XN || cogacany)
1(@x - D) nlleramanny) < ANV Dy llora@py) for 0<A<1
[ D)nllerap—1.a-1) Srab) [PN]
(3Pl
[(3- D)2l

SetX = (R, r1,72). The above estimates imply

||8ﬂ(':|ipa “D)allco(a(e, oy

ro Ty

= Haﬁ((ea 030Fo Q:%) '¢)2HCD(A(% ay)

S
=a 0P ((30F0 €1) - Phallcocact L)
Sxa P(Fo C1) - Phllewiat, )+ a (o C1) - Pllcmiat, iy

(=

Cr(A(a;b))

cr(A@ap) Sriab) 1P1ller(Aap))

or(A@an) Sriap) 1P1llera@p) + I192llcracab)

<x OFWH(Q% “P)illcisicagr ra)) T a"ﬁ'll(% “P)allc181(A(r1,r0))
§X a_l|‘@1||C\3\(A(ozr1,a7"2)) + ”@2”0\/3\(14(047"1,(17’2))

Sx 1Pl cisr aary ars))

Similarly, (|07 (Flip , - @)1llcocaca =) Sx [@llcisi(agar ar))- Together,

[0°(Flip, - @)l cocace =) Sx 1Dl cioi(Aar ar))

ro Ty

The last estimate, and the fact thg; and ;2; both commute withFlip ,, imply
LemmaF.1l. O

G. Supplement to Proposition 8.1.

Here we make explicit all the polynomialg, 7, H, H (see, Definition 8.1) that appear

in Proposition 8.1. In particular, it will be clear, by insgion, that these polynomials
are independent ok, as required. We use tli& @ C° @ C* block-notation, as ise)
and(s7), and the complex conjugation operatodr

¢ Recall that, for each, the square matrice}’(q,0), B4 (¢,0) andB% (g, 0) are5 x 5,
9 x 9 and4 x 4, respectively. Segse).
In equation (8.5a), we havB!(g,0) — B! = u Gk (that is,H = 0) for all
i=1,2,3andy = 0,1, 2,3, exceptin the casds, 1) = (1, A) with A = 1,2, when

000 0 O
000 0 O
Bi(q,0) = Bi =000 0 0 | + 5Gx = yH+ 50k
000 0 —e
000—-e O

and similar forB?(q,0) — B?.
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e For (8.5b),
(Qn—Qu‘Qm—@u‘Qm—@m) - 50k
00 0 0 0]0---0[000 0
00 0 0 0]0---0[000 0
:% 00 0 0 0]0---0[000 0
00 0 0_4)\0---0000 0
00 —3wr(0) —2X2A2|0--- 0/0 00 —3 25(0)
e For (8.5¢),

(Q21 - @21‘ Q22 — @22‘ Q23 — @23) — 10k

0 0 e 0 0 0 00 0 00
0--+]---0 —ie 0 0 0 00 0 00
0--e]--- 0 0 0—eC,eCy 00 —-eC, 00
0-e]--- 0 0 0 e¢_el€_0/0—-e€_00
—l0---]---0 0 0 0 0 00 0 00
0---[---0—-CLwi(0)0 0 0 00 0 00
O-«-|---0 =X 0 0 0 00 0 00
O-+]---0 =XC 0 0 0 00 0 00
0---]--- 0 0 0 €A C_X0/0€_X00

where the operato&, ¢ and¢_ ¢ are defined by + » C andi(p — p C'), respec-
tively, whereyp is any complex valued function.
e For (8.5d)

<Q31 - @31) Q32 — @32‘ Q33 — @33) - LGk

0] 00 01+CJ2000

R 0-C1 0 [0100
) o 000 0 (0000
0] 000 0 |0000

e For (8.7h), (8.7c), (8.7d), recall from Remark 5.1 tfigf, ¥) is a quadratic poly-
nomial in¥, ¥ without constant term. Lefl(q, %) = f(1)(q,¥) + f(2)(¢,¥) be its
decomposition into homogeneous (o¥rparts. By definition (8.3c),

d = . a 1,_—1 =
ds ls=0 Q(q7 S“) 11 = ds; ds2 ’(51,52):0 27 f(2) (q’ ﬂ-(sl‘_' + S2H))

It follows from direct inspection of (5.5b) thdi,)(¢,¥) is a polynomial in¥, 7
whose coefficients are Laurent polynomialsiinwith complex coefficients. Now
one reads off from (5.7) that the Laurent polynomials haeestinucture recorded in
(8.7h), (8.7¢c) and (8.7d).

e For (8.7a), recall from Remark 5.1 that(q, ¥) is affine linear (oveR) in ¥. Let
Al (q, W) = A’(O)(q, ) + A’("l)(q7 V) be its decomposition into homogeneous parts.
By (8.3b), we havef-| _ B¥(q,s5) = =" Al (g, 7 E)m. Writing out the result
in the notation(h, 0, ¢) = 7 (51, =2, =3) of (8.2), we obtain fopr = 0 andp = 3,

% s=0 BM(Q7SE) = dlag(07 u%h& u1_4h37 #h‘:ﬁ uith) &b (u_12h3 19) &b O4><4

131



96

andforp=A=1,2,

L] _ B(q,55)

ds | s=0
Lhars Hha 0 0 0
Lha zhays —sha 0 0
= 0 Lha LHhars Zha 0 | @09xo ® (Hhaysly)
0 0 Lha Zzhais 5ha
0 0 0 Hha O
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The BKL Conjectures for
Spatially Homogeneous Spacetimes

Michael Reiterer, Eugene Trubowitz
Department of Mathematics, ETH Zurich, Switzerland

Abstract: We rigorously construct and control a generic class of afptiomogeneous
(Bianchi VIII and Bianchi IX) vacuum spacetimes that exhithie oscillatory BKL
phenomenology. We investigate the causal structure oéthgacetimes and show that
there is a “particle horizon”.

1. Introduction

The goal of this paper is to rigorously construct and exgijiciontrol a generic class of
solutions® = a @ 3 : [0,00) — R? @ R3, with independent variable € [0, co) and
with! (a; + as + a3)|.—o < 0, to the autonomous system of six ordinary differential
equations

0=—ai — (B)2+ (85)* + (Bi)* — 285 (1.1a)
0=—286+ B (1.1b)

forall (i,j,k) € C def {(1,2,3),(2,3,1),(3,1,2)}, subject to the quadratic constraint

0= asas +azar +araz — (81)% — (B2)% — (B3) + 26285 + 26361 + 23152 (1.1c)

Here,a = (a1, aa,a3), B = (B1, P2, 83). The system (1.1) are the vacuum Einstein
equations for spatially homogeneous (Bianchi) spacetisesProposition 2.1.

The pioneering calculations and heuristic picture of Beii Khalatnikov, LifshitZ
[BKL1] and Misner [Mis] suggest that a generic class of solus to (1.1) are oscilla-
tory asT — +oo and that the dynamics of one degree of freedom is closelyectla
to the discrete dynamics of the Gauss n@&fx) = - — [1], a non-invertible map

L If 7+ @(7) is asolution to (1.1), S0 is — —&(—7). The condition(a; + a2 +as)|r=o < 0 breaks
this symmetry. Solutions to (1.1) witfevy + a2 + a3)|-=0 < 0 do not break down in finite positive time,
that is, they extend tf), o). A proof of this fact is given later in this introduction.

2 As a quadratic form ofR® @ R3, the right hand side of (1.1c) has signat(#e +, —, —, —, —).

3 The work of Belinskii, Khalatnikov, Lifshitz concerns geak(inhomogeneous) spacetimes, but relies
on intuition about the homogeneous case.
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from (0,1) \ Q to itself. Every element of0, 1) \ Q admits a unique infinite continued
fraction expansion

1
<k17k27k‘3,...> - F (12)

ko+ nglr

where(k,,),>1 are strictly positive integers. The Gauss map is the Idft;sh
G ((k1, ko, ks, ...)) = (ka, ks, ka, . ..) 1.3)

Rigorous results about spatially homogeneous spacetimes lbeen obtained by
Rendall [Ren] and Ringstrom [Ril], [Ri2]. See also Heinaled Uggla [HU2]. We
refer to the very readable paper [HU1] for a detailed disomss

The first rigorous proofs that there exist spatially homagers vacuum spacetimes
whose asymptotic behavior is related, in a precise senserédes of the Gauss map,
have been obtained recently by Béguin [Be] and by Liebsdt@rterich, Webster and
Georgi [LHWG]. These theorems apply to a dense subsgt,af) \ Q. A basic restric-
tion of both these works is that the sequelikg),,>1 has to be bounded, a condition
fulfilled only by a Lebesgue measure zero subsé0of) \ Q. The results of the present
paper apply to any sequen@s, ),,>1 that grows at most polynomially. The correspond-
ing subset 0of0, 1) \ Q has full Lebesgue measure one.

We point out some properties of the system (1.1a), (1.1h)assuming (1.1c):

(i) The right hand side of (1.1c) is a conserved quantity.

(i) If 7 — @(7) is asolution, sois — pP(pT + q), forallp,q € R.
(iii) The signaturegsgn (31, sgn B2, sgn B3) are constant.

(V) 181826307 = 2(a1 + a2 + as)|B1 G285

dr

(v) We havé dd—_r(al + g + 043) > —3‘ﬁ162ﬂ3|2/3.
If in addition we assume (1.1c), then:

(vi) %(O&l + ag + a3) = asaz + agag + arae < %(al + oo + a3)2.

Let® = a@ § be any solutionto (1.1), thatis (1.1a), (1.1b), (1.1c),lenhalf-open
interval[0, 71) with 0 < 7y < oo. Setd = a1 + a2 + a3 and supposé (0) < 0. Then

(1) < —|g(0)|/(1+ [(0)]7) <0 forall 7 € [0,71) (1.4)

by (vi). Consequently3; 32/5| is bounded, by (iv), and is bounded below, by (v), on
[0,71). The constraint (1.1c) implies tiafa; )2 + (a2)? + (a3)? < 6|31 B283]%/3 + ¢

is bounded. Now (1.1b) implies th&®;)? + (32)? + (0s)? is bounded. Therefore,
solutions to (1.1) with#(0) < 0 can be extended tf), co). The solutions considered
in this paper belong to this general class. We are espedaigdiyested in their — +oo
asymptotics.

4 (B1)?+(B2)% +(B3)? — 28233 — 28381 — 281 B2+ 3| B182/33|>/% > 0 holds for all31, B2, Bs € R,
see [HU1]. The only nontrivial cases abg, 32, 33 > 0 or 31, 32, 33 < 0. In these cases, the inequality is
a direct consequence of the polynomial identity

20 48 4 20 — 24328 — 22353 _ 22393 4 3024222 =

1 (2®+y* +27 Hyz+za+ay) ((y—z)Q(erz—w)Q+(Z—Z)2(Z+z—y)2+(w—y)2(ﬂﬂ+y—Z)2)

5 Use2(azas + azal + ajas) = 42 — (a1)? — (a2)? — (a3)?.
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For every solution to (1.1) witk(0) < 0, as in the last paragraph, the half-infinite
interval [0, o) actually corresponds tofaite physical duration of the associated spa-
tially homogeneous vacuum spacetime (given in Proposiidh In fact, an increasing
affine parameter along the timelike geodesics orthogonhlgdevel sets of is given
by 7 — [, exp(3 [, ¢)ds, with uniform upper bound|g(0)|~*, by (1.4).

In this paper, we consider only solutions to (1.1) for whigh 82, 33 # 0 (also
called Bianchi VIII or IX models). We now give an informal aefption of the solu-
tions that we construct, the phenomenological picture &f[B]. The structure of each
of these solutions is described by three sequences of carapbimtervalsZ;);>1,
(Bj)jzl’ (Sj)jzl of [07 OO), for which:

(a.1) The left endpoint of; is the origin, and the right endpoint &, henceforth
denotedr;, coincides with the left endpoint af; 1, for all j > 1. Setr, = 0.

(@.2) U]—>1 Z; = [0,00), thatis,lim;_, o 7; = +00.

(a.3) B, is contained in the interior af;, and0 < |B;| < |Z;|, forall j > 1.

(a.4) S; is the closed interval of all points betweBn andB; 1, for all j > 1.

Here is a picture:
1B | Sj (Bj+1 Sjt1

| |
Ij T ',Z’—j+1 Tj4+1

Let S5 be the set of all permutatior(s, b, ¢) of the triple (1,2, 3). The solution is
further described by a sequen@g );>1 in S3, with ; = (a(j), b(j), c(4)), so that:

(b.1) OnZ;, the componentsy,j), Be(;) are so small in absolute value that the local
dynamics of® = o @ 3 is essentially unaffected ify,;), c(;) are set equal to
zero in the four equations (1.1a) and (1.1c).

(b.2) OnZ; \ B;, the component,; is so small in absolute value that the local dy-
namics of® = o @ 3 is essentially unaffected i#, ;) is set equal to zero in the
four equations (1.1a) and (1.1c). The compornignf, is not smallon B3;, but the
mixed product$, ;) Bn(j) andBa(jBe(;) are still small.

(b.3) Items (b.1) and (b.2) imply that mixed products of camgnts ofs are small on
all of [0, 00), and that all three components@fre small or J;; S;.

(b.4) a(j) #a(j+1)forallj > 1.

(b.5) None of the properties listed so far distinguisbég) from c(j). By (b.4), this
ambiguity can be consistently eliminated by stipulafirig) = a(j + 1).

We can draw the following heuristic consequences from thhatdieuristic properties
above Separately on each intervél;, j > 1:

(c.1) The components af are essentially constant, by (1.1a) and (b.3), Bads: |,
log |32, log | B3| are essentially linear functions with slopes a-, as, by (1.1b).

(c.2) The constraint (1.1c) essentially reducesito; + aza; + ajas = 0. As be-
fore, we requiret = a1 + a2 + a3 < 0. Furthermore, we make the generic
assumption that all components @fare nonzero. These conditions imply that
two components oft are negative, one component®fs positive, and the sum
of any two is negative.

(c.3) The single positive component@fhas to bevy, ;) = aa(;41)- In fact, we know
that |3, (;+1)| is very small onS; but is not small or3; ;. Therefore, the slope
0f 10g | Ba(j+1)|, Which isa; .1 by (c.1), has to be positive afy.
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(c.4) By the last three items and (b.4), there is at most oire poS; where|3, ;)| =
|Baci+1)|- By (b.1), (b.2), there is such a point, becai$g )| is going from not
small to small onS;, and|3,(;+1)| is going from small to not small o§;. By
convention, this point is;.

Separately on each intervd}, j > 1 (in particular onB; C Z;):

(d.1) aagy) + ap(y) anda,g;) + ag(;) are essentially constant, by (1.1a), (b.1), and
they are both negative, by (c.1), (c.2). Al$0g |3a(;)Bb() | 108 |Ba(j) Be(s)| are
essentially linear functions with slopasg ;) + ;) andas ;) + ey, by (1.1b).

(d.2) Essentially{aa(j) +ab(]-))(aa(j) +Ckc(j)) = (aa(j))Q + (Ba(j))2- by (1.1c). Since
the left hand side is essentially constant by (d.1), so isithe hand side.

(d.3) By (d.1), itonly remains to understand the behaviargfy, 3a(;)- By (1.1a), we
essentially have

Faag) = —(Ba))?  d5Ba) = a)Bai) (1.5)

A special solution isv,(;y = —tanh7 andf3,(;) = +sech7 = £(cosh )7L
The general solution is obtained from the special solutipafiplying the affine
symmetry transformation (ii) above, wigh > 0. SinceB; is essentially the in-
terval on which|3,(;)| is not small, see (b.2), we must have- |B;|~" (here~
means “same order of magnitude”). See [BKL1], Section 3,drtipular pages
534 and 535.

(d.4) Recall (c.1). By (d.3), we hawe,(j)|s,., = —aa(jls,, since the hyperbolic
tangent just flips the sign. Therefore, by (d.1), the net geaacross3; of the
components ofy, from right to left, is given by

aa(ls; 1 = Qagls; = 20ag)ls;
ap(j)ls; 1 = abls; + 20a)ls,
Qe(j)ls; 1 = Qe(hls; + 2aa0)ls,
These equations make sense onlyjfor 2, sinceS, has not been defined.

In this paper, we turn the heuristic picture of [BKL1], sketd above, into a mathemat-
ically rigorous one, globally of), c0), for a generic class of solutions. The first step is
to construct a discrete dynamical system, that maps thedtaf) to the stateb(;_1)

at the earlier timer;_, < 75, forall j > 1. That is, the construction proceeds from
right-to-left, beginning at = +oo. We refer to the discrete dynamical system maps as
transfer maps.

For eachj > 0, two components ofi(r;) have the same absolute value, see (c.4),
and®(;) satisfies the constraint (1.1c). Therefore, the stateseodiitrete dynamical
system have 4 continuous degrees of freedom. By the symifiigtithe transfer maps
commute with rescalings. Taking the quotient, one obtaidsdimensional discrete
dynamical system. The three “dimensionless” quantitias\e use to parametrize the
discrete states are denotgd= (h;, w;, ¢;). Morally, they are interpreted as follows:

e h; ~ |B;|/|Z;| > 0. In the billiard picture of [Mis], it is the dimensionlessti@of
the collision and free-motion times. By (a.3), one bas h; < 1. In fact, h; is the
all-important small parameter in our construction. It gtmesero rapidly ag — co.
This is necessary for us to make a global constructiofDomo). The precise rate
depends on the sequen@s,),,>1. The rate is the same as in Proposition 4.4, up to
even smaller corrections.
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e The components af are essentially constant &) and subject to the reduced con-
straint equation in (c.2). Thus, modulo the scaling symyn@iy;, only one degree of
freedom is required to parametriags; . We usew; ~ —(ap(;)/(Qa) +b)))ls; -

By (c.2) and (c.3), we have; > 0. The left-to-right discrete dynamics ef; (which
is opposite to the right-to-left direction of our transfeaps) is closely related to a
variant of the Gauss map, sometimes referred to aBikiemapor Kasner map

e The meaning of;; will be explained in a more indirect way. As pointed out above
the left-to-right dynamics ab; is related to the Gauss map, which is a non-invertible
left-shift, see (1.3). The non-invertibility of the Gaussprseems to be at odds with
the invertible dynamics of the system of ordinary diffeiahéquations (1.1). The
parametey; is introduced so that thjeint left-to-right discrete dynamics ¢fv;, ¢;)
is closely related to the left-shift dwo-sidedsequencegk,, )<z of strictly positive
integers, which is invertible. Accordingly, the right-teft transfer maps are related
to the right shift on two-sided sequendés ),.cz.

This concludes the informal discussion. We emphasize ligahotation used above is
specific to the introduction. In particul&Z; ) ;>1, (B;);>1, (S;j);>1 do not appear in
the main text. Starting from Section 2, all the notation tsdduced from scratch.

We now state simplified, self-contained versions of our ltssReferences to their
stronger counterparts are given. Here is a short guide:

Definition 1.1 (equivalent to Definition 3.12)ntroduces the state vectobs (r, f, 0..)
of the 3-dimensional discrete dynamical system. The dyoawofithe signature vec-
tor . is trivial, by (iii), but it affects the dynamics dfr, f) in a non-trivial way.

Definition 1.2 (this is Definition 3.16)Introduces explicit map®., Qr, A, that turn
out to be very good approximations to the transfer mapsshasvn in Section 4 that
iterates of@;, can be understood in terms of the Gauss map / continueddnaaind,
by a change of variables, in terms of solutions to certaiedirequations.

Definition 3.19 (only in the main text)lhe essential smallness condition > 0 is
quantitatively encoded in an open subgetC (0,1) x (0,00) x ((0,00) \ {1}). It
determines the domain of definition of the transfer maps.

Proposition 1.1 (slimmed-down version of Proposition 318)asserts the existence of
transfer maps. The paifP., II) and the triple(P., I1, A) constitute the transfer
maps for the 3-dimensional and 4-dimensional systemseotisply, and they are
very close to(Py, Q) and (P, Qr, Ar). Explicit error bounds and precise esti-
mates for the transfer solution appear only in the full v@rsProposition 3.3.

Theorem 1.1 (simplified version of Theorems 6.2, 6GYyes a generic class of iterates
to (P, II) that are super-exponentially close to iterateg®f, Q). That is, it
asserts the existence of solutions to the 3-dimensionedatissdynamical system.

The overview is as follows. Every solution to the 3-dimensibodiscrete dynamical
system as in Theorem 1.1 can be lifted to a unique solutiohgattdimensional dis-
crete dynamical system, up to an overall scale, through e nin Proposition 1.1.
This solution corresponds to the sequence of st@kés;)) ;> in the informal discus-
sion. Proposition 1.1 gives solutions to (1.1) on compaigrirals that connect next-
neighbor states. Symmetry (ii) is used to translate thesgpect intervals and place
them next to each other, beginningrat= 0, just like the(Z;),>1 in the informal dis-
cussion. As in (a.2) of the informal discussion, the uniorthafse intervals is indeed
[0,0), and a semi-global solution to (1.1) is obtained. To see tésiote the states
by \; @.(m;,85,0.) with \; > 0 andr; € S; andg; = (h’,w},q;) € F, where
j > 0.0ne has\; = Almji1,0.](gj+1)Aj+1 > Aj41 by the definition ofA and
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h’; € (0,1) by the definition ofF. In particular, the sequence of produ€ish’) ;> is
bounded from above b¥, > 0. By Proposition 1.1, the length of each of tﬁe intervals
is bounded from below b§2)\)~! > 0.

Definition 1.1 (State vectors).Let 7 = (a,b,c) € S3 ando. € {-1,+1}® and
f = (h,w,q) € (0,00)? xR. Letd, = &, (7, f,0.) = a® B € R* @ R3 be the vector
given by(sgn (31, sgn 32, sgn 33) = o and by

an = —1 h10g|§ﬁa|:_111275;(1+h10g2)
ap = T hlog|§0p| = — 5% (1 + hlog2)
Qe =—W— [t hlog|if.| = —(1 +w)q — wl(i;':) - 1+13+“’2‘;“’2h10g2

wherep = u(w, £, 0.) € Ris uniquely determined by requiring théit. 1¢c)holds.

Definition 1.2 (Approximate transfer maps).Introduce three maps

Pr: Sz x (0700)3 — 53 ((a,b,c),f) = (a’,b’,c')
QL : (0,00)° = (0,00)* x R f— (hp,wr,qr)
AL : (0,00)3 — (0, 00) f— AL

wheref = (h, w,¢) andq;, = numl/den;, andh;, = num2y,/deny,, and:
eif g < 1:

(@',b',c') = (c,;a,b) numly = (1 +w)(1 —q) —hlog2+ hwlog(2 + w)

wy, = ﬁ num?2;, = h(2 + w)
AL =2+4+w deny, = (1 +w)(¢ —hlog2) +h(3 + w)log(2 + w)
oif g > 1:

(a’,b',¢') = (b,a,c) numly = (1 +w)(g— 1 —hlog2) — hwlog
wrp =1+w num2;, = h(2 + w)
)\L:ﬁ—z denL:(1+w)—hlog2+h(3+2w)logﬁ—x
Observe thatlen;, > 0.
Proposition 1.1 (Transfer maps).Fix 0. € {—1,+1}*andr = (a, b, c) € S3. There
exist map%
H[r,0.]: F— (0,002 xR and  Afr,o0.]: F—[l,00)

such that for every\ > 0 andf = (h,w,q) € F, the solution to(1.1) starting at
AP, (m,f,0,) attime0 passes through’ @, (7', ', o,.) at an earlier timer’ < 0, with
3 <h\|7'| < 3.Heref’ = II[r,0,](f) and X' = A A[r,0,](f) and7’ = Py (7,1).
Schematically, the transition is

AA[W,U*](f)qs*(PL(W,f), r,0.)(f), 0*) A D.(n.f,0.)

Furthermore (informal):/] and A are approximated by the mapgg; and A, with
errors that go to zero exponentially &s| 0 (for fixedw, ¢). See Proposition 3.3

6 Caution: The map#l cannot immediately be iterated / composed, becéisso)? x R ¢ F.
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Theorem 1.1.Fix o, € {—1,+1}3andnr, € Ss. Fix constantd > 1, v > 0. Suppose
the vectorfy = (hg, wo, qo) € (0, 00)? satisfies

(i) wo € (0,1)\ Q andgo € (0,00) \ Q.
(i) k, < D max{1,n}” for all n > —2, where the two-sided sequence of strictly
positive integersk,, ),z is given by

(1+q0)71 = <l€0,k‘,1,]€,2,...> 1U02<]€1,k2,k’3,...>
(i) 0 < hg < A¥ whereA! = AY(D,v) = 27D ~*(4(y + 1)) 10+,
Thenf, andm, are the first elements of a unique sequeft;e;>o in F and a unique
sequencém;);>o in Sz, respectively, withr; = Pr(mj41,f541) andf; = Qr(fj41)
forall j > 0. Furthermore, there exists a sequenige),;>o in F such that for allj > 0,
gj = [mjt1,0.)(gj+1) and 7 =Pr(mjt1,85+1)

and, withp, = (1 + V/5),

D-11/(+D)
g — fjllrs < exp ( — £ AP ))

If v > 1andD > 15 -7, then the set of all vectoffy € (0,00)* that satisfy (i), (i),
(iii) has positive Lebesgue measure.

The class of solutions that we construct is generic in theeseii the last sentence
of Theorem 1.1. It would be desirable to have a stronger gatyestatement, namely
a genericity statement for “thg, rather than thé,”.

For the causal structure and particle horizons, see Priigogi2 and Section 7.

Itis a pleasure to thank J. Frohlich, G.M. Graf and T. Spefmetheir support and
encouragement.

2. Spatially homogeneous vacuum spacetimes
Proposition 2.1.Leta® 3 : (19, 71) — R® ®R? be a solution tq1.1)and let2 c R?
be open, with Cartesian coordinates= (z!, 22, 3). Fix anyr, € (79, 71) and let
3 3 3
U1 = Z;LZI vlu(x)% V2 = ZMZI UQM(X)%% U3 = Zu:l U3M(X)az%
be three smooth vector fields ¢éhthat are a frame at each point and satisfy
[vj,vk] :ﬁi(T*)’Ui on{?

forall (i,j,k) € C ‘Ef{(l, 2,3),(2,3,1),(3,1,2)}. Introduce

ey = GC(T)B% e = eC‘(T)vi i=1,2,3
() =GN+ G +G(r) G =—% [T dsas(s)  1=1,2,3
on the domair{ry, 71) x 2 C R*. Then, the Lorentzian metricwith inverse
1

g =—e®e ter®e+ea®ertezes

is a solution to the vacuum Einstein equatidtis(g) = 0 on (7, 1) x 2.

139



Proof. In this proof, everywheréi, j, k) € C. It follows from L= = q;e=% and
G(7) = 0 and (1.1b) thab; (1) = Bi(7.)e2%(7). Now, by direct calculation,

leo, e1] = —2eCaye; le5, ex] = € Bie;
Let V be the Levi-Civita connection associatedjtdr hen, for alla, b,c = 0, 1, 2, 3,
g(veaeb; ec) = % (g([eaa eb]» ec) - g([eba ec]» ea) + g([ecy ea]7 eb))

By direct calculation,

Ves0 =0 Ve, 61 = %ecaieo
Veoei =0 Veex = 5€(+6i — B + B )e
Veeo = secaies Veeei = 3¢ (=i — B + Bies

and
Riem(ey, €5, €1, €;)
= je* ((+ﬁi = B5 = Bi) (+5i — B + i) + 26k (+6i + B — i) + aiaj)
Riem(ey, €a, €1, €;)
— iexéak((—ﬁi + 85 — B)os + (+6i — B — Pi)ay + QQkﬁk)
Riem(eg, €a, €0, €;)
= —ieQC Oai (2;—706 — (a5 + O‘k)o‘i)
FurthermoreRiem(ea, ep, €c, ea) = 0 unless{a,b} = {c,d} with a # b. The Rie-

mann curvature tensor is completely specified by theseittEnand by its algebraic
symmetries. It follows that

Ric(eq, e9) = f%e 4l +az +az) + %€2C(0[2063 + aza; + aras)

eiei) = +1e® Lo+ 1 (4 (8)° — (55)° — (Bx)® + 26;5x)
Ric(ej, ex) =0

The right hand sides of the first and third equation vanishlby&) and (1.1c). O

Proposition 2.2.1n the context of Proposition 2.1, let: (74, 7{) — (70,71) % 2 be
a smooth curve given by(r) = (7,+%(7)), where~* is a curve onf2. Let g* be the
Riemannian metric o2 defined byg*(va,vp) = dap for all a,b = 1,2,3. If v is
non-spacelike with respect tg then the length of# with respect tg)* is bounded by

’
1

Length,; (7 </ d G 2.1
ength ; (v%) < . T anax e (2.1)

The integral on the right hand side may be divergent.
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Proof. Write the velocity--~ as
a% + Z?:l Xlvg = e Ceg + Z?:l Xie e
with smooth coefficients(! = X(7). By assumptiony is non-spacelike:
— 3 i —2(s
0> g(ity, ) = —e > + 0, (X1)2e 2

Consequentlyy";_, (X*)? < max j yec €29~ 2. Now, the claim follows from

] ] - -
Lengthgu(vﬁ):// dT\/g”(%vﬁ,f—ﬂ”):// dr /30 (X2
To To

3. Construction of the transfer maps

Let (70,71) C R be a finite or infinite open interval, parametrized bye (79, 71)
(“time”). In this paper, the unknown field is a vector valuedpd € C°°((g, 1), R%):

® = a0 ® B[P : (1,m1) — R’ &R (3.1)
If no confusion can arise, we just wrifle= o & S.

Definition 3.1. To every fieldd = a & 3 € C*((10,71), R%), every constanh > 0
and everyn € R?, associate a field

a[@,h,n] ©6[®, h,n] ©c[® h,n] : (10,71) - RPOGR*OR

by
a;[®, h,n] = _hdd_.rai - (niﬁi)2 + (n308; — nkﬁk)Z (3.2a)
bi[®, h,n] = —h 3 + s (3.2b)
(@, h,n] =34 5 0 ee (@jax — (136i)? + 2ngnc i) (3.2c)

for all (i,j, k) € C. For later use, it is convenient to introduce, for all, n € R3,
a;[®P,h,n,m] = a;[@, h,n] — a;[@, h, m]
= —(n)? + (385 — mcBi)® + (maf)? — (myfy — macfic)” &9
Definition 3.2.
B; = (1,0,0) By = (0,1,0) Bs = (0,0, 1) Z=(1,1,1)
These vectors will play the role of the vectoe R? that appears in Definition 3.1.

Proposition 3.1 (Global symmetries)Let x : (19,71) — (7§, 71) be a linear diffeo-
morphism between finite or infinite intervalg,r) = pr + ¢ withp > 0, and letA > 0
be a constant. Then

(a,6,¢)[4(@0x), L4h, n| = 4% ((a,6, )@, h,n] o X)

for all fields® = a @ 3 € C>((}, 1), R®), all constantsh > 0 and alln € R3.
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Corollary 3.1. In Proposition 3.1, the fielda, b, ¢)[A (Do x), %Ah, n| vanishes iden-
tically on (o, 1) if and only if (a, b, ¢)[®, h, n] vanishes identically ofir(), 71 ).

Remark 3.1The equationga, b, ¢)[®, 1, Z] = 0 are identical to (1.1). The equations
(a,6,¢)[®,h, Z] = 0 are equivalent to (1.1), for arty > 0, by Corollary 3.1.

Proposition 3.2.Recall Definition 3.1. For alld = a & 8 € C*((r,71),R°), all
h > 0 and alln € R?, we have

0=— h%c—&— Z (— Qjax — axaj + 2(ni)25ibi — 2njnkﬂjbk — 2njnkﬂkbj)
(i.j.k)ecC
(3.4)

with (a,b,¢) = (a,b,¢)[®,h,n]. In particular, if (a,b) = 0 identically on(ro, 1),
thenc vanishes identically ofiry, 7 ) if and only ifc vanishes at one point ¢f, 71 ).

Proof. Replace all occurrences af b andc on the right hand side of (3.4) by the
respective right hand sides of (3.2). Then, verify that ythéng cancels. O

Definition 3.3. Forall h > 0 and all vectorsh = a@ 3 € R3@R3 with 31, 82, 85 # 0,
definedm,[?] € (0,00) andypm[P] € R by

Am[?] = Vl]am|* + [Bm[?> > [am| > 0

©m|[P] = — arcsinh e
forallm = 1,2, 3. Equivalently,

Om = — Am[P] tanh o [P] (3.5a)
Bm = (g1 Bm) Am[P] sech om[P] (3.5b)

Furthermore, defin€,, [®, h] € R by
Em[®,h] = h log ’%ﬂm‘
forallm = 1, 2, 3. Furthermore, for alm,n = 1, 2, 3, introduce the abbreviations
Omn[®] = am + an $mn[@,h] = {m([P, h] + £a [P, ]

If no confusion can arise, we drop the explicit dependd@¢er [@, h]. For instance,
we write Ay, = A, [®@]. If & is not an element dk3 @ R3, but rather a function of the
real variabler with values inR3 @ R3, with 31, 32, 33 # 0 everywhere, thed ,,, o,
&m, Emn, amn, Withm, n = 1,2, 3, are functions of, too. In this case, we define the
additional function®, [®, h], m = 1, 2, 3, through

em[P](7) = (7 — O [, h](7)) Am[®](7)

Remark 3.2In the context of Definition 3.3, we have, for all = 1,2, 3:

h|om| = —&m +h log (\%am| + \/|%Oém|2 + exp(%%m) )
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Lemma 3.1.Recall Definitions 3.1, 3.2, 3.3. Forall > 0Oandall® = a® ( €
C*>((70,m1),R%) such that3, 32, 33 never vanish offiry, 71 ), we have

d Ay 1 %(Ai)2 tanh ¢4 %(Ai)2 sech 5 a;[®, h, Bj]
dr \0i ) (4;)% \pitanhg; — 1 sinh s + o5 sech ¢; —0; b;[®, h, Bj]

fori = 1,2,3ando; = sgnf € {—1,+1}. The matrix on the right hand side has
determinant: (A;)? cosh p; # 0.

Proof. We havea;[®,h, Bi] = —ha; — (6)? andb;[®, h, B;] = —h L8 + 3.
Replace all occurrences of and; by the right hand sides of (3.5), respectively. Use
£oi = (54D + §Ai(1 — 556;). Now, solve forit 4; and-6;. O

Remark 3.3So far, we have stated all definitions and propositions fofafield ¢ =
a @ 3, defined on an open interval. This was just for convenieneewill, from now
on, use these definitions and propositions even wheitherequirement is not met,
or when the field is defined on, say, a closed interval rattaar &m open interval. It will
be clear in each case, that the respective definition or gitpo still makes sense.

Definition 3.4. SetS; = {(1,2,3),(2,3,1),(3,1,2),(3,2,1),(1,3,2),(2,1,3)}, the
set of all permutations dfl, 2, 3).

Definition 3.5. Forall o, € {—1,+1}3letD(o,) be the setof alb = a3 € R3BR?
with (sgnﬂhsgnﬁg,sgnﬂg) = o,. Forall 7,1 € Rwithmy < 71 letE(o; 70, 71)
be the set of all continuous mags: o, 71] — D(o).

Definition 3.6. For all m = (a,b,c) € S; andh > 0 ando, € {—1,+1}? define two
functionsD(o.) x D(ox) — [0, 00) by

Aal?] Aal¥]
|ab,a[¢] - abya[![/H ) |§b,a[¢a h} - Eb,a[wa h”v

’ac,a[é] - O‘c,a[g’H ) ’gc,a[dsa h} - gc,a[g/» h]| }

Do), () (@, 0) = max { [ Aa[@] — AalW]| [0l - nselfl]

and
Apo.)n(P,¥) = nax, {|0¢i[¢] — o;[?]|, |&[®@, 1] — &[P, h]|}

Then(D(o+),dp(s.),(xn)) @NA(D(04), dp(s.),n) @re metric spaces.

Definition 3.7. For all # € S3 andh > 0 ando, € {—1,+1}% andry, 7, € R with
70 < 71 define a functio€ (o.; 79, 71) X E(04;70,71) — [0, 00) by

de (0..5r0.m1).(m.0) (B, V) = SUDe [y 7] D(0), (1) (P(7), ¥(7))
Then(E(ow; 70, 71), de(o,:70,m),(x,n)) IS @ Metric space.

Lemma 3.2.Letw = (a,b,c) € S; andh > 0 ando, € {—1,+1}3. Supposé < 1.
LetC, D > 1 be constants. Then, for all, ¥ € D(o,) such that

Cl <A X]<C D™ <hlpalX]| <D
for bothX = @ and X = ¥ and such thatgn p,[P] = sgn v, [¥?], we have:
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@) dp(6, W) < 25C2D dp (P, W)
(b) If exp(—£C~2D1) < 276C~4 D=2, thendp (&, ¥) < 2°C3D ip(®, V)

Here,dp = dp(,.),(x,n) @NAdD = fp(s.) h-

Proof. In this proof,4, B, «, £ play the roles ofd,, hpa/Aa, aa, &a, respectively.
To show (@), letP : (0,00) x R — R2, (A, B) — (a(A, B),&(4, B)), where

a(A, B) = —Atanh(; AB) £(A, B) = hlog(3Asech(£AB))

This is a diffeomorphism. The Jacobidrof P is given by

J (%—j %—g) _ (—%AB sechz(%AB) —tanh(£AB) —LA? sechz(%AB)>
oe o8 B _ Btanh(LAB) —Atanh(L AB)
Letp; = (A4;, B;) € (0,00) x R and sef{«;, &) = P(pi), wherei = 0, 1. Sety(t) =
(A(t), B(t)) = (1 — t)po + tp; wheret € [0, 1]. We have

(a&) =M(mom)  with M= (3030 = [y deT((0)
SupposeC~! < 4; < Cand(CD)~! < |B;| < CD andsgn By = sgn By. Then,
C~! < A(t) < Cand(CD)™' < |B(t)] < CD forall t € [0,1]. Observe that
lpsech? p| < L forall ¢ € R. We have|M;;| < 2C?D forall i,j € {0,1}. This
implies (a).
We show that under the assumptions of (b), we Halee M| > 2—3C~1, and therefore
|(M~1);;] <2*C3D foralli,j € {0,1}. This would imply (b). We havedet M| >
|M()QM11| — ‘M01]V[10|. Setgo(t) = %A(t)B(t) We hangD(tﬂ > %CizDil. By the
assumption of (b), we have ¥ < 2-6C=4D=2 forallt € [0, 1]. We will also use
the general inequalitie® < 1 — tanh |¢| < 2e~21¢l and|psech? | < 4|ple~ ¢! <
4e~1#l. We have — g sech? ¢ — tanh ¢| > tanh || = 1 — (1 —tanh |¢|) > 21 The
last inequality holds for alt € [0, 1] and implies| Myo| > 27!, because has constant
sign. We havéM;;| > 2~1C~1 and|My,| < 2CD and|My,| < 27*C~2D~!. This
implies|det M| > 273C~!. O

V]|

Definition 3.8.Let X = D(o,) or X = E(o,;79,71). Forall§ > 0 and® € X and
7 € Sz andh > 0, setBy (rn)[0, P] = {¥ € X | dx (r1)(P,¥) < 6}

Definition 3.9 (The reference field®,). For all 7 = (a,b,c) € S3, f = (h,w,q) €
(0,00)3, 0x € {—1,+1}3 let®y = &y (7, f,0.) : R — D(0.) be given by

Aa[@o](7) = (3.62)

0a[®o, h](T) = (3.6b)
ap,a[Pol(T) = (1 +aw)™! (3.6¢c)
e,a[P0](7) = —(1 + w) (3.6d)
b.a[®o, h](7) = =1 —hlog2 — (1 + w) ™! (3.6e)
ea|Po,h](T) = —(1+w)g —hlog2 — (1+w) (3.6f)

(see Definition 3.3) for al- € R.

Remark 3.4The field®, is, up to renaming, given by equation (3.12) in [BKL1].
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Lemma 3.3.Let®, be as in Definition 3.9. Thefu, b, ¢)[@y, h, Ba] = 0 onR.

Proof. Letaw = a[®y], 5 = B[Po], & = £[Po, h]. We have(a,, b,)[Po, h, Ba] = 0 by
Lemma3.1.Fop € {b, c}, we haveu,[Po, h, Ba]+ap[Po, h, Ba] = —h-La, , =0,
that is ap[@o, h, Ba] = 0. We also haved; 'ba [P0, h, Ba] 4 (3, 'by[Po, h, By] =
— L ¢ p + aap = 0, thatisby[@g, h, Ba] = 0. Finally, c[®g, h, By = —a2 — 2 +
Qa blla,c = —Ai + Qabac = 0. Here, Ay = A,[90]. O
Definition 3.10.For all f = (h,w, q) € (0, )? set

T_(f)=—(1- ﬁ) min{l,q} <0

() =1+1 >0

Lemma 3.4 (Technical Lemma 1)Letr = (a,b,c) € S3, f = (h,w, q) € (0,00)3,
o € {—1,+1}*andfixd >0, e_ € (0,—7_), 5 € (0,74 ) Wherery = 7. (f). Set

To- =7-+e_ <0 by = Py(m, £, 0*)|[T07 ros] (3.7a)
Tog =74 —€4 >0 E =E(04;T0—,To+) (3.7b)
Thend, € £. Furthermore, if the inequality
4 . €
0 <27% min {1, W, €, ——— (3.8)

holds, then for allb = a @ 3 € Bg (r n)[d, Po| the estimates

max {|6p[*, [Be|®, |Bbals [Bcfal} < 2%exp (— g min{l, e-, F})
|Aa[®] — 1] < 271
eal®]] < f2(1+]7])
|Bal < 2

hold on[r_, 70+].
Proof. The following estimates hold for the component@ofor all 7 € [r_, 70+ ]:
|5bﬁa| = 4eXp (%gb,a)

< dexp (£&b.a[Po. h] + 1)
<2exp(—1—t(1+w) 'r+L6)
< 2exp (- % — %(1 +w) %5)
<2exp(—1+t2+w) ' +10)
< 2exp(— ﬁ)

|BeBal = 4exp (§éc.a)
< 4dexp (%fc,a[éo,h] + %5)
<Qexp(—%(1+w) —%(l—l—w)T—i—%d)
<2exp(—t(14+w)g—+(1+w)(r— +e_)+ £d)
<2exp(— L1+ w)g+ L 1 4 1g)
< 2exp(— %6_)
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£ Aa|T — ba]
(L +08)(|7] +9)
£ (|7 + 8|7] +20)
52(1+ 7))
|Aa|_1 cosh @,
< 2exp (|¢al)
< 2exp (g|7] + £o|7] + £20)
|ﬁb| = |/6b6a| . ‘ﬂa|_1
— £ — (4w 'r 4 LT+ £o|7] + £36)

max{ -1- %iﬁjm_ — 01—, —1+ ﬁT(H_ + 6To+} + %35)

|al

VAN VARV

|Bal ™!

115 : €+ 1
— & 16 min{e_, Z} + £30)
1 : €4
— 55 minfe_, = )
The last step uses < 2*3%. In the case;. > 174, this follows from§ < 274, If
e+ < 74, then this follows from§ < 274t becauseo; = 74 —e; > 274 > 1.

€
T4 Tot+ '

|Be| = 1Be/al - |Bal ™
<dexp(—t(14+w)g—+(1+w)T+ ¢|7|+ £d|7| + £36)
<dexp(—1+(1+w)g
+ g max{ — (2+w+ 0)70—, —(w — §)70+ } + £36)
<dexp(—t(1+w)g+ 12+ w)|r—| — £(2+w+ e + £4)
< 4exp ( — %26, + %45)
<4dexp ( — %e,)

This concludes the proof.O

Lemma 3.5.Recall Definitions 3.1 and 3.2. We have

aa[@7 h: Z7 Ba] - +B]?, + ﬁ?; - Zﬁbﬁc
ab[@7 ha Z7 Ba] = _6123 + ﬁz - Qﬂaﬂc
aC[¢7 ha Z7 Ba] - +512) - ﬁs - 2ﬁaﬁb
forall (a,b,c) € Ss.
Remark 3.5Lemma 3.5 displays the differences between the equati@hsh, Z] =
0 anda[®, h, B,] = 0. Lemma 3.4 gives bounds for the terms that appear in these

differences. Informally, they tend exponentially to zesta| 0. This quantifies a basic
guiding intuition of [BKL1].
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Definition 3.11.For all vectors® = a @ 3 € R3 @ R3 with 8, 82,83 # 0, all 7 =
(a,b,c) € S3 and allh > 0, define four real numbers by

I (&, h, 7] = —+ aa[®, h, Z, Ba| tanh ¢, [
L[@,b, 7] = (4a[#]) " aaf®, b, Z, Ba] (1 — ¢a[®] tanh 0[]
I5p)[@. 0. 7] = {ap[®,h, Z, Ba] + {;0a[®,h, Z, Bal
wherep € {b, c}. If @ is not an element dk* & R?, but rather a function with values
in R ®R3, with 81, B2, B3 # 0 everywhere, thehy, I, I3 1), I(5 ) are functions, too.
Lemma 3.6 (Technical Lemma 2)In the context of Lemma 3.4 4if> 0 satisfieg3.8),
then, for all®, ¥ € B¢ (- 1[0, P0] and all S € {1,2,(3,b), (3, c)}, the estimates

[Is[@]| < 2'"'max{1, i, L|7|} exp(fﬁmin{l,e,,i—i ) (3.9a)

2 . €
Is[@] — Is[¥]| < 2'7(max{l, . §|7[})" exp (— g5 min{l, e, Z5})de (2, ¥)
(3.9b)
hold on[7y_, 70]. Here,I5[®] = Is[®, h, 7], Is[¥] = Is[¥, h, 7] andde = dg (x n)-
Proof. In this proof, we simplify the notation by suppressing- 0 and abbreviating

M = exp(—5 min{l,e_, % ) M; =max{l,,¢t|7[}

Lemmas 3.4, 3.5 implya;[®, h, Z, B]| < 2°M, i =1,2,3, and|p,[®]| < 22M; and
(Aa[®])~2 < 22, This implies (3.9a). To show (3.9b), observe that (herg € {b, c})
|0al@] — al¥]| < §]A4a[®] — Aa[P]] 17| + §|Aa[P]0a[2] — Aa[¥]0a[¥]]
< & (1+|7D[Aa[P] — Aa[P]] + §2]0a[P] — 0a[¥]]
< 2°M, de(P,W)
‘fa[@ - ga[LDH < hllog Aa[®] — log Aa[¥]|
+ h | log cosh @] — log cosh pa [¥]]

< 2%h M, dg(®, W)

|ﬂp[¢]ﬂa[dﬂ - ﬂp[gp}ﬂa[g/” <+ max{|ﬂp[@]ﬂa[@]|v ‘ﬂp[w]ﬂa[gp”}
X ’5&1)[45] - fa,p[g/”

< 2'M M dg (P, W)
|8p[®] — Bp[¥]] < § max {|6p[@]], |6p[¥]]}|p[@] — &p[¥]|
< $22MYV? ([€apl@] — apl¥]| + |al®] - &al?]|)
< M M2 de (D, W)
|ﬂp[¢]ﬁq[¢] - ﬁp[w]ﬁqw” < 29M1Md5<¢7 LT/)

Consequently, for =1, 2, 3,
|ai[@.h, Z, Ba] — a;[¥,h, Z, Ba]| < 2'' M1 M dg(9,0)

With these estimates, (3.9b) follows. Observe fRat> R,z — x tanh x is Lipschitz
with Lipschitz-constant. > 0 determined by tanh L = 1, in particularL < 2. O
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Definition 3.12.For all 7 = (a, b, ¢) € Ss andf = (h, w, q) € (0,00)? x R (we don’t
requireq > 0 here) ando, € {—1,+1}3, let®, = &,(r, f,0.) € D(0.) be given by

aa[Py] = —1 Ea|Py,h] = — 11:2%(1 + hlog?2)
aw[d,] = 1 €0/, h] = — 152 (1 + hlog2)
e[®] = —w — pu €l h] = —(1+ w)q — LW — Lifututpjog
and
p=(14w)(BF + B3 + 85 — 26285 — 28351 — 2B132) | p=p(s.] (3.10)

Definition 3.13.For all # = (a,b,c) € S3, 0. € {—1,+1}3 let H(m,0.) C D(0x)
be the set of all vecto® = o @ 3 € D(o,) with

|Bal = [Bbl Y agmee (@ax = (5)° +266) =0 (3.11a)
0<ap<—0a (b + |aa|) log|Ba/al < aplog2 (3.11b)

Lemma 3.7.Letw = (a,b,c) € S; ando. € {—1,+1}3. The set(r, 0.) C D(0.)
is a smooth 4-dimensional submanifold. The map

(0,00)* x R — H(m,0.)

3.12
()‘ah7w7Q) = A@*(ﬂ-a (h»waq)aa*) ( )
is a diffeomorphism. Its inverse is given by
w = *ab/<aa + ab) % = 711++—2u1j) log |ﬂa/aa‘ + H_Lw log 2 (313&)
A= —aa q= —HLw hlog|Be/al — 1355 (1+hlog2) (3.13b)

Proof. H(r, o.) is the graph of a smooth map from an open subsBt'db R%. Namely
the map given by solving (3.11a) fotic, O, ) in terms of (aa, o, fa, Bc), Whose do-
main is given by (3.11b) and appropriate sign condition®iited fromD(o.). The
map (3.12) is well-defined, i.e\ &, (7, (h,w, q),0.) € H(m,0.). The map (3.13) is
well-defined, because the two right hand sides in (3.13ajfantirst right hand side in
(3.13b) are positive, by (3.11b). By direct calculatiorg ttvo maps are inverses

Definition 3.14.For all f = (h,w, q) € (0, 00)3 set

—w, L hlog2 ifg<1
m_(f) = 3+1Z) 3+Zﬁ ) - <0
) {—;Lw — #5% hlog2 ifg>1
71+(f):(1+hlog2)llj—27fu >0

Definition 3.15.For all 7 = (a,b,c) € Sz andf = (h,w,q) € (0,00)% ando. €
{—1,+1}3 let®; = &4 (7, f,0.) : R — D(o.) be given by

Aa[®1](7) = Aa[®,] ap,a[P1](T) = 0p.a[Ps]
ea[él’ h](T) = 9a[¢*7 h} 'Ep,a[¢17 h](T) = fp,a[ds*v h} + (T - Tl+)ap,a[¢*}

forall 7 € Randp € {b,c}. Here,r1; = 74 (f) and®, = &, (. £, 0,).
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Lemma3.8.Forall = (a,b,c) € S3, f = (h,w,q) € (0,00)3, 0, € {—1,+1}3,
setdy = &y (m,f,0.) and®; = &y (r,f,0.) andr . = 714 (f) anddp = dp(o,),(x,n)
anddp = dp(g*)7h. Then

(@) |Ba[@1](114) = |Bp[P1](T14)]
(b) ¢[®@1,h, Z](11+) = 0, see Definitions 3.1 and 3.2 forand Z, respectively

©) dp(Po(114),P1(T1+)) < 27 max{1 + w, h} CXp(—% min{1,w + ¢})
(d) dp(Po(7),D1(7)) < (14 |7 — 114]) dp(Po(T14), P1(T14)) forall 7 € R

Proof. We discuss (c) only. By direct calculation,

a[@0](T14) — aa[®1](114) = —X €a[Po, h](T11) — &a[®1, h](T14) = =Y
ap[Po](T14+) — ap[P1](T14) = +X &b[Po, h](714+) — &p[P1, h](T14) = +Y
e[Pol(T14) — ac@1](my) = +X + . &e[Po, h(T14) — &e[P1, h](T14) = +Y

with X = —1 + tanh (£714) andY = hlog (1 + exp(—2+ 71 )). The estimates
| X < 26Xp(72%7'1+) < Zexp(f%)
V] < hexp(—24714) < hexp(— 1)
|l < (1+w)2° exp(—z5 min{1, w + q})

imply (). O

Definition 3.16. This is, verbatim, Definition 1.2 in the Introduction.

Lemma 3.9.In the context of Definition 3.16, the identities

AL =1—aaa[Pol(11-) =1 — aa,a’[Po](T) (3.14a)
wi, = —(aa[@o](11-)) " = —(aw[®)(r)) (3.14b)
=124 (— 7 +hloghr) —hlog2 (3.14c)
01 = iy (Mo log hr — §taw (@0, h)(no) 4+ fem - - 2aGee) 3.14d

it )

hold, wherep, = &y (w, f,0.) andr— = 7 (f) andT € R. Furthermore,

(€a[®0, ] — Ear [P0, h]) F =7 — 71— — 2hlog (1 + /P F (3.15)
forall 7 € R, where
A ¢g<1
F=g 3t - 1 (3.16)
342w q >

Proof. By direct calculation. In each case, distinguisk 1 andg > 1. 0O

Definition 3.17.For all f = (h,w, ) € (0, c0)? set

L ifg<1
*f: I+w . -
() {1 ifg>1
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Definition 3.18.For all f = (h, w, q) € (0, )? set
K(f) = 2'°(4)” max{(£)%, v*} max{(})%,¢} exp (- £277n(F))  (3.17)
Definition 3.19.Let F be the open set of afl = (h, w, q) € (0, 00)? for which
q#1 K(f)<1 h < 2777,(f) (3.18)

Proposition 3.3.For all 7 = (a, b, c) € S5, 0. € {—1,+1}3, there areunique maps

II = [r,04] : F — (0,00 xR
A= Alr, o0, : F —[1,00)
To— = Ta_[m,04] : F — (—00,0)

so that for allf = (h,w, q) € F (see Definitions 3.5, 3.7, 3.9, 3.10, 3.12, 3.14, 3.16)

(@) [ 17(£) — Qu(F)||z= < K(f)

(b) [A(F) — A (£)] < K(f)

(€©) 7—(f) < 72— (f) < 27— (f) and|m—(f) — 71— (£)] < K(f)

(d) I1, A andT_ are continuous

(e) ifwe setrp— = 1o (f), 7o = 1 (), @ = (&/,b',¢) = Pr(n, 1), A = A(f)
andf’ = (h',w’,¢') = II(f), theni < 7, — 1 < 3 and there is a smooth field

P=adf € £E=E(0; T2, Toy)

that satisfies
(e.1)(a,b,0)[®,h,Z] =00N[T2_, Toy]
(e.2)P(1oy) = Pu(m, £, 0.) andP(1o_) = AP, (7', ', 0, ), in particular

D(121) € H(m,04) and  &(r_) € H(n',04)

(.3)|Bal®](7)| > |Bar[@](7)]| forall 7 € [ra—, 371 (f)] with equality iffr = 7,_
(e.4)d5,(mh> (@, @0) < K(f), Where% = QSO (71’7 f, (7*)|[72777.2+]
(€.5)sUp, ¢ (r, rp,)Mmax{ap c[P], acalP], @a [P} (1) < =272 min{w? w™'}

Proof. The main part of this proof is the construction of the figlthat appears in (e).
To make the proof more transparent, we replace some nurhesitstants in (3.17) and
(3.18) by the components of a parameter veéter (1, ...,¢s) € RS, In the course
of the construction o, we require a finite number of inequalities of the fofr» ¢'.
Each inequality of this kind is marked k) and isassumed to hold for the rest of
the proof once it has been stated. At the end of the construction, wekcthat the
particular parameters appearing in (3.17) and (3.18)fgatisthese inequalities.

Lett = (a,b,c) € S3 ando, € {—1,+1}2. Fix anyf = (h,w,q) € (0,00)3 with

q # 1andh < 1. Setr, = 7.(f). For anys = (s1,...,s7) € R7, set

1\s3 i 1yss i <
TORES SR T8 S PR

q ifg>1
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Basic properties oX (s). The quantityX(s) is positive, non-decreasing in each of its
seven arguments (recdll< h < 1), andX(s)X(s') = X(s + ') for all s,s" € R7,
andX(0,...,0) = 1. Also, we haver, > X(-1,0,0,—1,—1,0,0).

Basic smallness assumptioihstroduce a parameter vector= ({1, ..., ¢g) € R® with

(fl,...,£7) > (0,0,0,0,070,700) and lg >0 (.)1
Our basic assumptions on the vedior (h, w, q) are:

q+#1 K®X(0,,...,0:) <1 h <2 %, (3.19)
Observe that our previous assumptignsz 1 andh < 1 are subsumed in (3.19).
Abbreviationsry = 74 (f) andr 4 = 714 (f) androy = 74 (f) and

To— = %71_ + %T_ <0 To = T14 >0

andD = D(o,) and& = E(0w; 10—, T04+) andPy = Po(7, f, 04| (7o 7o,) ANAPy =
D1 (m,£,04)|[ro_ 70, ) ANAD, = Dy (7, f,0.) @ndde = dg (r n) @nddp = dp (r 1) and
dD = dD,h anng[ o } = BE,(mh)[ B ] andrn’ = (a’, b/, C/) = ,PL(’/D f)
Preliminaries 1.Introducec_ ande; by 7p_ = 7— + €_ andryy = 7 — €4, justasin
Lemma 3.4. We have

€4 =74 =Tt = 155, (1 + 5 —hlog2)
1 1+ .
%(7'1—7')—{2(3+w)(2+—3qthgQ) if g <1

14+w 14w H
2(312w)(ifhlog2) if ¢ >1

€E_ =

2+w
Requirels > 2 (e)2. Thenhlog2 < h < 272min{1, ¢}, and (recall that, = 1+ 1)
2_2§e+/7'+§1 2_5§e_/m§2_1
ande_ € (0, —7_) andey € (0,7 ), as required by Lemma 3.4. We have
—“1<7T_<T9_<T_-<0< % < To+ = Ti+ = Top < min{2, 74}

Set

def

§ =27 %min{l,w} 7. = X(-9,0,-1,0,0,0,0) 7. > X(-10,0,—1,—-1,—1,0,0)

(3.20)
This impliesé < 24 min{1,w,e_, Tfjw }, the main hypothesis of Lemma 3.4. This
lemma will be applied later.
Preliminaries 2.Requirels > 7 (e)3. Then
de(®o, D1) < 2%dp(Po(T1+), Py) < 2" p(Po(T14), Ds)
< 2"8(1 4+ w)exp (— 55 min{1,q}) <281+ w)exp (— 57)
< X(19,0,0,1,0,0,—271) <2725 X(31,0,1,2,1,0,-271)  (3.21)

The first and third inequality follow from (d) and (c) in Lemm3a8, respectively, us-
iNg SUp. [y, ., (1 + |7 — 714]) < 2°. The second inequality follows from Lemma
3.2 (b), withC = D = 2. Its assumptions are satisfied, becahse< 2~7 and
Aa[@0](111) = 1 andhpa[@o](114) = 714 € [3,2] and&a[@,, h] € [-2, —1] and
|Bal®.]| < 2exp(—35) < landAa[®,] € [1,2] and0 < h|pa[d.]|+&a[Pr, h] <273
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(see Remark 3.2) anldl |, [®,]] € [3,2] andsgn pa[P.] = —sgnaa[®.] = +1, and
becausés > 7impliesh < 277 and thereforexp(—£27%) < 2712,
Require(/y,...,¢7) > (31,0,1,2,1,0,—271) (e)4. Then, by (3.19),

@, € Be[2725, o) (3.22)
Construction ofp. Define a mapP : Bg[d, @o] — Bg[d, Pol, ¥ — P(¥) by

Aa[P(D)](1) — Aa|P1](T) = f dT’Il[lI/ h, 7](7") (3.23a)
6[P(¥), h](7) — 01, (T)=f dr' L[#, b, 7)(7') (3.23b)
il PD))(7) — tpaldr](7) = J7. 7' Lo [0, 7)) (3.23¢)

)=

€p.alP(¥), h](7) = &p.a[@1, h(7

forall p € {b,c} andr € [r—, 70+]. To make sure thaP is well defined, we require

(0y,...,07) > (28,2,1,1,1,0,—277) (e)5, in which case Lemma 3.6 (see Preliminar-

ies 1) implies the uniform estimates

[Is[¥, h, 7]| < X(12,1,0,0,0,0,—277) < 27%5 X (28,1,1,1,1,0,—277) < 27%
(3.24a)

[Ts[¥, h, 7] —I5[¥' h,7]| <27°X(24,2,0,0,0,0, -2 ")de (¥, W) < 27°de (¥, V)
(3.24b)

on the intervalry_, 7], for all &, ¥’ € Bg[d, @] and allS € {1,2,(3,b),(3,¢c)}.
SincesupTe[ToﬂTw] |T — 7'0+‘ < 4, we have:

fm+ dr” fm+ dr' I(3.p) [, h, 7] (1) (3.23d)

o A,[P(¥)] > % on[r_, 704], which makesP(¥) a well defined element d.
e Each right hand side of (3.23) is 2726, henceP(¥) € Bg[L6, do].
e The mapP is Lipschitz-continuous with constart %

The metric space3s [0, D] is nonempty and complete. By the Banach Fixed Point
Theorem, the contractioR admits a unique fixed point

® € Bg[16, 4] (3.25)

Proof that the fixed point satisfi¢a, b, ¢)[®, h, Z] = 0. The fixed point® is smooth.
We haved(rp;) = &1(104+) = P, andc[®, h, Z]|(mo4) = 0, by Lemma 3.8 (b), and
becausey; = 114. Set¥ = P(¥) = ¢ in (3.23) and differentiate with respect to
The result of differentiating (3.23a) and (3.23b) can betemias

d (Aa>_ 1 (%(Aa)Qtanhgpa £ (Aa)?sechpa )

dr \0a ) — (Aa)? \@atanhp, — 1  sinh g, + pasech @,
% ( ua[¢7 h7 Ba] - Cla[@, h> Z] )

—(04)a ba|®, h, Ba] + (0,)a ba[®, b, Z]

whereA, = Aa[P], 0a = 0a[P. 1], pa = pa|P], becausd, [P, h, By| = b,[P, h, Z].
Now, Lemma 3.1 impliesi,[®,h, Z] = b,[®,h, Z] = 0. Differentiation of (3.23c)
givesLay, o[@] = La,[®, h, Z, Ba]+ £ aa[®, h, Z, B,]. Together witha,[@, h, Z] =
0 and the general identity, (@, h, Ba] + aa[®, h, Ba] = —hLay, .[®], we obtain
ap[®, h, Z] = 0. Differentiating (3.23d) and simplifying the result witB.23c) gives
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4 ¢pal® h] = apa[P] which, by ba[@,h, Z] = 0, implies b, [®, h, Z]
Proposition 3.2 and the fact thet?, h, Z](ro4) = 0 imply thatc[®, h, Z
cally on[ro—, 7o+].

Estimates o®. By the fixed point equatio®(®) = ¢ and by (3.21) and (3.24a),

de (Do, ) < de(Do, P1) + de(P1, P(P))
< X(19,0,0,1,0,0,—271) + X(16,1,0,0,0,0, —277)
< X(20,1,0,1,0,0,—277) (3.26)

We require(fy, ..., 47) > (20,1,0,1,0,0,—277) (e)g, which impliesdg (o, ?) < K.
To apply Lemma 3.2 (a), sef = [7-0,,%71,] C [r0—,70+] @andC = 2 andD =
12max{1,¢~'}. We check the assumptions of Lemma 3.2. The inequalities

Cl<A[X]<C D™ <hlpalX]| <D

hold for bothX = &,(7) andX = &(r), for all 7 € J. The inequality forA, follows
from Aa[®0](7) = 1 and the boundg (Py, ®) < ¢ < 2. To check the inequality for
a, Observe thahp, [Po](7) = 7 € J C [-(D/2), —(D/2)~!], see the definitions of
7_ andr;_. Furthermore, for al- € 7, we have

ha[®] — hipa[Bo]| < |7]|4a[&] — 1] + Aa[#] |6a[&, h]] < 45 < (2D)""

This impliesh ¢, [@](7) € [-D, —D~1] andsgn ,[®0](7) = sgn ¢a[P](T) = —1 for
allT € 7. Now, Lemma 3.2 (a) an2’C?D < X(9,0,0,0,1,0,0) imply forall T € J

Ap(Po(7), B(7)) < 23C2D de (P, B) < X(29,1,0,1,1,0, —277) &I

M (3.27)
Construction of,_. Recall thaty’ = cif ¢ < 1 anda’ = b if ¢ > 1. By (3.15),

(&al®0.h] — & [P0, b)) F =7 — 71— — T (3.28a)
(fa[é, h| — &/ (2, h}) F=1—1_-1T, (3.28b)
forall 7 € J, whereF' is given by (3.16), and
Ty = Ti(7) = 2hlog (1 + */*) F
Ty = T5(1) = Ty — (&a[®,h] — &[0, h]) F + (& (D, h] — &ar [P0, h]) F

ForallT € J we haved < T} < 2he?™/PF < 2he™-/BF < MF and therefore
|T»| < 3MF < 3M. Estimate

distg (11—, R\ J) =min {}|r1_|,e-} > 27°7, > X(-6,0,0,—1,-1,0,0)
Therefore, the conditio(¢s, ..., ¢7) > (37,1,0,2,2,0,—277) (e); yields
|Ty| < idistr(r1—, R\ J) (3.29)
forall T € J. Set
7 =sup {7 €T | &a[d,h)(7) < &w [P, h](7) } (3.30)

The set on the right is nonempty, by (3.28b) and (3.29), itaios,_. We haver,_ €
(To—,3m-) C J and, by continuity&a[®, h](2—) = & [®,h](r2—), and |- —
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| < SM.Forallr € [ro—, 71— ] we havel G, [P](T )| | /[@](T)| with equality
iff 7 = 7m_. The condition(¢y,...,¢7) > (31,1,0,1,1,0,—277) (e)s implies|ra_ —
’7'1_| S K.

Estimates o®q. For allT € 7, we have
|aa[@o](T) — 1| = \tanh%h\ -1 < 2exp(—%|7\)
|€a[Po, h](7) — 7| = |hlog(2cosh |7]) — |7]| < h exp (— £|7])
exp(—%|7'|) < exp(—%|7'1,|) < exp(—%Q_QT*) <27¥M

These estimates will be used without further comment.
Construction of\. SetA;, = A1 (f) and recall (3.14a). Set

A= —aqy[P](12-) (3.31)
Then,
A= ALl < |aa [@](r2-) — aar [Po](T2-)| + |ovar [Po] (T2 ) — ctar [Po] (11— )|

+ |aw [ol(11-) + (1 — e [B0] (1)) |
< Jow [@](ra-) — ctar [Bo] (r2- )|

+ (Joal@o](2-) = 1] + |aal@o](ri-) = 1]) + 1 ~ aal@o](n-)| < 2M
See (3.27). Requiry, ..., 07) > (32,1,0,2,1,0, —2-7) (o). ThendM(1 + w) <
K <landA—A.| < 3(1+w) 'K.Inparticular > A, — (1 +w)~! > 1.

We now construct the componentsfot= (h/, w’, ¢’).
Construction ofw’. Require(¢y, ..., ¢7) > (32,1,0,2,1,0,—277) (e)19 and set

o _Call(2)
= nn [B](72) >0 (3.32)

To check that the denominator is nonzero and tfat- 0, note that for al € 7:

|0va,ar [P](T) — Cta,ar[Po](T)| < 2M

|aa[¢](7—) - 1| < |aa[¢}(7_) - aa[@o ! + ’Cla QS() — 1’ < 2M
and4M < X(—1,0,0,-1,0,0,0) < 17 < |@a,a'[Po](7)| and4M < 1. Hence,
| a0 [)(T) — a,ar [Do](T)| < %Iaa,af [@ol(7)| Jeal@](r) = 1] < 5

In particular, aa o [P](12—) < 2aaa[Po](T2—) < 0 andaa[®|(r2—) > 0. Conse-
guently,w’ is well defined and positive. Recall (3.14b) and estimate

! — wy | < ’ a[®)(r2-) Oéa[@o](ﬁ—)’ ’aa@o](Tz—) __a[Po](12—)
T loaa[Pl(r2-)  caaPl(r2-)l Taaa[@l(12-)  aaa[Pol(T2-)

cal®o)(rs) 1

Qaa[Pol(T2-)  Qa,ar[Po](T2-)

< 2w M + 4wiM 4w M < 23(1 4+ w)*M <

X(6,0,0,2,0,0,0) M

1
2
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We require(/y, ..., ¢7) > (35,1,0,3,1,0,—277) (e)1;. Hencelw’ —wy| < 3K < 1.
Construction oth’. Let A andw’ be given by (3.31) and (3.32). Set

K= 11125)// (= &I[®,h](m2—) + h log A) — hlog2

Recall (3.14c) and estimate

= | < 522 | — @, h)(m-) + hlog A+ - —hlog Ay
n 114;2:5 _ 114;2120; | ’7'1— — h log )\L|

§2|T17_7-27‘+2}7-27_ga[QSOvh](TQ*)‘
+ 2|€a[®o, h](12-) — £a[®, h] (12— )| + 40 |[A — AL|+4';;+;W§2'
<2°M + M +2M + 2°M + 2'M < 2°M

For the second inequality, uge+2w’) < 2(1+w’) and\, A > 1 and|r_| < 1and
Ihlog AL| < |mlogAr| <1, see (3.19), andl + w’ > $(1 + wy). By inspection,

hl > 1w min{1, ¢} > X(~1,0,0,0,—1,0,0)

L — 24w
To make sure that > 0, we require(¢y,...,07) > (36,1,0,1,2,0,—277) (e)12, SO
that2°M < 1X(-1,0,0,0,-1,0,0) K < %hi, hat is|u — h£| < %% andu > 0
Set
=h/pu>0 (3.33)

Requirels > 7 (e)13, so thath < X(-7,0,0,0,—1,0,0) and
' —hp| = 2R (Be)® |y — b ) < 1X(2,0,0,0,1,0,0) M

We require((y, ..., ¢7) > (31,1,0,1,2,0,—277) (¢)14. Then|h’ — h;| < 1K < 1.
Construction of;’. Set

¢ =z (h/ log A — W&o [, h(ry_) — Wyl _ TbdwHlw]) gy 1og2) (3.34)

Recall (3.14d) and estimate
lg" — qrl
= ’ %h/ log A= 1+wL hL log AL’

+ |1+w’ hgc’ (@, h](72-) — 1+1wL . (53 o[Po, h](71-) — Tl—>|
’ " |(1+3w H(w)? oy 3wt (wr)? hL|

+ |1+2w - 1+2wL

1+w’)(1+2w') (I+wr)(14+2wr)
< 1570 [log A —log A | + 5 |b’ —hL\logAL + |5 — e [hrlog AL
+ = B [0, h] (ra-) — Eor [Bo, h] (1o )| + i |2 — BE| [€er[@o, h] (7))
+ | — e | e [P0, bl (72|
+ 1 B |6 (B0, b (72— ) — La [0, h] (1) + 71|
| g ] ety — Ty | B+ b~ b
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<2\ = Ap|+ |0 = ho|(1+w) + 4 (1 + w)
+2BL 1€y (@, h] (12— ) — €0 [P0, h] (7o) + | & — BL| |/ [P0, (12— )|
+ 2Ll B e [@g, b (ra )| + B2 |a o/ (@0, B (72 ) — Eaer[@0, h](71))]
+ hTL‘ga[QSOv hj(72-) — 7'2—| + hTL|7'27 — 7‘17|
|w’ —wy| 3w —wg|
+ 2(1+wL§2 + 2 (1+wL§2 + !h/ - hL|
< 2'M + X(2,0,0,1,1,0,0) M + X(5,0,0,1,0,0,0) M
+X(2,0,0,0,1,0,0) M + X(6,1,0,1,1,1,0) M
+X(9,0,0,1,1,1,0) M + X(3,0,0,1,1,0,0) M
+X(1,0,0,0,1,0,0) M + X(2,0,0,0,1,0,0) M
+23M + 2°M + X(1,0,0,0,1,0,0) M
<1X(11,1,0,1,1,1,0) M

For the third inequality, ush; < X(1,0,0,0,1,0,0)h < 2 andh’ = h/u <2h; <
22 and\, A > 1 and|hlog Ar| < 1andlogAr < 1+ wand(l+w') > (14 wg).
|w’ —wy | 2
For the fourth mequallty, us@d + w) < X(1,0,0,1,0,0,0) and = §2 < 2°M and
|€C’ [¢07h](7—2 ! ’&a c/ @Oah] T2— | + ‘é.a Po, ]( ) - 7—2—| + |7—2—‘
< X(3,0,0,1,0,1,0) 4+ 1+ 1 < X(5,0,0,1,0,1,0)
We requirg({s, . ..., {7) > (40,2,0,2,2,1,—277) (e)15, such thaty’ —¢.| < 3K < 3.
The maximum afyp, ¢, ¢ a, Aa,b- ReqU|re(£1,.. ) >(24,1,2,2,0,0,—277) (o) 1.
ThenX(20,1,0,1,0,0,—277) <273(1 +w)~* min{wz, 1}. By the inequality (3.26),
we havedp (Do (1), ®(7)) < 273(1 +w) ! min{w?, 1}, forall 7 € [ro_, 704 ]. Hence,

aa,p[@] S aa,p[@O] + dD(@Ovds) S _(1 + w)71 + dD(qsOy@) S _271(1 + w)71
b c|P] < @ablP] + XaclP] — 20a[P] < Aab[P] + a,c|P] + 244D
< 22dp (P, D) + Aap[Po] + Aac[Po] + 24a[P0] < —271(1 + w) " w?

forall 7 € [1o_,704+] and allp € {b, c}.

Definition of the mapgl, A and_. Set({y,...,¢7) = (40,2,2,3,2,1,—277) and
ls = 7. With this choice, all inequalitiess) hold. The constanK defined by (3.19)
coincides withK (f), defined by (3.17). Furthermore, a vecfor (h, w, q) € (0, c0)?

satisfies our basic assumption (3.19) if and onlfy & F. Therefore, we can set

H[r,0.: F—(0,00)? xR f+ right hand sides of ((3.33), (3.32), (3.34))
Alr,o.] 0 F —[1,00) f — right hand side of (3.31)
To_[m o8]t F — (—00,0) f — right hand side of (3.30)

Properties (a), (b), (c) and (e) in Proposition 3.3 are bystmigtion, where it is under-
stood that the fixed poirk of the mapP, whose domain of definition isy_, 79+ ], has
to be restricted to the subinterva_, - | to comply with the statement in Proposition
3.3 (e). The statements of (e.1), (e.3), (e.4), (e.5) hawady been discussed in this
proof. Equationd(,) = &, in (e.2), with®, = &, (x, f, 0.), follows from the fixed
point equationP(®) = @, see (3.23), and fromt (111) = @, andrpy = 714 = To4.
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Equation®(re_) = A&, (7', ', 0,) in (e.2) withf’ = (h',w’,¢’) is equivalent to (re-
callb’ = a)

Qa[D](T2-) = = (3.35a)
aa[P)(ra-) = A T (3.35h)
ac[@)(r2-) = A (—w' — p') (3.35¢)
Léw @ h](r2—) =log A+ {5 { — 52 (1 +h'log2)} (3.35d)
Léal®, h](r2-) =log A+ & { — 52 (1 + h'log2) } (3.35€)

Lea[®h)(ram) = log A+ & { — (1 +w')g/ — e Lesu w600}
(3.35f)

with 1/ = (1 +w') (8 + 05 + 05 — 20203 — 20361 — 26152) | p=p. (n'.£/,0.)]- BY
inspection: (3.35a) follows from (3.31); (3.35b) followsim (3.31) and (3.32); (3.35¢€)
follows from (3.33); (3.35f) follows from (3.34); (3.35dpllows from (3.35e) and
the discussion following (3.30). These five equations éddh, Z](m2_) = 0 imply
(3.35¢). We have now checked (e.2). We now discuss (d).

Continuity of the mapgl, A andr,_. Fix f¥ = (h?,w?,¢¥) € F. Letr > 0 and
letf¥ = (h?,w?, ¢¥) € F with [|f¥ — fT||gs < r. All the objects and abbreviations
that have been mtroduced for a single elementdfefore, now come in two versions,
one associated to each®f ¢ F with B = ¥, Y. By convention, these two versions
are distinguished by a superscrigt For instancery’. = 7%, = 2. = 7, (f?) and
P = éo(w,fB,a*)|[T0137)TOB+] and&? = &(o,; 78, 78) and so forth. Following this
convention, the contraction mapping fixed points are dehaté ¢ £. However, we
also write¢” = ¥ and$” = 7. Suppose < 1|¢¥ —1|. Then

0 #sgn(¢” —1) =sgn(¢" — 1) (3.36)

Definey : R — R by x(r) = hi( — 13,) + 7¢4. Introduce four closed inter-
valsZ? = [f 78], B = .7, andZ= = [y !(r)_), 73] andZ = I¥ N Z=.
Observe that(Z=) = Z7. By Proposition 3.1, the fieIc’E =7o X|I~ satisfies
(a,b,0)[Z,h?,Z] = 0onZ=. Recall7? = [rf 37 ] c ZP and|rf — 2| <
sdistr (2., R\ JP), see (3.28b) and (3.29). S¢t = JY N J= C T with 7= =
X HIT). If r > 0is sufficiently small, then

™ eJ and Y Y(l)eJg
These inclusions have similar proofs. We only verify € 7. We havery < 7Y% and
x(r5-) — i |<|X(7'2 ) = X(r{)| + x(r) = |
<k 2dlst]R(7'1 JRATY) + Ix(7) = 7| (3.37)

The right hand side of (3.37) is a continuous functionfbf € F (with f¥ fixed)
and is equal toldistr(7{_, R\ J¥) > 0 whenf” = f%. Therefore (3.37) is<
distg(7{_, R\ jT) if » > 0 is small enough. Hence(7¥ ) € J7, thatisty € J=.
SetD = DY = DT = D(o,) and€ = E(0.;Z) anddy = &y(m, ¥, 0.)|z. Equiva-
lently, &, = &f |7. Abbreviatedy = dy (; nv) for ¥ = £, D anddys = dys (xne)
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for B = w,T. By (3.25), we havelgs (B, 9F) < 168 for B = W, Y. If r > 0is
sufficiently small, then
de(W|z,®0) < 6% and  dg(Z|z,Pp) < 67 (3.38)
The first follows fromdg (7|7, $g) < dew (¥, ®§ ) < £67. The second follows from
de(Z|z, o) < de(T o X\z, @5 o x|z) + de (2§ © x|z, Do)
< max{1, B BT } der (Y, D) + dg (DY o x|z, Do)
< max{l, HT} 307 + de(®§ o x|z, Do) (3.39)

and because the right hand side of (3.39) is a continuousifumef £ € F (with ¥
fixed), see (3.20), that is equal {8” whenf” = f7.
Both X = ¥|7 andX = =|7 satisfy(a, b,c)[X,h?,Z] =0o0nZ,

Aa[X](7) = AalX)() + [Ty dr X, hY 7)(r) (3.40a)

0a[ X, 07)(r) = 0a[X, 07)(75)) + [y A7 L[X, hY, 7)(7) (3.40b)
apalX](r) = apa[X|(75}) + [l A7 I p) (X, hY, 7](7) (3.40c)
&palX 07](7) = &pal X, 0)(75)) + ap.alX](753) (7 = 73)) (3.40d)

+ ‘]:t-)ﬂ dr” j;:l(—)'llJr dr’ I(3,p) [Xv hgpvﬂ-](’rl)
forallp € {b,c} andr € Z. By (3.24b), (3.38), (3.40) and byip,. . |[T—7, | < 4, we
haveds (¥|z, Z|7) < 23dp (¥ (73,), Z(7o,)) + 27 de (¥|z, Z|7), and consequently

de(¥|z, Z|7) < 2*dp(¥(73,), Z(134)) = 24 dp (Du(m, £, 0), Do (7, £7 , 04))
In particularde (¥|z, Z|7) — 0 asf? — f£¥. Furthermore,
dp(\Y @ (7' £ 0,), N & (7', £'70,))
= dp(¥(ry_), E(x (1))
< dp(P(7y2), ¥ (x () +dp(¥(x (1)), E(x (L))
< dp(P(r), W (x (7)) + 2 dp (4 (7, £, 0), i (7, €7, 0)

By the last inequality, if we can show thgt ' (7 ) — 7 asf? — ¥, thenty —
4 and\’ — \¥ andf’? — f'%. In other words, to show tha, A andr,_ are
continuous, it suffices to show that ! () — 7 asf? — f7.

By the discussion after (3.32), we hawg[¥](7) >  and g [¥](7) < 0 for all
r€J c JY Hence, foralr € 7,

% (fa[wa hw] — & [V, hgp]) = a[?] — aw [¥] = 204 V] — Qaa [¥] > 1
Hence|r — ¥ | < |&[¥, h?](1) — & [W, b ](7)| if 7 € J. Setr = x"!(r]) € J:

X)) = | < €@, b (x TN (1) — &a [ 0T (x TN ()]
§2¢2D,hq'(y7( 1(72—))»~(X (72 ))) (3.41)
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The last inequality follows fron§.[=, h?](x1(7)_)) = & [Z,h?](x (1)) and

the triangle inequality. Sinc&” — f¥ impliesdgs (¥|7, Z|7) — 0, also the right hand
side of (3.41) goes to zero, that jg,” (7 ) — 75| — 0, as required.

Uniqueness off, A and m»_. Suppose we have two triples;, A;, 7_ ; with i =

1,2. Letf € F and let®d; be the corresponding fields in (e). By (e.1) and (e.2) and
the local uniqueness for solutions to ODE'’s, we hae = &, on the intersection

of their domains of definitionmax{r_ 1 (f), 72— 2(f)}, 24 ]. Observe that_(f) <

To— 1 (F), 72— 2(F) < 1 _(f), by (c). By (€.3), we have,_ 1 (f) = 72— »(f). By (€.2),

we haveHl (f) = Hg(f), Al(f) = Ag(f) O

Remark 3.6In Proposition 3.3, the signature vectar appears to play a passive role.
However, observe thak, = &, (w,f,0.) in (e.2) depends on it in a crucial way, see
Definition 3.12. For instance, while, [®,.] anday, [@.] do not depend on, at all, and
Gi[®4], i = 1,2,3 only in a trivial way through their signs, the componeg{®,| does
depend omr, in a more important way, because the right hand side of (21663. That
o, plays a role is not surprising, after all it distinguisheashi VIII and 1X.

4. The approximate epoch-to-epoch and era-to-era maps

This section is logically self-contained, and the notat®mtroduced from scratch. Its
goal is to study two maps, denot€ll; and&x, that we informally refer to (following
[BKL1]) as the epoch-to-epocland era-to-eramaps. The two maps are related, the
second is some iterate of the first. The subsadkij¢ for right (as opposed teft). For
the moment, the definition @, is taken for granted without motivation. To understand
its role, see Part 3 of Proposition 4.4 and its proof.

Definition 4.1 (Epoch-to-epoch map)Set
Or: (O,OO)\QH(O,OO)\Q

w— Qpr(w) = {g

-1 fw<l
-1 fw>1

For everyw € (0,00) \ Q, set

)

den den

Qrfuw}(a.h) =

numl num?2 )

where, ifw < 1,

numl = 1 +w +hlog2 — h(1 + 2w) log(1 + 1) (4.1a)
num2 = h (4.1b)
den = (1 +w)(1+¢+hlog2) —h(2+w)log(l+ 1) (4.1c)
and, ifw > 1,
numl = (1+w)(1+ ¢+ hlog2) — h(2+w)log(1 + 1) (4.2a)
num?2 = hw (4.2b)
den =1+ w+hlog2 —h(1 + 2w)log(1+ 1) (4.2c)
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Here, we regard@ z{w} as a pair of rational functions ovek of degree one in the pair
of abstract variablegq, h). Finally, for all w € (0, c0) \ Q and all integers: > 0, set

Qr(w) = (Qro 7, 0 Qp ) (w)

Qp{w} = Qr{QE (W)} o+ 0 Qr{Qh(w)} 0 Qr{Qr(w)} © Qr{w}
Warning: @z {w} is not then-fold composition o z{w} with itself.
The goal of this section is to understand the bulk behavi@@f w} for largen > 0.
Definition 4.2. The floor function iR > z — |z] = max{n € Z|n < z}.
Definition 4.3 (Era-to-era map). Defineér : (0,1)\ Q — (0,1) \ Q by Er(w) =
Q}g/wJ (w). For everyw € (0,1) \ Q, denote by¢ p{w} the pair of rational functions

overR given by p{w} = Q};/“’J{w}. Finally, for all w € (0,1) \ Q and all integers
n >0, set

Ef(w) = (Ero---0&r)(w)
rlw} = Er{ER7 (W)} 0 0 Ep{Ef(w)} 0 ER{ER(w)} 0 Er{w}
Lemma 4.1.For all integersm,n > 0,
o Qi {w} = QR{QRk(w)} o QR{w} forw € (0,00) \ Q
o £ M {w} = ER{ER(w)} o ER{w} forw € (0,1)\ Q

Proposition 4.1.Letw € (0,1) \ Q. Then, for every integelr < r < | |,

1
w

R . @3)
where
numl, = (1+w)(r +rq—q) + h Ay (w,r) (4.4a)
num?2, = h(w +1- wr) (4.4b)
den, = (1 +w)(1+¢) +hAx(w,r) (4.4c)
and where
Ai(w,r) = (2r — 1+ wr —w)log2 — (2r — 1 4+ wr 4+ w) log(1 + 1)
+ 3001 (14 2k — 2k%w — w) log (1 + %) (4.5a)
+r 30 ((2k — Dw — 2) log (1 + %)
Az(w,r) = (14 wr)log2 — (24 w)log(1 + &) (4.5b)

+ ko (2= Dw —2)log (1 + 247)

Furthermore£z(w) = L — | 1], thatis,&x is the Gauss map, and

w

numlq/,| num2q/,
o) = (e 2 )

denjyjy) * denyyy)
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Remark 4.1In equation (4.5), we have < T <1 foralll <k <r-—1.
Proof. Letw € (0,1) \ Q. We show (4.3) by induction over< » < |1]. Ther =1
base case of the induction argume@tz{w}(¢,h) = (numl;/den;, num2; /deny),
is by direct inspection, using (4.1). The induction stepdmees the identity

1 numl,_; num2,_ _ 1, 2,
Qr{ Q! ()} (gmbecy man2cs ) _ (mumle mumz. ) (4.6)

forall 2 < r < |1]. To calculateQr{Q} '(w)}(-), use formulas (4.2), since
Q% '(w) =L —r+1> 1. Observe that (4.6) follows from the identities
A numl, = (1 + (% —7r+ 1)) (denT,l +numl,_1 + num2,_; log 2)
— num2r_1(2 + (L —-r+ 1)) log(1 + %)
A num2, = num?2,_1 (% —r+ 1)
A den, = den,_; (1 + (i —r4 1)) + num2,_1 log 2

- num2,—y (1+2(5 =+ 1)) log(1 + =5qy)

where\ = 2 + % — r > 2. To verify each of these identities, divide both sides\py
and usemum?,_; = hw, to obtain the equivalent identities

numl, = den,_; + numl,_; + num?2,_ log 2
—hBw + 1 —rw)log(l + —%55;)
num?2, = h(1 — rw + w)
den, = den,_; + hwlog2 — h(3w + 2 — 2rw) log(1 + —;"55;)

The last three identities are verified directlyd
The following lemma will be used later.
Lemma 4.2.For everyw € (0,1) \ Q and every integer with1 <r < | 1],

Ar(w,r) —rAz(w,r) + log2

0
) As(w,r)

1
< < 61
< <0

Here, A, and A, are defined by4.5).

Proof. Observe thatw < 1. Calculate

{Ai(w,7) — rAs(w,r) +log2}w = w?(r —1)log2 + rw(1l — rw) log 2
+(1—w)wlog(l+ 1)+ w it (2k(1 = kw) 4+ (1 — w)) log(1 + %)

By inspection, the right hand side is non-negative, and dediby

<3+ L30T (2k(1 - kw) + (1 - w)) %= <6
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We haveA;(w,r) < 0, becausew < 1, the sum of the first two terms on the right
hand side of (4.5b) is non-positive, and the third term is-positive. Estimate

|Az(w,7)] < (2+w)log(l+ L)+ 235" log(1 + %)
<3log(1+ 1)+ 25001 1% <3log(1+ Ly +2(1+ [ dk%)
< 3log(1 + a) +2(1 —log(1 — (r — 1)w)) < 8log(1 + L)

since2 < 3log2 < 3log(l + %) and—log(l — rw + w) < —logw = log% <
log(14+ ). O

Proposition 4.2.For everyw € (0,1)\ Q, everyp > 0 and every integet < r < L%J,
let (¢/,v") be the pair of rational functions oveR in the pair of abstract variables
(1, v) given implicitly by

o1+ wo l+w
(’”7’ —) =t} (p+ 5 7)

14

wherew’ = Q% (w) = = —randp =r —p/(1+p), that is(p’,0) = QR{w}(p,0).
Theny' is actuaIIy a linear polynomial oveR in p, andy’ is actually a linear polyno-
mial overR in the pair(u, v). Explicitly

() =5 (72 0) () s (M) e

The first and second entries of the vector

% (Al(w, Qgiﬁ/ﬁg(w’ T)) (4.8)

are bounded in absolute value I§y24( -)?and< 2% 1 - log(1 + ) respectively.

Proof. Equation (4.7) follows from equation (4.3). To check the has observe that
Aj(w,r) — p'Ag(w,r) = (Al(w, r) —r As(w,r) + log2) —log2 + £ As(w,7)

Now, use Lemma 4.2 arldg2 < < andlog(1+ 1) < O

1
o

Definition 4.4. For every sequence of strictly positive integéts),,>o, we denote the
associated infinite continued fraction by

1

<k07k717"'> = ko_._ki € (k()l_i_lvk%))\(@
1+...

Every element of0, 1) \ Q has a unique continued fraction expansion of this form.

We now show that whel = 0, the era-to-era maps can be realized as a left-shift
operator on two-sided sequences of positive integers.
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Proposition 4.3.Fix any two-sided sequencg,, )..cz of strictly positive integers and
define two-sided sequendes ),z and (wy, )nez by
L - <k'na kn—h kn—27 .. > Wy, = <kn+17 kn+27 kn+3 .. > (49)

1+pn

Thenw,+1 = Er(wy) and (pp+41,0) = Er{wn}(pr,0) forall n € Z, andER (wo) =
wy, andEx{wo }(po,0) = (pn,0) forall n > 0.

Proof. Use&r(w) = & — | £ ] and€r{w}(p,0) = (|5 =1+ 5, 0). O

Definition 4.5. Fix any two-sided sequendé,, ),z of strictly positive integers and
define(pn )nez and (wy,)nez by (4.9). For every integem > 0, let (u,, v,) be the

pair of linear polynomials oveR in the abstract variable$u, 1), with coefficients
depending only on the fixed sequelkg).cz, given implicitly by

14+w 1+w
(po+ B2, =20 ) = o} (po + 22, —22) (4.10a)
1z Vn o Vo
or by the equivalent recursive prescription
1 1
(pn_H + ”"_‘*‘1’ M) = ER{wn}(pn + Nl7 ﬂ) (4.10b)
Vn+41 VUn+1 Vn Un

By Proposition 4.2, equatiot#.10b)is V,, .1 = X,,V,, + Y,,, whereV,, = (pn,vn)”
and

L~ O L[ Ay (wn) = prs1 As(wy)
Xn:_ 1+pn Yn:_ 1 n n+1412 n
a7 0d,) e (M

Here, A, (w) = Ai(w, [£]) and Az (w) = Az(w, [ £ ]), see equationgt.5)

Example 4.1We consider Definition 4.5 whely, = 1 for all n € Z. Thenw,, = p, =
w forall n € Z, wherew = (V5 —1) € (0,1) \ Q. We havew? + w — 1 = 0 and
|1]=1and

x - ( 1 0 v - —2log(1 + w)
"T\l4+w 24w "\ (2 +w)log2 — (6 + 4w) log(1 + w)

foralln > 0. It follows thatyi,, 1o = u, foralln > 0, that is, s, = po andus,+1 =
—po—2log(1+w). There are uniqug; = A (uo) andia = A2(uo), depending only on
1o, such thar/zn+2*)\1 = (2+w)2(1/2n7)\1) andVanLg*)\z = <2+w)2(V2n+17)\2>.
Thatis,vq,, = (2 + ’U))Qn(l/o — )\1) + A\ andl/2n+1 = (2 + ’U.))zn(lll — )\2) + A\o. Here,
v1 =2+ w)vg + (1 +w)po + (24 w)log2 — (6 + 4w) log(1 + w).

Definition 4.6 (Propagator).Let (py,)nez: (Wn)nez, (Xn)n>0 be as in Definition 4.5.
Then for all integersy > m > 0, let P, ,,, = X,,—1 - - - X,,. Explicitly,

a _ ... a O
Pn,m - < 7%,71 "
t=m Tt Cn—1"""Cm
wherexy = ¢p—1 -+ - cor1beag—1 - - - ay, Wheneven — 1 > £ > m, and for all¢ > 0,

-1 1 1
x, = (@0 G — pp= = g TP
be ¢y we(1 + pe) wy wy
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In this definition, a sequence of dots indicates that indices increase towards the left,
one by one. A product of the forh), - - - F; is equal to one it = j — 1. In particular,

Pon=(519)
Lemma 4.3.In the context of Definition 4.5, we haVg = P, oVj + 22:01 P 1Yo

Lemma 4.4.Recall Definition 4.6. For all integers > m > 0, we have

3 < Z"—:(—l)”””an,l Qg <2 (4.11a)

(1 - 67nn) i < ,:,}jg/—:ll(w7z—2 o rw’m—l)2 ?;7,11 Xy < 2 (411b)
2

% < %(u}n72 e u)mfl) Cn—1"""Cm < 2 (4110)

Moreover,

Wy—o Wiy < [p P = p A when n>m>0 (4.12)

Here,p4 = %(1i\/5) are the roots of the polynomiaf —p—1. Observe thap_| < 1.
In this lemma, a sequence of dets indicates that indices increase towards the left,
one by one. A product of the forfy, - - - F; is equal to one ik = j — 1.

Proof. In this proof, abbreviate, = 1/(1 + pe+1) = (kes1, ke, ke—1 .. .). We have

Un—2 " " Um—1 Wm—1
(_1)m+nan_1 A . (4.13a)
Wp -2 Wm—1 Wn—1
2 2
Wp—2 " Wm Win—1 1
Ty = Cp—1* " Crp1bm = . . . (4.13b)
Up—2+ " Um Wn—1 Wp—2 " Wm—1
Wp—92 ** * Win—1 Wy —1 1 2
Cret Oy = P Ui s (4.13¢)
Un—2* " Um—1 Wn—1 Wp—2 " Wm—1

wheren > m in (4.13a) and (4.13c) and > m in (4.13b). Each right hand side is
written as a product of positive quotients, whose first faida@ontained in the closed
interval[%, 2], see Proposition A.1 (a) of Appendix A. This implies (4.14a)l (4.11c).
If n = m, the sum in (4.11b) vanishes and the estimate is trivialpSsen > m.
We havesgnz, = (—1)“™. If, in addition, ¢ satisfiesn — 2 > ¢ > m, we have
|zer1|/|e| = vove—r = ve(v, ' = [v,1]) < 3, thatiss|ze| > |2es1|. Therefore, the
alternating sumin (4.11b) is non-negative and bounded &bave by its first summand
Tm > 0 and from below byr,, + @1 > @p — |[Tmi1| = s Actually, 2,41 is
only defined whem > m + 2, but %xm is a lower bound for alh > m + 1. Now,
estimater,,,, which is the left hand side of (4.13b).

Inequality (4.12) is a consequence of Proposition A.1 (lo).

Warning: In the next proposition, the sequendes) <z and(p;) <z do not have the
property thatv; and(1 + p;)~! always lie in(0, 1) \ Q. Rather, they lie if0, co) \ Q.
However, in the proof of Proposition 4.4, the auxiliary seqcesw; ),.cz and(p, )nez
do have the property that;; and(1 + p;)~* always lie in(0, 1) \ Q. The discussion
beginning with Proposition 4.3 and ending just above willdpplied to the auxiliary
sequences.

Proposition 4.4.For all wg € (0,1) \ Q@ andgo € (0,00) \ Q, introduce
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e a two sided sequence of strictly positive integéss) .z by
(14 q0)~" = (ko,k—1,k_2,...) wo = (k1, k2, k3,...)

e (EraPointer)J : Z — Zby J(0) =0andJ(n+ 1) = J(n) + knt1
e (EraCountern)N : Z — Z by N(0) = 0andN(j + 1) = N(j) + Xz (j), where
XJ(z) 1S the characteristic function of the imagéZ) C Z; equivalently

N(j)=min{n € Z|J(n) > j} (4.14)
e sequencefw;);ecz and(p;);ez by (observe that, is defined consistently)

wj = (kn()+1: knGy+2---) +J(N(G)) =3 (4.15a)

pj = (kn(j)—1,kn()—2:---) Fhngy +5— J(N(G)) —1 (4.15b)

Part 1. Thenpo = qo andwi7pj > 0 and QR(”LU]) = Wj+1 and QR{wj}(pj,O) =

(pj+1,0) forall j € Z, andQ7, (wo) = w; and @7, {wo } (g0, 0) = (p;,0) forall j > 0.
Part 2. Letp, = £ (1 +v/5) and set

C(wo, qo0) = sup,,>q (n + l)pl%kn max{k,_1,kn—2} € [1,00]

SupposeC(wo, qp) < oo. Fix any0 < hg < 27(C(wo, qo))~!. Then, there are
sequence§y; ) >0, (h;); >0 of real numbers such that for evejy> 0, the denominator
appearing in the pair of rational function@ z{w; }, given by(4.1c)or (4.2c) is strictly
positive at(g;, h;), and

(¢j+1,hj11) = Qr{w;}(g;, hy)

or (g;,h;) = Q% {wo}(qo, ho). Forall j > 0,

o ()< hj < 26 hy pjr2N(j) and
N(j)—-1
Poww
4 hy 1 + w; W) W(e—1)

o g; € (0,00) \ Zand|g; — p;| < 2'2ho N(j) p; " Vhing)
e ¢; € (0,1)ifand only ifp; € (0,1) ifand only ifj — 1 € J(Z)

s ) < 20 max{kn )2, kNG -1 kN gy kv Gy}

1 1 1
° max{wj,wj, q;° lg; =11’

Part 3. Let the mapQy, : (0,00)® — (0,00)? x R be given as in Definition 3.16. Then
the sequenced;);>o, (w;);>0, (¢;);>0 in Part 2 satisfy for allj > 0:

(hj,wj,q;) = Qr(hjr1,wjt1,q41)

Example 4.2In Part 1 of Proposition 4.4, suppose the continued fraaiqmansions
begin as follows{1 + o) ™' = (1,2,...) andwy = (3,1,2,4...). Then,

j |-3-2-10 1 2 3 4 5 6 7 8 9 10
Xom@] 1T 0 1T 1 0 0 1 1 0 1 0 0 0 1
NG) |-2 -1 -1 0 1 1 1 2 3 3 4 4 4 4
JINGN|-3 =1 =1 0 3 3 3 4 6 6 10 10 10 10
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Proof (of Proposition 4.4)Two basic properties of and N are, for allj € Z:

e N o Jisthe identity; consequently(N (j)) = jifand onlyifj € J(Z)
e J(N(j)) =jandJ(N(j) — 1) < j—1by (4.14); consequently

J<JING)) <kng +i—1 (4.16)

The second bullet implies; > 0 andp; > 0, for all j € Z. The first bullet implies
thatw; € (0,1) ifand only if j € J(Z). Therefore, we have

L1 ifjeJ®)

Qr(w;) = {“’J

_JG50) it e J(Z)
wj—1 ifj ¢ J(2Z) QR{wj}(pj’o){ -

(1+p;,0) ifj¢J(Z)

In the casej ¢ J(Z), we haveN (j + 1) = N(j), and thereforev;; = w; — 1 and
pj+1 = pj + 1, asrequired. In the cagec J(Z), we haveN(j + 1) = N(j) + 1 and
J(ING +1)) = J(N(@) +1) = J(N()) + kn+1 = J + kn(j+1, Which implies

w1 = (kN2 kv Gy4ss ) Hhvge — 1= 5> — 1
pi+1 = (kNG kngy—15---) = ﬁ

as requiredPart 1 is checked.

To provePart 2, we first construct two sequencgg),>o and(h;);>o. Then we verify
that they have the desired properties. Below, a sequencetsfd in any product of
the form F,,, - - - F, indicates that indices increase towards the left, one by ©he

product is equal to one ifn = n — 1. Define sequence@u;),cz and (p).cz by

wy, =wymy € (0,1)\ Qandp;, = pym) € (0,00) \ Q. Equivalently,

ﬁp;ﬁ, = <kn,7kn—17kn—2a .. > w; - <kn+17kn+2akn+37 .. >

so thatw},,, = Er(w;,) and (p},,1,0) = Er{w; }(p;,0), by Proposition 4.3. Let
(Vi )nz0, With V7 = (ui,v;)", as in Definition 4.5, be the solution g}, , =
X VrE+ Yy foralln > 0 with pf = 0 andyf = (1 + wg)/he > 0, where

o L (= O vo = L (Ar(w) = iy As(w)
b L 1+4p, "wy Az (wy,)

Let (Vj);=0, With V; = (u;, )", be given byVy = V5" and for allj > 1 by V; =

XNG)=1Vagy-1 T Y where

L (At — J(s)) — py As(wt,j — J(s))
”—w*< Ap(w?,j — J(s)) )

S

s=N(j)-1

The functionsA; and A,, on the right hand side, are well defined(at,, ;7 — J(s)),
wheres = N(j) — 1, becausd < j — J(s) < ky(j) = [1/w}]. The following two
observations will be used later on:

e Recall (4.15b). Forall > 1,s = N(j)—1, we havep; = (j—J(s))—p%/(1+pk),
and consequently the estimates after (4.8) apply;tg > 1. They also apply td,,
n > 0, becauser, ., = [1/w;] — pj/(1+p}).

® Yy =Y, foralln > 1, and consequently;,,) = V5. The last identity is
also true whem = 0, because/(0) = 0.
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As in Definition 4.6, setP;;, =X} ,--- X} foralln > m > 0. Forallj > 1,
s=N(j)—1, Lemma4.3 implles

* * * s—1 *
Vi =X, (Ps,ovo + Ze:o Ps,e+1Ye ) +Y; = P¢ s+1, Vo + Ze 0 s+1 £+1Y£ +7Y;
The last equation, the estimates after (4.8), and the esinaLemma 4.4 imply

20 N1
G AN D 4.17
sl < 02 2 o (4.17a)
=0
1 1 2 - 2 1
> - - * yp — 28 st )l (1 _)
V] = 211]: (w:_l . w*_l) <’LU1V() ; (wlfl w*l) og + w; >
(4.17b)
2 1 2 ° 2 1
v < —(ﬁ) <w* vo + 26 w,_q - wh log (1—|——*)>
T=wr \wr_ 1 ;( -1 1) w)
(4.17c)

forall j > 1ands = N(j) — 1. All three estimates are also true whes- 0, s = —1.
AbbreviateC = C(wy, qo) > 1. We havek,, < Cp?" for all n > 0. Estimate

25505 (wf_y - owty)” log (1+1/uwj)
8wi1 Sreo(p+) "2 2 1og(2 + keta) see inequality (4.12)

Wy Yo(p+) T2 (2 + log ki)
213 *1(1+1ogC) < 2Bw*,C < 2’110*711%O < 27'w*

ININCIN

Hence, for allj > 0,

L WNG)-1 [, « 2 ho

7 = w, (Wh(y—g - wEy) T Y 4 (4.18)
Define SequenCE{hj>j20 and(qj‘)jzo by hj = (1 +1Uj)/Vj >0 andqj =Dpj +,Ll,j/l/j.
These definitions are consistent whjes: 0. Observe that +w; < 2+ J(N(j))—j <
I+kng) < 2/wjv(j)_1. Therefore, the estimates (4.12), (4.17), (4.18) implyjfor 1:

1 h; 1+ w, NG) 1
Z <2 <4 where H;, =h J wi 4.19a
4-H; J 01+wf§ eHo (wewz,l) ( )
H, <2h, N(j)— 2 N(J) 2 < 24h i —2N(j) 4.19b
j =0
N(j)—1 N(J) 1
27h0 1 * ok . —2N (4
g —pil < — ( o H (wiw;_4) <22 N(5) 72N D)
WNG)-1 Y = We =0

The left hand sides are also less than or equal to the righit $ides whe = 0. Using
(4.15b), one estimates
diSt]R(pj, Z) = diStR(UﬂN(]—),l, kN(j)72a .. .>, {O7 1})
1 1 1
: }>
kngy-1+ 17 kngy—2+27 7 3max{kn() -1, kng)-2}

> min{
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By the definition ofC and by the assumptioh, < 2-“C~1, we havelg; — p;| <
%distR(pj,_Z) < distr(p;, Z) for ally" > 0. Thereforegj € (O,oo).\ Z. Moreover,
q; € (0,1)iff p; € (0,1)iff kngjy +5— J(N(G) —1=0iff J(N(G)—1)=j—1
iff N(j)—1=N(j—1)iff j — 1€ J(Z).

For everyj > 0,

wi < J(N(G)) =5+ 1< kng)

1/wj < kngyer +1
4 <pj+1<kng+i—JINQG)+1<kyg +1

. -1 . —1
(dlStR(q]', Z)) S 4 (dlStR(pj, Z)) § 12 max{k:N(j),l, ]{:N(j),g}
Finally, we show that for alj > 0,

(a) the denominator a® z{wj,}, given by (4.1c) or (4.2c), is strictly positive @, h;)
(b) (gj+1,hj41) = Qr{w;}(g;, hy)

For allj > 0, we have

2hky ()41 < 2(2hop N (€N ) < 29m,C < 270

This impliesh; log(1 4 1/w;) < 2h;kyy11 < 2~1, which by inspection of (4.1c)
and (4.2c) implies (a). To show (b), observe that by constnof (V,"),,>0,

SR L RS G e A, Mm LHwp
(s et ) = enfun) (o + 52, )
n n

n+1 Vn+1

forall n > 0, see Definition 4.5 and Proposition 4.2. Sifcg,,) = V,; foralln > 0
and since 1/w}, | = k,41 = J(n + 1) — J(n), the last equation is equivalent to

n —J(n
(@r(n+1)s Dy(ngr)) = Q}Iz( B ){wJ(n)}(qJ(n)ahJ(n)) (4.20)

By Proposition 4.2 and by the construction(®f) >0, forallj > 1,s = N(j) — 1,

ui 14+1/wi—j+J(s
(pj_‘__% / . (s)

1+ w§>
Vj Vj

— o= g [(* N_:
)= iy (pr+ 2 =
Sincel /w—j+.J(s) = wy, thisimplies(q;, h;) = Q% " {w ()} (a7, hy (), fOr
allj > 1,s = N(j)—1. The lastidentity and (4.20) imply;, h;) = Q% {wo} (g0, ho)
for all j > 0, which is equivalent to (b).

To provePart 3, check that for allj > 0 the following implication holds:

wjy1 = Qr(wy)

h; ; ; — (Wi ws. 0
(qj+17hj+1):QR{wj}(qj7hj)} = Qu(hjtr, w1, ¢541) = (hy, wj, ;)

To make this calculation, distinguish the cages J(Z) andj ¢ J(Z), and recall
wj,q; € (0,00) \ Z and thatw; € (0,1) iff j € J(Z)iff ¢j+1 € (0,1). O
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5. An abstract semi-global existence theorem

This section is logically self-contained, and the notatintroduced from scratch. The

objects in this section are abstractions of concrete objbet appear in other sections
of this paper. This relationship is reflected in the choiceathtion: abstract objects are
named after their concrete counterparts, whenever pessiik section is an indepen-

dent unit. Definitions in other sections are irrelevant harel must be ignored.

Definition 5.1. For every integer > 1, denote by - || the Euclidean distance iR9.
SetB[5, f] = {g € RY|||g — f|| < &} for everys > 0 and evenf € R%.

Proposition 5.1.Fix an integerd > 1. Suppose:
(a) F ¢ R%is anonempty open subset aBd = {(4,f) € [0, 00) x F | B[§, f] C F}.
(b) I1; : F — R%is a continuous map, for every integee> 1.

(€) Qr : F — R4 andErr : BF — [0,00) andLip : BF — [0, 00) are maps such
that for all (4, f) € BF:

SUp;> 1 SWgep(sg [[11j(8) — Qrlg)ll < Err(s,f) (5.12)
Qu(g) — 2u(g :
Supgyg/GB[(;,f]y g#g’ H L( ) — /L( )” S Llp(5, f) (51b)
lg—gl
(d) (45,£;);>0 is a sequence iBF so thatf;_; = Q. (f;) forall j > 1, and so that
S0 i1 {1z )41 Lip(dk, £5) } Err(6n,£,) < 9; (5.2)

forall 5 > 0.
Then, there exists a sequer{gg);>o With g; € B[d;,f;] C F such that for allj > 1:

gj-1 = 11;(g;)
Proof. For all integer®) < j < ¢, set

B =Sy { T2 Lin(0k, £i)} Bxe(6,,£,) € [0, 00)

ThenE; = lim .., EY is the left hand side of (5.2). Observe tha} = 0 and EY <
E; < §; by (d). Moreoverf$ | = Lip(d;, f;) E + Err(5;, f;) whenl < j < (.
For aII integers() < m < ¢, let (A)™" be the statemenfhere is a finite sequence
g™’ = (g;" ) < j<e With gm[ € BIES,f;] C B[5;,f;] € Fforall m < j < ¢, such
that gm = fyandg]] = II;(g]"") whenm + 1 < j < (. Observe that if (A)"* is
true, then the sequengg** is unique.
For every fixed 2 0, we show by induction overn, one-by-one frommn = ¢ down to
m = 0, that (Ay™* is true. The base case (&)is trivial. For the induction step, lat<
m < ¢ and suppose (A)* is true. Defineg™ ¢ by g L= gm’ € BIEL ;] C
B[§;,f;] € F whenm < j < ¢, and seg™ """ = II,,,(g" ) = II,,(g"") € R%.
The statement (&)~ > is true, ifgn | e B[E’Z f,,—1], which follows from

m—1>

lgm =1 — |l = [ (gln*) — Qu(Em)|
< M (g®) — Qrlegm Il + 1 Qu(gm’) — Qu(En) |l
< Err(0m, £n) + Lip(6,, ) ES, = E

m—1
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We have shown that (/X)’e is true for all0 < m < /. For all integer®) < j < /, set
gl =g € B[;.f;], whereg™’ = (g7")o<;<¢ is the sequence in (Af. For every
fixed j > 0, the sequencg; = (gﬁ)zzj in the compactB[J;, f;] has a convergent
subsequencgﬁ)zec‘,, whereL; C [j,00) NZ is infinite. One may choosé&; > £; D
.., thatisf;_; D L;forall j > 1. Pick a sequencg;);>o with ¢; € £; forall j > 0,
suchthat;_; < ¢; forall j > 1. SetL = {¢; | j > 0}. By construction, all but a finite
number of elements of are inL;, for every;j > 0. That is,(gﬁ)eem[mo) converges.
Setgj = hHl[_,OO, teLNj,00) gf S B[(Sj7 fj] For a”] >1,

IT(g;) = limy oo, renpjoo) 1 (85)
= limy o, LeLNj,00) g§_1 = gj-1

becausdl; is continuous by (b). O

6. Main Theorems

In this sectiony,, K, F are given just as in Definitions 3.17, 3.18, 3.19, andis the
map in Definition 3.16.

Definition 6.1. Let || - || be the Euclidean distance k. For everyd > 0 and every
f € R3 setB[§,f] = {g e R®|||g — || <4}

Definition 6.2. Let F C (0, c0)? be as in Definition 3.19. For alf > 1 set
BeF ={(6,f) €0,00) x F | B[¢5,f] C F}  and  BF = B\.F
Lemma 6.1.For all (6,f) € BF set
W(57f):max{ﬁvw_‘_évq%vﬁvq_ké} 6[1,00)

W(f) = W(O>f) = maX{ﬁ“& %7 |qi1‘>Q} S [1,00)

wheref = (h, w, ¢). Then:

(@) W(g) < W(s,f) forall g € B[S, f].
(b) If (5, f) € BoF C BF thenW (s, £) < 2W (£).

Lemma 6.2.LetErr : BF — [0, 00) be given by
Err(5, £) = 2°(25)? W (5, £)° exp(—£279W (5, £) %)

wheref = (h,w,q). Then for all(4,f) € BF, we haveK(g) < Err(d,f) for all
g € BJ, f] C F (see Definition 3.18).

Proof. Letg = (h/,w’,¢') € B[4, f]. Thenr.(g) > 1W(g) 2and0 < h—§ <h’ <
h+4 <2hand{, > 5. Hence K(g) < 2%°(:15)*W(g)® exp(—+27°W(g)~2).
Now use Lemma 6.1 (a).O

Lemma 6.3.Let Q;, be as in Definition 3.16. Sétip : BF — [0,00), Lip(4,f) =
2 (6, £)°. Then[| QL (g) — Qr(g’)|l < Lip(6,f) lg — g [| for all g, g’ € B[, f].
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Proof. Let f = (h,w,q). If g = g/, there is nothing to prove. Suppoge# g’. In
Lemma B.1 of Appendix B, sef; = (hy,w1,¢q1) = g andfy, = (hy,wa,q2) =
g'. Observe that) < h; < 1 byg,g € B[4 f] C F. Sinced < |q¢ — 1], either
q,q1,92 < lor 491,492 > 1. We haveu}max < maX{W(g),W(g’)} andqmax <
max{W(g), W(g')} andqy, = max{g; ", ¢; '} < max{W(g),W(g')}. Now use
1og(2 4+ Wmax) < 1 + wmax and Lemma 6.1 (a). O

Theorem 6.1 (Main Theorem 1).Recall the definitions oP; and Q; (Definition
3.16),F (Definition 3.19) /1 (Proposition 3.3) B¢ F (Definition 6.2),/ (Lemma 6.1),
Err (Lemma 6.2)Lip (Lemma 6.3). Suppose:

€)) (fj)jZOv with f; = (hj,wj,qj) cF, satisfiesfj_l = QL(fj) forall j > 1.
(b) The sequend@;);>o given by

[ee]

—1
o= > { T 26} 27 ()" Wt exp (- 271 W(f) %)
(=j+1  k=j+1

satisfies); < oo and(d;,f;) € B.F forall j > 0.

(c) mo € S3 and(w;) ;>0 is the unique sequence ffy that satisfiesr;_; = Pr(7;,f;)
forall j > 1.

(d) o, € {—1,+113.

Then, there exists a sequer{gg);>o With g; € B[d;, ;] C F such that for allj > 1:

gj—1 = M[n;,0.)(g;) and 71 =Pr(m),g;)

Proof. We use Proposition 5.1, with the understanding that theratisbbjects of
Proposition 5.1 in the left column are given by the specigcis in the right column:

d| 3
F | F asin Definition 3.19
II; | IIrj,0.], see Proposition 3.3 and the hypotheses Theorem 6.1 (c), (d)
Qr | 9|7, with @, as in Definition 3.16
Err | Errasin Lemma6.2
Lip | Lipasin Lemma6.3
(05,£;) | (¢5,f;) asin hypotheses Theorem 6.1 (a) and (b)

We check that the assumptions (a), (b), (c), (d) of Propmshil are satisfied:

(a) The definitions oBF in Proposition 5.1 and in Definition 6.2 are consistent.

(b) H[rj,0.] : F — (0,00)% x R C R is continuous, by Proposition 3.3.

(c) The domains of definition of;,| » andErr andLip are just as required by Propo-
sition 5.1 (c). For al(é, f) € BF andg, g’ € B[4, f] C Fandj > 1,

117, 0.)(g) — Qrl(8)]| < K(g) < Err(4,f)
19Ll7(g) — Qulr(g")|l < Lip(s,f) g — &

by Proposition 3.3 (a) and by Lemmas 6.2 and 6.3. That isaj®dd (5.1b) hold.
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(d) By assumption(é;, f;) € BoF C BF forall j > 0. Henceth; < h; — 4, and,
by Lemma 6.1 (b), we havid’ (9, f;) < 2W (f;). Consequently, for aﬂ > 0

ZZ j+1{Hk G+1 Lip 5k,fk }EI‘I‘ (Sg,fg)

Ze g+1{Hk_g+1213W(5k fk)s} 240(11[ 50 ) W(‘vafl)
X exp ( — h_e2 QW((Sg,fe)iQ)

2 5 _ _
<Y d Hk_]+1 2W (£1)° } 247 (1) W (£e)° exp (— 527 W (fe) )
The last expression is equaldg, and (5.2) is checked.

Now, Theorem 6.1 follows from Proposition 5.10

Theorem 6.2 (Main Theorem 2).Suppose the vectdy = (hy, wo, qo) Satisfies the
assumptions of Proposition 4.4, that is

wo € (0,1)\ Q C(wo, qo) < 00 (6.1a)
q € (0,00)\ Q 0 <hg <27"(C(wo, q0)) " (6.1b)

Let(ky)nez and.J : Z — Z (Era Pointer) andN : Z — Z (Era Counter) andw; ) jez,
(gj)j>0, (h;);>0 be justas in Proposition 4.4. Introduce the sequeffgg;~o by

f; = (hj,wj;,q;) € (0,00)

Introduce sequenc&$;),>o and(K;);>0 by

w; N
Hj = hO 11“}0 H (J) WJ(g)wJ(g_l) >0

Kj= max{kmn—m knGy-1 kNG N4y 21
Suppose:
(@ H,; <2721(K;) 2 forall j > 0.
(b) 27 () (K exp (— 2724 (K;)~2) < 1forall j > 0.
(c) The sequeno@])po glven by

Z { H 2% (Ky) }271( -)* (Ko)? exp(—H%Tgl(Kz)‘Q) >0

l=j+1 k=j+1

satisfiedf; < 27*H; < cc.

(d) mo € S3 and(m;),>0 is the unique sequence iy that satisfiesr;_; = P (7;,f;)
forall j > 1.

(€)o. € {—1,+1}>

Then(§;,f;) € B.F for all j > 0 and there exists a sequen(g;),>o with g; €
Blg;, ;] C F suchthatforallj > 1:

gj—1=1[r;,0.)(g;) and w1 =7Pr(m),8;)
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Proof. By Proposition 4.4 and by hypotheses (a), (c) in Theoremférall j > 0:

27?H; < h; < 2°H; (6.2a)
max{i,w], qua ‘q1_1‘7qj} <2* K; (6.2b)

274(K;) " < min{wy, g5, lg; — 11}
2;5.7' S 2_1 min{wj,qj, |Qj — 1‘, hj}

Hence,B[2§;,f;] C (0,00)3 for everyj > 0. Furthermore, for allj > 0 and all
(h',w',q') € B[2§;,£;] C (0,00), we havey’ # 1 and

27%H; <27'h; <h; —2§; <h’ < h; +2§; < 2h; < 2°H; (6.3a)
and
max { 7, v’ vq” T}
<max{ 2’5 ,w]+2§j,q]_gﬁj7m»% +26,} (6.3b)

1
<2max{ wj,q—jwqj—_l‘,qj} §2 Kj

The last two estimates (6.3) impty (h’, w’, ¢’) > 271}(K;)~2 and
K(W,w',q') <27 () (K;)  exp (— =27 21(K;) %) < 1
The last inequality is hypothesis (b) in Theorem 6.2. Furtiwe,
h' <2°H; < 278(K;)"? <27 "n.(h',w', ¢)

The second inequality is hypothesis (a) in Theorem 6.2. &lestimates are true for
all (b, w',¢') € B[2§,,£;], and therefore3[2§;,f;] C F for all j > 0, in particular
f; € ]—'(see Definition 3. 19) In other wordgj;, £ ) € By F.

The last result and the fact tht ; = Q(f;) for all j > 1 (see Proposition 4.4)
imply that Theorem 6.2 follows from Theorem 6.1, if we canwfibaté; < g for all

J > 0, whered; is given as in Theorem 6.1. The inequality< § ; is a consequence of
W(fg) < 24[(@ and2*2Hg <h,< 22Hg, wherej, ¢ > 0. 0O

Theorem 6.3 (Main Theorem 3).Fix constantdD > 1, v > 0. Suppose the vector
fo = (ho, wo, o) € (0,00)* satisfies

(I) wo € (Oa 1) \Q andQO € (Oa OO) \Q
(i) kn, <D max{1,n}"” forall n > —2, with (k,,)nez a@s in Proposition 4.4, that is

(1+qo) " = (ko k—1,k—2,...) wo = (k1, ka2, ks, ...)
(i) 0 < hg < A¥ whereA! = A¥(D,y) = 27D ~4(4(y + 1)) 40+,
Then

e The assumption®.1)and (a), (b), (c) of Theorem 6.2 hold.
e Setp, = 1(1+ v/5). The sequenc ;) ;o in Theorem 6.2 satisfies for gil> 0:

j . 1\ 1/(+1
g; <exp(— %Aﬁpf(])) and N(j) > (D 1j) /rt) (6.4)

whereN : Z — Z (Era Counter) is the map in Proposition 4.4.
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Ify > 1andD > -5 =15, then the set of all vectofs € (0, 00)* that satisfy (i), (ii),
(iii) has positive Lebesgue measure.

Proof. PreliminariesThe following facts will be used without further comment:

o a Tzt < (

s 10ga) for all real numbers; > 1,b > 0, z > 0 wheree = exp(1).
e a’ < ¢ forallreal numberg < a < cand0 < b < d.
e 1< p; <2andl < elogpy < 2wheree = exp(l) andp; = (1 +V/5).

Fix D > 1 andy > 0 as in Theorem 6.3. For all 5-tuples of real numbers-
(51,82, 83,54,55) > (0,0,0,1,0), SetA(s) = 2751 7527D 758 (54 (y 4 1))+,
Observe tha) < A(s) <275 < landA(s) < A(s')if s > s'.

Basic smallness assumptioris. < D max{1,n}” forall n > —2 andhy < A(k).
The vectors = (K1, K2, K3, ka, k5) > (0,0,0, 1, 0) will be fixed during the proof.
Estimates 1Recall Proposition 4.4 and, = (1 + V/5). Forallj > 0,n > 0:

C(wo, qo) = sup,,>o(n + 1)p*" kn, max{kn_1, kn—2}
< 2D?sup,, p1 " max{1,n}?0+D
< 2D?%(y 4 1)20%Y = A(1,0,2,1,2)7!
Jn) =%, ke <Dy, 7 <Dn¥*!
J < J(N(j) <DN(G)™
N(j) = (D™1j)/ 0+
; < 2%hg prN(J) see (4.19)
~lh, HN(J) 1(kg+1)’1(kp+1+1)’1
> 27 hy [ @2D(£ +1))=2 > 27 Thy max{1,2DN(j)7}~2NG)
K; <D(N(j)+1)” <D2"max{1, N(j)}"”
H;K? < 2427D?hgp "N max{1, N (j)}>
< 2*77D?hg sup,, > py 2" max{1, n}200F)

< 227D 2hg (7 + 1)20+) = hy A(4,2,2,1,2) 7}

[\3

Requirex > (25,2,2,1,2). ThenH; < 272}(K;)~2? andhg < 27(C(wo, q0)) .
Estimates 2Let (§;) ;>0 be as in Theorem 6.2. We claim that with proper choice:of

(A) Fam <2 7ho(2D(n + 1)) Y exp(— L A(x)plt) forall n > 0.
(B) #; <27*H; andj; < exp(fLA(K;) p+NO)) forall j > 0.

We first check (A)== (B). Note that§; > §,;.1, 7 > 0. Fix anyj > 0. Setn =
N(j4+1)—1>0.By (A),byj > J(n) (see the line before (4.16)) andbyl > N(j),

By < Fatmy <27 7ho(2D(n +1)7) Y exp(— A}
< (27%ho max{1,2DN ()"} 2N(”)exp< A ()Y )

See the second bullet in the preliminaries. On the right tsighel both factors arg 1
(usehy < A(k) < 1). By the lower bound oifI; derived above, claim (B) follows.
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We now check (A). For ath > 0:
f i)
=y Z‘ZS"]’(E;H { Hk T(n)+1 2 S(Kk)B} 271 (& 1 ) (K.)?

X exp ( — (221H5K§)_1)
< S S (2 maxicuce i) () exp (- (2P HLEZ) )
<y km+1(215+7D(m + 1)7)3J(m+1)+2(L)2(2D(m n 1)W)4(m+1)

X exp ( 9—25-2y)—2 1 pi(erl)(m + 1)727)

142 (10Dm Y1) _o5_ _91 _
< (&) S, (277Dm) exp ((— 272D L g2

Since2’ - (2D(n + 1)7)2(+1) < L (26Dm7)?™ for all m > n + 1, we have
0 0

S(n) def}gl(n) 25 1 (QD(TL + 1) )2(n+1)
+1
S (hlo) m=n+1 (215_‘_"/D'IFI’L"’/)(12D’ml’Y ) exp ( _ 2—25—27D—2 hLopa_m,m—Qy)
< (hio) i1 €XD (12Dm"’+1log (2154 Dm?) — 27250 D-2 L p¥ m—%)
< (hio) L exp (29D2(’V+ 1)m7+2 — 9-25-27p-2 L L m—2’y)

The second term in the argument of the exponential domirthteg$irst term, if we

requires > (35,2,4, 3,3) More precisely, the absolute value of the second term is at

least twice the absolute value of the first term. In fact,
252D (y + 1) sup, 5 py 7

< 29+2DA (3(y 4 1))3(v+1) =A(35,2,4,23) 7P <Ak) I < &

’ 20 — ho

Therefore,
S < (L)3§ o _9-26—2yp—2 L —2y
(n) = (hD) Zm=n+1 exXp p "'m

Moreover,226+27D? sup, -, p7"m?’ < 226+27D2(2(y + 1))20+D = 272A1,
whereA, = A(28,2,2,2,2). Requirex > (28,2,2,2,2). Thenhy < A, and

S(n) < (h%))g m 1 exp( 4}110A*p+)
<exp (= E A1) () exp (- BAL) ) Yoy exp (= 207)

We have}~ >, exp (— 2p7)

<Y1y = 3(pe — 1)~ = gp. < 1. Require
Kk > (56,4,4,2,4). Thenhy < A(k) <

;&(56 4,4,2,4) = A2, and

(hAO)?’exp (- £A) < (hio)?’exp (— (£)2) < 8lhg < 2'%hy < 1
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SinceA, > A(k), we haveS(n) < exp(— A(/@')p”“) Fix k = (56,4, 4,2,4). Al
the inequalities for: hold, and claim (A) is proved. LeA® = A(56,0,4,4,4),asinthe
statement of Theorem 6.3. Sindé < A(k), the conditiorhy < A' in the statement
of Theorem 6.3 implies the conditidm < A(x) used in this proof.

So far, we have verified the estimate (6.4), and we have wtifie assumptions The-
orem 6.2 (a), (c) and (6.1). In the assumption Theorem 6,2l{b)caseg > 1 follow
from Theorem 6.2 (a), (c). Sinddy = hy and Ky < D, the remaining = 0 case in
Theorem 6.2 (b) follows from

2" (515)" (K0)” exp(— ;27 (Ko) ™) < 27 (57)° D’ exp(— ;27D ?)
<27 ({£)?D7 8! (ho2?' D?)” < 22 D'hf < (hy/A%)°

Lebesgue measure of the set of admisgipl&he set of alfy = (hy, wo, o) € (0, 00)3
that satisfy (i), (ii), (iii) is a product0, A*) x F,, x F, (depending oD and~), where
F, C (0,1)\QandF, C (0,00) \ Q. Both (0, A¥) and F,, have positive measure,
becauseA? > 0 and(},3) \ Q C F,. Infact, if gy € (;,?) then1/(1 + qo) =
1/1+1/(1+1/(1 4 x))) with z = (2¢0 — 1)/(1 —qo) e (0 1), that |sk:0 =k_ =
k_» =1 < D. Suppose; > 1 andD > (log2)~'v/(y—1). LetG(z) =L — [1]b
the Gauss map frorf0, 1) \ Q to itself. We havek, 11 = Ll/G"(wo)J for all n' >
For alln > 0, set

D

X ={wo € (0,1)\Q| G"(wo) <D '(n+1)""} =G "((0, D' (n+1)"")\Q)
whereG~" is then-th inverse image of sets. Lei; be the probability measure on

(0,1)\ Q with density(log 2) (14 ) ! (with respect to the Lebesgue measure). It is
well-known thatug (X) = ug(G—1(X)) for all measurablél c (0, 1)\ Q. Therefore,

na(Xn) = pe((0, DM+ 1))\ Q) = 5 log (1 + prrs) < o Do

Let X7 be the complement of,, in (0,1) \ Q. Then(,,., XS C F,, sincew, € X}
impliesk,+1 = |1/G™(wo)| < 1/G™(wy) < D(n + 1)7. We have

H‘G(F’w) Z /'LG(nnZO Xﬁ) =1- MG(UnZO X") Z 1- ZnZO MG(X")

1 1 1 oo _ B 1
21— Brogs Lonzo Tt 2 1~ Bregzs (L4 [ #77de) = 1= s 577 > 0

Consequently, also the Lebesgue measuté, ois positive. O

7. Causal structure and particle horizons

In this section we show that the spatially homogeneous va@pacetimes correspond-
ing to those solutions of (1.1) that are obtained by comlgifiihneorems 6.2 and 6.3 and
Propositions 3.1 and 3.3, have “particle horizons” (sees|Nbr this notion), contra-
dicting a conjecture in [Mis].

Theorem 7.1.LetD, v, fy = (ho, wo, go) be asin Theorem 6.3. Lét = (h;, w;, g;),
mj, 0 andg; be as in Theorem 6.2. Adopt the remaining notation of Thes@hand
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6.3. Denote the componentsgf € F by (h}, w}, ¢}). Recall thath’; € (0,1).
Fix a constant\, > 0. Setry = 0. Introduce sequencegs ;) >o and(7;);>o0 by
A= Njoa {Alm,0.)(85)) € (0,] forall j > 1
Tj = Tj—1 + (h})\j)il{’l'l_k(gj) — Tg_[ﬂj,d*](g]‘)} for all j >1
Then:

(@) 7; > 7 forall j > 1 andlim; . 75 = 4o00.

(b) The solution t¢1.1)with initial data®(0) = Ao @4 (70, 8o, 0+ ) exists for allr > 0,
thatis® = a @ 3 : [0,00) — D(0.), andd(7;) = \; D, (7}, 8;,04) forall j > 0.

(c) For all 7 > 1 we have the bound

1

def _ . _
M, = SUDre(r;_,,7,) MAX(ij k)eC ajk[@)(r) < —272)\; mm{(w})Q,(w;-) 1

Set(i(1) = —3 [, dsai(s) fori = 1,2,3 (see Proposition 2.1) and for al > 0 set

L(s) def f:o d7 max j i)ec exp ( -G - Ck)

(see the right hand side g®.1) in Proposition 2.2). Thed(s) < L(0) < oo and
lims_,o L(s) = 0.

Proof. Proposition 3.3 implieg < WAj(rj —7-1) < 2%and7; > 751 + (2X0)

which implies (a). Theorems 6.2, 6 3, and Propositions33 jmply (b). Proposmon
3.3 (e.5) implies (c). Estimate

L(0) < Y5, [T drexp (% S dr’ max g ec aj,k[qs](w))
<0 [T drexp ($3000 7 dr maxg g aoec ag[2)(7))
< (e = 7eea) exp (3 02y (7 = Tiner) Mo )
<2235 (hyhe)” eXP( 27430 (hy,) ™! min{ (w,)?, (win)*l})
By Theorem 6.2, we hav§;,f;) € BoF andg; € B[§;,f;] for all ; > 0. Hence,
sh; <h) < 2h; andjw; < w} < 2w;. Proposition 3.3 (b) implied[r;, 0.](g;) <
1+ Az(gy) < 3+w) < 3(1+w;)and\; ' < Ay [T,_, 3(1 +wy). Therefore,
L(0) < 2° () 7 2724 (he) 7 (TTcy 31+ wi))
xexp (=277 24 (i) 7 minf (w)?, (we) 71} )
<2 (N0) Tt oy S o (F) 71 (27 max < K
X exp ( —2717(1 - 5@1)(He—1)71(Ke—1)72) (7.1)

whereH; andK; are as in Theorem 6.2, adg is a Kronecker delta. See (6.2). In the
exponential, we have bounded the sum dver 1,...,/—1 from below by itsk = ¢—1
summand iff > 2 and by zero otherwise. The sum over J(m)+1,...,J(m + 1)
hask,,+1 < D(m + 1) many terms. By the proof of Theorem 6.3, for every> 0,
the following estimates, uniformly ih= J(m) + 1,..., J(m + 1), hold:
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(Hy)~! < 2(ho)~1(2D(m + 1)7)2(m+D)

(27 maxi<k<s Kk)z < (27+7D(m + 1)7)D(m+1)7+1
(Hyo1)™' > 27%(hg) ' p3™ wherep, = (1 4+ V/5)
(Ke—1)2>D7 2272 (m + 1)~

By these estimates, in particular the fact tfY,_,)~! grows at least exponentially in
m, the right hand side of (7.1) is finite, add0) < co. O

A. Bounds for a particular product of continued fractions

This appendix is entirely self-contained, the notatiorompletely local. Its single pur-
pose is to prove Proposition A.1 below, which is used in ttmopof Lemma 4.4.

Definition A.1. For all integersm and n and all sequenceér;);cz whereZ C Z,

definez,,., to be the ordered sequenag,, z,,11,...,Zn-1,2, if m < n and the
empty sequencerit > n. In the first case, it is required thét, n] N Z C Z. Similarly,
definex,,.., to be the ordered sequeneg,, z,,—1, ..., ZTnt1, T, if m > n and the

empty sequenceiif, < n. In the first case, it is required thdit, m] N Z C Z.

Definition A.2 (Continued fractions). For every integem > 0 and every finite se-
quence of strictly positive integefs; )1<;<,, Set recursively

0 n=>0
kin) = _ € 0,1]N
Votn) {(k1+<k2m>)1 n>1 o.une
For every infinite sequendg; ), of strictly positive integers, set
<k1, kg, .. > = lim <k1;n> S (O, 1) \ @

Example A1<> = <k1;0> =0 and(k1> = <k1;1> = 1/k/‘1 and(kl,kg) = <k‘1;2> =
1/ (k1 + 1/k2).

Definition A.3 (Fibonacci numbers).F; = F, =1 andF,, = F,, 1 + F,,_2,n > 3.

Proposition A.1. For every two-sided sequence of strictly positive integerscz, de-
fine two-sided sequencés,);cz and (w;)icz by v; = (ki, ki—1,ki—2,...) andw; =
(ki,kit1,kit2,...). Then, for all integers\/ < N:

(@) % < Hﬁ\;M+1(Ui/wi) <2
(0) T 0r 1 wi < (Fy-argn) ™ < (5(VB = )N

The proof of Proposition A.1 is given at the end of this append
Definition A.4. Let Py() = 1 and P, (z1) = z; and for alln > 2, set
Pn(wlzn) - ‘Tlpn—l(xQ:n> + Pn—2(x3:n) (Al)

Example A.2P2(l‘1;2) =1+x120 andpg(Il;g) =21+ X3+ T12223 andP4($1;4) =
1+ 2129 + 2324 + T124 + 1222324,

Lemma A.1. Recall Definition A.4. For all integers > 0, we have:
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(a) P, is a polynomial of degree, jointly in its n arguments, with coefficients {i, 1}
(b) P, is a polynomial of degree 1, separately in each ohigrguments
(C)Pn(lvvl) :Fn+1

(d) Pn(xlzn) = Rz(xnzzl) forall z4,... sy, €R

(€) (k1.n) = Pn—1(kan)/Pn (k1) for all strictly positive integergk; )1<i<n, n > 1

Proof. (a) through (e) are all shown by induction, using (A.1). TowHhd), observe
that (d)), (d),, (d), and (d} hold. For the induction step, let > 4 and suppose (g)
through (d),_; hold. Then, using only (A.1) and the induction hypothesis,
Pn(xlzn) - Pn(xnzzl)

=21 Py_1(2m) + Po2(®3:0) — 2 Poo1(@n—1:1) — Pro—2(Tn_2:1)

- x'lpn—l(xn::Z) + Pn—2(£n::3) - xn,Pn—l(xl:n—l) - Pn—Q(xlzn—Q)

=T (an’VLfQ(xnfl::Q) + Pn73(xn72::2)) + (‘Tnpnfii(xnfl::?)) + Pn74(xn72::3))

— Tn (xlpn—Q(xZ:n—l) + Pn—3(x3:n—1)) - (xlpn—S(xQ:n—Q) + Pn—4(x3:n—2))

Verify that all the terms cancel, by the induction hypotke$his implies (d). To show
(e), observe that (g¢holds. Letn > 2 and suppose (g) ; holds. Then,

n 2(k3:n)>1 o Pnfl(kQ:n)
_ = kl

-1 P,_
(ki) = (k1 + (ko)) = (k1 ) B (o) 1 Bra o)

Now, (A.1) implies (e). O
LemmaA.2. Forallintegersm — 1 < M < N <nandallz,,,...,z, € [1,),
2 Prt g1 (st ) Pr i (Tnr41:m) — PN—ms1 (TN ) PN (N4 1) >0 (A2)
Moreover, ifm = M + 1, then the facto® on the left hand side can be dropped, that is,
Po_y(zpis1m) — PN—m(@ps1:8) PN (ZN41m) >0 (A.3)

Proof. In this proof, we use the recursion relation (A.1) and theemfld recursion
relation that is obtained by applying Lemma A.1 (d) to alkaterms of (A.1). Fix\/
andN. Inequality (A.2) is proved by induction ovet andn, wherem < M + 1 and
n > N. Denote the left hand side of (A.2) I8y, .. Then,

Qm+1,8 = Pv—m(2p41:8) >0
Qrm+1,8+1 =2Pyvpi—m(@vgiv+1) — PN—m(@p41:8) TN+
=Py_m(@pm+1:N) eN+1 2 Pvo1—m(@agrn—1) >0
Qu,N =22 Py—p(rrs1:n) — PN—m+1(@anN)

=M PN-m(@ym+1:N) = Pn—m-1(Tmi2:n)
> xyrymi PNy 1(Targo:n) — Pnom—1(Zar2:n) > 0

Qu.Nn+1 =220 Prni1i—m(@yvy1:n+1) — PN—m1 (TannN )TN 41
=2zxpaeNn1 PNnom(@pvsn) F 22 Py (Tars1n—1)

— oM PNy (Tpy1N)TN 1 — Pyoyv—1 (P28 TN

>y PNy (@yvin) — PNoyv—1(Tapo:n )TN 11
> xprN M PNy (Taryon) — Pnom—1(@ymg2.n) N1 > 0

These four cases and the two recursion relations
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° Qm,n = mem+1,n + Q7n+2,n whenm < M —1andn > N
° Qm,n = anm,nfl + Qm,n72 whenm < M +1andn > N + 2

imply (A.2). Inequality (A.3) is shown in an entirely similavay. 0O

Proof (of Proposition A.1)Recall (d), (e) in LemmaA.l.Leh — 1 < M < N < n.

ﬁ <k1m> N Pifm(kjiflzzm) . Pn7i+1(ki:n)
i= M1 < i=MA41 Piferl (ki::m) Pnfi(k‘i+1:n)

n)
_ Pumgi(karem) Pn—M(kM+1:n) _ Prr—mt1 (kmear) . Pr_nm(karsin)
PN m+l(kN m) Pan(kNﬁ»l:n) PmeJrl(km:N) Pan(kNJrl:n)

The right hand side i5> by inequality (A.2). Now, letnh — —oo andn — +oo to

obtain]_[f;MH(vi/wi) > 1. By symmetry, we also havg[ " w1 (wi/vi) > . This
implies (a) in Proposition A 1. Similarly, using (A.3),

N
H <k’ > _ Pan(k]\H»l:n) < 1 < 1
ot  Poom(Basn) T Pyom(karn) T Prom(1,..01)

Letn — 4o to obtain]‘[f\LM+1 w; <1/Fn_pg1. O

B. The modulus of continuity of the map Q, introduced in Definition 3.16

LemmaB.1.Let Qr, : (0,00)% — (0, oo)2 x R be the map introduced in Definition
3.16. For allf; = (h;,w;, q;) € (0,00)3 with0 < h; < 1,i = 1,2, with f; # f5, such
thatg; andgs are either both< 1 or both> 1,

19 (f2) — Qr(f1)]|rs - 2122 10g(2 + Wmax) 1 q1,q2 < 1
l|lfa — £1||gs 2 gmax if gi,q2 > 1

Hereywmax = max{wla ’UJQ} andeax = maX{Ql» 112} andein = min{Qh q2}

Proof. We prove the following claim, which implies the Lemnizach of the nine par-
tial derivatives ofQ, : f = (h,w, ¢) — Q. (f) is bounded in absolute value by

{210q210g(2+w) ITFE(0,1]x (0,00 (0.1) g g

2% if £ € (0,1] x (0,00) x (1,00)

Let0 < h < landgq # 1. Let (hy,wr,qr) = Qr(f) and letnuml, num2y, deny,
be as in Definition 3.16. We first estimate the partial deiestofg;, = num1;, /deny,
andh;, = num?2;,/deny,. Each ofnumly, num2y, deny, is of the form

Ly(w, q) + La(w, q)q + Ls(w, ¢)h + La(w, ¢)hlog AL(f)
with M. (f) = 1 4+ 1/w,(f) as in Definition 3.16 and witl; (w, ¢) = a;(q)w + b;(q)

wherea;(¢) andb;(q) are constant separately for< 1 and forg > 1 and satisfy
-3 < ai(q),bi(q) < 3,wherei = 1,2,3,4. Letk = 1,2 andnumky, = L1 + Laq +
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Lsh + Lshlog A anddeny, = L) + Lbq + Lih + Lihlog A with L; = a;w + b;
andL} = ajw + b} (Warning the prime doesot denote a derivative). Then
(%nuka) deny, — ((%denL) numky,
(L3 + Ly log \p) (L}, + Lbq) — (L% + Lylog A\ )(Ly + Laq) ifr=h

+(a1 + az2q + ash + ashlog AL )(b] + bhq + bsh + byhlog AL)
_ ) —(a} + abq + ash + ajhlog A\L) (b1 + bag + bsh + byhlog Ap)

if r =w
+h{ La(L5 + Loq + Lih) = Ly (Lt + Lag + Lsh) } 25 log As
Recall thath| < 1and|a|, |a}], |b:], |b;] < 3and|L;],|L;] < 3(1+w) andlog A, > 0.

o If g <1,then|:Z logAL| < (1+w)~!and

|(%nuka) deny, — (Zdeny) numkp |
36(1+w)*(1 +log Ar) ifz=nh
<1834+ logAr)? +54(1+w) ifz=w p <21 +w)?log(2 + w)
18(1 + w)*(2 + log Az) ifz=gq

For the second inequality, uge< log A, <1+ w and(log Ar)? < 1+ w.
e If ¢ > 1,then|log A\z| < 1and|Z logAL| < (14 w)~? anda) = b, = 0 and

|(%nuka) deny, — (%denL) numk:L|
72(1+w)*q ifxr=h
<< 270¢ ifz=wj <2°(1+w)?q
27(1+w)* ifx=gq

To finish the proof, observe thdén;, > (14 w) min{1, ¢} > 0. Each partial derivative
of ¢, = numly, /deny, andh;, = num2y, /deny, is bounded in absolute value by (B.1).
And so are the partial derivativesof,, becaus®w,, /0h = dwy,/dq = 0, and because
owr,Jow = —(1+w)2if ¢ < 1andowy/Ow =1if ¢ > 1. O
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