
F Fermi National Accelerator Laboratory

FERMILAB-Conf-99/180

Data Acquisition Systems at Fermilab

M. Votava

On Behalf of the CDF Online, D0 Online, DART Collaboration and

ODS and ESE Departments in the Computing Division

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

July 1999

Published Proceedings of the 11th IEEE NPSS Real Time Conference,

Santa Fe, New Mexico, June 14-18, 1999

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CHO3000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.

Data Acquisition Systems at Fermilab 1

M. Votava on behalf of the CDF Online, DØ Online, DART Collaboration, and ODS and ESE
Departments in the Computing Division

Fermilab, P.O. Box 500, Batavia, Illinois 60510

1 This work is sponsored by DOE contract NO. DE-AC02-76CH03000

Abstract
Experiments at Fermilab require an ongoing program of

development for high speed, distributed data acquisition
systems. The physics program at the lab has recently started
the operation of a Fixed Target run in which experiments are
running the DART[1] data acquisition system. The CDF and
DØ experiments are preparing for the start of the next Collider
run in mid 2000. Each will read out on the order of 1 million
detector channels. In parallel, future experiments such as
BTeV R&D and Minos have already started prototype and test
beam work. BTeV in particular has challenging data
acquisition system requirements with an input rate of 1500
Gbytes/sec into Level 1 buffers and a logging rate of 200
Mbytes/sec.

This paper will present a general overview of these data
acquisition systems on three fronts – those currently in use,
those to be deployed for the Collider Run in 2000, and those
proposed for future experiments. It will primarily focus on the
CDF and DØ architectures and tools.

I. INTRODUCTION

This paper will provide a summary of data acquisition
systems at Fermilab – where we are now and where we are
headed. It represents work done across the laboratory and
collaborating institutions, not just a single department or
experiment. We will start with DART, the data acquisition
system of the present Fixed Target experiments, noting the
hardware architecture and software designs that lead into the
design for the next Collider (a.k.a. Run II) systems. The
Collider data acquisition systems are being designed and
implemented now. Experiences gained with these Collider
systems are, in turn, feeding into the faster, more complicated
systems of the future. These newer systems are on the scale of
the future LHC experiments at CERN [2]. Table 1 lists system
requirements for the various data acquisition systems.

Table 1
System Requirements

KTeV Run II BTeV
Level 1 input 100KHz 7.6 MHz 7.6 MHz
Level 3 output 500Hz 30 –75 Hz 4 kHz
Event Size, kbytes 8-10 250 150
Logging Rate, Mbytes/sec 4 10 200
of Front End Processors 30 100 4000
of Level 3 Processors 30 200 4000

II. DART
DART has been described in much detail at previous

conferences, but will be reviewed here to provide a basis of
comparison. It is a scalable, flexible, VME-based system used
by 10 fixed target and test beam experiments in the 1996-1997
run. During the subsequent eighteen months when the
accelerator was not running to allow for construction of the
Main Injector, DART was deployed at test stands for the
upcoming Collider run. This deployment was relatively
smooth - a credit to the flexibility of the DART design.

This May, the Tevatron was reactivated for the final Fixed
Target run, to be completed at the end of 1999. Three of the
original experiments (KTeV, HyperCP, and E835) will
continue data taking during this period using the original
DART system with only small modifications needed to
upgrade to new operating system versions and tools.

At the high end, for KTeV, DART supports a 100
Mbytes/sec transfer rate into Level 3 over a 4-plane system
with an aggregate logging rate of 20 Mbytes/sec. DART works
successfully on small to medium sized experiments as well.

Figure 1: KTeV DART Configuration

The VME crates each have a Motorola 68040 based
MVME16x processor running VxWorks 5.1 [3], which is used
for monitoring, and control. Data readout is under the control

of the UNIX [3] host. On the UNIX side, DART has been
ported to IRIX (V6.2) [3] and OSF1 (V4.0) [3] flavors, but
higher bandwidths require a host with a VME bus (SGI
Challenge L). Data are fed in parallel streams from RS485
cables to Dual Ported Memories (DPMs) through the VSB
backplane, are read out across the VME backplane and sent to
the host via a commercial VME to VME interconnect board
from PTI [4].This configuration can deliver data to the SGI
Challenge L host at sustained rates of 40 Mbytes/sec with a
DMA transfer size of 64 kbytes. Other experiments using part
of DART, including the Collider Experiment test stands, had a
low enough event rate that data was simply sent over thin wire
ethernet from the front end VME crates to the SGI host. For
these systems, cheaper SGI machines (e.g., Indy) were used.

Software filters analyze events on the UNIX host(s) and
deliver events to data loggers and or consumer processes.
Before being logged to tape, data can be staged to disk, but in
all cases, the tape drives are located in the counting rooms of
the experimental halls.

The DART software architecture is based on a client/server
TCP/IP based model. Three main servers run on a host
machine: run control message passing, error logging, and
database management. The latter is actually three processes:
one each for run configuration, run history, and status
monitoring. The location of the data is handled and passed
through a buffer management subroutine package - the data
itself may or may not be copied. The above software has been
written by Fermilab but relies on certain freeware utilities. The
underlying databases are based on GDBM [5], and run control
messages are parsed using TCL[6].

With the exception of the data logger and main run control
program, experimenters, using subroutine libraries provided as
part of DART, wrote the remaining code themselves which
included filters, data readout, event builders, and consumers.
Every process has a unique socket link with each server that it
needs to communicate with. All of the user code is written in
C. The data logger and servers themselves are written in C++.
Most backend GUIs are written using TCL/TK including the
main run control panel and data acquisition monitoring
displays. Physics monitoring software is based on the Fermilab
Histoscope [7] package or PAW [8].

DART ran very well during the 1996-1997 Fixed Target
Run. An IRIX 6.5 upgrade of the device drivers is in progress
for the Sloan Digital Sky Survey (SDSS). This run has so far
started relatively seamlessly and the projected support load
from DART experts is anticipated to be about 0.1 FTE.

III. COLLIDER DATA ACQUISITION SYSTEMS

The current focus of HEP data acquisition activity at
Fermilab is in preparation for the start of the 2000-2005
Collider run of the CDF and DØ experiments. Both
experiments have been undergoing a significant upgrade of
their detectors during the last 5 years, and the software and
hardware architectures have been redesigned to reflect the
hardware upgrades.

The collider experiments are high rate, large event
experiments. Each year, both expect to record 150–250

Terabytes of raw data. The system requirements for both
experiments are listed in Table 2.

Table 2
System Requirements for Collider Experiments

CDF DØ
No. of Channels 900,000 1,000,000
Level I input 7,600,000 Hz 7,600,000 Hz
Level I output 40,000 Hz 10,000 Hz
Level II output 300 Hz 1,000 Hz
Level III output 30 – 75 Hz 50 Hz
Event Size 250 kbytes 250 kbytes
Logging Rate,
Mbytes/sec

7.5 – 18.75 12.5

Both experiments will implement a three tiered trigger
system. Levels 1 and 2 operate on partial events in the VME
crates. In contrast, a Level 3 decision is made on a full event
that has been assembled on a higher level processing farm.
Events are sent directly from Level 3 to the data loggers and
consumers. The data acquisition hardware architectures of the
CDF and DØ experiments are shown in Figures 2 and 3.

Figure 2: CDF Run II Architecture

Figure 3: DØ Run II Architecture

A. Front End Crates
Clearly the detector elements of each experiment are

unique and individual boards have been engineered with a
particular experiment’s needs in mind. However, we can
see many similarities in the two systems’ architectures.

Table 3
Front End Architectures

CDF DØ
of digitizing VME
crates

100 70

Data path
to concentrators

TAXI Links
GLinks

Brown data cable

of concentrators 16 VME crates
with MVME2603

8 multi-processor
NT PCs

User Code
Language

C C/C++

Control Path Ethernet,
SCRAMNET

Ethernet, 1553

Data path to Level 3 ATM switch Fiber -> Brown
data cables

Communication
Protocol with host

SmartSockets and
CORBA

DØme and EPICS

The digitizing electronics of both systems reside in
VME VIPA crates. CDF has approximately 100 VME
crates feeding data into 16 additional concentrators. The 16
concentrators themselves drive an ATM switch to feed into
the Level 3 processors [9].

DØ has about 70 digitizing crates that feed data over a
custom data cable into 8 multi-processor PC concentrators
(running NT [3]). The cable, developed at Brown
University for Run I, supports a bandwidth of 48
Mbytes/sec. Each concentrator accumulates data from two
such data cables and pumps them over a 100 Mb/sec fiber
using the fiber channel protocol. The 8 fibers connect to 4
farm segment controllers. Based on header information in
the data itself (e.g., event number and front end crate ID),
each controller determines if its segment is processing the
event, and, if so, will reroute the event to the correct L3
node. If the data is not destined for that farm segment or if
the segment controller’s buffers are full, the data will be
transmitted to the next segment. The last segment will
return unwanted data to the concentrator where it will be
recirculated [10].

Both experiments have made extensive use of the J3
connectors in the VIPA crates to pass control information.
Data transfer in CDF and DØ systems takes place over
dedicated links, with the final transfer (following a Level 2
accept) across a VME backplane. CDF makes use of 64 bit
VME transfers. While CDF uses a commercial CPU for the
VME readout, DØ uses a custom readout controller (VBD).

Several VME crates at each experiment need an
embedded processor board (to control the remaining cards,
to interface to the host, to read out, etc.). Both have selected
a variation of a Motorola Power PC board, with some
legacy 68k boards. All processors are running VxWorks
v5.3. Fermilab has invested over 1 man-year into making
the kernel stable and porting the cross development
environment to other platforms - IRIX 6.x and Linux 2.0 -
being used by the experiments [11].

In addition to transferring data, the VME backplane is
also employed to read status information and download
configurations to the readout boards. This type of
information is transmitted back to the host through the
controller board via Ethernet. Various monitoring and
message passing software also needs to run on the VME
controllers. The g++ C++ compiler and the standard C++
libraries provided with the VxWorks cross compiler
environment were insufficient for DØ’s needs. We have
expanded the tool set to include support for the Egcs C++
[12] compiler with the STL, but it has yet to be tested.

Each experiment has selected different software
protocols to communicate to the front-end boards. DØ is
using both EPICS [13] and an experiment specific message
passing system called DØme [14]. DØme is a client/server
package, which provides a common, well-defined way to
exchange information and data among all DØ data
acquisition applications. It is using threads to parallelize
sending and receiving messages through the TCP/IP
protocol. It is based on ACE [15], a multi-platform
communication/transport freeware layer. On the other hand,
CDF uses CORBA implementations for front-end
diagnostic software (more about that later) and a
commercial package called Smart Sockets [16] for status
and control.

B. Diagnostic software

Engineers at Fermilab have developed several of the new
VME boards for Run II. A suite of diagnostic software has
been written for these boards in collaboration with CDF called
CDFVME [17]. CDFVME is in use by several CDF board
developers. The framework provides a user-extensible, Java-
based GUI in which users can test one or more boards in one
or more VME crates. It provides an easy interface in which
users can run a series of tests in batch mode. The client
software has been running on both Unix and NT nodes.

C. Slow controls
The two experiments have different implementations for

slow controls and alarms. CDF has purchased commercial
software called FIX-Dynamics [18] to monitor the high
voltage, pressures, and temperatures. Each detector subgroup
(muon, cot, svx, etc) will have a local FIX-Dynamics
monitoring node running NT. Each subgroup has specific code
to monitor that piece of the detector, whether it is via CAMAC
[19] or a VME interface. These subsystems then feed into an
NT server node stationed in the main control room. None of
the slow control data will feed into the main data stream, and
all of the electronics for slow controls live in different crates
than the main data acquisition system. The data collected will
be stored in the online ORACLE [3] database for archiving
and later retrieval.

Conversely, DØ runs EPICS on the VME controllers in the
same crates as the digitizing electronics. There are some
“control only” crates which optionally have either 1553 bus
interfaces or “vertical interconnect” VME bus extenders,
allowing memory-mapped access to VME crates. If the
bandwidth permits, monitoring information is sent over VME.
If not, there are provisions for a 1394 [20] (Firewire [3])
connection between the VME board and local processor. The
monitoring applications are tied to the EPICS IOC software in
the VME crates, basically acting as a data source for the
control path.

D. Level III Processing/Farms

 Event data is transferred from the front ends to the Level 3
processing farms either over a high speed switching network
(CDF) or a token ring on Brown data cable segments (DØ).

Table 4
Level 3 Architecture

CDF DØ
Level 3 Processor Type Commodity PCs Commodity PCs
Operating System Linux WinNT
of Level 3 processors 150-200 48
User Code Language C/C++ C++
Control Path Ethernet Ethernet
Data path to Loggers Fast Ethernet Fast Ethernet
Communication Protocol
with host

Smart Sockets DØme/Ace

 In each case, Level 3 farms are a series of scalable PC sub-
farms connected to the concentrators. Both experiments will
purchase commodity PCs early next year, but it is not yet

known if they will be the same. CDF is interested in those that
support Linux [3], while DØ needs a configuration to attach to
custom hardware via the PCI bus

 CDF will have 16 Level 3 sub-farms that are connected to
the Concentrators via the ATM switch. Each sub-farm consists
of a single receiver node, which routes the event over Fast
Ethernet to 6 or more processing nodes.

The DØ configuration has 16 PCs connected to each of 4
segment branches, but this can be scalable to 48 nodes/data
cable segment In the initial configuration, DØ will have 48
nodes total.

E. Data Logging/Consumers
Once the Level 3 processing farms have analyzed the data,

good events are made available to the data loggers. Events will
be first staged to disk files with enough disk space available to
hold more than 8 hours worth of data, but the long term
storage is remote. Disk files are copied through fiber to a
robotic system located in the Feynman Computing Center, up
to 2 miles away from the experiment. The robotic system itself
is EMASS [21] but the tape drive technology to be used for
Run II has not yet been selected. We are waiting to test SONY
AIT 2 and Exabyte Mammoth 2 tape drives, and in the
meantime we are using AIT 1s and Mammoth 1s.

At CDF, each Level 3 sub-farm has an I/O node that is
connected via (4-8 parallel) separate fast Ethernet ports to a
single SGI consumer/server node [22] with a large RAID disk
array attached as a data buffer. The files are read from the
buffer and logged into the EMASS robot using a tape package
called FTT [23].

DØ has a more parallel architecture with the advantages of
scalability and reliability. The Level 3 nodes feed N (currently
3) OSF1 data logging nodes, which also connect to a RAID
disk array. Data is copied into the EMASS robot with a higher
level Fermilab software package called ENSTORE [24].

Table 5
Data Logging

CDF DØ
Disk type RAID Array RAID Array
Disk buffering capacity 8 hours 8 hours
Disk -> tape Interface FTT to directly

attached tape
ENSTORE

Both experiments are using the ROOT [8] analysis system
for online monitoring of the event data on IRIX, OSF1 and
Linux, and are using the shared memory and network server
functions of the system [25]. Prototype consumers have been
developed and are being used to test portions of the data
acquisition system.

F. Run Control
 The run control design and implementation of the two
experiments is in progress. In this arena, the experiments are
more different than alike – each has adopted different tool sets
with which to develop. It starts with the run control language

itself. CDF has adopted JAVA as the primary language for run
control and diagnostics, while DØ is following a Python/C++
[26] path. Since collaborators often bring in the hardware of
home institutions, both experiments were interested in ease of
portability between operating system platforms. It was also
important to select a language that their user base would find
comfortable.

 A second fundamental difference is the message passing
system. CDF has purchased a commercial package called
SmartSockets for its message passing needs (e.g., run control
messages, error messages, status messages). The SmartSockets
software met the CDF requirements: operates in a
publish/subscribe paradigm (publishers and subscribers can
come and go without affecting the server itself), multiple
servers can run in parallel to distribute the load, Java bindings
are available, and client software is supported on the necessary
platforms (VxWorks port is in progress).

 On the other hand, DØ has opted to write their own
package, DØme. DØme has been designed to be the single
protocol to pass both messages and data (from Level 3 and
beyond) through the DØ data acquisition system. This package
is written in C++, but wrappers are provided allowing it to be
used directly in the Python scripting language as well with a
very similar interface.

 The choice of ORACLE as their online database system is
one area that both experiments have in common. Run II will
mark the first large scale application of online commercial
databases at Fermilab. Both experiments are currently
designing their online databases and beginning to understand
the requirements for the API layer. Table 6 summarizes the
run control host machine

Table 6
Host Machines

CDF DØ
Run control language Java Python/C++
Message Passing System SmartSockets DØme

Run Control
Host Machine

IRIX OSF1

Online Databases ORACLE ORACLE
Monitoring Display IRIX/Linux WinNT/Linux
User Code C++/Java C++/Python

IV. POSSIBLE BTEV ARCHITECTURE

The post Run II direction of HEP experiments at Fermilab
has yet to be determined. A research and development project
has been approved to test the feasibility of doing a b physics
experiment, BTeV. Work is already underway to develop and
test new detectors, to prototype read buffers and controllers,
and to architect a fast and affordable data acquisition system
[27].

Data acquisition rates for the proposed BTeV detector are
comparable to those at the LHC. A distinctive feature of the
BTeV system is the digitization and transmission of data at the
beam crossing frequency. This is done because the first level
trigger is based on tracking in the pixel system and trigger

latencies are larger than can be accommodated by typical
front-end pipeline buffers. Moving all buffers off the detector
allows the use of parallel, asynchronous, high latency triggers.
This comes at the expense of high data rates, which may
exceed one Terabyte/sec into first level buffers.

Following the first level, the BTeV architecture is similar
to other large scale systems. The Level 1 accept rate is
expected to be 100-200 kHz at an event size of approximately
150 kbytes. This results in 20-30 Gbytes/sec at the event
builder and processors. Input and output links to the data
switch are ring based to facilitate load balancing. Large input
buffers are used to convert the event arrival rate to a uniform
distribution for high switch bandwidth utilization.

Each buffer module must support an input data rate of
approximately 800 Mbytes/sec. These rates make it unlikely
that conventional backplane bus standards will be used to any
large extent. All data connections are made using point-to-
point serial or narrow parallel links. Control connections use
lower speed serial links. Event data is time stamped and
transmitted asynchronously, so there is no fast control or
synchronization requirement beyond the beam crossing clock
at the front-end.

There are an estimated 4000 processors in the second level
trigger. The current BTeV proposal uses a staged readout
approach where the processors request event data in several
steps. This will be analyzed to determine if the cost benefit of
the reduced switch size is offset by the expanded buffer and
control requirements.

Much of the functionality of current centralized processor
boards will be distributed as embedded processing in the
individual data acquisition modules. This includes
initialization, slow control, network interface and test features.
These smaller processing elements may not support all
features of the traditional high level OS environment. While
the software load of individual processors will be reduced, the
total software requirement will increase significantly. BTeV is
expected to include over 10,000 processors in various
applications, ranging from simple link control to event
analysis.

V. SUMMARY

This paper has described the current data acquisition
activity at Fermilab from small-scale systems to future
experiments that are relying on increasing performance trends
to continue in order to run at all. In terms of hardware, we
have seen that the commercial market is increasingly
influencing data acquisition electronics. As the Level 3
decisions become more CPU intensive, Level 3 farms are
growing to hundreds of CPUs. With larger numbers, it is
imperative to adopt high performance/price machines. The
commercial PC market is clearly at the forefront. Some of the
savings in hardware, though, are offset by additional
manpower costs. Configuring, controlling, monitoring, and
managing several hundred machines is a much more complex
task than a small number of very powerful machines. Run II
experience will help architect the much larger demands of the
LHC.

DA systems are relying on the backplanes for data transfer
less and less. Ethernet rates are expanding to support the slow

control and monitoring load, so that all front end crates have
ethernet access. The trend is to give each individual board
access as well. Data paths themselves are moving away from a
bussed system like VME and toward high speed switch
networks.

The sheer number of nodes needed in such data acquisition
systems can also have a big impact in software license costs.
Experiments are continuing to rely on freeware for operating
systems (Linux) and tools.

 The resources needed to develop the data acquisition
systems for our Fermilab experiments are large and there
tends to be more collaboration between experiments. The
success and longevity of DART has proven that several
experiments can share pieces of a common data acquisition
system if their requirements are well thought out and
accommodation is made for local customization. Historically,
the collider experiments have taken completely different paths
for their data acquisition systems, but they are beginning to
move from complete customization to include planning for
centralized support and reduction of their maintenance load .

The dividing line between experiment online and offline
systems continues to fade, with the use of high-speed fiber
links and remote robotic tape systems, the affordability of
significant computing near the detector, the commonality in
software development tools and infrastructure code, and the
benefits of the full reconstruction happening in near real time
being realized in previous data taking runs. As an example,
BTeV is not even planning to write raw data to tape, but will
archive an already reduced data summary set. In another
example, offline and online software developers are taking
advantage of sharing a common infrastructure – database
management systems, code management schemes, analysis
systems etc.

VI. ACKNOWLEDGEMENTS

This paper represents the hard work of many people across
the lab and its collaborating institutions. A special thanks to all
of the co-authors and/or reviewers: from Brown University:
Gordon Watts; from Fermilab: Ed Barsotti, Mark Bowden, Stu
Fuess, Carmenita Moore, Jim Patrick, and Ruth Pordes; from
Massachusetts Institute of Technology: Christoph Paus; and
from Yale University: Colin Gay. These people are a small
subset of all the collaborators (too numerous to mention) who
have contributed their industry and creativity to the
monumental effort of engineering and deploying these data
acquisition systems.

VII. REFERENCES

[1] R. Pordes et al, Fermilab’s DART DA System,
Proceedings of CHEP94.

[2] The Large Hadron Collider. http://wwwlhc01.cern.ch

[3] UNIX of AT&T; VxWorks of Wind River Systems
Inc. http://www.wrs.com; IRIX of Silicon Graphics,
Inc.; OSF1, Digital UNIX of Compaq Corp.;
Windows NT of Microsoft Corp.; ORACLE of
ORACLE Corp.; Linux of Linus Torvalds; Firewire of
Apple Computer Inc.

[4] Performance Computer Company. 315 Science Parkway,
Rochester, NY 14620 USA.

[5] GDBM: The GNU database manager.
http://www.gnu.org/software/gdbm.

[6] Tcl and Tk Toolkit: J.Ousterhout, Addison Wesley
Computing series.

[7] Histoscope: Interactive Histogramming Tool.
http://www.fnal.gov/fermitools/abstracts/histoscope/

[8] ROOT: http://root.cern.ch; Physics Analysis Workstation:
http://wwwinfo.cern.ch/asd/paw.

[9] Christoph Paus, et al. “Event Builder and Level 3 Trigger
at the CDF Experiment”, Abstract 104, RT99

[10] Gennady Briskin, et al. “The DZero Level 3 Trigger/Data
Acquisition and its Real Time Control”, Abstract 164,
RT99

[11] David Berg ,”VxWorks Support for Collider Run II Data
Acquisition at Fermilab”, Abstract 151, RT99

[12] Egcs Compiler: http://www.cygnus.com

[13] Experimental Physics and Industrial Control System.
http://www.aps.anl.gov/asd/controls/epics

[14] Carmenita Moore, et al. “Multi-threaded Message and
Event Routing for the DZero Online System”, Abstract
155, RT99

[15] The Adaptive Communication Environment.
http://www.cs.wustl.edu/~schmidt/ACE.html

[16] SmartSockets: commercial publish-subscribe middleware
by Talarian Corporation. http://www.talarian.com

[17] Yuyi Guo, et al. “CDFVME – Software Framework for
Testing VME Boards”, Abstract 107, RT99

[18] FIX-Dynamics: http://www.intellution.com

[19] Dave Slimmer, “CAMAC Driver Support for Windows
NT4 and LINUX”, Abstract 128, RT99

[20] IEEE Standard for a High Performance Serial Bus, IEEE
Std 1394-1995.

[21] EMASS robot, now ADIC (AML/2).
http://www.adic.com

[22] Makoto Shimojima, et al. “Consumer-Server/Logger
System for the CDF Experiment”, Abstract 127,RT99

[23] FTT: Fermi Tape Tools.
http://www.fnal.gov/fermitools/abstracts/ftt/abstract.html

[24] ENSTORE tape handling facility.
http://www-hppc.fnal.gov/enstore/design.html.

[25] Makoto Shimojima, et al. “Online Monitoring in the
Upcoming Fermilab Tevatron Run II”, Abstract 123,
RT99

[26] Python is an interpreted, interactive, OO language.
http://www.python.org

[27] Mingshen Gao, “SUMAC: A Monitor and Control Tree
for Multi-FPGA Systems “. Abstract 152, RT99.

