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Abstract

White dwarfs are ubiquitous in the known Universe. They are frequently found

in binary systems with ordinary stars, giants, or compact objects as companions.

Depending upon their histories, such systems may have significantly eccentric orbits.

Because of gravitational radiation, a white dwarf-compact object binary will shrink

and circularize with time. If the system is initially close enough, then the inspiral will

occur on a time-scale shorter than a Hubble time. As an eccentric system inspirals,

it will pass through resonances when harmonics of the orbital period match one of

the white dwarf’s normal mode eigenfrequencies. At these tidal resonances, energy

can be transferred from the orbit to the white dwarf normal modes, and the system

will pass through a sequence of such resonances for each mode. If the amplitude of

a mode is driven high enough, the modes may damp due to non-linear processes and

heat the white dwarf. If the temperature of the white dwarf can be raised in this way

to a critical value, then the star may undergo a thermonuclear detonation that results

in a Type Ia supernova. In order to determine whether such a scenario is possible,

and what other observable consequences of tidal resonances may be, it is necessary

to understand the resonant energy transfer and the non-linear evolution of modes on

a white dwarf in some detail.

A variational approach to the excitation of dynamical tides is presented. This

is then used to study the energy transfer in the resonant excitation of tides. The

energy transfer problem is complicated by the fact that a mode perturbs the orbit

as it is resonantly excited, effectively creating a non-linear feedback loop. We call

this effect ‘back reaction.’ In the present work, the problem is considered both in

the approximation when back reaction is neglected, and when it is included. It is
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found that back reaction changes the resonant energy transfer both qualitatively and

quantitatively. In particular, unlike the no back reaction case, the energy transfer with

back reaction is shown to be always positive to lowest order in the rate of dissipation

by gravitational radiation, and any initial energy in the mode before resonance is

shown to increase the energy transfer.

Numerical simulations of resonant mode excitation and non-linear evolution of

white dwarf oscillations are also considered. An adiabatic, parallel hydrodynamic code

is described for this. Results from several test problems and preliminary simulations

of resonant tidal excitation are presented.

The formalism developed for resonant tidal excitation is applied to studying the

feasibility of a tidally triggered supernova via resonant excitation of quadrupolar

f -modes. It is found that a 1.4 M� companion to the white dwarf is not viable,

which rules out double degenerates and white dwarf-neutron star binaries as potential

progenitors. However, it is found that with companion masses of ∼ 10–105 M�,

there exist regions in the parameter space where the white dwarf can be detonated

before tidal disruption. It is calculated that the ejecta from such a detonation would

remain trapped in orbit around the companion for the majority of cases, and would

presumably be accreted eventually.

A preliminary calculation of the importance of tidal effects for gravitational wave

observations of capture sources with central masses of ∼ 106 M� is also presented.

The resonant excitation of f -modes is found to be unimportant because of the long

orbital periods at the last stable orbits. It is, however, found that the excitation of g-

modes could introduce significant errors in the parameter estimation for such systems,

though it would probably not affect detection capability. The exact magnitude of the

errors depends upon the density of resonances during the period of observation, and

therefore depends upon details of the white dwarf model.
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Chapter 1

Motivation

White dwarfs, the normal evolutionary endpoint for stars less massive than ∼ 8 M�,

are extremely common; the halo of our Galaxy contains several billion of them. They

are observed frequently in binary systems, with normal stellar companions, as cat-

aclysmic variable stars and, less often, with compact object companions, as white

dwarf-compact object (WDCO) systems. Many of these systems are produced nat-

urally in binary star evolution and, as a consequence, mostly have circular orbits.

However, it is also possible to form eccentric, WDCO binaries following stellar cap-

ture or exchange in a dense stellar environment.

Whatever their detailed nature and origin, WDCO binaries evolve dynamically

under the action of gravitational radiation (e.g., Peters & Mathews, 1963; Peters,

1964; Iyer & Will, 1995). The orbital period and eccentricity of such a binary will

decrease until the former reaches the Roche period, ∼ 10−100 s depending upon mass,

when the white dwarf will be torn apart by tidal forces. During inspiral, the system

will pass through a series of resonances between harmonics of the orbital frequency

and the white dwarf normal mode eigenfrequencies. Typically, the system will spend

many orbits near each resonance, and consecutive resonances for a given mode will

be separated by a much larger number of orbits associated with the gravitational

inspiral time-scale. Passage through a sequence of such resonances will result in

transfer of energy from the orbit to the oscillations and may drive the amplitudes of

the oscillations non-linear, with possibly observable consequences. For example, if it

is possible to thermalize the energy in the modes on a short enough time-scale through
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some dissipative process such as non-linear damping or, perhaps, wave breaking, then

the white dwarf can be heated in this way. If the temperature can be raised to ∼ 108 K,

then it may even be possible to detonate the white dwarf tidally, leading to a Type

Ia supernova. A different (and less spectacular) consequence of significant energy

transfer during tidal resonances would be modulation of the WDCO binary’s orbital

parameters, which would impact the gravitational wave signal from the system.

1.1 WDCO Binary Formation Mechanisms

An important factor in determining whether resonant tidal effects during the evolution

of WDCO binaries are of practical interest is determining whether there exist mecha-

nisms through which sufficiently eccentric, close WDCO binaries may be formed. The

requirement that the binaries be close is an obvious one for finite-size effects to be sig-

nificant. The eccentricity requirement is more flexible. It is possible, in principle, that

resonant tidal effects may be important in binaries with circular orbits—especially

when g-modes are considered. However, the normal modes with the largest tidal

overlap are the quadrupolar f -modes, which typically have frequencies higher than

the Roche frequency. Hence, a resonance between an f -mode and the fundamental

Fourier component of the companion compact object’s tidal force (which is the only

component for a circular orbit) is not accessible before the white dwarf is tidally dis-

rupted. Higher eccentricities greatly increase the number of harmonics of the tidal

force available for resonant interactions, as the amplitude of the k-th harmonic goes

as ∼ e|k−|m||, where e is the orbital eccentricity and m is the azimuthal order of the

Fourier component. Thus, the most interesting systems are likely to be those with

significant eccentricities. Several possible mechanisms for generating close, eccentric

WDCO binaries are briefly discussed below.

1.1.1 Primordial Binary Evolution

The most common mechanism for the formation of WDCO binaries is likely to be

primordial binary evolution. As the two components of a binary evolve to the end
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of their lifetimes, various mechanisms operate which determine the outcome. If the

binary is too wide, then the two components will evolve more or less independently,

with each one following its own evolutionary track. However, if the binary is close

enough that at least one of the stars fills its Roche lobe at some point, then that

star will transfer mass to its companion. If the rate of mass transfer is too high,

then the companion will be unable to accrete the transferred mass rapidly enough,

which will result in the formation of an envelope of hot material around it. At some

point, the companion’s envelope will overflow its Roche lobe as well, resulting in the

formation of a common envelope (Paczyński, 1976; Iben & Livio, 1993). When the

common envelope is not corotating with the orbit, it will exert a drag upon the stars,

which will tend to shrink and circularize the orbit. It is believed that such a period

of common envelope evolution may have occurred in the history of any binary with

at least one compact object which has an orbital period of less than a few days (Iben

& Livio, 1993).

In addition to common envelope evolution, binaries may also circularize due to

tidal dissipation in one or both of the components. Obviously, for this to affect the

orbit significantly within a Hubble time, the binary must not be too wide initially. In

practice, for significant changes to occur, at least one of the stars must have a radius

of the order of its Roche lobe, because the circularization time-scale is thought to be

proportional to (a/R0)
8, where a is the semimajor axis and R0 is the radius of the

star exerting the tidal force (Zahn, 1977; Hut et al., 1992).

Because of the above considerations, most close WDCO binaries formed via evolu-

tion of primordial binaries are expected to be circular, with possibly a few exceptions.

One circumstance in which this need not be the case is when the companion compact

object is formed in a supernova explosion. This would occur when the companion

is either a neutron star or black hole progenitor (in which case the white dwarf will

not have formed yet, presumably), or perhaps another white dwarf which accretes

material from its companion and exceeds the Chandrasekhar limit. In either case,

if the binary is not unbound by the supernova, it may be left with a significantly

eccentric orbit (Hills, 1983).
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1.1.2 Tidal Capture

If two unbound stars have a close encounter, then it is possible for them to become

bound by transferring energy from the orbit to non-radial oscillation modes of the

stars via tidal interaction. This mechanism for binary formation was first suggested

by Fabian et al. (1975), calculated in detail by Press & Teukolsky (1977), and further

elaborated by Lee & Ostriker (1986), McMillan et al. (1987), Ray et al. (1987), and

Kochanek (1992b). Fabian et al. proposed the mechanism as a way of producing

sufficient compact object-ordinary star binaries to account for variable X-ray sources

observed to coincide with globular clusters (e.g., Clark et al., 1975). While the mech-

anism is no longer believed to be important in that context, it has more general

applicability, and a binary formed via tidal capture will necessarily be close, with a

highly eccentric initial orbit. If there is significant tidal dissipation, then the orbit

will gradually circularize with subsequent periastron passages.

The analysis of Fabian et al. and Press & Teukolsky relies upon the important

assumption that the tides excited during the initial passage are dissipated on an

orbital time-scale. This process is presumed to repeat during subsequent orbits.

This assumption, which is necessary to ensure stability of the newly-formed bound

system, exposes several problems with the tidal capture mechanism. If the tides

are not dissipated rapidly enough, the orbit can become unbound during subsequent

periastron passages, because energy may be transferred back to the orbit from the

tides (e.g., Kochanek, 1992b). If the tides are dissipated rapidly enough, the typical

amount of energy that has to be dissipated is a significant fraction of the star’s

gravitational binding energy, which makes it unlikely that the star will manage to

retain its original structure (McMillan et al., 1987). Furthermore, even if the system

manages to remain bound, once the perturbation of the orbit by the excited tides

is taken into account, the subsequent evolution can be chaotic rather than simply

dissipative (Mardling, 1995a,b).

In the context of WDCO binaries, the tidal capture mechanism is likely to be only

viable in dense environments such as the cores of globular clusters. The compactness
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of both components of the binary decreases the tidal capture cross-sections signifi-

cantly, since the tidal force scales as ∼ R∗/R
3, where R∗ is the stellar radius, and

R is the separation of the two objects. It is also unlikely that tidal dissipation in a

white dwarf will be effective on the time-scale of a single orbit (Osaki & Hansen, 1973;

Kumar & Goodman, 1996). Nevertheless, the possibility of WDCO binary formation

via tidal capture exists in principle; and the energy transfer need be no more than

∼(10–100 km s−1)2 ≡ 1012−14 erg g−1 for capture to ensue. In addition, the tidal

capture mechanism has the merit that the resulting binaries are close and highly

eccentric, which is important for the WDCO problem.

1.1.3 Three-Body Processes

The basic requirement for any capture process for the formation of a binary system

to operate is the presence of degrees of freedom, in addition to the orbit, to which

energy and angular momentum may be transferred, and, subsequently, dissipated.

The tidal capture mechanism fulfills this requirement by relying upon the internal

structure of one or both of the bodies to provide the additional degrees of freedom.

Alternatively, the additional degrees of freedom can be supplied by a third body. Of

three-body encounters, the most likely are those between an existing binary and an

unbound object. Encounters between three unbound bodies are much less likely, as the

probability of such an encounter scales as the cube of the number density of unbound

bodies. Furthermore, studies of globular cluster dynamics suggest that binary-single

body encounters play an important role (for example, as a cluster heating mechanism)

in determining the evolution of such systems (e.g., Heggie, 1975; Hills, 1975b,a; Hut,

1983a; Elson et al., 1987; Goodman & Hut, 1989; Sigurdsson & Phinney, 1995).

Encounters between a binary and a single object may be broadly categorized into

four types: scattering, exchange, collision, and ionization (Sigurdsson & Phinney,

1993, 1995). In the scattering case, an unbound body encounters a binary system,

scatters off it gravitationally, and then leaves, with the binary remaining intact. The

outcome of the encounter upon the binary is a modification of its orbital parameters,
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such as the semimajor axis and eccentricity. Alternatively, it may happen that one

of the components of the binary becomes unbound and escapes, while the other

component becomes bound to the intruder and forms a new binary. In this case, the

encounter is an exchange. It is also possible that the intruder collides with one of

the binary components, or, perhaps, induces chaotic trajectories that cause the two

binary components to collide. In either case, the encounter is appropriately referred

to as a collision. Finally, the remaining case is when all three participating bodies

become unbound—hence the term ‘ionization.’ In the point-mass approximation,

three-body encounters never result in the formation of a stable trinary (Hut, 1983b).

In general, binary-single body encounters of the scattering type tend to both

harden the binary (i.e., decrease its semimajor axis) and increase its eccentricity

(Hills, 1975b; Sigurdsson & Phinney, 1993). In exchanges, the lightest body is usually

ejected, and the average eccentricity of the new binary, which is insensitive to the

eccentricity of the original binary, is approximately given by 〈e〉 ≈ 1−Me/Mf, where

Me is the mass of the ejected body, and Mf is the mass of the intruder (Sigurdsson &

Phinney, 1993). For collisions, in cases when there is a surviving binary, the orbital

eccentricity appears to increase most of the time, but the orbit also tends to be wider

(Sigurdsson & Phinney, 1993).

For the formation of close, eccentric WDCO binaries, binary-single body encoun-

ters are probably the most interesting mechanism, as they are not only capable of

generating close orbits with high eccentricities, but also have significantly larger cross-

sections than tidal capture.

1.1.4 Gravitational Bremsstrahlung

As two unbound stars scatter off each other gravitationally, energy and angular

momentum will be emitted from the system in the form of gravitational radia-

tion, which, by analogy with its electromagnetic counterpart, is called gravitational

bremsstrahlung (Thorne & Kovacs, 1975; Crowley & Thorne, 1977; Kovacs & Thorne,

1977; Turner & Will, 1978). Gravitational bremsstrahlung offers the additional de-
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grees of freedom required for a binary capture mechanism to operate, so it is possible

to form binaries in this way. Clearly, for the mechanism to operate, the stars have to

be massive enough to radiate a sufficient amount of energy and angular momentum.

This requirement makes the cross-section for capture by gravitational bremsstrahlung

negligible for most encounters involving a white dwarf and another object. Only when

the companion mass exceeds a few times 105 M� does gravitational bremsstrahlung

contribute a larger cross-section than tidal capture. As objects with masses higher

than this are unlikely to be found anywhere other than in galactic centers, this mecha-

nism is unlikely to be of any importance for WDCO binary formation, except, perhaps,

in a few exotic cases.

1.2 Intermediate Mass Black Holes

The strength of the tidal force exerted by the companion in a WDCO binary scales

as ∝ M0/R
3, where M0 is the companion mass, and the Roche separation is approxi-

mately given by RRoche ∼ (M0/M∗)
1/3R∗, where M∗ and R∗ are the white dwarf mass

and radius, respectively. This simple scaling implies the physically obvious fact that

the excitation of tides on the white dwarf is most interesting for small separations and

large companion masses. For the case when the companion compact object is a black

hole, however, if the mass is too large, then the event horizon extends beyond the

Roche separation, which implies that the white dwarf will be swallowed whole rather

than tidally disrupted. For interesting tidal effects with black holes, we therefore re-

quire that the Roche limit lies not too far inside the horizon. This requirement gives

an upper limit for interesting black hole masses of ∼ 106 M�. Thus, the problem

is still of interest for black holes such as the one thought to exist in the Galactic

center (∼ 3.5 × 106 M�; Schödel et al., 2003; Ghez et al., 2005), but for black hole

masses which are relevant for more massive galaxies and active galactic nuclei (AGN)

(& 107 M�; Onken et al., 2004), tidal effects are unlikely to be important with white

dwarf companions.

Until recently, the population of black holes was thought to be divided into two
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groups: those with masses in the stellar range, which are observed indirectly in X-

ray binaries (e.g., Blumenthal & Tucker, 1974; Bahcall, 1978; Bradt & McClintock,

1983; Liu et al., 2000; Orosz, 2003), and supermassive black holes (& 106 M�), which

are observed indirectly in AGN (e.g., Kormendy & Richstone, 1995; Nelson et al.,

2004) as well as in the Galactic center (e.g., Ghez et al., 2003; Schödel et al., 2003;

Ghez et al., 2005). Recently, however, there has been a growing body of theoretical

evidence for, and observational evidence consistent with, the existence of intermediate

mass black holes (IMBHs). In addition to having masses that lie in the ‘interesting’

range for companions in WDCO systems, WDCO systems with IMBH companions

will have significantly shorter gravitational inspiral times than less massive systems

(Peters, 1964), and the required orbital separations to access low order harmonics of

the tidal force will be larger—i.e., the systems need not be as compact as those with

lower masses have to be. This makes the existence of IMBHs of considerable interest

to the present work.

In 1999, Colbert & Mushotzky reported observations of compact X-ray sources

near the centers of 21 nearby galaxies. These sources which are, on average, ∼ 390 pc

off the host galaxy’s optical center, have inferred isotropic X-ray luminosities in the

range ∼ 1037−40 erg s−1, which, if the sources are indeed isotropic, makes them too

luminous to be X-ray binaries with stellar mass black holes. Colbert & Mushotzky

found that the spectral data were fit well by a multicolor disk blackbody model,

which lends credence to the hypothesis that these sources are at least qualitatively

similar to X-ray binaries. Assuming source isotropy, they inferred black hole masses

of ∼ 102−4 M�. Subsequently, these sources have attracted a great deal of attention

(e.g., King et al., 2001; Mizuno et al., 2001; Strickland et al., 2001; Colbert & Ptak,

2002; Körding et al., 2002; Miller et al., 2003, 2004; Portegies Zwart et al., 2004; Hop-

man et al., 2004; Abramowicz et al., 2004), and these objects, dubbed ultraluminous

X-ray sources (ULXs) or intermediate-luminosity X-ray objects (IXOs), have become

prime candidates for IMBHs. However, it should be noted that there are other inter-

pretations of ULXs which do not require IMBHs. In particular, it has been suggested

that the sources may be relativistically beamed rather than isotropic, which could
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reduce the mass requirement to ordinary stellar mass black holes (King et al., 2001;

Körding et al., 2002). It has also been suggested that some fraction of ULXs may in

fact be background AGN. Thus far, the case is undecided. But, despite the fact that

the interpretation of ULX observations is a subject of considerable debate, it seems

fair to claim that the existence of IMBHs appears a lot more plausible now than it

did in the past.

On the theoretical end, recent simulations of globular cluster dynamics have shown

that runaway growth via collisions in the core can lead rapidly to the formation of

black holes with masses in the range ∼ 102−3 M� (Portegies Zwart & McMillan, 2002;

Portegies Zwart et al., 2004). Currently, there are no observations to support these

results, but it has been suggested by Maccarone (2004) that IMBHs at the centers of

globular clusters could be identified by deep radio observations.

1.3 WDCO Binary Populations

A thesis about tidal interactions between white dwarfs and other compact objects in

binary systems would be somewhat incomplete without any mention of the Galatic

population of such binaries. There are three possible companions to a white dwarf in a

WDCO system: another white dwarf, a neutron star, or a black hole. Unfortunately,

our current understanding of these populations leaves a lot to be desired—due, in

large part, to the selection effects inherent in the observations of such systems. Nev-

ertheless, there are some known examples.

The most common WDCO systems are probably double degenerates. The reason

for this is simple: white dwarfs appear to be by far the most common compact

objects. For example, Monelli et al. (2005) have recently reported the discovery of

more than 2000 white dwarfs in the globular cluster ω Centauri. However, relatively

few examples of double degenerates are known (e.g, Saffer et al., 1988; Marsh et al.,

1995; Marsh, 1995; Saffer et al., 1998; Ramsay et al., 2002), as they are difficult to

detect. Double degenerates have been observed to have periods as short as ∼ 5 min

(Ramsay et al., 2002). Systems in which the total mass exceeds the Chandrasekhar
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limit have been proposed as progenitors of Type Ia supernovae, and it has been

estimated that the number of such systems exceeds the observable number by about

20 (Iben et al., 1997). Iben et al. predict a Galactic birth rate of 0.17 yr−1 for systems

where one star is a helium or carbon-oxygen white dwarf, and the other star is either

a similar white dwarf or a low-mass main-sequence star. They also estimate that

∼ 10% of observed white dwarfs are close white dwarf binaries, and that, of those,

∼ 40% will merge in a Hubble time under the influence of gravitational radiation.

They predict a Galactic merger rate of 0.02 yr−1.

There are a total of ∼ 50 known white dwarf-neutron star binaries, with orbital

periods as short as 3 h (e.g., van Kerkwijk & Kulkarni, 1999; Kaspi et al., 2000;

Edwards & Bailes, 2001; Camilo et al., 2001). Most of them are in nearly circu-

lar orbits with low inferred white dwarf masses (∼ 0.15–0.4 M�), which presumably

correspond to helium white dwarfs (Camilo et al., 2001). The high incidence of cir-

cular orbits is to be expected based upon the common envelope evolutionary path

these systems are expected to have followed (e.g., van den Heuvel, 1994; Phinney &

Kulkarni, 1994). However, there is a small but growing group of systems with heavier

white dwarfs (& 0.5 M�; likely carbon-oxygen), for which the orbital eccentricities

are higher (Brown et al., 2001; Camilo et al., 2001). These systems probably follow a

different evolutionary path (Tutukov & Yungelson, 1993; Portegies Zwart & Yungel-

son, 1999; Tauris & Sennels, 2000; Brown et al., 2001; Davies et al., 2002). Therefore,

it appears plausible that there is a significant Galactic population of eccentric white

dwarf-neutron star binaries. Kalogera et al. (2004) estimate that the Galactic birth

rate of such systems is ∼ 7 Myr−1. The estimated Galactic merger rate for all white

dwarf-neutron star binaries is estimated to be 0.2–10 Myr−1 (Kim et al., 2004).

For white dwarf-black hole binaries, there are currently no known examples—they

would be extremely hard to detect. Nevertheless, given the large known population of

white dwarfs in the Galaxy, and a large predicted population of black holes (∼ 108−9;

van den Heuvel, 1992; Brown & Bethe, 1994; Timmes et al., 1996), and several possi-

ble binary formation mechanisms, it would be remarkable if no white dwarf-black hole

binaries exist. It is difficult to predict the distribution of their orbital parameters, but,
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based on the likelihood of three-body processes being the dominant formation mecha-

nism in globular clusters, it seems reasonable to expect that a significant fraction will

be both close and eccentric. It is also perhaps not too far fetched to speculate that

the white dwarfs in white dwarf-black hole binaries in globular clusters will tend to

be heavier than average (& 0.6 M�) as a result of both mass segregation and the issue

of long-term binary survival (e.g., Sigurdsson & Phinney, 1995). Sigurdsson & Rees

(1997) have calculated the capture rate of compact stellar remnants by supermassive

black holes in galactic cusps to be ∼ 10−8 yr−1 per galaxy for nucleated spirals such

as the Milky Way. Presumably, a substantial fraction of the captured remnants are

white dwarfs. Fryer et al. (1999) estimate that the merger rate of white dwarf-black

holes binaries may be as high as ∼ 10−6 yr−1 per galaxy.

It is worth noting that all of the estimates quoted above should be treated with

caution, as calculations of birth and merger rates for compact object binaries tend

to be exercises in small number statistics. Furthermore, there are clearly significant

gaps remaining in the current understanding of Galactic stellar dynamics, evidenced

recently by the puzzling observations of young stars on close, highly eccentric orbits

around Sgr A∗ (Ghez et al., 2005).
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Chapter 2

Previous Work

2.1 General Comments

Research on the excitation of tides has spanned at least four centuries, with a host

of illustrious names such as Galileo, Descartes, Newton, Bernoulli, Euler, Laplace,

(George) Darwin, Kelvin, Lamb, and Chandrasekhar making contributions to the

theory. It is neither possible, nor desirable, to provide here even a modest outline

of this long history. A recent such survey may be found in the book by Cartwright

(1999). The focus here is on tidal excitation in the modern astrophysical context,

and, specifically, the excitation of dynamic tides in stellar objects.1

Most modern analyses of the excitation of dynamic tides deal with harmonic de-

compositions. The underlying idea is simple, and more general than the particular

case of tides: for the system at hand, a set of linearized normal modes is calculated, as

well as the coupling of the modes to the tidal force. If, as is often the case, the modes

form a complete, orthogonal set, then the problem is reduced to the excitation of a

(usually infinite) number of harmonic oscillators, which may be coupled via the tidal

force. Thus far, the analysis is typically straightforward. The difficult part of the

problem is solving the forced harmonic oscillator equations, which is rarely possible

in toto, and, therefore, various simplifying approximations, specific to the problem

1A distinction is made between ‘static’ and ‘dynamic’ tides. Static tides are assumed to be
in hydrostatic equilibrium; for example, a corotating binary system will raise static tides on both
objects in the co-rotating frame. A dynamic tide is a perturbation away from, and, typically, an
oscillation around, an underlying equilibrium configuration.
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at hand, are usually made in the solution. An example of such a simplification may

be to consider only the subset of modes which are the dominantly excited ones. The

equations of motion can then be solved numerically for specific choices of parame-

ters. It is, of course, always desirable to find good analytic approximations whenever

possible, even for a subset of the parameter space, as they make the dependence on

parameters, and hence the scalings, explicit.

The preceding paragraph is the theory of tidal excitation, in a nutshell, as it is used

and described in guises as varied as the number of authors. Two important advantages

of the normal mode analysis are the reduction from an uncountable infinity of degrees

of freedom to a countable infinity, and the encapsulation of the internal physical

details of the system into normal mode frequencies and tidal coupling constants. A

disadvantage is that, because of the neglected non-linear terms, the orthogonality of

the normal modes is often violated for large amplitudes. Such effects can be taken into

account either by explicitly including the non-linear coupling terms to some order in

the mode amplitudes, or by using a different approach. For example, tidal excitation

in stars can be considered in terms of the so-called affine model, which assumes that

the structure of the star can be represented by a global distortion such that surfaces

of constant density are distorted into self-similar ellipsoids (Carter & Luminet, 1985;

Luminet & Carter, 1986; Kochanek, 1992b). This approach has the advantage that

arbitrary amplitudes can be considered, but has the disadvantage that the affine

model has only a limited number of normal modes. However, these modes include

those which tend to be the dominant tidally excited ones, such as the quadrupolar

f -modes (Kochanek, 1992b).

2.2 Non-Variational Formulations

An early account of the excitation of dynamic tides in stars was given by Cowling

(1941), who considered the non-radial, adiabatic oscillations of non-rotating poly-

tropes, and coined the terminology of f -, p-, and g-modes, that is now in common

usage. Cowling considered the possibility of both resonant and non-resonant exci-
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tation of g-modes in binary systems, but did not actually calculate the resulting

amplitudes or energy transfers. He considered a harmonic external tidal potential,

and concluded that g-mode resonances would not significantly contribute to the tides

in binary systems for two reasons: (i) g-modes have relatively small overlap with the

tidal potential compared to the f -modes, and (ii) non-linear effects such as shifts in

the eigenfrequencies will quench the excitation of the modes before large amplitudes

can be excited resonantly. While (i) is generally true, it is difficult to see how that

matters if the system spends enough time near a resonance for a g-mode. The overlap

coefficients only determine the rate at which the mode can be excited, and not the

maximum attainable amplitude. Therefore, the validity of Cowling’s argument really

rests on (ii). This issue, in the context of cold, carbon-oxygen-helium white dwarfs,

is addressed in this thesis. For the case of main-sequence stars, Cowling’s work was

extended and improved on by Zahn (1970, 1975), who argued that non-adiabatic

effects from radiative dissipation in the outer layer of stars are likely to be the dom-

inant damping mechanism for g-modes. Zahn’s work has relatively little relevance

for dynamical tides in cold, carbon-oxygen-helium white dwarfs, where adiabaticity

is probably an excellent approximation.

Possibly the first actual calculation of the excitation of dynamic tides in stars

was done in a little-known paper by Burke (1967), where only quadrupolar modes

were considered in a rather unwieldy manner. It is therefore, perhaps, not surprising

that the real forerunner to most current calculations is the elegant analysis by Press

& Teukolsky (1977) of the tidal capture mechanism of Fabian et al. (1975). Press

& Teukolsky calculated the energy transferred to the normal modes of a star as

it and a point-mass pass each other on a relative parabolic orbit, which is a good

approximation to a periastron passage at high eccentricities. The result is summarized

in the well-known formula:

∆E =

(
GM2

∗

R∗

)(
M0

M∗

)2 ∞∑

`=2

(
R∗

Rp

)2`+2

T`(η) , (2.1)

where Rp is the periastron separation, T`(η) is a dimensionless, positive definite func-
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tion, and η is a quantity which measures the duration of periastron passage (Press

& Teukolsky, 1977). Press & Teukolsky assumed that mode damping times are long

compared to the periastron fly-by time, but short compared to an orbital period.

This effectively reduces the total energy transfer over a number of orbits to the sum

of energy transfers over each individual periastron passage (it is assumed that the

orbit is eccentric enough for tidal effects to be ignored away from periastron). In this

case, an energy-based formalism, such as the one used by Press & Teukolsky, suffices,

because the initial amplitudes of the modes before each periastron passage are negli-

gible. However, if the mode damping times are longer than the orbital period, then

the formalism is clearly inadequate, as it does not account for the relative phasing

of the modes and the orbit. Depending upon the phasing, energy can be transferred

from the modes to the orbit as well as vice versa. Another way of saying this is that

the energy transfer to the modes can be positive as well as negative, which the Press

& Teukolsky formula obviously does not allow.

Subsequent to Press & Teukolsky (1977), there were a number of authors who

considered the excitation of modes on main-sequence stars, mostly for applications

to X-ray binaries (e.g., Papaloizou & Pringle, 1980, 1981b,a; Savonije & Papaloizou,

1983, 1984). Papaloizou & Pringle (1980) used a perturbative approach to consider

the effect of tidal resonances on the motion of the apsidal line in close, nearly circular

systems, and found that the resonances could alter the motion to the point of changing

the direction of precession. Their work was extended and elaborated by Quataert

et al. (1996), Smeyers et al. (1998), and Willems et al. (2003). Savonije & Papaloizou

(1983, 1984) considered the passage of close binary systems with massive stars through

resonances due to tidal and stellar evolution, and concluded that resonance passages

could increase the efficiency of circularization, especially for low-eccentricity systems.

They also identified a possible phenomenon which they termed ‘resonance locking.’

Essentially, the idea is that a star with a resonant mode in a binary evolves in such a

way so as to counteract the effect of spin-up due to tidal torques, and so ‘locks’ into

a resonance. While an interesting possibility, resonance locking in this way seems to

require a rather delicately fine-tuned system. Further work on resonance locking has
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been done by Witte & Savonije (1999, 2001). Rocca (1982, 1987) also considered the

tidal excitation of toroidal and low-frequency g-modes in similar systems. Terquem

et al. (1998) considered the excitation of g-modes on a non-rotating, solar-type star

with a close companion that could either be another star, or a planet. They applied

their results to the particular case of 51 Pegasi (Mayor & Queloz, 1995), and showed

that the observed variations could not be due to a tidally excited g-mode.

The theory of tidal interactions in binaries found a new set of applications following

the discovery of millisecond pulsars in globular clusters (e.g., Manchester et al., 1991).

Kochanek (1992b), in extending the the work of Press & Teukolsky (1977), recognized

the weakness of the assumption that mode damping time-scales are shorter than

the orbital period following tidal capture. He generalized the Press & Teukolsky

formalism to the case when the initial mode amplitudes are non-zero, and recognized

correctly that, with non-zero inital amplitudes, it is necessary to have an amplitude-

based formalism rather than an energy-based formalism, because the phasing of the

modes relative to the orbit matters.2 Successive periastron passages were modeled

as a discrete random walk in the mode amplitude, with an exponential dissipation

factor representing the damping of modes over some characteristic time-scale:

En+1
m = En

m e−tn
orb

/QT + ∆En+1 + 2
√
En

m∆En+1 e−tn
orb

/QT cosφ , (2.2)

where En
m is the energy in the modes after the nth periastron passage, tnorb is the

orbital period after the nth passage, ∆En+1 is the mean energy transfer at the n+ 1

passage, QT is a damping time constant, and φ is an effectively random phase. The

corresponding evolution of the orbit is also stochastic. Note that the assumption

that φ is random makes it explicit that the process is assumed to be non-resonant.

For very close encounters, Kochanek used the affine model to determine the energy

transfer. He determined that the star would become dynamically unstable if the

2The label ‘amplitude formalism,’ or, more generally, the common usage of the word ‘amplitude’
in this context, is rather unfortunate. Strictly speaking, one would consider an amplitude formalism
to be identical to an energy formalism, because the amplitude is simply a scaled square root of the
energy. What is actually meant is a displacement formalism, which is one where the phase of the
oscillation is included.
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energy transfer exceeded ≈ 0.15GM 2
∗/R∗. This is for an encounter between a main

sequence star and a compact object (modeled as a point-mass), which is the scenario

to which the study was confined.

Kumar et al. (1995) considered the tidal excitation of modes in binary systems

with arbitrary eccentricity. Their approach was rather heuristic, perhaps because it

was tailored for an application to the pulsar PSR J0045–7319, which is believed to be

in a close, highly eccentric orbit with a 10 M� B star companion. The emphasis was

on observational properties which could be used to probe stellar or orbital parameters.

In anticipation of gravitational wave detectors, there have been studies of how the

gravitational wave signals from sources such as coalescing neutron star-neutron star

binaries would be affected by finite-size effects. Generally, the consensus has been

that tidal effects will be small except for the final few orbits before coalescence (e.g.,

Kochanek, 1992a; Bildsten & Cutler, 1992). However, Lai (1994) noted that these

studies assumed static or quasi-static tides. Lai considered the effects of the resonant

excitation of g-modes in coalescing neutron stars. His results were that a dynamical

tidal lag develops even in the absence of fluid viscosity, but that the excitation of

g-modes would not be important for gravitational wave detections, though it may

contribute to tidal heating of the neutron stars up to a temperature of ∼ 108 K

before merger. Similar considerations for the more general case of rotating stars

were discussed by Ho & Lai (1999), based on a study on the effects of rotation

on excitation of dynamical tides in stars by Lai (1997). Reisenegger & Goldreich

(1994) also considered the resonant excitation of g-modes during a neutron star binary

inspiral slightly before Lai (1994), and reached a similar conclusion regarding the

importance for gravitational wave detections.

Polfliet & Smeyers (1990) presented yet another formulation of the theory of

forced, adiabatic, stellar oscillations in a language that is, perhaps, rather more

complicated than necessary. The stars were assumed to be non-rotating, and per-

turbations of the orbit due to the excitation of tides were ignored. Ruymaekers &

Smeyers (1994) presented a similar formalism to investigate the resonant excitation

of modes in a rapidly evolving star, and used a multiple-variable expansion procedure
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to describe the passage through resonance. They found the existence of a phase lag

of π/2 between the dynamic tide and the tidal force, analogous to the lag found by

Lai (1994), near resonance. Their description did not include the perturbation of the

orbit by the excited modes.

Ivanov & Papaloizou (2004) considered the tidal interaction of massive planets on

highly eccentric orbits in the context of the evolution of the planet’s orbital param-

eters. They used the so-called impulse approximation, which treats each periastron

passage as a statistically independent, fly-by excitation event, with the tidal interac-

tion being ignored away from periastron. This is essentially the same formalism as

was given by Kochanek (1992b) for the evolution of tidal capture binaries.

2.3 Variational Formulations

A common feature, present in virtually all the descriptions of tidal excitation in

binary systems mentioned in the previous section, is that, outside of some numerical

integrations, the perturbation of the orbits by the excited tides is neglected. For all

analytical and semi-analytical calculations, the assumption is made that the system

is on a prescribed Keplerian orbit, and any evolution of the orbit is added as a

consequence of tides previously excited. Assuming that the mode damping times

are long compared to the orbital period, this approach is clearly inconsistent, as it

violates conservation of energy and angular momentum during the excitation of the

tides (if energy is being transferred to modes, it has to come out of the orbit, and

hence the orbit must necessarily be evolving as the modes are being excited). Indeed,

with such approaches, it may not even be obvious what the correct expressions for the

conserved quantities are. For example, one might näıvely think that the conserved

energy in the system (once again, assuming negligible dissipation in an orbital period)

is the sum of the orbital and mode energies. This is, in fact, incorrect. The correct

conserved energy includes a contribution from the perturbation of the gravitational

field by the excited tides. Lest one think that such a contribution is negligible, for

close systems, the contribution can be comparable to the energy in the modes.
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One of the advantages to a variational formulation3 of a mechanical problem

is that conserved quantities are easier to identify, and self-consistency is explicitly

maintained in the equations of motion. The first person to identify and use variational

formulations in the context of stellar oscillations was Chandrasekhar (1963, 1964).

However, the first variational formulation of tidal excitation was probably given by

Gingold & Monaghan (1980) in a study of the Roche problem for polytropic stars.

They wrote down a Lagrangian for a point mass-polytropic star system, assuming

an inviscid, homentropic, irrotational flow within the star, and used that Lagrangian

to derive the linearized (in fluid perturbations) equations of motion for the system.

These equations were self-consistent in that they conserved both energy and angular

momentum, explicit expressions for which were identified by Gingold & Monaghan.

The equations of motion were not amenable to analytic solution (an all-too-common

price of self-consistency), and so were integrated numerically for a variety of initial

conditions. The Lagrangian of Gingold & Monaghan was later used by Mardling

(1995a,b) in a study of chaos in the evolution of tidal capture binaries.

In contrast to Gingold & Monaghan, who started with a fluid Lagrangian and de-

veloped a description in terms of normal mode displacements (amplitudes, in common

terminology), Alexander (1987) started with a Hamiltonian in terms of the normal

mode displacements, derived from the Lagrangian, L = T−V , of classical mechanics.4

He used this Hamiltonian, with an averaging technique, to study the dynamics near

a resonance with a given set of modes, and was able to derive expressions for two

constants of the near-resonant motion (one of them was an approximate constant,

valid for low to moderate eccentricities) relating mode variables to orbital variables.

Note that this analysis was fully self-consistent because of the Hamiltonian approach,

and therefore these constants are integrals of the actual motion, and are not easily

derivable via other means. The original analysis was valid for a non-rotating star,

and was later extended to a slowly, rigidly rotating star (Alexander, 1988).

Kokkotas & Schäfer (1995) used the formulation of Alexander (1987) to study the

3Here, by a ‘variational formulation,’ is meant a formulation in terms of a Lagrangian or a
Hamiltonian—i.e., a variational principle.

4Ultimately, though it may not be obvious, the two approaches are demonstrably equivalent.
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resonant and non-resonant excitation of g-modes during the gravitational inspiral of

circular neutron star binaries. An interesting aspect of their approach was to incor-

porate orbital evolution due to gravitational radiation to 5/2 post-Newtonian order

by means of the following explicitly time-dependent reaction Hamiltonian derived by

Schäfer (1990):

Hreac =
2G

5c5
d3Qij(t)

dt3

(
PiPj

µ
−GMµ

RiRj

R3

)
, (2.3)

where µ is the reduced mass, M is the total mass, Ri is the orbital separation vec-

tor, Pi = µṘi is the linear momentum, and Qij = µ(RiRj − δijR
2/3) is the mass

quadrupole tensor of the two-body system. They integrated the equations of mo-

tion numerically, and reported a tidally induced phase difference from the Newtonian

and first-order post-Newtonian gravitational waveform, which becomes significant

at the final stage of coalescence. They also noted the existence of a orbital insta-

bility due to tidal interactions, which causes coalescence to proceed more rapidly

inside a critical orbital separation. This instability was previously discovered by Lai

et al. (1993b, 1994), who used an approach based on ellipsoidal figures of equilibrium

(Chandrasekhar, 1969; Lai et al., 1993a) to study the tidal interactions.

The work of the following authors is not of direct relevance to the study of tidal

interactions, but is tangentially related by their usage of variational formalisms. Ku-

mar & Goldreich (1989) studied non-linear effects for solar non-radial oscillations in

terms of a Hamiltonian describing oscillations of a stratified, plane-parallel, perfect

gas atmosphere. They found that three-mode couplings were insufficient to limit the

growth of overstable p-modes. Van Hoolst (1994) described a Hamiltonian formal-

ism for the study of free, non-linear, adiabatic oscillations of stars. His approach

was based on considering Lagrangian perturbations of a star’s total energy (the sum

of kinetic, internal, and gravitational potential energies) around a static equilibrium

state, and he derived equations describing mode couplings up to third-order in the

mode amplitudes. Forced oscillations were not considered.
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Chapter 3

Summary of This Work

This dissertation is mostly concerned with developing techniques to answer two re-

lated sets of questions regarding tidal effects in WDCO binaries:

1. How much energy can be transferred resonantly to the white dwarf normal

modes (mostly, the ` = m = 2 f -mode) during gravitational inspiral? Is it

possible to drive the mode amplitudes into potentially non-linear regimes before

tidal disruption?

2. What is the full, non-linear evolution of a large amplitude f -mode excited res-

onantly? Does the mode damp via coupling to other modes, perhaps in a

Kolmogorov-type cascade of energy to smaller scales? Or, does the mode ‘break’

like a surface wave on an ocean?

The answers to these questions will allow us to address issues, such as whether it is

possible to heat a white dwarf tidally before disruption so that it may detonate, or

whether finite-size effects are likely to be important in gravitational wave detections

of WDCO systems.

There are a number of simplifying assumptions made throughout. We restrict

ourselves to non-rotating stars because white dwarfs are observed generally to be

slowly rotating, and they are not expected to maintain corotation during inspiral (cf.

Bildsten & Cutler, 1992). However, this may need further investigation. In addition,

we mostly confine our attention to the ` = m = 2 f -mode, because it is expected

to be the dominantly excited one. Nonetheless, our formalism may be applied to
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other modes as well. Of particular interest may be g-modes, as these have lower

frequencies than f -modes, and can therefore be excited at fundamental resonance in

circular orbits before tidal disruption.

In Chapter 4, a variational approach to tidal excitation is developed. The starting

point is the ordinary Lagrangian from classical mechanics generalized to a continuous

system. The theory is then developed until a Lagrangian valid for any perfect fluid

flow in an arbitrary non-inertial frame is obtained. This Lagrangian is then coupled

to a point mass, and the description is specialized to a homentropic, irrotational flow,

which is appropriate for a non-rotating, cold, carbon-oxygen-helium white dwarf. The

next step is the expansion of fluid quantities into equilibrium and perturbation pieces.

Retaining terms to quadratic order in the perturbations, a Lagrangian is obtained

which consists of a zeroth-order piece that describes the equilibrium configuration, a

first-order piece which describes the gravitational coupling of the perturbations to the

point mass, and a quadratic piece which describes the structure of the perturbations.

This Lagrangian is then used to solve for the normal mode structure and to obtain the

equations of motion. Expressions for the conserved energy and angular momentum

are identified. The equations of motion and the conserved quantities are expressed in

terms of the mode displacements (which are the normal coordinates for the system),

and a Hamiltonian is obtained in terms of the mode displacements and their conjugate

momenta which completely encapsulates the excitation of tides, to linear order.

In Chapter 5, the equations of motion are considered in the approximation that

the perturbation of the orbit by the excited modes can be neglected for the purpose

of mode excitation. We refer to this as the no back reaction approximation. Using

the Peters (1964) prescription for the secular evolution of orbital elements due to

lowest-order gravitational radiation, the energy transfer is calculated semi-analytically

by direct comparison with a harmonic oscillator problem solved previously in the

chapter. A number of physical considerations such as the tidal limit, mode damping,

thermal evolution of the white dwarf are discussed as well. A long-term picture of

passage through many resonances for a given mode is developed, which bears a strong

similarity to the description of tidal capture binaries given by Kochanek (1992b). It
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is shown that back reaction will significantly modulate the energy transfer in some

regimes, and those regimes are delineated in parameter space. It is also speculated

that back reaction may determine the sign of energy transfer even when it does

not modulate the magnitude significantly. In addition, it is shown that large, and

potentially non-linear, amplitudes for the ` = m = 2 f -mode can be excited for a

variety of initial conditions.

In Chapter 6, the resonant energy transfer including back reaction (i.e., including

the feedback effect of tidal pertubations to the orbit on mode excitation) is considered

using a Hamiltonian formalism similar to that used by Alexander (1987). The first

part of the analysis is inspired directly by his development. The problem is formulated

in terms of action-angle variables of the uncoupled mode-orbit system. It is shown

that, near a particular resonance, modes with ` = m are excited the most, and, as a

simplification, are the only ones considered. A series of canonical transformations are

carried out which allow the two constants of motion previously found by Alexander

(1987) to be obtained. The problem is reduced in this way from four to two degrees of

freedom. It is then shown that the problem may be further reduced to a single degree

of freedom. Tidal resonances in this context are demonstrated as corresponding to

separatrix crossings by the system in phase space. The one degree of freedom problem

is shown to be similar to the Hamiltonian analysis of first-order eccentricity resonances

in the restricted three-body problem. While, usually, reduction to the three-body

problem is not the most promising step in solving a given problem, this case is an

exception, and an estimate of the resonant energy transfer is obtained by leveraging

results obtained for the eccentricity resonances in the literature.

In Chapter 7, a code for studying the fully non-linear evolution of large amplitude

modes is described. The results from number of test problems such as advection of

pulses, pressure-free collapse, and the Sod shock tube are presented. Issues with set-

ting up satisfactory equilibrium configurations for barotropic stars such as cold white

dwarfs are discussed. Results from simulations of white dwarfs both in hydrostatic

equilibrium and pulsating are shown. It is found that the dominant quadrupolar

pulsation frequency is in excellent agreement with the predicted quadrupolar f -mode
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eigenfrequency from the linear theory. The numerical quality factor for the quadrupo-

lar f -mode is estimated to be ∼ 6000.

In Chapter 8, results from simulations of resonant excitation of the ` = m = 2

quadrupolar f -modes are presented. Issues with estimating the mode amplitudes

are discussed, as well as interpretations of the simulations. Evidence for non-linear

coupling between the ` = m = 2 f -mode and other modesis found. Limitations of the

presented simulations and directions for future work are discussed.

In Chapter 9, the results obtained in the preceding chapters are applied to evaluate

the plausability of tidally detonated supernovae, and impacts on gravitational wave

signals from WDCO systems due to resonant tidal effects.

In Part IV, a summary of the main conclusions is presented.



26

Part II

Resonant Excitation of Modes
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Chapter 4

Basic Formalism

The preferred approach to tidal excitation in this dissertation is a harmonic analysis

based on a variational formulation of fluid mechanics. For the case of a perfect fluid,

such a formulation is especially convenient in that it maintains self-consistency in the

equations of motion, and allows for easy identification of conserved quantities.

We prefer to begin from first principles and derive most of our results ab initio.

There is an important reason for this. One goal of this dissertation is to develop a

fairly complete account of a variational approach to the excitation of dynamical tides

(ignoring non-adiabatic effects and stellar rotation). The literature on the subject

is varied, and fragmented. Heuristic approaches, which often suffice for individual

problems, tend to obfuscate the common elements shared by many of those problems.

There appears to be no single account that presents the material in an unified manner

which both exposes the elegant, underlying simplicity of the theory, and maintains

a level of flexibility that makes it applicable to a broad range of problems. More

than just an aesthetic goal, there are real advantages to having an unified description

which begins with first principles and elucidates the steps and, most importantly, the

assumptions made in solving a given problem. Such a development makes explicit the

limitations to the applicability of a result, and allows for clear paths to generalizations

of existing results. For example, the Lagrangian of Gingold & Monaghan (1980) is

only valid for irrotational, barotropic flows. Without knowing how one arrives at

that Lagrangian, there is no obvious way to adapt their approach to a more general

equation of state, or to a star with non-zero vorticity. While, for a non-rotating,
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cold, carbon-oxygen-helium white dwarf, the Gingold & Monaghan Lagrangian is

adequate, the generalization to a more realistic warm white dwarf model which can

support g-modes is not obvious. Although this thesis does not need the generalization,

the development of the Lagrangian in Section 4.1 maintains generality as long as

possible, and then makes it clear where the assumption of a homentropic, irrotational

flow enters. Hence, in principle, there is a path to generalization there that may be

followed.

The development of the formalism is most elegantly done using complex functions

and variables. However, for actual applications, real functions and variables are

considerably simpler to deal with. As a compromise, we develop the formalism in

terms of complex variables through most of the chapter. At the end, a summary is

provided that serves the dual purposes of collecting important results which are used

in later chapters, and writing these results in terms of real functions and variables.

4.1 The Lagrangian

4.1.1 Overview of Variational Fluid Mechanics

In this section, we outline some of the important results from a variational formula-

tion of fluid mechanics. Our discussion follows the review by Salmon (1988), where

a more detailed exposition may be found. An important difference is that we have

extended the formalism to accommodate a self-gravitating fluid in a non-inertial ref-

erence frame. A more recent review, which describes the variational formulation of

Newtonian fluid mechanics from a somewhat different perspective that is inspired by

general relativistic analogues, has been given by Prix (2004).

The simplest variational formulation of fluid mechanics is to use a continuum

version of the Lagrangian from classical particle mechanics. In this approach, the

Lagrangian for the fluid is just the classical Lagrangian for a system of particles

distributed continuously in space. Let x (a , τ) be the position, relative to the center-

of-mass, of the fluid particle identified by the labeling coordinates a at time τ . We
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shall distinguish between the time coordinates τ and t. These are equal in value, but

partial derivatives with respect to τ are at constant a , whereas those with respect to t

are at constant x—in other words, ∂/∂τ corresponds to a convective derivative. There

is considerable freedom in the choice of labeling coordinates, but it is convenient to

choose them so that they are related to the mass density of the fluid by

ρ =
∂(a)

∂(x )
. (4.1)

It should be noted that this just corresponds to the choice of a constant mass for the

fluid particles (i.e., the mass density of the fluid is directly proportional to the number

density of particles). This has the advantage that mass conservation is implicit in our

choice of a , as can be verified by a direct application of ∂/∂τ to (4.1):

∂ρ

∂τ
+ ρ∇ · u = 0 , (4.2)

where u ≡ ∂x/∂τ , ∇ is the gradient operator in x -space, and we have used the fact

that the inverse of a matrix A may be written as

A−1
ji =

∂ ln‖A‖
∂Aij

, (4.3)

where ‖A‖ ≡ det(A). We can now write down the Lagrangian for the fluid as

L∗ =

∫
da

[
1

2

(
∂R∗

∂τ
+
∂x

∂τ

)2

− E
(
∂(x )

∂(a)
, S(a)

)
− Φ(x )

]
, (4.4)

where R∗ is the location of the center-of-mass, Φ is the potential for external forces,

and E is the specific internal energy which is a prescribed function of the specific

volume ρ−1 and the specific entropy S. Note that S depends only on the labeling
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coordinates a .1 This is, in essence, the perfect fluid approximation:

∂S

∂τ
= 0 .

It can be shown that the variation with respect to x of (4.4) yields the Euler equation

(see Appendix A).

For computational purposes, it is more convenient to rewrite (4.4) in Eulerian

form. This is straightforward to accomplish by noting that the time-dependent map

x = x (a , τ) uniquely determines the inverse map a = a(x , t). Therefore, the re-

quirement that the action be stationary under arbitrary variations δx in the forward

map is equivalent to the requirement that the action be stationary under variations

δa in the inverse map. After dropping two total time derivatives, we can now write

the fluid Lagrangian as

L∗ =
1

2
M∗Ṙ

2

∗ +

∫
dx

{
ρ

[
1

2
u · u − E (ρ, S(a)) − Φ(x )

]
+
∂ρ

∂t
x · Ṙ∗

}
, (4.5)

where M∗ is the total mass of the fluid. However, before we can consider the variation

with respect to a of (4.5), we must express the velocity u as a function of a and its

derivatives. Alternatively, we can include the relevant relations as constraints in the

Lagrangian and then vary u and a independently. The required relations are given

by

0 =
∂a

∂τ
=
∂a

∂t
+ (u · ∇)a (4.6)

which are the so-called Lin constraints. We may also include mass conservation (4.2)

as a constraint in the Eulerian form (4.5) of the Lagrangian. This gives us

L∗ =
1

2
M∗Ṙ

2

∗ +

∫
dx

{
ρ

[
1

2
u · u − E (ρ, S(a)) − Φ(x ) − ζ · ∂a

∂τ

]

+ φ

[
∂ρ

∂t
+ ∇ · (ρu)

]
+
∂ρ

∂t
x · Ṙ∗

}
,

(4.7)

1It follows that any transformation of the labeling coordinates which leaves the density and the
entropy unchanged is a symmetry of the system. Vorticity conservation can be shown to follow as a
consequence of this ‘particle re-labeling’ symmetry. See Salmon (1988) for details.
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where ζ and φ are Lagrange multipliers, and we now consider the independent vari-

ations δu , δa , δζ, δρ, and δφ.

The u variation of (4.7) yields

u = ζi∇ai + ∇φ , (4.8)

which can be used to eliminate u from the Lagrangian. After dropping a time deriva-

tive and integrating one term by parts, (4.7) becomes

L∗ =
1

2
M∗Ṙ

2

∗ −
∫
dx

{
ρ

[
ζ · ∂a

∂t
+
∂φ

∂t
+

1

2
u · u + E (ρ, S(a)) + Φ

]

− ∂ρ

∂t
x · Ṙ∗

}
,

(4.9)

where u is now just an abbreviation for (4.8), and the independent variations δa , δζ,

δρ and δφ are to be considered.

So far, we have neglected the effects of self-gravitation, considering Φ to be an

externally imposed potential. We may now incorporate self-gravity in our formalism

by including the Lagrangian for Newtonian gravitation. Our most general perfect-

fluid Lagrangian is then

L∗ =
1

2
M∗Ṙ

2

∗ −
∫
dx

{
ρ

[
ζ · ∂a

∂t
+
∂φ

∂t
+

1

2
u · u + E (ρ, S(a)) + Ψ + Φ

]

+
1

8πG
∇Ψ · ∇Ψ − ∂ρ

∂t
x · Ṙ∗

}
,

(4.10)

where Ψ is the self-gravitational potential, and the independent variations are δa ,

δζ, δρ, δφ, and δΨ. If the external potential Φ is due to the gravitational field of a

point-mass M0, then the Lagrangian for the whole system, in the center-of-momentum
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frame, becomes

L =
1

2
µṘ

2
+

∫
dx ρ

GM0

|x −R|

−
∫
dx

{
ρ

[
ζ · ∂a

∂t
+
∂φ

∂t
+

1

2
u · u + E (ρ, S(a)) + Ψ

]

+
1

8πG
∇Ψ · ∇Ψ +

M0

M

∂ρ

∂t
x · Ṙ

}
,

(4.11)

where R ≡ R0−R∗ is the orbital separation vector, M ≡M0 +M∗ is the total mass,

and µ ≡M0M∗/M is the reduced mass. This Lagrangian is valid for arbitrary perfect

fluid flows.2

4.1.2 Homentropic Potential Flow

The variation of (4.11) with respect to a gives us

∂ζ

∂τ
=
∂E
∂S

∂S

∂a
. (4.12)

We now derive the conditions on ζ for a homentropic potential flow. By definition, the

velocity field for a potential flow has the representation u = ∇χ′ for some arbitrary

scalar potential χ′. Defining a new potential χ such that χ′ = χ+φ, the velocity field

can be written as

u = ∇χ+ ∇φ =
∂χ

∂ai
∇ai + ∇φ .

Comparing this expression with (4.8), we find that, for a potential flow,

ζi =
∂χ

∂ai

. (4.13)

2It is, in fact, possible to generalize our variational formulation to include non-adiabatic flows.
One way to achieve this is by considering the entropy content as a separate fluid constituent with
its own velocity. Thus, effectively, entropy is treated as a gas whose particles correspond to thermal
excitations (e.g., phonons). It is precisely the possibility of different velocities for the matter and
entropy constituents that allows non-adiabaticity in the flow. We do not consider this possibility to
avoid being overly general. More details and references may be found in Prix (2004).



33

We now note that for a homentropic fluid it follows from (4.12) that χ(a , τ) = χ1(a)+

χ2(τ). Therefore, after substituting (4.13), we find that the Lagrangian (4.11) takes

the form

L =
1

2
µṘ

2
+

∫
dx ρ

GM0

|x − R|

−
∫
dx

{
ρ

[
∂(χ1 + φ)

∂t
+

1

2
[∇(χ1 + φ)]2 + E(ρ) + Ψ

]

+
1

8πG
∇Ψ · ∇Ψ +

M0

M

∂ρ

∂t
x · Ṙ

}
.

Since χ1 and φ only appear as the combination χ1 + φ, we can re-define χ1 + φ→ φ

to obtain

L =
1

2
µṘ

2

−
∫
dx

{
ρ

[
∂φ

∂t
+

1

2
∇φ · ∇φ+ E(ρ) + Ψ − GM0

|x −R|

]

+
1

8πG
∇Ψ · ∇Ψ +

M0

M

∂ρ

∂t
x · Ṙ

}
.

(4.14)

It follows from our method of construction that all homentropic potential flows can

be derived from (4.14) with φ as the velocity potential.

The conservative nature of gravitational forces guarantees that, in the absence of

dissipation, tidal excitation will not generate vorticity. Therefore, if the fluid starts

out with zero vorticity then the flow will always remain irrotational. We can therefore

use (4.14) for problems involving non-rotating, homentropic stars such as cold white

dwarfs. From here onwards we shall assume this to be the case.
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4.2 Equations of Motion and Normal Modes

4.2.1 Equations of Motion

We consider the perturbations to φ, Ψ, and ρ around a static, spherically symmetric

equilibrium fluid configuration:

φ(x , t) = φ0(r) + φ1(x , t) ,

Ψ(x , t) = Ψ0(r) + Ψ1(x , t) ,

ρ(x , t) = ρ0(r) + ρ1(x , t) ,

where r ≡ |x |. Retaining terms up to quadratic order in the perturbations, we can

separate the Lagrangian as

L = L0 + L1 + L2 , (4.15)

where L0 describes the equilibrium configuration, L2 describes the structure of the

perturbations, and L1 describes the orbit-perturbation interaction. After making the

perturbative expansion, we obtain

L0 =
1

2
µṘ

2
+
GM0M∗

R

−
∫
dx

[
ρ0E0 + ρ0Ψ0 +

1

8πG

(
dΨ0

dr

)2
]
,

(4.16)

L1 = −
∫
dx

{
ρ0

(
φ̇1 + Ψ1

)

+ ρ1

(
h0 + Ψ0 −

GM0

|x − R|

)

+
1

4πG

dΨ0

dr

∂Ψ1

∂r
+
M0

M
ρ̇1x · Ṙ

}
,

(4.17)

L2 = −
∫
dx

{
ρ1

(
φ̇1 + Ψ1

)
+

1

2

c2s
ρ0
ρ2

1

+
1

2
ρ0∇φ1 · ∇φ1 +

1

8πG
∇Ψ1 · ∇Ψ1

}
,

(4.18)
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where R ≡ |R|, and h0 and cs are the unperturbed specific enthalpy and adiabatic

sound speed, respectively. The variations of L0 with respect to R, ρ0, and Ψ0 yield

µR̈ = −GM0M∗

R2
R̂ , (4.19)

h0 + Ψ0 = 0, (4.20)

1

r2

d

dr

(
r2dΨ0

dr

)
= 4πGρ0 , (4.21)

where R̂ is a unit vector. Together with the equation of state for the fluid, (4.19)–

(4.21) determine the unperturbed configuration.

To determine the equations for the perturbations, we consider the variations of L

with respect to φ1, ρ1 and Ψ1. These give us

ρ̇1 + ∇ · (ρ0∇φ1) = 0 , (4.22)

φ̇1 +
c2s
ρ0
ρ1 + Ψ1 =

GM0

|x − R| +
M0

M
x · R̈ , (4.23)

∇2Ψ1 = 4πGρ1 . (4.24)

It is straightforward to show that, with M0 = 0, (4.22)–(4.24) are the conventional

equations for the normal modes of a non-rotating, homentropic star (see Section 4.2.2

below).

The equation for the orbit, including the back reaction of the perturbations, is

obtained by considering the variation of L with respect to R:

µR̈ = −GM0M∗

R2
R̂ +

∂

∂R

∫
dx

GM0ρ1

|x −R| , (4.25)

where we have used the fact that

∫
dx ρ1x = 0

(this is equivalent to choosing the origin of the coordinates x to be the center-of-mass

of the fluid).
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4.2.2 Normal Modes

We expand |x − R|−1, φ1, ρ1, and Ψ1 in terms of spherical harmonics:

1

|x − R| =
∑

`,m

4π

2`+ 1

r`

R`+1
Y ∗

`m(R̂)Y`m(x̂ ) ,

φ1(x , t) =
∑

`,m

φ`m(r, t)Y`m(x̂ ) ,

and likewise for ρ1 and Ψ1. After inserting the expansions and integrating over angular

coordinates, (4.22)–(4.24) become

ρ̇`m +
1

r2

∂

∂r

(
r2ρ0

∂φ`m

∂r

)
− `(`+ 1)

r2
ρ0φ`m = 0 , (4.26)

φ̇`m +
c2s
ρ0

ρ`m + Ψ`m = − GM0

R

4π

2`+ 1

( r
R

)`

Y ∗
`m(R̂)

+ δ`,1
4π

3

M0

M
r|R̈|Y ∗

`m( ˆ̈
R) ,

(4.27)

1

r2

∂

∂r

(
r2∂Ψ`m

∂r

)
− `(`+ 1)

r2
Ψ`m = 4πGρ`m . (4.28)

The first term on the right hand side of (4.27) is a forcing term that couples the modes

to the gravitational potential of the point-mass. The second term is only present for

dipolar modes and cancels the first term for that case. Thus, dipolar modes are not

tidally excited. This is to be expected since the origin of the coordinates x is the

center-of-mass of the fluid.

The temporal Fourier transforms of (4.26)–(4.28), with M0 = 0, give

[
1

r2

d

dr
r2ρ0

d

dr
− `(`+ 1)

r2
ρ0

]
φ̃`m = −iωρ̃`m, (4.29)

iωφ̃`m +
c2s
ρ0
ρ̃`m + Ψ̃`m = 0, (4.30)

[
1

r2

d

dr
r2 d

dr
− `(`+ 1)

r2

]
Ψ̃`m = 4πGρ̃`m , (4.31)

where ρ̃`m, φ̃`m and Ψ̃`m are the temporal Fourier transforms of ρ`m, φ`m, and Ψ`m,

respectively. We can use (4.30) to eliminate ρ̃`m from (4.29) and (4.31). This yields
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the two second-order equations

[
1

r2ρ0

d

dr
r2ρ0

d

dr
− `(`+ 1)

r2
+
ω2

c2s

]
φ̃`m = i

ω

c2s
Ψ̃`m , (4.32)

[
1

r2

d

dr
r2 d

dr
− `(`+ 1)

r2
+

4πGρ0

c2s

]
Ψ̃`m = −i

4πGρ0ω

c2s
φ̃`m . (4.33)

With the definitions

η1 ≡
1

iωr

dφ̃`m

dr
, η2 ≡

ω

igr
φ̃`m ,

η3 ≡
1

gr
Ψ̃`m , η4 ≡

1

g

dΨ̃`m

dr
,

(cf. Dziembowski, 1971) and

U ≡ d lnM
d ln r

, V ≡ −d lnP0

d ln r
,

Γ1 ≡
(
∂ lnP

∂ ln ρ

)

s

, C ≡ M∗

M

(
r

R∗

)3

,

σ2 ≡ R3
∗

GM∗
ω2 ,

where

M(r) ≡
∫ r

0

dr′ 4πr′2ρ0(r
′) ,

g(r) ≡ GM(r)

r2
,

and after some manipulation, (4.32) and (4.33) give the four first-order equations

r
dη1

dr
=

(
V

Γ1

− 3

)
η1 +

[
`(`+ 1)

σ2C
− V

Γ1

]
η2 +

V

Γ1

η3 , (4.34)

r
dη2

dr
= σ2Cη1 + (1 − U)η2 , (4.35)

r
dη3

dr
= (1 − U)η3 + η4 , (4.36)

r
dη4

dr
=
UV

Γ1
η2 +

[
`(`+ 1) − UV

Γ1

]
η3 − Uη4 . (4.37)



38

These are the conventional equations for the normal mode structure of a non-rotating,

homentropic star (cf. Cox, 1980; Kippenhahn & Weigert, 1990).

To have a well-posed problem, we need to specify four boundary conditions. At

the center of the star, we require that the variables ηi be well-behaved. Expanding

in a power series around r = 0, we have

ηi =

∞∑

α=0

A(i)
α r

α .

Substituting into (4.34)–(4.37), and using the facts that

lim
r→0

U = 3 ,

lim
r→0

V = 0 ,

lim
r→0

C = constant ,

we find that the only non-vanishing coefficients correspond to α = `− 2, and

`η2 = σ2Cη1 , (4.38)

η4 = `η3 , (4.39)

which constitute our boundary conditions at the center. At the surface, we require

that Ψ`m satisfy the Laplace equation. This gives

η4 = −(` + 1)η3 , (4.40)

at r = R∗, as our third boundary condition. Finally, from (4.34) and using the

condition that

lim
r→R∗

V =
GM∗

R∗
lim

r→R∗

ρ0

P0
= ∞

(cf. Cox, 1980), we get a fourth boundary condition that

η2 = η1 + η3 , (4.41)
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at the surface. Together with the boundary conditions (4.38)–(4.41), (4.34)–(4.37)

constitute an eigenvalue problem for the normal modes.

We now turn to the problem of determining the physical displacement of fluid

elements from the unperturbed configuration in terms of the ηi. Expanding φ̃1 (the

temporal Fourier transform of the perturbation to φ) in terms of the normal modes,

we have

φ̃1 =
∑

n,`,m

x̃n`m(ω)

R∗
φ̃n`m(r)Y`m(x̂ ) ,

where φ̃n`m is a normalized eigenfunction, and we use the subscript n to distinguish

between the various modes corresponding to the same `,m. Using the fact that

ξ̇ = ∇φ1, where ξ is the physical displacement of fluid elements, we find

ξ̃(x , ω) =
∑

n,`,m

x̃n`m(ω)

R∗
ξ̂n`m(x ) , (4.42)

where

ξ̂n`m(x ) ≡
(
rη1x̂ +

r2

σ2C
η2∇

)
Y`m(x̂ ) .

The displacement field ξ(x , t) is just the temporal inverse Fourier transform of (4.42).

Note that by taking the gradient of (4.23), it is straightforward to see that the

normal modes ξ̂n`m satisfy

[
∇
(
c2s
ρ0

ρ1 + Ψ1

)]
(ξ̂n`m) = ω2

n`mξ̂n`m ,

where the left hand side is a linear, spatial operator:

D(ξ) ≡ ∇
[
− c

2
s

ρ0
∇ · (ρ0ξ) +G

∫
dx ′ ∇′ · (ρ′0ξ′)

|x ′ − x |

]
, (4.43)

where we have used (4.47) and (4.24) to write ρ1 and Ψ1 in terms of ξ. It can be proved

that the operator D is Hermitian with respect to mass (Chandrasekhar, 1964; Cox,

1980). Its eigenvalues are therefore guaranteed to be real, and it is generally assumed

that its eigenfunctions (the normal modes) form a complete orthogonal set. One
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possible choice of normalization for the eigenfunctions, used by Press & Teukolsky

(1977), is to normalize the modes by mass:

∫
dx ρ0ξ̂

∗
j′ · ξ̂j = δj,j′ (4.44)

(we shall often use a single index such as j as shorthand for the set of indices required

to specify a mode uniquely). However, for us it is more convenient to choose the

normalization so that

η1(R∗) = 1 , (4.45)

and to define an effective mode mass:

Mj ≡
1

R2
∗

∫
dx ρ0|ξ̂j|2 . (4.46)

With this normalization, the ξ̂j have dimensions of length, and the mode amplitudes

are dimensionless. Furthermore, the amplitude of a mode provides a measure of mode

non-linearity.

4.2.3 Displacement Formulation

It is convenient to write the equations for tidal excitation in terms of the normal mode

displacements (amplitudes, in common usage). Let ξ be the physical displacement

field of fluid elements within the star. Integrating (4.22) with respect to time and

setting the integration constant to zero, we get

ρ1 = −∇ · (ρ0ξ). (4.47)

Taking the gradient of (4.23), we have

ξ̈ + D(ξ) = ∇
(

GM0

|x − R|

)
+
M0

M
R̈ . (4.48)
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Expanding ξ as

ξ(x , t) =
∑

j

xj(t)

R∗
ξ̂j(x ) (4.49)

in (4.48), and then projecting out a single mode gives

ẍj + ω2
jxj =

fj(R)

Mj
+

M0

MMj

R̈

R∗
·
∫
dx ρ0ξ̂

∗
j , (4.50)

where

fj(R) ≡ GM0

R∗

∫
dx ρ0ξ̂

∗
j · ∇

(
1

|x −R|

)
. (4.51)

This is just a forced, harmonic oscillator with natural frequency ωj. The second term

on the right side of (4.50) is non-zero only for for monopolar (i.e., radial) modes and

cancels the first term for that case. This is a mathematical statement of the fact

that monopolar modes are not tidally excited. It is convenient to rewrite the overlap

integral fj by performing an integration by parts and using (4.24):

fj(R) = −M0

R∗
Ψ∗

j(R) .

Using the solution to the Laplace equation in spherical coordinates with boundary

conditions at r = R∗ set by the variable η3 for mode j, we get

fj(R) = −GM0M∗

R2
∗

η3j(R∗)

(
R∗

R

)`+1

Y ∗
`m(R̂) . (4.52)

In terms of coordinates in the plane of the orbit, this can be written as

fj(R) = −GM0M∗

R2
∗

η3j(R∗)Y`m

(π
2
, 0
)(R∗

R

)`+1

e−imu , (4.53)

where u is the angular coordinate.

Expanding Ψ1 in terms of Ψj, the equation for the orbit, (4.25), becomes

µR̈ = −GM0M∗

R2
R̂ +

∑

j

xj
∂

∂R
f ∗

j (R) . (4.54)
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4.3 Conservation Laws

To find the conserved energy E, we calculate the time-time component of the energy-

momentum tensor from (4.15) using

T i
j =

∂L
∂(∂iqk)

∂jqk − δi
jL , (4.55)

where L is the Lagrangian density, and qk are the generalized fields. A straightforward

evaluation gives

E =

∫
dx T t

t

=
1

2
µṘ

2 − GM0M∗

R
−GM0

∫
dx

ρ1

|x −R|

+
1

2

∫
dx

(
ρ0∇φ1 · ∇φ1 +

c2s
ρ0
ρ2

1 + ρ1Ψ1

)
,

(4.56)

where we have used (4.24) to eliminate the gravitational self-energy of the perturba-

tions. The total energy is the sum of three components: orbital, perturbation, and

coupling. The various pieces are easily identified in (4.56), which, if written in terms

of the canonical momenta, also corresponds to the Hamiltonian for the system (e.g.,

Barut, 1980).

We can, without loss of generality, assume the orbit to be in the equatorial plane.

The conserved angular momentum Lz can then be calculated from the appropriate

component of the energy-momentum tensor as

Lz =

∫
dx T t

ϕ

= µR2u̇−
∫
dx ρ1

∂φ1

∂ϕ
, (4.57)

where ϕ and u are the azimuthal coordinates associated with x and R, respectively.

It may be noted that the canonical form (4.55) of the energy-momentum tensor

is not manifestly symmetric. However, it is well-known that the tensor can be made
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symmetric by the addition of a suitable divergence term:

T ′ij = T ij +
∂

∂xk
ψijk , ψijk = −ψikj .

We do not need to do this since integral quantities such as (4.56) and (4.57) are

unaffected by such a transformation (Landau & Lifshitz, 1975).

The energy and angular momentum associated with the normal modes also take

on relatively simple forms in terms of the time-dependent displacements xj. From

(4.56), we know that the energy associated with perturbations is

E1 =
1

2

∫
dx

[
ρ0ξ̇ · ξ̇ + ρ1

(
c2s
ρ0
ρ1 + Ψ1

)]
. (4.58)

Substituting (4.47) into (4.58) and then integrating the second term in the integrand

by parts gives

E1 =
1

2

∫
dx ρ0

[
ξ̇ · ξ̇ + ξ · ∇

(
c2s
ρ0
ρ1 + Ψ1

)]
.

Note that the second term in the integrand now involves the same linear operator

that we used to define the normal modes. Expanding ξ as in (4.49) and using the

orthonormality relation (4.46), we find that the energy associated with mode j is just

Ej =
1

2
M2

j

(
|ẋj|2 + ω2

j |xj|2
)
. (4.59)

From (4.57) and (4.47), we know that the angular momentum associated with per-

turbations is

Lpert
z =

∫
dx ∇ · (ρ0ξ)

∂φ1

∂ϕ
.

Performing an integration by parts, we get

Lpert
z = −

∫
dx ρ0ξ · ∂ξ̇

∂ϕ
. (4.60)
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Once again expanding ξ as in (4.49), using (4.46), and the fact that

∂ξ̂j

∂ϕ
= imξ̂j ,

we find that the angular momentum associated with mode j is just

Lj = −imMjx
∗
j ẋj . (4.61)

We shall now derive a simple relation between the energy and angular momentum

associated with an isolated mode (i.e., with fj = 0). In that case, from (4.50) we

have xj(t) ∝ eiωjt. Therefore, from (4.59) and (4.61) we get

Ej

Lj
=

ω2
j |xj|2

mωj|xj|2
=
ωj

m
. (4.62)

This relation is to be expected on physical grounds as follows. If we consider tidally

exciting the mode at resonance in a circular orbit, then the rate at which energy is

transferred to the mode is just

dEj

dt
= τΩ =

dLj

dt

ωj

m
,

where τ is the torque exerted by the perturbing mass, and Ω is the orbital frequency.

Integrating this equation with respect to time and setting the initial mode energy

and angular momentum to zero, we obtain (4.62).

Finally, the conserved energy (4.56) and angular momentum (4.57), written in

terms of the amplitudes, are

E =
1

2
µṘ

2 − GM0M∗

R
−
∑

j

xjf
∗
j (R) +

1

2

∑

j

Mj

(
|ẋj|2 + ω2

j |xj|2
)
, (4.63)

and

Lz = µR2u̇−
∑

j

imMjx
∗
j ẋj . (4.64)
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4.4 Summary

As the azimuthal ‘quantum’ number m does not appear anywhere in the eigenvalue

problem for the normal modes, modes with the same n and ` are degenerate in

frequency and have identical radial eigenfunctions. This is a direct consequence of

ignoring stellar rotation, which breaks this degeneracy. Thus far, we have been dealing

with complex mode displacements because the mode eigenfunctions are complex.

Specifically, the complex displacements are necessary because of our use of complex

spherical harmonics as the angular eigenfunctions (this is only true for m 6= 0; the

m = 0 displacements are always real). It is cumbersome to expand a real function

such as the density perturbation in terms of a complex basis. To avoid this, we

will re-formulate our results in terms of real basis functions, which will make the

displacements real as well. Because of the degeneracy of the (n, `) subspace, we can

rotate our basis within each such subspace to form real combinations of the spherical

harmonics:

ξ̂
(e)
n,`,m ≡





ξ̂n,`,0 , m = 0

1
√

2
(ξ̂n,`,m + ξ̂∗

n,`,m) , m > 0

, (4.65)

ξ̂
(o)
n,`,m ≡





0 , m = 0

1

i
√

2
(ξ̂n,`,m − ξ̂∗

n,`,m) , m > 0

, (4.66)

where now only positive values of m are to be considered. The relations between the

real and complex displacements follow from the above definitions:

x
(e)
n,`,m =

1√
2

[xn,`,m + (−1)mxn,`,−m] , (4.67)

x
(o)
n,`,m =

i√
2

[xn,`,m − (−1)mxn,`,−m] , (4.68)

where the factors of (−1)m enter because of the Condon-Shortley phase convention

(e.g., Arfken & Weber, 1995). From now on we shall use the real eigenfunctions
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exclusively. For economy of notation, we will only note the (e) (even) and (o) (odd)

distinctions when necessary.

It will also be convenient for us to work with dimensionless quantities whenever

possible. Therefore, we shall adopt the ‘natural’ units: M∗, R∗, and ω−1
∗ , where

ω∗ ≡
√
GM∗

R3
∗

. (4.69)

Occasionally, we shall also make use of the definition

β∗ ≡
1

c

√
GM∗

R∗
. (4.70)

Unless stated otherwise, all dynamical quantities will be measured in these units.

In terms of the displacements of the real eigenfunctions, the Hamiltonian (con-

served energy) and the conserved angular momentum, in natural units, are:

H =
p2

R

2µ
+

p2
u

2µR2
− q

R
+
∑

j

(
p2

j

2Mj

+
1

2
Mjω

2
jx

2
j

)
−
∑

j

xjfj , (4.71)

and

Lz = pu +
∑

j

m
[
x

(e)
j p

(o)
j − x

(o)
j p

(e)
j

]
, (4.72)

where q ≡M0/M∗ is the mass ratio, and pR = µṘ, pu = µR2u̇, and pj = Mjẋj are the

momenta conjugate to R, u, and xj, respectively. Note that the reduced mass in the

natural units is µ = q/(1+ q). We therefore see that the Hamiltonian is comprised of

three pieces: the Keplerian terms for the orbit, a sum of harmonic oscillators for the

normal modes, and a sum of terms of the form xjfj which couple the modes and the

orbit. The overlap integral fj therefore plays a dual role as a forcing function for tidal

excitation, and in the disturbing function for the orbit. This is not surprising, since

the system is conservative. Hence, any energy and angular momentum transferred to

the tides must necessarily be extracted from the orbit. In natural units, the overlap
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integral is

fj(R) =
qηj

R`+1





cos(mu)

sin(mu)
, (4.73)

where we have defined

ηj ≡ −η3j(R∗)Y`m

(π
2
, 0
)
, (4.74)

and the bracket notation denotes that either cos(mu) or sin(mu) will be present

(corresponding to the even and odd components, respectively).
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Chapter 5

Resonances Without Back

Reaction

5.1 Preliminaries

5.1.1 Simple Harmonic Oscillator

Consider an undamped simple harmonic oscillator with natural frequency ω0 and

displacement x(t) subject to an external force per unit mass F (t). The equation of

motion,

ẍ + ω2
0x = F (t) , (5.1)

can be easily solved to get

ẋ(t) = < [ζ(t)] , (5.2)

x(t) =
1

ω0
= [ζ(t)] , (5.3)

where

ζ(t) = eiω0t [ζ0 + ζ1(t)] , (5.4)

and

ζ1(t) ≡
∫ t

t0

dt′ e−iω0t′F (t′) . (5.5)
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Choosing t0 = −∞, and for late times, we have

lim
t→∞

ζ1 = F̃ (ω0) , (5.6)

where F̃ (ω0) is the Fourier transform of F (t) evaluated at the resonant frequency. It

follows from the expressions for x and ẋ in terms of ζ that the total energy per unit

mass of the oscillator as a function of time is given by

E(t) =
1

2
|ζ(t)|2 =

1

2

[
|ζ0|2 + |ζ1|2 + 2 |ζ0| |ζ1| cos(φ− φ0)

]
, (5.7)

where φ0 and φ are the phases of ζ0 and ζ1, respectively. Hence, asymptotically,

E = E0 + ε+ 2
√
E0ε cosψ , (5.8)

where E0 ≡ |ζ0|2 /2 is the initial energy, ε ≡ |F̃ (ω0)|2/2, and ψ is an initial phase.

The presence of the ψ-dependent term reflects the fact that the oscillator may gain or

lose energy, depending upon its initial energy and the relative phasing with the driver

near resonance. If we perform an ensemble average over initial phases , assuming a

uniform distribution, we find that the average energy transfer is given by

〈∆E〉 = ε . (5.9)

It is also clear that, for E0 � ε, the initial phase is unimportant and the actual energy

transfer will be very close to the average. The possibility of negative energy transfer

only exists when

E0 >
ε

4 cos2 ψ
.

Note that, since the energy of the oscillator cannot be negative, it must be true that

∆E > −E0. It can be shown that (5.8) complies with this constraint.

Let the external force per unit mass now be of the form

F (t) = F0(t) cos [φ(t)] ,
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with the amplitude F0 and frequency φ̇ being slowly varying functions of time, and

φ̈ > 0. Resonance occurs when the relative phase of the driver and the oscillator

becomes stationary. This gives us the condition φ̇(t) = ω0. We assume that there is

only one passage through resonance, and restrict our attention to the resonant energy

transfer. Let tR be the time when the resonance condition is satisfied, and expand

the driver in a Taylor series around this point:

F (tR + τ) ' F0(tR) cos

[
φ(tR) + ω0τ + φ̈(tR)

τ 2

2

]
. (5.10)

(Since the amplitude varies slowly with time, to lowest order, we can take the ampli-

tude as constant through the resonance.) With the definitions

FR ≡ F0(tR) , φR ≡ φ(tR) , α ≡ φ̈(tR)

ω2
0

,

this becomes

F (tR + τ) ' FR cos

(
φR + ω0τ + α

ω2
0τ

2

2

)
. (5.11)

The parameter α has the physical interpretation of being a measure of the fractional

change in frequency over a characteristic period of oscillation. The requirement that

the frequency of the driver is varying slowly therefore implies α � 1. In other

words, the driver can be considered harmonic with a well-defined frequency over

several periods of the oscillator. We can also view α as a measure of the phase

‘drift’—i.e., a measure of how fast the driver accumulates additional phase. With

this interpretation, it is easy to see that the time spent near resonance is given by

(αω2
0)

−1/2, approximately.

Evaluating the Fourier transform of (5.11) at ω0, we find that the energy per unit

mass changes asymptotically by

∆E =
πF 2

R

4αω2
0

(
1 + 2

√
E0

πF 2
R/4αω

2
0

cosψ

)
. (5.12)

Qualitatively, the velocity is in quadrature with the force well away from resonance,



51

Mass Radius ωf2 Mf2 η3,f2(R∗)/η1,f2(R∗) Θf2

(M�) (108 cm) (ω∗) (10−2 M∗)

0.6 8.83 1.53 2.05 −0.169 9.6 × 107

1.0 5.71 1.65 1.28 −0.124 8.0 × 106

1.4 1.98 1.97 0.25 −0.0412 1.5 × 105

Table 5.1: Homogeneous, cold white dwarf models with µe = 2, and properties of
their quadrupolar f -modes.

but the relative phase of the two becomes approximately stationary near resonance

for a time interval ∼ (αω2
0)

−1/2, and there is a velocity change ∼ FR(αω2
0)

−1/2.

Simple, linear damping is conventionally treated by adding a term 2γẋ to the

left side of (5.1). When γ � (αω2
0)

1/2, the development of the oscillation will be

uninfluenced by damping, although the energy of the oscillation will be converted

steadily into heat. However, when the damping is effective on the time-scale of

energy transfer, the amplitude of the oscillation will be reduced. Nonetheless, it can

be shown that the energy that appears ultimately as heat is still given by (5.12),

independent of γ, as long as γ � ω0 (see, for example, Landau & Lifshitz, 1969).

5.1.2 White Dwarf Oscillations

We confine our attention to homogeneous, non-rotating white dwarfs where the pres-

sure is contributed solely by cold, degenerate electrons. Thermal corrections, Coulomb

effects, as well as compositional discontinuities are ignored. The relevant equations of

stellar structure are described in Kippenhahn & Weigert (1990). We consider three

cases with masses 0.6, 1.0, 1.4 M� for µe = 2. Some relevant properties are given in

Table 5.1.

The linear theory of normal modes for a cold white dwarf has been reviewed in

Chapter 4, and more details can be found in standard references (e.g., Cox, 1980;

Kippenhahn & Weigert, 1990). The most important modes for our purpose are the

quadrupolar f -modes. For a non-rotating star, the five f -modes with ` = 2 are

degenerate in frequency. The eigenfrequencies for our three white dwarf models are

given in Table 5.1. The radial eigenfunctions for the 0.6M� model are displayed in
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Figure 5.1: Radial eigenfunctions of quadrupolar f -modes for the 0.6M� model from
Table 5.1.

Figure 5.1. The eigenfunctions for the other white dwarf models are qualitatively

similar.

5.1.3 Gravitational Radiation

We adopt a Newtonian approach to gravitational radiation reaction in the two-body

problem, neglecting all finite-size effects. Namely, we treat the problem as essentially

Keplerian with prescribed corrections to the orbital equations. For non-relativistic

orbits (v . 0.2c), the secular corrections due to gravitational radiation are provided
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to a fair approximation by the orbit-averaged expressions

dEorb

dt
= −32

5
E∗ω∗

q2

(1 + q)2/3
β5
∗

(
n

ω∗

)10/3

F1(e) , (5.13)

dLorb

dt
= −32

5
E∗

q2

(1 + q)2/3
β5
∗

(
n

ω∗

)7/3

F2(e) (5.14)

(Peters, 1964), where Eorb and Lorb are the orbital energy and angular momentum, q

is the ratio of the companion mass to the white dwarf mass, n is the Keplerian orbital

frequency, e is the orbital eccentricity, and

F1(e) ≡
1

(1 − e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
,

F2(e) ≡
1

(1 − e2)2

(
1 +

7

8
e2
)
.

We can re-express the orbital evolution in terms of changes in the orbital frequency

and eccentricity:

dn

dt
=

96

5
ω2
∗

q

(1 + q)1/3
β5
∗

(
n

ω∗

)11/3

F1(e) , (5.15)

de

dt
= −304

15
ω∗

q

(1 + q)1/3
β5
∗

(
n

ω∗

)8/3

F3(e) , (5.16)

where

F3(e) ≡
e

(1 − e2)5/2

(
1 +

121

304
e2
)
.

If gravitational radiation is the only mechanism for orbital evolution, then it follows

from these equations that

ė = −G(e)
ṅ

n
, (5.17)

where

G(e) ≡ 19

18

F3(e)

F1(e)
.
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Finally, we can integrate the above equation to get

n(e)

n(0.54101)
=

(1 − e2)3/2

e18/19

(
1 +

121

304
e2
)−1305/2299

. (5.18)

As the orbit shrinks, it circularizes, eventually according to e ∝ n−1, approximately.

For a more accurate treatment of gravitational radiation (especially for high ec-

centricities), and for the inclusion of other general relativistic effects, corrections to

the orbital acceleration can be added directly to the equations of motion. Detailed

derivations and discussions of these corrections can be found in the literature (e.g.

Iyer & Will, 1995), and we shall not reproduce them here.

It should be noted that it is not necessary to worry about relativistic apsidal

precession as it will only affect neglected higher-order terms.

5.1.4 Equations of Motion

Neglecting gravitational radiation, the Hamiltonian for the system is given by (4.71).

Hamilton’s equations for this system are

ẍj + ω2
jxj =

fj

Mj

, (5.19)

ṗR =
p2

u

µR3
− q

R2
+ xj

∂fj

∂R
, (5.20)

ṗu = xj
∂fj

∂u
. (5.21)

The terms involving the derivatives of fj give the perturbation of the orbit due to

the excitation of tides, and we therefore refer to them as the back reaction terms. As

was shown in Chapter 4, the overlap integral fj can be written as

fj(R) =
qηj

R`+1





cos(mu)

sin(mu)
. (5.22)
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It will be useful for us to write fj in yet another way. From the usual Keplerian

relation between the orbital frequency n and the semi-major axis a, it follows that

fj =
qηj

(1 + q)(`+1)/3
n2(`+1)/3

( a
R

)`+1





cos(mu)

sin(mu)
.

We now make use of the Fourier expansion

(
R

a

)p

exp(imv) =
∞∑

k=−∞

Xp,m
k (e) exp(ikl) ,

where v is the true anomaly, l is the mean anomaly (not to be confused with `), and

the Fourier coefficients Xp,m
k (called Hansen coefficients; see Appendix B) are real

functions of the eccentricity. Noting that u = v + $, where $ is the longitude of

periapse, we have

( a
R

)`+1





cos(mu)

sin(mu)
=

∞∑

k=−∞

X
−(`+1),m
k (e)





cos(kl +m$)

sin(kl +m$)
. (5.23)

The overlap integral fj is therefore given by

fj =

∞∑

k=0

fjk (5.24)

where

fjk =
qηj

(1 + q)(`+1)/3
n2(`+1)/3

×





[
X+

jk cos(kl +m$) +X−
jk cos(kl −m$)

]
[
X+

jk sin(kl +m$) −X−
jk sin(kl −m$)

] ,

(5.25)

and we have used the shorthand X±
jk ≡ X

−(`+1),m
±k , for economy of notation. It should

be understood in the expression for fjk that, for k = 0, only the X+
jk terms are present.

For k > 0, the X±
jk terms can be combined using trigonometric identities. However,

it is simpler to note that, since Xp,m
k ∝ e|k−m|, to lowest order in eccentricity, the
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X−
jk terms will be suppressed by 2m powers of eccentricity relative to the X+

jk terms.

Therefore, for low to moderate eccentricities (. 0.6) and m > 0, the X−
jk terms can be

neglected to a good approximation. For the case m = 0, the X±
jk terms are identical.

Hence, in all that follows, for m = 0 one only needs to make the change X+
jk → 2X+

jk.

From the preceding discussion, we know that the driving function fj for the exci-

tation of a particular mode is an infinite sum of fjk terms. The phases that appear

in the expression (5.25) for fjk are all of the form kl ± m$. Thus, there exists the

possibility of resonance whenever the relative phase of the mode and one of these

terms is stationary: ẇj = kl̇±m$̇, where wj is the phase of the mode. As mentioned

previously, the kl−m$ terms will be suppressed by 2m powers of eccentricity relative

to the kl+m$ terms. Thus, the dominant resonances will occur for ẇj = kl̇+m$̇. It

might be thought that the above condition is equivalent to ωj = kn, but, in general,

this is not the case. As the evolution of the orbit is dependent upon the tides via

the back reaction terms in the equations of motion, there are complicated, non-linear

dependencies implicit in each of the variables in the resonance condition. However,

since we expect the orbital corrections to be relatively small, it should be true that,

at resonance, ωj ' kn.

5.2 Physical Considerations

5.2.1 The Tidal Limit

Clearly, our formalism for treating the evolution of a WDCO binary as a dynamical

interaction between the orbit and the tides is only valid if the white dwarf is not

tidally disrupted. In other words, we require that the white dwarf does not fill its

Roche lobe. This requirement constrains the harmonics of the orbital frequency that

a given mode can interact resonantly with. To quantify the constraint, we use the

following approximation to the radius of the Roche lobe:

rR
R

=
0.49q−2/3

0.6q−2/3 + ln(1 + q−1/3)
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(Eggleton, 1983). It then follows that we require

k &
2.92ωj

(1 − e)3/2

[
0.6 + q2/3 ln(1 + q−1/3)

]3/2

(1 + q)1/2
, (5.26)

where we have made use of the facts that the orbital separation at periapse is a(1−e),
and that ωj ' kn at resonance. It should be mentioned that we have implicitly

assumed that the companion is more compact than the white dwarf, and hence is not

disrupted. This is certainly true when the companion is a neutron star or a black

hole. However, for the white dwarf-white dwarf case, the actual constraint is provided

by the star that is disrupted first, which may be the companion.

It should also be mentioned that the above approximation for the radius of the

Roche lobe is for circular, synchronous orbits. A more general treatment of the

Roche problem may modify the tidal disruption regime. This is a possibility for

future investigation.

5.2.2 Importance of the ` = m = 2 f -Mode

The lowest ` modes that can be excited tidally are ` = 2. Modes with higher values

of ` will have smaller overlap integrals, since fj ∝ R−(`+1). We may therefore infer

that the primary modes that are excited outside the Roche limit are the ` = 2 modes.

It is also the case that, with our choice of coordinates, the m = 1 modes will not be

excited. This is easily seen by remembering that ηj ∝ Pm
` (0), and

Pm
` (0) =





(−1)(`−m)/2 (`+m− 1)!!

(`−m)!!
, `+m even

0 , `+m odd

(see, for example, Arfken & Weber, 1995). Therefore, the only ` = 2 modes that

are excited have m = 0, 2. Furthermore, since Xp,m
k ∝ e|k−m|, the m = 0 modes will

be suppressed by two powers of eccentricity relative to the m = 2 modes. Hence,

we deduce that the dominant modes for low to moderate eccentricities will have

` = m = 2. Also, since the p-mode frequencies increase monotonically with the radial
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order, we can access (before tidal disruption) the lowest harmonic resonances for the

modes with lowest radial order–the f -modes.

Putting together the above considerations, we conclude that the mode excited

with the largest amplitude in a cold white dwarf will be the ` = m = 2 f -mode. Note

that in a warm star, g-modes can also be excited. These will have lower frequencies

than the f -modes, and their frequencies will decrease monotonically with the radial

order. However, the structure of g-modes is sensitive to assumptions about the stellar

model. If the modes are confined to surface layers, then the overlap integrals will be

essentially zero, and the modes will not be excited tidally.

5.2.3 Mode Damping

The formalism that we have presented in Section 5.1 does not include any mode damp-

ing. In a realistic scenario, white dwarf oscillations will damp out over sufficiently

long periods of time. While we shall mention some possible mechanisms through

which this might occur, we make no attempt to provide an exhaustive analysis as

there is an extensive literature that exists for this problem.

Some possible mechanisms that have been considered for the damping of nonradial

white dwarf oscillations include gravitational radiation, neutrino losses due to pyc-

nonuclear reactions, and radiative heat leakage (Osaki & Hansen, 1973). The relative

importance of each mechanism depends on the type of mode under consideration, but

it was demonstrated by Osaki & Hansen (1973) that the dominant damping mecha-

nism for quadrupolar f - and p-modes, in the linear regime, is gravitational radiation.

However, their calculation contains a numerical error. We present a corrected deriva-

tion in Appendix C.

Another possible mechanism for the damping of modes with large amplitudes is

by non-linear coupling to other modes. This has been explored extensively in various

contexts (e.g. Dziembowski, 1982; Kumar & Goodman, 1996; Wu & Goldreich, 2001),

and it has been shown that non-linear mode interactions can be important amplitude

limiting effects. For now, we ignore this complication because it is, in fact, one of our
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goals to study whether such non-linear amplitudes can be excited by passage through

a sequence of tidal resonances in a WDCO binary. The non-linear evolution of large

amplitude modes on a white dwarf is the subject of Part III.

In stars with compositional discontinuities or solid interiors, turbulence may be

excited at boundaries, which can lead to additional dissipation.

5.2.4 Time-Scales

For the long-term evolution of a WDCO binary, there are several time-scales of interest

to us. The first of these is the gravitational radiation inspiral time, which, for a

circular orbit, is given by

TGR =
5

256

(1 + q)1/3

q
β−5
∗ n−8/3

(Peters, 1964). For an eccentric orbit with a given period, this time is shorter by up

to a factor of 1000 for eccentricities up to 0.9. For eccentricities . 0.5, however, the

circular orbit inspiral time is a fair approximation.

The second relevant time-scale is the mode damping time. In general, the damping

times for quadrupolar f -modes depend upon the white dwarf mass. Assuming grav-

itational radiation as the mechanism, the damping time (as derived in Appendix C)

is given by

Tj = 6πβ−5
∗ η−2

3j (R∗)Mjω
−4
j .

For our 0.6 M� and 1.0 M� models, this gives ∼ 3000 and ∼ 100 years, respectively.

Note that these are necessarily underestimates since our cold white dwarf models are

highly centrally condensed. In contrast, the damping times for ‘moderately realistic’

0.4 M� and 1.0 M� models used by Osaki & Hansen (1973) are about 2.8 × 105 and

500 years, respectively. The damping times are therefore quite sensitive to the stellar

model.

Finally, the third time-scale of interest is the white dwarf cooling time. A rough
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estimate for this is provided by

Tcool =
4.7 × 107 years

A

(
M∗/M�

L∗/L�

)5/7

(Kippenhahn & Weigert, 1990), where A is the atomic mass, and L∗ is the white

dwarf luminosity. For typical parameters, this gives a cooling time of ∼ 109 years,

which is much longer than any other relevant time-scale. We can therefore ignore the

thermal evolution of the white dwarf.

In order for mode damping via gravitational radiation to be physically unimpor-

tant during the long-term evolution of a WDCO system, it is necessary that Tj > TGR.

In other words, we require that the damping between resonances is negligible during

the gravitational inspiral. This gives us the following constraint on the harmonics

that we can consider for a particular mode:

k .

[
1536π

5

q

(1 + q)1/3
η−2

3j (R∗)Mjω
−4/3
j

]3/8

, (5.27)

where we have used the expressions for Tj and TGR given above, and have also made

use of ωj ' kn at resonance. For our 0.6 M� white dwarf model and mass ratios

greater than a few, this constraint evaluates to

k . 11

(
M0

M�

)1/4

.

Note that, for moderate to high eccentricities, this is overly restrictive, and the actual

limit obtained from an evaluation of the inspiral time for eccentric orbits is higher.

5.3 Resonant Energy Transfer

Let us now consider a mode being excited resonantly on a white dwarf in an eccentric

orbit around a compact companion. We shall neglect the back reaction terms in the

equations of motion, and hence the orbit can be taken to be Keplerian with corrections

due to gravitational radiation (the validity of the no back reaction approximation
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will be discussed in Section 5.4.1). We assume that we start exciting the mode

resonantly at t = 0, and limit our analysis to the regime ṅt/n � 1, where ṅ is

given by (5.15). This is not particularly restrictive since the gravitational radiation

timescale is typically much longer than the resonance time-scale. Finally, we shall

also assume low to moderate eccentricities (∼ 0 − 0.5), and hence neglect the X−
jk

terms in (5.25).

With the above assumptions, we can expand the orbital elements and phases in

(5.25) in Taylor series around resonance (retaining only the zeroth-order term in the

amplitude) to obtain

fjk =
qηj

(1 + q)(`+1)/3
n2(`+1)/3X+

jk





cos (φjk + ωjt + kṅt2)

sin (φjk + ωjt + kṅt2)
, (5.28)

where φjk is an initial phase. We now note that (5.28) is exactly of the form of (5.11),

with the identifications

FR =
qηj

Mj(1 + q)(`+1)/3
n2(`+1)/3X+

jk ,

ω0 = ωj, αω2
0 = 2kṅ

(the division by Mj in FR is necessary since it is fj/Mj that appears on the right

hand side of (5.19)). We can therefore immediately write down the resonant energy

transfer:

〈∆Ejk〉 =
5π

768

q

(1 + q)(2`+1)/3

(
η2

j

β5
∗Mj

)
n(4`−7)/3

(
X+

jk

)2

kF1
, (5.29)

where we have averaged over initial phases. Using the fact that ωj ' kn at resonance,

we find

〈∆Ejk〉 =
q

(1 + q)(2`+1)/3
ΘjΞjk(e) , (5.30)

where the parameter

Θj ≡
5π

768

[
η2

jω
(4`−7)/3
j

β5
∗Mj

]
(5.31)



62

depends only upon the white dwarf model and the mode, and

Ξjk(e) ≡
k−4(`−1)/3

F1

(
X+

jk

)2
(5.32)

contains all the dependence upon the eccentricity and the harmonic. The values

of the parameter Θj for our 0.6 M�, 1.0 M�, and 1.4 M� white dwarf models are

given in Table 5.1. We see that the energy transfer decreases monotonically (relative

to the star’s binding energy) with the mass. As Ξjk(e) ∝ e2(k−m), to lowest order in

eccentricity, the energy transfer is typically a very sensitive function of the eccentricity.

Also, for a circular orbit, it is clear that only the fundamental resonance, k = m, exists

(as would be expected on physical grounds). We remind the reader that, for m 6= 0,

the energy transfer given by (5.30) is for a particular choice of even or odd component

of the mode. It should therefore be multiplied by a factor of two to obtain the total

energy transfer to the even-odd mode pair.

5.4 Discussion

5.4.1 Regime of Validity

We now consider in what regime, if any, the no back reaction approximation is valid.

Qualitatively, we expect back reaction to change the orbital frequency as a mode is

excited resonantly, which will tend to push the system away from resonance. Clearly,

this will modulate the energy transfer at some level. However, if the change in orbital

frequency is small compared to the resonance width, then we expect that the mod-

ulation of energy transfer will not be significant. On the other hand, if the change

in orbital frequency is comparable to or larger than the resonance width, then back

reaction will play a significant role. Another way of saying this is that the modulation

of the energy transfer by back reaction is a second-order effect. Therefore, as long as

the energy transfer is small enough, we are justified in ignoring back reaction. We
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can quantify this criterion by defining a resonance parameter

χjk ≡ ∆njk

∆nres
k

, (5.33)

where ∆njk is what the change in kn would be if the energy given by (5.30) were to be

taken out of the orbit, and ∆nres
k is the resonance width. In general, we expect that

for χjk � 1 back reaction will not play a significant role in modulating the energy

transfer, where as for χjk & 1 back reaction will be important. Using the estimate

∆nres
k ≈ (2kṅ)1/2, we find

χjk =

√
5

3

5π

2048

1

q1/2(1 + q)(4`−1)/6

[
η2

jω
(8`−23)/6
j

β
15/2
∗ Mj

]
k−(4`−7)/3

F3/2
1

(
X+

jk

)2
. (5.34)

Figure 5.2 shows the numerical integration across a particular resonance for various

values of χjk, both with and without back reaction. The first qualitative feature that

stands out is that the energy transfer with back reaction tends to be smaller than

that without back reaction. This is not surprising since the system with back reaction

is expected to spend less time near resonance. Quantitatively, we see that for this

particular resonance with χjk . 0.1 we obtain nearly identical numerical results with

and without back reaction, with χjk ∼ 0.1 the results differ by a factor of order unity

(about 2), and with χjk ∼ 1 the energy transfers differ by an order of magnitude.

The delineation of the back reaction and no back reaction regimes in the eccentricity-

harmonic plane obtained with the above criterion for a quadrupolar f -mode on a

0.6 M� white dwarf and various companion masses is shown in Figure 5.3. It is seen

that the region of parameter space where back reaction may be neglected, according

to the χjk criterion, grows with the companion mass. There is, however, a reason to

think that back reaction might actually play an important role in some regions of the

parameter space where the χjk criterion indicates otherwise.

Consider the following thought experiment. Imagine that we are approaching a

resonance with an initial phase that would lead to a net negative energy transfer in

the no back reaction approximation. As we start removing energy from the mode and
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Figure 5.2: The energy in the ` = m = 2 f -mode on a 0.6 M� white dwarf is shown
for a passage through the k = 15 resonance with different values of the parameter χjk

obtained by varying the eccentricity, and with q = 10, 000. In each plot, the dashed
curve is the system without back reaction, and the solid curve is the system with back
reaction. The curves have been smoothed to remove high-frequency components.
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depositing it into the orbit, the orbital frequency will necessarily decrease (i.e., the

semimajor axis will increase), and the system will get pushed off resonance. It will

then have another chance to approach the same resonance. Then, if the phase is such

that energy is transferred to the mode, then the system will once again get pushed

off resonance, but this time in the opposite direction (since the orbital frequency

will increase). Gravitational radiation will then evolve the system away from this

resonance and towards the next one. This scenario hints at the possibility that back

reaction may force the resonant energy transfer to be always positive. However, this

is not necessarily the case. For instance, we have assumed that there is sufficient

initial energy in the mode to be able to change the orbital frequency significantly.

Also, we have neglected the fact that gravitational radiation will be removing energy

from the orbit as we are transferring energy to the orbit from the mode. If the

rate of dissipation by gravitational radiation is high enough, then back reaction may

not matter. The system will evolve through resonance regardless, on a timescale

determined by the rate of dissipation. Hence, we can still get a net negative energy

transfer to the mode.

In summary, back reaction may be important in determining both the magnitude

and the direction of resonant energy transfer. The χjk criterion provides, in some

sense, only a measure of the correction to the magnitude. In the regime where χjk &

1, the implication is unambiguous: back reaction will be essential in determining

the energy transfer. However, when χjk < 1, things are somewhat uncertain for

reasons stated above. A solution of the problem including back reaction is required

to determine conclusively whether back reaction is important in that regime.

5.4.2 Long-Term Evolution

In Section 5.3, we calculated the energy transfer for an individual resonance in the

absence of back reaction. In general, as the binary shrinks under gravitational radia-

tion, the system will pass through a sequence of resonances for each mode. However,

this is only a possibility for an eccentric orbit because, as demonstrated previously,
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Figure 5.3: The regions in eccentricity-harmonic space where back reaction is and is
not important (labelled as ‘BR’ and ‘No BR’, respectively) are delineated according
to the χjk criterion for a ` = m = 2 f -mode of a 0.6 M� white dwarf, and various
mass ratios. In each plot, the solid curve traces out the contour χjk = 1, and the long
dashed lines to its left and right trace χjk = 0.1 and χjk = 10, respectively. The short
dashed lines trace three gravitational radiation inspiral trajectories through the plane.
For reference, the tidal limit and the region where mode damping via gravitational
radiation during inspiral is important are also shown.
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only the fundamental resonance exists for a circular orbit. We note that, in the no

back reaction approximation, the energy transfer at a resonance can be negative as

well as positive, depending on the relative phase of the mode and the driver, and

the initial amplitude. Also, there will be negligible average energy transfer between

resonances, as long as we are well outside the tidal limit. If we assume (as seems rea-

sonable) that the system has no long term phase memory, then the relative phasing

at each resonance will be essentially random, with a uniform distribution. It then

follows that, on average, the mode will tend to gain energy over time, and that the

average total energy transfer after a sequence of resonances will be simply the sum of

the individual average energy transfers given by (5.30).

Let εk denote the average energy transfer given by (5.30) for a particular mode at

the k-th resonance, and let Ek be the energy in the mode before the k-th resonance. It

then follows from (5.12) and our assumptions of random phases and negligible energy

transfer between resonances that, for a sequence of resonances in the no back reaction

approximation, the evolution of the mode energy will be given by the discrete random

walk (with a drift)

Ek−1 = Ek + εk

(
1 + 2

√
Ek

εk

Ck

)
, (5.35)

where Ck is a random variable drawn from the distribution

p(x) =
1

π
√

1 − x2
, x ∈ [−1, 1] .

For a derivation of elementary statistical properties of this random walk, see Ap-

pendix D.

Figure 5.4 shows the results from calculations of passage through a sequence of

resonances performed using the above random walk model for several sets of initial

conditions. We have chosen to plot the mode amplitude

Bj ≡
√

2Ej

Mjω2
j

, (5.36)
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rather than the energy, because we want to draw attention to the fact that, for

moderate initial eccentricities, the amplitude of a ` = m = 2 f -mode can be driven to

values in the range ∼0.1–1. (An amplitude of unity for a ` = m = 2 mode corresponds

to a maximum physical displacement of the stellar surface of about 55% relative to

the unperturbed radius.) We therefore expect that the linear normal mode analysis

might not be valid in those cases, and that non-linear effects may in fact determine

the actual outcome.

It should be noted that, even if back reaction plays a role in determining the

direction of energy transfer, our result that non-linear amplitudes for a ` = m = 2

f -mode can be attained by passage through a sequence of resonances is unlikely to

be affected. This is due to the fact that the result depends chiefly upon the allowed

magnitude of energy transfer, and as we restricted our calculations to the regime

where χjk � 1, back reaction is not expected to change things.
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Figure 5.4: The amplitude of the ` = m = 2 f -mode of a 0.6 M� white dwarf during
passage through a sequence of resonances in the no back reaction approximation is
shown for several sets of initial conditions. All of these lie in regions of the eccentricity-
harmonic plane where back reaction is not important according to the χjk criterion.
The calculations were done using our semi-analytical formalism. In each case, the
solid line shows a particular realization of the random walk given by (5.35), and the
dashed line follows the ensemble average. The random walks were terminated when
χjk ∼ 0.01. Note that the scales on the axes are different for each plot.
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Chapter 6

Resonances With Back Reaction

As an eccentric white dwarf-compact object (WDCO) binary evolves under gravita-

tional radiation reaction, there will be resonances between harmonics of the orbital

frequency and normal mode eigenfrequencies of the white dwarf. In the preceding

chapter, the energy transfer at these resonances was considered when the perturba-

tion of the orbit by the excited tides is neglected (the no back reaction approximation).

In this limit, the problem can be solved semi-analytically, and it was shown that the

energy transfer at a resonance can be either positive or negative, depending upon the

initial energy and phase, and that the energy in a mode undergoes a random walk

with a drift during passage through a sequence of such resonances. It was speculated

that the inclusion of perturbations to the orbit by the excited tides (back reaction)

could lead to qualitatively different results, even in the regime where back reaction is

not expected to affect the magnitude of the energy transfer significantly. In particu-

lar, it was argued that back reaction could be important in determining the sign of

the energy transfer at a resonance.

In the present chapter, we consider the problem including back reaction. As be-

fore, we ignore stellar rotation, and assume that there is little or no mode damping

on a resonance time-scale. In addition, we restrict ourselves to low to moderate

eccentricities, and confine our attention to the ` = m = 2 f -mode, which is the domi-

nantly excited mode. However, even with these simplifying assumptions, the problem

is a complicated one, owing to its inherent non-linearity. We adopt a Hamiltonian

approach because it allows us to maintain self-consistency explicitly, and to exploit
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symmetries. The approach is similar in spirit to the Hamiltonian analysis of reso-

nances in the restricted three-body problem (see, for example, Murray & Dermott,

1999), where its power and utility are also manifest. Some aspects of the near-resonant

dynamics have been considered previously by Alexander (1987) in a similar language,

and the development in Section 6.2 owes much to his account.

It is possible to include gravitational radiation in the formalism via a reaction

term in the Hamiltonian (Schäfer, 1990), but, for reasons of simplicity, we choose not

to do so. Instead, we impose radiation reaction as an external effect. As the time-

scale for orbital evolution under radiation reaction is typically much longer than a

resonance time-scale, the system is nearly periodic. This mismatch between the time-

scales allows us to exploit the notion of adiabatic invariance to prove the general and

elegant result that the energy transfer at a resonance is phase-independent and always

positive, to lowest order in the rate of dissipation by gravitational radiation.

6.1 An Overview

In this section, we provide a qualitative outline of the main theoretical developments

that follow in Sections 6.2–6.4.

In the presence of gravitational radiation, a WDCO system is clearly not conser-

vative. Nonetheless, if the rate of dissipation is low, the system is nearly conservative

over many orbits. This suggests that a conservative, Hamiltonian characterization of

the system will be a useful one for understanding the dynamics near a tidal resonance.

The Hamiltonian that describes a WDCO system is comprised of a Keplerian piece,

and an infinite sum of simple harmonic oscillators, which represent the normal modes

of the white dwarf, along with terms that couple the modes to the orbit. The coupling

terms are responsible for both the excitation of the modes, and for the back reaction

of the modes on to the orbit. In Section 6.2, we start with this Hamiltonian, and

consider a series of canonical transformations to different sets of variables in an effort

to simplify the description. The power of the Hamiltonian approach becomes evident

as we are able to exploit symmetries of the system to reduce the degrees of freedom.
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For low to moderate eccentricities, we find that, near a resonance, the Hamiltonian

can be reduced to two degrees-of-freedom for the motion of the ` = m mode variables.

The next simplification comes from the physical insight that the excited tide

should take the form of a wave traveling in the azimuthal direction around the star.

This leads us to discover the existence of an invariant sub-manifold in the phase

space, and for motion on the invariant sub-manifold, the problem is reduced to a

single degree-of-freedom. This reduction guarantees integrability and the existence

of action-angle variables for the system. We also note the existence of a separatrix

in the phase space. It is demonstrated that the system can be described, to a good

approximation, by a Hamiltonian with a single parameter, δ. The Hamiltonian thus

obtained is nearly identical in form to Hamiltonians encountered in the analysis of

first-order eccentricity resonances in the restricted three-body problem (Murray &

Dermott, 1999). It is shown that, like the three-body case, a saddle-node bifurcation

occurs at the critical value δcrit = −3.

Gravitational radiation is included by imposing the dissipation of energy and an-

gular momentum as external conditions, and we make the reasonable assumption that

the rates of dissipation do not change much over the time-scale of a resonance. This

allows us to fix the dissipation rates near a resonance, and then ignore the dependence

of the rates upon orbital variables during the passage through resonance. The net

effect is that gravitational radiation evolves the parameter, δ, of our one degree-of-

freedom Hamiltonian. In the regime where the evolution occurs adiabatically, this is

an ideal setup for using adiabatic invariant theory. As the action variable is an adia-

batic invariant to lowest order in the rate of dissipation, it stays constant during the

near-resonant evolution, as long as the adiabatic condition is not strongly violated.

Earlier, we noted the existence of a separatrix in phase space. As the period of

the system goes to infinity on the separatrix, the adiabatic condition will be violated

near any point where the system’s trajectory crosses the separatrix. Therefore, there

can be a ‘jump’ in the adiabatic invariant at a separatrix crossing. This suggests that

a resonance passage corresponds to a separatrix crossing, and that the jump in the

adiabatic invariant corresponds to the resonant energy transfer, which is confirmed
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by numerical evolution. A simple argument, supported by formal results obtained by

Cary et al. (1986), allows us to to show that the change in the adiabatic invariant is

independent of the phase, to lowest order in the rate of dissipation.

It remains to quantify the change in the action variable at a separatrix cross-

ing, and to determine the relation between the action variable and the mode energy.

Fortunately, we are able to leverage results obtained for first-order eccentricity reso-

nances in the restricted three-body problem (Murray & Dermott, 1999, and references

therein) for calculating the action variable before and after resonance. It is shown

that the action variable always increases at a tidal resonance when the resonance

passage is driven by gravitational radiation. As the action variable can be shown to

correspond asymptotically to the mode energy (to within a scaling factor), it follows

that the energy transfer is always positive. Furthermore, there is no explicit depen-

dence upon any initial phase, to lowest order in the rate of dissipation by gravitational

radiation.

6.2 The Hamiltonian Formalism

6.2.1 Two Elementary Systems

It is a well-known result from classical mechanics that action-angle variables are

guaranteed to exist for any autonomous, integrable Hamiltonian. It will be convenient

for us to work with action-angle variables for tidal excitation; therefore, towards that

end, we describe briefly action-angle variables for two elementary systems that are

relevant. Details may be found in any standard textbook, such as Goldstein (1980).

Note that our convention for the definition of the action variable is

J ≡ 1

2π

∮
dq p , (6.1)

which differs from the convention used by Goldstein (1980) by the factor of 1/2π. We

also note that a useful property of action variables is their adiabatic invariance.

The Hamiltonian for a simple harmonic oscillator with mass m, natural angular
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frequency ω, displacement q and momentum p is

HSHO =
p2

2m
+

1

2
mω2q2 . (6.2)

The canonical transformation equations relating the coordinates (q, p) to the action-

angle variables (w, J) are

q =

√
2J

mω
cosw , (6.3)

p = −
√

2mωJ sinw , (6.4)

and the transformed Hamiltonian is given by

HSHO(J) = ωJ . (6.5)

The action variable is, by construction, a constant of the motion, and the angle

variable is a linear function of time:

w = ωt+ β , (6.6)

where β is an initial phase.

For two-body motion, the Hamiltonian in terms of spherical polar coordinates,

the reduced mass µ, and constituent masses M1 and M2, is

HKepler =
p2

r

2µ
+

p2
θ

2µr2
+

p2
φ

2µr2 sin2 θ
− GNM1M2

r
, (6.7)

where GN is the gravitational constant. In the context of celestial mechanics, action-

angle variables for Keplerian motion are often called the Delaunay variables or the

Delaunay elements. They are typically denoted as {h, g, l, H,G, L}. The variable h

corresponds to the longitude of the ascending node, g corresponds to the argument of

periapse, and l is the mean anomaly. Among the action variables, we note that H is

numerically equal to pθ, and G is equal to pφ. The action variable L is proportional
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to a1/2, where a is the semi-major axis. For our problem, the orbit will always lie in

the equatorial plane. Thus, we discard h and H, and work with the reduced set of

Delaunay variables {g, l, G, L}. The Hamiltonian in terms of these variables is given

by

HKepler = −(GNM1M2)
2µ

2L2
, (6.8)

and the mean orbital angular frequency and eccentricity are given by

n =
(GNM1M2)

2µ

L3
, (6.9)

e =

√
1 − G2

L2
. (6.10)

All the variables are constants of the motion, with the exception of l, which is a linear

function of time:

l = n(t− T ) , (6.11)

where T is the time of periastron passage.

6.2.2 Resonant Tidal Excitation

In the absence of tidal dissipation and stellar rotation, the Hamiltonian for a white

dwarf-compact object binary is

H =
p2

R

2µ
+

p2
u

2µR2
− q

R
+
∑

j

(
p2

j

2Mj
+

1

2
Mjω

2
jx

2
j

)
−
∑

j

xjfj , (6.12)

where R is the orbital separation, u is the angular coordinate in the plane of the

orbit, q is the ratio of the companion mass M0 to the white dwarf mass M∗, xj is

the displacement of mode j, Mj is the mass of mode j, and fj is the overlap integral

for mode j. (We remind the reader that we are working in stellar units, where mass,

length, and time are measured in terms of M∗, R∗, and
√
R3

∗/GNM∗, respectively.)
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As was shown previously, the overlap integral can be written as

fj =
∞∑

k=−∞

fjk , (6.13)

where

fjk =
qηj

(1 + q)(`+1)/3
Fjk(n, e)





cos (kl +m$)

sin (kl +m$)
, (6.14)

and

Fjk(n, e) ≡ n2(`+1)/3X
−(`+1),m
k (e)

(recall that Xp,m
k is a Hansen coefficient; see Appendix B). We now perform a canon-

ical transformation to a new set of variables which consists of Delaunay variables

{g, l, G, L} for the orbit, and action-angle variables {wj, Jj} for each harmonic oscil-

lator. The Hamiltonian in terms of the new variables is

H = H0 + H1 , (6.15)

where the uncoupled part is given by

H0 = − q3

(1 + q)

1

2L2
+
∑

j

ωjJj , (6.16)

and the coupling piece is given by

H1 =
∑

j,k

QjFjk

×
{√

J
(e)
j

[
cos
(
w

(e)
j + kl +mg

)
+ cos

(
w

(e)
j − kl −mg

)]

+

√
J

(o)
j

[
sin
(
w

(o)
j + kl +mg

)
− sin

(
w

(o)
j − kl −mg

)]}
,

(6.17)

where

Qj ≡ − q

(1 + q)(`+1)/3

ηj√
2Mjωj

.
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In Fjk, it should now be understood that n and e are shorthands for the definitions

n =
q3

(1 + q)

1

L3
, (6.18)

e =

√
1 − G2

L2
. (6.19)

The phases that appear in the Hamiltonian are all of the form wj−kl∓mg. Therefore,

there will be resonances whenever

ẇj = kl̇ ±mġ (6.20)

(remember that k can be positive or negative). This corresponds approximately to

the condition ωj = kn.

Let us now consider the dynamics of the system near a resonance for a specific set

of modes. After time-averaging the coupling Hamiltonian in the sense that we ignore

all rapidly varying (i.e., non-resonant) terms, we find

H1 =
R∑

j

Qj

[
F+

jk

√
J

(e)
j cos

(
w

(e)
j − kl −mg

)

− F+
jk

√
J

(o)
j sin

(
w

(o)
j − kl −mg

)

+ F−
jk

√
J

(e)
j cos

(
w

(e)
j − kl +mg

)

+ F−
jk

√
J

(o)
j sin

(
w

(o)
j − kl +mg

)]
,

(6.21)

where k is now taken to be positive, the ‘R’ above the summation indicates that the

sum is over the resonant modes only, and we have used the notational shorthand

F±
jk ≡ n2(`+1)/3X±

jk , X±
jk ≡ X

−(`+1),m
±k .

Following Alexander (1987), we now transform to a new set of variables {g ′, l′, θ(e)
j ,
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θ
(o)
j , G′, L′, P

(e)
j , P

(o)
j } via the generating function1

F2 = gG′ + lL′

+
R∑

j

[
(w

(e)
j − kl −mg)P

(e)
j + (w

(o)
j − kl −mg)P

(o)
j

] (6.22)

(there is an implicit identity transformation for all non-resonant modes). The corre-

sponding transformation equations are

θ
(e)
j = w

(e)
j − kl −mg , J

(e)
j = P

(e)
j ,

θ
(o)
j = w

(o)
j − kl −mg , J

(o)
j = P

(o)
j ,

l′ = l , L = L′ − k
R∑

j

(
P

(e)
j + P

(o)
j

)
,

g′ = g , G = G′ −
R∑

j

m
(
P

(e)
j + P

(o)
j

)
.

The uncoupled Hamiltonian for the new variables becomes

H0 = − q3

(1 + q)

1

2
[
L′ − k

∑R
j

(
P

(e)
j + P

(o)
j

)]2

+

R∑

j

ωj

(
P

(e)
j + P

(o)
j

)
,

(6.23)

and the coupling Hamiltonian is

H1 =
R∑

j

Qj

[
F+

jk

√
P

(e)
j cos θ

(e)
j − F+

jk

√
P

(o)
j sin θ

(o)
j

+ F−
jk

√
P

(e)
j cos

(
θ

(e)
j + 2mg′

)

+ F−
jk

√
P

(o)
j sin

(
θ

(o)
j + 2mg′

) ]
.

(6.24)

Note that we have dropped the terms for the non-resonant modes in H0. Since the

1We follow the notation of Goldstein (1980) in labeling generating functions. Thus, for example,
a generating function of type F2 is given in terms of the old coordinates and new momenta.
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Hamiltonian is now cyclic in l′, the conjugate momentum L′ is conserved. Hence,

d

dt

[
L + k

R∑

j

(
J

(e)
j + J

(o)
j

)]
= 0 .

It may be thought that the conservation of L′ corresponds to the conservation of

energy, but this is not true. L′ is an independent integral of the near-resonant motion.

This is most easily seen by rewriting the above expression in terms of the orbital and

mode energies, and noting that the resulting relation is non-linear:

d

dt

[
1√
2

q3/2

(1 + q)1/2
(−Eorb)

−1/2 + k

R∑

j

Ej

ωj

]
= 0 . (6.25)

The conservation of energy corresponds to the fact that the Hamiltonian itself is also

an integral of the motion.

The uncoupled Hamiltonian H0 contains an intrinsic degeneracy since P
(e)
j and

P
(o)
j occur only in the combination P

(e)
j +P

(o)
j . We remove this degeneracy by consid-

ering the transformation to new variables {g, l, θ(1)
j , θ

(2)
j , G, L, P

(1)
j , P

(2)
j } generated

by

F3 = −gG′ − lL′ −
R∑

j

[(
P

(e)
j + P

(o)
j

)
θ

(1)
j + P

(o)
j θ

(2)
j

]
. (6.26)

The corresponding transformation equations are

θ
(e)
j = θ

(1)
j , P

(1)
j = P

(e)
j + P

(o)
j ,

θ
(o)
j = θ

(1)
j + θ

(2)
j , P

(2)
j = P

(o)
j ,

l′ = l , L = L′ ,

g′ = g , G = G′ .

In terms of the new variables, the uncoupled and coupling Hamiltonians become

H0 = − q3

(1 + q)

1

2
[
L− k

∑R
j P

(1)
j

]2 +

R∑

j

ωjP
(1)
j (6.27)
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and

H1 =

R∑

j

Qj

[
F+

jk

√
P

(1)
j − P

(2)
j cos θ

(1)
j

− F+
jk

√
P

(2)
j sin

(
θ

(1)
j + θ

(2)
j

)

+ F−
jk

√
P

(1)
j − P

(2)
j cos

(
θ

(1)
j + 2mg

)

+ F−
jk

√
P

(2)
j sin

(
θ

(1)
j + θ

(2)
j + 2mg

) ]
,

(6.28)

respectively.

6.2.3 Specialization to a Single Mode

Consider now the particular case when the resonant modes have the same frequency,

and differ only in the values of m. Since X±
jk ∝ e|k∓m|, the terms proportional to

F−
jk in (6.28) are suppressed by 2m powers of eccentricity relative to the F +

jk terms.

Therefore, for low to moderate eccentricities, we can write

H1 =

R∑

j

QjF
+
jk

[√
P

(1)
j − P

(2)
j cos θ

(1)
j

−
√
P

(2)
j sin

(
θ

(1)
j + θ

(2)
j

) ]
.

(6.29)

As the Hamiltonian is now cyclic in g, it follows that the conjugate momentum G is

an approximate constant of the motion:

d

dt

[
Lorb +

R∑

j

m
Ej

ωj

]
' 0 , (6.30)

where Lorb is the orbital angular momentum. This expresses the conservation of

angular momentum, and we can identify G as the total angular momentum of the

system. The reason why the conservation holds only approximately is that the ex-

pression mEj/ωj for the angular momentum in mode j is only exact when the mode

takes the form of a pure traveling wave.
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It follows from parity considerations that modes with odd `+m will not be tidally

excited (this is manifested mathematically in the fact that ηj vanishes for odd `+m).

Also, the terms with m < ` are suppressed by `−m powers of eccentricity relative to

the terms with m = `. Therefore, for low enough eccentricities, the total Hamiltonian

is given to a good approximation by

H = − q3

(1 + q)

1

2
(
L− kP

(1)
j

) + ωjP
(1)
j

+QjF
+
jk

[√
P

(1)
j − P

(2)
j cos θ

(1)
j

−
√
P

(2)
j sin

(
θ

(1)
j + θ

(2)
j

) ]
(6.31)

with m = `.

As G and L are integrals of the motion, the orbital degrees-of-freedom are com-

pletely decoupled from the modes, and the system is reduced effectively to two

degrees-of-freedom for the motion of the mode variables. With this perspective, G

and L are parameters of the two degrees-of-freedom system described by (6.31).

6.3 The Dynamics

6.3.1 Fixed Points

Central to the analysis of the dynamics of a non-linear system is an understanding of

the fixed point structure of the phase space. Accordingly, we now consider the fixed

points of the non-linear system described by the Hamiltonian (6.31). For simplicity of

notation, we drop the j subscripts on the mode variables from now on. From (6.31),
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we obtain the following equations of motion for the mode variables:

dθ1
dt

= ωj − kn+Qj

{
∂F+

jk

∂P1

[√
P1 − P2 cos θ1 −

√
P2 sin (θ1 + θ2)

]

+
1

2
F+

jk

cos θ1√
P1 − P2

}
,

(6.32)

dθ2
dt

= −Qj

2
F+

jk

[
cos θ1√
P1 − P2

+
sin (θ1 + θ2)√

P2

]
, (6.33)

dP1

dt
= QjF

+
jk

[√
P1 − P2 sin θ1 +

√
P2 cos (θ1 + θ2)

]
, (6.34)

dP2

dt
= QjF

+
jk

√
P2 cos (θ1 + θ2) . (6.35)

For non-zero eccentricities, F+
jk will not vanish. Thus, from the conditions θ̇2 = Ṗ1 =

Ṗ2 = 0, we get

θ1 = aπ , (6.36)

θ1 + θ2 =

(
b+

1

2

)
π , (6.37)

P1 = 2P2 , (6.38)

where a and b are any integers such that |a± b| is odd (i.e., either a or b is odd).

Substitution into the fourth condition, θ̇1 = 0, yields the non-linear equation

ωj − kn+ (−1)aQj
∂

∂P1

(
F+

jk

√
2P1

)
= 0 . (6.39)

This equation cannot be solved analytically, in general. Indeed, owing to the non-

linear nature of the equation, we cannot even say a priori how many real, positive

solutions exist. However, as is demonstrated below, the problem admits considerable

simplification.
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6.3.2 The Invariant Sub-Manifold

Physically, we expect the excited tide to take the form of an azimuthal traveling

wave. This leads us to expect the even and odd components of the mode to be

excited equally, with a phase difference of π/2 between them. It is remarkable that

this situation actually corresponds to an invariant sub-manifold in phase space. If we

set

θ2 =

(
2c− 1

2

)
π , (6.40)

P2 =
1

2
P1 , (6.41)

where c is any integer, on the right hand sides of the equations of motion for θ2, P1, and

P2, then we find that the conditions will remain true during evolution in time. This

demonstrates that the above conditions describe an invariant sub-manifold. Thus, for

motion on this sub-manifold, the system is now reduced to a single degree-of-freedom,

with the Hamiltonian

H = − q3

(1 + q)

1

2(L− kP )2
+ ωjP +QjF

+
jk

√
2P cos θ , (6.42)

and the equations of motion

dθ

dt
= ωj − kn +Qj

∂

∂P

(
F+

jk

√
2P
)

cos θ , (6.43)

dP

dt
= QjF

+
jk

√
2P sin θ , (6.44)

where P ≡ P1 and θ ≡ θ1. Note that the defining relations for the invariant sub-

manifold fulfill two of the conditions for fixed points. Hence, at least some (but not

necessarily all) of the fixed points may lie on the invariant sub-manifold, and will

therefore be fixed points for motion on the sub-manifold.

Interestingly, θ2 = (2c+ 1/2)π does not describe an invariant sub-manifold. This

is probably owing to the fact that θ2 = (2c+1/2)π corresponds to a retrograde wave,

where as θ2 = (2c− 1/2)π corresponds to a prograde wave. Recall that we explicitly
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chose to consider only prograde tides and averaged away the retrograde terms when

we wrote down the near-resonant Hamiltonian (6.21).

Figure 6.1 shows a sample phase portrait for the Hamiltonian (6.42) as a function

of the canonical coordinates:

x =
√

2P cos θ , y = −
√

2P sin θ (6.45)

(this is just the transformation relating the displacement and linear momentum to

action-angle variables for a one-dimensional harmonic oscillator). These variables

have the advantage of making explicit the natural polar structure of the phase space.

Note the existence of a separatrix.2

Since, typically, P � L and P � G, we can expand the Hamiltonian (6.42) in

powers of P/L and P/G. To second order, we obtain, after dropping a constant offset,

H′ =
3

2

q3

(1 + q)

k2P 2

L
4 +

√
2Qj

∂F+
jk

∂P
P 3/2 cos θ

+

[
ωj −

q3

(1 + q)

k

L
3

]
P +QjF

+
jk(2P )1/2 cos θ ,

(6.46)

where F+
jk and ∂F+

jk/∂P are now evaluated at P = 0. We now scale the momentum

by means of the canonical transformation:

φ = θ , Φ =
P

λ
, H′′ =

H′

λ
,

where the scaling parameter λ (defined as real and positive) is to be chosen. The new

Hamiltonian is

H′′ =
3

2

q3

(1 + q)

k2λΦ2

L
4 +

√
2Qj

∂F+
jk

∂P
λ1/2Φ3/2 cosφ

+

[
ωj −

q3

(1 + q)

k

L
3

]
Φ +QjF

+
jk

(
2Φ

λ

)1/2

cos φ .

(6.47)

2A separatrix is a contour of H that passes through a saddle point.
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Figure 6.1: A sample phase portrait for the one degree-of-freedom Hamiltonian (6.42),
as a function of the canonical coordinates (x, y), defined by (6.45). The fixed points
corresponding to extrema of H are marked with solid circles. Also shown is the
separatrix (dashed line). The saddle point of H is marked with an open circle.
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We choose λ such that the coefficients of Φ2 and 2(2Φ)1/2 cosφ are identical. That is,

λ =

[
1

3

(1 + q)

q3
QjF

+
jk

L
4

k2

]2/3

. (6.48)

Thus, after dividing out the coefficient of Φ2 (which amounts to a choice of units),

the Hamiltonian becomes

H† = Φ2 + β(2Φ)3/2 cosφ+ δΦ + 2(2Φ)1/2 cos φ , (6.49)

where we have defined the coefficients

β ≡ 1

F+
jk

∂F+
jk

∂P
λ , (6.50)

δ ≡ 2

QjF
+
jk

[
ωj −

q3

(1 + q)

k

L
3

]
λ1/2 . (6.51)

The Hamiltonian (6.49) resembles Hamiltonians encountered in the analysis of reso-

nances in the restricted three-body problem. In fact, for β = 0, the above Hamiltonian

is identical (apart from a reflection) to the Hamiltonian for first-order eccentricity res-

onances in the three-body problem (Murray & Dermott, 1999). This mathematical

similarity serves as a useful guide for our analysis, and the notation has been chosen

to emphasize it.

The fixed points of H† are given by the solution of the simultaneous equations:

2Φ + 3β(2Φ)1/2 cosφ+ δ +
2 cosφ

(2Φ)1/2
= 0 , (6.52)

2(βΦ + 1)(2Φ)1/2 sinφ = 0 . (6.53)

A non-trivial solution (i.e., Φ 6= 0) requires φ = aπ, where a is an integer, and

(2Φ)3/2 + (−1)a3β(2Φ) + δ(2Φ)1/2 + (−1)a2 = 0 , (6.54)

which is a cubic equation for (2Φ)1/2. Note that the only effect that a has is to
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determine the signs of the roots. Specifically, changing a from even to odd or vice

versa simply flips the signs of the roots (which may be complex). Hence, for either

choice of a (even or odd), we obtain all the equilibrium solutions. This may appear

strange, but it is easily understood when we note that the phase space for (φ,Φ)

naturally has a polar structure, with (2Φ)1/2 (which is proportional to the mode

amplitude) as a radial coordinate, and φ as a polar angle. In effect, the choice of a

determines the axis which corresponds to φ = 0.

The above considerations are made explicit if we introduce the polar transforma-

tion used earlier, which makes the dynamics easier to study:

x =
√

2Φ cos φ , y = −
√

2Φ sin φ . (6.55)

The Hamiltonian in terms of these coordinates is

H† =
1

4
(x2 + y2)2 + β(x2 + y2)x +

δ

2
(x2 + y2) + 2x . (6.56)

The equations for the (non-trivial) equilibrium solutions yield y = 0, and

x3 + 3βx2 + δx + 2 = 0 . (6.57)

Setting x = z − β, the above equation reduces to

z3 + (δ − 3β2)z + (2 − δβ + 2β3) = 0 . (6.58)

In general, this equation has three solutions. However, two of those solutions may

be complex and, hence, unphysical. To determine where the bifurcation of the roots

occurs (that is, where two of the roots coincide and transition between real and

complex values), we look at the discriminant:

D =
1

27
(δ − 3β2)3 +

1

4
(2 − δβ + 2β3)2 . (6.59)
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For D > 0, there is one real root and two complex roots, and for D < 0, all three

roots are real. The bifurcation occurs when D = 0, which, for β = 0, corresponds to

δcrit = −3. For β 6= 0, only a relation between δ and β is determined. To fourth-order

in β, this is

δcrit = −3

(
1 + β − 1

4
β2 +

1

12
β3 − 1

48
β4

)
. (6.60)

To lowest order, F+
jk is independent of P , so we can set β = 0 as a good approximation.

Physically, this corresponds to the reasonable approximation that the variations in

the mode energy in the near-resonant regime are insufficient to affect the strength

of the tidal force significantly.3 The location of the three equilibrium points is then

given by:

x1 =
3

1

3 δ − ∆
2

3

3
2

3 ∆
1

3

, (6.61)

x2,3 =
(−3

1

3 ± 3
5

6 i)δ + (1 ±
√

3 i)∆
2

3

3
2

3 2∆
1

3

, (6.62)

where

∆ = 9 +
√

3
√

27 + δ3 (6.63)

(e.g., Abramowitz & Stegun 1972; cf. Murray & Dermott 1999).

Phase portraits of the Hamiltonian (6.56) with β = 0 are shown in Figure 6.2 (cf.

Murray & Dermott, 1999). For δ < −3, there are three fixed points corresponding to

all three roots of (6.57) (cf. Figure 6.1). At δ = −3, one of the nodes and the saddle

point (x2 and x3, respectively) coincide, and, subsequently, for δ > −3, there is only

one fixed point (x1) corresponding to the single real root of (6.57). The existence of

this bifurcation was previously noted by Alexander (1987), and, not surprisingly, a

similar bifurcation also exists for first-order eccentricity resonances in the restricted

three-body problem (Murray & Dermott, 1999).

Inclusion of higher-order terms in the expansion of the Hamiltonian could lead to

3Setting β = 0 does not amount to ignoring back reaction. Back reaction has two effects:
introducing variations in the magnitude of the tidal force, and altering the mode-orbit phase. The
approximation β = 0 reflects the recognition that the latter effect is the dominant one in determining
the near-resonant dynamics.
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Figure 6.2: Phase portraits of the Hamiltonian given by (6.56), for the case β = 0.
Separatrices are drawn as dashed lines. All the fixed points lie along the x-axis. At
δ = −3, there is a saddle-node bifurcation. For δ > −3, there is only one fixed point.
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additional bifurcations, but these would necessarily be much smaller effects and are

hence negligible.

6.3.3 Approximate Trajectories

As we have seen, the Hamiltonian given by (6.49) (or, equivalently, by (6.56)) de-

scribes a variety of possible dynamical behaviors (cf. Figure 6.2). Despite its relative

simplicity, the Hamitonian is complicated enough that a general expression for the

orbit of the system in phase space is impracticable. It is therefore useful to consider

the approximate trajectories in some limited regimes.

When Φ � 1, the Φ2 term in the Hamiltonian can be neglected, and the trajectory

of the system obeys
δ

2
(x2 + y2) + 2x ≈ E , (6.64)

which, after a little algebra, can be written as

(
x+

2

δ

)2

+ y2 ≈ 2

δ

(
2

δ
+ E

)
. (6.65)

Thus, the trajectory is a circle in the (x, y) plane, centered at (−2/δ, 0), and with

radius
√

(2/δ)(2/δ + E). In Figure 6.2, these orbits are the near-circular ones that

lie close to the origin. Note that such orbits can only exist for (2/δ)(2/δ + E) > 0.

For δ < 0, this requires E 6 −2/δ, where as for δ > 0, the requirement is E > −2/δ.

Also, as the value of δ changes from negative to positive values, the center of the

circles crosses from the right side of the origin to the left side, which is also seen in

Figure 6.2.

When Φ � 1, the cosφ term in the Hamiltonian can be neglected:

H† ≈ Φ2 + δΦ . (6.66)

It then follows that {φ,Φ} are action-angle variables for the system:

φ̇ ≈ δ + 2Φ , Φ̇ ≈ 0 . (6.67)



91

Thus, the orbit is once more a circle in the (x, y) plane, but now centered at the

origin. Setting H† = E, and solving for Φ, we obtain

Φ ≈ −δ
2
±
√
δ2

4
+ E , (6.68)

which implies that no real solutions exist unless δ2/4+E > 0. This is always satisfied

for E > 0, but for E < 0, such orbits only exist if E > −δ2/4. In Figure 6.2, these

orbits are easily identified as the near-circular ones that exist at large radii for all

values of δ.

Consider now when Φ � |δ|, which is a regime that will be of particular interest

to us. The Hamiltonian in this limit is given by

H† ≈ δΦ , (6.69)

which implies once again that {φ,Φ} are action-angle variables:

φ̇ ≈ δ , Φ̇ ≈ 0 . (6.70)

The system’s trajectory in this regime is given by

Φ ≈ E

δ
, (6.71)

which again describes a circle centered at the origin in the (x, y) plane. Note that

(6.71) is precisely the action variable for an unforced simple harmonic oscillator with

natural frequency δ, and energy E. This makes physical sense because far from the

resonance there is little energy transfer to the mode.

6.3.4 Action-Angle Variables

Unfortunately, finding exact expressions for a transformation to action-angle vari-

ables for the Hamiltonian (6.49) is not feasible. Instead, we consider a perturbative

approach.
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For large |δ| or Φ, the cos φ term in the Hamiltonian is relatively small and can

be treated as a perturbation. To zeroth-order, {φ,Φ} are then action-angle vari-

ables (cf. (6.67)). From canonical perturbation theory it then follows that the action

variable to second-order in the perturbation is given by

Φ = Φ +
2
√

2Φ cosφ

(δ + 2Φ)
+

2(δ − 4Φ cos2 φ)

(δ + 2Φ)3
(6.72)

(see Appendix F). Note that the above transformation diverges in the vicinity of δ =

−2Φ, which reflects the failure of the perturbation series to converge near resonance.

The Hamiltonian in terms of the action variable is given to second-order by

H† = Φ
2
+ δΦ − 2δ

(δ + 2Φ)2
(6.73)

(see Appendix F). Note that the shift in the energy only enters at second-order,

which is a consequence of the periodic nature of the perturbation. Finally, it should

be noted that

lim
|δ|→∞

Φ = Φ , (6.74)

as was shown before.

6.3.5 Gravitational Radiation

Our Hamiltonian treatment of the dynamics assumes that the system is conservative;

the actual problem that we are considering is not. The orbit will evolve under grav-

itational radiation reaction as both energy and angular momentum are dissipated.

The lowest-order secular corrections are

Ėorb = −32

5

q2

(1 + q)2/3
β5
∗n

10/3F1(e) , (6.75)

L̇orb = −32

5

q2

(1 + q)2/3
β5
∗n

7/3F2(e) , (6.76)
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where

F1(e) ≡
1

(1 − e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
,

F2(e) ≡
1

(1 − e2)2

(
1 +

7

8
e2
)

(Peters, 1964), and β∗ ≡
√
GNM∗/R∗. To incorporate these corrections into our

formalism, we need to write them in terms of the Delaunay variables. Since the

Delaunay variable G is just the orbital angular momentum, one of the corrections is

already in the required form. The equation for Ėorb can be rewritten as a correction

to the Delaunay variable L:

L̇ =
Ėorb

n
.

Therefore, we have

L̇GR = −32

5

q2

(1 + q)2/3
β5
∗n

7/3F1(e) , (6.77)

ĠGR = −32

5

q2

(1 + q)2/3
β5
∗n

7/3F2(e) , (6.78)

where n and e are now functions of L and G. As δ, defined by (6.51), is also a

function of L and G, the above expressions also indirectly describe the evolution of δ

with time. In particular, note that gravitational radiation causes δ to drift upwards

(i.e., δ̇ > 0).

6.4 Resonant Energy Transfer

6.4.1 Resonances as Separatrix Crossings

In Sections 6.2 and 6.3, starting from a Hamiltonian for resonant tidal excitation

with four degrees-of-freedom for a ` = m = 2 mode, we have been able to simplify

the description to one with a single degree-of-freedom. This is important because
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autonomous systems with one degree-of-freedom are always integrable,4 and, in prin-

ciple, action-angle variables can be always found for them. The existence of action-

angle variables is useful because action variables are known to be adiabatic invariants

to lowest order in the rate of change of the system’s parameters. In the presence of

gravitational radiation, G and L (considered to be parameters in this context) will

change slowly. Assuming the change is slow enough to be considered adiabatic (i.e.,

the values ofG and L do not change much over a single period of the system’s motion),

the action variable will stay constant to lowest order in Ġ and L̇—provided that the

trajectory of the system in phase space does not cross any separatrices (Lichtenberg &

Lieberman, 1992). On a separatrix, the period of the system’s motion goes to infinity.

Therefore, the adiabatic condition necessarily breaks down in some neighborhood of

a separatrix, regardless of how small Ġ and L̇ are. This violation of adiabatic invari-

ance in the vicinity of a separatrix is the defining feature of our problem, because, as

is explicitly shown below, the resonances we are considering correspond to separatrix

crossings.5

Figure 6.3 shows the phase space trajectory of a sample system during passage

through a resonance. Comparing with Figure 6.1, we see that the system crosses the

separatrix, and that the crossing occurs from the inner region to the outer region.

Since the extent of an orbit in (x, y) space is proportional to
√

2Φ, the crossing

corresponds to a jump in Φ. The same resonance is shown in Figure 6.4, where Φ and

φ are plotted as functions of time (recall that Φ is proportional to the mode energy:

Ej = ωjλΦ). The correspondence of the resonance with the separatrix crossing is

thus established. Also, note in Figure 6.3 that the one degree-of-freedom Hamiltonian

provides a good approximation to the motion of the full system with four degrees-of-

freedom.

4A sufficient condition for integrability is the existence of N independent constants of the motion,
where N is the number of degrees-of-freedom. As the Hamiltonian is itself a conserved quantity for
autonomous systems, it follows that autonomous systems with a single degree-of-freedom are always
integrable.

5In the literature, the term ‘resonance’ often refers to any fixed point of the motion. To avoid
ambiguity, we refrain from using this terminology.



95

- 4 - 2 0 2 4
x

- 4

- 2

0

2

4
y

Figure 6.3: A phase space trajectory showing a passage through the k = 15 resonance
for the ` = m = 2 f-mode of a 0.6 M� white dwarf in a system with q = 1000, and
an initial eccentricity of 0.4. The solid line traces the trajectory as given by the one
degree-of-freedom Hamiltonian, (6.42). The trajectory given by the full Hamiltonian,
(6.12), with four degrees-of-freedom is indicated by the dots. The separatrix is crossed
from the inner region to the outer region.
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Figure 6.4: The scaled mode energy Φ, and the phase φ, are shown as functions of
time (as given by the one degree-of-freedom Hamiltonian, (6.42), plus gravitational
radiation) for the same resonance as in Figure 6.3.
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6.4.2 Change in Adiabatic Invariant at a Separatrix Crossing

We now digress, briefly, to discuss the general problem of quantifying the change

in the action variable at a separatrix crossing of a system with a single degree-of-

freedom. This problem has been studied previously in the literature; we summarize

here some relevant results obtained by Cary et al. (1986).

Consider a separatrix, such as the one shown in Figure 6.5. Suppose that the

Hamiltonian depends upon some parameter λ that is varying slowly with time. For

trajectories away from the separatrix, standard adiabatic theory holds, and an adia-

batic invariant exists that is conserved to all orders in ε ≡ λ̇ for a time of order 1/ε

(Cary et al., 1986). However, this is not true for trajectories near the separatrix be-

cause, as explained previously, the adiabatic condition must break down there. One

way to see this violation of adiabatic invariance is to consider what happens to the

action variable, which is the lowest order adiabatic invariant, at a separatrix crossing.

If the system starts in region A of Figure 6.5, then, when the trajectory of the

system encounters the separatrix, the action variable is proportional to the area of

region A: JA ≡ AA/2π. If the trajectory of the system were to start in region B,

then, at the separatrix encounter, the action variable would be proportional to the

area of region B: JB ≡ AB/2π. Similarly, if the system encountered the separatrix

starting from region C, then the action variable would be equal to JA + JB. Suppose

that the system’s trajectory crosses from region A to region C. At the time of the

crossing, the value of the action variable will change suddenly from JA to JA + JB,

and we expect that this new value of the action variable will then stay constant,

because adiabatic theory is valid again after some narrow region in the vicinity of the

separatrix has been crossed. This means that, to lowest order, the new value of the

adiabatic invarirant is independent of the particular trajectory followed by the system

and is therefore phase-independent. As is demonstrated by Cary et al. (1986), this is

indeed correct. However, they also show that there are phase-dependent deviations

of order ε ln ε in the invariant change at the crossing. As long as ε is sufficiently small,

these corrections can be neglected, but for large ε the phase-dependent corrections
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Figure 6.5: A typical separatrix of the kind encountered in tidal resonances.

become important.

It is a small step from the above reasoning to realize that for any number of

separatrix crossings, the final value of the adiabatic invariant depends only upon the

region where the trajectory of the system ends up, to lowest order in ε. The particular

trajectory followed is not important.

6.4.3 Energy Transfer at a Tidal Resonance

When the trajectory of a WDCO system crosses a separatrix, there will be a jump

in the action variable, which corresponds to the resonant energy transfer. Therefore,

if we (i) quantify the change in the action variable at the separatrix crossing, and

(ii) determine the relation between the action variable and the mode energy, then

we can obtain an estimate for the resonant energy transfer. We will work with the

approximate near-resonant Hamiltonian given by (6.49) (or, equivalently, (6.56)), with

β = 0. This makes the problem mathematically equivalent to first-order eccentricity

resonances in the restricted three-body problem, and hence allows us to use results

from the literature to address (i).

The areas enclosed by the inner and outer branches of the separatrix, in the
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notation of Figure 6.5, are given by

AA = 3

{
1

2

[
Φmax + Φmin + 2Φ3 +

2

3
δ

](π
2
− γ
)

−
√

(Φmax − Φ3)(Φ3 − Φmin)

}
,

(6.79)

AC = −3

{
1

2

[
Φmax + Φmin + 2Φ3 +

2

3
δ

](π
2

+ γ
)

+
√

(Φmax − Φ3)(Φ3 − Φmin)

}
,

(6.80)

where Φmin,max are points where the separatrix crosses φ = 0:

Φmin = −δ − Φ3 − 2(2Φ3)
1/4 , (6.81)

Φmax = −δ − Φ3 + 2(2Φ3)
1/4 , (6.82)

Φ3 is the location of the saddle point, given by (6.62), and

γ = sin−1

(
Φmax + Φmin − 2Φ3

Φmax − Φmin

)
(6.83)

(Murray & Dermott, 1999, and references therein). The sum of the areas obeys the

relation

|AA| + |AC| = −2πδ . (6.84)

Gravitational radiation will cause δ to drift with time from negative to positive values.

Thus, if the system crosses the separatrix from region A to region C, then the initial

and final values of the action variable are related by

|Φinit| + |Φfinal| = −δs , (6.85)

where δs is the value of δ at the separatrix crossing. Note that, since the bifurcation

discussed in Section 6.3.2 occurs at δ = −3, it must be true that δs 6 −3.

Because of gravitational radiation, long enough before and after resonance, the

condition Φ � |δ| will inevitably be satisfied. In Section 6.3.3, we observed that in
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this regime the trajectory of system is well-approximated by a circle centered at the

origin. This is equivalent to the statement that for large |δ|, {φ,Φ} are action-angle

variables for the system. Thus, asymptotically, Φ is an adiabatic invariant, which is

also implied by (6.72) in the limit |δ| → ∞. We can therefore approximate the initial

and final values of Φ across the resonance with the initial and final (asymptotic)

values of Φ:

|Φinit| ≈ Φinit , |Φfinal| ≈ Φfinal . (6.86)

The initial and final values of Φ (which is the scaled mode energy) are then related

by (6.85), and we have:

Φinit + Φfinal = −δs , (6.87)

or, restoring the scaling factors,

E init
j + Efinal

j = −δsωjλ . (6.88)

Writing

L ' q

(1 + q)1/3
n−1/3 , (6.89)

which is correct to lowest order in P/L, in (6.48), and using the fact that ωj ' kn

near resonance, λ is given approximately by

λ '
[
1

3

q

(1 + q)1/3
Qjω

2(`−1)/3
j k−2(`+2)/3X+

jk

]2/3

. (6.90)

Note that the relation (6.88) between the initial and final mode energies does not

depend upon the rate of dissipation by gravitational radiation. The radiation reaction

is only important in so far as it evolves the system through resonance adiabatically.

Furthermore, it is clear that the energy transfer will always be positive, as the area

enclosed by the trajectory always increases when crossing from region A to region C

(Figure 6.5). There is also no explicit dependence upon where in the phase plane the

separatrix is actually crossed.

It remains to find δs. A limiting case which admits a simple solution is when the
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energy of the system at the time of separatrix crossing is zero. This corresponds to

when the system’s trajectory passes through the point x = y = 0, and hence when

the initial amplitude of the mode is zero. Instead of solving (6.94) directly for δs, this

case is more easily handled by considering the points where the zero-energy contours

intersect the x-axis:

H†(x, 0) =
x

4
(x3 + 2δx+ 8) = 0 . (6.91)

This equation always has one trivial solution at x = 0. The alternatives are solutions

to

x3 + 2δx+ 8 = 0 . (6.92)

This equation has either one or three real solutions, depending upon the sign of its

discriminant (cf. the discussion of the bifurcation in Section 6.3.2). The bifurcation

of roots occurs when the discriminant vanishes:

8

27
δ3
s0

+ 16 = 0 ,

which has the real solution

δs0 = − 3
√

54 = −3.779763 . . . . (6.93)

The interpretation of this bifurcation is as follows. When there are three real solutions,

there are four total intersections of zero-energy contours with the x-axis (including

the x = 0 intersection). These four intersections correspond to two distinct contours:

one in region A and the other in region C of Figure 6.5. Each contour intersects the

x-axis twice. As δ approaches δs0 , these contours converge to the separatrix, which

has three intersections with the x-axis. For δ > δs0 , there is only one zero-energy

contour which is the one that passes through x = y = 0 (cf. Figure 6.2). Since at

δ = δs0 the zero-energy contour corresponds to the separatrix, it follows that δs0 is

the value of δ when a system with zero energy crosses the separatrix.

More generally, to find δs we need to know when the energy of the system is equal
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to the energy of the separatrix. In other words, we have to solve

H†(x3(δs), 0; δs) = Esys (6.94)

for δs. As the system’s energy is a function of time because of gravitational radiation,

it is clear that obtaining an exact solution to the above equation requires solving for

the motion of the system, which is cumbersome. Instead, we use the second-order

approximation to the system’s energy given by (6.73):

Esys ≈ Φ2 + δΦ − 2δ

(δ + 2Φ)2
, (6.95)

which is valid away from resonance. Thus, δs can now be estimated as the solution

to
1

4
x4

3 +
δs
2
x2

3 + 2x3 = Φ2
init + δsΦinit −

2δs
(δs + 2Φinit)2

. (6.96)

This is a non-trivial equation, but it can be simplified somewhat with the observation

that, by definition, x3 satisfies

x3
3 + δx3 + 2 = 0 (6.97)

(cf. (6.57)). Using this, we can eliminate x4
3 from (6.96), which gives

δs
4
x2

3 +
3

2
x3 = Φ2

init + δsΦinit −
2δs

(δs + 2Φinit)2
. (6.98)

Though simpler, this equation is still not amenable to analytic solution, but it is

straightforward to solve numerically or graphically. The solution for a range of values

of Φinit is shown in Figure 6.6. (See Appendix G for a brief discussion of issues that

can arise in the solution.) We note that the magnitude of the slope of the curve

in Figure 6.6 is always greater than two, which implies that for each unit of initial

energy in the mode, the final energy gains more than one unit. In other words, the

energy transfer increases with the initial mode energy.

In summary, the prescription for calculating the energy transfer including back
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Figure 6.6: The separatrix crossing parameter, δs, as a function of the initial asymp-
totic value of Φ, obtained by solving (6.98).
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reaction for a resonance with a given harmonic, eccentricity, and initial mode energy,

is as follows:

1. Calculate the scaling parameter λ using (6.90). Then, Φinit is given by E init
j /ωjλ.

2. Calculate the separatrix crossing parameter δs by solving (6.98). From this,

Φfinal follows: Φfinal = −δs − Φinit.

3. The mode energy after resonance, Efinal
j , is given by ωjλΦfinal.

A comparison of energy transfers calculated using the above prescription with nu-

merical integrations of the equations of motion from (6.42) are shown in Figure 6.7

for several choices of parameters. Overall, the predicted final energies are accurate to

within ∼ 10%, with the trend being an over-estimation of the energy transfer. Most

of this error results from approximating δs by the solution to (6.98). We note that an

accuracy of ∼ 10% is quite good when compared to the fact that the energy transfer

given by the no back reaction approximation is incorrect in all of these cases by an

order of magnitude or more.

6.4.4 Orbital Evolution

As energy is transferred from the orbit to a mode at a tidal resonance, the orbital

elements will be affected. Knowing the resonant energy transfer, we can compute the

change in the orbital elements by using the fact that, in the near-resonant regime, G

and L are constants of the motion. Using this with the defining relations

G = G+mP , (6.99)

L = L+ kP , (6.100)

it follows that

∆G = −m∆P , (6.101)

∆L = −k∆P . (6.102)



105

- 15 - 10 - 5 0 5 10
δ

0

1

2

3

4

Φ

(a)

- 45 - 40 - 35 - 30 - 25 - 20 - 15
δ

12

14

16

18

20

Φ

(b)

- 20 - 15 - 10 - 5 0 5
δ

0

1

2

3

4

5

6

Φ

(c)

- 20 - 15 - 10 - 5 0 5 10 15
δ

0

1

2

3

4

Φ

(d)

- 40 - 20 0 20 40
δ

0

1

2

3

4

5

Φ

(e)

- 40 - 20 0 20 40
δ

0

1

2

3

4

5

6

Φ

(f)

Figure 6.7: A comparison of the energy transfers predicted by (6.87) and (6.98) with
the numerical results from direct integration of the equations of motion given by the
Hamiltonian (6.42). All plots are for the ` = m = 2 f -mode of a 0.6 M� white dwarf.
In each plot, the lower dashed line marks Φinit and the upper dashed line marks the
predicted value for Φfinal. The parameters for the plots in the format (q, k, e0, x0) are
as follows: (a) (1, 7, 0.1, 0.001), (b) (10, 15, 0.3, 0.1), (c) (102, 10, 0.3, 0.25), (d)
(103, 20, 0.5, 0.05), (e) (104, 8, 0.2, 0.5), (f) (105, 17, 0.5, 1.0). The parameters e0

and x0 are the initial orbital eccentricity and mode amplitude, respectively.
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Expanding n(L) and e(G,L), given by (6.18) and (6.19), to linear order in ∆G/G

and ∆L/L, and writing n ' ωj/k, we find

∆n ' 3
(1 + q)1/3

q

ω
4/3
j

k1/3
∆P , (6.103)

∆e ' (1 + q)1/3

q
ω

1/3
j

√
1 − e2

k1/3e
(m− k

√
1 − e2)∆P , (6.104)

where ∆P is to be calculated as described in Section 6.4.3. Note that the expression

for ∆e is not valid for a circular orbit. For the circular case, ∆e is identically zero.

It follows from (6.103) and (6.104) that the orbital frequency and eccentricity

always increase and decrease, respectively, across a resonance.6

6.5 Discussion

6.5.1 Regime of Validity

In order to assess the applicability of the results obtained in the previous section, it

is worth considering the various assumptions and approximations made in arriving

at (6.88). Perhaps the most important assumption is that of low to moderate eccen-

tricities. This is what allows us to ignore the F−
jk terms relative to the F+

jk terms in

(6.28). This assumption also plays a role in the reduction of the system from two

degrees-of-freedom in (6.31) to one degree-of-freedom in (6.42), even though it was

not mentioned explicitly. We expect that the approximation of the resonant mode as

a pure traveling wave is increasingly inaccurate with higher eccentricities. In the im-

pulse limit, which is relevant for very high eccentricities, the star is essentially ‘struck

with a hammer’ as it swings by periastron in each orbit. The direction of orbital

rotation is then unimportant, and the resonant mode is likely to have a significant

counter-rotating component. Another place where the low-eccentricity approxima-

tion has been used is in the consideration of only the ` = m mode near resonance,

6While (6.104) would seem to imply that the eccentricity can increase across a resonance, it does
so in regimes where our formalism is not valid.
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by arguing that modes with lower values of m will be suppressed by `−m powers of

eccentricity relative to the ` = m modes.

There is, in fact, a reason to think that the consideration of a single near-resonant

mode and the pure traveling wave approximation will in reality be more accurate

than expected. Consider the set of modes with the same radial order and the same

`. These modes are degenerate in frequency only in the absence of stellar rotation.

For example, for a star rotating rigidly with an angular frequency Ω that is parallel

to the orbital angular momentum, the mode frequencies are split to lowest order as

ωj ±mΩ (+m for a co-rotating component, −m for a counter-rotating component).

Therefore, for a rotating star, modes with different values of m will be resonant at

different frequencies. In fact, the co-rotating and counter-rotating components of a

given mode will also have different frequencies, and the near-resonant Hamiltonian

will naturally have a single degree-of-freedom (cf. Alexander, 1988). Thus, a slowly

rotating star, such as a realistic white dwarf, is likely to improve rather than diminish

the accuracy of our results. Also, note that for m = 0 modes (‘quasi-static’ modes),

the single degree-of-freedom description is accurate for arbitrarily high eccentricities

as there are no F−
jk terms. For a non-rotating star, the resonances of the quasi-static

modes overlap with the resonances of modes with higher m (and, hence, our results

are not applicable), but for a rotating star the resonances will be separated.

A key assumption that underlies our calculation of the energy transfer is that

the adiabatic approximation is valid away from separatrices. In other words, we

have assumed that gravitational radiation evolves the orbit on a time-scale longer

than the period of the system’s orbit in phase space. This condition is expected to

be satisfied for most realistic systems. An important exception is a compact object

binary during the last few orbits before coalescence. However, in that case, a linear

tidal analysis is unlikely to be accurate anyway. In addition, the adiabatic assumption

may also break down for companions with very large masses, even before the final

stages of coalescence. In such cases, estimates with and without back reaction may

be considered as providing limits on the resonant energy transfer.

It may be questioned as to why we have only considered separatrix crossings from
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region A to region C (Figure 6.5). That the system will eventually end up in region

C is certain because gravitational radiation decreases the area inside the separatrix

with time. And as the area enclosed by the inner branch of the separatrix (i.e., the

area of region A) for large negative values of δ is nearly equal to the area enclosed by

the outer branch of the separatrix, it is reasonably clear that a realistic system will

almost always start in region A and then cross to region C.7

In addition to the above, there are a number of other issues that can be legiti-

mately raised regarding our analysis. For example, we did not dwell upon the aver-

aging step in going from (6.17) to (6.21), and this ‘sleight-of-hand’ conceals consider-

able technical complexity. Strictly speaking, what (6.21) represents is the first-order

approximation in a two time-scale expansion, and there are known issues with the

convergence of such a perturbation series. In particular, it can be shown to converge

only asymptotically. Moreover, by eliminating the ‘fast’ angle variables in (6.21), we

have potentially changed the dynamics of the system in some regimes (Lichtenberg &

Lieberman, 1992). Another important point is that by reducing the system to a single

degree-of-freedom in the near-resonant regime, the possibility of chaos is precluded,

where as in the full system with multiple degrees-of-freedom, chaos is a possibility—

indeed, a certainty in a layer around a separatrix. Nonetheless, despite all of these

potential issues, we expect and conjecture that our highly-simplified description of

the near-resonant dynamics captures the essential features in a coarse-grained sense.

Detailed discussions of technical issues such as we have mentioned and others can be

found in Lichtenberg & Lieberman (1992).

Finally, we note that the assumption of negligible mode damping on a resonance

time-scale is crucial to our analysis. In circumstances where this assumption is

strongly violated, the accuracy of our treatment is uncertain.

7It is certainly possible to enforce initial conditions that place the system in region B before some
resonance. However, it is difficult to imagine in what physically plausible situation this possibility
could be realized.
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6.5.2 Long-Term Evolution

As an eccentric WDCO binary evolves under gravitational radiation reaction, each

white dwarf normal mode will encounter a sequence of resonances with the harmonics

of the orbital frequency. Back reaction introduces a qualitative change in the long-

term evolution of the mode energies in that the energy transfer to the mode at each

resonance is always positive. This is quite different from the no back reaction approx-

imation where the energy transfer can be positive or negative, depending upon the

initial phase and initial mode energy. In this sense, back reaction actually simplifies

the problem: the evolution of the mode energy is not stochastic or pseudo-stochastic,

rather it is monotonic and deterministic.8

For a given mode, let Pk be the mode energy divided by the mode frequency

before passage through the kth harmonic resonance, and let λk and δk be the scaling

and separatrix crossing parameters for the kth resonance. Assuming negligible energy

transfer to the mode between resonances, and also negligible mode damping, it then

follows from (6.87) that

Pk−1 = −Pk + λk|δk| . (6.105)

Applying this formula repeatedly, we find that after passage through r resonances

Pk−r = (−1)rPk +
r−1∑

s=0

(−1)sλk−s|δk−s| . (6.106)

The above deterministic equation replaces the random walk, (5.35), found in the no

back reaction approximation.

8Technically, the evolution of the mode energy in the no back reaction approximation is also
deterministic. However, as the initial phase at successive resonances is typically uncorrelated with
the phase at previous resonances, the phase acts more or less like a random variable. Hence the
term ‘pseudo-stochastic.’
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Part III

Non-Linear Evolution of Modes
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Chapter 7

A Hydrodynamics Code for

Studying Tidal Excitation

Large resonant energy transfers in a WDCO system may result in heating and, pos-

sibly, the detonation of the white dwarf, leading to an exotic Type Ia supernova. In

order to assess the magnitude and likelihood of such a scenario, it is necessary to

understand the mode excitation process in detail. For the linear regime, this has

been considered in the preceding chapters, and it was found that, depending upon

the initial conditions, it is possible to excite modes with large enough amplitudes that

the validity of the linear theory becomes questionable. Therefore, it is necessary to

investigate the mode evolution in the non-linear regime. This is most directly done

via numerical hydrodynamics simulations.

A number of hydrodynamics codes which may be used for this purpose currently

exist. Two such codes, ZEUS (Stone & Norman, 1992) and Flash (Fryxell et al.,

2000) have been developed to be generic hydrodynamic engines. Such codes provide

access to a sophisticated suite of hydrodynamic simulation tools. However, they also

have the disadvantage of being complicated to use and, perhaps, sub-optimal for our

specific problem. In addition, to a good approximation, the white dwarf oscillations

are adiabatic, and, hence, detailed treatment of shocks and entropy generation are

unnecessary.

Motl et al. (2002) have developed an adiabatic hydrodynamics code, primarily for

studying binary mass transfer. However, the choice of a cylindrical grid, while useful
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for the mass transfer application, is problematic for the case of a pulsating white

dwarf, where it is important to maintain uniform resolution throughout the star.

Furthermore, a cylindrical coordinate system complicates the numerical advection

scheme. These difficulties are avoided with a Cartesian grid, an additional advantage

of which is that the Poisson equation can be solved easily and efficiently via spectral

methods.

In this chapter, we present a simple hydrodynamics code with some diagnostics

and an example application.

7.1 Governing Hydrodynamic Equations

There is considerable freedom in the choice of macroscopic quantities used to describe

fluid flows. Our choice was primarily dictated by the numerical convenience of the

sourced advective form of the hydrodynamic equations. In addition, since we are

restricting ourselves to adiabatic flows, it is convenient to use the entropy rather

than the energy as a thermodynamic variable. We therefore chose the following

five quantities to describe the fluid flow: mass density (ρ), entropy density (s), and

momentum density (J ).

The equations for ρ and s have a purely advective form,

∂ρ

∂t
+ ∇ · (vρ) = 0 (7.1)

∂s

∂t
+ ∇ · (vs) = 0 , (7.2)

which correspond to the conservation of mass and entropy.1 The equation for J can

be written in a sourced advective form,

∂J

∂t
+ ∇ · (vJ ) = −∇P − ρ∇Φ + f , (7.3)

1Note that s is the entropy per unit volume and not the specific entropy. Hence, in our notation,
the adiabatic condition is

d

dt

(
s

ρ

)
= 0 ,

where d/dt is the convective derivative.
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where the pressure (P ) is given by an equation of state,

P = P (ρ, s) , (7.4)

the self-gravitational potential (Φ) is determined by the Poisson equation,

∇2Φ = 4πGρ , (7.5)

and f is any additional external force per unit volume acting on the fluid (e.g., an

external gravitational field and/or Coriolis forces).

7.2 Differencing Scheme

In one dimension, the use of a staggered mesh avoids the interpolation of the flow

velocities to the cell boundaries. With a zone-centered grid, the velocities would have

to be interpolated, which would complicate the advection step in the momentum

conservation equation (7.3). However, in multiple dimensions, the interpolation of

vector quantities (e.g., the momentum density) cannot be avoided by the use of a

staggered mesh. Therefore, we use the conceptually simpler zone-centered grid.

Casting the hydrodynamic equations in a sourced advective form allows the ex-

plicit conservation of mass, entropy, and momentum (in so far as the source terms

allow).

7.2.1 Advection

The advection steps in equations (7.1–7.3) may be integrated to yield finite-difference

equations for a given cell

∆λ =
∆t

∆V

∑

i=x,y,z

(Λ−i − Λ+i) ∆Si , (7.6)
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Figure 7.1: The geometry of a zone-centered, uniform Cartesian grid is shown. Here,
λ can be any of the five evolved quantities (ρ, s, and J ) or the gravitational potential
(Φ).
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where ∆λ is the change in the quantity λ due to fluid advection, ∆t is the time step,

∆V is the cell volume, Λ±i are the fluxes of the quantity λ at the ±ith boundary of

the cell, and ∆Si is the area of the cell surface normal to the ith direction.

In general some interpolation is required to determine the values of the fluxes at the

boundaries of the cell. We break the interpolation of the fluxes into an interpolation

over the fluid velocity and an interpolation over the advected quantities,

Λ±i = λ∗±iv±i , (7.7)

where v±i is the interpolated component of the velocity normal to the ±ith cell face

at the cell boundary, and λ∗ is the interpolated value of the advected quantity. The

v±i are defined by

v±i =
1

2
(vi + vi

±i) , (7.8)

where vi and vi
±i are the values of the fluid velocity in the ith direction at the centre

of the current cell, and the centres of the neighbouring cells in the ±ith directions,

respectively.

A numerical difficulty with the interpolation of the advected quantities is that

advecting the volumetric densities tends to generate unphysically high velocities in

low cells with low mass density. We circumvent this problem by using consistent

transport (Stone & Norman, 1992), in which it is the specific quantities that are

interpolated, i.e.,

λ∗±i = ρ±i(λ/ρ)±i , (7.9)

where ρ±i and (λ/ρ)±i are the interpolated values of ρ and the specific quantity λ/ρ

at the ±ith boundary of the cell.

The choice of the method used for interpolating the advected quantities has to be

made carefully, so as to avoid introducing instabilities in the finite-difference scheme.

Several such methods exist, of which we have chosen to use upwinding methods. These

methods provide stability by clipping new local extrema, and limit diffusivity by inter-

polating quantities to the boundary in a way that accounts for the difference between
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the velocities associated with the upwind and downwind characteristics. Upwinding

methods of various orders exist, with the the higher-order methods being necessarily

more computationally expensive. The three methods we have implemented are the

donor cell (zeroth-order), van Leer (first-order), and piecewise parabolic advection

(PPA; second-order) methods.

7.2.1.1 Donor Cell Upwinding

The donor cell method is a zeroth-order upwinding scheme, approximating the spatial

distribution of a given quantity, q, as a step function. In this method, all information

from the downwind cell is ignored, i.e. at the −ith cell boundary

q−i =




q−i if v−i > 0

q if v−i < 0
. (7.10)

For a given cell, this only requires information from the nearest neighbors. In practise,

donor cell upwinding is highly diffusive (see, e.g., Section 7.4.1), and hence was not

used beyond the testing stage.

7.2.1.2 van Leer Upwinding

The van Leer upwinding method is a first-order method first described by its namesake

(van Leer, 1977a,b, 1979). In contrast to the donor cell method, the distribution of q

is approximated by a piecewise linear function. The slopes of these linear functions

are given by the so-called van Leer slopes, defined below for a given cell along the ith

direction,

dqi =





2(q+i − q)(q − q−i)

∆xi(q+i − q−i)
if (q+i − q)(q − q−i) > 0

0 otherwise

. (7.11)
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In terms of the van Leer slopes, the upwinded value of the quantity q at the −ith cell

boundary is given by

q−i =





q−i +
1

2

(
∆xi − v−i∆t

)
dqi

−i if v−i > 0

q − 1

2

(
∆xi + v−i∆t

)
dqi if v−i < 0

, (7.12)

where the notation dqi
±j denotes the van Leer slope in the ith direction for the neigh-

boring cell in the ±jth direction. The van Leer method prevents the introduction

of new local extrema, and hence ensures stability in the advection scheme. When

the van Leer slopes vanish, the scheme reduces to the donor cell method. Note that,

because van Leer upwinding uses the van Leer slopes of neighboring cells, it requires

information from both the nearest and next-nearest neighbors.

7.2.1.3 PPA Upwinding

The PPA method is a second-order upwinding method originally developed by Colella

& Woodward (1984). It approximates the distribution of q by a piecewise parabolic

function. The essence of the method is the determination of the monotonized left and

right interface values, qL and qR, which are computed via equations (1.6)–(1.10) in

Colella & Woodward (1984). In terms of qL and qR, the upwinded value of q at the

−ith cell boundary is given by

q−i =





qR,−i + ξ(q−i − qR,−i)

+ ξ(1 − ξ)(2q−i − qR,−i − qL,−i)
if v−i > 0

qL + ξ(q − qL)

+ ξ(1 − ξ)(2q − qR − qL)
if v−i < 0

, (7.13)

where ξ = v−i∆t/∆x
i. This requires information from the nearest three neighbors.

The PPA method is substantially less diffusive than the van Leer method. This is

especially notable at discontinuities, where the profiles generated by PPA are signifi-

cantly steeper than those generated by the van Leer scheme. However, the improve-
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ment comes with a relatively high computational cost. It has been found by Stone

& Norman (1992) that, typically, increasing the grid resolution is a computationally

more efficient way to obtain greater accuracy. For this reason, unless explicitly stated

otherwise, we use the van Leer upwinding method.

7.2.2 Artificial Viscosity

In Eulerian upwinding schemes, shocks can lead to numerical instabilities. If resolv-

ing shocks is critical, the instabilities may be cured via the introduction of Riemann

solvers (capable of localising a shock to a single cell boundary). However, if resolving

shocks is unnecessary, it is significantly easier to introduce an artificial numerical vis-

cosity to smooth them out. Several prescriptions for implementing numerical viscosity

can be found in the literature; we chose to implement the von Neumann-Richtmyer

scheme because of its ability to produce the correct shock propagation velocity and

its low dissipation far from shocks (a direct result of the fact that it acts only in

regions of compression; Stone & Norman, 1992). This scheme takes the form of defin-

ing a viscous pseudo-pressure for each direction which is non-vanishing in regions of

compression only:

Qi =





l2ρ

(
∂vi

∂xi

)2

if
∂vi

∂xi
< 0

0 otherwise

, (7.14)

for i = x, y, z, where l is the length scale over which shocks are to be smoothed. The

associated source term for equation (7.3) is given by

F i
visc = −∂Q

i

∂xi
. (7.15)

Typically this will smooth a shock front over a number of cells—a distance that is

usually much larger than the natural shock depth. It should also be noted that a

strictly correct treatment of shocks is precluded by the adiabatic condition, equa-

tion (7.2). This can be remedied by the inclusion of a viscous source term in the

entropy equation. However, since for the applications we envision shocks will result



119

in the rapid thermalization of the kinetic energy of the stellar oscillations, their mere

production may make a purely hydrodynamic description inapplicable. In particu-

lar, thermonuclear processes could dominate at such a point, and thus neither the

added complexity and computational overhead of the Riemann solver methods nor

the complication of an entropy source term are required.

7.2.3 Momentum Source Terms

In addition to advection, the momentum density evolves due to pressure gradients,

self-gravity, and external forces (if any). We have found that simply finite-differencing

∇P leads to a less stable system than calculating the gradient via partial derivatives of

the equation of state, and finite-differencing in ρ and s. In contrast, the gravitational

acceleration is obtained directly in terms of a second-order, finite-difference of the

gravitational potential (the details of solving for which are presented in Section 7.3).

The finite differencing of the viscous force is performed in two steps: (i) determining

the viscous pseudo-pressure, and (ii) finite differencing the viscous pseudo-pressure to

obtain the viscous force directly. In finite difference form, the viscous pseudo-pressure

is defined by

Qi
±i =





η
ρ±i + ρ

2

(
vi
±i − vi

∆xi

)2

if ±
(
vi
±i − vi

)
< 0

0 otherwise

, (7.16)

for i = x, y, z. The dimensionless coefficient η is approximately the number of

cells over which discontinuities are to be smoothed. Typically, we find η = 2 to be

adequate. The viscous force is then determined by

F i
visc = −Q

i
+i −Qi

−i

∆xi
. (7.17)
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Therefore, excluding external forces, the source terms in equation (7.3) are given by

−
(
∂P

∂ρ

)

s

ρ+i − ρ−i

2∆xi
−
(
∂P

∂s

)

ρ

s+i − s−i

2∆xi

− ρ
Φ+i − Φ−i

2∆xi
+ F i

visc , (7.18)

for i = x, y, z.

When using a barotropic equation of state, P (ρ), it can be convenient to write

the source terms in terms of the specific enthalpy, h,

−ρ
(
h+i − h−i

2∆xi
+

Φ+i − Φ−i

2∆xi

)
+ F i

visc , (7.19)

for i = x, y, z. An example of when this is useful will be discussed in Section 7.5.

Note that in this case, the entropy equation is superfluous.

7.2.4 Courant-Friedrichs-Lewy Time Step

The stability of our explicit finite-difference scheme requires that the time step should

satisfy the Courant-Friedrichs-Lewy (CFL) criterion. This corresponds to the physical

consideration that, in a single time step, information should only propagate into a

given cell from the neighboring cells which are used to compute spatial derivatives at

that point. A time step that is too large would require information from more distant

cells, which is not available in the differencing scheme. Therefore, for stability,

∆t 6 tCFL , (7.20)

where the CFL time is defined by

tCFL = min

(
∆x

cs + |vx| ,
∆y

cs + |vy| ,
∆z

cs + |vz|

)
, (7.21)

where cs is the local adiabatic sound speed (e.g., Motl et al., 2002; Stone & Norman,

1992, and references therein). In addition, the inclusion of an artificial viscosity
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imposes the additional requirement that the time step does not exceed the time-scale

for diffusion across cell width length-scales:

tvisc = min

(
∆x

4η|∆vx| ,
∆y

4η|∆vy| ,
∆z

4η|∆vz|

)
, (7.22)

(e.g., Stone & Norman, 1992). In practice, for many operator split methods, taking

the time step to be the CFL time does not ensure stability. Rather, it is necessary to

take ∆t to be some fraction of tCFL or tvisc. In practice, we find that a robust choice

is

∆t 6
1

4
min (tCFL, tvisc) . (7.23)

From equation (7.21) it is clear that the cells with the highest velocities (both ki-

netic and sound) will provide the most stringent limits on the time step. An example

is the case of cells constituting the vacuum surrounding a star. In practice, for numer-

ical reasons, no portion of the grid can have vanishing mass density. Therefore, we

take ‘zero’ density to be some small fraction (typically, 10−8) of the initial maximum

density. As a result, the vacuum is physically insignificant. Nonetheless, because of

their large accretion velocities (though negligible momentum densities), the vacuum

cells can be the limiting factor in determining the time step. To avoid this problem,

we impose a velocity cap, so that the CFL time is set by only considering cells with

densities larger than, say, 10−6 of the maximum density.2 The remaining cells have

their velocities capped at

vcap = min

(
∆x

∆t
,
∆y

∆t
,
∆z

∆t

)
, (7.24)

so as to not drive the time step down. While this explicitly violates the hydrodynamic

equations presented in Section 7.1, it does so in a physically negligible manner.

We use operator splitting to separate the source and advection contributions to the

evolution of the fluid quantities at each time step. However, we do not use directional

2What is important is that the density cut-off used for the CFL time is large enough to exclude
the vacuum cells.
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splitting, making our scheme a variation of the unsplit method of van Leer. Thus, a

single time step is taken in two stages: (1) taking the source step, and (2) performing

the updates due to advection. The gravitational potential is calculated at each source

step.

7.2.5 Boundary Conditions

Because the upwinding methods require information about neighboring cells, it is

necessary to provide a boundary of ghost cells along the outer edges of the grid. As

these ghost cells are not evolved themselves, they require some prescription for assign-

ing the evolved quantities to them. We have implemented three types of boundary

conditions: fixed, replicated, and outflow.

The first, and simplest, is the fixed boundary condition. In this prescription,

the boundary cells are fixed to have ‘zero’ density, entropy density, and momentum

flux. This tends to limit the velocity of the ‘zero’ density vacuum by not providing a

boundary momentum flux.

The second set of boundary conditions consists of replicating the last set of cells in

the grid. This provides a slightly more realistic set of boundary conditions, allowing

the accretion of the ‘zero’ density vacuum to stabilise through hydrodynamic balance.

However, if a physically significant portion of the flow is crossing the boundary, then

this is significantly superior to the first scheme.

The third set of boundary conditions implemented are the so-called outflow bound-

ary conditions. In this prescription, fluid is allowed to flow off the grid but not into

it. In order to prevent the boundaries from physically affecting the fluid on the grid,

the boundary values for density and entropy are chosen to preserve hydrostatic equi-

librium in the last grid zone. Note that this does not stop the fluid from advecting

off the grid through this zone. As a result, this will minimise the creation of spurious

reflections at the boundaries. For a self-gravitating fluid configuration that is initially

contained entirely within the grid, this provides the most realistic set of conditions.
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7.2.6 Parallelization

The primary purpose for the development of our code is to perform high resolution

studies of the non-linear evolution of normal modes in white dwarfs. The resulting

computational requirements necessitate high-performance computing. Because the

sourced advection step for a given cell depends only upon cells in its immediate

neighbourhood, it naturally lends itself to a straightforward parallelization scheme.

This takes the form of dividing the entire grid into a number of sub-domains, each of

which are handled by a separate process. Because interprocess communication incurs

substantial performance penalties, we need to choose a domain decomposition that

minimises the communication required. The source of interprocess communication in

each sourced advection step is the need for neighbor data around the edges of each

sub-domain. Therefore, the time penalties due to interprocess communication are

dictated by the surface area of each sub-domain, as well as the depth of neighbors

that is necessary (one for donor cell upwinding, two for van Leer upwinding, and

three for PPA upwinding). Hence, minimizing the surface area of each sub-domain

minimises the interprocess communication.

We have chosen to implement our code in the C++ programming language. This

choice is motivated by considerations such as modularity of design, flexibility, effi-

ciency, ease of code reuse, and extensibility. For example, using the object-oriented

paradigm in the C++ language has allowed us to maintain a clean separation between

interfaces and implementations (e.g., for the equation of state, Poisson equation solver,

and initial conditions etc.), and features such as templates have allowed us to write

generic code without sacrificing runtime performance.

As standard C++ does not provide facilities for parallel computing, it is necessary

to use additional libraries to handle the parallelization. We have chosen to implement

parallelisation via the Message Passing Interface (MPI). Since both optimising, ISO-

compliant C++ compilers and high quality MPI implementations are available for

virtually every major computing platform, our code is highly portable.
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7.3 Solving the Poisson Equation

Equation (7.5) is distinct from equations (7.1-7.3) in that it requires global, rather

than local, information. There are a number of methods that can be used to solve

the Poisson equation. These include general elliptic equation set solvers, multigrid

methods, multipole methods, and spectral methods (e.g., Motl et al., 2002; Fryxell

et al., 2000; Muller & Steinmetz, 1995; Stone & Norman, 1992). Spectral methods

tend to be the most efficient, and implementing them on a regular Cartesian grid is

straightforward.

The solution of the Poisson equation requires the specification of a boundary

condition on some closed surface. In most physical problems, this surface is chosen

to lie at infinity, upon which the potential is chosen to vanish. However, since our

computational domain is finite, it is not possible to impose a boundary condition at

infinity in a straightforward manner. Instead, we define the value of the potential on

the surface of our domain, which we compute via a multipole expansion:

ΦB(x) = −
∞∑

`=0

∑̀

m=−`

4πG

2`+ 1
r−`−1Q`mY`m(x̂ ) , (7.25)

where

Qlm =

∫
dx ′ r′`Y ∗

`m(x̂ ′)ρ(x ′) . (7.26)

In practice, it is only necessary to include the first few multipoles (for our purposes

`max = 10) to obtain accurate boundary values. Note that the boundary condition at

infinity is built into the multipole expansion.

Given the Dirichlet boundary condition, it is possible to solve Poisson equation

via a discrete sine transform (DST) (e.g., Press et al., 1992). Written in its finite-

difference form, (7.5) becomes

∑

i=x,y,z

Φ+i − 2Φ + Φ−i

(∆xi)2
= 4πGρ . (7.27)
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In terms of their discrete sine transforms Φ̂ and ρ̂, Φ and ρ are given by

Φi,j,k =
2

IJK

I−1∑

m=1

J−1∑

n=1

K−1∑

p=1

Φ̂m,n,p sin
πim

I
sin

πjn

J
sin

πkp

K
(7.28)

ρi,j,k =
2

IJK

I−1∑

m=1

J−1∑

n=1

K−1∑

p=1

ρ̂m,n,p sin
πim

I
sin

πjn

J
sin

πkp

K
, (7.29)

where i, j, k, and I, J , K define the location in, and the dimensions of, the compu-

tational domain, respectively. Substituting these expansions into (7.27) gives

Φ̂m,n,p = −4πG
ρ̂m,n,p

κ2
m,n,p

, (7.30)

where

κ2
m,n,p =

2

(∆x)2

(
1 − cos

πm

I

)

+
2

(∆y)2

(
1 − cos

πn

J

)

+
2

(∆z)2

(
1 − cos

πp

K

)
.

The potential Φi,j,k is then computed from (7.28).

Expanding Φ in terms of the sine basis functions of the Fourier series ensures

that it vanishes at the boundaries of the domain. Non-zero boundary conditions can

be incorporated by adding an appropriate source term to the right side of equation

(7.27). We may define Φ′ = Φ−ΦB where now ΦB is determined by equation (7.25) at

one zone beyond the boundary and vanishes everywhere else. The resulting equation

for Φ′ is the same as equation (7.27) in the interior and is given by

∑

i=x,y,z

Φ′
+i − 2Φ′ + Φ′

−i

(∆xi)2
= 4πGρ−

ΦB
±j

(∆xj)2
= 4πGρ′ , (7.31)
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on the ±jth boundary. As a result, the effective source terms are given by

4πGρ′i,j,k = 4πGρi,j,k

− 1

(∆x)2

(
δi,1Φ

B
0,j,k + δi,I−1Φ

B
I,j,k

)

− 1

(∆y)2

(
δj,1Φ

B
i,0,k + δj,J−1Φ

B
i,J,k

)

− 1

(∆z)2

(
δk,1Φ

B
i,j,0 + δk,K−1Φ

B
i,j,K

)
.

(7.32)

To summarize, our procedure for solving the Poisson equation is:

1. Calculate ΦB via the multipole expansion (7.25).

2. Calculate the effective source terms for Φ′ from (7.32).

3. Perform a DST on the effective source terms.

4. Calculate Φ̂′ from (7.30).

5. Perform a DST on Φ̂′ to determine Φ′.

We do not actually need to add ΦB to our final answer since it only affects the ghost

points outside our grid. Note that, because we use a second-order finite-difference to

determine the gravitational acceleration in equation (7.18), it is necessary to define

Φ on an extra surface of ghost cells on each edge of the domain.

The DST is most efficiently parallelized in terms of a slab decomposition of the

grid, as opposed to the ideal decomposition for the sourced advection step (which is

cubical). As a result, a significant amount of interprocess communication is required

to prepare for the solution of the Poisson equation at each source sub-step. However,

we have found that the time saved by using the DST more than outweighs the penalty

incurred by the communication overhead compared to alternative methods.
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Figure 7.2: A square pulse that has been advected five times its initial width (50
cells) using the donor cell (open circles), van Leer (filled triangles), and PPA (open
squares) upwinding schemes. For reference, the original pulse profile is also shown.
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Figure 7.3: A sine wave is advected with periodic boundary conditions for 100 times
its wavelength (200 cells) using the van Leer (filled triangles) and PPA (open squares)
upwinding schemes. In the top panel the density profile is shown explicitly, while in
the bottom the residuals are plotted. For reference the analytical result is also shown.

7.4 Test Problems

7.4.1 Advection

In order to test the advection scheme, we considered the advection of a square pulse

(without source terms). In Figure 7.2, the pulse is shown after being advected five

times its initial width (50 cells) using both the donor cell and van Leer upwinding

methods. It is clear that both methods are diffusive, with the donor cell method

substantially more so.

In general, diffusion will lead to errors in both the amplitude and the phase of
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an advected pulse. In order to quantify these errors for diffusion resulting from the

upwinding scheme, a sine wave was advected with periodic boundary conditions for

100 times its wavelength. By this time, the donor cell upwinding scheme has diffused

the sine wave completely, hence only the van Leer and PPA methods are shown in

Figure 7.3. The errors are at the 4% and 0.4% levels, respectively, with deviations

becoming most significant at extrema. In both the square pulse and the sine wave, a

noticeable asymmetry (which is determined by the direction of propagation) develops

as a result of higher-order effects in the upwinding schemes.

7.4.2 Sod Shock Tube

The pressure source term in equation (7.3) was tested by the Sod shock tube problem.

The Sod shock tube consists of an initial density and pressure discontinuity, and its

subsequent evolution for an ideal gas (Γ = 1.4) and a specific set of initial conditions.

For x > 0, ρ = 0.125 and P = 0.1, while for x 6 0, ρ = 1 and P = 1. Because it is

the entropy density and not the pressure that is evolved, it is necessary to find s as

a function of ρ and P for an ideal gas:

s = ln

(
P n

ρn+1

)
where n =

1

Γ − 1
. (7.33)

The Sod shock tube is useful as a test because the resulting ρ and P profiles for any

given time can be calculated analytically (e.g., Sod, 1978; Hawley et al., 1984).

In Figure 7.4, the numerical results from our code are compared to the analytical

solutions. Overall, they are in good agreement, with the exception of two minor

discrepancies. The most notable discrepancy is the entropy deficit in the post-shock

fluid (0.184 < x < 0.35). This is a result of using the adiabatic condition, and

thus ignoring entropy production at shocks. Hence, the higher analytical value is

easy to understand. Because we intend to apply the code to scenarios in which the

adiabatic condition holds to a very good approximation, we expect the entropy deficit

to be physically insignificant. The second discrepancy is the presence of overshoots at

points where the slopes of quantities change discontinuously. As discussed in Stone &
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Figure 7.4: The density, pressure, velocity, and entropy are shown for the Sod shock
tube at t = 0.2 (the units of which depend upon the units chosen for the pressure
and density). 200 cells were used with van Leer upwinding. The head and tail of
the rarefaction wave are located at x = −0.235 and x = −0.014, respectively. The
contact and shock discontinuities are at x = 0.184 and x = 0.35, respectively.
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Norman (1992), this is a real result, originating from the numerical viscosity inherent

in any finite-difference code. The most important result, however, is the fact that the

artificial viscosity causes the shock fronts to be well behaved in our code.

7.4.3 Pressure-Free Collapse

The gravitational source term in equation (7.3) was tested via the pressure-free col-

lapse of a uniform density sphere. Once again, there is an analytical solution:

r = r0 cos2 β

ρ = ρ0 cos−6 β (7.34)

t =

(
β +

1

2
sin 2β

)(
8π

3
Gρ0

)−1/2

,

(see, e.g., Stone & Norman, 1992). Figure 7.5 depicts the result after allowing the

radius to halve (at t = 0.909 for G = 1), for a 256 × 256 × 256 cell grid. There

is a small excess on the edges resulting from our implementations of viscosity and

consistent transport (which necessarily treats the advection of velocity into the edges

differently due to the density gradients). Overall, it does show good agreement with

the analytical prediction.

7.5 Application to a Pulsating White Dwarf

7.5.1 Hydrostatic Equilibrium

The problem of choosing an equilibrium fluid configuration is made non-trivial by

the finite differencing of the the dynamical equations. Consequently, a method to

produce an equilibrium solution for the finite difference equations is required. For

a barotropic equation of state, we have chosen to make use of the self-consistent

field (SCF) method (e.g., Motl et al., 2002; Hachisu, 1986; Ostriker & Mark, 1968).

Because it is well described elsewhere, we will only summarize the procedure here.
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Figure 7.5: The numerical (open circles) and analytical (solid line) solutions for the
density as a function of distance along a radial section for the pressure-free collapse
of a uniform density sphere are shown. The initial radius and total mass of the sphere
was unity. A 256 × 256 × 256 cell grid was used. With Newton’s constant given by
G = 1, this occurs at t = 0.909.
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Model M (M�) R (106m) ω∗ (Hz) ωf2 (Hz) ωp2 (Hz)
CWD 0.632 8.56 0.365 0.562 1.15
HWD 0.632 11.2 0.243 0.560 0.749

Table 7.1: Stellar properties for a cold white dwarf with (CWD) and without (HWD)
an isothermal envelope. Specifically, the mass, radius, fiducial stellar frequency
ω∗ =

√
GM/R3, frequency of the adiabatic quadrupolar fundamental mode, and the

frequency of the lowest order adiabatic quadrupolar p-mode. Note that the inclusion
of the isothermal envelope does not change the mass appreciably while significantly
increasing the radius.

1. An initial guess for the density (taken from the continuous solution) is used to

generate the gravitational potential via the method described in Section 7.3.

2. The new gravitational potential and the initial density guess are then used to

calculate the Bernoulli constant at the center of the star.

3. the Bernoulli constant and the new gravitational potential are used to calculate

the enthalpy at all points on the grid, which is then subsequently inverted to

yield the new density guess.

This procedure is iterated until the Bernoulli constant converges to some specified

tolerance—i.e., when the fractional change is less than some small value (say, 10−12).

The resulting density distribution is a solution to

h+i − h−i

2∆xi
+

Φ+i − Φ−i

2∆xi
= 0 , (7.35)

and, hence, no net momentum flux is generated if the source terms are given by

equation (7.19). Note that, if the source terms are given by equation (7.18), this may

still produce a net momentum flux, and is not necessarily a good approximation to

equilibrium in that case.

When ∣∣∣∣
∂P

∂xi

∣∣∣∣ >
P

∆xi
, (7.36)

the pressure gradient required to preserve hydrostatic equilibrium cannot be resolved

on the grid. For a star, this can result in strong, inwardly directed forces at the
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Figure 7.6: Shown in the top panel are the density profiles for the cold white dwarf
with (solid) and without (dashed) the isothermal envelope. The two lower panels
are the radial displacement profiles for the quadrupolar fundamental mode (f2) and
the lowest order quadrupolar p-mode (p2) for the two models. Note that the density
and f2 mode profiles are very nearly the same for the two cases. However, the mode
profiles differ substantially for the p2 mode.
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surface, driving shocks into the interior. We have found that adding an isothermal

envelope can mitigate this problem by pushing the region where this inequality is

true off the grid, while adding an insignificant amount of mass to the star itself.

This is done explicitly by setting a fiducial density (which we chose to be 10−2 of

the central density) at which the equation of state changes from that of a cold white

dwarf to a Γ = 1 polytrope. The polytropic constant is chosen such that P (ρ) remains

continuous across the transition. Table 7.1 compares the properties of the cold white

dwarf with (HWD) and without (CWD) the isothermal envelope. Note that while the

isothermal envelope increases the radius significantly, it does not change the mass or

the frequency of the quadrupolar fundamental mode (ωf2). The reason for this can

be seen in Figure 7.6. The f2 mode is more strongly weighted in the core where the

addition of the isothermal envelope makes no difference. In contrast, the lowest-order

quadrupolar p-mode is substantially affected by the presence of the envelope. This

probably results from the fact that the radial wavelength of the p2 is much closer to

the height of the isothermal envelope. Henceforth, all evolutions were begun with the

HWD model listed in Table 7.1.

The quality of the equilibrium generated by the SCF method may be explicitly

demonstrated. Figure 7.7 shows the evolution of the centre-of-mass position, net

momentum, and the fraction of the total energy that is converted into kinetic energy

for a star initially in hydrostatic equilibrium. The last quantity is given in terms of

the kinetic, internal, and gravitational components:

K =

∫
1

2
ρv2 d3x , Π =

∫
p d3x , W =

∫
ρΨ d3x . (7.37)

Despite an initial exponential rise, these quantities saturate at relatively low levels

for all resolutions shown. Note that all times are measured in dynamical times of

the cold white dwarf, tCWD ≡ 1/ω∗, which is approximately the time it takes for a

disturbance to cross the star.
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Figure 7.7: Shown are the center-of-mass (top panels), net momentum (middle pan-
els), and fraction of the total energy converted into kinetic energy (bottom panels)
for a number of grid resolutions (note the different time scales). In all cases these
quantities saturate well below significant levels (e.g., for the worst case, the center-
of-mass moves by less than 10−8 cell widths in the 150 dynamical times shown, thus
it would require roughly 1013 dynamical times before the center-of-mass moves one
stellar radius. Typically, these appear to turn over, implying that they may never
rise significantly above 10−7 cell widths.)
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7.5.2 Oscillation Modes

In general, the problem of interest is dynamical. Specifically, we are interested in

the non-linear evolution of the oscillation modes of a cold white dwarf which are

being excited resonantly by tidal forces. Towards this end, it is important to obtain

a measure of the numerical quality factor (Q; the e-folding time of the energy in

the oscillation), and the oscillation frequencies themselves. That the latter may be

different from the frequencies in Table 7.1 is a result of both the approximation of

discrete cells and the fact that the finite-difference equations are distinct from the

continuous equations. However, we expect the deviation to be small, and therefore a

close agreement between the predicted and observed frequencies serves as yet another

test for the correctness of our code. Both the quality factor and the oscillation

eigenfrequencies can be obtained by deforming the star in a particular way, and

analyzing the subsequent oscillations.

We deformed the star by adding a fractional quadrupolar perturbation to the

density, i.e.,

∆ρ(r) = Aρ(r)Y e
22(θ, ϕ) , (7.38)

where the amplitude, A, was chosen to be small (10−4) so that the resulting oscillation

occurred in the linear regime. This initiated an even m = 2 standing wave on the star.

Figures 7.8 and 7.9 show the resulting evolutions for a number of grid resolutions.

The same diagnostics as those used to demonstrate hydrostatic equilibrium are shown

in Figure 7.7. In this case as well, the center-of-mass and momentum drift saturate

at levels well below those of interest. Unlike hydrostatic equilibrium, there now exists

a non-vanishing kinetic energy. It is strongly harmonic and decays exponentially.

Because the initial perturbation excited all of the even quadrupolar modes with m =

2, there are a number of distinct decay constants, with the slowest being due to the

f2 mode. This exponential decay at late times may be fit to estimate the numerical

Q, found here to be on the order of 6000.

In Figure 7.9, the quadrupolar moments are shown. The even m = 2 moment is

strongly dominant as expected. It also has a very clear harmonic structure. This may
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Figure 7.8: Same as Figure 7.7 for the case when a quadrupolar perturbation is
present (note the difference in scales in comparison to that figure). The white line
drawn through the oscillations is for a Q of approximately 6000.
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Figure 7.9: The quadrupolar moments of the perturbed star for each of the resolutions
considered in Figure 7.8. From top to bottom, the panels are the odd m = 2, odd
m = 1, m = 0, even m = 1, and even m = 2 moments. Note the difference in
scales of the different moments, namely that the even m = 2 moment is two orders of
magnitude larger than the m = 0 moment and nine orders of magnitudes larger than
the others.
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Figure 7.10: Shown are the power spectra of the even m = 2 quadrupolar moment as
a function of angular frequency (using the mean squared amplitude normalization).
As expected, for each grid resolution there is a strong spike coincident with the f2
mode frequency predicted for the HWD model.
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be Fourier analyzed to produce the dominant oscillation mode, as shown in Figure

7.10. In the power spectrum of the even m = 2 quadrupolar moment, there is a peak

which extends five orders of magnitude above the rest of the spectrum. This peak is

clearly identifiable with the f2 mode, and appears to have very nearly the frequency

predicted by the HWD model.
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Chapter 8

Non-Linear Evolution of White

Dwarf Oscillations

8.1 Mode Projection

To look for non-linear effects with large amplitude modes, a numerical procedure

to determine the displacement of a given linear normal mode is needed. The fluid

displacement field inside the star can be expanded in terms of the modes:

ξ(x , t) =
∑

j

xj(t)ξ̂j(x ) , (8.1)

and the modes obey the orthonormality relation

1√
MjM ′

j

∫
dx ξ∗

j · ξj = δj,j′ . (8.2)

(In this section, we temporarily revert to using complex eigenfunctions. This choice

is merely for convenience; the final result will carry over trivially to the case of real

eigenfunctions.) Thus, in principle, the displacement of mode j is obtained by

xj =
1

Mj

∫
dx ξ∗

j · ξ . (8.3)

However, with an Eulerian computational grid, the fluid displacement field ξ is not

available directly to us. A different computational scheme is therefore required which
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can project out the displacement for a given mode using Eulerian quantities such as

the density perturbation ρ′.

From the equation for mass conservation,

ρ′ = ∇ · (ρ0ξ) , (8.4)

and the eigenfunction expansion of ξ(x , t),

ξ(x , t) =
∑

j

xj(t)ξ̂j(x ) , (8.5)

it follows that

ρ′(x , t) =
∑

j

xj(t)ρj(x ) , (8.6)

where

ρj(x ) = −∇ · [ρ0ξ̂j(x )] . (8.7)

We are looking for a function Fj such that

∫
dx ρjFj′ = δj,j′ . (8.8)

Using the expression for ρj, integrating the above integral by parts, and dropping the

surface term, we get ∫
dx ρ0ξ̂j · ∇Fj′ = δj,j′ . (8.9)

Consider the case when Fj = iφ∗
j/ωj, where φj is the jth component of the velocity

potential, such that ∇φj = iωjξ̂j. It then follows that

∫
dx ρ0ξj · ∇Fj′ =

∫
dx ρ0ξj · ξ∗

j′ =
√
MjMj′ δj,j′ , (8.10)

which is what we want. Therefore, if we know ρ′, then we can use φ∗
j to project out
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the displacement of mode j:

xj =
i

ωj

∫
dx φ∗

jρ
′ . (8.11)

In terms of the Dziembowski variables defined in Section 4.2.2, φj is given by

φj =
igr

ωj

η2(r)Y`m(x̂ ) . (8.12)

Hence, we have

xj =
1

Mjω2
j

∫
dx

r2η2

C
Y ∗

`mρ
′ . (8.13)

With real eigenfunctions, the above equation is still valid: we simply replace Y ∗
`m with

Y
(e)
`m or Y

(o)
`m , defined similarly to (4.65) and (4.66).

It should be mentioned that (8.13) can only be used to project out the displace-

ments if the only modes excited are poloidal. As tidal forces are conservative, in the

absence of viscosity, toroidal modes will not be excited. While the presence of a finite

viscosity due to the differencing scheme in our code would seem to violate this, the

effects are negligibly small. We can therefore use (8.13) to calculate the mode dis-

placements numerically. In general, however, we cannot expect mode orthogonality

to hold identically on a discrete grid. Therefore, we are faced with the problem of

distinguishing physical effects from by-products of the numerical scheme. A good

way to check for this is to run a given simulation at different resolutions and look for

convergence.

We can also gain some sense of the level at which finite-resolution effects enter

into the mode projection by evaluating the projection integral (8.13) between the

` = m = 2 f -mode, and several other modes. Note that a discretized star will

necessarily possess a finite spectrum of modes; it is clearly impossible for a wavelength

shorter than the grid separation to be resolved. And, generally, the shorter the mode

wavelength, the lower will be the effective resolution on a given grid. Thus, for

example, we expect that for varying radial order n, the violation of mode orthogonality

should scale monotonically with the parameter n∆x/R∗. Typically, we find that
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orthogonality between modes with different `,m is not affected by the finite resolution.

For modes with the same `,m and different n, the grid introduces a small coupling.

However, the coupling is at a level well below that of interest, and scales down as

expected with increasing resolution.

8.2 Resonant Excitation of Modes

We ran several simulations of the resonant excitation of the ` = m = 2 f -mode in a

0.6 M� white dwarf. The simulations were run at several different orbital separations

with a circular orbit, and with the orbital period fixed at 24.06 s (the fundamental

resonant period of the ` = m = 2 f -mode). The white dwarf model used was a hybrid,

with a degenerate core, and an isothermal envelope, with the transition from the core

to the envelope occurring at 10−4 of the central density. The companion mass was

fixed at 103 M∗ (hence, 6× 102 M�). The simulations were run at separations of 3.5

(run A), 4.5 (run B), 5.5 (run C), and 6.5 (run D) times the Keplerian separation

(11.9 R∗). In terms of the estimated Roche separation for a 103 M∗ companion, these

correspond to 2.0, 2.6, 3.2, and 3.8 RRoche, respectively. No back reaction effects were

included, and the orbital elements were not evolved in any way. The resulting mode

amplitudes are shown as functions of time in Figures 8.1–8.3, and Figure 8.4 shows the

total mass contained within the computational grid and the center-of-mass motion for

the same runs. An interesting feature is the onset of mass loss at a different point in

each run. For example, there is a noticeable downturn in the mass for run A around

t = 120. This is an important observation which we will revisit later. For the moment

it is sufficient to note that the maximum fractional mass loss in 400 dynamical times

is only about 0.5%. Still, the onset of mass loss means that any long-term conclusions

regarding mode behavior based upon the results of these runs should be considered

tentative, pending further confirmation.

As Figures 8.1–8.3 show, the evolutions of the mode amplitudes are complicated.

Nonetheless, some information can still be extracted from these figures visually. In

general, the multipolar components of the tidal overlap integrals scale with orbital
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separation, R, as ∝ 1/R`+1. Thus, for quadrupolar modes the scaling is ∝ 1/R3. As

the rate of excitation of a mode in the linear approximation is proportional to its

overlap integral, we expect that the rates at which the quadrupolar mode amplitudes

rise should scale as ∝ 1/R3. Hence, the initial rise in the amplitudes of quadrupolar

modes for run A should be about twice as fast as for run B. The results in Figure 8.1

are in satisfactory agreement with this prediction.

The amplitude of the f 22 mode exhibits a puzzling behavior in all of the runs:

in the long-term it starts declining, despite continued resonant excitation. As the

decline seems to correspond roughly with the onset of mass loss, we speculate that

the two are related. The nature of this relationship is unclear at the moment. For run

A, however, the amplitude of the f 22 mode shows some signs of saturating around a

value of 0.5 before the mass loss sets in and the mode amplitude starts declining for

the remainder of the run. This saturation, if it is real, has a natural interpretation

as follows. Tidal coupling transfers energy resonantly to the f 22 mode at some

rate which is determined by the overlap integral and the orbital parameters. If the

mode couples non-linearly to other modes, then the coupling constants set the rate of

damping (the ‘transition rate’ in quantum mechanical terminology). An equilibrium

is then achieved when the rates of excitation and non-linear damping are equal.

As the damping rate is expected to depend upon the mode amplitude, the point

at which equilibrium is achieved determines the saturation amplitude. In such a

‘steady’ state, the energy cascades from the resonant f 22 mode to other modes. This

energy cannot accumulate indefinitely in the other modes, and they, in turn, transfer

energy to still other modes via non-linear couplings. At some point along this chain

of coupling, modes of sufficiently high order will be reached so that the dominant

damping mechanism is microscopic viscosity, which will then thermalize the energy.

Thus, in this scenario, we have a Kolmogorov-type cascade of energy down to small

scales, and a steady heating of the star. Despite its appealing simplicity, we do not

consider the hint of amplitude saturation in run A as providing compelling evidence

for the correctness of this description of non-linear damping. Additional runs at higher

resolutions and with different parameters are needed before a definite conclusion can
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be drawn.

As we have noted above, the tidal overlap integrals for modes with a given `

scale as 1/R`+1. For ` = 4 modes, we therefore expect the initial rise in the mode

amplitudes to scale as ∝ 1/R5, in the linear approximation. However, in Figure 8.3,

this is clearly not the case. The mode amplitudes for many of the ` = 4 modes

appear to rise similarly to the ` = 2 modes, and seem to track their general evolution

with time. This suggests the existence of a coupling between the ` = 2 and ` = 4

modes. The case for a coupling becomes more plausible with the observation that

the ` = 3 modes do not exhibit a similar behavior, which would be accounted for

by the existence of selection rules for the lowest-order two-mode couplings (e.g., Van

Hoolst, 1994). A useful calculation to be done in the future would be to compare

the couplings observed in simulations with theoretical calculations for coupling in the

weakly non-linear regime.

Earlier, we drew attention to the long-term mass loss exhibited by runs A through

D. This feature seems to imply some instability in the numerical simulations, the

nature of which is not yet understood. One way to avoid this problem may be to run

simulations with eccentric orbits and higher-harmonic resonances.

Figures 8.5 and 8.6 show results from another set of runs with parameters identical

to runs A through D, but with the difference that mode excitation was turned off at

time t = 50. The sole reason for this was to observe the damping behavior of the f 22

mode with different amplitudes. It would be of interest to obtain an empirical scaling

relation for the damping rate as a function of the amplitude. Unfortunately, the

onset of mass loss prohibits a simple interpretation of the observed long-term decline

in the mode amplitude. We therefore limit ourselves to a qualitative observation.

Generally, we expect the rate of damping to increase with the mode amplitude. In

the regime t . 100, the results shown in Figure 8.5 are in satisfactory agreement with

this expectation.

The results we have presented above are tentative, and a number of things can

be done in the future to obtain more definite and quantitative conclusions. Simu-

lations with higher resolution will be useful for mitigating short-term variability in
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the mode amplitudes which can be seen in Figures 8.1–8.3 and Figure 8.5. This

variability is a finite-resolution artifact, and scales down with increasing resolution.

Insight into the non-linear mode evolution could also be obtained by comparing the

results of simulations with theoretical predictions of two-mode and three-mode cou-

plings in the weakly non-linear regime (e.g., Dziembowski, 1982; Van Hoolst, 1994).

Also, runs with eccentric orbits and higher-harmonic resonances may alleviate the

problem of mass loss, which will simplify the interpretation of long-term trends in the

mode amplitudes. In addition, simulations which have cut-offs in the mode excitation

(similar to Figure 8.5), but are unhampered by mass loss, will allow an empirical de-

termination of the how the non-linear damping rate of the f 22 mode scales with the

amplitude. Such simulations will have to be run at multiple resolutions to ensure that

the damping rates being measured are due to non-linear effects and not numerical

dissipation.
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Figure 8.1: Amplitudes as functions of time of ` = 2 modes with a 60 × 60 × 60
grid, a white dwarf mass of 0.6 M�, companion mass of 103 M∗, and several orbital
separations. The orbital period is the fundamental resonant period for the ` = m = 2
f -mode (24.06 s). The orbital separations are 41.8 R∗ (2.0 RRoche) for the black
curve, 53.8 R∗ (2.6 RRoche) for the red curve, 65.7 R∗ (3.2 RRoche) for the blue curve,
and 77.6 R∗ (3.8 RRoche) for the green curve. Modes with increasing radial order are
stacked vertically, and modes with increasing azimuthal order are laid out horizontally.
Only modes with even |` +m| are shown (m = 0, 2), as modes with odd |` +m| are
excited negligibly. Radial orders (n) from 0 to 5 are shown.
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Figure 8.2: Amplitudes as functions of time for ` = 3 modes for the same runs as
Figure 8.1. Modes with radial orders n = 0 . . . 5, and m = 1, 3 are shown.
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Chapter 9

Applications

Much of the present work is devoted to the development of formalism. While this may

be considered as valuable in itself, a formalism with relevance to observations is al-

ways preferable. This chapter therefore focuses on observable consequences of results

obtained in the previous chapters. While we consider only two specific applications,

it is worth mentioning that we have attempted to maintain some generality in our

development of formalism. In particular, the results of Chapter 6 are general enough

to be applicable to other systems, which need not be composed of compact objects.

For example, a planet migrating through a circumstellar disk may well experience

resonant tidal excitation, and our formalism could be employed in that context.

9.1 Exotic Supernovae

9.1.1 Progenitors

In dense environments such as galactic centers and globular clusters, eccentric white

dwarf-compact object binaries can form in several ways. One possibility is tidal

capture. Here, the initial orbit of the system will be highly eccentric, and its evolution

is somewhat uncertain (cf. the discussion in Section 1.1.2). However, for binaries that

survive in the long-term, the initial evolution will be driven tidally rather than by

gravitational radiation (for systems with masses less than a few times 105 M�), with

modes being excited non-resonantly at each periastron passage. This initial period
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of evolution will lead to faster changes in the orbital energy than the orbital angular

momentum, as the mode excitation will be close to the impulse limit. As the orbit

shrinks and circularizes, there will come a point when its evolution will cease to be

driven by non-resonant excitation of tides, and gravitational radiation will become the

dominant evolution mechanism. The system will then be in a regime where the tidal

interactions are best treated as a sequence of resonance passages, with a negligible

amount of energy being transferred between resonances. At this point, the system

will still have a moderate amount of eccentricity, with ∼ 0.5 being a canonical value.

In principle, the formalism of Press & Teukolsky (1977) can be used to calculate the

initial evolution of the orbit, assuming that the oscillations are damped on an orbital

time-scale. However, we note that tidally captured white dwarfs are likely to be quite

close to the Roche limit at capture. The tidal interaction is therefore expected to be

strong, and numerical simulations will be necessary to check the results from linear

calculations.

Alternatively, an eccentric white dwarf-compact object binary may form through

three-body processes. Typically, in an exchange, the lightest body is ejected. As we

noted previously in Section 1.1.3, the average eccentricity of the remaining binary is

insensitive to the initial configuration, and is given approximately by 1−Me/Mf , where

Me is the mass of the ejected body, and Mf is the mass of the intruder (Sigurdsson

& Phinney, 1993). As values of ∼ 2 for the ratio Me/Mf are not atypical, initial

eccentricities of ∼ 0.5 seem reasonable for systems formed in this way.

9.1.2 Tidal Heating: Bombs vs. Duds

As modes are excited resonantly during the inspiral of an eccentric white dwarf-

compact object binary, the energy transfer to the white dwarf may be sufficient to

raise its temperature to the point where runaway thermonuclear burning disassembles

the star, producing a Type Ia supernova. For this to occur, the modes must damp on

a time-scale shorter than the inspiral time to tidal disruption. We shall revisit this

point later, but for the moment we take it as given. In addition, sufficient energy
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must be transferred during passage through a sequence of resonances to attain the

relevant temperatures. To investigate the plausibility of this scenario, we consider

the resonant excitation of the ` = m = 2 f -mode during inspiral, with orbital ec-

centricities of less than 0.5. There are two reasons for this: (i) as we have argued

above, initial eccentricities of ∼ 0.5 are typical of what we expect from binary forma-

tion mechanisms, and (ii) our formalism, as developed in Chapter 6, is not valid for

high eccentricities. In addition, the resonant excitation of f -modes is unimportant for

companion masses & 106 M�, as the last stable orbits then correspond to high-order

harmonics (& 40; see Section 9.2 below). Because the location of the last stable orbit

is proportional to the companion mass (for large q), it follows that the excitation of

f -modes is only of interest for companion masses . 105 M�. Accordingly, we focus

on this regime.

The heat capacity of a white dwarf is essentially dominated by the ions (e.g.,

Hansen & Kawaler, 1994), and is therefore given approximately by the ideal gas heat

capacity:

CV =
3

2
kB

M∗

µmu
, (9.1)

where µ is the molecular mass.1 The heat capacities and binding energies for several

white dwarfs are shown in Table 9.1. We note that to raise the temperature by

∼ 108 K requires ∼ 1–5 percent of the binding energy. The heat capacities allow

us to identify mode amplitudes with effective temperature differences, which is a

convenient characterization for the present application:

∆T =
Mjω

2
j

CV
A2

j (9.2)

(for modes with m = 0, the right hand side of the above equation has a factor of

1/2). Figure 9.1 shows the correspondence for the ` = m = 2 f -mode. An important

observation is that a temperature difference of about 108 K corresponds to mode

amplitudes of around 0.45–0.65, which are expected to be in the non-linear regime.

1For low temperatures (. 107 K), crystallization of the ions changes the heat capacity signifi-
cantly, but this does not affect our calculations as the temperatures we are concerned with are quite
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Mass Radius B.E. CV

(M�) (108 cm) (1050 erg) (1040 erg K−1)

0.6 8.83 0.43 2.12
1.0 5.71 1.6 3.52
1.4 1.98 5.1 4.93

Table 9.1: The binding energies (B.E.) and heat capacities (CV ) for several Chan-
drasekhar white dwarfs, assumed to be equal carbon-oxygen mixtures. For helium,
the heat capacities are a factor of 7/2 higher.

0 0.2 0.4 0.6 0.8 1
Af22

0

1

2

3

4

5

∆T
 (

10
8  K

)

Figure 9.1: The correspondence between ` = m = 2 f -mode amplitudes and effective
temperature differences for the white dwarf models listed in Table 9.1. The solid line
corresponds to the 0.6 M� model, and the long and short dashed lines correspond to
the 1.0 and 1.4 M� models, respectively.
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Figure 9.2 shows plots of several gravitational inspiral trajectories in the eccentricity-

harmonic plane for the ` = m = 2 f -mode with different white dwarf and companion

masses. The resonant energy transfer, assuming a zero initial mode amplitude at

each resonance, has been used to plot contours of constant ∆T . Also shown are the

tidal limit and contours corresponding to constant inspiral times to tidal disruption.

Stellar evolution calculations indicate ignition temperatures of about 2.5×108 K and

8×107 K for thermonuclear burning of carbon and helium, respectively (Kippenhahn

& Weigert, 1990). Thus, we expect that the probability of a detonation becomes sig-

nificant for a carbon-oxygen white dwarf if its temperature approaches 2.5 × 108 K.

It is interesting to note that for a helium white dwarf of identical mass, the ignition

temperature is lower, but the heat capacity is higher by a factor of 7/2, so that the

required amount of energy for ignition is only a factor of about 1.1 higher than for

the carbon-oxygen case.

If we assume that the mode is damped completely between resonances, then the

heating of the white dwarf along an inspiral trajectory is given simply by adding up

the values of ∆T for each resonance before tidal disruption. In this way, we can

identify trajectories which are potentially viable for detonating the white dwarf. It

is immediately obvious from Figure 9.2 that, regardless of the white dwarf mass,

tidal detonation through resonant excitation of f -modes is not a possibility with a

companion mass of 1.4 M� or less, as the required rise in the temperature cannot be

attained before tidal disruption. Therefore, when the companion is either a neutron

star or another white dwarf, we can assert that we have a ‘dud’ rather than a ‘bomb.’2

For companion masses of 103 and 105 M�, Figure 9.2 provides a rough estimate of

the limiting inspiral tracks that separate trajectories for which detonation is a theo-

retical possibility from those where detonation can be ruled out. We parametrize the

limiting trajectories by their orbital periods at an eccentricity of 0.5. The results are

summarized in Table 9.2 (companion masses of 10 and 100 M� are also provided for

reference). Trajectories with periods longer than those listed in Table 9.2 at an eccen-

a bit higher.
2One can argue that the possibility of detonation with a 1.4 M� companion still exists if the

white dwarf is initially very hot. We assume that this is not the case.
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Figure 9.2: Several inspiral trajectories for different white dwarf and companion
masses (in units of M�) are shown in the eccentricity-harmonic plane. In each plot,
the solid lines correspond to the trajectories, the short dashed lines are contours of
constant ∆T (in Kelvins, and labeled with base-10 logarithms), and the long dashed
lines are contours of constant inspiral time to tidal disruption (measured in years, and
also labeled with base-10 logarithms). The tidal disruption limit is denoted by the
dotted line. The curve corresponding to our assumed threshold for carbon ignition is
log(∆T/K) = 8.4 (i.e., ∆T = 2.5 × 108 K).
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H
H

H
H

H
H

M∗

M0 1.4 M� 10 M� 102 M� 103 M� 105 M�

0.6 M� - 253 s 415 s 571 s 2008 s
1.0 M� - 113 s 198 s 265 s 517 s
1.4 M� - 19 s 27 s 43 s 72 s

Table 9.2: Approximate orbital periods at an eccentricity of 0.5 for gravitational
radiation inspiral tracks that delineate trajectories for which detonation via resonant
excitation of quadrupolar f -modes is a theoretical possibility. For a given pair of
white dwarf and companion masses, trajectories with longer periods than the given
value are expected to be ‘duds.’ Most trajectories with shorter periods are potential
‘bombs.’ For a companion mass of 1.4 M�, tidal detonation is ruled out.

tricity of 0.5 are expected to be duds, where as most trajectories with shorter periods

are potential bombs. We say ‘most’ rather than ‘all’ because the variation in the tidal

limit for different trajectories can introduce strips in the eccentricity-harmonic plane

which are duds despite meeting the criterion of Table 9.2. For reference, Figure 9.3

shows the orbital period as a function of eccentricity for gravitational inspiral. The

period is shown in units of the period at an eccentricity of 0.5. Note that this plot is

scale-free in the sense that it applies to all inspiral trajectories.

9.1.3 Detonation and Aftermath

Assuming that the carbon in the white dwarf is ignited, the result may be a runaway

detonation that disassembles the entire star—in other words, a Type Ia supernova. If

the ejecta from the explosion remain bound in orbit around the companion, then an

even larger amount of energy will be released when this matter is accreted onto the

companion. This is quite different from conventional scenarios for Type Ia supernovae.

We can evaluate the plausibility of the star being disassembled by a calculation

of the energy budget. The energy yield from thermonuclear burning of carbon in an

equal carbon-oxygen mixture yields Q = 2.5 × 1017 erg g−1 (Kippenhahn & Weigert,

1990). Assuming that all this energy goes into heat, if the total energy yield exceeds

the binding energy of the star then there is a significant probability that the star will

not survive. The minimum fraction of the stellar matter that must be burned for the
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Figure 9.3: The orbital period as a function of eccentricity for gravitational inspiral.
The period is shown in units of the period at an eccentricity of 0.5. This makes the
plot scale-free and applicable to all inspiral trajectories.
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star to disassemble by carbon detonation is roughly 0.14 for a 0.6 M� white dwarf,

0.32 for a 1.0 M� white dwarf, and 0.73 for a 1.4 M� white dwarf. We denote this

fraction by α, and let β be the fraction of the stellar matter that is actually burned.

Assuming that β > α (i.e., the star is disassembled), the specific kinetic energy of

the ejecta from the explosion is given by (β−α)Q. If this energy exceeds the specific

orbital binding energy, GM0/2a, then we can expect the ejecta to become mostly

unbound (from the orbit). However, if the orbital binding energy is larger, then most

of the ejecta will remain trapped in orbit around the companion. Using this criterion,

the conditions for the ejecta to be trapped are found to be:

(β − 0.14) − 0.21
q

(1 + q)1/3
k−1/3 < 0 (for 0.6 M�) , (9.3)

(β − 0.32) − 0.55
q

(1 + q)1/3
k−1/3 < 0 (for 1.0 M�) , (9.4)

(β − 0.73) − 2.3
q

(1 + q)1/3
k−1/3 < 0 (for 1.4 M�) . (9.5)

For the limiting case, β = 1, the resulting conditions on the orbital period at the time

of detonation for the ejecta to remain bound are

Porb . (0.18 s) q2 (for 0.6 M�) , (9.6)

Porb . (2.4 s) q2 (for 1.0 M�) , (9.7)

Porb . (420 s) q2 (for 1.4 M�) . (9.8)

The detonation is likely to occur close to the tidal limit, if at all. As the orbital

period at the tidal limit for eccentricities 0–0.5 is never larger than about 150 s for

the 0.6 M� white dwarf, 60 s for the 1.0 M� white dwarf, and 11 s for the 1.4 M�

white dwarf (cf. Figure 9.2), the ejecta should remain bound in the majority of cases,

with a 0.6 M� star and a ∼ 10 M� companion being an exception.
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9.1.4 Comments and Caveats

The estimates for the carbon and helium ignition temperatures that we have quoted

are taken from calculations of helium and carbon flashes in evolving stars presented

in Kippenhahn & Weigert (1990). Other references quote somewhat different tem-

peratures. Indeed, Kippenhahn & Weigert (1990) themselves state elsewhere that

the temperatures for helium and carbon ignition are & 108 K and ∼ 5–10 × 108 K,

respectively. Hansen & Kawaler (1994) state a temperature of about 1.2 × 108 K

for helium ignition, and a range ∼ 5–10 × 108 K for carbon ignition. Rose (1998)

states the corresponding temperatures as & 108 K and ∼ 4–8 × 108 K, respectively.

Bisnovatyi-Kogan (2002) states a maximum temperature of about 2 × 108 K for a

helium flash, and > 3 × 108 K for carbon burning. The actual ignition temperatures

may depend upon details of the white dwarf model, and full evolutionary calculations

are required to determine this. Nonetheless, in view of the numbers quoted above, the

ones we have chosen to use are perhaps the most optimistic. Note, however, that all

of the quoted temperatures are attainable through tidal excitation. Higher tempera-

ture thresholds will lower the periods listed in Table 9.2, and therefore decrease the

number of viable trajectories. For example, a carbon ignition threshold of 5 × 108 K

lowers the limiting period for a 1.0 M� white dwarf with a 103 M� companion by

∼ 20 percent to about 214 s.

The assumption of mode damping between resonances was adopted as an ansatz.

If the dominant mode damping mechanism is gravitational radiation, as is probably

the case for linear mode amplitudes, then the full damping assumption is incorrect.

Moreover, with gravitational radiation as the damping mechanism, the energy in os-

cillations is not available for heating. However, if the mode amplitudes are large

enough, then non-linear processes may dominate the damping. It was observed pre-

viously that the quadrupolar f -mode amplitudes corresponding to a temperature of

about 108 K are around ∼ 0.5. As an amplitude of 0.5 for a quadrupolar f -mode

represents a maxmimum radial displacement at the stellar surface of about 0.27R∗,

we can expect non-linear processes to be relevant. It is interesting to note that for
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different companion masses, there is a trade-off between the resonant energy transfer

and the time available for mode damping before tidal disruption: higher masses mean

more energy, but less time because the binary coalesces more rapidly.

Suppose that the mode does not damp by non-linear processes completely between

resonances, but is instead damped until its amplitude is in the linear regime, where

gravitational radiation then becomes the dominant damping mechanism. We can

obtain some sense of how this would affect the heating of the white dwarf along

an inspiral trajectory by assuming that the mode damps to some non-zero fiducial

amplitude between resonances, which we take to be 0.2. Thus, only part of the

mode energy is assumed to be available for heating. If we evaluate the temperatures

attained during inspiral for the marginal bomb trajectories listed in Table 9.2, then

we find that the temperatures attained before tidal disruption are, in fact, higher than

for the full mode damping case. The reason for this is that the energy transfer at a

resonance increases with the initial mode amplitude (cf. Section 6.4.3). Therefore, for

partial mode damping, the region of bomb trajectories in the eccentricity harmonic

plane appears to be larger rather than smaller. However, this conclusion is subject

to the following caveat.

The formalism developed in Chapter 6 assumes that the mode amplitude is in the

linear regime. If the mode is even marginally non-linear, then it is unclear whether

the energy transfer calculated with our formalism is accurate. For want of a better

answer, we assume that the energy transfer including non-linear effects does not

change by more than a factor of order unity. A more definite answer requires further

investigation.

We have treated the orbit as being non-relativistic in all cases. For high-mass

binaries and low-harmonic resonances, the orbital velocities become a significant frac-

tion of the speed of light. Relativistic effects are therefore expected to be important

in such systems. A more accurate treatment of the problem would be obtained by

incorporating post-Newtonian terms in the equations of motion.

Our estimate of the tidal disruption limit is the application of an analytic fit to the

tidal limit in circular, synchronous binaries. We have simply treated the periastron
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separation as the effective radius of the orbit. The resulting estimate is probably

conservative in that the white dwarf is likely to be able to maintain its structural

integrity (perhaps with some mass loss from the outer layers) for smaller separations

in an eccentric orbit, as the system does not spend most of its time at periastron.

Thus, the net energy transfer before disruption may be quite a bit larger than we

have calculated (perhaps by a factor of two or more).

Of the companion masses we have considered, 103 and 105 M� are purely spec-

ulative (save, perhaps, for some galaxies which may have black holes with masses a

few times 105 M� at their centers). However, 103 M� is about what is predicted

for objects formed by runaway collisions in globular cluster dynamics simulations

(Portegies Zwart & McMillan, 2002; Portegies Zwart et al., 2004). Less speculative

companion masses are 10 and 100 M�, which may be expected for black holes formed

from massive stars.

Finally, we note that even if carbon is ignited in a white dwarf (or helium in a

helium white dwarf), the result may be a flash rather than a supernova for stellar

masses lower than the Chandrasekhar limit. In a flash, the temperature in the core

increases at nearly constant density until the degeneracy is removed, and the core then

expands and the central burning becomes stable. For near-Chandrasekhar mass white

dwarfs, a supernova is more likely to be the outcome if carbon ignition occurs in the

center (Kippenhahn & Weigert, 1990). Once again, detailed evolutionary calculations

are required to obtain a more definite answer.

9.2 Gravitational Wave Sources

Supermassive black holes with masses ∼ 106 M� or greater are thought to reside

at the centers of most, if not all, nucleated galaxies. Within the central cusp of

such a galaxy, the dynamics are dominated by the gravitational field of the central

black hole, and the mass of the stars inside the cusp is typically comparable to

the black hole mass. When two of these stars undergo a scattering event, one of

them can be captured into a close, highly eccentric orbit around the central black
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hole. This orbit subsequently inspirals under gravitational radiation reaction, and

also evolves due to other relativistic effects such as periastron advance and Lense-

Thirring precession of the orbital plane. These extreme-mass-ratio capture events are

expected to be important potential sources for the proposed space-based gravitational

wave detector, LISA (Barack & Cutler, 2004). LISA’s sensitivity band is centered

around a frequency of ∼ 3 × 10−3 Hz. Most main-sequence stars are not expected to

be able to sustain the strong tidal forces in this regime, and are therefore unlikely to

be observable by LISA. For the star to be able to survive in the LISA band, it would

have to be a white dwarf, neutron star, black hole or a very low-mass main-sequence

star (Barack & Cutler, 2004). Note that, for a stellar-mass companion, the center of

LISA’s sensitivity band corresponds to a black hole mass of ∼ 106 M�.

The proposed algorithms for parameter estimation from gravitational wave signals

observed by LISA are based upon the technique of ‘matched filtering’ (e.g., Buonanno

et al., 2003; Barack & Cutler, 2004). The basic idea is that a theoretical gravitational

waveform can be calculated for a binary system, in the point-mass approximation, for

a given set of parameters such as an initial time, the masses of the two components,

the spins, the relative orientations of the spins and the orbital angular momentum,

the initial longitude of periastron, and the initial orbital phase.3 The output from the

detector can then be filtered through such a theoretical waveform to look for a signal.

A detection is claimed when the signal-to-noise ratio is larger than some threshold.

Details of the matched filtering technique can be found in Buonanno et al. (2003) or

Barack & Cutler (2004), and references therein.

An important property of the extreme-mass-ratio capture events is that the orbits

can remain moderately eccentric up until the final ‘plunge’ beyond the innermost

stable orbit. The initial eccentricity of the orbits is extremely high: 1 − einit ∼
10−6–10−3, typically, and the initial periastron separation is only rinit

p ∼ 8–100 M0.

At the innermost stable orbit, e > 0.1 for rinit
p . 20.0 M0, e > 0.2 for rinit

p .

3These are the so-called intrinsic parameters: they describe properties of the source and are
independent of the observer. For the actual detection algorithm, the location and orientation of
the observer relative to the source have to be accounted for as well. These comprise the extrinsic

parameters (Buonanno et al., 2003; Barack & Cutler, 2004).
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12.8 M0, and e > 0.3 for rinit
p . 9.2 M0 (Barack & Cutler, 2004). Therefore, during

the inspiral, the tidal force exerted by the central black hole upon the stellar-mass

compact object has non-zero amplitudes for harmonic components at integer multiples

of the orbital frequency (recall that the Hansen coefficients scale as ∼ e|k−|m||). This

is the kind of scenario in which resonant tidal effects, which are finite-size effects, may

be interesting. The presence of a non-zero orbital eccentricity means that f -modes,

which have the largest tidal overlap, can be excited resonantly during the inspiral.

It is interesting to investigate whether this can have noticeable consequences for the

gravitational waveform when the inspiraling compact object is a white dwarf.

Typical orbital periods at the innermost stable orbit for a white dwarf are ∼ 500–

600 s, with typical eccentricities at the innermost orbit being less than ∼ 0.5 (see

Figure 2 in Barack & Cutler, 2004). Thus, the harmonics available for resonance

with the ` = m = 2 f -mode of a 0.6 M� Chandrasekhar white dwarf are k & 42–50.

The high orders of these harmonics suggest that resonant excitation of f -modes will

be unimportant, which is confirmed by direct calculation: for k = 50 and e = 0.5,

and zero initial mode energy, the energy transfer to the ` = m = 2 f -mode, calculated

using (6.88), is of order ∼ 10−5 GM2
∗ /R∗. The corresponding fractional changes in

the orbital frequency and eccentricity are of order ∼ 10−8. By contrast, over the

time-scale of resonance passage (estimated as ∼ (2kṅ)−1/2, where ṅ is given by (5.15)

with n ' ωj/k), the fractional change in the orbital frequency due to gravitational

radiation is about ∼ 10−5.4 Thus, resonant excitation of f -modes is completely

negligible in this case. However, the excitation of g-modes, which have longer periods,

may be of interest. Depending on the mode periods, these can be excited at low

harmonic or fundamental resonances. As the dominant restoring force for g-modes is

buoyancy (which depends upon the entropy gradient), a realistic calculation of g-mode

frequencies and eigenfunctions requires accurate modeling of the thermal properties

of white dwarfs. This is an industry in itself, but we can obtain a rough estimate

by using the following model for a “poor man’s” warm white dwarf, adapted from

4In this chapter, the symbol n is used to denote both the orbital angular frequency and the radial
order of a mode. There should be little room for confusion, as the meaning is usually obvious from
the context.
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n, `,m ωn` Period Mn` η3,n`/η1,n`

(ω∗) (s) (M∗)

0,2,2 1.61 12 0.0176 −1.51 × 10−1

1,2,2 0.205 95 0.129 −1.46 × 10−3

2,2,2 0.178 110 0.126 1.01 × 10−3

3,2,2 0.144 135 0.318 3.83 × 10−4

4,2,2 0.120 163 0.517 9.32 × 10−5

5,2,2 0.102 191 0.731 2.19 × 10−4

6,2,2 0.0894 218 0.932 2.52 × 10−4

7,2,2 0.0792 246 1.20 2.56 × 10−4

8,2,2 0.0713 274 1.55 2.33 × 10−4

9,2,2 0.0647 301 2.16 2.35 × 10−4

10,2,2 0.0592 330 3.05 2.36 × 10−4

Table 9.3: Properties of quadrupolar f - and g-modes for a 0.6 M� helium white dwarf,
with a core temperature of 107 K, and radius 9.22×108 cm. The corresponding value
for ω∗ is 0.322 s−1.

Kippenhahn & Weigert (1990).

In the core of the star, the electrons are almost fully degenerate, and their long

mean free paths provide an efficient conduction mechanism that keeps the core virtu-

ally isothermal. However, near the surface layers, the electrons are no longer degen-

erate and act nearly like an ideal gas. Conduction then ceases to be efficient, and the

energy transfer is dominated by radiation. The absorption in these layers is mainly

due to bound-free and free-free processes, and is well-approximated by the Kramers

opacity. Thus, we describe the electrons with a relativistic Fermi-Dirac equation of

state in the core (which is set to be isothermal with a specified temperature), and

at the point where the Fermi-Dirac pressure equals the ideal gas pressure, we switch

to the ideal gas equation of state, and enforce the temperature profile given by the

Kramers opacity: d logT/d logP = 4/17. In order to avoid unphysical discontinuities

in the temperature profile at the transition from the isothermal core to the radiative

envelope, we smooth the profile in a narrow region across the transition point. The

nuclei are modeled as an ideal gas throughout the star.

For a 0.6 M� model calculated with the above prescription using a core temper-

ature of 107 K, properties of the quadrupolar f - and several quadrupolar g-modes
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n, `,m ωn` Period Mn` η3,n`/η1,n`

(ω∗) (s) (M∗)

0,2,2 1.57 12 0.0191 −1.60 × 10−1

1,2,2 0.137 138 0.135 −3.21 × 10−4

2,2,2 0.111 171 0.571 1.22 × 10−3

3,2,2 0.0907 209 0.514 9.32 × 10−6

4,2,2 0.0765 247 0.527 5.72 × 10−5

5,2,2 0.0664 285 0.570 1.56 × 10−4

6,2,2 0.0586 323 0.856 1.25 × 10−4

7,2,2 0.0521 363 1.47 1.16 × 10−4

8,2,2 0.0467 405 2.33 1.26 × 10−4

9,2,2 0.0423 448 3.34 1.26 × 10−4

10,2,2 0.0386 490 4.48 1.07 × 10−4

Table 9.4: Properties of quadrupolar f - and g-modes for a 0.6 M� carbon white
dwarf, with a core temperature of 107 K, and radius 9 × 108 cm. The corresponding
value for ω∗ is 0.332 s−1.

are given in Table 9.3 for a pure helium white dwarf, and in Table 9.4 for a pure

carbon white dwarf. Note that the f -mode is relatively insensitive to the model, but

the g-modes vary significantly. We consider a few illustrative cases to evaluate the

importance of g-modes during the inspiral of LISA capture sources. From Figure 2 of

Barack & Cutler (2004), we see that on one of the inspiral trajectories, g-modes with

periods ∼ 250 s (n = 7 in Table 9.3, n = 4 in Table 9.4) have fundamental resonances

with an eccentricity of about ∼ 0.1 just before the final plunge (for fundamental res-

onance, low eccentricities are better, as less power is then distributed among other

harmonics). The resulting energy transfers are of order ∼ 0.01 GM 2
∗ /R∗. The frac-

tional changes to the orbital frequency and eccentricity due to the resonant energy

transfer are of order ∼ 10−5, where as the fractional changes due to gravitational

radiation are of order ∼ 10−4. The typical resonance passage time is ∼ 105 s. In

addition to fundamental resonances, it is also possible to excite g-modes at low har-

monic resonances for inspiral trajectories with larger eccentricities. For example, one

of the trajectories in Figure 2 of Barack & Cutler (2004) passes close to the point with

period ∼ 1000 s and eccentricity ∼ 0.5. Thus, near this point, from Table 9.3, the

n = 1 mode has a resonance with the k = 10 harmonic, and, from Table 9.4, the n = 4
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mode has a resonance with the k = 4 harmonic. Once again, the energy transfers

are of order ∼ 0.01 GM 2
∗ /R∗, and the fractional changes to the orbital frequency and

eccentricity are of order ∼ 10−5, where as the fractional changes due to gravitational

radiation are of order ∼ 10−4. The typical resonance passage time is again ∼ 105 s.

The net result of g-mode resonances is to cause the system’s inspiral trajectory

in the orbital frequency-eccentricity plane to deviate from the point-mass trajectory.

The passage of a system through a sequence of such resonances will effectively change

the slope of the trajectory (each individual ‘step’ corresponding to a resonance pas-

sage only lasts about a day, and so, over an integration time of several years, the steps

themselves will average out). While this should not affect LISA’s ability to detect

such signals, it will introduce errors in the parameter estimation if the fitting algo-

rithms use a point-mass approximation. The exact magnitude of such errors depends

upon the number of resonances in the LISA frequency band and the resonant energy

transfer, and its evaluation therefore requires realistic white dwarf models, but we

may expect the deviations to be potentially as large as few tens percent. In contrast,

Barack & Cutler (2004) claim that LISA will be able to determine the constituent

masses of a capture source to better than ∼ 0.1 percent accuracy, in the point-mass

approximation.

It is interesting to note that the energy transfers seen above for the g-modes are

more than adequate to drive the mode amplitudes to over unity. This suggests that

non-linear processes will likely damp the oscillations and thermalize the energy (non-

adiabatic processes in the outer layers of the star may also be limiting effects). With

a net energy transfer of ∼ 0.01 GM 2
∗ /R∗, the temperature of the star can be raised

to ∼ 108 K (cf. Section 9.1). We can therefore expect the white dwarf’s structure to

be altered significantly.

The main caveat to our results is the crudeness of our warm white dwarf model.

For more realistic models, the energy transfer and, consequently, the impact upon the

gravitational wave signal and the heating of the white dwarf could change significantly.

Therefore, our results should not be considered definitive, but, rather, illustrative of

the fact that tidal resonant effects are potentially important in the evolution of LISA
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capture sources with white dwarfs. However, we can state with reasonable confidence

that the excitation of f -modes is unimportant in this context.

One of the limitations to LISA’s sensitivity is expected to be confusion noise from

short-period Galatic and extra-Galactic binaries (e.g., Nelemans et al., 2001; Hughes,

2002; Barack & Cutler, 2004). Many of these systems are double degenerates, and,

for evolutionary reasons, are expected to be mostly circular (cf. Section 1.1.1). The

resonant excitation of f -modes is therefore not possible in such systems. However, g-

modes, with their longer periods, can be excited at fundamental resonance. It would

be of interest to determine whether the excitation of g-modes in this context is of any

importance for the limitations to LISA’s sensitivity. This could be the subject of a

future study.
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Part IV

Conclusions
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A complete formalism for describing the excitation of dynamic tides in stars has

been developed. The formalism starts from a variational description of perfect fluids

and systematically develops the theory of normal modes and tidal excitation, which

allows for easy identification of conserved quantities and ensures self-consistency in the

equations of motion. Although only the specific case of a non-rotating homentropic

star is treated in detail, an effort has been made to maintain generality whenever

possible, and to indicate points of specialization explicitly.

From the equations of motion, the energy transfer at a tidal resonance in a white

dwarf-compact object binary during gravitational inspiral has been calculated in the

approximation when the back reaction of the tides on the orbit is neglected, and

the orbital eccentricity is not too high (. 0.5). It was found in this no back reaction

approximation that the energy in a stellar mode of oscillation executes a random walk

with a net positive drift during passage through a sequence of resonances. It was also

demonstrated that the no back reaction approximation is incorrect in a significant

portion of the parameter space, and an attempt was made to delineate the region of

the parameter space where back reaction modulates the magnitude of resonant energy

transfer significantly. It was then argued that back reaction, in fact, determines the

direction of energy transfer in most cases as well.

A detailed treatment of the problem including back reaction has been developed

from a Hamiltonian perspective, assuming negligible damping on a resonance time-

scale. It was demonstrated that, in the near-resonant regime, the problem can be

reduced from four to two, and then one degree-of-freedom. This reduction guarantees

integrability. The mathematical similarity of the one degree-of-freedom Hamiltonian

to Hamiltonians encountered in the treatment of first-order eccentricity resonance in

the circular, restricted three-body problem was also established. A resonance passage

was shown to correspond to a separatrix crossing in phase space, and the problem of

calculating the resonant energy transfer was shown to correspond to the calculation

of the change in an adiabatic invariant at the separatrix crossing. By leveraging

results for the similar three-body resonance problem, an expression for the resonant

energy transfer including back reaction was found, which was shown to be accurate
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to within ∼ 10 percent for orbital eccentricities . 0.5, and a wide range of other

parameters. Two important qualitative results obtained were: (i) the energy transfer

at a resonance is always positive, and is independent of the phase to lowest order

in the rate of dissipation by gravitational radiation, and (ii) the energy transfer at

a resonance increases with the initial mode energy. While the explicit treatment of

the back reaction problem was specialized to the specific case of an ` = m mode in a

non-rotating star, it was argued that the results obtained have more general validity.

The design and implementation of a simple, fast, and parallel numerical code to

study the excitation of tides and the non-linear evolution of the excited tides have

been described. The described code is an adiabatic, explicit, Eulerian finite-difference

scheme on a uniform Cartesian mesh. Special attention was paid to the fast solution of

the Poisson equation for the self-gravitational potential via a discrete sine transform

method. The results of several test problems were used to establish the stability

and accuracy of the code, as well as its suitability for studying the evolution of tides

on white dwarfs. The problem of maintaining hydrostatic equilibrium on the finite-

difference grid was discussed, and a solution using the so-called self-consistent field

method was described, which is valid for homentropic stars.

The results of several simulations of resonant excitation of the ` = m = 2 f -mode

on a white dwarf have been presented. Due to problems with long-term mass loss

from the grid, quantitative results were not obtained. However, several qualitative

observations were discussed. It was shown that a significant coupling between modes

with ` = 2 and ` = 4 seems to exist. Modes with ` = 3, on the other hand, did not

seem to couple directly with ` = 2 modes. Directions for future work were described,

which would allow for more quantitative results such as the non-linear damping rate

for the ` = m = 2 mode, and its scaling with the mode amplitude.

Two specific applications of the work presented have been considered. The first

is the possibility of tidally triggered Type Ia supernovae. It was argued that likely

progenitors for such systems would be eccentric white dwarf-compact object binaries

formed through tidal capture or three-body processes in dense environments such as

galactic centers and globular clusters. It was then studied whether, for such binaries
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with carbon-oxygen white dwarfs with masses 0.6, 1.0, and 1.4 M�, there exist regions

in the parameter space where sufficient energy can be transferred resonantly to the

` = m = 2 f -mode during gravitational inspiral to raise the star’s temperature

to the ignition point for carbon. A 1.4 M� companion such as a neutron star or

another white dwarf was found to be not viable. However, for companion masses

∼ 10 M� or higher, regions in the parameter space were shown to exist where the

relevant temperatures can be attained before tidal disruption. It was noted that the

assumption of mode damping on the gravitational inspiral time-scale is necessary

to heat the star. Moreover, the damping mechanism must thermalize the energy

rather than radiate it away, which would be the case if the damping mechanism is

gravitational radiation. If the energy is thermalized, then the ignition of carbon is

possible. It was shown that sufficient energy can be released by the thermonuclear

burning to disassemble the entire star and generate a Type Ia supernova. In addition,

the ejecta from such a detonation were shown to be likely to remain trapped in orbit

around the companion, with the exception of a 0.6 M� white dwarf with a ∼ 10 M�

companion. This then implies that the ejecta would eventually be accreted by the

companion, which would potentially result in the release of even more energy than was

released in the detonation. A number of caveats to the tidal detonation picture were

also discussed, with the main issues being the need for full evolutionary calculations

to determine the correct ignition temperatures, an understanding of mode damping

time-scales, and the validity of the resonant energy transfer calculation when the

mode amplitudes are either non-linear or nearly non-linear.

A second application considered was a preliminary evaluation of the importance

of resonant tidal effects for gravitational wave observations of white dwarf-compact

object binaries. The particular systems considered were LISA capture sources with

white dwarfs as the captured objects and a ∼ 106 M� central object. The focus was

on determining whether tidal resonances can complicate detection and parameter

estimation for such sources. The resonant excitation of f -modes on the white dwarf

was shown to be unimportant in this context because of the large orbital periods at

the last stable orbits. A rough estimate of the importance of g-modes was made using
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a crude warm white dwarf model, and it was found that, for typical parameters, a

resonance with a quadrupolar g-mode can affect the orbital elements at a ∼ 10 percent

level relative to gravitational radiation on a resonance passage time-scale (estimated

to be of the order of a day). It was argued that this will not affect LISA’s ability to

detect such systems, but could introduce significant errors in the parameter estimation

if point-mass waveform templates are used, as the effective inspiral trajectory in the

eccentricity-frequency plane would deviate from the point-mass track. The exact size

of the errors depends upon the white dwarf model and orbital parameters. Also, for

LISA, it was suggested that the resonant excitation of g-modes could be important for

determing the confusion noise limit imposed by Galactic and extra-Galactic double

degenerate systems.
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Appendix A

Variational Derivation of the Euler

Equation

We shall assume, for simplicity, that the centre-of-mass frame of the fluid is inertial.

Then, in the centre-of-mass frame, the Lagrangian (4.4) becomes

L∗ =

∫
da
[1
2

(
∂x

∂τ

)2

− E (α, S(a)) − Φ(x)
]
,

where α ≡ ρ−1 is the specific volume. The variation with respect to x yields

∂2xi

∂τ 2
− ∂E

∂α

∂

∂aj

[
∂α

∂(∂xi/∂aj)

]
− ∂α

∂(∂xi/∂aj)

∂

∂aj

(
∂E

∂α

)
= − ∂Φ

∂xi

. (A.1)

We can show that the second term on the left hand side of (A.1) is zero as follows.

From the definition of α, we know that

α =
∂(x)

∂(a)
=

1

6
εijkεlmn

∂xi

∂al

∂xj

∂am

∂xk

∂an
,

where εijk is the three-dimensional Levi-Civita symbol (cf. Arfken & Weber, 1995).

Taking the derivative of both sides with respect to ∂xi/∂aj, we get

∂α

∂(∂xi/∂aj)
=

1

2
εijkεlmn

∂xj

∂am

∂xk

∂an
.
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And, finally, taking a derivative with respect to aj gives us

∂

∂aj

[
∂α

∂(∂xi/∂aj)

]
= εijkεlmn

∂2xj

∂al∂am

∂xk

∂an

= 0.

Next, using the definition of α and the identity (4.3), we note that

∂α

∂(∂xi/∂aj)

∂

∂aj

= α
∂aj

∂xi

∂

∂aj

= α
∂

∂xi

.

Therefore, (A.1) now becomes

∂2xi

∂τ 2
= −α∂P

∂xi

− ∂Φ

∂xi

,

where P ≡ −∂E/∂α is the pressure. Recalling that ∂/∂τ corresponds to a convective

derivative in the Eulerian description, we see that this is just the Euler equation.
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Appendix B

Hansen Coefficients

The Hansen coefficients Xp,m
k for the two-body problem are defined by

(
R

a

)p

exp(imv) =

∞∑

k=−∞

Xp,m
k (e) exp(ikl) ,

where R is the orbital separation, a is the semi-major axis, v is the true anomaly, e is

the orbital eccentricity, and l is the mean anomaly. The Hansen coefficients are real

functions of the eccentricity, and it can be shown that, to lowest order in eccentricity,

Xp,m
k (e) ∝ e|k−m|

(Murray & Dermott, 1999, and references therein). The coefficients can be calculated

to any desired order in eccentricity as a series in terms of Newcomb operators:

Xp,m
k (e) = e|k−m|

∞∑

ν=0

Xp,m
ν+λ,ν+ζe

2ν ,

where λ = max(0, k − m), ζ = max(0, m − k), and the Newcomb operators Xa,b
c,d

are defined via recursion relations (see Murray & Dermott, 1999). Alternatively, for

quantitative work, the Hansen coefficients can be evaluated for a given eccentricity

by calculating the integral

Xp,m
k (e) =

1

2π

∫ 2π

0

dl

(
R

a

)p

cos(mv − kl)



181

numerically.



182

Appendix C

Damping of Quadrupolar Modes

by Gravitational Radiation

The average power radiated in gravitational waves due to a time-dependent mass

quadrupole moment is given, in the weak-field limit of general relativity, by

dEGW

dt
=

G

45c5
〈
...
Qij

...
Qij〉

(Misner et al., 1973), where Qij is the mass quadrupole moment as defined conven-

tionally in classical physics:

Qij =

∫
d3x

(
3xixj − r2δij

)
ρ(x, t) .

It can be shown that the power radiated by a quadrupolar mode is independent of

m (this is a consequence of the Wigner-Eckart theorem). Hence, we can restrict

ourselves to the m = 0 case for simplicity. It then follows that Q11 = Q22 = −Q33/2,

and that the off-diagonal terms vanish. Therefore, noting that the time dependence

is sinusoidal, we have
dEGW

j

dt
= − G

60c5
ω6

j

...
Q

2

33 , (C.1)

where Q33 should now be understood to mean the time-independent amplitude of the

mass quadrupole moment. Writing the mass density as

ρ(x) = ρ0(r) + Ajδρj(r)Y20(r̂) ,
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where Aj is the amplitude of the mode and δρj is the normalized density perturbation

associated with the mode, we find

Q33 = 4

√
π

5
Aj

∫ R∗

0

dr r4δρ(r) .

The above integral can be simplified by using the linearized Poisson equation, inte-

grating by parts twice, and using the surface boundary condition η4 = −(` + 1)η3.

The result is

Q33 =

√
5

π
M∗R

2
∗η3j(R∗)Aj .

Substituting the above expression into (C.1), we get

dEGW
j

dt
= −GM

2
∗R

4
∗

12πc5
η2

3j(R∗)ω
6
jA

2
j .

Finally, noting that the total energy for an isolated mode is given by

Ej =
1

2
MjR

2
∗ω

2
jA

2
j ,

we arrive at the e-folding time for the mode energy under damping by gravitational

radiation:

Tj =
6π

ω∗
β−5
∗ η−2

3j (R∗)

(
Mj

M∗

)
σ−4

j .
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Appendix D

Statistical Properties of Resonant

Energy Transfer in the No Back

Reaction Approximation

In this appendix, we derive some statistical properties of the random walk given by

(5.35), which we rewrite as

Ek−1 = Ek + εk + Zk , (D.1)

where

Zk ≡ 2
√
εkEkCk .

Recall that εk is known in advance, and that Ck is a random variable drawn from the

distribution

p(x) =
1

π
√

1 − x2
, x ∈ [−1, 1] .

Note that

〈Ck〉 = 0 , 〈C2
k〉 =

1

2
.

Since Ek will only depend upon Cα, for α > k, Zk is linear in Ck. As all the Ck are

independent random variables (by assumption), it follows that

〈Zk〉 = 0 , 〈Z2
k〉 = 2εk〈Ek〉 . (D.2)
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Given an initial mode energy Ek before the k-th resonance, we wish to deter-

mine the average mode energy 〈Ek−p〉, and its variance σ2
p, after passage through p

resonances. From (D.1), we have

Ek−p = Ek +

k∑

α=k−p+1

εα + ∆p , (D.3)

where we have defined

∆p ≡
k∑

α=k−p+1

Zα .

Using (D.2), it follows immediately that

〈Ek−p〉 = Ek +

k∑

β=k−p+1

εβ . (D.4)

Note that, since εβ > 0, 〈Ek−p〉 increases monotonically as we pass through a sequence

of resonances. Hence, we say that the random walk (D.1) has a drift. To calculate

the variance, we need to find 〈E2
k−p〉. Writing

E2
k−p =

(
Ek +

k∑

α=k−p+1

εα

)2

+ ∆2
p +O(∆p) ,

we see that

〈E2
k−p〉 = 〈Ek−p〉2 + 〈∆2

p〉 , (D.5)

as all the terms linear in ∆p will vanish when averaged. To calculate 〈∆2
p〉, we write

∆2
p =

k∑

α=k−p+1

Z2
α + 2

k−1∑

α=k−p+1

k∑

β=α+1

ZαZβ ,

and note that, since β > α in the above double sum, each term of the double sum

will be linear in Cα, and will, hence, vanish upon averaging. Therefore, we have

〈∆2
p〉 = 2

k∑

α=k−p+1

εα〈Eα〉 .
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Substituting into (D.5), and then using (D.4), we find

σ2
p = 2

k∑

α=k−p+1

εα

(
Ek +

k∑

β=α+1

εβ

)
. (D.6)

It should be noted that (D.1) is not Gaussian, nor will it become Gaussian after

many resonances. That the process is not Gaussian is clear from the fact that the

random walk is bounded from below. Furthermore, the central limit theorem is not

applicable because, typically, the probability distribution of ∆p is dominated by the

most recent few harmonics, and hence the effective number of variables never becomes

large.
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Appendix E

Time-Dependent Scalings of a

Hamiltonian System

In Section 6.3.2, we use a pair of canonical transformations to obtain a Hamiltonian

with a single free parameter starting from a Hamiltonian with three parameters. The

two transformations are: a scaling of the momentum, and an overall scaling of the

Hamiltonian. Since the scale factors were constant for the case of a conservative

system, the transformations were easily seen to be canonical. However, with grav-

itational radiation, the scale factors are no longer constant. It is unclear whether

the two transformations are still canonical in this case. Note that the Hamiltonian

given by (6.49) describes a perfectly valid system, regardless. The issue is whether

the system described by this Hamiltonian is the same as that described by (6.46).

This question is addressed below.

The modified Hamilton’s principle asserts that, for a system with the Hamiltonian

H(q, p, t),

∆

∫ t2

t1

dt

(
p
dq

dt
−H

)
= 0 , (E.1)

where ∆ denotes the usual first-order variation of the integral, and variations of q and

p are considered independent (see, for example, Goldstein, 1980). Hamilton’s equa-

tions follow as the Euler-Lagrange equations for this variational principle. Therefore,

any transformation which preserves the form of the modified Hamilton’s principle is

canonical.

We first consider an overall scaling of the Hamiltonian by some time-dependent
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scale factor λ(t). Pulling out a factor of λ in the integrand of the modified Hamilton’s

principle, we obtain

∆

∫ t2

t1

dt λ

(
p

λ

dq

dt
− H
λ

)
= 0 . (E.2)

Defining a new time parameter τ by the differential relation

dτ ≡ λdt , (E.3)

and changing the integration variable from t to τ , we get

∆

∫ τ2

τ1

dτ

(
p
dq

dτ
− H
λ

)
= 0 , (E.4)

which is just the modified Hamilton’s principle for a system with the Hamiltonian

H/λ and time parameter τ . The only consequence of λ not being constant is that

the relation between τ and t is non-linear:

τ(t) =

∫ t

dt′ λ(t′) . (E.5)

Thus, an overall scaling of the Hamiltonian by a function of time amounts to a time

re-parametrization, and is always canonical.

The second transformation we are concerned with is a scaling of the momentum.

Once again, we pull out an overall factor of λ in the modified Hamilton’s principle,

as in (E.2). Expanding λ to linear order around some time t0, and dividing out the

constant factor λ0 = λ(t0), we have

∆

∫ t2

t1

dt

[
1 +

λ̇

λ0
(t− t0)

](
p

λ

dq

dt
− H
λ

)
= 0 . (E.6)

As long as λ̇(t−t0)/λ0 � 1, the above variational principle corresponds approximately

to Hamilton’s modified principle for a system with momentum p/λ and Hamiltonian

H/λ. In other words, the momentum-scaling transformation is canonical to lowest

order for a time interval ∆t � λ/λ̇.
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The above results imply that, with gravitational radiation, the Hamiltonian (6.49)

is only valid for time intervals

∆t� λ

λ̇
. (E.7)

Fortunately, this requirement does not impose any restrictions in addition to those

already imposed by our treatment of gravitational radiation as being characterized

by constant dissipation rates in the near-resonant regime. In general, we expect

the above condition to be satisfied because the gravitational radiation time-scale is

typically much longer than a resonance time-scale.
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Appendix F

Perturbative Calculation of

Action-Angle Variables

The development of the canonical perturbation series for a Hamiltonian system with

a time-independent perturbation can be found in any standard reference on classical

mechanics, such as Goldstein (1980). Consider a system with the Hamiltonian

H(θ, J) = H0(J) + εH1(θ, J) , (F.1)

where H0 is the unperturbed part, and H1 is the perturbation. For the unperturbed

system, {θ, J} are action-angle variables. For the perturbed system, the new action

variable is given by

J = J + ε
{H1}
ω0

+ ε2

[
1

2

∂

∂J

({H1}
ω0

)2

+
{Φ2}
ω0

]
+O(ε3) , (F.2)

and the Hamiltonian by

H(J) = H0(J) + ε〈H1〉 + ε2〈Φ2〉 +O(ε3) , (F.3)

where

ω0(J) ≡ ∂H0(J)

∂J
, (F.4)

Φ2(θ, J) ≡ {H1}
ω0

[
1

2

∂2H0

∂J
2

{H1}
ω0

− ∂H1

∂J

]
, (F.5)
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and the notations 〈·〉 and {·} denote the secular and periodic parts of a quantity:

〈A〉 ≡ 1

2π

∫ 2π

0

dθ A(θ, J) , (F.6)

{A} ≡ A− 〈A〉 . (F.7)

For the Hamiltonian (6.49), we identify

H0 = Φ2 + δΦ , (F.8)

H1 = 2
√

2Φ cosφ , (F.9)

from which it follows that

ω0(Φ) = δ + 2Φ , (F.10)

Φ2(φ,Φ) = − 4δ cos2 φ

(δ + 2Φ)2
. (F.11)

Substituting into (F.2) and (F.3), the new action variable and the Hamiltonian to

second-order are found to be

Φ = Φ +
2
√

2Φ cosφ

(δ + 2Φ)
+

2(δ − 4Φ cos2 φ)

(δ + 2Φ)3
, (F.12)

H† = Φ
2
+ δΦ − 2δ

(δ + 2Φ)2
. (F.13)
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Appendix G

Determining the Separatrix

Crossing Parameter

A subtlety arises in the numerical solution of (6.98) when, for certain values of Φinit,

multiple roots exist. The situation is depicted in Figure G.1 for a particular example.

In such a case the question of which root should be chosen arises. Also, it may not

be obvious what the interpretation of the other roots is.

The simple rule-of-thumb is this: for a passage through a tidal resonance that is

driven by gravitational radiation, the most negative root is always chosen. This is

justified by noting that the most negative root is the first one that is encountered as δ

drifts from negative values to positive values. It then remains to determine what the

interpretation of the other roots is. The key observation is that the relation between

the initial and final values of the action variables does not depend upon the direction

of the crossing: (6.85) is equally valid whether the direction of the crossing is from

region A to region C in Figure 6.5, or from region C to region A. In the former case

δ̇ > 0 and the most negative root of (6.98) is encountered first, and in the latter case

δ̇ < 0 and the most positive root of (6.98) is encountered first. Also, it should be

noted that when the most positive root lies outside the interval (−∞,−3], as it does

for Φinit . 3.186, the C→A crossing is impossible (see the discussion of the bifurcation

at δ = −3 in Section 6.3.2). For Φinit > 0, the most negative root always lies in the

interval (−∞,−3], and hence the A→C crossing is always possible.

The roots intermediate between the most negative and the most positive ones
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- 14 - 12 - 10 - 8 - 6 - 4 - 2
δs

- 50

- 40

- 30

- 20

- 10

0

Φinit = 4

Figure G.1: Shown are curves for the left hand side (solid line) and the right hand
side (dashed line) of (6.98) for the particular case Φinit = 4. The roots of (6.98) are
the values of δs where the curves intersect.
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in Figure G.1 arise from the failure of the canonical perturbation series to converge

in that region. As such, these roots are spurious and do not have any physical

significance.
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