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Introduction

The mass A ∼ 130 region (with Z ≥ 50
and N ≤ 82) has been an important region of
study in contemporary nuclear physics. This
region includes the shell model orbitals 0g7/2,
1d5/2, 1d3/2, 2s1/2 and 0h11/2 for both protons

and neutrons. For nuclei near 132Sn (the heav-
iest, unstable neutron-rich doubly magic nu-
cleus), the low-lying “single-particle excitation
spectrum (angular momentum coupling of few
nucleons)” can be explained using spherical
shell model, with interactions known in this
mass region. Such information is indispens-
able for the empirical estimation of the p-p,
p-n and n-n matrix elements, a major compo-
nent of the shell model interaction. Once these
matrix elements are determined precisely from
experiments, these can be used to predict and
understand the proton-neutron configurations
of the “vibrational (angular momentum cou-
pling of vibrational core with valence quasi-
particles)” and “rotational (angular momen-
tum coupling of deformed core with valence
quasiparticles)” bands in deformed nuclei, fur-
ther away form 132Sn. There are theoret-
ical predictions that in nuclei further away
from 132Sn, the residual interactions among
the valence nucleons in the h11/2 orbital re-
sult in ground-state triaxial deformation of
the nucleus [1, 2]. Such nuclei exhibit exotic
rotational modes like chirality and wobbling,
the experimental information of which is spo-
radic in this mass region. Hence, to explore
these features, the nuclei, viz. 132Te (Z =
52, N = 80), 130Te (Z = 52, N = 78), 133Cs
(Z = 55, N = 78), 131Cs (Z = 55, N = 76)and
133La (Z = 55, N = 76) have been studied.
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Experimental Details

Two different experimental setups were
used for performing the γ-ray spectroscopy of
all these isotopes, as outlined below:

(a) Indian National Gamma Array (INGA)
at TIFR, Mumbai:
The INGA array at TIFR is a clover de-
tector array with the provision of placing
24 Compton suppressed clover High Purity
Germanium (HPGe) detectors connected to
a Pixie-16 Digital Data AcQuisition (DDAQ)
system, the details of which can be found in
the Ref. [3]. Four different experiments were
carried out using this setup:
(i) 232Th(7Li, fission (132Te)) at 38 MeV [4].
(ii) 130Te(7Li, 4n)133Cs at 45 MeV [6].
(iii) 126Te(11B, 4n)133La at 52 MeV [7].
(iv) 124Sn(11B, 4n)131Cs at 55 MeV.

(b) EXOtic GAMma array-VAriable MOde
Spectrometer (EXOGAM-VAMOS++) at
GANIL, France:
The EXOGAM array at GANIL has the
provision of accommodating 16 segmented
Compton-suppressed HPGe clover detectors
which is coupled to a VAMOS++ spectrom-
eter consisting of dipole magnet, quadrupole
magnets and a focal plane detection system
equipped with MWPPAC, drift chambers,
ionization chambers and silicon detector.
The details of this setup can be found in the
references Ref. [8, 9]. One experiment was
carried out using this setup, the details of
which is given below:
(i) 9Be(238U, fission (130,132Te)) at 6.2
MeV/u [4].

Results and Summary

The present thesis work describes the exper-
imental investigation of the high-spin states in
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various nuclei like, 132Te and 130Te (spherical
nuclei); 133Cs (vibrational nucleus); 133La and
131Cs (axially asymmetric deformed or triaxial
nuclei) as summarized below:

(i) 130,132Te: The time-stamped data ob-
tained from the digital data acquisition sys-
tem in INGA experiment allowed correlat-
ing the strongest γ rays feeding the 10+

isomer in 132Te with those depopulating it
(prompt-delayed coincidence technique) and
provided the angular correlation measure-
ments for the strong transitions. The
EXOGAM-VAMOS++ experiment, capable
of isotopic identification of fission fragments,
allowed further observation of high-spin states
in 130,132Te. The microscopic interpretation
of these states have been carried out using the
large Scale Shell Model (LSSM) calculations.

(ii) 133Cs: Gamma-gamma coincidence
technique, Directional Correlation of Oriented
States (DCO) and polarization asymmetry
measurements have been used to determine 22
new γ-ray transitions in 133Cs, thus extending
the existing level scheme upto an excitation
energy of 5.265 MeV and spin-parity (33/2+).
Three one-quasiparticle ∆I = 2 rotational
structures arising from the πg7/2, πd5/2
and πh11/2 orbitals and a three-quasiparticle

(dipole) band due to (πg7/2πd5/2)1 ⊗ νh−2
11/2

configuration have been observed. These
bands have been understood in terms of LSSM
and Triaxial Projected Shell Model (TPSM)
calculations.

(iii) 133La and 131Cs: The experimental
confirmation of triaxial nuclei has been es-
tablished in the N = 76 isotones, 133La and
131Cs, by observing the characteristic wob-
bling bands. This was made possible by mea-
suring the electromagnetic properties of the
interband transitions between the yrast band
and the wobbling band using the INGA array.
Angular distribution, DCO-ratio and polar-
ization asymmetry measurements show that
these interband γ rays are dipole transitions
with a dominant electric character, hence con-
firming the wobbling mode. In addition, the
wobbling frequency plot shows longitudinal
wobbling for 133La and transverse wobbling
for 131Cs. These phenomena have been stud-

ied using the TPSM, Quasiparticle Triaxial
Rotor with Harmonic Frozen Approximation
(QTR + HFA) and Tilted Axis Cranking
(TAC) calculations.
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