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Abstract The effective evolution of an inhomogeneous universe model in any
theory of gravitation may be described in terms of spatially averaged variables.
In Einstein’s theory, restricting attention to scalar variables, this evolution can be
modeled by solutions of a set of Friedmann equations for an effective volume
scale factor, with matter and backreaction source terms. The latter can be repre-
sented by an effective scalar field (“morphon field”) modeling Dark Energy. The
present work provides an overview over the Dark Energy debate in connection
with the impact of inhomogeneities, and formulates strategies for a comprehen-
sive quantitative evaluation of backreaction effects both in theoretical and obser-
vational cosmology. We recall the basic steps of a description of backreaction
effects in relativistic cosmology that lead to refurnishing the standard cosmolog-
ical equations, but also lay down a number of challenges and unresolved issues
in connection with their observational interpretation. The present status of this
subject is intermediate: we have a good qualitative understanding of backreaction
effects pointing to a global instability of the standard model of cosmology; exact
solutions and perturbative results modeling this instability lie in the right sector to
explain Dark Energy from inhomogeneities. It is fair to say that, even if backreac-
tion effects turn out to be less important than anticipated by some researchers, the
concordance high-precision cosmology, the architecture of current N-body simu-
lations, as well as standard perturbative approaches may all fall short in correctly
describing the Late Universe.
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1 General thoughts: the standard model, the averaging problem and key
insights

1.1 Views on and beyond the standard model of cosmology

The standard model of cosmology does not, like the standard model of particle
physics, enjoy appreciable generality; it is based on the simplest conceivable class
of (homogeneous-isotropic) solutions of Einstein’s laws of gravitation. It is clear
that the inhomogeneous properties of the Universe cannot be described by such a
strong idealization. The key issue is whether they can be described so on average,
and this is the subject of considerable debate and controversy in the recent litera-
ture. If the standard model indeed describes the averaged model, we have to show
that backreaction effects, being the main subject of this report, are negligible. We
are striving to discuss most of the related aspects of this debate.

1.1.1 Dark Energy and Dark Matter

In the standard model of cosmology one has to conjecture the existence of two
constituents, if observational constraints are met, that both have yet unknown ori-
gin: first, a dominant repulsive component is thought to exist that can be mod-
eled either by a positive cosmological constant or a scalar field, e.g., a so-called
quintessence field. Besides this Dark Energy, there is, secondly, a non-baryonic
component that should considerably exceed the contribution by luminous and dark
baryons and massive neutrinos. This Dark Matter is thought to be provided by
exotic forms of matter, not yet detected in (non-gravitational) experiments. Ac-
cording to the concordance model [8; 121; 185], the former converges to about
3/4 and the latter to about 1/4 of the total source of Friedmann’s equations, up to
a few percent that have to be attributed to baryonic matter and neutrinos (in the
matter-dominated era). There are, however, other voices [18; 19].

Contemporary research to uncover this enigma pursues essentially two direc-
tions: one focusses on generalizations of the geometry of spacetime mostly re-
stricting attention to modifications of the underlying theory of gravitation, the
other invokes new sources in the energy momentum tensor and so implies a chal-
lenge for particle physics. As for the former, a Dark Energy component may possi-
bly derive either from higher-order Ricci curvature Lagrangians [54], see also [55]
(as well as Capozziello and Francaviglia, this volume), [69], or string-motivated
low-energy effective actions [20]. It is doubtful whether a fundamental scalar field
exists in nature, at least one that can be viewed as a natural candidate for the rel-
evant effects needed to explain Dark Energy. This latter remark is supported by
the well-known violation of energy conditions of a quintessence field that is able
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to produce late-time volume acceleration of the Universe. Rather, a scalar field
would likely be an effective one, either stemming from higher-order gravity terms,
or effective terms as remnants from higher dimensions that are compactified or
even non-compactified as in brane world cosmologies [130] (see also Koyama,
this volume). As we shall learn below, already classical general relativity allows
to identify effective geometrical terms, simply resulting from inhomogeneities,
with an effective scalar field component, the morphon field [49], a good example
of William of Ockham’s razor. In this picture Dark Energy emerges as an excess
of kinetic over potential energies of a scalar field in an “out-of-equilibrium” state,
and it allows attributing Dark Energy to the classical vacuum. If we restrict our
attention to cosmology and the fitting of extra terms from various different mod-
ified gravitational theories to observational data, then those extra terms may also
be mapped into morphon fields with different but unambiguously defined physical
consequences. A review of the status and properties of currently discussed models
can be found in [67], see also [146], see also [147] (as well as Padmanabhan, this
volume), [172; 194]. We shall not directly address the Dark Matter problem in this
report, but also this problem might be related to an explanation of Dark Energy;
we shall discuss such possible relations.

Thus, the intriguing question is whether an explanation of these dark com-
ponents is (i) the task of particle physicists, or (ii) an expression of the need to
modify the laws of gravitation, or (iii) whether the cosmological model is built on
oversimplified priors. We are going to study this last possibility.

1.1.2 The longstanding averaging problem

Does an inhomogeneous model of the Universe evolve on average like a homoge-
neous solution of Einstein‘s or Newton’s laws of gravitation? This question is not
new, at least among relativists who think that the answer is certainly, in general,
no, not only in view of the nonlinearity of the theories mentioned [72]. The prob-
lem was and still is the notion of averaging whose specification and unambiguous
definition turned out to be an endeavor of high magnitude, mainly because it is not
straightforward to give a unique meaning to the averaging of tensors, e.g., a given
metric of spacetime. This problem seems to lie in the backyard of relativists who,
from time to time, add another effort towards a solution of this technical issue. On
the other hand, the community of cosmologists should locate exactly this research
topic at the basis of their evolutionary models of the Universe.

Although there have been numerous exceptions to this ubiquitous ignorance
of the averaging problem in cosmology, e.g., [182], and many efforts after George
Ellis [72] has brought the subject into the fore [14; 16; 21; 58; 78; 88; 89; 108; 173;
189; 201],1 still, the cosmologist’s thinking rests on the hegemony of the standard
model despite the drastic changes of our picture of structures in the Universe on
large scales. This standard model, up to the present state of knowledge, is used as

1 This is certainly an incomplete list—more references may be found in these papers and,
e.g., in [74].
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a prior to interpret a wide variety of orthogonal observations, and it is therefore
hard to beat due to this intentionally established status. Therefore, most investiga-
tions in cosmology are still based on the vocabulary of the standard model, aiming
to constrain its global cosmological parameters, often on the basis of observations
of structure in the regional Universe that is very different from homogeneous and
isotropic. As a consequence, also structure on large scales is described in terms of
(quasi-Newtonian) perturbations of this standard model, a construction that again
makes only sense, if the standard model correctly describes the average distribu-
tions of matter and geometry. Promisingly, the conjecture that the standard model
agrees with the averaged model has recently been recognized as such and chal-
lenged by a wider community thanks to the Dark Energy debate.

1.1.3 Uncharted territory beyond the standard model

The concordance model is encircled by a large set of observational data that
are, however, orthogonal only within the predefined solution space of a FLRW
(Friedmann–Lemaı̂tre–Robertson–Walker) cosmology. This solution space has di-
mension two for Friedmann’s expansion law derives from the Hamiltonian con-
straint of general relativity (see Eq. (18) below), restricted to (about every point)
locally isotropic and hence (by Schur’s Lemma) homogeneous distributions of
matter and curvature,

Ωm +Ωk +ΩΛ = 1, (1)

where the standard cosmological parameters are global and iconized by the cosmic
triangle [11],

Ωm :=
8πGρH

3H2 , Ωk :=
−k

a2H2 , ΩΛ :=
Λ

3H2 , (2)

ρH(t) is the homogeneous matter density, H(t) := ȧ/a Hubble’s function with the
scale factor a(t), k a positive, negative or vanishing constant related to the three
elementary constant-curvature geometries, and Λ is the cosmological constant,
nowadays—if positive—employed as the simplest model of Dark Energy [155].

We shall learn below that an extended solution space of an averaged inhomo-
geneous universe model is three-dimensional, when we include inhomogeneities
of matter and geometry. Hence, such more realistic models seem to enjoy more pa-
rameter freedom, but it should be emphasized that these (effective) “parameters”
are defined in terms of volume averages of dynamically interacting physical vari-
ables. For a given inhomogeneous model, the additional parametrization appears
in the initial conditions for the inhomogeneities that are absent in the standard
model of cosmology.

How can we be sure that fitting an idealized model, that ignores inhomo-
geneities, to observational data is not “epicyclic”, especially if the model enters
as a prior into the process of interpreting the data? Confronting observers with the
wider class of averaged cosmologies allows them to draw their data points within
a cube of possible solutions and to differentiate the relevant observational scales
reflected by these data; if we “force” them to draw the data points into the plane
of the FLRW solutions on every scale, then they conclude that there are “dark”
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components. Thus, we have to exclude that they may have missed something in
the projection and we have to clarify whether the ignorance of scale-dependence
of observables in the standard model does not mislead their interpretation. Both
issues are equally important to judge the viability of the standard model in ob-
servational cosmology: the first is the question of how backreaction quantitatively
affects the standard cosmological parameters, and the second is the comparison of
data taken on small scales (e.g., on cluster scales) and data taken on large scales
(e.g., CMB; high-redshift supernovae). Both additional “degrees of freedom” in
interpreting observational data are interlocked in the sense that backreaction ef-
fects may alter the evolution history of cosmological parameters. A comparison
of data taken on different spatial scales has therefore also to be subjected to a crit-
ical assessment of data that are taken at different times of the cosmic history: with
backreaction at work, the simple time-scaling of parameters in a FLRW cosmol-
ogy is also lost.

The plan of this report is the following. We shall first provide a list of argu-
ments that justify existence of backreaction effects. Then, we move on to construct
realistic universe models and discuss the governing equations in Sect. 2. A qual-
itative understanding of the backreaction mechanism relevant to the question of
Dark Energy is developed in Sect. 3, and thereafter we propose and discuss strate-
gies for a quantitative evaluation of backreaction effects in Sect. 4. Before we now
enter the physics of backreaction that is easy to understand, we have to probe some
more critical territory in the following subsection.

1.2 Averaging strategies: different “directions” of backreaction

The notion of averaging in cosmology is tied to space-plus-time thinking. Despite
the success of general covariance in the four-dimensional formulation of classical
relativity, the cosmologist’s way of conceiving the Universe is evolutionary. This
breaking of general covariance is in itself an obstacle to appreciating the proper
status of cosmological equations. The standard model of cosmology is employed
with the implicit understanding that there is a global spatial frame of reference
that, if mapped to the highly isotropic Cosmic Microwave Background, is elevated
to a physical frame rather than a particular choice of a mathematical slicing of
spacetime. Restricting attention to an irrotational cosmic continuum of dust (that
we shall retain throughout the main text), the best we can say is that all elements
of the cosmic continuum defined by the homogeneous distribution of matter are in
free fall within that spacetime, and therefore are preferred relative to accelerating
observers with respect to this frame of reference. Those preferred observers are
called fundamental. Exploiting the diffeomorphism degrees of freedom we can
write the FLRW cosmology in contrived ways, so that nobody would realize it
as such. This point is raised as a criticism of an averaging framework [102], as
if this problem were not there in the standard model of cosmology. Again, the
“natural” choice for the matter model “irrotational dust” is a collection of freely-
falling continuum elements, now for an inhomogeneous continuum. For such a
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generalized collection of fundamental observers, the 4-metric form reads2

4g =−dt2 + 3g, 3g = gab dXa⊗dXb, (3)

where latin indices run through 1 · · ·3 and Xa are local (Gaussian normal) coor-
dinates. Evolving the first fundamental form 3g of the spatial hypersurfaces along
∂/∂ t =: ∂t defines their second fundamental form

3K = Kab dXa⊗dXb, Kab :=−1
2

∂tgab, (4)

with the extrinsic curvature components Kab. Such a comoving (synchronous)
slicing of spacetime may be considered “natural”, but it may also be questioned.
However, to dismiss its physical relevance due to the fact that shell-crossing singu-
larities arise is shortsighted. It is a problem of the matter model in the first place. A
comoving (Lagrangian) frame helps to access nonlinear stages of structure evolu-
tion, as is well-exemplified in Newtonian models of structure formation, where the
problem of choosing a proper slicing is absent. Those nonlinear stages inevitably
include the development of singularities, provided we do not improve on the mat-
ter model to include effects that counteract gravitation (like velocity dispersion)
in order to regularize such singularities [43]. If a chosen slicing appears to be bet-
ter suited, because it does not run into singularities, then one should rather ask
the question whether the evolution of variables is restricted to a singularity-free
regime just because inhomogeneities are not allowed to enter nonlinear stages of
structure evolution. An example for this is perturbation theory formulated, e.g.,
in longitudinal gauge, where the variables are “gauge-fixed” to a (up to a given
time-dependent scale factor) non-evolving background.

However, the problem of choosing an appropriate slicing of spacetime is not
off the table. There exist strategies to consolidate the notion of an effective spa-
tial slicing that would minimize frame fluctuations being attributed to the diffeo-
morphism degrees of freedom in an inhomogeneous model. Such, more involved,
strategies relate to the intrinsic direction of backreaction that we put into perspec-
tive below.

1.2.1 Extrinsic (kinematical) and intrinsic backreaction

Having chosen a foliation of spacetime implies that we can speak of two “direc-
tions”: one being extrinsic in the direction of the extrinsic curvature Kab of the em-
bedding of the hypersurface into spacetime (e.g., parametrized by time), the other
being intrinsic in the direction of the Ricci tensor Rab of the three-dimensional
spatial hypersurfaces parametrized by a scaling parameter (let it be the geodesic

2 For notations the reader may consult the Appendix; generally, we work with spatial variables
in the hypersurfaces of constant coordinate time t (that is equal to proper time for an irrotational
dust continuum), and we explicitly indicate with a prefix when we talk about four-dimensional
variables in cases where this is not obvious.
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radius of a randomly placed geodesic ball). Consequently, we may speak of two
“directions” of backreaction: inhomogeneities in extrinsic curvature and in intrin-
sic curvature. The former is of kinematical nature, since we may interpret the ex-
trinsic curvature actively through the expansion tensor Θab :=−Kab, and introduce
a split into its kinematical parts: Θab = 1/3gabΘ +σab, with the rate of expansion
Θ = Θ c

c, the shear tensor σab, and the rate of shear σ2 := 1/2σabσab; note that
vorticity and acceleration are absent for dust in the present flow-orthogonal fo-
liation. The latter addresses the so-called fitting problem [72; 78; 152], i.e., the
question whether we could find an effective constant-curvature geometry that best
replaces the inhomogeneous hypersurface at a given time. An answer to this ques-
tion has to deal with the problem of “averaging” the tensorial (spatial) geometry
for which several different strategies are conceivable. Some of those strategies do
not distinguish between extrinsic and intrinsic averaging (e.g., [64; 65; 201], and
other references in [74]). A comparison of such a more “synthetic” approach with
a pure kinematical averaging that leaves the physical properties of a spatial hyper-
surface untouched has been provided [153] and helps to also formally understand
the differences between both viewpoints.

One method has recently obtained a strong position in the context of Perel-
man’s work (e.g., [158; 159]) on the Ricci–Hamilton flow related to the recent
proof of Poincaré’s conjecture, and implied progress on Thurston’s geometrization
program [5] to cut a Riemannian manifold into “nice pieces” of eight elementary
geometries. This method we briefly sketch now.

1.2.2 Renormalization of average characteristics: smoothing the geometry

Employing the Ricci–Hamilton flow [57; 94; 95], an “averaging” of geometry can
be put into practice by a rescaling of the spatial metric tensor, much in the spirit
of a renormalization flow [58]. A general scaling flow is described by Petersen’s
equations [160] that we may implement through a 2 + 1 setting by evolving the
boundary of a geodesic ball in a three-dimensional cosmological hypersurface in
radial directions, thus exploring the Riemannian manifold passively. Upon lin-
earizing the general scaling flow, e.g., in normal geodesic coordinates, we obtain
a scaling equation for the metric along radial directions; up to tangential geomet-
rical terms on the boundary we obtain [39],

∂

∂ r
gab(r)−

∂

∂ r
gab(r)

∣∣∣
r0

=−2Rab(r0)[r− r0], (5)

i.e., the metric scales in the direction of its Ricci tensor much in the same way
as it is deformed in the direction of the extrinsic curvature by the Einstein flow.
If we now implement the active (geometrically Lagrangian) point of view of de-
forming the metric by the same flow along a Lagrangian vector field ∂/∂ r0 while
holding the geodesic radius r0 fixed, we are able to smooth the metric in a con-
trolled way. Depending on our choice of normalization of the flow, we may pre-
serve the mass content inside the geodesic ball while smoothing the metric. Such
a mass-preserving Ricci flow transforms kinematical averages on given hypersur-
faces from their values in the inhomogeneous geometry (the actual space sec-
tion) to their values on a constant-curvature geometry (the fitting template for
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the space section): they are renormalized resulting in additional backreaction ef-
fects due to the difference of the two volumes (the Riemannian volume of the
actual space section and the constant-curvature volume)—the volume effect, and
also curvature backreaction terms that involve averaged invariants of the Ricci
tensor. For details and references see [39] and for small overviews [40] and [41].
In such a setting the role of lapse and shift functions (i.e., the choice of slicing,
cf. Appendix) can also be controlled by employing the recent results of Perelman
[56].

We now come to some crucial points of understanding the physics behind
backreaction. In order not to think of any exotic mechanism, the historical use
of the notion “model with backreaction’ should simply be replaced by ‘more real-
istic model”.

1.3 The origin of kinematical backreaction and the physics behind it

Let us now concentrate on the question, why there must be backreaction at work,
restricting attention to kinematical backreaction as defined above. In doing so,
we do not actively modify the physics, i.e., the metrical properties of spatial sec-
tions; we merely look at general integral properties of the inhomogeneous spatial
distributions of matter and geometry on a given scale. After we have understood
the reasons behind backreaction effects in general terms, i.e., without resorting to
restrictions of spatial symmetry or approximations of evolution models, the very
question of their relevance is better defined.

1.3.1 An incomplete message to particle physicists

Employing Einstein’s general theory of relativity to describe the evolution of the
Universe, we base our universe model on a relation between geometry and mat-
ter sources. A maximal reduction of this theoretical fundament is to consider the
simplest conceivable geometry. Without putting in doubt that it might be an over-
simplification to assume a (about every point) locally isotropic (and hence homo-
geneous) geometry, standard cosmology conjectures the existence of sources that
would generate this simple geometry. As already remarked, the majority of these
sources have yet unknown physical origin. Obviously, particle physicists take the
demand for missing fundamental fields literally. But, as was emphasized above,
the standard model has physical sense only, if a homogeneous-isotropic solution of
Einstein’s equations also describes the inhomogeneous Universe effectively, i.e.,
on average. This is not obvious. The very fact that the distributions of matter and
geometry are inhomogeneous gives rise to backreaction terms; we shall restrict
them to those additional terms that influence the kinematics of the homogeneous-
isotropic solutions. These terms can be viewed to arise on the geometrical side of
Einstein’s equations, but they may as well be put on the side of the sources.

We start with a basic kinematical observation that lies at the heart of the back-
reaction problem.
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1.3.2 A key to the averaging problem: non-commutativity

Let us define spatial averaging of a scalar field Ψ on a compact3 domain D with
volume VD := |D | through its Riemannian volume average

〈
Ψ(X i, t)

〉
D :=

1
VD

∫
D

Ψ(X i, t)Jd3X , J :=
√

det(gi j). (6)

The key property of inhomogeneity of the field Ψ is revealed by the commutation
rule [32; 44]:

∂t〈Ψ〉D −〈∂tΨ〉D = 〈ΘΨ〉D −〈Θ〉D 〈Ψ〉D , (7)

where Θ := uµ

;µ denotes the trace of the fluid’s expansion tensor, uµ its 4-velocity,
and ∂tJ = ΘJ the evolution of the root of the 3-metric determinant J; the spatial
average of Θ describes the rate of volume change of a collection of fluid elements
along ∂/∂ t,

〈Θ〉D =
∂tVD

VD
=: 3HD , (8)

where we have introduced a volume Hubble rate HD that reduces to Hubble’s
function in the homogeneous case. Commutativity reflects the conjecture implied
by the standard model: a realistically evolved inhomogeneous field will feature
the same average characteristics as those predicted by the evolution of the (homo-
geneous) average quantity; in other words, the right-hand-side of (7) is assumed
to vanish. This rule also shows that backreaction terms deal with the sources of
non-commutativity that are in general non-zero for inhomogeneous fields. Note
that this rule is purely kinematical, which shows that it is not necessarily the non-
linearity of the field equations that is responsible for backreaction effects.

1.3.3 Regional volume acceleration despite local deceleration

Based on a first application of the above rule, we shall emphasize that there is
not necessarily anti-gravity at work, e.g., in the “redcapped” version of a positive
cosmological constant, in order to have sources that counteract gravity. Raychaud-
huri’s equation, if physically essential terms like vorticity, velocity dispersion, or
pressure are retained, provides terms needed to oppose gravity, e.g., to support
spiral galaxies (vorticity), elliptical galaxies (velocity dispersion), and other sta-
bilization mechanisms involving pressure (think of the hierarchy of stable states
of stars until they collapse into a Black Hole). Admittedly, those terms are effec-
tively “small-scale-players”. Now, let us consider Raychaudhuri’s equation (see

3 This is a strong assumption on smaller spatial scales in the case of the matter model “irrota-
tional dust”: as soon as singularities in the flow develop, the boundary of the domain then also
experiences singularities, i.e., a breaking of the boundary due to a splitting of the domain or due
to a merging of domains. These latter processes that alter the domain’s topology may also occur
in a smooth way, if the flow is regularized through generalizations of the matter model.
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(21) below), restricted to irrotational dust,4

∂tΘ = Λ −4πGρ +2II− I2, (9)

with the principal scalar invariants of Θab, 2II := 2/3Θ 2−2σ2 and I := Θ . Then,
unless there is a positive cosmological constant, there is no term that could counter-
balance gravitational attraction and, at every point, ∂tΘ < 0. Applying the com-
mutation rule (7) for Ψ = Θ , we find that the averaged variables obey the same
equation as above despite non-commutativity:5

∂t 〈Θ〉D = Λ −4πG〈ρ〉D +2〈II〉D −〈I〉2D . (10)

This result can be understood on the grounds that shrinking the domain D to a
point should produce the corresponding local equation. Now, notwithstanding, the
above equation contains a positive term that acts against gravity. This can be easily
seen by rewriting the averaged principal invariants: we obtain6

2〈II〉D −〈I〉2D =
2
3
〈
(Θ −〈Θ〉D )2〉

D −2
〈
(σ −〈σ〉D )2〉

D − 1
3
〈Θ〉2D −2〈σ〉2D ,

(11)
which, compared with the corresponding local expression,

2II− I2 =−1
3

Θ
2−2σ

2, (12)

gave rise to two additional, positive-definite fluctuation terms, where that for the
averaged expansion variance enters with a positive sign. It may appear “magic”
that the time-derivative of a (on some spatial domain D) averaged expansion may
be positive despite the fact that the time-derivative of the expansion at all points
in D is negative. As the above explicit calculation shows, this property does not
furnish an argument against the possibility of volume acceleration [102], but sim-
ply is due to the fact that an average correlates the local contributions, and it is this
correlation (or fluctuation) that adds “kinematical pressure”. The interesting point
is that these additional terms are “large-scale players”, as we shall make more
precise below.7

What we can learn from this simple exercise is that any local argument, e.g.,
on the smallness of some perturbation amplitude at a given point, is not enough
to exclude regional (“global”) physical effects that arise from averaging inhomo-
geneities; even if deviations from the average are small, as measured for example

4 We assume that the influence of a strong vorticity evolution (that is known to happen on
small scales in the nonlinear regime of structure formation) is not relevant on scales larger than
the scale of, say, superclusters of galaxies. According to the sign of its appearence in Raychaud-
huri’s equation, vorticity counteracts gravitation and its effect will be relevant, if averages are
performed over domains on and below the scales of galaxy clusters.

5 This is only true, if all terms appearing in Raychaudhuri’s equation are written in terms of
principal scalar invariants; it is actually a special non-linearity of this equation that cancels the
corresponding non-commutativity term (see Corollary I in [32]).

6 We have formally inserted the averaged shear term, so that the last two terms correspond to
the local ones.

7 The physical and observational consequences of the expansion fluctuation term have been
thoroughly explained and illustrated by a toy model in the review paper [165].
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today, the evolution of the average may be different from the evolution of a “back-
ground solution” in perturbation theory. As we shall discuss more in detail in the
course of this report, such correlation effects must not be subdominant compared
to the magnitude of the local fields, since they are related to the spatial variation
of the local fields and, having said “spatial”, it could (and it will) imply a coupling
to the geometry as a dynamical variable in Einstein gravitation. This latter remark
will turn out very useful in understanding the potential relevance of backreaction
effects in relativistic cosmology.

1.3.4 The production of information in the Universe

The above considerations on effective expansion properties can be essentially
traced back to “non-commutativity” of averaging and time-evolution, lying at the
root of backreaction. (Note that additional “spatial” backreaction terms that have
been discussed in Sect. 1.2.2 are also the result of a “non-commutativity”, this
time between averaging and spatial rescaling—see also [74].) The same reasoning
underlies the following entropy argument. Applying the commutation rule (7) to
the density field, Ψ = ρ ,

〈∂tρ〉D −∂t 〈ρ〉D =
∂t S{ρ|| 〈ρ〉D}

VD
, (13)

we derive, as a source of non-commutativity, the (for positive-definite density)
positive-definite Lyapunov functional (known as Kullback–Leibler functional in
information theory; [99] and references therein):

S{ρ|| 〈ρ〉D} :=
∫
D

ρ ln
ρ

〈ρ〉D
Jd3X . (14)

This measure vanishes for Friedmannian cosmologies (“zero structure”). It attains
some positive time-dependent value otherwise. The source in (13) shows that rel-
ative entropy production and volume evolution are competing: commutativity can
be reached, if the volume expansion is faster than the production of information
contained within the same volume.

In [99] the following conjecture was advanced:
The relative information entropy of a dust matter model S{ρ|| 〈ρ〉

Σ
} is, for

sufficiently large times, globally (i.e., averaged over the whole manifold Σ that is
assumed simply-connected and without boundary) an increasing function of time.
This conjecture already holds for linearized scalar perturbations at a Friedmannian
background (the growing-mode solution of the linear theory of gravitational insta-
bility implies ∂t S>0 and S is, in general, time-convex, i.e., ∂ 2

t S>0). Generally,
information entropy is produced, i.e., ∂t S>0 with

∂t S{ρ|| 〈ρ〉D}
VD

=−〈δρΘ〉D =−〈ρδΘ〉D =−〈δρδΘ〉D , (15)

(and with the deviations of the local fields from their average values, e.g., δρ :=
ρ−〈ρ〉D ), if the domain D contains more expanding underdense and contracting
overdense regions than the opposite states contracting underdense and expanding
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overdense regions. The former states are clearly favoured in the course of evolu-
tion, as can be seen in simulations of large-scale structure.

There are essentially three lessons relevant to the origin of backreaction that
can be learned here. First, structure formation (or “information” contained in
structures) installs a positive-definite functional as a potential to increase the de-
viations from commutativity; it can therefore not be statistically “averaged away”
(the same remark applies to the averaged variance of the expansion rate dis-
cussed before). Second, gravitational instability acts in the form of a negative
feedback that enhances structure (or “information”), i.e., it favours contracting
clusters and expanding voids. This tendency is opposite to the thermodynami-
cal interpretation within a closed system where such a relative entropy would
decrease and the system would tend to thermodynamical equilibrium. This is
a result of the long-ranged nature of gravitation: the system contained within
D must be treated as an open system. Third, backreaction is a genuinely non-
equilibrium phenomenon, thus, opening this subject also to the language of non-
equilibrium thermodynamics [161; 181; 205], general questions of gravitational
entropy [24; 99; 138; 156; 157], and observational measures using distances to
equilibrium [13]. “Near-equilibrium” can only be maintained (not established) by
a simultaneous strong volume expansion of the system. Later we discuss an ex-
ample of a cosmos that is “out-of-equilibrium”, i.e., settled in a state far from a
Friedmannian model that, this latter, can be associated with the relative equilib-
rium state S = 0.

In particular, we conclude that the standard model may be a good descrip-
tion for the averaged variables only when information entropy production is over-
compensated by volume expansion (measured in terms of a corresponding adi-
mensional quantity). This latter property is realized by linear perturbations at a
FLRW background. Thus, the question is whether this remains true in the non-
linear regime, where information production is strongly promoted by structure
formation and expected to be more efficient.

Before we can go deeper into the problem of whether such backreaction terms,
being well-motivated, are indeed relevant in a quantitative sense, we have to study
the governing equations.

2 Constructing a realistic universe model: refurnishing the cosmological
equations

In this section we recall a set of averaged Einstein equations together with alter-
native forms of these equations which put us in the position to study backreaction
terms as additional sources to the standard Friedmann equations.

2.1 Einstein’s equations recalled

In order to make the presentation more self-contained, we recall the complete set
of local Einstein equations, restricted to irrotational fluid motion with the simplest
matter model “dust” (i.e., vanishing pressure), as before.8 In this case the flow is

8 The corresponding equations with arbitrary lapse and shift functions for a perfect fluid
energy–momentum–tensor are discussed in the Appendix, together with the averaged equations.
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geodesic and space-like hypersurfaces can be constructed that are flow-orthogonal
at every spacetime event in a 3+1 representation.

We start with Einstein’s equations.9

4Rµν −
1
2

gµν
4R = 8πGρuµ uν −Λgµν , (16)

with the 4-Ricci tensor 4Rµν , its trace 4R, the fluid’s 4-velocity uµ (uµ uµ = −1),
the cosmological constant Λ , and the rest mass density ρ obeying the conservation
law

(ρuµ uν) ;µ = 0. (17)

In a flow-orthogonal coordinate system xµ = (Xk, t) (i.e., Gaussian or normal
coordinates which are comoving with the fluid) we can write xµ = f µ(Xk, t), and
we have uµ = ḟ µ = (1,0,0,0) and uµ = ḟµ = (−1,0,0,0). These coordinates are
defined such as to label geodesics in spacetime, i.e., uν uµ

;ν = 0.
Defining the two fundamental forms as in Eqs. (3, 4), with the 3-metric coeffi-

cients gi j and the extrinsic curvature coefficients Ki j :=−hµ

ih
ν
juµ;ν (projected into

the hypersurfaces orthogonal to uµ with the help of hµν := gµν +uµ uν ), Einstein’s
equations (16) together with (17) (contracted with uν ) then are equivalent to the
following system of equations [7; 183], consisting of the energy or Hamiltonian
constraint and the momentum or Codazzi constraints,

1
2

(
R+K2−Ki

jK
j
i

)
= 8πGρ +Λ , Ki

j||i−K| j = 0, (18)

and the evolution equations for the density and the two fundamental forms,

∂tρ = Kρ, ∂tgi j =−2 gikKk
j, ∂tKi

j = KKi
j +Ri

j− (4πGρ +Λ)δ i
j. (19)

R := Ri
i and K := Ki

i denote the traces of the spatial Ricci tensor Ri j and the
extrinsic curvature Ki j, respectively. Expressing the latter in terms of kinematical
quantities,

−Ki j = Θi j = σi j +
1
3

Θgi j, −K = Θ , (20)

with the expansion Θi j, the trace-free symmetric shear σi j, and the rate of expan-
sion Θ , we may write the above equations in the form

1
2

R+
1
3

Θ
2−σ

2 = 8πGρ +Λ , σ
i
j||i =

2
3

Θ| j,

∂tρ =−Θρ, ∂tgi j = 2 gikσ
k
j +

2
3

Θgikδ
k
j,

∂tΘ +
1
3

Θ
2 +2σ

2 +4πGρ−Λ = 0,

∂tσ
i
j +Θσ

i
j =−

(
Ri

j−
1
3

δ
i
jR
)

, (21)

9 Greek indices run through 0...3, while latin indices run through 1...3; summation over re-
peated indices is understood. A semicolon will denote covariant derivative with respect to the
4-metric with signature (−,+,+,+); the units are such that c = 1; further below, a double ver-
tical slash || denotes covariant derivative with respect to the 3-metric gi j , while a single vertical
slash denotes partial derivative with respect to the local coordinates X i; The overdot denotes
partial time-derivative (at constant X i) as before, here identical to the covariant time-derivative
∂t = uµ ∂µ .
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where we have introduced the rate of shear σ2 := 1/2σ i
jσ

j
i. (To derive the last two

equations, Raychaudhuri’s equation [167; 168] and the equation for the trace-free
parts, we have used the Hamiltonian constraint.)

2.2 Averaged cosmological equations

In order to find evolution equations for effective (i.e., spatially averaged) cosmo-
logical variables, we may put the following simple idea into practice. We observe
that Friedmann’s differential equations [84; 85], see also [86] capture the scalar
parts of Einstein’s equations (21), while restricting them by the strong symmetry
assumption of local isotropy. The resulting equations, Friedmann’s expansion law
(the energy or Hamiltonian constraint) and Friedmann’s acceleration law (Ray-
chaudhuri’s equation), together with restmass conservation,

3
(

ȧ
a

)2

−8πGρH −Λ =−3k
a2 , 3

ä
a

+4πGρH −Λ = 0, ρ̇H +3
(

ȧ
a

)
ρH = 0,

(22)
can be replaced by their spatially averaged, general counterparts (for the details
the reader is referred to [32; 34; 36; 49]):

3
(

ȧD

aD

)2

−8πG〈ρ〉D −Λ =−〈R〉D +QD

2
, (23)

3
äD

aD
+4πG〈ρ〉D −Λ = QD , (24)

〈ρ 〉̇D +3
ȧD

aD
〈ρ〉D = 0. (25)

We have replaced the Friedmannian scale factor by the volume scale factor aD ,
depending on content, shape and position of the domain of averaging D , defined
via the domain’s volume VD (t) = |D |, and the initial volume VDi = VD (ti) = |Di|:

aD (t) :=
(

VD (t)
VDi

)1/3

. (26)

Using a scale factor instead of the volume should not be confused with “isotropy”.
The above equations are general for the evolution of a mass-preserving, com-
pact domain containing an irrotational continuum of dust, i.e., they provide a
background-free and non-perturbative description of inhomogeneous and anisotropic
fields.10 The new term appearing in these equations, the kinematical backreaction,
arises as a result of expansion and shear fluctuations:

QD := 2〈II〉D − 2
3
〈I〉2D =

2
3

〈
(θ −〈θ〉D )2

〉
D
−2
〈
σ

2〉
D , (27)

10 One could, of course, introduce an isotropic or anisotropic reference background [44] or,
explicitly isolate an averaged shear from the above equations to study deviations from the kine-
matics of Bianchi-type models, as was done with some interesting results in [12].
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I and II denote the principal scalar invariants of the extrinsic curvature, and the
second equality follows by introducing the decomposition of the extrinsic curva-
ture into the kinematical variables, as before. Also, it is not a surprise that the
general averaged 3-Ricci curvature 〈R〉D replaces the constant-curvature term in
Friedmann’s equations. Note also that the term QD encoding the fluctuations has
the particular structure of vanishing at a Friedmannian background, a property that
it shares with gauge-invariant variables.11

In the Friedmannian case, Eqs. (22), the acceleration law arises as the time-
derivative of the expansion law, if the integrability condition of restmass conser-
vation is respected, i.e., the homogeneous density ρH ∝ a−3. In the general case,
however, restmass conservation is not sufficient. In addition to the (built-in) gen-
eral integral of Eq. (25),

〈ρ〉D =
〈ρ(ti)〉Di

a3
D

=
MD

a3
DVDi

, MD = MDi , (28)

we also have to respect the following curvature–fluctuation-coupling:
1

a6
D

∂t

(
QD a6

D

)
+

1
a2
D

∂t
(
〈R〉D a2

D

)
= 0. (29)

This relation will be key to understand how backreaction can take the role of Dark
Energy.

2.3 Alternative forms of the averaged equations

We here provide three compact forms of the averaged equations introduced above,
as well as some derived quantities. They will prove useful for our further discus-
sion of the backreaction problem.

2.3.1 Generalized expansion law

The correspondence between Friedmann’s expansion law (the first equation in
(22)) and the general expansion law (23) can be made more explicit through formal
integration of the integrability condition (29):

3kDi

a2
D

− 1
a2
D

t∫
ti

dt ′ QD
d

dt ′
a2
D (t ′) =

1
2

(〈R〉D +QD ) . (30)

The (domain-dependent) integration constant kDi relates the new terms to the
“constant-curvature part”. We insert this latter integral back into the expansion
law (23) and obtain:

3
ȧ2
D + kDi

a2
D

−8πG〈ρ〉D −Λ =
1

a2
D

t∫
ti

dt ′ QD
d

dt ′
a2
D (t ′). (31)

11 In a quasi-Newtonian setting, where averages are taken on the Euclidean or constant-
curvature background space, the variable QD is gauge-invariant to second-order in perturbation
theory [119; 126], since this variable vanishes at the background [186; 187]; for related thoughts
see [153; 150].
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This equation is formally equivalent to its Newtonian counterpart [44]. It shows
that, by eliminating the averaged scalar curvature, the whole history of the aver-
aged kinematical fluctuations acts as a source of a generalized expansion law that
features the “Friedmannian part” on the left-hand-side of (31).

2.3.2 Effective Friedmannian framework

We may also recast the general equations (23, 24, 25, 29) by appealing to the
Friedmannian framework. This amounts to re-interpret geometrical terms, that
arise through averaging, as effective sources within a Friedmannian setting.

In the present case the averaged equations may be written as standard zero-
curvature Friedmann equations for an effective perfect fluid energy momentum
tensor with new effective sources [34]:

ρ
D
eff = 〈ρ〉D − 1

16πG
QD − 1

16πG
〈R〉D ,

(32)
pD

eff = − 1
16πG

QD +
1

48πG
〈R〉D .

3
(

ȧD

aD

)2

−8πGρ
D
eff−Λ = 0,

3
äD

aD
+4πG(ρD

eff +3pD
eff)−Λ = 0, (33)

ρ̇
D
eff +3

ȧD

aD

(
ρ

D
eff + pD

eff

)
= 0.

Eqs. (33) correspond to the equations (23), (24), (25) and (29), respectively.
We notice that QD , if interpreted as a source, introduces a component with

“stiff equation of state”, pD
Q = ρD

Q , suggesting a correspondence with a free scalar
field (discussed in the next subsection), while the averaged scalar curvature intro-
duces a component with “curvature equation of state” pD

R = −1/3ρD
R . Although

we are dealing with dust matter, we appreciate a “geometrical pressure” in the
effective energy-momentum tensor.

There is, of course, some ambiguity in defining the effective sources. We recall
[36] that, firstly, it may sometimes be useful to incorporate Λ into the effective
sources by defining ρD

effΛ := ρD
eff +Λ/8πG and pD

effΛ := pD
eff−Λ/8πG. Secondly,

we might add the “constant-curvature term” 3kDi/a2
D to the expansion law in (33);

if we wish to do so, then the effective sources can be represented solely through
the kinematical backreaction term QD and its time-integral. For this we have to
exploit the “Newtonian form”, Eq. (31), and would have to define the effective
sources as follows:

ρ̂
D
eff := 〈ρ〉D +

XD

16πG
, p̂D

eff :=− QD

12πG
− XD

48πG
,

XD :=
2

a2
D

t∫
ti

dt ′ QD
d

dt ′
a2
D (t ′). (34)

The integrated form of the integrability condition, Eq. (30), then allows to express
XD again through the averaged scalar curvature, XD = 6kDi/a2

D−QD−〈R〉D , and
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we obtain the sources corresponding to (32), however, with a curvature source that
captures the deviations WD = 〈R〉D −6kDi/a2

D from a constant-curvature model:

ρ̂
D
eff = 〈ρ〉D − QD

16πG
− WD

16πG
, p̂D

eff =− QD

16πG
+

WD

48πG
. (35)

2.3.3 “Morphed” Friedmann cosmologies

In the above-introduced framework we distinguish the averaged matter source on
the one hand, and averaged sources due to geometrical inhomogeneities stem-
ming from extrinsic and intrinsic curvature (kinematical backreaction terms) on
the other. As shown above, the averaged equations can be written as standard
Friedmann equations that are sourced by both. Thus, we have the choice to con-
sider the averaged model as a (scale-dependent) “standard model” with matter
source evolving in a mean field of backreaction terms. This form of the equations
is closest to the standard model of cosmology. It is a “morphed” Friedmann cos-
mology, sourced by matter and “morphed” by a (minimally coupled) scalar field,
the morphon field [49]. We write (recall that we have no matter pressure source
here):

ρ
D
eff =: 〈ρ〉D +ρ

D
Φ , pD

eff =: pD
Φ , (36)

with

ρ
D
Φ = ε

1
2

Φ̇
2
D +UD , pD

Φ = ε
1
2

Φ̇
2
D −UD , (37)

where ε = +1 for a standard scalar field (with positive kinetic energy), and ε =
−1 for a phantom scalar field (with negative kinetic energy).12 Thus, in view of
Eq. (32), we obtain the following correspondence:

− 1
8πG

QD = εΦ̇
2
D −UD , − 1

8πG
〈R〉D = 3UD . (38)

Inserting (38) into the integrability condition (29) then implies that ΦD , for Φ̇D 6=
0, obeys the (scale-dependent) Klein–Gordon equation:13

Φ̈D +3HD Φ̇D + ε
∂

∂ΦD
U(ΦD ,〈ρ〉D ) = 0. (39)

The above correspondence allows us to interpret the kinematical backreaction ef-
fects in terms of properties of scalar field cosmologies, notably quintessence or
phantom-quintessence scenarii that are here routed back to models of inhomo-
geneities. Dark Energy emerges as unbalanced kinetic and potential energies due

12 We have chosen the letter U for the potential to avoid confusion with the volume functional;
if ε is negative, a “ghost” can formally arise on the level of an effective scalar field, although the
underlying theory does not contain one.

13 Note that the potential is not restricted to depend only on ΦD explicitly. An explicit de-
pendence on the averaged density and on other variables of the system (that can, however, be
expressed in terms of these two variables) is generic.
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to structural inhomogeneities.14 For a full-scale discussion of this correspondence
see [49].

2.3.4 A note on closure assumptions

This system of the averaged equations in the various forms introduced above does
not close unless we specify a model for the inhomogeneities. Note that, if the
system would close, this would mean that we solved the scalar parts of the GR
equations in general by reducing them to a set of ordinary differential equations on
arbitrary scales. Closure assumptions have been studied by prescribing a cosmic
equation of state of the form pD

eff = β (ρD
eff,aD ) [35; 36], or by prescribing the

backreaction terms through scaling solutions, e.g., QD ∝ an
D , parametrized by a

scaling index n [49]. We shall come back to the important question of how to close
the averaged equations later in Sect. 4.2.

2.4 Derived dimensionless quantities

For any quantitative discussion it is important to provide a set of dimensionless
characteristics that arise from the above framework.

2.4.1 The cosmic quartet

We start by dividing the volume-averaged Hamiltonian constraint (23) by the
squared volume Hubble functional HD := ȧD/aD introduced before. Then, ex-
pressed through the following set of “parameters”,15

Ω
D
m :=

8πG
3H2

D

〈ρ〉D ; Ω
D
Λ :=

Λ

3H2
D

; Ω
D
R :=−〈R〉D

6H2
D

; Ω
D
Q :=− QD

6H2
D

, (40)

the averaged Hamiltonian constraint assumes the form of a cosmic quartet [33;
41]:

Ω
D
m +Ω

D
Λ +Ω

D
R +Ω

D
Q = 1, (41)

showing that the solution space of an averaged inhomogeneous cosmology is
three-dimensional in the present framework. In this set, the averaged scalar curva-
ture parameter and the kinematical backreaction parameter are directly expressed
through 〈R〉D and QD , respectively. In order to compare this pair of parameters
with the “constant-curvature parameter” that is the only curvature contribution in

14 More precisely, kinematical backreaction appears as excess of kinetic energy density over
the “virial balance”, cf. Eq. (51), while the averaged scalar curvature of space sections is directly
proportional to the potential energy density; e.g., a void (a “classical vacuum”) with on average
negative scalar curvature (a positive potential) can be attributed to a negative potential energy of
a morphon field (“classical vacuum energy”).

15 We shall, henceforth, call these characteristics “parameters”, but the reader should keep in
mind that these are functionals on D . Moreover, they are dynamically coupled.
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standard cosmology to interpret observational data, we can alternatively introduce
the pair

Ω
D
k :=−

kDi

a2
DH2

D

, Ω
D
QN :=

1
3a2

DH2
D

t∫
ti

dt ′ QD
d

dt ′
a2
D (t ′), (42)

being related to the previous parameters by

Ω
D
k +Ω

D
QN = Ω

D
R +Ω

D
Q =: Ω

D
X . (43)

After a little thought we see that both sides of this equality would mimick a Dark
Energy component, ΩD

X , in a Friedmannian model. Note, in particular, that it is
not the additional backreaction parameter alone that can play this role, but it is
the joint action with the (total) curvature parameter, or, looking to the left-hand-
side, it is the cumulative effect acquired during the history of the backreaction
parameter. A positive cosmological term would require this sum, or the effective
history, respectively, to be positive.

2.4.2 Volume state finders

Like the volume scale factor aD and the volume Hubble rate HD , we may in-
troduce “parameters” for higher derivatives of the volume scale factor, e.g., the
volume deceleration

qD :=− äD

aD

1
H2

D

=
1
2

Ω
D
m +2Ω

D
Q −Ω

D
Λ . (44)

Following [1; 174] (see also [81] and references therein) we may also define the
following volume state finders involving the third derivative of the volume scale
factor:

rD :=
...aD

aD

1
H3

D

= Ω
D
m

(
1+2Ω

D
Q

)
+2Ω

D
Q

(
1+4Ω

D
Q

)
− 2

HD
Ω̇

D
Q , (45)

and

sD :=
rD −1

3(qD −1/2)
. (46)

The above definitions are identical to those given in [1; 174], however, note the
following obvious and subtle differences. One of the obvious differences was al-
ready mentioned: while the usual state finders of a global homogeneous state in
the standard model of cosmology are the same for every scale, the volume state
finders defined above are different for different scales. The other is the fact that
the volume state finders apply to an inhomogeneous cosmology with arbitrary 3-
metric, while the usual state finders are restricted to a FLRW metric. Besides these
there is a more subtle difference, namely a degeneracy in the Dark Energy den-
sity parameter: while [1; 174] denote (with obvious adaptation) 1−ΩD

m = ΩD
X

we have from the Hamiltonian constraint (41) ΩD
X = ΩD

Q + ΩD
R , i.e., so-called

X-matter (Dark Energy) is composed of two physically distinct components.
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2.4.3 Cosmic equation of state and Dark Energy equation of state

We already mentioned the possibility to characterize a solution of the averaged
equations by a cosmic equation of state pD

eff = β (ρD
eff,aD ) with wD

eff := pD
eff/ρD

eff.
Now, we may separately discuss (i.e., without matter source) the morphon equa-
tion of state that plays the role of the Dark Energy equation of state [49],

wD
Φ :=

QD −1/3〈R〉D
QD + 〈R〉D

. (47)

We can express the volume state finders through this equation of state parameter
and its first time-derivative:

rD = 1+
9
2

wD
Φ

(
1+wD

Φ

)(
1−Ω

D
m

)
− 3

2
ẇD

Φ

HD

(
1−Ω

D
m

)
, (48)

and

sD = 1+wD
Φ − 1

3HD

ẇD
Φ

wD
Φ

, (49)

being zero for wD
Φ
≡ −1, i.e., for the case of a (scale-dependent) cosmological

constant. As emphasized in [1; 174], the above expressions have the advantage
that one can immediately infer the case of a constant Dark Energy equation of
state, so-called quiessence models, that here correspond to scaling solutions of the
morphon field with a constant fraction of kinetic to potential energies [49]:

2ED
kin

ED
pot

=
εΦ̇2

DVD

−UDVD
=−1− 3QD

〈R〉D
= 2

wD
Φ

+1
wD

Φ
−1

, (50)

where the case QD = 0 (no kinematical backreaction), or wD
Φ

=−1/3 (i.e., ρD
Φ

+
3pD

Φ
= 0) corresponds to the “virial condition”

2ED
kin +ED

pot = 0, (51)

obeyed by the scale-dependent Friedmannian model.16 As has been already re-
marked, a non-vanishing backreaction is associated with violation of “equilib-
rium”. Note that a morphon field does not violate energy conditions as in the case
of a fundamental scalar field, cf. Sect. 3.2.1. Again it is worth emphasizing that
the above-defined equations of state are scale-dependent.

With the help of these dimensionless parameters an inhomogeneous, anisotropic
and scale-dependent state can be effectively characterized.

16 In the case of vanishing kinematical backreaction, the scalar field is present for our definition
of the correspondence and it models a constant-curvature term 〈R〉D = 6kDi/a2

D . Alternatively,
we could associate a morphon with the deviations WD from the constant-curvature model only.
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3 Implications and further insights: qualitative views on backreaction

Having laid down a framework to characterize inhomogeneous cosmologies and
having understood the physical nature of backreaction effects, does not entitle us
to draw conclusions on the quantitative importance of inhomogeneities for the
global properties of world models. It may well be that the robustness of the stan-
dard model also withstands this challenge. A good example is provided by New-
tonian cosmology that is our starting point for discussing the implications of the
present framework.

3.1 Thoughts on Newtonian cosmology and N-body simulations

Analytical as well as numerical models for inhomogeneities are commonly studied
within Newtonian cosmology. Essential cornerstones of our understanding of in-
homogeneities rest on the Euclidean notion of space and corresponding Euclidean
spatial averages.

3.1.1 Global properties of Newtonian models

The present framework can also be set up for the Newtonian equations and, indeed,
at the beginning of its development the main result on global properties of New-
tonian models was the confirmation of the FLRW cosmology as a correct model
describing the averaged inhomogeneous variables. Technically, this result is due
to the fact that the averaged principal invariants, encoded in QD , are complete
divergences on Euclidean space sections and, therefore, have to vanish on some
scale where we impose periodic boundary conditions on the deviation fields from
the FLRW background. The latter is a necessary requirement to obtain unique
solutions for Newtonian models (for details see [44]).

This point is interesting in itself, because researchers who have set up cosmo-
logical N-body simulations did not investigate backreaction: the vanishing of the
averaged deviations from a FLRW background is enforced by construction. The
same remark applies to analytical models, where a homogeneous background is
introduced with the manifest implication of coinciding with the averaged model,
but without an explicit proof. The outcome that a FLRW cosmology indeed de-
scribes the average of a general Newtonian cosmology can be traced back to the
(non-trivial) property that the second principal invariant II appearing in QD can
indeed be written (like the first) as a complete divergence, cf. Eq. (54) below.
Since this is not valid in Riemannian geometry, “global” backreaction effects—if
relevant—entail the need of generalizing current cosmological simulations and
analytical models. If backreaction is substantial, then current models must be
considered as toy-models that have improved our understanding of structure for-
mation, but are inapplicable in circumstances where the dynamics of geometry
is a relevant issue. We shall learn that (i) these circumstances are those needed
to route Dark Energy back to inhomogeneities, and (ii) at the precision level
at which currently cosmological parameters are determined, it can already be
demonstrated that backreaction might potentially be a non-negligible player in
the Late Universe.
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While the last point will be touched upon in Sect. 4, there are a number of
more points that improve our qualitative understanding, to which we turn now.

3.1.2 Morphological and statistical interpretation of backreaction

The expansion law, Eq. (31), is built on the rate of change of a simple morphologi-
cal quantity, the volume content of a domain. Although functionally it depends on
other morphological characteristics of a domain, it does not explicitly provide in-
formation on their evolution. An evolution equation for the backreaction term QD
is missing. This fact touches on the problem of closing the hierarchy of dynamical
evolution equations mentioned in Sect. 2.3.4.

We shall, in this subsection, provide a morphological interpretation of QD that
is possible in the Newtonian framework (the following considerations substan-
tially rely on the Euclidean geometry of space). This will improve our understand-
ing of what QD actually measures, if geometry is not considered as a dynamical
variable. We know from previous remarks that the dynamical coupling of QD to
the geometry of space sections will change this picture.

Let us focus our attention on the boundary of the spatial domain D . A priori,
the location of this boundary in a non-evolving background space enjoys some
freedom which we may constrain by saying that the boundary coincides with a
velocity front of the fluid (hereby restricting attention to irrotational flows). This
way we employ the Legendrian point of view of velocity fronts that is dual to the
Lagrangian one of fluid trajectories. Let S(x,y,z, t) = s(t) define a velocity front
at Newtonian time t, v = ∇S.

Defining the unit normal vector n on the front, n = ±∇S/|∇S| (the sign de-
pends on whether the domain is expanding or collapsing), the average expansion
rate can be written as a flux integral using Gauss’ theorem,

〈Θ〉D =
1

VD

∫
D

∇ ·v d3x =
1

VD

∫
∂D

v ·dS, (52)

with the Euclidean volume element d3x, and the surface element dσ , dS = ndσ .
We obtain the intuitive result that the average expansion rate is related to another
morphological quantity of the domain, the total area of the enclosing surface:

〈Θ〉D =± 1
VD

∫
∂D

|∇S|dσ . (53)

The principal scalar invariants of the velocity gradient vi, j =: S,i j can be trans-
formed into complete divergences of vector fields [71]:

I(vi, j) = Θ = ∇ ·v,

II(vi, j) = ω
2−σ

2 +
1
3

Θ
2 =

1
2

∇ · (v(∇ ·v)− (v ·∇)v) ,

III(vi, j) =
1
9

Θ
3 +2Θ

(
σ

2 +
1
3

ω
2
)

+σi jσ jkσki−σi jωiω j

=
1
3

∇ ·
(

1
2

∇ · (v(∇ ·v)− (v ·∇)v)v− (v(∇ ·v)− (v ·∇)v) ·∇v
)

.

(54)
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(With our assumptions ω in the above expressions vanishes identically.)
In obtaining these expressions, the flatness of space is used essentially. Inserting
the velocity potential and performing the spatial average, we obtain [38]:

〈II〉D =
1

VD

∫
D

II d3x =
∫

∂D

H |∇S|2dσ , (55)

〈III〉D =
1

VD

∫
D

III d3x =±
∫

∂D

G |∇S|3dσ , (56)

where H is the local mean curvature and G the local Gaussian curvature at every
point on the 2-surface bounding the domain. |∇S| = ds

dt equals 1, if the instrinsic
arc-length s of the trajectories of fluid elements is used instead of the extrinsic
Newtonian time t. The averaged invariants comprise, together with the volume, a
complete set of morphological characteristics known as the Minkowski Function-
als Wα of a body:

W0(s) :=
∫
D

d3x = VD , W1(s) :=
1
3

∫
∂D

dσ ,

W2(s) :=
1
3

∫
∂D

H dσ , W3(s) :=
1
3

∫
∂D

G dσ =
4π

3
χ. (57)

The Euler-characteristic χ determines the topology of the domain and is assumed
to be an integral of motion (χ = 1), if the domain remains simply-connected.17

Thus, we have gained a morphological interpretation of the backreaction term:
it can be entirely expressed through three of the four Minkowski Functionals:

QD (s) = 6
(

W2

W0
− W 2

1

W 2
0

)
. (58)

The Wα ; α = 0,1,2,3 have been introduced into cosmology in [137] in order
to statistically assess morphological properties of cosmic structure. Minkowski
Functionals proved to be useful tools to also incorporate information from higher-
order correlations, e.g., in the distribution of galaxies, galaxy clusters, density
fields or cosmic microwave background temperature maps ([113; 115; 178; 179];
see the review by Kerscher [111] and references therein). Related to the morphol-
ogy of individual domains is the study of building blocks of large-scale cosmic
structure [175; 180].

For a ball with radius R we have for the Minkowski Functionals:

W BR
0 (s) :=

4π

3
R3, W BR

1 (s) :=
4π

3
R2,

(59)
W BR

2 (s) :=
4π

3
R, W BR

3 (s) :=
4π

3
.

17 Notice that this may provide a morphological closure condition for the hierarchy of evolu-
tion equations.
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Inserting these expressions into the backreaction term, Eq. (58), shows that
QBR

D (s) = 0, and we have proved Newton‘s “Iron Sphere Theorem”, i.e., the fact
that a spherically-symmetric configuration features the expansion properties of a
homogeneous-isotropic model.18 Moreover, we can understand now that the back-
reaction term encodes the deviations of the domain‘s morphology from that of a
ball, a fact that we shall illustrate now with the help of Steiner‘s formula of integral
geometry (see also [137]).

Let dσ0 be the surface element on the unit sphere, then (according to the Gaus-
sian map) dσ = R1R2dσ0 is the surface element of a 2-surface with radii of cur-
vature R1 and R2. Moving the surface a distance ε along its normal we get for the
surface element of the parallel velocity front:

dσ
ε = (R1 +ε)(R2 +ε)dσ

0 =
R1R2 + ε(R1 +R2)+ ε2

R1R2
dσ = (1+ε2H +ε

2G)dσ ,

(60)
where

H =
1
2

(
1

R1
+

1
R2

)
, G =

1
R1R2

, (61)

are the mean curvature and Gaussian curvature of the front as before.
Integrating Eq. (60) over the whole front we arrive at a relation between the

total surface area AD of the front and ADε
of its parallel front. The gain in volume

may then be expressed by an integral of the resulting relation with respect to ε

(which is known as Steiner‘s formula defining the Minkowski Functionals of a
(convex) body in three spatial dimensions):

VDε
= VD +

ε∫
0

dε
′AD

ε ′
= VD + εAD + ε

2
∫

∂D

H dσ +
1
3

ε
3
∫

∂D

G dσ . (62)

An important lesson that can be learned here is that the backreaction term QD
obviously encodes all orders of the N-point correlation functions, since the Minkowski
Funktionals have this property; it is not merely a two-point term as the form of QD
as an averaged variance would suggest. In other words, a complete measurement
of fluctuations must take into account that the domain is Lagrangian and the shape
of the domain is an essential expression of the full N-point statistics of the matter
enclosed within D . (For further statistical considerations of backreaction in terms
of given fluctuation spectra see [48; 112]). Kinematically, Steiner’s formula shows
that the volume scale factor aD , being defined through the volume in Eq. (26), also
depends on other morphological properties of D in the course of evolution. In a
comoving relativistic setting, the domain D is frozen into the metric of spatial sec-
tions, so that we also understand that an evolving geometry in general relativity
takes the role of this shape-dependence in the Newtonian framework.

3.1.3 Backreaction views originating from Newtonian cosmology and relativistic
perturbation theory of a FLRW background

We may place Newtonian models, but also relativistic models that suppress the
coupling between fluctuations, encoded in QD , and the geometry of space sec-

18 This can be shown explicitly by using a radially-symmetric velocity field [48].
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tions, into the same category: as a rule of thumb we can say that any model that
describes fluctuations on a Euclidean “background space” must be rejected as a
potential candidate for a backreaction-driven cosmology. The reason is that fluc-
tuations in those models can be subjected to periodic boundary conditions imply-
ing a globally (on the periodicity scale) vanishing kinematical backreaction [44].
The very architecture of such models is simply too restrictive to account for a
non-vanishing (Hubble-scale) QD being a generic property of relativistic mod-
els. Of course, also in those models, backreaction can be investigated (a detailed
investigation within Newtonian cosmology may be found in [48] as well as an
application on the abundance statistics of collapsed objects [112]), but it is then
only a rephrasing of the known cosmic variance within the standard model of cos-
mology. Nevertheless, the potential relevance of a non-vanishing backreaction can
also be seen in Newtonian cosmology: in [48] it was found that the magnitude of
ΩD

Q remains small throughout the evolution, being restricted to fall off to zero on
some scale, but the indirect influence of a non-vanishing QD in the interior of the
periodic box is strongly seen in the other cosmological parameters. Thus, inde-
pendent of our statement of irrelevance of the magnitude of ΩD

Q on large scales
in Newtonian cosmology, backreaction is clearly an important player to interpret
cosmological parameters starting at scales of galaxy surveys, and it may here be a
key to also understand the Dark Matter problem, cf. Sect. 4.3.4.

We refer to the term “quasi-Newtonian” when we think of relativistic mod-
els that are restricted to sit locally close to a Friedmannian state, as in standard
gauge-invariant perturbation theory [116; 141; 143], their average properties be-
ing evaluated on Euclidean space sections [142]. Although we do not refer to the
discussion of structure on super-Hubble scales [117; 134; 154; 162], the following
consideration would also apply there. The integrability condition (29), in essence,
spells out the generic coupling of kinematical fluctuations to the evolution of the
averaged scalar curvature. Thus, the freedom taken by a generic model is carried
by a non-vanishing QD (even if small) into changes of the other cosmological pa-
rameters, notably the averaged scalar curvature. If that coupling is absent (even if
QD is non-zero), Eq. (29) shows that QD ∝ V−2

D and 〈R〉D ∝ a−2
D , i.e., the aver-

aged curvature evolves like a constant-curvature model, and backreaction decays
more rapidly than the averaged density, 〈ρ〉D ∝ V−1

D . In other words, backreaction
cannot be relevant today in all models that suppress this coupling (we shall make
this more precise in the following). Therefore, as another rule of thumb, we may
say that any (relativistic) model that evolves curvature at or in the vicinity of the
constant-curvature model is rejected as a potential candidate for a backreaction-
driven cosmology [49].

In summary, Dark Energy cannot be routed back to inhomogeneities on large
scales in Newtonian and quasi-Newtonian models, but a careful re-interpretation
of cosmological parameters will have nevertheless to be envisaged.

3.2 Qualitative picture for backreaction-driven cosmologies

Looking at the backreaction term QD , the relevant positive term that could poten-
tially drive an accelerated expansion in accord with recent indications from super-
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novae data [8; 66; 185] (see also Leibundgut and Enqvist, this volume, [80]),19 is
the averaged variance of the rate of expansion, cf. Eq. (27). This term, however,
is quadratic and the averaging operation involves a division by the square of the
volume. How can we then expect that, in an expanding Universe, such a term can
be of any relevance at the present time? Before we give an answer to this ques-
tion, let us introduce a criterion for a backreaction-driven cosmology that requires
volume acceleration, i.e., we postulate high relevance of backreaction. This can
be done with the help of the averaged equations as has been advocated by Kolb et
al. [118; 119].

3.2.1 Acceleration and energy conditions

Let us look at the general acceleration law (24), and ask when we would find
volume acceleration on a given patch of the spatial hypersurface [35; 36; 119]:

3
äD

aD
= Λ −4πG〈ρ〉D +QD > 0. (63)

We find that, if there is no cosmological constant, the necessary condition QD >
4πG〈ρ〉D must be satisfied on a sufficiently large scale, at least at the present
time. This requires that QD is positive, i.e., shear fluctuations are superseded by
expansion fluctuations20 and, what is crucial, that QD decays less rapidly than the
averaged density [35]. It is not obvious that this latter condition could be met in
view of our remarks above. We conclude that backreaction has only a chance to
be relevant in magnitude compared with the density (e.g., as defined through the
inequality Eq. (63) today), if its decay rate substantially deviates from its “quasi-
Newtonian” behavior and, more precisely, its decay rate must be weaker than that
of the averaged density (or at least comparable, depending on initial data for the
magnitude of Early Dark Energy [52; 53]).

Another model of Dark Energy is to assume the existence of a scalar field
source, a so-called quintessence field (others are discussed in [67]). However, a
usual scalar field source in a Friedmannian model, attributed, e.g., to phantom
quintessence that leads to acceleration, will violate the strong energy condition
ρ +3p > 0, i.e.,:

3
ä
a

=−4πG(ρ +3p) =−4πG(ρH +ρΦ +3pΦ) > 0. (64)

In Sect. 2.3.3 we have introduced a mean field description of kinematical back-
reaction in terms of a morphon field. For such an effective scalar field the strong

19 Note, however, that the interpretation of volume acceleration in those data relies on the
FLRW cosmology. Backreaction could be influential and could change the interpretation of as-
tronomical data also without featuring an accelerating phase.

20 From the observational point of view this property is in accord with constraints that can be
imposed on the averaged shear fluctuations (quantitatively discussed in [36]): the universe model
can be highly isotropic in accord with strong constraints on the shear amplitude on large scales.
For the backreaction term it is important to independently constrain the large-scale expansion
fluctuations that are in general not necessarily proportional to large-scale density fluctuations as
in a linear perturbation approach at a FLRW background. Note also that the time-evolution of
an isotropic average model must not (and in this case will not) coincide with the time-evolution
of a FLRW background.
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energy condition is not violated for the true content of the Universe, that is ordi-
nary dust matter. In this line it is interesting that we can identify “violation” of
an effective “strong energy condition” with the acceleration condition above (cf.
Eqs. (32), (36)):
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3
äD

aD
=−4πG

(
ρ

D
eff +3pD

eff

)
=−4πG

(
〈ρ〉D +ρ

D
Φ +3pD

Φ

)
=−4πG〈ρ〉D +QD ,

(65)
which has to be positive, if the acceleration condition (63) is met.

3.2.2 Curvature–fluctuation coupling

It is clear by now that a backreaction-driven cosmology [165] must make effi-
cient use of the genuinely relativistic effect that couples averaged extrinsic and
intrinsic curvature invariants, as is furnished by the integrability condition (29)
(or the Klein–Gordon equation (39) in the mean field description). While models
that suppress the scalar field degrees of freedom attributed to backreaction (or the
morphon field in the mean field description), and so cannot lead to an explanation
of Dark Energy on the Hubble scale, general relativity offers a wider range of pos-
sible cosmologies, since it is not constrained by the assumption of Euclidean or
constant-curvature geometry and small deviations thereof. Here, it is essentially
the requirement that the evolution of the background geometry is suppressed (nat-
urally in Newtonian models and through “gauge-fixing” in gauge-invariant pertur-
bation theory), while generically the geometry is a dynamical variable and does
not evolve independently of the perturbations. But, how can a cosmological model
be driven away from a “near-Friedmannian” state, if we do not already start with
initial data away from a perturbed Friedmannian model? How does the mecha-
nism of the coupling between geometry and matter fluctuations work, and can this
mechanism be sufficiently effective?

3.2.3 The “Newtonian anchor”

Let us guide our thoughts by the following intuitive picture. Integral properties of
Newtonian and quasi-Newtonian models remain unchanged irrespective of whether
fluctuations are absent or “turned on”. Imagine a ship in a silent water and wind
environment (homogeneous equilibrium state). Newtonian and quasi-Newtonian
models do not allow, by construction [102], that the ship would move away as
soon as water and wind become more violent. This “Newtonian anchor” is lifted
into the ship as soon as we allow for the coupling of fluctuations to the geometry
of spatial hypersurfaces in the form of the averaged scalar curvature. It is this cou-
pling that can potentially drive the ship away, i.e., change the integral properties of
the cosmology. Before we are going to exemplify this coupling mechanism, e.g.,
by discussing exact solutions, let us add some understanding to the role played by
the averaged scalar curvature.

3.2.4 The role of curvature

Looking at the integral of the curvature–fluctuation–coupling, Eq. (30), we un-
derstand that the constant-curvature of the standard model is specified by the in-
tegration constant kDi . This term does not play a crucial dynamical role as soon
as backreaction is at work. Envisaging a cosmology that is driven by backreac-
tion, we may as well dismiss this constant altogether. In such a case, the averaged
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curvature is dynamically ruled by the backreaction term and its history. Given this
remark we must expect that the averaged scalar curvature may experience changes
in the course of evolution (in terms of deviations from constant-curvature), as soon
as the structure formation process injects backreaction. This picture is actually
what one needs in order to solve the coincidence problem, i.e., the observation
that the onset of acceleration of the Universe seems to coincide with the epoch of
structure formation.

This mechanism can be qualitatively understood by studying scaling solutions,
cf. Sect. 3.3.5, which impose a direct coupling, QD ∝ 〈R〉D . (These scaling solu-
tions correspond to quiessence fields, Eq. (50), and have been thoroughly studied
by many people working on quintessence (see [67; 176] and references therein.) In
the language of a morphon field, the mechanism perturbs the “virial equilibrium”,
Eq. (78), such that the potential energy stored in the averaged curvature is released
and injected into an excess of kinetic energy (kinematical backreaction). Thus, in
this picture, positive backreaction, capable of mimicking Dark Energy, is fed by
the global “curvature energy reservoir”. It is clear that such a mechanism relies on
an evolution of curvature that differs from the evolution of the constant-curvature
part of the standard cosmology. Indeed, as we shall exemplify below, already a
deviation term of the form WD = 〈R〉D − 6kDia

−2
D ∝ a−3

D is sufficient to change
the decay rate of QD from ∝ a−6

D to ∝ a−3
D .

If we start with “near-Friedmannian initial data”, and no cosmological con-
stant, then the averaged curvature must be negative today and—if we require the
model to fully account for Λ—of the order of the value that we would find for
a void-dominated Universe [49]. Thus, the determination of curvature evolution,
even only asymptotically [170; 171], is key to understand backreaction. The differ-
ence to the concordance model is essentially that the averaged curvature changes
from an almost negligible value at the CMB epoch to a cosmologically relevant
negative curvature today. This is one of the direct hints to put backreaction onto
the stage of observational cosmology, cf. Sect. 4.3.1.

Let us add three remarks. First, it is not at all evident that a flat Universe is
necessarily favoured by the data throughout the evolution [101]. This latter anal-
ysis has been performed within the framework of the standard model, and it is
clear that in the wider framework discussed here, the problem of interpreting as-
tronomical data is more involved. Second, it is often said that spatial curvature can
only be relevant near Black Holes and can therefore not be substantial. Here, one
mistakenly implies an astrophysical Black Hole, while the Schwarzschild radius
corresponding to the matter content in a Hubble volume is of the order of the Hub-
ble scale. As the averaged Hamiltonian constraint (23) shows, the averaged scalar
curvature is a quantitatively competitive player that could only be “compensated”
(and only on a specified scale) by introducing a cosmological constant. In essence,
a cosmologically relevant curvature contribution is tiny, but this property is shared
by all cosmological sources. Third, even standard perturbation theory predicts a
scaling-law for the averaged scalar curvature that substantially differs from the
evolution of a constant-curvature model, see Sect. 4.2.

(The above qualitative picture is illustrated in detail in Räsänen’s review [165]).
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3.3 Exact solutions for kinematical backreaction

The following families of exact solutions of the averaged equations are used to
illustrate the mechanism of a backreaction-driven cosmology. Other implications
of these examples are discussed in [36].

3.3.1 A word on the cosmological principle

We may separate the following classes of solutions into those solutions that re-
spect the cosmological principle and those that do not. It is therefore worth re-
calling the assumptions behind the cosmological principle. In the literature one
often finds a “strong” version that demands local isotropy of the universe model.
More realistically, however, we should define a “weak” version that refers to the
existence of a scale of homogeneity: we assume that there exists a scale beyond
which all observables do no longer depend on scale. It is beyond this scale where
the standard model is supposed to describe the Universe on average; it is simply
unreasonable to apply this model, even on average, to smaller scales, since the
standard, spatially flat FLRW model has an in-built scale-independence. On the
same grounds, isotropy can only be expected on the homogeneity scale and not
below. Accepting the existence of this scale has strong implications, one of them
being that cosmological parameters on that scale are representative for the whole
Universe. If this were not so, and generically we may think of, e.g., a decay of
average characteristics with scale all the way to the diameter of the Universe as
in a generic fractal (or multi-fractal) distribution [104], then the cosmological pa-
rameters of the standard model would make no sense unless the scale is explicitly
indicated. The homogeneity scale is thought to be well below the scale of the ob-
servable Universe and within our past-lightcone. Therefore, with this assumption,
averaging over non-causally connected regions delivers the same values as those
already accumulated up to the homogeneity scale [42; 165].

We are now briefly describing some exact solutions, and we mainly have in
mind to learn about the coupling between curvature and fluctuations.

3.3.2 Backreaction as a constant curvature or a cosmological constant

Kinematical backreaction terms can model a constant-curvature term as is already
evident from the integrability condition (29). Also, a cosmological constant need
not be included into the cosmological equations, since QD can play this role [33;
48; 164], and can even provide a constant exactly, as was shown in [119] and [36].
The exact condition can be inferred from Eq. (24) and (31) and reads:

2
a2
D

t∫
ti

dt ′ QD
d

dt ′
a2
D (t ′)≡ QD , (66)

which implies QD = QD (ti)= const. as the only possible solution. Such a “cosmo-
logical constant” installs, however, via Eq. (30), a non-vanishing averaged scalar
curvature (even for kDi = 0):

〈R〉D =
6kDi

a2
D

−3QD (ti). (67)
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This fact has interesting consequences for “morphed” inflationary models [123].

3.3.3 The Universe in an out-of-equilibrium state: a fluctuating Einstein cosmos

Following Einstein’s thought to construct a globally static model, we may require
the effective scale-factor aΣ on a simply-connected 3-manifold Σ without bound-
ary to be constant on some time-interval, hence ȧΣ = äΣ = 0 and Eqs. (24) and
(23) may be written in the form:

QΣ = 4πG
MΣ

Via3
Σ

−Λ , 〈R〉
Σ

= 12πG
MΣ

Via3
Σ

+3Λ , (68)

with the global kinematical backreaction QΣ , the globally averaged scalar 3-Ricci
curvature 〈R〉

Σ
, and the total restmass MΣ contained in Σ .

Let us now consider the case of a vanishing cosmological constant: Λ = 0. The
averaged scalar curvature is, for a non-empty Universe, always positive, and the
balance conditions (68) replace Einstein’s balance conditions that determined the
cosmological constant in the standard homogeneous Einstein cosmos. A globally
static inhomogeneous cosmos without a cosmological constant is conceivable and
characterized by the cosmic equation of state:

〈R〉
Σ

= 3QΣ = const.⇒ pΣ
eff = ρ

Σ
eff = 0. (69)

Equation (69) is a simple example of a strong coupling between curvature and
fluctuations. Note that, in this cosmos, the effective Schwarzschild radius is larger
than the radius of the Universe,

aΣ =
1√

4πG〈ρ〉
Σ

=
1
π

2GMΣ =
1
π

aSchwarzschild, (70)

hence confirms the cosmological relevance of curvature on the global scale Σ . The
term “out-of-equilibrium” refers to our measure of relative information entropy,
cf. Sect. 1.3.4: in the above example volume expansion cannot compete with in-
formation production because the volume is static, while information is produced
(see [36] for more details).

Such examples of global restrictions imposed on the averaged equations do
not refer to a specific inhomogeneous metric, but should be thought of in the spirit
of the virial theorem that also specifies integral properties but without a guarantee
for the existence of inhomogeneous solutions that would satisfy this condition. (In
[36] a possible stabilization mechanism of a stationarity condition by backreac-
tion, as opposed to the global instability of the classical Einstein cosmos, has been
discussed.)

3.3.4 Demonstration of the backreaction mechanism: a globally stationary
inhomogeneous cosmos

Suppose that the Universe indeed is hovering around a non-accelerating state on
the largest scales. A wider class of models that balances the fluctuations and the
averaged sources can be constructed by introducing globally stationary effective
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cosmologies: the vanishing of the second time-derivative of the scale-factor would
only imply ȧΣ = const. =: C, i.e., aΣ = aS +C(t− ti), where the integration con-
stant aS is generically non-zero, e.g., the model may emerge [76; 77] from a glob-
ally static cosmos, aS := 1, or from a “Big-Bang”, if aS is set to zero. In this
respect this cosmos does not appear very different from the standard model, since
it evolves at an effective Hubble rate HΣ ∝ 1/t. (There are, however, substantial
differences in the evolution of cosmological parameters, see [36, Appendix B].)

The averaged equations deliver a dynamical coupling relation between QΣ and
〈R〉

Σ
as a special case of the integrability condition (29):21

−∂tQΣ +
1
3

∂t 〈R〉Σ =
4C3

a3
Σ

. (71)

The cosmic equation of state of the Λ -free stationary cosmos and its solutions read
[35; 36]:

pΣ
eff =−1

3
ρ

Σ
eff, QΣ =

QΣ (ti)
a3

Σ

, (72)

〈R〉
Σ

=
3QΣ (ti)

a3
Σ

− 3QΣ (ti)−〈R〉Σ (ti)
a2

Σ

. (73)

The total kinematical backreaction QΣVΣ = 4πGMΣ is a conserved quantity in this
case.

The stationary state tends to the static state only in the sense that, e.g., in the
case of an expanding cosmos, the rate of expansion slows down, but the steady
increase of the scale factor allows for a global change of the sign of the averaged
scalar curvature. As Eq. (73) shows, an initially positive averaged scalar curvature
would decrease, and eventually would become negative as a result of backreac-
tion. This may not necessarily be regarded as a signature of a global topology
change, as a corresponding sign change in a Friedmannian model would suggest
(see Sect. 4.1).

The above two examples of globally non-accelerating universe models evi-
dently violate the cosmological principle, while they would imply a straightfor-
ward explanation of Dark Energy on regional (Hubble) scales: in the latter exam-
ple the averaged scalar curvature has acquired a piece ∝ a−3

Σ
that, astonishingly,

had a large impact on the backreaction parameter, changing its decay rate from
∝ a−6

Σ
to ∝ a−3

Σ
, i.e., the same decay rate as that of the averaged density. This is

certainly enough to produce sufficient “Dark Energy” on some regional patch due
to the presence of strong fluctuations22 [35]. However, solutions that respect the
cosmological principle and, at the same time, satisfy observational constraints can
also be constructed [49]. In this latter work, scaling solutions that we shall discuss
now, have been exploited for such a more conservative approach.

21 The constant C is determined, for the normalization aΣ (ti) = 1, by: 6C2 = 6Λ + 3QΣ (ti)−
〈R〉

Σ
(ti).

22 In [36] a conservative estimate, based on currently discussed numbers for the cosmological
parameters, shows that such a cosmos provides room for at least 50 Hubble volumes.
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3.3.5 The solution space explored by scaling solutions

In [49] a systematic classification of scaling solutions of the averaged equations
was given. Like the averaged dust matter density 〈ρ〉D that evolves, for a restmass
preserving domain D , as 〈ρ〉D = 〈ρ〉Di a−3

D , we can look at the case where also
the backreaction term and the averaged scalar curvature obey scaling laws,

QD = QDi an
D , 〈R〉D = RDi ap

D , (74)

where QDi and RDi denote the initial values of QD and 〈R〉D , respectively. The
integrability condition (29) then immediately provides as a first scaling solution
([32, Appendix B]):

QD = QDi a−6
D , 〈R〉D = RDi a−2

D . (75)

This is the only solution with n 6= p. In the case n = p, we can define a coupling
parameter rD (that can be chosen differently for a chosen domain of averaging23)
such that QDi ∝ RDi ; the solution reads:

QD = r 〈R〉D = r RDi an
D , n =−2

(1+3r)
(1+ r)

, r =−(n+2)
(n+6)

, (76)

(with r 6=−1 and n 6=−6). The mean field description of backreaction, Sect. 2.3.3,
defines a scalar field evolving in a positive potential, if RDi < 0 (and in a negative
potential if RDi > 0), and a real scalar field, if εRDi(r +1/3) < 0. In other words,
if RDi < 0 we have a priori a phantom field for r < −1/3 and a standard scalar
field for r >−1/3; if RDi > 0, we have a standard scalar field for r <−1/3 and a
phantom field for r >−1/3.

For the scaling solutions the explicit form of the self-interaction term of the
scalar field can be reconstructed [49]:

U(ΦD ,〈ρ〉Di
)=

2(1+ r)
3

(
(1+ r)

Ω
Di
R

Ω
Di
m

) 3
n+3

〈ρ〉Di sinh
2n

n+3
(

(n+3)√
−εn

√
2πGΦD

)
,

(77)
where 〈ρ〉Di is the initial averaged restmass density of dust matter, introducing a
natural scale into the scalar field dynamics. This potential is well-known in the
context of phenomenological quintessence models [1; 127; 155; 174] and refer-
ences therein. The scaling solutions correspond to specific scalar field models with
a constant fraction of kinetic and potential energies of the scalar field, i.e., with
Eq. (50),

ED
kin +

(1+3r)
2ε

ED
pot = 0. (78)

We previously discussed the case r = 0 (“zero backreaction”) for which this con-
dition agrees with the standard scalar virial theorem.

We turn now to an explicit discussion of these scaling solutions summarized
in a cosmic phase diagram in Fig. 1.

23 For notational ease we henceforth drop the index D and simply write r.
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Fig. 1 This “cosmic phase diagram”, spanned by the effective volume deceleration parameter
qD , Eq. (44), and the effective density parameter ΩD

m , Eq. (40), is valid for all times and on
all scales, i.e., it can be read as a diagram for the corresponding parameters “today” on the
scale of the observable Universe. It represents a two-dimensional subspace { Λ = 0 } of the
full solution space that would include a cosmological constant. All the scaling solutions are
represented by straight lines passing through the Einstein-de Sitter model in the center of the
diagram (1/2;1). The vertical line corresponding to (qD ;1) is not associated with a solution
of the backreaction problem; it degenerates to the Einstein-de Sitter model (1/2;1). This line
forms a “mirror”: inside the cone (Case E) there are solutions with ΩD

m > 1 that cannot be
related to any real-valued scalar field, but are still of physical interest in the backreaction context
(models with positive averaged scalar curvature). Models with “Friedmannian kinematics”, but
with renormalized parameters form the line r = 1/3 (for details see [49, Appendix A]). The
line r = 0 are models with no backreaction on which the parameter ΩD

k varies (scale-dependent
“Friedmannian models”). Below the line r = 0 in the “quintessence phase” we find effective
models with subdominant shear fluctuations (QD positive, ΩD

Q negative).The line r = −1/3
mimics a “Friedmannian model” with scale-dependent cosmological constant. The line below
r = −1/3 in the “phantom quintessence phase” represents the solution inferred from SNLS
data (cf. [49]), and the point at (qD ;ΩD

m ) = (−1.03;0) locates the late-time attractor associated
with this solution. Since we have no cosmological constant here, all expanding solutions in
the subplane qD < 0 drive the averaged variables away from the standard model featuring a
backreaction-driven volume acceleration of effectively isotropic cosmologies that are curvature-
dominated at late times

3.3.6 Discussion of Fig. 1

In Fig. 1 we only concentrate on the two-dimensional solution space of averaged
inhomogeneous cosmologies without a cosmological constant. We further con-
centrate in this discussion only on expanding universe models; the solution space
contains also contracting models that are equally relevant if we interpret this fig-
ure for smaller spatial scales; (recall that we have RDi <0 for r> −1 and RDi >0
for r< −1).

A phase space analysis of the scaling solutions [49] shows that the Einstein-de
Sitter model is a saddle point for the scaling dynamics and small inhomogeneities
with QD >0 should make the system evolve away from it. The sign of QD is im-
portant: for all the models corresponding to r > 0 or r <−1, that is the cases C,D
and E in Figure 1, which cannot produce accelerated expansion, we have QD < 0.
In other words, the kinematical backreaction is dominated by shear fluctuations,
cf. Eq. (27). This does not necessarily mean that the universe model is regionally
(on the scale D) anisotropic, because in these cases kinematical fluctuations decay
rapidly. On the other hand, cases A and B that could be responsible for an accel-
erated expansion correspond to QD >0 and have subdominant shear fluctuations.
Therefore, these models can be regionally almost isotropic, although kinematical
fluctuations have strong influence.

Moving down the cases from Case E to Case A we first have models in which
QD decays stronger than the density; equal decay rate QD ∝ a−3

D is found on
the line r = 1/3. This situation changes for Case C where the Friedmannian
kinematics does no longer act as an attractor: backreaction, having a decay rate
weaker than the density, entails an averaged curvature evolution that deviates from
a constant-curvature Friedmannian model. Case B represents the quintessence
phase in the scalar field correspondence, in which the averaged model accelerates,
bounded below by the line r = −1/3 of a constant backreaction (exactly model-
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ing a cosmological constant on a given scale). While fitting supernovae data with
a constant negative curvature (the line r = 0 left to the Einstein-de Sitter model) is
not successful, we nevertheless appreciate that such Friedmannian models would
physically mimic the instability towards a curvature-dominated phase. Deviations
from constant-curvature carry the averaged model into the quintessence or even
phantom quintessence regime (Case A), in which case backreaction is growing
(as seen within the on average negatively curved space!). In Sect. 4 (Sect. 4.2.2)
we shall discuss a perturbative model that features as a leading mode a decay rate
QD ∝ a−1

D with a deviation from constant-curvature at the same rate, 〈R〉D ∝ a−1
D .

This (conservative) model already lies in the quintessence phase of an accelerating
universe model and can be located on the line r =−1/5 in between the constant-
curvature line and the “cosmological constant”. Thus, in this figure and explicitly
in Fig. 2, an explanation of Dark Energy through backreaction effects is expressed
by the expectation that a non-perturbative model would weaken the leading per-
turbative mode further; it would certainly lie below QD ∝ a−1

D . We shall continue
this discussion in the context of perturbative solutions in Sect. 4.2.2.

3.3.7 Explicit inhomogeneous solutions

If we wish to specify the evolution of averaged quantities without resorting to phe-
nomenological assumptions on the equations of state of the various ingredients, or
on the necessarily qualitative analysis of scaling solutions, or with specific global
assumptions, we have to specify the inhomogeneous metric [120]. Natural first
candidates are the spherically-symmetric Lemaı̂tre–Tolman–Bondi (LTB) solu-
tions that were first employed in the context of backreaction in [59] and [163].

Considerable effort has been spent on LTB solutions and, especially recently,
relations to integral properties of averaged cosmologies have been sought. Inter-
estingly, [145] also found a strong coupling between averaged scalar curvature and
kinematical backreaction, and LTB solutions also feature an additional curvature
piece ∝ a−3

D on some domain D . There are obvious shortcomings of LTB solution
studies that consider the class of on average vanishing scalar curvature, since in
that class also QD ≡ 0 [151]; also here, a non-vanishing averaged curvature is cru-
cial to study backreaction [61]. However, there is enough motivation to quantify
the extra effect of a positive expansion variance to fit observational data ([60] and
references below).

The value of LTB studies or studies of other highly symmetric exact solutions
is more to be seen in the specification of observational properties such as the
luminosity distance in an inhomogeneous metric [2; 3; 4; 17; 25; 80; 90], as well
as Enqvist (this volume). Although interesting results were obtained, especially
in connection with the interpretation of supernova data, care must be taken when
determining, e.g., just luminosity distances, since the free LTB functions may fit
any data [144]. Generally, apart from mistakes (e.g., setting the shear to zero),
those studies sometimes confuse integral properties of a cosmological model with
local properties (e.g., the scale factor aD and a local scale factor in the given
metric form). The averaged equations cannot predict luminosity distances unless
one considers averages on the lightcone, cf. Sect. 4.3.2 (see, however, different
strategies proposed and pursued in [22; 136; 149]), which in turn is related to
the issue of light-propagation in an inhomogeneous Universe (see [23; 133; 105;
106; 107; 188], and discussion and references in [74]). A promising strategy to
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exploit the LTB solution is to consider an ensemble of spherical regions whose
initial data are constrained by a standard Cold Dark Matter power spectrum, and
to look at the correlated average properties of the ensemble.24 However, in order
to avoid matching conditions that are necessarily involved for an ensemble of
LTB solutions, a generic collapse model in the spirit of the Newtonian model
investigated in [112] would facilitate such a description.

Another possibility to construct explicit inhomogeneous metrics is, of course,
to employ perturbative, but also non-perturbative assumptions, that will be both
discussed in Sect. 4.2.

4 Future theoretical and observational strategies: quantitative views on
backreaction

In this section we are going to outline several strategies towards the goal of under-
standing the quantitative importance of backreaction effects, and to device meth-
ods of their observational interpretation. All the topics discussed below are the
subject of work in progress.

4.1 Global aspects

The question of what actually determines the averaged scalar curvature is open.
For a two-dimensional Riemannian manifold this question is answered through
the Gauss–Bonnet theorem: the averaged scalar curvature is determined by the
Euler-characteristic of the manifold. Hence, it is a global topological property
rather than a certain restriction on local properties of fluctuations that determines
the averaged scalar curvature. If such an argument would carry over to a three-
dimensional manifold, then any local argument for an estimate of backreaction
would obviously be off the table. (There are related thoughts and results in string
theory that could be very helpful here.) In ongoing work [42; 56] we consider
the consequences of Perelman’s work that was mentioned in Sect. 1.2.2. There is
no such theorem like that of Gauss and Bonnet in three-dimensions, but there are
uniformization theorems that could provide similar conclusions. For example, for
closed inhomogeneous universe models we can apply Poincaré’s conjecture (now
proven by Perelman [158; 159]) that any simply-connected three-dimensional Rie-
mannian manifold without boundary is a homeomorph of a 3-sphere. Ongoing
work concentrates on the multi-scale analysis of the curvature distribution and the
related distribution of kinematical backreaction on cosmological hypersurfaces
that feature the phenomenology we observe. All these studies underline the rele-
vance of topological issues for a full understanding of backreaction in relativistic
cosmology. To keep up with the developments in Riemannian geometry and re-
lated mathematical fields will be key to advance cosmological research. In this
line it should be stressed that the averaged scalar curvature is only a weak de-
scriptor for the topology in the general three-dimensional case, and information

24 Räsänen (priv. comm.) is currently looking at an ensemble of spherical regions in the spher-
ical collapse model to describe the statistical distribution of expanding and collapsing regions,
where the statistical properties of this ensemble are given by the peak model of structure forma-
tion for CDM.
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on the sectional curvatures or the full Ricci tensor is required. In observational
cosmology there are already a number of efforts, e.g., related to the observation
of the topological structure of the Universe derived from CMB maps (for further
discussion see [36] and for topology-related issues see [9; 10; 68; 124; 140; 195]).

4.2 Perturbative and non-perturbative approaches to backreaction

There is a large body of possibilities to construct a generic inhomogeneous met-
ric. First, there is the possibility of using standard methods of perturbation theory.
Although the equations and “parameters” discussed in this work can live without
introducing a background spacetime, a concrete model for the backreaction terms
can be obtained by employing perturbation theory (preferably of the Lagrangian
type) and, hence, a reference background must be introduced. But, the construc-
tion idea is (i) to only model the fluctuations by perturbation theory (the term QD )
and to find the final (non-perturbative) model by employing the exact framework
of the averaged equations. Such a model is currently investigated by paraphras-
ing the corresponding Newtonian approximation [48]. We shall outline more in
detail below what we expect to learn from such a model. Second, we could aim
at finding an approximate evolution equation for QD by (ii) closing the hierarchy
of ordinary differential equations that involve the evolution of shear and the elec-
tric and magnetic parts of the projected Weyl tensor. The problem of closing such
a hierarchy of equations is often considered in the literature and various closure
conditions are formulated (e.g., [100]). One of them, the silent universe model
[28], which assumes a vanishing magnetic part of the Weyl tensor, is found to be
too restrictive to describe a realistic inhomogeneous Universe [79; 184; 196], so
that we need to head for closures with non-vanishing magnetic part. In this line,
(iii) further studies of cosmic equations of state (like, e.g., the Chaplygin state
[92]) are not only a clearcut way to close the averaged equations, but also a way
to classify different solution sectors. All these models could be subjected to (iv)
standard dynamical system’s analysis to show their stability in the phase space of
their parameters [193; 198].

As already remarked above, the FLRW cosmology as an averaged model is
found to be stable in many cases, but there is an unstable sector that just lies in the
right corner needed to explain “Dark Energy”. In order to analyze this instability,
we first look at perturbation theory in Lagrangian form. The following excursion
allows us to roughly examine the possibilities provided by perturbation theory
and to identify the unstable mode that is of interest in the Dark Energy context,
although we do not expect such an approach to be sufficient. We shall also begin
to investigate non-perturbative methods below.

4.2.1 Relativistic Lagrangian perturbation theory

The following is a shortcut to a setup that will provide insights without entering
a detailed perturbative analysis. The idea is to generalize the Newtonian results
on backreaction, investigated in detail in [48]. For this purpose it is enough to
note that in a comoving and synchronous setting the electric part of the projected
Weyl tensor is sufficient to capture the relativistic generalization of a first-order
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Lagrangian perturbation scheme in Newtonian cosmology. This latter is furnished
by a Lagrangian set of evolution equations for a family of trajectories, sending
an initial (Lagrangian) position vector X i to its Eulerian position vector at time t,
xi = f(X i, t) in a Euclidean embedding space. The relativistic generalization of the
exact spatial one-forms dxi is provided by Cartan co-frame fields ηa = ηa

jdX j25

deforming the local exact basis dX j. Correspondingly, the first-order Lagrangian
perturbation solution [30] f i = a(t)X i +ξ (t)Pi(X i), with a(t) solving the standard
Friedmann equations and ξ (t) a background-dependent known function of time,
has its analog in the relativistic deformation one-form ηa = a(t)Xa +ξ (t)Pa(X i)
[109; 135]. This approximation solves the “electric part” of the projected Einstein
equations, written for Cartan co-frame fields, to first order. This part of Einstein’s
equations, consisting of four equations for the nine co-frame coefficients ηa

i with
determinant

J := det(ηa
i) =

1
6

εabcε
i jk

η
a
iη

b
jη

c
k, (79)

can be written [38; 50]:

δab η̈
a
[ j η

b
i] = 0,

1
2

εabc ε
i jk

η̈
a
i η

b
j η

c
k = ΛJ−4πGρi(X i). (80)

This system of equations is the relativistic (non-Euclidean) generalization of the
Lagrange–Newton system (81) below for dust matter:26

δi j f̈ i
[| j f j

|i] = 0,
1
2

ε`mn ε
i jk f̈ `

|i f m
| j f n

|k = ΛJ−4πGρi(X i). (81)

The geometrical limit that sends the non-exact Cartan forms to the exact forms d f i

(implying that the metric of space is flat) reduces the system (80) to the Newto-
nian system (81), demonstrating that the comoving synchronous spacetime slicing
considered has a clearcut Newtonian limit.27

4.2.2 A non-perturbative model for backreaction and the leading mode

Combined with the relativistic form of Zel’dovich’s model [30; 203; 204], straight-
forward generalization of the results provided in [48] yields a backreaction term
that separates into its time-evolution given by ξ (t) and the spatial dependence on
the initial displacement field given by averages over the principal scalar invariants
of the extrinsic curvature coefficients at initial time, Ii, IIi, IIIi:

QD =
ξ̇ 2 (ϒ1 +ξϒ2 +ξ 2ϒ3)(

1+ξ 〈Ii〉Di
+ξ 2 〈IIi〉Di

+ξ 3 〈IIIi〉Di

)2 , (82)

25 The indices (a,b,c, . . .) are here non-coordinate indices that just count the one-forms, as
opposed to the coordinate indices (i, j,k, . . .).

26 This (closed) system of equations was obtained in [47] for the case of no background source,
in particular Λ = 0, and in [29] including backgrounds of Friedmann–Lemaı̂tre type. The func-
tion ξ (t) is given for backgrounds including Λ in [15]. A review and alternative forms of these
equations may be found in [71].

27 A rigorous account for this Newtonian limit, employing the full set of Einstein’s equations
that includes the “magnetic part”, will be given in [50] and [38]. In a post-Newtonian setting
the Newtonian limit leads to the Eulerian representation of the Newtonian system, while in the
comoving setting considered here it leads to its Lagrangian representation.
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with ϒ1 := 2〈IIi〉Di
− 2

3 〈Ii〉2Di
= QDi , and

ϒ2 := 6〈IIIi〉Di
− 2

3
〈Ii〉Di

〈IIi〉Di
, ϒ3 := 2〈Ii〉Di

〈IIIi〉Di
− 2

3
〈IIi〉2Di

.

The first term in the numerator is global and corresponds to the linear damping
factor; in an Einstein-de-Sitter universe ξ̇ 2 ∝ a−1. The denominator of the first
term is a volume effect, whereas the second term in brackets features the initial
backreaction as a leading term.

In the early stages of structure formation with ξ (t)� 1 we get

QD ≈ 1
a

QDi , (83)

identical to the perturbative evolution of QD , functionally evaluated with the lin-
ear approximation. In the Newtonian investigation [48] it was found that this latter
solution is in very good accord with the general model corresponding to (82) on
scales larger than ≈ 300 Mpc/h, which entitles us to expect that, on large scales,
a perturbative model for QD can at best moderately improve on this solution by
going to higher orders in the perturbation scheme. Since QD is quadratic, this
mode appears in a relativistic second-order perturbation solution as the leading
mode [119; 126; 162], although this leading term is dismissed due to its property
to be a complete divergence in a standard perturbative setting.28 Exploiting the
fact that on large scales we only find a small deviation of the volume scale factor
aD from the Friedmannian scale factor a(t) in this scheme, we may use the exact
scaling solution, cf. Sect. 3.3.5, QS

D ∝ a−1
D as a (conservative) prototype model for

backreaction, arising as a first leading perturbation in the vicinity of a standard
FLRW model. The averaged scalar curvature corresponding to this scaling solu-
tion also evolves with the same power 〈R〉SD ∝ a−1

D , which again is in accord with
the leading second-order perturbative term found in [126].

4.2.3 Can backreaction compete with a cosmological constant?

Let us now look at the dimensionless characteristics (40). For the perturbative scal-
ing modes QS

D and 〈R〉SD discussed in the last subsection we find ΩD
QS =−1/5ΩD

RS ,
both are growing functions of aD , and the relevant term that can play the role of
Dark Energy, see Eq. (43), divided by the mass density parameter, is also growing,

ΩD
QS +ΩD

RS

ΩD
m

(t) =
−4Ω

Di
Q

Ω
Di
m

a2
D (t) =

QDi

4πG〈ρ〉Di

a2
D (t), Ω

D
Λ = 0, (84)

clearly demonstrating the (global) instability of the standard model. This has to be
compared with the corresponding fraction of a cosmological constant parameter

28 Notice that in our derivation of the large-scale behavior of a non-perturbative Lagrangian
model, this is not the case, in agreement with the general situation in a relativistic setting. The
backreaction term is a complete divergence only, if the initial data have this property. This latter
is only possible for initially Euclidean geometry.
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with respect to the density parameter,

ΩD
Λ

ΩD
m

(t) =
Ω

Di
Λ

Ω
Di
m

a3
D (t) =

Λ

8πG〈ρ〉Di

a3
D (t), Ω

D
Q = 0, (85)

where, with the last assumption, the index of domain-dependence is redundant.
Looking at the respective deceleration parameters,

qD
QS =

1
2

Ω
D
m +2Ω

D
QS , qΛ =

1
2

Ωm−ΩΛ , (86)

we find in both models the onset of acceleration (qD
QS = qΛ = 0) at the time when

aacc
D (QS) =

[ 4πG〈ρ〉Di

QDi

]1/2

, aacc(Λ) =
[

4πGρH(ti)
Λ

]1/3

. (87)

Although the leading second-order perturbative mode discussed here in the form
of a scaling solution lies in the quintessence sector, cf. Figs. 1 and 2, pertur-
bation theory is restricted to a regime close to the Friedmannian state and so,
strictly, does not allow us to follow the scaling mode further towards a curvature-
dominated regime. However, by extrapolating the scaling behavior of the pertur-
bative mode into this regime, its impact is in principle competitive, even if we set
out standard initial data for QDi : the comparison of scaling behaviors of (i) the av-
eraged density, being a zero-order quantity in a perturbative framework, ∝ a−3

D , (ii)
the constant-curvature, a first-order quantity (if a flat background was perturbed),
∝ a−2

D , and (iii) the backreaction terms as second-order quantities ∝ a−1
D feature

decay-rates that compensate the differences in their initial conditions magnitudes,
if the volume scale factor is assumed to evolve until aD (z = 0)≈ 1,000 [126].

Thus, the expectation is that a non-perturbative treatment, allowing for an
evolving background, would confirm our extrapolation of the perturbative mode
and would even produce a further weakening of the decay rates of the backreaction
terms, eventually coming closer to the behavior of a bare cosmological constant,
as speculated in Fig. 2. Note that such a behavior, or the more extreme case of a
growing backreaction term corresponding to a phantom quintessence in the scalar
field correspondence, must be understood on the grounds that we are looking at the
fluctuations within a negatively curved space section. In the course of evolution
of the averaged scalar curvature, we know that the backreaction mechanism draws
“potential energy” from curvature, and converts it into an excess of “kinetic en-
ergy” that implies the observed weakening of the decay of fluctuations. It is there-
fore misleading to think about fluctuations as evolving on a fixed background, i.e.,
in “Newtonian terms”. In this context it is worth recalling that, if the employed
perturbative framework is “quasi-Newtonian”, then this also implies that backre-
action terms appear as surface terms [119; 126; 173], demonstrating that we are
not describing fluctuations in a curved Riemannian space section in which case the
principal scalar invariants of extrinsic curvature fluctuations cannot be represented
through surface terms (compare Sect. 3.1).

The fact that already a perturbative mode entails departures of the averaged
model from the standard model (a “global” instability) means that the architecture
of current N-body simulations and its determining parameters of the concordance
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Fig. 2 The unstable sector in Fig. 1 that expresses the global instability of the standard model is
shown together with the scaling behavior of the leading perturbative mode P discussed in this and
the last subsections. Again, the volume deceleration parameter qD is plotted against the effective
density parameter ΩD

m . This scaling mode (corresponding to the coupling parameter r = −1/5
for the scaling index n =−1) is shown as a dashed line. It originates from the Einstein-de Sitter
model in the center and ends on the curvature-dominated attractor qD = 2r/(1 + r) = −1/2.
This scaling solution lies in the quintessence regime, defined by the mean field description of a
morphon field. Recall that it lies in between the line ending at qD = 0 (models with Friedman-
nian kinematics with constant negative curvature) and the line ending at qD = −1 (a morphon
modeling a cosmological constant). The indicated line NP expresses our expectation of a non-
perturbative, non-scaling solution that would fully explain Dark Energy today, while starting in
the vicinity of the Einstein-de Sitter model

cosmology is challenged and it might be overrestricted for the correct descrip-
tion of the Late Universe: a (possibly indirect) impact of a few percent would
already have severe implications for the demand of “high-precision” cosmology.
This statement needs consolidation in terms of quantitative considerations, an is-
sue that is very involved and, at present, not conclusive. We shall just add a few
remarks below.

4.2.4 A few words on quantitative estimates of backreaction

Based on the above-discussed scaling behavior of backreaction that is suggested
by perturbation theory, we may discuss typical magnitudes of backreaction that
are expected to be reached today. Since such estimates strongly rely on an ex-
trapolation of a perturbative mode, they are merely indicative, but they give us an
intuition of where we stand with perturbative calculations.

First, if we naively (i.e., without investigating a sensible re-interpretation of
observational data within the new framework) track the perturbative scaling solu-
tion from standard Cold Dark Matter initial data on “some large scale” of the order
of the observable Universe, then the comparison of (84) with (85) shows that back-
reaction is expected to fall short by a large amount to fully explain Dark Energy,
e.g., setting QDi = Λ we obtain with aD0 ≈ 1,000, −4 ·ΩD0

QS = 2× 10−3Ω
D0
Λ

≈
0,0015, which still lies close to the perturbative regime. The initial data taken
assume that the intial expansion fluctuation amplitude is independent and does
not necessarily derive from density fluctuations. Estimates in the literature range
from values (perturbative) of 0.004 for an inhomogeneity-induced Λ -parameter
[197] up to Ω

D0
Q ≈ −0.05 · · · − 0.26 (Lyman-α absorbers in the redshift range

z ∈ {3.8,2}[165], which may at best be taken as an indication of a discrepancy
between perturbative model estimates and the way of how we interpret observa-
tional data.

Second, if we look at those estimates in a scale-dependent way, i.e., taking
into account that the influence of backreaction must be compared to Λ on the
observational scales at which we postulate a Dark Energy component, then the
answer is more sensible: taking initial data for a standard Cold Dark Matter model
from [48] and translating the effect on the time-history of ΩD

Q into the relativistic

context, we would start to explain the value of Ω
D0
Λ

by the perturbative scaling
mode today on scales of typically below 100 Mpc, if that region is at 2-σ variance
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level in the initial conditions. For a typical such region (at 1-σ ) we would not
compensate Λ , but would talk about a significant effect in magnitude.

The number of pitfalls in the above considerations is, however, large.
A re-interpretation of the other cosmological parameters in terms of their scale-
dependence is mandatory, especially since the indirect influence of a non-vanishing
backreaction on the other cosmological parameters has been found to be crucial
and actually is expected to largely outweigh the magnitude effect in ΩD

Q (compare
the discussion in [48]). Therefore, it might not be a good idea to judge the influ-
ence of backreaction based on the magnitude of ΩD

Q itself. We have to investigate
realistic models beyond perturbation theory at a fixed background, before we can
reliably discuss quantitative estimates from models.

4.3 Issues of interpretation of backreaction within observational cosmology

4.3.1 A first step: a quasi-Friedmannian template metric

The particular form of the metric for an effective approximation of the inhomoge-
neous Universe that springs to mind has been suggested and thoroughly discussed
by Paranjape and Singh [152], who consider the metric form

4gD =−dt2 +a2
Dγ

D
i j dxi⊗dx j, (88)

with the volume scale factor aD (t) on a mass-preserving compact domain D that
is specified in terms of the exact kinematical equations, and a (domain-dependent)
effective constant curvature three-metric with coefficients γD

i j that, as opposed to
[152], may also allow for a time-parametrization of the constant-curvature appear-
ing in γD

i j . The concrete form of the 3-metric coefficients we consider reads:

γ
D
i j =

(
dr2

1−κD (t)r2 +dΩ
2
)

, (89)

where κD (t) corresponds to the (domain-dependent) constant curvature of the
template space at time t, and dΩ 2 = r2(dφ 2 + sin2(φ)dψ2).

It should be emphasized that this template metric must not be a dust solution
of Einstein’s equations [139; 166] (the effective fluid of an averaged dust model
also features a geometrical pressure).

The reason why we wish to allow for an explicit time-dependence of the “cur-
vature constant” κD is given by the key-insight that the constant-curvature evolu-
tion is not identical with that of the averaged 3-Ricci curvature of an inhomoge-
neous universe model, if the degrees of freedom in inhomogeneities (kinematical
backreaction) are taken into account, e.g., [32; 36; 165]. This effective metric pro-
vides an alternative dynamical picture to the thoughts recently advanced by Kasai
[110], who investigated the goodness of fit to supernova data for Friedmannian
models without cosmological constant, but different curvature parameters. Thus,
while a single standard model without cosmological constant cannot account for
the supernova data, two such models—if applied to low- and high-redshift data
separately—would [110]. In [122] we are currently investigating this model for
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the purpose of fitting supernova data. This fit must be constrained by CMB obser-
vations, since otherwise we could not significantly distinguish the curvature evo-
lution with backreaction from the constant-curvature evolution in a narrow range
of redshifts [62; 83; 101].

This form of an effective metric can be motivated on the grounds that Ricci
flow renormalization of the average characteristics on a bumpy geometry, cf. Sect. 1.2.2,
would produce a constant-curvature slice, but only at a given instant of time. In
general, such a flow has singularities, if the Ricci tensor is non-positive, and a
constant-curvature model is reached only after subsequent steps of surgery of the
manifold. However, if we assume intrinsic curvature fluctuations (not the aver-
aged curvature), i.e., terms like

〈
(R−〈R〉D )2

〉
D to be subdominant over kinemat-

ical (extrinsic curvature) fluctuations, then we may assume that the actual inho-
mogeneous metric (at one instant of time!) is already close to a constant-curvature
metric, in which case Ricci flow smoothing may be free of singularities. In any
case, the disclaimer of using such a simple metric for, e.g., calculating luminosity
distances is still that we neglect the effect of inhomogeneities on light propagation.
This issue we address now.

4.3.2 Averaging on the lightcone

Here, the most important step that would considerably advance the management of
observational data, will be to investigate the averaging formalism on the lightcone.
Such a framework is currently being constructed [51]. It relates not only to all as-
pects of observations in terms of distances within inhomogeneous cosmologies,
but also links directly to initial data in the form of, e.g., CMB fluctuation ampli-
tudes and the integrated Sachs–Wolfe effect. Relating lightcone averages to cos-
mological model averages is also possible and is in the focus of this investigation.
For example, a closed smooth lightfront would enclose a region of space that is
characterized by the evolution of the volume scale factor employed in this report.
The consequences of a quantitative importance of an integrated backreaction his-
tory, described through a propagating morphon along the lightcone, are obvious.
Applying generic redshift–distance relations, e.g., to galaxy surveys would put us
in the position to better understand the actual distribution of galaxies that are cur-
rently mapped with the help of FLRW distances. If expansion fluctuations are a
dominant player on large-scales, we can imagine that also the galaxy density maps
would be affected. This attempt is non-perturbative in the sense that the fully non-
linear optical propagation equations are averaged; quasi-Newtonian estimates may
capture (on the background-defined lightcone) localized perturbation magnitudes
[197], but they suffer from the same restrictions as those discussed in Sect. 3.1.3,
i.e., the averaged curvature of the lightcone integrated over its full propagation
history may substantially deviate from a perturbed background-defined curvature.
(Compare here also the remarks on metrical properties of spacetime at the end of
the following subsection.)

4.3.3 Direct measurement of kinematical backreaction

If we ask whether the kinematical backreaction term QD is observable, the an-
swer within a Newtonian (or quasi-Newtonian) framework is straightforward: on
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the observable domain D , QD is built from invariants of the peculiar-velocity gra-
dient in a Newtonian model. Ignoring geometrical fluctuations on regional scales
may not be unrealistic to estimate this term from high-resolution maps of peculiar-
velocities. More precisely, we need to carefully map the gradient of the peculiar-
velocity to build the Newtonian approximation of QD . We so have to ignore the
fact that in a relativistic setting QD cannot be represented through invariants of
a gradient, which is derived from a vector field. Existing catalogues are, how-
ever, too small and usually, for the definition of peculiar-velocities, the prior of
a Friedmannian model is imposed, which therefore would only return the cosmic
variance around the assumed Friedmannian background in a likely untypical patch
of the Universe that is statistically affected by boundary conditions [91; 202]. The
measurement of QD on small scales may also provide a negative value, i.e., ir-
relevant for a direct large-scale estimate of Dark Energy, but relevant for a scale-
dependent evaluation of QD . Indications for a shear-dominated QD on scales of
about 100 Mpc were discussed in the Newtonian analysis [48]. Two papers are of
particular interest here: by taking the sampling anisotropies of the velocity field
explicitly into account, Regös and Szalay [169], already in 1989, reported a large
effect (40%) of the dipole and quadrupole anisotropies on the estimated bulk flow
of an elliptical galaxy sample; around the same time, using the Eulerian linear
approximation, Górski [93] already showed that the velocity field is significantly
correlated even on scales of 100 Mpc. The measurement of the shear field re-
lated to weak gravitational lensing can add further information for backreaction
on regional scales [177]. On large scales, on the other hand, we know several ob-
servational data that could place constraints on the value of kinematical variables
[73]. “Global” bounds on QD , where D is of the order of the CMB scale, can be
inferred from work of Maartens et al. [131; 132].

In this context, the question whether and how close our observers have to be
at the center of a regional “Hubble bubble”, that probes the expected negative
curvature region for positive backreaction, furnishes relevant observational input
[190; 191; 192] [3; 128]. The scale of this “reduced curvature region” likely ex-
ceeds scales that have been discussed in connection with peculiar-velocity cata-
logues.

Another possibility is to exploit the relation of the kinematical backreaction
term to Minkowski Functionals, as outlined in Sect. 3.1.2. The problem here
is to identify the boundary of the averaging region with a surface of constant
peculiar-velocity potential. Again we need peculiar-velocity data or, alternatively,
a model-dependent relation between iso-density and velocity potential surfaces;
the relativistic geometrical effects are again ignored. The boundary of the aver-
aging region plays a crucial role, since it carries higher-order correlations of the
velocity distribution encoding the history of structure formation, and hence the
backreaction history that was identified as the source of the general expansion law
(31). Measuring Minkowski Functionals of iso-velocity potential surfaces thus di-
rectly mirrors the fact that QD is determined through all orders of the correlation
functions. In this line it is important to point out that, even if the fluctuations in
number density (the first moment of the galaxy distribution) and in the two-point
correlation function (or the power spectrum, i.e., the second moment) may not be
significant, fluctuations may show up especially in higher moments, since those
determine the morphology of the averaging region (the phase correlations). An
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investigation of subsets from the IRAS catalogues revealed large morphological
fluctuations up to scales of 200 Mpc that are significant on scales of the order
of several tens of Megaparsecs, while on the scale around 10 Mpc these fluc-
tuations disappeared [113; 114]. This has been confirmed by a recent analysis
of SDSS data [98], although here deviations were not so dramatic, an issue that
has to be (and is currently) addressed with the help of a substantially improved
data set.

A direct determination of metrical properties of spacetime rather than proper-
ties of the matter distribution from observational data furnishes a promising pro-
gramme that relates to all the issues outlined here [97; 129]. This programme
relates to the fully relativistic considerations pursued here as opposed to the prior
of a quasi-Newtonian model that usually enters into the interpretation process.
Here it is important to realize that, irrespective of the small magnitude of the field
strength in a weak-field situation, its derivatives may be important. If we consider
space to be Euclidean and the gravitational field of the mass distribution to be a
quasi-Newtonian perturbation, then we may not correctly characterize the effect
of intrinsic curvature that is built in a highly nonlinear way from derivatives of the
metric tensor. There are effects due to the morphological properties of the gravita-
tional field, e.g., the volume effect being the simplest morphological characteristic
mentioned in Sect. 1.2.2. As Hellaby [96] showed, a volume matching of a Fried-
mannian template model to such a distribution implies an error of 10–30% which
may be interpreted as a volume effect in a mass-preserving smoothing procedure
due to a factor of the order of π2/6 with which the Euclidean volume and the
Riemannian volume of a ball differ [41]. Such a factor cannot be regarded as a
perturbation of 1. Otherwise stated: the metrical properties of space could be very
different from Euclidean in terms of the morphology (volume, shape, connectiv-
ity) of the gravitational field, not in terms of its magnitude.

4.3.4 A common origin of Dark Energy and Dark Matter?

Several times we have already pointed out that the scale-dependence of observ-
ables is key to understand the cosmological parameters in the present framework.
Viewing observational data with this additional discrimination power of a scale-
dependent interpretation of backreaction effects, there is furthermore a link to the
Dark Matter problem that certainly is important to be understood in relation to
sources, i.e., Dark Matter particles, but there is also a kinematical contribution
that may alter existing strategies of Dark Matter search.

Concentrating on the Dark Energy problem has led us to focussing on a posi-
tive contribution of QD on large scales. However, as already mentioned above in
the context of peculiar-velocity catalogues, the kinematical backreaction QD itself
can also be negative, and a sign-change may actually happen by going to smaller
scales. Looking at the phenomenology of large-scale structure reveals strongly
anisotropic patterns, so that it is not implausible that on the scales of superclusters
of galaxies we would find29 a shear-dominated QD < 0. Thus, again as a result of
its scale-dependence, the kinematical backreaction parameter can potentially be
the origin of Kinematical Dark Energy, but also of Kinematical Dark Matter [31].

29 This was actually found in the Newtonian investigation [48] that, however, suffers from the
fact that QD is restricted to drop to zero on the periodicity scale of the fluctuations.
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Mapping kinematical backreaction with a “morphon field” opens further links
to previous studies that tried to model Dark Energy and Dark Matter by a scalar
field
([6; 148] and references to earlier work therein). Other explanations to unify the
description of Dark Energy and that of Dark Matter may also be put into perspec-
tive [87]. With this in mind, the volume deceleration functional (44) can change
sign too, but this crucially depends on the value of the matter density parameter
ΩD

m . We infer from Eq. (44) that, for a small value of ΩD
m , a smaller negative

value of ΩD
Q is needed to obtain volume acceleration, qD < 0. Since this problem

touches on a scale-dependent understanding of cosmological parameters, we now
propose a strategy to properly address this issue.

4.3.5 Multi-scale analysis of backreaction

Let us discriminate different spatial scales by a suitable partitioning of space sec-
tions. We denote by LH a scale larger than the homogeneity scale, say the Hubble-
scale, by LE the scale of a typical void, and by LM a typical scale of a matter-
dominated region (e.g., galaxy clusters) [42]. In standard cosmology we would
require Ω

H0
m ≈1/4 including Dark Matter. Hence, in order to find volume accel-

eration today, cf. Eq. (63), we would need −Ω
H0
Q > 1/16. If, however, the global

value of the matter parameter on the scale LH is smaller, then also the needed
amount of backreaction in a Hubble-domain H is smaller. Now, we discuss that
it is indeed the case that the matter density parameter drops substantially at around
the scale LE in a cosmological slice that is volume-dominated by voids.

We employ the averaged Hamiltonian constraint (23), and assume that a do-
main as large as H is formed out of a union of underdense regions E and a union
of occupied overdense regions M . We further consider the following picture that
complies with what we see in the present-day Universe: we require the volume
Hubble expansion to be subdominant in matter-dominated regions and, on the
other hand, the averaged density to be subdominant in devoid regions. In the first
case, an expansion or contraction would negatively contribute and so would, e.g.,
enhance a negative averaged curvature, in the second case, the presence of a low
averaged density would positively contribute. We can therefore reasonably expect
that the following idealization of the distributions would not substantially impair
the overall argument: we model voids with 〈ρ〉E = 0 and matter-dominated re-
gions with HM = 0 (corresponding to the stable clustering hypothesis). We also
introduce a parameter for the occupied volume fraction, λM := VM /VH , where
VM denotes the total volume of the union of occupied regions M , that may be
chosen more conservatively to weaken this idealization. Thus, we would have:

〈R〉E =−6H2
E −QE +2Λ , 〈R〉M =−QM +16πG〈ρ〉M +2Λ , (90)

together with30 HH = (1−λM )HE and 〈ρ〉H = λM 〈ρ〉M .
30 The fact that we expect the global Hubble parameter to be slightly smaller than the one

measured on the scale of voids could be used, of course with more refined assumptions, to ob-
servationally determine the volume fraction λM . It will be these refined assumptions together
with a scale-dependent treatment of other relevant variables that put us in the position to seri-
ously think about an observational determination of the void volume fraction that is certainly
one of the key-parameters of a scale-dependent cosmology.
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Consider for the moment the case where the kinematical backreaction terms
in the above equations are negligible and that there is no cosmological constant.
Then, we infer that the averaged scalar curvature must be negative on domains
E and positive on domains M , what obviously complies with what we expect.
We form the “global” cosmological parameters by dividing by H2

H , “regional”
cosmological paramters may be introduced by dividing by H2

E , if we wish to re-
late sources to the regionally measured Hubble parameter. The introduction of
cosmological parameters on the scale LM is pathological and useless. With our
assumptions the matter density parameter ΩH

m can be traced back to the aver-
age density in matter-dominated regions, 〈ρ〉H ∼= λM 〈ρ〉M , and thus, the global
density parameter can be reconstructed out of an observed 〈ρ〉M on the scale
LM . Therefore, we find a smaller value for the density parameter on the global
scale, depending on the value of the volume fraction of occupied regions, as a
consequence of the compensation (through conservation of the total mass) of the
missing matter in the regions E .

The volume fraction is a sensible quantity since it depends on the coarsen-
ing of the distribution. We know that even in matter-dominated regions M the
matter distribution in luminous matter is very spiky leaving a lot of volume to
empty space. Whether this argument carries over to all matter depends on how
smoothly Dark Matter is distributed. In relativistic cosmology it is crucial that,
unlike for the mass, there is no equipartition of curvature in Riemannian space
sections (there is more volume available in negatively curved regions than in pos-
itive ones); therefore, Newtonian estimates always provide a conservative upper
limit on a realistic volume fraction. It is not implausible that a realistic value for
λM0 could be much smaller than anticipated by Newtonian simulations that em-
ploy a fairly large coarsening scale ([63]; other estimates give a larger value for
the void volume fraction, see discussion and references in [42; 165]).

Finally, it should be noted that a scale-dependent analysis may be performed
for a given slicing of spacetime, as above, but we may also expose the particular
situation of observers, who perform measurements in matter-dominated regions,
to a refined analysis of a scale-dependent slicing. Such a picture has been recently
advanced by Wiltshire and coworkers [125; 199; 200], distinguishing cosmic from
the observer’s time, and this would involve considerations of spatial renormaliza-
tion of average characteristics that we briefly discussed in Sect. 1.2.2.

4.4 A short conclusion: opening Pandora’s Jar

Let us conclude by stressing the most important issue: quantitative relevance of
backreaction effects. Even if all these efforts would “only” nail down an effect of
a few percent, rather than 75%, these studies would have justified their quantita-
tive importance for observational cosmology, and what is to be expected, would
substantially improve our understanding of the Universe.

Especially the recent efforts, spent on the backreaction problem by a fairly
large number of researchers, added substantial qualitative understanding to the
numerous previous efforts that were undertaken since George Ellis initiated this
discussion in 1984 [72] (see references in [74]). The issue remains unresolved
to date: an explanation of Dark Energy along these lines is attractive, not only
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because it naturally explains the coincidence problem. From what has been said, it
is also physically plausible, but a reliable and unambiguous estimate of the actual
influence of these effects is lacking. This situation may change soon and for this
to happen it requires considerable efforts, for which some possible strategies have
been outlined in this section.

After those results are coming in, we may face a more challenging situation
than anticipated by the qualitative understanding that we have. For example, while
the explanation of Dark Energy by quintessence (or phantom quintessence) still
allows to hide the physical consequences behind a scalar field that is open for a
number of explanations, the mapping of a scalar field to the backreaction prob-
lem, as in the mean field description outlined in Sect. 2.3.3, can no longer keep
a phenomenological status: fluctuations exist and can be measured. There are no
free parameters, there are initial data that can be constrained.

Despite being premature, let us speculate that the outcome is i) a confirmation
of the qualitative picture of a backreaction-driven cosmology, but ii) a quantita-
tive problem to reconcile this picture with the data in the sense that there is not
enough time for the mechanism to be sufficient. In that situation we “lost” the
standard model for a correct description of the Late Universe, and we do not reach
a full explanation of Dark Energy—unless—we allow for initial data that are non-
standard. This situation would in turn ask for a comprehensive understanding of
these required initial data, hence reconsideration of inhomogeneous inflationary
models [82] and their fluctuation spectrum at the exit epoch. As further discussed
in [36], globally inhomogeneous initial data may arise by the very same mecha-
nism: if backreaction plays a role due to the generic coupling of fluctuations to
intrinsic curvature in the Late Universe, then this coupling may have been effi-
cient also in the Early Universe. Is it conceivable that the Universe evolved out of
a spaceform with strongly positive averaged scalar curvature that, during inflation,
acquires “flatness” on average, but at the end leaves an imprint in the fluctuation
spectrum as a remnant of the kinematical conversion of curvature energy? We
opened Pandora’s Jar.

Notwithstanding, I would consider such a situation as the beginning of a fruit-
ful development of cosmology. As previously mentioned, the issues of scale-
dependence of observables, the priors underlying interpretations of observations,
the large subject of Dark Matter and, of course, the issue of Dark Energy, will
be all interlocked and ask for a comprehensive realistic treatment beyond crude
idealizations.
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Appendix: Averaged ADM equations for non-vanishing lapse function

For completeness, we here add the general Einstein equations for a specified foli-
ation of spacetime employing lapse and shift functions according to the Arnowitt–
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Deser–Misner, short ADM formulation [7; 183], and discuss the resulting system
of spatially averaged equations for vanishing shift.

The ADM equations recalled31

Let nµ be the future directed unit normal to a three-dimensional Riemannian hy-
persurface Σ . The projector into Σ , hµν = gµν +nµ nν , (⇒ hµν nµ = 0, hµ

ν hν
γ =

hµ

γ), induces in Σ the 3-metric

hi j := gµν hµ

ih
ν
j. (A.1)

Let us write

nµ = N(−1,0,0,0), nµ =
1
N

(1,−Ni), (A.2)

with the lapse function N and the shift vector components Ni. Note that N and Ni

determine our choice of coordinates.
From nµ = gµν nν we find g00 =−(N2−NiNi); g0i = Ni; gi j = hi j and, using

local coordinates xi in a t = const. hypersurface Σ with 3-metric gi j, setting x0 = t
and dx0 = dt, the line element becomes:

ds2 = −(N2−NiNi)dt2 +2Ni dxidt +gi j dxi⊗dx j,

= −N2dt2 +gi j (dxi +Nidt)⊗ (dx j +N jdt). (A.3)

Introducing the extrinsic curvature on Σ by

Ki j :=−nµ;ν hµ

ih
ν
j =−ni; j, (A.4)

we obtain the Arnowitt–Deser–Misner, short ADM equations [7; 75; 183]:
Energy (Hamiltonian) constraint:

R−Ki
jK

j
i +K2 = 16πGε +2Λ , ε := Tµν nµ nν , (A.5)

Momentum (Codazzi) constraints:

Ki
j||i−K|| j = 8πGJ j, Ji :=−Tµν nµ hν

i, (A.6)

Evolution equation for the first fundamental form:

1
N

∂

∂ t
gi j =−2Ki j +

1
N

(Ni|| j +N j||i), (A.7)

31 Notation: a semicolon denotes covariant derivative with respect to the 4-metric with signa-
ture (−,+,+,+) (the units are such that c = 1), a double vertical slash covariant spatial dif-
ferentiation with respect to the 3-metric, and a single slash denotes partial differentiation with
respect to the local coordinates; greek indices run through 0 . . .3, and latin indices through 1 . . .3;
summation over repeated indices is understood.
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Evolution equation for the second fundamental form:

1
N

∂

∂ t
Ki

j = Ri
j +KKi

j−δ
i
jΛ − 1

N
N||i

|| j

+
1
N

(
Ki

kNk
|| j−Kk

jN
i
||k +NkKi

j||k

)
−8πG(Si

j +
1
2

δ
i
j(ε−Sk

k)), Si j := Tµν hµ

ih
ν
j. (A.8)

For the trace parts of (A2c) and (A2d) we have:

1
N

∂

∂ t
g = 2g

(
−K +

1
N

Nk
||k

)
, g := det(gi j), (A.9)

1
N

∂

∂ t
K = R+K2−4πG

(
3ε−Sk

k

)
−3Λ − 1

N
N||k

||k +
1
N

NkK||k. (A.10)

In relativistic cosmology it is often assumed that the energy-momentum tensor
has the form of a perfect fluid Tµν = εuµ uν + phµν . Also, it is often required that
the fluid is irrotational; putting the shift vector field Ni = 0, we then model all
inhomogeneities of the fluid by the 3-metric and the lapse function. The lapse
function is related to the fluid acceleration in the hypersurface that reduces to the
pressure gradient in fluid-comoving gauge (see below):

ai =
N||i
N

≡
−p||i
ε + p

. (A.11)

Notice that with this gauge choice the unit normal coincides with the 4-velocity
and, especially, the momentum flux density in Σ vanishes. The total time-derivative
operator
of a tensor field F along integral curves of the unit normal, d/dτ F := nν ∂νF =
uν ∂νF becomes

d
dτ

F =
1
N

∂

∂ t
F , (A.12)

since nνF||ν = 0. Note that, although the definition of proper time is τ :=
∫

Ndt,
the line element cannot be written in the form of the comoving gauge by mea-
suring “time” through proper time dτ = Ndt, since dτ is not an exact form in the
case of an inhomogeneous lapse function. The exterior derivative of the proper
time will involve a non-vanishing shift vector according to the space-dependence
of the lapse function. Therefore, a foliation into hypersurfaces τ = const. with
simultaneously requiring uα =−∂α τ is not possible.

Averaged ADM equations for vanishing shift

For vanishing shift vector, as will be our choice for the averaged equations, the
line element reads:

ds2 =−N2dt2 +gi j dX i⊗dX j, (A.13)

where we have written the local coordinates in capital letters now, as in the main
text, to indicate that they now label comoving fluid elements.
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We here recall the results given in [34]. We shall study spatial averages in a
hypersurface defined by the choice of the in general inhomogeneous lapse function
N in the line-element (A.13).

We consider perfect fluid sources, i.e., energy density ε and pressure p with en-
ergy momentum tensor Tµν = εuµ uν + phµν . Restricting attention to irrotational
flows we can, without loss of generality, write the flow’s 4-velocity in the form

uµ =−∂ µS

h
, h =

ε + p
ρ

, (A.14)

together with the decomposition into kinematical parts of the 4-velocity gradient,

uµ;ν =
1
3

Θhµν +σµν +ωµν − u̇µ uν , (A.15)

where the inhomogeneous normalization of the 4-velocity gradient h is given by
the injection energy per fluid element and unit restmass, dε = hdρ with the rest-
mass density ρ [103]; Θ is the rate of expansion, σµν the shear tensor.

The existence of a scalar 4-velocity potential S together with the choice
(A.14) implies that the conservation equations T µν

;ν = 0 are satisfied, but also that
the flow has to be irrotational and that the covariant spatial gradient of S vanishes
[26; 27; 34; 70]:

ωµν = h α
µ h β

ν u[α;β ] =−h α
µ h β

ν

(
∂[αS /h

)
;β ] = 0, (A.16)

S||µ = h α
µ ∂αS = ∂µS +uµṠ = 0, (A.17)

with the covariant time-derivative Ṡ := uµ ∂µS ≡ h.
We now define the averaging operation in terms of Riemannian volume inte-

gration on the hypersurfaces orthogonal to uµ , restricting attention to scalar func-
tions Ψ(t,X i),

〈Ψ(t,X i)〉D :=
1

VD

∫
D

Ψ(t,X i)dαg, (A.18)

with the Riemannian volume element dαg :=
√

gd3X , g := det(gi j), and the vol-
ume of an arbitrary compact domain, VD (t) :=

∫
D Jd3X ; J :=

√
det(gi j). We in-

troduce a dimensionless scale factor via the volume (normalized by the volume of
the initial domain VD i):

aD (t) :=
(

VD

VD i

)1/3

. (A.19)

This means that we are only interested in the volume dynamics of the domain;
aD will be a functional of the domain’s shape (dictated by the metric) and po-
sition. We require the domains to follow the flow lines, so that the total restmass
MD :=

∫
D ρJd3X contained in a given domain is conserved. Introducing the scaled

(t-)expansion Θ̃ := NΘ , the rate of change of the domain’s volume within the spa-
tial hypersurfaces defines the rate of volume expansion and, through (A.19), an
effective volume Hubble rate:

〈Θ̃〉D =
∂tVD (t)
VD (t)

= 3
∂taD

aD
=: 3HD . (A.20)



52 T. Buchert

We shall reserve the overdot for the covariant time-derivative (defined through the
4-velocity uµ ):

∂

∂τ
:= uµ ∂

∂ µ
=

1
N

∂

∂ t
, (A.21)

and we shall abbreviate the coordinate time-derivative by a prime in all follow-
ing equations. For an arbitrary scalar field ϒ (t,X i) we make essential use of the
commutation rule

〈ϒ 〉′D −〈ϒ ′〉D = 〈ϒΘ̃〉D −〈ϒ 〉D 〈Θ̃〉D , (A.22)

or, alternatively, 〈ϒ 〉′D + 3HD 〈ϒ 〉D = 〈ϒ ′ +ϒΘ̃〉D . A simple application is the
proof that the total restmass in a domain is conserved: let ϒ = ρ , then 〈ρ〉′D +
3HD 〈ρ〉D = 〈ρ ′+ρΘ̃〉D = 0 according to the local conservation law ρ ′+ρΘ̃ = 0.

We now consider the scalar parts of Einstein’s equations. Their evolution is
determined by Raychaudhuri’s equation and the Hamiltonian constraint (A.5). The
former can be obtained by inserting (A.5) into (A.10),

Θ̇ =−1
3

Θ
2−2σ

2−4πG(ε +3p)+A , (A.23)

with the rate of shear σ , σ2 := 1/2σ i
jσ

j
i, and the acceleration divergence A :=

(N|k/N)||k. Upon averaging these two equations, we can cast the result into a com-
pact form (to be found under the heading Corollary 2 in [34]):

3
a′′D
aD

+4πG(εeff +3peff) = 0,

6H2
D −16πGεeff = 0, (A.24)

ε
′
eff +3HD (εeff + peff) = 0,

with the following fluctuating sources:

16πGεeff := 16πG〈ε̃〉D − Q̃D −〈R̃〉D ,
(A.25)

16πGpeff := 16πG〈p̃〉D − Q̃D +
1
3
〈R̃〉D − 4

3
P̃D ,

ε̃ := N2ε and p̃ := N2 p are the scaled energy density and pressure of matter,
respectively. The kinematical backreaction term is given by:

Q̃D := 2〈N2II〉D − 2
3
〈NΘ〉2D . (A.26)

It is built from the principal scalar invariants 2II := Θ 2−Ki
jK

j
i and Ki

i =−Θ of
the extrinsic curvature,

Ki
j =−1

2
gik 1

N
g′k j. (A.27)

The averaged scaled scalar curvature and the acceleration backreaction terms read:

〈R̃〉D := 〈N2R〉D , P̃D := 〈 ˜A 〉D +
〈

N′

N
Θ̃

〉
D

, (A.28)

with the scaled (t-)acceleration divergence ˜A := N2A = N2
(
N|i/N

)
||i.
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Some comments

With the help of these equations more general matter models can be considered
within the kinematically averaged framework. Notably, scalar field sources and
radiation. As for the latter it is interesting that, due to the non-commutativity of
averaging and time-evolution, an averaged radiation cosmos is not described by
the familiar law in the homogeneous situation. There are source terms demon-
strating that an inhomogeneous radiation cosmos is in an out-of-equilibrium state.
An analoguous situation occurs for the dark radiation part when averaging brane
world cosmologies [45], see also[46], where those source terms can be written in
terms of effective Tsallis information entropies [99]. (Note: it is straightforward
to interpret the averaged ADM equations for vanishing shift for the choice of a
tilted slicing, i.e., where the 4-velocity is not required to coincide with the normal
on the hypersurfaces: we have to write them for the extrinsic curvature, and not
for the expansion tensor, which (up to the sign) agree for our choice.)
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