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1 Introduction

There are several motivations for the study of tensor models in theoretical physics. From

the Quantum Mechanics point of view, tensor models are expected to suit a description

of entangled systems [1, 2]. From the quantum gravity perspective, and inspired by the

success of matrix models in the description of two-dimensional quantum gravity [3], tensor

models were proposed in the early 90’s as a framework for studying higher dimensional

quantum gravity [4–6]. Recently, the interest in tensor models has been boosted in the

context of AdS2/CFT1 were the SYK model [7–17] has been shown to share the same large

N behaviour as a tensor model [18]. Besides, the arrival of color tensor models [19, 20],

rainbow models [21, 22] and multi-orientable models [23], together with the understanding

of their 1/N expansion [24–29] (which helped to resolve old large N issues) has certainly

triggered the rapid development of the subject in the last years.

In this work we plan to contribute to the development of tensor models and the physics

they involve by putting them in contact with matrix models. In this regard, there are at

least two hints which make us suspect that a connection (probably deep) between tensor

and matrix models exists:

1. The holographic conjecture of the SYK model in the tensor model version [18] and

the increasing suspicion that tensor models have holographic duals in broader con-

texts, seem to indicate that there should be an overlap between tensor and matrix

models, since the latter have been proven to encode holographic duals at least in

the large N regime. Actually, finding the precise relation between both models will

be extremely interesting for holography. On the one hand the dictionary between

matrix models and gravity duals is well-understood nowadays but the perturbative

expansion for multi-matrix models is highly complicated. On the other hand, ten-

sor models with quartic interaction present an easy-to-tackle (melonic) perturbative
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expansion but its relation with gravity is still unknown. Therefore, understanding

the connection between both theories will bring insights into holography and perhaps

new computational tools.

2. The recent discovery of the relation between some sectors of Kronecker coefficients

and Littlewood-Richardson numbers in the field of combinatorics and group theory.

This is relevant for us since Kronecker coefficients organize the spectrum of eigenstates

of free tensor models [30–33], whereas Littlewood-Richardson numbers have long been

known to organize the spectrum of matrix models [35–42].

Based on (partially) matching the spectrum of the free theory in both models through

the above-mentioned relation between Kronecker coefficients and Littlewood-Richardson

numbers we conjecture in this paper that the corresponding tensor and matrix sectors are

dual. Note that matching the spectrum is a necessary condition for duality, for a definite

proof we should see that those sectors are dynamically equivalent, a programme that we

leave for a future work.

The paper is organized as follows. We start by writing and evaluating the partition

function with the singlet condition of the free tensor model in section 2. The spectrum of

energy eigenstates is organized by Kronecker coefficients, as can be read from eq. (2.22).

This is in perfect agreement with the direct counting of invariants found in recent works.

In section 3, we gather some results on combinatorics of Kronecker coefficients and we de-

rive (3.3), which tells the explicit relation between the hook sector of Kronecker coefficients

and Littlewood-Richardson numbers. We then manage to construct the matrix operators

that those numbers count and we arrive at (3.11), which is the main result of the paper.

Eq. (3.11) tells us that the hook sector of the tensor model has the same number of eigen-

states than a rather general multi-matrix set of operators. These multi-matrix operators

are interpreted as encoding fluctuations about a generic 1
2 -BPS state of a depth given by

the length of the hook in the tensor sector. In short, the hook sector of the tensor spectrum

encodes the fluctuations of 1
2 -BPS states in the matrix theory. In section 4, we return to

the partition function. Tensor models with finite rank of the symmetry group are known

to have Hagedorn behaviour, a fact that is interpreted as a phase transition at some finite

temperature related to the rank of the group. We study the growth of states of the second

(high energy) phase of tensor models and, using a known theorem of Kronecker coefficients,

we conjecture that this second phase can be entirely described by a multi-matrix model.

Finally, we include an appendix for the computation of Kronecker coefficients with a hook

shape in the regime of large (but finite) rank.

2 Tensor partition function

Color tensors refer to tensors with no additional symmetry assumed. We will write a d-rank

covariant color tensor as

Φ = Φi1i2...id e
i1 ⊗ · · · ⊗ eid , (2.1)

– 2 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
0

where the complex-valued vectors {eik , ik = 1, . . . , Nk} form an orthonormal basis of the

vector space CNk . The components of the tensor transform under the action of

Gd ≡ U(N1)⊗ · · · ⊗ U(Nd) (2.2)

as

Φj1j2...jd =
∑
i1,...,id

U(N1)
i1
j1
· · ·U(Nd)

id
jd

Φi1i2...id . (2.3)

The complex conjugate of Φ is a d-rank contravariant tensor which transforms as

Φ
j1j2...jd =

∑
i1,...,id

U(N1)
j1
i1
· · ·U(Nd)

jd
id

Φ
i1i2...id . (2.4)

The action of the free theory is simply

S = Φi1i2...idΦ
i1i2...id . (2.5)

Invariant operators are n-fold tensor products Φ⊗nΦ
⊗n

, built out of n copies of the tensor

Φ contracted with n copies of its conjugate. Each invariant is associated with the specific

way indices of Φ and indices of Φ are contracted subjected to a double coset equivalence,

see [43] for details. Counting the number of invariant operators, building a basis which

diagonalizes the two-point function of the free theory and computing correlators has been

a recent subject of study [30–34]. In those studies it was manifest the prominent role of

Kronecker coefficients in organizing the spectrum of energy eigenstates.

The aim of this section is to compute the number of invariants by evaluating the

partition function. The first question one can ask is if there is any sense of a partition

function at all in a theory where there is no time, like the tensor model corresponding to

the action (2.5). In fact, one usually defines

Z(β) = Tr
(
e−βH

)
. (2.6)

Even if we prefer, as common, to use the equivalent Euclideanized action to define the

partition function, it is still the time coordinate which must be Wick rotated and compact-

ified. Thus, we need to consider our fields to depend on time. The dynamics are given by

a suitable action that we define below.

The crucial point is that, although the theories (with time and no time) are different,

they count the same number of Gd-invariants, since the number of invariants count the

ways of contracting the internal indices. For instance, with two fields there is only one

Gd-invariant possible at a given time, which is Φi1i2...id(t)Φ
i1i2...id(t), and similarly for the

n-fold composites.

So, in order to count invariants we will use the free tensor theory given by the action

S =

∫
dt
dΦi1i2...id

dt

dΦ
i1i2...id

dt
− ω2Φi1i2...id(t)Φ

i1i2...id(t). (2.7)
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The Hamiltonian of this theory is a collection of harmonic oscillators (actually two decou-

pled collections, since the field is complex), labeled by Gd, which can be written schemat-

ically as

H =
∑
α

ω
(
a†αaα + b†αbα

)
, (2.8)

where α is a label for the group.

The partition function whose evaluation will give us the number of invariants must

implement the singlet condition, otherwise it will account for all the states of the theory,

not only Gd-invariants. For that we will need to average over Gd. So, the partition function

we will consider is

Zs(β) =
∑
i

∫
Gd

dg1dg2〈Γ(g1)i|e−βH |Γ(g2)i〉, (2.9)

where i runs over a basis of states, and the Hamiltonian is (2.8). The subscript s in Zs
stands for “singlet”. The representation Γ(g) of Gd acts on the states and will be specified

below. dg is the Haar measure.

Equation (2.9) was first proposed in [44], where it was shown that it leads to

Zs(τ) =

∫
Gd

dg exp

( ∞∑
n=1

1

n
τnχ(gn)

)
, τ = e−βω, (2.10)

where χ(g) is the character of the representation Γ(g) of Gd.

Although we have been calling it Gd, the partition function (2.10) is actually general,

valid for any symmetry group G and for any representation of the fields. In our case, the

group is Gd = U(N1)×· · ·×U(Nd). As said before, the gauge invariant operators transform

under the fundamental-antifundamental representation of Gd, so

χ(g) = tr(g)tr(g+), g ∈ Gd. (2.11)

Now, since χ(g) is independent of the choice of basis, we will choose, for every U(Nk), a

basis where the matrix is diagonal. We will make use the of the Weyl parametrization of

U(Nk) and use uk ∈ U(Nk) to be uk = diag.(eiθk1 , . . . , eiθkNk ), with 0 ≤ θki ≤ 2π. With

this parametrization we will write a group integral as∫
Gd

dg F (g) =
d∏

k=1

1

(2π)NkNk!

∫ 2π

0

Nk∏
j=1

dθkj
∏

1≤l,m≤Nk

∣∣∣eiθkl − eiθkm∣∣∣2 F (uk). (2.12)

We will use the following convenient notation for the eigenvalues zkj = eiθkj and also use

the string of eigenvalues

zk ≡ (zk1, . . . , zkNk). (2.13)

First, let us notice that with this parametrization and using general properties of the

Kronecker product of matrices, the character (2.11) of a general element g ∈ Gd can be

written in terms of symmetric functions of the eigenvalues as

χ(gn) = tr(gn)tr
(
(g+)n

)
= pn(z1z2 · · · zd)pn

(
z−11 z−12 · · · z

−1
d

)
(2.14)
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where pn are the power sums and the string z1z2 · · · zd stands for a collection of
∏d
k=1Nk

variables of the type z1i1 · · · zdid with 1 ≤ ik ≤ Nk. We will also use the notation

∆(zk) =
∏

1≤i,j≤Nk

(zki − zkj) (2.15)

for the Vandermonde determinant. Thus, the partition function of the free tensor model

can be written as an integral over complex eigenvalues as

Zs(τ) =

d∏
k=1

1

(2π)NkNk!

∮ Nk∏
i=1

dzki
zki

∆(zk)∆
(
z−1k
)

exp

( ∞∑
n=1

τn

n
pn(z1 · · · zd)pn

(
z−11 · · · z

−1
d

))
.

(2.16)

By Taylor expansion and reordering terms, it is not hard to see that the exponential

in (2.16) can be expressed as a sum over partitions, that is,

exp

( ∞∑
n=1

τn

n
pn(z1 · · · zd)pn

(
z−11 · · · z

−1
d

))
=

∞∑
n=1

∑
λ`n

1

zλ
τnpλ(z1 · · · zd)pλ

(
z−11 · · · z

−1
d

)
.

(2.17)

Using the relation between power sums and Schur functions

pλ(z) =
∑
µ`n

χµ(λ)sµ(z) (2.18)

we may write

exp

( ∞∑
n=1

τn

n
pn(z1 · · · zd)pn

(
z−11 · · · z

−1
d

))

=

∞∑
n=1

∑
λ,µ,ν`n

1

zλ
τnχµ(λ)χν(λ)sµ(z1 · · · zd)sν

(
z−11 · · · z

−1
d

)
. (2.19)

Schur functions of the variables z1 · · · zd (remember that they are N variables) can be

written as [45]

sµ(z1 · · · zd) =
∑

µ1,...,µd`|µ|

gµ,µ1,...,µdsµ1(z1) · · · sµd(zd). (2.20)

The point of writing the exponential, and so the partition function in terms of Schur

functions this way is because we can apply straightforwardly the explicit inner product of

Schur functions [46]

δµν = 〈sµ, sν〉Nk =
1

(2πi)NkNk!

∮ Nk∏
i=1

dzki
zki

∆(zk)∆(z−1k )sµ(zk)sν(zk), l(µ), l(ν) ≤ Nk.

(2.21)
It is important to stress that Schur functions sµ(z) are identically 0 whenever l(µ) is
greater than the number of variables, as indicated in (2.21). This will restrict the sums
over partitions in the following. By making first the substitution of the exponential (2.19)
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with (2.20) in the partition function (2.16), and then applying (2.21) to each pair of Schur
functions we arrive at

Zs(τ) =

∞∑
n=1

∑
λ,µ,ν`n
µ1,...µd`n
ν1,...νd`n

l(µk),l(νk)≤Nk

1

zλ
τnχµ(λ)χν(λ)gµ,µ1,...,µdgν,ν1,...,νdδµ1ν1 · · · δµdνd

=

∞∑
n=1

∑
µ,ν`n

µ1,...µd`n
ν1,...νd`n

l(µk),l(νk)≤Nk

τngµ,µ1,...,µdgν,ν1,...,νdδµ1ν1 · · · δµdνdδµν

=

∞∑
n=1

∑
µ`n

µ1,...µd`n
l(µk)≤Nk

τng2
µ,µ1,...,µd

=

∞∑
n=1

 ∑
µ1,...µd`n
l(µk)≤Nk

g2
µ1,...,µd

τn, (2.22)

from where we can read that the number of gauge invariants operators is actually counted by the

square of the Kronecker coefficients, with the suitable restriction on the permitted partitions for

finite N . This result is in perfect agreement with the recent direct counting of invariant in tensor

models. In the last line of (2.22) we have used the property∑
µ`n

gµ,µ1,...,µdgµ,ν1,...,νd = gµ1,...,µdgν1,...,νd (2.23)

when the sum over partitions µ is not restricted, as can be easily checked by the definition of

Kronecker coefficients and the orthogonality relations of characters.

The evaluation of the partition function has been carried out for general tensors with d indices

and Gd group of symmetry. For simplicity and without loss of generality, we will consider d = 3

and G3 = U(N)⊗3 in the rest of the paper.

3 Kronecker coefficients with a hook shape and multi-matrix models

Although we do not know any combinatorial formula for computing general Kronecker coefficients,

there are some broad families for which we know. The most remarkable of them is perhaps the

family of Kronecker coefficients with a hook shape. Started in [47] and refined in [48], this program

succeeds in giving gµνλ a combinatorial interpretation when one of the partitions, say µ, is a hook

shape. In this section we will use their results to built a compact formula of Kronecker coefficients

with a hook shape in terms of Littlewood-Richardson numbers. This formula will allow us to make

contact with multi-matrix models, a correspondence that we will show in detail.

Let us consider a hook partition with n − r columns and r + 1 rows and denote it µ(r), so

µ(r) = (n− r, 1r). For r = 0, . . . , n− 1 the diagram µ(r) runs over all possible hook shapes. In [48]

it was shown that the Kronecker coefficients gµ(r)νλ can be expressed in terms of the standard inner

products1 of Schur and skew Schur functions as

gµ(r)νλ + gµ(r−1)νλ =
∑
γ`r

〈sλ, sν/γsγ′〉, (3.1)

1The standard inner product for symmetric functions is defined as 〈sλ, sµ〉 = δλµ, where sλ and sµ are

Schur functions, see [45].
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where γ′ is the γ-transposed diagram, obtained from γ by interchanging rows and columns. We

will take eq. (3.1) as the starting point of our analysis.

Using the properties of products of Schur and skew Schur functions

cλµν = 〈sλ, sµsν〉 = 〈sλ/ν , sµ〉, λ ` n, µ ` n− r, ν ` r, (3.2)

where cλµν are the Littlewood-Richardson numbers, it is only a bit of work to find the compact

expression

gµ(r)νλ =

r∑
k=0

(−1)r+k
∑
γ`k

ρ`n−k

cνργc
λ
ργ′ , ν, λ ` n (3.3)

where the only partition of 0 is, by definition, ∅, and cλµ,∅ = δλµ. Equation (3.3) shows explicitly the

relation between Littlewood-Richardson numbers and Kronecker coefficients with one hook shape

and it is completely general for partitions ν and λ.

One could ask if eq. (3.3), which involves Kronecker coefficients with 3 partitions, can be

generalized to the case of d partitions. This would be very interesting since it would tell about d-rank

tensor states. Unfortunately, although we believe that a generalization must exist and should reduce

to Equation (3.3) for 3 partitions, we do not know it, and it is probably very involved. For instance,

if we knew how to express Kronecker coefficients with 4 partitions, one of them being a hook, we

could always take the hook to be the one-row partition and obtain the most general expression for

the Kronecker coefficients with 3 partitions in terms of Littlewood-Richardson numbers. This is, in

fact, an unresolved problem and an important mathematical challenge today.

Equation (3.3) is suggestive from the physical point of view since, as we are going to see, it

relates the spectra of energy eigenstates in tensor and matrix theories. As read from eq. (2.22),

the spectrum of free tensor models is organized by the Kronecker coefficients, they measure the

degeneracy of states (invariant operators) with energy n as

card{OG3−Inv
n } =

∑
µ,ν,λ`n

g2
µνλ. (3.4)

Thus, g2
µ(r)νλ has a natural interpretation as counting the hook-shaped sector of the tensor model.

On the other hand, Littlewood-Richardson numbers have been long known to relate to the

spectrum of multi-matrix models [35–42]. Specifically, for the case of two different bosonic matrices

Z and Y

card{OU(N)−Inv
(n,m) } =

∑
µ`n+m
ν`n, λ`m

(cµνλ)2, (3.5)

where n and m are the number of fields Z and Y , respectively, which build the operators. The

matrix theory has U(N) gauge group under which the fields Z and Y transform in the adjoint, so

the fields are N×N matrices. One of the orthogonal basis of operators that relates to this counting

is the restricted Schur basis. We will use it from now on. Restricted Schur operators

χ(µ;ν,λ)ij(Z, Y ), µ ` n+m, ν ` n, λ ` m, i, j = 1, . . . , cµνλ (3.6)

furnish a basis built on n copies of Z and m copies of Y . See [37, 38] for details.

Now the question is: in terms of operators (3.6), what is the r.h.s. of eq. (3.3) counting?

First, realize that since cνργ counts the number of operators χ(ν;ρ,γ)ii(Z, Y ), it is clear that∑
γ`k

ρ`n−k

cνργc
λ
ργ′ = card

{
χ(ν;ρ,γ)ii(Z, Y )χ(λ;ρ,γ′)jj(Z, Y )

∣∣∣ γ ` k, ρ ` n− k,
i = 1, . . . , cνργ , j = 1, . . . , cλργ′

}
. (3.7)
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In order to take care of the alternating sum that appears in the r.h.s. of eq. (3.3) we must restrict

the set of multi-matrix operators under consideration. Let us first introduce some notation. We

will call λ ∩ µ the diagram formed from the common boxes of µ and λ as we overlap them. The

size of the intersection is always |λ ∩ µ| ≤ n, saturating the inequality when λ = µ. A partition is

written as µ = (µ1, . . . , µl(µ)). So, in the language of Young diagrams µi is the number of boxes of

row i, and l(µ) is the number of rows of the diagram µ. For instance, µl(µ) is the number of boxes

of the last row of diagram µ.

It turns out that the alternating sum in the r.h.s. of eq. (3.3) is achieved by restricting ρ to

partitions whose last row has the same number of boxes as the last row of ν ∩ λ, that is,

gµ(r)νλ =

r∑
k=0

(−1)r+k
∑
γ`k

ρ`n−k

cνργc
λ
ργ′ =

∑
γ`r

ρ`n−r
ρl(ρ)=(ν∩λ)l(ν∩λ)

cνργc
λ
ργ′ , ν, λ ` n. (3.8)

Actually, the alternating sum would have also been reproduced if we fix any other corner of ρ. The

choice of the last row is convenient since the last box of the last row of any Young diagram is always

a corner.2 With this observation we can write

gµ(r)νλ = card
{
χ(ν;ρ,γ)ii(Z, Y )χ(λ;ρ,γ′)jj(Z, Y )

∣∣∣ γ ` r, ρ ` n− r,
ρl(ρ) = (ν ∩ λ)l(ν∩λ), i = 1, . . . , cνργ , j = 1, . . . , cλργ′

}
. (3.10)

Now, for the sum of squares we have∑
µ,λ`n

g2
µ(r)νλ = card

{
χ(ν;ρ,γ)ii(Z, Y )χ(λ;ρ,γ′)jj(Z, Y )χ†(λ;ρ̄,γ̄′)kk(Z, Y )χ†(ν;ρ̄,γ̄′)ll(Z, Y )

∣∣∣
γ, γ̄ ` r ρ, ρ̄ ` n− r ν, λ ` n ρl(ρ) = (ν ∩ λ)l(ν∩λ)

i, j = 1, . . . , cνργ k, l = 1, . . . , cλρ̄γ̄′
}
.

(3.11)

Equation (3.11) tells us that the energy spectrum of the hook shape sector labeled by µ(r) of

a 1-boson tensor model is in one-to-one correspondence with the set of rather general composite

operators of multi-matrix models shown above. Each observable on the r.h.s. of (3.11) corresponds

to the operator that results from the multiplication of the four restricted Schur operators (normal

ordered) with the allowed labels. Unfortunately, the OPE for restricted Schur operators is very

involved and does not seem to allow for simplifications, see [38] for a detailed discussion. The label

r of the hook tells the number of Y fields which enter the operators in the matrix models. For

r = 0, there are only Z fields (n of them) and ν = λ, so the matrix composites are (a power of)

Schur polynomials χµ(Z). Now, since the operators χµ(Z) play an important role in N = 4 SYM

for furnishing the 1
2 -BPS sector of the theory [35], and the product of Schur polynomials is a Schur

polynomial, we will take license here and call (χµ(Z))4 1
2 -BPS operators from now on.

Let us give an example of how the match in equation (3.11) goes.

Example. The simplest while non-trivial example one can take is n = 2 and N ≥ 2. In this

case, there are two possible values for r. It is either r = 0, and then µ(0) = ; or r = 1, with

2Eq. (3.8) is a sophistication of the identity among combinatorial numbers(
n− 1

m

)
=

m∑
k=0

(−1)m+k

(
n

k

)
. (3.9)

– 8 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
0

µ(1) = . There are two tensor operators that we can form for each r, labeled by the partitions

ν and λ that make gµ(r)νλ = 1, since for n = 2 there are no multiplicities. For r = 0 we have

g
, ,

= g , , = 1, whereas for r = 1, g
, ,

= g
, ,

= 1. In terms of matrix

composites (l.h.s. of (3.11)) we have

{χ
; ,∅

(Z, Y )χ
; ,∅

(Z, Y )χ†

; ,∅
(Z, Y )χ†

; ,∅
(Z, Y ),

χ ; ,∅(Z, Y )χ ; ,∅(Z, Y )χ†
; ,∅

(Z, Y )χ†
; ,∅

(Z, Y ),

χ
; ,

(Z, Y )χ ; , (Z, Y )χ†
; ,

(Z, Y )χ†

; ,

(Z, Y ),

χ ; , (Z, Y )χ
; ,

(Z, Y )χ†

; ,

(Z, Y )χ†
; ,

(Z, Y )}, (3.12)

where the first two operators of (3.12) belong to the r = 0 hook and the last two to r = 1. Be aware

that operators of the form χ
; ,

(Z, Y )χ
; ,

(Z, Y )χ†

; ,

(Z, Y )χ†

; ,

(Z, Y ) for r = 1 are not

allowed in the set because ∩ = , and so ρl(ρ) 6= (ν ∩ λ)l(ν∩λ) since ρ = . Be also aware that

the restricted Schur operators χ(λ;ρ,λ)(Z, Y ) are not commuting with each other, so the third and

the fourth operators of the set (3.12) are actually different.

What we have done so far is to match the number of eigenstates of both theories in a certain

sector. The match is highly non-trivial. Although this does not prove the duality between both

theories since we should also match the dynamics of the fields, it clearly tells us that both theories

are intimately related. Actually, we will find eq. (3.11) useful in order to interpret the hook sector

of the tensor model given that in the context of matrix models restricted Schur operators have a

well known meaning.3 In order to claim that there is a duality between both theories we should

match the dynamics by comparing correlators on both sides. The correlators in the matrix theory

are still undefined since we have not spelled out an action for the matrix theory. Although this

should be confirmed, a likely scenario is that the correlators of both theories match for a free matrix

action of the form S = ZijZ
†j
i + Y ij Y

†j
i . In any case, and if this guess doed not work, the question

could actually be inverted as to wonder which matrix action makes the correlators match with the

free tensor theory. This will be tested in a separate work.

Now, the point here is to understand the meaning of the composite operators that appear in

eq. (3.11). For that, let us write the multimatrix composites

Oνλ(ρ,γ)ij = χ(ν;ρ,γ)ii(Z, Y )χ(λ;ρ,γ′)jj(Z, Y ) γ ` r, ρ ` n− r, ν, λ ` n. (3.13)

With this notation, the operators on the r.h.s. of (3.11) are simply Oνλ(ρ,γ)ijO
νλ†
(ρ,γ)kl.

First, realize that the operators Oνλ(ρ,γ)ij are 0 if partitions ν and λ differ in more than r boxes,

that is, if |ν ∩ λ| < n − r. As said above, r = 0 forces λ = ν. Let us think of the operators

Oνν = χν(Z)χν(Z) for r = 0 as the initial (unperturbed) states and consider the operators with

r = 1, 2, . . . as fluctuations of those states with increasing energy. We will interpret the parameter r

as the depth of the fluctuation. Thus, for r = 1, for which |ν∩λ| ≥ n−1, the operator4 Oνλ(ρ,(1)) will

encode a 1-box fluctuation of the state ν into λ, making explicit the transition state ρ ` n− 1. The

same applies for subsequent values of r, where the state ν turns into λ after an r-box fluctuation.

Be aware that the process is symmetric, so the role of ν might have also been taken by λ.

3Especially in the displaced corner approximation [49–53], where restricted Schur operators have been

proven to be holographically dual to giant gravitons with strings attached.
4Note that for r = 0, 1, 2 there are no multiplicities, so the latin indices are absent.
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In summary, the operators (3.13) (and so (3.11)) seem to give a complete description of the

possible Y -driven fluctuations of 1
2 -BPS states in the matrix theory.

We would like to briefly comment on the case where G3 = U(1) ⊗ U(N2) ⊗ U(N3), that is,

when N1 = 1. Now, the only irrep of U(1) with n boxes is one-dimensional and labeled by the row

(n). This forces r = 0, and µ(0) = (n). The Kronecker coefficients turn out to be

g(n)νλ =
1

n!

∑
σ∈Sn

χ(n)(σ)χν(σ)χλ(σ) =
1

n!

∑
σ∈Sn

χν(σ)χλ(σ) = δνλ (3.14)

From the tensor point of view, there is just one invariant operator for each partition λ. This

operator is related with the matrix operator χ2
λ(Z)χ†2λ (Z), which, as a multiplication of Schurs, is

a Schur operator. The tensor theory with two indices matches the 1-matrix theory, and is suitable

to describe the 1/2-BPS sector. It seems that tensor theories of rank d should be related with

multi-matrix theories with d− 1 especies. We conjecture that this is indeed the case.

4 Hagedorn phase transition for finite N

Recently, It has been noticed that tensor models (of any classical gauge group) present such a rapid

growth of states that there is no Hagedron behaviour in the limit N → ∞ [54, 55]. Actually, the

partition function (2.22) is not even convergent for any finite value of τ . This is because, as noticed

in [1, 43],

X∞(n) ≡
∑

µ,λ,ν`n

g2
µνλ =

∑
λ`n

zλ, (4.1)

and we know that

lim
n→∞

∑
λ`n zλ
n!

= 1. (4.2)

Actually the convergence of (4.2) is quite fast. The reason for it is that the sum is dominated

by the term associated with the one column Young diagram z(1n) = n!, the rest of the terms are

subleading. Now, since τ is physically related to the temperature through τ = e−1/kBT , the zero-

radius convergence of the partition function series for N →∞ can be understood as the Hagedorn

temperature going to 0 at that limit.

However, for finite N the spectrum gets truncated since no states for which l(µk) > N are

allowed. Actually, for finite N the number of states is given by

XN (n) ≡
∑

µ1,µ2,µ3`n
l(µk)≤N

g2
µ1µ2µ3

, (4.3)

as can be read from (2.22).

The growth of XN (n) is then exponential at large n and the system is expected to present

Hagedorn behaviour with a temperature

TH(N) ∼ 1

logN
, (4.4)

as noticed in [54]. As usual, Hagedorn behaviour indicates the existence of a phase transition at

TH . So, if we start with a low energy state and we pump energy into the system the second phase

will appear at some point. The two phases will coexist from then on and the temperature will

asymptotically stabilize at TH . The partition function, which below TH is summable, describes one

of the two phases. In this section we will argue that the phase that arises at high energy (whose

states are not accounted in Zs(τ)) can be interpreted as a fluctuating 1
2 -BPS state, in a similar

fashion as we treated the hook sector of the tensor model in the former section.
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To support this claim we will give evidence that the number of invariant n-fold operators that

are “left out” in Zs(τ) for finite N when N < n, namely X∞(n) − XN (n), possibly match the

number of fluctuations of 1
2 -BPS states, when the energy of the fluctuations (depth) is given by

n′ = n−N − 1. We say “possibly match” since we will not be able to compute XN (n) exactly for

n′ ≥ 2.

Unperturbed 1
2
-BPS state. Let us consider n = N + 1 first, so n′ = 0, which is the energy

at which the second phase is expected to appear. The number of states which are “left out” can

be calculated exactly in this case. Notice, that these states must be labeled by three partitions

where one should be the one-column, let us take it to be µ, so µ = (1n). In this case the Kronecker

coefficients are easily calculated from the orthogonality properties of characters as

g(1n)νλ =
1

n!

∑
σ∈Sn

χ(1n)(σ)χν(σ)χλ(σ) =
1

n!

∑
σ∈Sn

χν′(σ)χλ(σ) = δν′λ, (4.5)

where ν′ is the transposed diagram of ν. Now, the number of states which are left out is

X∞(N + 1)−XN (N + 1) =
∑

ν,λ`N+1

g2
(1N+1)νλ =

∑
ν,λ`N+1

δν′λ = PN+1. (4.6)

So, at the threshold energy n = N+1, the tensor model in its second phase presents the degeneracy

of (unexcited) 1
2 -BPS states labeled by ν ` n.

Single fluctuation of the 1
2
-BPS state. If we keep on pumping energy into the system,

part of it will go into exciting modes labeled by partitions whose number of rows do not exceed

N , and part of the energy will go to the second phase, exciting the 1
2 -BPS state. Let us take

n = N + 2, so n′ = 1. The states which are associated to the second phase must have µ = (1N+2)

or µ = (2, 1N ). For the first option the counting follows the same path as before leading to a total

of PN+2 states. The number of states that correspond to µ = (2, 1N ) can be calculated exactly,

since the partition (2, 1N ) is a hook.5 They match the number of operators Oν′λ(ρ,(1)) which, as seen

before, are interpreted as 1-box fluctuations of the 1
2 -BPS state labeled by ν′.

b, Small fluctuations of the 1
2-BPS state. For n′ ≥ 2 the relevant states of the second

phase are labeled by a partition µ, made of one column of N + 1 boxes and a diagram α with n′

boxes attached to the column (as shown in the figure), along with diagrams ν′, λ ` n. Note that

for n′ ≥ 2 the Kronecker coefficients get harder to compute exactly. For instance, if n′ = 2 we do

not have yet a combinatorial method to compute Kronecker coefficients of the type g(22,1N−1)ν′λ.

In order to estimate those Kronecker coefficients we will use the following result:

Theorem ([56–58]). Let µ, ν, λ ` n, and denote n′ = n− µ1, where µ1 refers to the first row of µ.

Now, if n′ < n− |ν ∩ λ| then gµνλ = 0.

This statement naturally applies to the cases we are considering in this section, with µ as in the

figure, so n′ = |α|. Actually, although the result uses the first row of the diagram µ we can translate

it into the first column of µ by changing µ → µ′ and ν → ν′, since gµνλ = gµ′ν′λ. The theorem

clearly holds for hook shapes, but the usefulness of it relies on its application for general shapes

µ. In particular, for the partitions µ we are considering, the theorem reinforces the interpretation

of n′ = |α| being the depth of the fluctuation. So, as for hook shapes, we will interpret the tensor

states counted by gµν′λ with µ as in the figure as n′-depth fluctuations of 1
2 -BPS states in matrix

models labeled by ν′.

5The partition µ = (2, 1N ) corresponds to r = N with the convention we are using. Now, since

gµνλ = gµ′ν′λ, as can be checked from the definition, gµ(N)νλ = gµ(1)ν′λ.
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α

Figure 1. Typical Young diagram for states of the second phase. Here |α| = n′.

It is likely that there exist combinatorial formulas for gµνλ similar to (3.3), a result that would

be extremely interesting in this discussion. Probably, the constraint ρl(ρ) = (ν ∩ λ)l(ν∩λ) that

appears in (3.11) (which is related to a 1-row diagram α) should be replaced by any other related

to a more general shape of µ. We conjecture that this is actually the case and so the fluctuations

are described by operators (3.13) with specific constraints for ρ and ν ∩ λ related to µ. This way

the second phase of the tensor model would be described by a multi-matrix model.

To finish this section we will offer an estimation of the total number of states of the second phase

for large N and n′ � N . We will use the conjecture above-mentioned and the corner approximations

obtained in the appendix. The total number of states, calculated from (A.9) and (A.10), is

X∞(N + n′ + 1)−XN (N + n′ + 1) ∼ an′PNNn′ , (4.7)

where an′ ∼ 2n′ + 1 seems to hold.6

5 Summary and outlook

We have started the paper by writing and evaluating the partition function of free color tensor

models with a symmetry group Gd. The partition function shows that the spectrum of Gd-invariant

energy eigenstates is organized by Kronecker coefficients, an expected result which serves as a

consistency check. Then, using recent mathematical algorithms for computing Kronecker coefficients

with a hook shape we have derived eq. (3.3). This identity has not appear in the literature before

as far as we know and shows that, in the hook sector, Kronecker coefficients are computed by

Littlewood-Richardson numbers. Now, the Littlewood-Richardson numbers are known to organize

the spectrum of multi-matrix models. So, we step forward and interpret (3.3) as relating both

spectra of the theories in certain sectors. A precise match of the multi-matrix sector and a tensor

hook shaped sector is shown in eq. (3.11), which is the main result of the paper. Eq. (3.11) shows

that for certain energy level determined by n, the different tensor states with a hook diagram µ(r)

can be matched one-to-one with fluctuations driven by r Y fields of a Schur polynomial χµ(Z) in

6Numerical computations upto n = 100 and n′ = 7 show a good agreement with these values of an′ .
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the multi-matrix model. This strongly suggests that the 1-bosonic tensor model contains a multi-

matrix model with two different species Z and Y , each tensor state encoding a fluctuation of the

Schur polynomial state. The results so far apply to the hook sector of the tensor model.

One can see from the form of the partition function (2.22) that the partition function is not

summable for N →∞, but it grows exponentially for finite N . This growth is a sign of a Hagedorn

phase transition. Using known results for Kronecker coefficients we conjecture that the high energy

Hagedorn phase, which appears at n = N + n′ + 1 for n′ = 0, 1, . . . could be described by a

multi-matrix theory and interpreted again as fluctuations of depth n′ of Schur polynomial states.

Given the match between spectra of both theories in the hook sector, a natural question is:

can we find a dynamical equivalence of both theories in the hook sector? This will be especially

interesting for the interacting theory. Remember that the SU(2) sector of N = 4 SYM is described

by operators built on two matrix species Z and Y , and that it is hard to tackle perturbatively. How-

ever, perturbative tensor models with a quartic interaction are known to lead to melonic Feynman

diagrams which are much easier to handle.

It will be interesting to investigate the conjecture that the second phase, which appears at

energies n = N + n′ + 1 for n′ = 0, 1, . . . , is described by a multi-matrix theory with two species

Z and Y . We have conjectured that tensor states of the second phase correspond to fluctuations

of Schur polynomial with depth n′. So the idea is to find the constraint on fluctuations for general

shapes α analogous to ρl(ρ) = (ν ∩ λ)l(ν∩λ) that appears in (3.11) for hook shapes. This is surely

a tough problem, since finding the general rule would shed light on how to compute Kronecker

coefficients using combinatorics, a mathematical problem which is lacking for a solution since 80

years ago.

More generally, it will be desirable to investigate the relation between tensor and matrix models

at the level of their actions. For instance, could matrix models appear as tensor model effective

theories? This would clarify, for instance, if the flirt that we have shown in this paper is actually

the beginning of a long term affair.
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A Kronecker coefficients with a hook shape: corner approximation

In order to make estimations of g2
µ(r)νλ and the sums which count the number of states, we will

find useful to use the number of corners of a diagram, C(ρ), which measures the number of boxes

that can be deleted from diagram ρ and still lead to a valid Young diagram. In the language of

partitions, the number of corners is the number of different parts in partition ρ. Thus, in this

appendix we will arrive at approximations of (3.3) for which we only use the number of corners of

the diagrams. We will trust these approximation in the regime of large N and n′ � N , in which

case they are expected to reproduce the leading order (in 1/N) correctly.

Case r = 1. For the simplest non-trivial case, r = 1, we will have µ(1) = (n− 1, 1) which is the

transpose of µ(n− 2) = (2, 1n−2). From the definition of Kronecker coefficients we immediately see

that gµ(1)νλ = gµ(n−2)ν′λ. With a diagram µ = (2, 1n−2) we can find an exact formula for the sum

of the square of Kronecker coefficients. A formula which involves only corners of partitions.

First, let us take two separate cases depending on whether the other two diagrams ν′ and λ

are equal or not. If ν′ 6= λ, where ν′ is the transposed diagram of ν, formula (3.3) tells us that
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the Kronecker coefficient will be one if diagram λ is obtained by taking a corner box from ν′ and

return it somewhere else. Otherwise it is zero. We can count all the possible non-zero combinations

in the following way. Let us pick a diagram ρ ` n − 1. The statement that ρ is connected (in the

branching graph) with ν′ and λ means that adding a box to ρ at one of its internal corners produces

ν′ and adding a box at a different internal corner produces λ. Now, if ν′ and λ are connected then

the Kronecker coefficient g(2,1n−2)ν′λ is 1. Given two different diagrams ν′, λ ` n there is a unique

ρ ` n− 1 such that ρ = ν′ ∩ λ. So, all the connected combinations (ν′, λ) are found if we consider

all diagrams ρ ` n− 1, and for each one all possible ways of attaching a pair of boxes, that is,∑
ν′ 6=λ

g2
(2,1n−2)ν′λ =

∑
ν′ 6=λ

g(2,1n−2)ν′λ =
∑
ρ`n−1

C(ρ)(C(ρ) + 1), (A.1)

where C(ρ) is the number of corners of diagram ρ. In the first equality of (A.1) we have used the

fact that g(2,1n−2)ν′λ is either 0 or 1.

When ν′ = λ we can read from (3.3) that

g(2,1n−2)ν′ν = C(ν)− 1. (A.2)

Gluing (A.1) and (A.2) we obtain∑
ν,λ`n

g2
(2,1n−2)ν′λ =

∑
ρ`n−1

C(ρ)(C(ρ) + 1) +
∑
ρ`n

(C(ρ)− 1)2. (A.3)

This is an exact formula.

Case r = 2. In (3.3) we can see that the computation of the Kronecker coefficients for r = 2, or

equivalently for r = N (our case) involves, at the most, diagrams with two boxes for γ. It is known

that the only values that the Littlewood-Richardson numbers can take when one of the diagrams

has two boxes or less are 0 or 1. So in this case we should not worry about multiplicities either.

However, for the case r = 2 it will not be possible to find an exact formula in terms of corners as

we have done for r = 1. For an exact formula we would need more information about the diagrams

than just corners, like the number of double corners, which corresponds to rows from which we

could remove two boxes and still arrive at a valid Young diagram. Nevertheless, we can make an

estimation of the order based on the number of corners.

First, realize that in (3.3) the highest power of corners will happen when k = 2 and it will be

4. For k = 1 we saw in the paragraph above that the highest power was 2. In general, the highest

power of corners in the sum will appear for k = r and it will be 2r. Now, since for large N the sum

will be clearly dominated by terms which involve the highest power of corners, for r = 2 we will

consider only k = 2 bellow, and so γ ` 2 in (3.3).

Now, for γ ` 2, the product cν
′

ργc
λ
ργ′ will be 1 if deleting two boxes from ν′ and gluing them at

internal corners results in λ, provided that if the boxes deleted are in the same row (column) of ν′

they are not in the same row (column) of λ. Otherwise the product will be 0. We will not consider

the cases where the boxes are deleted or placed at the same row/column. This restriction will

allow us to still obtain the leading order at large N using only the corners of the diagrams in our

estimations. The number of pairs (ν′, λ) which are left out with this restriction are not many. They

are actually negligible for large N since for diagrams with a large number of corners the number

of choices of deleting (and gluing) two boxes at different places is much higher than the number

of choices at the same row. So contributions from deleting/placing boxes at the same row/column

will be always subleading.

We will distinguish three cases depending on |ν′ ∩ λ| being n, n− 1 or n− 2.
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If |ν′ ∩ λ| = n then ν′ = λ. In this case we have g(3,1n−3)λ′λ ∼ 2
(
C(λ)

2

)
, so∑

ρ`n

g2
(3,1n−3)ρ′ρ ∼

∑
ρ`n

4

(
C(ρ)

2

)2

. (A.4)

If ν′ ∩ λ = ρ ` n− 1, so the diagrams differ in one box, then g(3,1n−3)ν′λ ∼ 2C(ν′ ∩ λ). So∑
ν′∩λ`n−1

g2
(3,1n−3)ν′λ ∼

∑
ρ`n−1

4C(ρ)2C(ρ)(C(ρ) + 1). (A.5)

If ν′ ∩λ = ρ ` n− 2, so the diagrams differ in two boxes, then g(3,1n−3)ν′λ = 2, where 2 comes from

the sum over γ ` 2, and∑
ν′∩λ`n−2

g2
(3,1n−3)ν′λ ∼

∑
ρ`n−2

4

(
Ci(ρ)

2

)(
Ci(ρ)− 2

2

)
∼
∑
ρ`n−2

4

(
C(ρ) + 1

2

)(
C(ρ)− 1

2

)
. (A.6)

Consistently, we will take into account the sums of the contributions coming from C(ρ)4.

From (A.4), (A.5) and (A.6) we see that∑
ν,λ`n

g2
(3,1n−3)νλ ∼ 6

∑
ρ`n

C(ρ)4, (A.7)

where we have taken into account that∑
ρ`n−n′ C(ρ)r∑
ρ`n C(ρ)r

−→ 1, n→∞. (A.8)

General r = n′. When n = N+n′+1 with n′ � N we will be interested in calculating sums of

g2
(n′+1,1N )ν′λ. When we estimate the sums using corners we will have terms in the sum like C(ρ)2n′

which will dominate the sum. So we will consider those terms only. Also, the approaches taken for

the case r = 2 will apply here. Be aware that all these approximations make sense only for large

N and n′ � N . Notice that for the cases we consider in these approximations where n′ boxes are

deleted from ν′ at different corners, the Littlewood-Richardson numbers are cν
′

ργ = dγ , where dγ is

the dimension of the representation of the symmetric group labeled by partition γ. So cν
′

ργc
ν′

ργ = d2
γ .

Now, the sum in γ that appears in (3.3) can be performed to give a factor n′!, since
∑
γ`n′ d

2
γ = n′!.

All in all, the total sum can be approximated (to leading term) as∑
ν′,λ`N+n′+1

g2
(n′+1,1N )ν′λ ∼ A(n′)

∑
ρ`n

C(ρ)2n′ , (A.9)

with

A(n′) = n′!2
n′∑
m=0

(
n′

m

)2(
n′

n′ −m

)2

. (A.10)
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