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Abstract In the present article, we have presented com-
pletely new exact, finite and regular class I solutions
of Einstein’s field equations i.e. the solutions satisfy the
Karmarkar condition. For this purpose needfully we have
introduced a completely new suitable grr metric potential to
generate the model. We have investigated the various phys-
ical aspects for our model such as energy density, pressure,
anisotropy, energy conditions, equilibrium, stability, mass,
surface and gravitational red-shifts, compactness parame-
ter and their graphical representations. All these physical
aspects have ensured that our proposed solutions are well-
behaved and hence represent physically acceptable mod-
els for anisotropic fluid spheres. The models have satisfied
causality and energy conditions. The presented models are
also stable by satisfying Bondi condition and Abreu et al. con-
dition, in equilibrium position and static by satisfying TOV
equation, Harrison–Zeldovich–Novikov condition, respec-
tively. For the parameters chosen in the paper are matching in
modeling Vela X-1, Cen X-3, EXO 1785-248 and LMC X-4.
The M–R graph generated from the solutions is matching
the ranges of masses and radii for the considered compact
stars. This work also estimated the approximate moment of
inertia for the mentioned compact stars.

1 Introduction

After the pioneering work on the anisotropic relativistic com-
pact star by Bowers and Liang [1], many researchers have
investigated the possible origin of anisotropy in compact
stars. Ruderman [2] proposed that at high density ∼ 1015 g/cc
the matter starts interacting relativistically that arises the
anisotropy in pressure. It is also suggested that due to the
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formation of super-fluid neutrons inside neutron stars, pres-
sure anisotropy may also arise [3]. As a results of research
by many authors pressure anisotropy can be trigger by types
of phase transition [4], pion-condensation [5], slow rotation
[6], strong magnetic field [7] etc. Letelier and his co-author
[8–10] have shown that such anisotropic matters can be con-
sidered as the composition of two perfect fluids, or a perfect
fluid and a null fluid, or two null fluids.

Many researchers are also interested to investigate the
properties of compact stars in higher dimensions. The con-
cepts of extra dimensions were first proposed by Kaluza [11]
and Klein [12] independently when they unify the gravity
and EM-force. Liddle et al. [13] have analyzed the effect of
extra dimensions in the maximum mass of neutron stars (NS).
They have assumed an equation of state for non-interacting
cold neutrons and found that the maximum mass of NS was
reduces by the presence of extra dimensions. Chattopadhyay
and Paul [14] have considered the Vaidya–Tikekar space-
time in n-dimensional Einstein’s field equations to analyze
the properties of compact stars. Bhar et al. [15] incorporated
the conformal Killing equations in n-dimensional Einstein’s
field equation and discussed anisotropic compact stars.

Various extended theories of gravity have been used to
investigate the physical properties of compact stars. Pani
et al. [16] have used general class of alternative theories
which includes scalar-tensor theories, a scalar field coupled
to quadratic curvature invariant and indirectly f (R) theories
as special cases. In their work, they have developed a system-
atic tool to rule out physical theories that are incompatible
with observations. The concept of embedding 4-dimensional
spacetime in 5-dimensional hyperspace was used by Cas-
tro et al. [17]. Here they have embedded four dimensional
spacetime into five dimensional braneworld. It is shown that
on choosing equation of state for hadronic, hybrid and quark
stars, the maximum mass is controlled by brane tension λ

which lies in the range 3.89 × 1036(≡ 1.44M�) < λ <

1038 dyne/cm2. It is important to remind that construct-
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ing exact interior solutions representing non-uniform stel-
lar distributions is nearly impossible in the context of the
braneworld. This is because the nonlocality and non-closure
of the braneworld equations, produced by the projection of
the bulk Weyl tensor on the brane, lead to a very complicated
system of equations which make the study of non-uniform
distributions very hard [18]. It is yet to discover the crite-
ria about what restriction should be imposed on braneworld
equations to obtain a closed system [19]. To solve this prob-
lem, it is necessary to understand the bulk geometry and
how a 4D spacetime cab be embedded. On the other hand,
Karmarkar [20] embedded 4-dimensional spacetime into 5-
dimensional Euclidean space known as class I. This method
implies an equation that links the metric coefficients gtt and
grr thereby simplifying to solve the field equations. A similar
concept was also used in string theory on embedding branes
e.g. in the Randall–Sundrum model [21].

Assuming anisotropic fluid distribution, Mak and Harko
[22] derived the condition for lower limit of mass for any
anisotropic compact stars which was strongly depends on
degree of anisotropy. Dev and Gleiser [23] derived the critical
condition for compactness parameter 2M/R for anisotropic
relativistic stars and was also found strongly depends on
nature and degree of anisotropy. They have also shown that
for anisotropic compact stars the red-shift can go arbitrary
large. In there second paper, Dev and Gleiser [24] stressed on
stability of anisotropic compact stars. Here they have found
that, depends on the nature of anisotropy there can exist
stable anisotropic star even at � < 4/3 while its isotropic
counterpart isn’t. Herrera et al. [25] obtained an algorithm to
generate all spherically symmetric anisotropic fluid distribu-
tions from two generators. One of the generators was linked
with anisotropy and other with re-shift function. On the other
hand, Lake [26] used Newtonian hydrostatic equation for
isotropic fluid distribution and generate infinite number of
anisotropic solutions simply by assuming density.

Recently, Ivanov [27] derived a condition which is sim-
ilar to Karmarkar condition, for conformally flat space-
time. However, the solutions resulting from the two theo-
ries are completely different. In Karmarkar spacetime there
are no physical solutions describing isotropic fluid distribu-
tions, however, physical solution exist if electric charge or
anisotropy or both are incorporated [28–42]. In this article
also we are exploring new physical solutions satisfying field
equations under class I category and discuss the solutions to
model compact stars.

The present article has been designed as follows: In Sect. 2,
we have written the Einstein field equations for static and
spherically symmetric matter distribution. The Embedding
class I spacetime satisfying the Karmarkar condition has
described in Sect. 3. Section 4 contains our new class I solu-
tions along with mass, compactness parameter, surface red-
shift and gravitational redshift. We have explored the accep-

Fig. 1 Metric potential functions (above) and energy density (below)
vs the radial coordinate r corresponding to numerical values of constants
given in Table 2 for four well-known compact stars

tance of our solutions in Sect. 5. The determination of con-
stants by using the matching condition and analysis of all
energy conditions have been done in Sects. 6 and 7, respec-
tively. The equilibrium and stability are analyzed in the sub-
sections of Sect. 8: Sect. 8.1 displayed the equilibrium sit-
uation and the stability analysis has done in Sect. 8.2. The
generating functions for our model have calculated in Sect. 9.
Moment of inertia and Mass relationship are analyzed in
Sect. 10. Finally, The result and discussions have been done
in Sect. 11.

2 Einstein’s field equations

To describe the interior of a static and spherically symmetric
fluid sphere we consider the line element in Schwarzschild
coordinate system (t, r, θ, φ) as:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2) (1)

where eν(r) and eλ(r) are unknown functions of the radial
coordinate r only and called metric potential functions.
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As we are going to investigate the solutions of Einstein’s
field equations for anisotropic compact stars, so we consider
the energy momentum tensor for the anisotropic fluid sphere,
which is of the following form:

Tαβ = {pr (r)−pt (r)}χαχβ+{ρ(r)+pt (r)}UαUβ−pt (r)gαβ

(2)

where ρ(r), pr (r) and pt (r) are representing the energy den-
sity, radial pressure and transverse pressure of the fluid con-
figuration, respectively. χα and Uα are the unit space-like
vector and four velocity, respectively, satisfying UαUα =
−χαχα = 1, Uμχμ = 0.

Therefore, the Einstein field equations for the line element
(1) and energy momentum tensor (2) are as follows:

ρ(r) = 1

8π

{
1 − e−λ(r)

r2 + λ′(r)e−λ(r)

r

}
(3)

pr (r) = 1

8π

{
ν′(r)e−λ(r)

r
− 1 − e−λ(r)

r2

}
(4)

pt (r) = e−λ(r)

32π

{
2ν′′(r) + {ν′(r)}2 − ν′(r)λ′(r)

+2ν′(r)
r

− 2λ′(r)
r

}
(5)

where ′ = d
dr , represents the derivative with respect to the

radial coordinate r .
The anisotropic factor is defined as �(r) = pt (r)− pr (r).

Therefore, with the help of Eqs. (4) and (5) we can get the
general expression of anisotropic factor for static and spher-
ically symmetric fluid configuration in the following form:

�(r) = e−λ(r)

8π

{
ν′′(r)

2
− λ′(r)ν′(r)

4
+ {ν′(r)}2

4

−ν′(r) + λ′(r)
2r

+ eλ(r) − 1

r2

}
. (6)

3 The Karmarkar condition

The Karmarkar condition is an important tool to study the
stellar fluid spheres because of its special character. In gen-
eral theory of relativity, it is recognized that an n-dimensional
spacetime is called of class p if it is embedded in (n + p)-
dimensional Pseudo Euclidean flat space. In the year 1921,
Kasner [43] investigated that the 4-dimensional spacetime
of spherically symmetric object can always be embedded
in 6-dimensional Pseudo Euclidean space and later Gupta
and Goyel [44] have shown the same result with respect
to another coordinate transformation. In 1924, Eddington
[45] found that an n-dimensional spacetime can always be
embedded in m-dimensional Pseudo Euclidean space with

Fig. 2 Radial pressure and transverse pressure vs the radial coordinate
r corresponding to numerical values of constants given in Table 2 for
four well-known compact stars

m = n(n + 1)/2 and the required minimum extra dimension
to embedded is less than or equal to the number (m − n) or
same as n(n−1)/2. Therefore, the 4-dimensional spherically
symmetric line element (1) is of embedding class II. In the
literature, there are some special class spacetimes such as the
Schwarzschild interior and exterior solutions are of class
I and class II, respectively, Friedman–Robertson–Lemaitre
[46–48] spacetime is of class I and the Kerr metric is of class
V [49]. In the year 1948, Karmarkar derived a condition
[20] in terms of the components of Riemannian curvature
tensor as:

R1414R2323 = R1212R3434 + R1224R1334. (7)

This condition is known as the Karmarkar condition. Any
4-dimensional spacetime can be embedded in 5-dimensional
flat space i.e. becomes an embedding class I whenever it
satisfies the Karmarkar condition. The Karmarkar con-
dition is only the necessary condition to become a class I,
Pandey and Sharma [50] provided the sufficient condition as
R2323 �= 0.

Now, all the non-zero components of Riemannian curva-
ture tensor Rαβγ δ for the metric (1) are :

R1212 = 1

2
λ′(r)r, R2424 = 1

2
{ν′(r)reν(r)−λ(r)}

R2323 = r2 sin2 θ({−e−λ(r)}, R3434 = sin2 θR2424,

R1414 = eν(r)

4
[2ν′′(r) + {ν′(r)}2 − ν′(r)λ′(r)].

Taking into account all these non-vanishing components of
Riemannian curvature tensor, the Karmarkar condition (7)
yields the following differential equation:

2ν′′(r) + {ν′(r)}2 = eλ(r)ν′(r)λ′(r)
eλ(r) − 1

. (8)
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Fig. 3 Anisotropic factor (above) and adiabatic index (below) vs the
radial coordinate r corresponding to numerical values of constants given
in Table 2 for four well-known compact stars

After solving the above differential Eq. (8) we get a rela-
tionship between two metric potential functions

eν(r) =
{
A + B

∫ √
eλ(r) − 1 dr

}2

(9)

where A and B are non-zero unknown integration constants,
which shall be determined by applying some boundary con-
ditions at the surface of compact stars. The condition (9) is
a peculiar characteristic of the class I spacetime, where two
metric potential functions are related to each other and hence
researches can easily generate class I models for anisotropic
fluid spheres with the help of a suitable form of one of the
metric potential functions.

Therefore, the expression of anisotropic factor given in
Eq. (6) becomes [51]:

�(r) = ν′(r)
32πeλ

{
ν′(r)eν

2r B2 − 1

} {
2

r
− λ′(r)

eλ − 1

}
. (10)

by using Eqs. (8) and (9).
From Eq. (10) one can see that the pressure anisotropy

�(r) is zero throughout the fluid sphere if either first or sec-

Fig. 4 Radial EoS parameter and transverse EoS parameter vs the
radial coordinate r corresponding to numerical values of constants given
in Table 2 for four well-known compact stars

ond or both the factors on right-hand side of Eq. (10) are
zero. The vanishing of first factor on the right side of Eq. (10)
yields the Kohlar–Chao solution [52] whereas if the second
factor is zero then the corresponding solution will be the
Schwarzschild interior solution [53].

Finally, we arrive at a point to find out class I solutions
but we have four independent equations (3)–(5) and (9) with
five unknowns, namely λ(r), ν(r), ρ(r), pr (r) and pt (r).
Therefore, it is impossible to find the exact solutions, for this
purpose we shall consider a new metric potential function to
generate our models.

4 New embedding class I solutions

According to earlier information, we consider a completely
new metric potential function to obtain the closed form solu-
tions of Einstein’s field equation:

eλ(r) = 1 + cr2
{

erf[1 + ar2]
}2

(11)

where c > 0 (km−2), a �= 0 (km−2) are undetermine con-
stants, to be determine from boundary condition and erf[x]
is known as the error function, which is defined as

erf[x] = 1√
π

∫ x

−x
e−t2dt. (12)

We get another metric potential function by employing
Eq. (11) in Eq. (9) as:

eν(r) = 1

4a2π

[
2Aa

√
π + B

√
c
{
e−h2 + √

πhg
}]2

(13)

where g = erf[1 + ar2], h = 1 + ar2. The exact behaviors
of these two metric potentials functions e−λ(r) and eν(r) are
shown in Fig. 1 (above).
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Now, taking into account these two metric potential func-
tions given in Eqs. (11) and (13), we obtain the exact expres-
sions of ρ(r), pr (r), pt (r) and �(r) as:

ρ(r) =
cg

[
3g + r2

{
c g2 + 8ae−h2

π− 1
2

}]
8π

{
1 + cr2g2

}2 (14)

pr (r) = g
[
8π

{
1 + cr2g2

} {
S1 + 2aA

√
πceh

2
}]−1

c
[
4aB

√
πeh

2 − g
{
S1 + 2aA

√
πceh

2
}]

pt (r) = c
[
Bc

√
πg2{(1 + 2ar2) + √

πeh
2
(ar2 − 1)

×g
} + 8

√
π(ar)2{B − A

√
cg} + 2aS2

]
[

8π
3
2

{
1 + cr2g2

}2 {
S1 + 2aA

√
πc eh

2
}]−1

�(r) = r2

8π
3
2

{
c2g3 − 4ace−h2

} [
S1g + 2a

×√
πeh

2
(A

√
cg − B)

][ {
1 + cr2g2

}2

×
{
S1 + 2aA

√
πceh

2
} ]−1

(15)

whereas

S1 = Bc{1 + h
√

πeh
2
g}

S2 = g
[
2Bπeh

2 − 2Bcr2e−h2 − A
√
cπeh

2
g
]
. (16)

Therefore, the gradients of energy density ρ(r) and radial
pressure pr (r) are obtain as

dρ(r)

dr
= cre−2h2

4π2{1 + cr2g2}3

[
16a2r2S3 − cπe2h2

g4S4 − 4a
√

πeh
2(r)g(r)S5

]
(17)

dpr (r)

dr
= 1

4π
3
2 S6

[
S7 + 8a2Bc

√
πeh

2
g(r)S8 + 4acS9

−4πaBc2e2h2
g4S10 − c2√πeh

2

×g5S11 − 4
√

πaBceh
2
g3S12

]
(18)

whereas,

S3 = 1 − 3cr2g2, S4 = 5 + cr2g2

S5 = 4ar2h + cr2g2{3 + 4ar2h} − 5

S6 = {1 + cr2g2}2
{
(Bc

√
πrheh

2
g2

+2aAr
√
cπeh

2
g + Bcrg2

}
S7 = 2B2c3πrhe2h2

g6 + B2c3rh2π
3
2

×e3h2
g7 + 16a3ABre2h2

π
√
cg

S8 = Br − 2Ar
√
cg

Fig. 5 Mass function (above) and compactness parameter (below) vs
the radial coordinate r corresponding to numerical values of constants
given in Table 2 for four well-known compact stars

S9 = g2
[
B2r

{
2aπhe2h2 − c

}
− 4aAπr

×e2h2
{
aA + B(1 + 2ar2)

√
cg

} ]
S10 = Br

{
2 + ar2(4 + 3ar2)

} − Ar
√
c

S11 = 7 − 4a2A2πre2h2 + B2r
{
4aπe2h2

(1 + 2ar2) − c
}

− 4aABrπhe2h2√
cg

S12 = Br{2c + aπe2h2 + 4acr2}
+ 2aArπe2h2√

cg. (19)

We get the following expressions for the mass function
m(r) and compactness parameter u(r), respectively

m(r) =
∫ r

0
4πρ(r ′)(r ′)2dr = cr3g2

2
{
1 + cr2g2

} (20)

u(r) = m(r)

r
= cr2g2

2
{
1 + cr2g2

} . (21)

Also, the interior redshift Zg(r) and surface redshift Zs(r)
are
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Fig. 6 Functions ρ(r)− pr (r), ρ(r)− pt (r) and ρ(r)− pr (r)−2pt (r)
vs the radial coordinate r corresponding to numerical values of constants
given in Table 2 for four well-known compact stars

Zg(r) = e−ν/2 − 1 = 2a
√

π
[
B

√
c
{
e−h2 + √

πh(r)g
}

+ 2Aa
√

π
]−1 − 1 (22)

Zs(r) = √
1 − 2u(r) − 1 =

√{
1 + cr2g2

} − 1. (23)

To explore the behaviors of the mass, compactness param-
eter, surface and gravitational redshifts we provide the graph-
ical representations of them in Figs. 5 and 7. The mass
and compactness parameter are zero at the centres of the
fluid spheres, gradually increasing towards the surfaces of
the fluid configurations and become maximum at the sur-
faces (see Fig. 5). The surface redshift and gravitational
redshift have the opposite behavior throughout the fluid
spheres, shown in Fig. 7. Moreover, at the surfaces (r = R)
Z(R) = Zs(R) = Zg(R), obvious from Fig. 7. The the
behavior of interior redshift explain the profile of interior
density as well. If a photon comes out from center to sur-
face, it has to travel longer path and much denser region (i.e.
core). This leads to more dispersion resulting into loss of
energy. Whereas a photon comes out from near the surface
will travel shorter path and less denser region and therefore
less dispersion and less energy loss. Hence, the interior red-
shift is maximum at the center and minimum at the surface.
However, the surface redshift depends on overall mass and
radius or in other word the surface gravity. As mass increases
the radius will also increases slightly which will yields more
surface gravity and more surface redshift. Thus, the trend of
interior and surface redshifts are opposite.

5 The central values and physical analysis

For our model, we get the following results for the density
and pressure at the centres of compact stars:

Fig. 7 Surface redshift (above) and gravitational redshift (below) vs
the radial coordinate r corresponding to numerical values of constants
given in Table 2 for four well-known compact stars

ρc = 3cg2
0

8π
> 0, ∀ c > 0 (24)

prc = ptc = √
cg0

[
2ae

√
π(2B − A

√
cg0)

−Bcg0(1 + e
√

πg0)
][

8π
{
2aAe

√
π

+B
√
c(1 + e

√
πg0)

}]−1
(25)

where g0 = g(0) = erf[1].
The positive behavior of the central pressure (prc = ptc >

0) implies

A

B
<

4ae
√

π − cg0(1 + e
√

πg0)√
cg0

. (26)

Moreover, according to the Zeldovich condition [54]
prc/ρc ≤ 1. Therefore, from this condition we obtain the
following inequality:

4ae
√

π − 4cg0(1 + e
√

πg0)√
cg0(1 + 6ae

√
π)

≤ A

B
. (27)

Therefore, the inequalities (26) and (27) yield a boundary
restriction on the constants A and B as:

4ae
√

π − 4cg0(1 + e
√

πg0)√
cg0(1 + 6ae

√
π)

≤ A

B

<
4ae

√
π − cg0(1 + e

√
πg0)√

cg0
. (28)

To demonstrate the physically acceptance of our mod-
els on anisotropic compact stars we draw the graphs for all
the physical parameters, metric potential functions e−λ(r),
eν(r), energy density ρ(r), radial pressure pr (r), transverse
pressure pt (r), anisotropic factor �(r) and equation of state
(EoS) parameters ωr (r), ωt (r) in Figs. 1, 2, 3 (above) and 4,
respectively. Figure 1 (above) shows that e−λ(r) and eν(r) are
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finite and non-singular everywhere within the fluid spheres
and they coincide at the surfaces. The energy density is posi-
tive and as usual maximum at the centres and then decreasing
towards the the boundaries, clear from Fig. 1 (below). The
radial and transverse pressures both are positive and mono-
tonically decreasing from the centre of the stars. Further,
pr (r) becomes zero at the boundaries of the stellar objects
and pt (r) is non-vanishing there (see Fig. 2). The anisotropic
factor �(r) is positive and finite within the stars, maxi-
mum and zero at the boundaries and centres of the stars,
respectively, obvious from Fig. 3 (above). The parameter
η(r) = pr (r)

pt (r)
can analyze the effect of anisotropy in the

equilibrium position of fluid configurations in similar way
of Newtonian treatment. The profile of η(r) (see Fig. 10
(below)) discloses that the anisotropic force is increasing
through out the fluid spheres i.e. behaves like outward force,
similar to the result in Fig. 3 (above). Figure 4 indicates the
behaviors of EoS parameters ωr (r) and ωt (r) and from the
figure one can notice that both the parameters are with in the
region 0 < ωr (r), ωt (r) < 1 i.e. our solutions are for the
real feasible fluid distributions. Therefore, all this significant
results confirm that our solutions are physically acceptable.

6 The matching condition and determination of
constants

We have seen that there are some constants within our solu-
tions, so to determine the values of these involving con-
stants we are going to match our interior solution with the
Schwarzschild vacuum solution at the surface of the star
r = R. The Schwarzschild vacuum solution is given by the
following metric

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2(dθ2 + sin2 θdφ2) (29)

where M is the total mass of the anisotropic fluid sphere
contained within the sphere of radius R.

By matching at the boundary of the compact star r = R
(> 2M to avoid the singularity) we get:

e
ν(R)

2 =
2Aa

√
π + B

√
c
{
e−h2(R) + √

πh2(R)g(R)
}

2a
√

π

=
√

1 − 2M

R
(30)

eλ(R) = 1 + cR2g2(R) =
(

1 − 2M

R

)−1

. (31)

Also, the radial pressure pr (r) at the boundary r = R van-
ishes i.e.

pr (R) = 0. (32)

Using these boundary conditions (30)–(32), we obtain

c = 2M

(R − 2M)R2g2(R)
(33)

A = −
√
R − 2M

4
√
Ra

[
4a + cg(R)

{
e−h2(R)π− 1

2

+h(R)g(R)
}]

(34)

B =
√
c(R − 2M)g(R)

2
√
R

(35)

where a is a free parameter to obtain well-behaved solutions
in all respects and mass M , radius R will be chosen accord-
ingly different stars.

7 The energy conditions

It is well-known in the literature that the physical mass dis-
tributions must satisfy all the energy conditions within its
interiors. The energy conditions are: (2) null energy condi-
tion (NEC), (2) weak energy condition (WEC) and (3) strong
energy condition (SEC), these conditions represent by fol-
lowing inequalities:

NEC : ρ(r) − pi (r) ≥ 0,

DEC : ρ(r) ≥ |pi |, (36)

WEC : ρ(r) ≥ 0, ρ(r) − pi (r) ≥ 0,

SEC : ρ(r) − pr (r) − 2pt (r) ≥ 0. (37)

Here i ≡ (r, t), r for radial and t for tranverse components.
For the verification of all energy conditions, we plot all the
L.H.Ss of above inequalities in Fig. 6. From Fig. 6 it is evident
that our solutions satisfy all the energy conditions within the
interiors of fluid configurations.

8 The equilibrium and stability analysis

The equilibrium position and stable state are most important
situations for the non-collapsing compact object within our
Universe. In this section, we are going to check the equilib-
rium and stability of the fluid distributions represented by
our solutions.

8.1 The equilibrium condition

The together effect of gravitational force, Hydrostatic force
and Anisotropic force holds any anisotropic stellar object
in the equilibrium position. At the equilibrium position, the
balancing force equation is known as T OV -equation. The
generalized T OV -equation for anisotropic fluid distribution
can be written as [55,56]
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Fig. 8 Forces for the compact stars Vela X-1 (above left), Cen X-3 (above right), EXO 1785-248 (below left), LMC X-4 (below right) vs the radial
coordinate r corresponding to numerical values of constants given in Table 2

− Mg(r)

r2 {ρ + pr }e λ−ν
2 − dpr

dr
+ 2�

r
= 0 (38)

where Mg(r) represents the effective gravitational mass. The
Tolman–Whittaker mass formula gives the exact form of the
effective gravitational Mg(r) as:

Mg(r) = 4π

∫ r

0

(
T 0

0 − T 1
1 − T 2

2 − T 3
3

)
r2e{ν+λ}/2dr. (39)

On using the energy–momentum tensor (2) and field equa-
tions (3) and (4), the Eq. (39) becomes

Mg(r) = 1

2
r2ν′(r)e{ν(r)−λ(r)}/2. (40)

Therefore, using the value of Mg(r), Eq. (38) reduces as:

− ν′(r){ρ(r) + pr (r)}
2

− dpr (r)

dr
+ 2�(r)

r
= 0. (41)

Moreover, the Eq. (41) can be written as:

Fg(r) + Fh(r) + Fa(r) = 0 (42)

where Fg(r) = − 1
2ν′(r){ρ(r) + pr (r)}, Fh(r) = − dpr (r)

dr

and Fa(r) = 2�(r)
r are called the gravitational force, hydro-

static force and anisotropic force, respectively.

For our present solutions the three different forces are
obtained in the following forms:

Fg(r) = − 1

2π S6

[
aBc2r2g3{8a2Aeh

2√
cπr3g

+Bcπre2h2
g3(1 + 3ar2) + 2aS13g

+Bc
√

πreh
2
g2(1 + 2ar2)

}]
(43)

Fh(r) = − 1

4π
3
2 S6

[
S7 + 8a2Bc

√
πeh

2
gS8 + 4acS9

−4πaBc2e2h2
g4S10 − c2√πeh

2
g5S11

−4
√

πaBceh
2
g3S12

]
(44)

Fa(r) = 2r
{
c2g3 − 4ace−h2

} [
S1g + 2a

√
πeh

2

×(A
√
cg(r) − B)

][
8π

3
2

{
1 + cr2g2

}2

×
{
S1 + 2aA

√
πceh

2
} ]−1

(45)

whereas,

S13 = Bπe2h2
r + 2Bcr3 + Arπe2h2√

cg

and S1, S2,S6, S7, S8, S9, S10, S11, S12 are given in
Eqs. (16) and (19), respectively.
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The behaviors of these three forces are shown in Fig. 8
and it is ascertained that our solutions representing fluid dis-
tributions are in equilibrium positions.

8.2 The stability condition

Here, we are willing to analysis the stability condition for
our models with the help of (1) stability factor, (2) Adiabatic
index and (3) Harrison–Zeldovich–Novikov criterion.

8.2.1 Causality condition

In General Theory of Relativity, the maximum velocity is the
velocity of light, which is equal to 1 in the gravitational unit.

1. Causality condition: The causali t y condition states
that whenever sound passes through the physical fluid dis-
tribution then its velocity must be less than the velocity of
light, otherwise non-physical stellar configuration. The radial
velocity vr (r) and transverse velocity vt (r) of sound inside
the compact star can be determined using the following for-
mulae:

vr (r) =
√
dpr (r)

dρ(r)
and vt (r) =

√
dpt (r)

dρ(r)
. (46)

Therefore, according to causali t y condition 0 ≤ vr (r),
vt (r) < 1. Figure 9 reveals that our models satisfy the
causali t y condition i.e. our models represent the physical
stellar fluids.

2. Stability condition: In the year 1992, Herrera [57] pro-
posed the cracking method to study the stability of an
anisotropic stellar fluid under the radial perturbations. Later,
using the concept of cracking Abreu et al. [58] provided
the conditions for anisotropic fluid model with respect to the
stability factor

[{vt (r)}2 − {vr (r)}2
]

as:

(i) The condition for potentially stable region is −1 <

{vt (r)}2 − {vr (r)}2 < 0.
(ii) The condition for potentially unstable region is 0 <

{vt (r)}2 − {vr (r)}2 < 1.

Our solutions satisfy the condition −1 < {vt (r)}2 −
{vr (r)}2 < 0, clear from Fig. 10 (above) and hence our mod-
els of anisotropic compact stars are potentially stable.

8.2.2 Adiabatic index

The relativistic adiabatic index plays an important role to
analyze the stability of stellar fluid spheres. The relativistic
adiabatic index �r (r) is defined as:

�r (r) = ρ(r) + pr (r)

pr (r)

dpr (r)

dρ(r)
. (47)

Fig. 9 Radial sound speed and transverse sound speed vs the radial
coordinate r corresponding to numerical values of constants given in
Table 2 for four well-known compact stars

For Newtonian limit, any stable configuration will alter its
stability by initiating an adiabatic gravitational collapse if
�r (r) ≤ 4/3 and catastrophic if < 4/3 [59]. According to
Chan et al. [60] this condition changes for relativistic and/or
anisotropic fluid which depends on the nature of anisotropy.
Figure 3 (below) shows that the adiabatic index �r (r) >

4/3 for our solutions with positive anisotropy. More strict
condition on adiabatic index for stable region was derived by
Moustakidis [61] and found that the critical value of adiabatic
index �cri t depends on ξ -parameter (amplitude of lagrangian
displacement from equilibrium) and compactness parameter
β = M/R. On assuming particular form of ξ -parameter he
obtained the constraint as

�cri t = 4

3
+ 19

42
2β. (48)

Any stable configuration should have � ≥ �cri t . For the
presented this condition is fulfilled (Fig. 3 below).

8.2.3 Harrison–Zeldovich–Novikov criterion

The Harrison–Zeldovich–Novikov [54,62] static stability
criterion states that the mass should increase with the increase
of central density ρc for the stable state of compact stars, i.e.
∂M(ρc)

∂ρc
> 0 for the stable state of compact stars. For our solu-

tions, we obtain the mass as a function of the central density
as:

M(ρc) = 8πρc R3g2(R)

16πρc R2g2(R) + 6g2
0

i.e.
∂M

∂ρc
= 12πR3g2

0g
2(R){

8πρc R2g2(R) + 3g2
0

}2 > 0. (49)

The obtained solutions hold static stability criterion and
hence stable, clear from Fig. 11.
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Fig. 10 Stability factor (above) and η(r) (below) vs the radial coordi-
nate r corresponding to numerical values of constants given in Table 2
for four well-known compact stars

Fig. 11 Mass vs the central density ρc corresponding to numerical
values of constants given in Table 2 for four well-known compact stars

9 Generating functions

To obtain all possible anisotropic solutions of Einstein’s field
equations, Herrera [6] proposed an algorithm with the help
of generating functions as:

Fig. 12 M–R diagram and ranges of mass corresponding to numerical
values of constants given in Table 2 for four well-known compact stars

eλ(r) = Z2(r)e
∫ {

4
r2Z(r)

+2Z(r)
}
dr

r6

{
C − 2

∫ [
Z(r){1+�(r)r2}

r8 e
∫ {

4
r2Z

+2Z
}
dr

]
dr

}
(50)

where, C is an arbitrary integration constant and the cor-
responding generating functions are:

Z(r) = ν′(r)
2

+ 1

r
(51)

�(r) = 8π{pr (r) − pt (r)}. (52)

Now, adopting the class I condition (9), the generating
functions in Eqs. (51) and (52) take the following forms:

Z(r) = B
√
eλ(r) − 1

A + B
∫ √

eλ(r) − 1dr
+ 1

r
(53)

�(r) = 8π{pr (r) − pt (r)}. (54)

The generating functions for our present solutions are
obtained as:

Z(r) = 1

r
+ 2aBr

√
cπg

[
2Aa

√
π

+B
√
c
{
e−h2 + √

πhg
} ]−1

(55)

�(r) = −8π�(r) (56)

where �(r) is given in Eq. (15).

10 Moment of inertia and mass relationship

Bejger and Haensel [67] adopted a method where a static
solution can become rotating by using an approximate
expression of moment of inertia I given as

I = 2

5

[
1 + (M/R) · km

M�

]
MR2. (57)
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Table 1 Masses and radii of the
four celestial compact stars with
their approximate moment of
inertia

Stars M/M� R (km) Refs. M/M� R (km) I (g cm2)
Observed Observed Approx.

Vela X-1 1.77 ± 0.08 9.560 ± 0.08 [64] 1.77 9.56 1.543 ×1045

Cen X-3 1.49 ± 0.08 9.170 ± 0.13 [64] 1.49 9.17 1.221 ×1045

LMC X-4 1.04 ± 0.09 8.301 ± 0.2 [64] 1.04 8.30 0.707 ×1045

EXO 1785-248 1.30 ± 0.02 8.849 ± 0.4 [65] 1.30 8.80 0.964 ×1045

Fig. 13 I–M diagram corresponding to numerical values of constants
given in Table 2 for four well-known compact stars

Table 2 Numerical values of constants for the four celestial compact
stars

Stars a (km−2) c (km−2) A B

Vela X-1 0.001 0.00836 −0.84901 0.03182

Cen X-3 0.001 0.00748 −0.68739 0.03108

EXO 1785-248 0.001 0.00712 −0.61514 0.03088

LMC X-4 0.001 0.00642 −0.47473 0.03016

Using the above expression we have plotted the trend of
I w.r.t. mass M in Fig. 13. From this graph and using the
observed ranges of masses in Table 1 we have predicted the
possible approximate moment of inertia (see the last sec-
tion). It is to be noted that I–M graph is more sensitive to
the equation of state as compared to that of M–R graph.

11 Result and discussions

In the present article, we have developed few models for
anisotropic compact stars in the framework of Karmarkar
condition by introducing a completely new metric potential
function eλ(r). To demonstrate the physical acceptance of our
proposed models, we have performed varies physical exper-
iments with the help of different physical parameters. For
clarity, we have provided the graphical presentations (Figs. 1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13) for the physical
parameters involved in our models by matching our interior
solution with the exterior Schwarzschild solution for four
well-known compact stars. All the features of our model are
following:

• Metric potentials: The finite and nonsingular metric
potential functions are necessary to generate the physical
viable models of anisotropic compact stars. In our mod-
els, eλ(0) = 1 and eν(0) = 1

4a2π

[
2Aa

√
π + B

√
c
{
e−1+√

πg0
}]2 = positive constant for nonzero a. i.e. the met-

ric potential functions are well-behaved at the centre of
the stars. The graphical representations of e−λ(r) and eν(r)

indicate that they are finite and regular throughout the
radius of stars (see Fig. 1 (above)) and hence they are
suitable to generate the models for anisotropic compact
stars.

• Energy density and pressures: The energy density ρ(r),
radial pressure pr (r) and transverse pressure pt (r)
should remain positively finite throughout the interior of
fluid spheres. The energy density and radial pressure are
maximum at the centre and decreasing in nature towards
the surface. Also, the radial pressure should vanish at the
surface of fluid sphere. Figures 1 (below) and 2 approve
that our obtained energy density and pressures (radial and
transverse) are good in behavior as they have satisfied all
those conditions. To compare with observational data we
have calculated the numerical values of central, surface
densities and central pressure for different compact stars
given in Table 3. The central and surface densities both
are of order 1014 and the central pressure is of order 1034,
which are almost same with observational data.

• Equation of state parameters: For real matter distribution
the equation of state(EoS) parameters ωr (r) = pr (r)

ρ(r) and

ωt (r) = pt (r)
ρ(r) should lie in 0 < ωr (r), ωt (r) < 1 [63]. In

our present models, both the EoS parameters are within
the region 0 < ωr (r), ωt (r) < 1 (see Fig. 4), which is
another important testimony of our well-behaved models.

• Anisotropy:The anisotropic factor �(r) = pt (r)− pr (r)
should vanishes at the stellar centre. If �(r) > 0 then the
anisotropic force Fa(r) = 2�(r)

r is outward directed i.e.
play as a impulsive force, which can support more com-
pact construction. And if �(r) < 0 then the anisotropic
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Table 3 Estimated values of the
central and surface densities,
cental pressure, surface redshift
at the boundary and twice of
compactness parameter with
buchdahl limit for four celestial
compact stars corresponding to
the values of constants given in
Table 2

Stars ρc (1014) ρs(1014) pc(1034) Z(R) 2us Buchdahl
gm/cm3 gm/cm3 dyne/cm2 limit [66]

Vela X-1 9.5460 5.1018 6.1901 0.2602 0.3703 < 8
9

Cen X-3 8.5432 5.0550 4.5353 0.2171 0.3250 < 8
9

EXO 1785-248 8.1240 5.1071 3.7548 0.1914 0.2955 < 8
9

LMC X-4 7.3335 5.0386 2.7293 0.1552 0.2506 < 8
9

Fa(r) is inward directed. In our models, �(0) = 0 and
positively increasing within the stellar interiors, clear
from Fig. 3 (above) and consequently the anisotropic
force is repulsive in nature, assist to construct more com-
pact stars. The similar result is seen in the behavior of
η(r), it indicates the anisotropy as a outward force.

• Energy conditions: To illustrate the present models are of
physical matter distributions we have plotted the L.H.Ss
of all inequalities in Eq. (37) and evidently we can see
from Fig. 6 along with Fig. 1 (below) that our solutions
satisfied all the energy conditions.

• Mass function and compactness parameter: The profiles
of mass function m(r) and compactness parameter u(r)
are shown in Fig. 5 for four compact stars. The m(r) and
u(r) tends to zero when r tends to zero and monotonically
increasing toward the surfaces. According to Buchdahl[]
the mass to radius ration M

R < 4
9 or equivalently 2us =

2u(R) < 8
9 . We have computed the numerical values 2us ,

provided in Table 3 and all these values indicate that our
solutions satisfied the Buchdahl limit.

• Equilibrium: The anisotropic compact stars are in equi-
librium under the action of gravitational, hydrostatic and
anisotropic forces. The matter distributions represented
by our solutions are in equilibrium positions, clear from
Fig. 8. Here, hydrostatic and anisotropic forces are repul-
sive and gravitational force is attractive in nature.

• Stability:We have analyzed the stability situation with the
help of (1) Causality condition, (2) Adiabatic index, (3)
Harrison–Zeldovich–Novikov criterion. Figures 9 and 10
(above) indicate that the sound velocities (radial vr (r)
and transverse vr (r)) are positive and less than 1 and the
stability factor {vr (r)}2−{vr (t)}2 is negative i.e. our solu-
tions represent physical matter distributions, which are
potentially stable. The profiles of adiabatic index (Fig. 3
(below)) and mass in terms of central density (Fig. 11)
are another two evidences for stable configuration repre-
sented by our solutions.

• M–RGraph: The profile of mass-surface radius relation-
ship is shown in Fig. 12. It is found that for the ranges
of masses given in Table 1 have the same corresponding
radii provided on the same table. These means that our
solutions yield the ranges of masses and radii very closed
to that the observed values. Therefore, the solutions may
represent the chosen compact stars.

• I–MGraph:Since the M–R graph was in good agreement
with the observed masses and radii of the chosen stars, we
can estimate the corresponding moment of inertia I from
the I–M graph (Fig. 13). For Vela X-1, I ≈ 1.543 ×
1045 g cm2; Cen X-3, I ≈ 1.221 × 1045 g cm2; EXO
1785-248, I ≈ 0.964 × 1045 g cm2 and LMC X-4, I ≈
0.707 × 1045 g cm2.

• Surface redshift and gravitational redshift: The varia-
tions of surface redshift and gravitational redshift are
shown in Fig. 7. From that figure, we can see that surface
redshift Zs(r) → 0 as r → 0 and thereafter mono-
tonically increasing unto the surfaces of stellar spheres.
The gravitational redshift Zg(r) has opposite behavior, it
is maximum at the centres and decreasing toward the
surfaces of the fluid configurations. Moreover, Zs(r)
and Zg(r) are coincided at the surfaces r = R, i.e.
Z(R) = Zs(R) = Zg(R). Further, we have calculated
the numerical values of surface redshift Zs(r) at the
boundaries of the celestial stars i.e. the maximum val-
ues, given in Table 3 and all these maximum values of
Zs(r) are within the range suggested by Ivanov [68].

Finally, with respect to all obtained significant results, we
can conclude that our models are physically acceptable to
describe celestial anisotropic compact stars.
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