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Abstract. Extended Higgs sectors offer rich opportunities for various forms of CP -violation.
Here, we describe a new form of CP -conservation and discuss its consequences. We give a
concrete example of a three-Higgs-doublet model dubbed CP4-3HDM with a CP -symmetry of
order 4 and no other other accidental symmetries. If the vacuum conserves this symmetry, the
model is CP -conserving with pairwise mass-degenerate extra neutral Higgs bosons. These fields
cannot be classified as CP -even or CP -odd but they can be combined into complex physical
fields which are CP -half-odd, that is, they pick up the i factor upon CP transformation. These
CP -half-odd scalars can be Yukawa-coupled to the fermion bilinears in a CP -conserving way.
We discuss fundamental and phenomenological features of the model, and stress a peculiar clash
between the CP -symmetry and any convention for the particle-antiparticle assignment.

1. Introduction

In spite of the long and extensive investigation of the phenomenon of CP -violation, its
fundamental origin remains enigmatic [1]. In the Standard Model (SM), CP -violation is
introduced by hand in the form of complex quark Yukawa couplings. In models with extended
Higgs sectors, — a mainstream direction of theoretical exploration of opportunities beyond the
SM (bSM), — it can originate from the scalar sector. In rich Higgs sectors, several options
are available, see the recent review [2]. CP -violation (CPV) can be explicit, when the Higgs
potential itself is not invariant under any definition of CP -symmetry, or spontaneous, as a side
effect of the Higgs phenomenon taking place in an explicitly CP -conserving model. Even in
the two-Higgs-doublet model (2HDM) [3, 4], CPV comes in various forms, some of which were
found in the last few years [5, 6, 7, 8]. Understanding how CP -violation actually happens may
additionally shed some light on the flavor sector hierarchy, which may be intimately intertwined
with it, and on generation of the baryon asymmetry of the Universe. In short, any novel form
of CP -violation deserves a closer theoretical study as it may tell us something new and lead to
testable predictions.

When building a model with desired CP properties, one must keep in mind that quantum
field theory does not uniquely specify how discrete symmetry transformations act on fields
[9, 10, 11, 1]. This action must be assigned, and it can happen that this assignment is not unique.
One often mentions that discrete transformations of complex fields can involve unconstrained
phase factors [9]. In models with several fields with identical quantum numbers, this freedom
becomes much larger. Consider for definiteness N complex scalar fields φi, i = 1, . . . , N . The
standard convention for the CP -transformation,

φi(x, t)
CP−−→ (CP )φi(x, t)(CP )

−1 = φ∗i (−x, t) , (1)

http://creativecommons.org/licenses/by/3.0
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is basis-dependent: the same transformation viewed in another basis will contain an extra unitary
transformation accompanying the conjugation. If one wants to know whether a given N -Higgs-
doublet model (NHDM) is CP -conserving, one needs to check if the potential is unvariant under

φi(x, t)
CP−−→ Xijφ

∗
j (−x, t) , (2)

with any unitary X ∈ U(N). These are often called generalized CP -transformations (GCP)
[12, 11] as if contrasted to the “standard” CP . Upon a basis change φ′i = Uijφj , the new
fields φ′ transform under the same transformation (2) with the matrix X ′ = UXUT . What
looks standard in one basis becomes generalized in another, and a generalized one can become
standard. In short, if it happens that the model is invariant under (2) with any whatever
fancy unitary X, the model is called CP -conserving and this transformation plays the role of
“the CP -symmetry”. Indeed, all experimentally observable quantities which could signal the
presence of CP -violation can be related to the CP -violating basis invariant combinations of
input parameters and, — being basis-invariant, — they do not feel the effect of X [1].

The fact that this rule involves UT rather than U † has an important consequence: not every
unitary X in (2) can be diagonalized by a basis change. The simplest form of X one can achieve
is the block-diagonal form [12, 13, 7], with the blocks being either phases or 2× 2 matrices

(

cosα sinα
− sinα cosα

)

as in [12], or

(

0 eiα

e−iα 0

)

as in appendix 2C of [13]. (3)

Each block contains its own parameter α which can be arbitrary. Notice that applying GCP
twice, one gets a usual family transformation, φi → (XX∗)ijφj , with XX

∗ not necessarily being
identify. This opens up the possibility of CP -transformations of higher order [7]: if α = π/p
with integer p, then one needs to apply it 2p times to obtain identity. By CPT -invariance of
the standard interaction terms, this implies the T -symmetry of higher order. Although such a
possibility sounds exotic, it is well consistent with all requirements of the local causal quantum
field theory. Conversely, if one assumes that a GCP symmetry is of order two, then there exists
a basis change which makes it diagonal, as in the left form in Eq. (3) with α = 0 (the case of
α = π reduces to it via an additional rephasing). Thus, order-2 GCP implies the possibility to
bring the GCP transformation to the standard form (1), which in turn means that the Higgs
potential is purely real in this basis. This link between the explicit CP -conservation and the
existence of a real basis was formulated as Theorem 1 in [14]. Although it was formulated there
in the context of 2HDM, the statement is valid for NHDM but it hinges on the assumption that
the CP -symmetry is of order-2. For higher-order GCP, the link breaks down as demonstrated
in [15].

Until recently, the possibility of having higher-order CP symmetry did not raise much
phenomenological interest. In all concrete examples considered so far, imposing such a symmetry
led to models with other accidental symmetries, including CP symmetries of order two, see
2HDM examples in [5, 7, 8]. It was viewed just as a compact way of defining such models,
rather than a path towards new models beyond the usual “order-2 CP + family symmetry”
combination. A rare exception is [16] where the higher-order CP symmetries were classified as
distinct opportunities for model building.

The recent works [15, 17] gave the first concrete example of a multi-Higgs model, dubbed
CP4-3HDM, in which the lagrangian was symmetric only under one specific CP -symmetry (2)
of order 4 (which is labeled CP4) and its powers, without any other accidental symmetry [18].
This is the first example of a CP -conserving model without the usual CP -symmetry (1) in any
basis. The unusual features of this model include:

• there exists no basis change which could make all coefficients real, thus barring the extention
of Theorem 1 of [14] beyond 2HDM;
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• in the CP -conserving vacuum, the four extra neutral Higgs bosons are pairwise mass-
degenerate, and this degeneracy arises from the discrete symmetry CP4, without any
continuous symmetry. It serves an example of the “state degeneracy beyond Kramers
doubling”, which was described in appendix 2C of [13] but no concrete example of which
was known;

• despite CP -conservation, the extra physical neutral Higgses cannot be classified as CP -even
or CP -odd. However, they can be combined into complex neutral fields Φ and ϕ which are
CP -half-odd, that is, they transform under CP as

Φ(x, t)
CP−−→ iΦ(−x, t) , ϕ(x, t)

CP−−→ iϕ(−x, t) ; (4)

• one can couple these CP -half-odd scalars to the fermion bilinears via the Yukawa
interactions; this coupling can respect CP4 provided the CP -transformation also acts in a
generalized way on fermion generations. This technical possibility leads to a clash between
the definitions of CP -symmetry and particle-antiparticle assignment for the fermions, which
arguably cannot be resolved within this CP -conserving toy model.

In this contribution, we will describe the CP4-3HDM model itself, derive the physical Higgs
bosons with the exotic CP -properties, and explore their couplings with the fermions.

2. CP4-3HDM and CP -half-odd scalars

2.1. The potential and physical Higgs spectrum

The model CP4-3HDM [15] is based on three Higgs doublets φi, i = 1, 2, 3, whose self-interaction
potential is V = V0 + V1 contains the phase-insensitive part

V0 = −m2
11(φ

†
1
φ1)−m2

22(φ
†
2
φ2 + φ†

3
φ3) + λ1(φ

†
1
φ1)

2 + λ2

[

(φ†
2
φ2)

2 + (φ†
3
φ3)

2
]

+ λ3(φ
†
1
φ1)(φ

†
2
φ2 + φ†

3
φ3) + λ′3(φ

†
2
φ2)(φ

†
3
φ3) + λ4(|φ†1φ2|2 + |φ

†
1
φ3|2) + λ′4|φ†2φ3|2 , (5)

with all parameters being real, and the phase-sensitive part

V1 = λ5(φ
†
3
φ1)(φ

†
2
φ1)+

λ6
2

[

(φ†
2
φ1)

2 − (φ†
1
φ3)

2
]

+λ8(φ
†
2
φ3)

2+λ9(φ
†
2
φ3)(φ

†
2
φ2−φ†3φ3)+h.c. (6)

with real λ5, λ6, and complex λ8, λ9. This potential is invariant under the generalized CP
transformation (2) with

X =





1 0 0
0 0 i
0 −i 0



 , (7)

which corresponds to the right form of Eq. 3 with α = π/2. Since XX∗ = diag(1, −1, −1),
one needs to apply it four times to get the identity transformation. This is the order-4 GCP
dubbed CP4. For generic values of the coefficients, this potential has no other Higgs-family
or CP -symmetries apart from powers of CP4 [18]. We note that this potential can be further
simplified: with an appropriate SO(2) rotation between φ2 and φ3 one can set either λ5 or λ6
to zero. However, in order to keep the same notation as in [15, 17], we will not apply this
simplification.

We select the CP -conserving vacuum alignment: 〈φ01〉 = v/
√
2, 〈φ2〉 = 〈φ3〉 = 0. For physical

scalars, we get the SM-like Higgs with mass m2
hSM

= 2λ1v
2 = 2m2

11, and a pair of degenerate

charged Higgses with m2

H± = λ3v
2/2−m2

22. In the neutral scalar sector, the mass matrices for
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real h2,3 and imaginary a2,3 components of φ
0
2,3 split. These matrices are not identical but they

have the same eigenvalues

M2,m2 = m2

H± +
1

2
v2

(

λ4 ±
√

λ2
5
+ λ2

6

)

(8)

and are diagonalized by the same rotation with the angle α defined as tan 2α = λ5/λ6 but in
the opposite directions for h’s and a’s. Denoting the two heavier scalars as H,A and the two
ligher scalars as h, a, we find that the diagonalizing rotation brings φ02 and φ

0
3 to

cαφ
0
2 + sαφ

0
3 =

1√
2
(H + ia) , −sαφ02 + cαφ

0
3 =

1√
2
(h+ iA) . (9)

The real neutral fields H,A, h, a are not CP -eigenstates:

H
CP−−→ A , A

CP−−→ −H , h
CP−−→ −a , a

CP−−→ h . (10)

One can combine them into neutral fields, Φ = (H − iA)/
√
2, ϕ = (h + ia)/

√
2, which are CP

and mass eigenstates:

Φ(x, t)
CP−−→ iΦ(−x, t) , ϕ(x, t)

CP−−→ iϕ(−x, t) . (11)

One can then quantify the CP properties with the global quantum number q defined modulo
4, and assign q = +1 to Φ, ϕ, and q = −1 to their conjugate fields. All other neutral fields are
either CP -odd, q = +2, or CP -even, q = 0. Since CP is a good symmetry of the lagrangian and
of the vacuum, it commutes with the hamiltonian. Therefore, in any transition between initial
and final states with definite q, this quantum number is conserved.

We stress that during these manipulations with the fields, we did not change the definition
of CP -transformation itself. The CP -transformation in (11) is the same φi → Xijφ

∗
j with X

given in (7). We just selected another basis to represent the scalars degrees of freedom.

2.2. How did the conjugation disappear?

The striking feature of the law (11) is that these are complex fields, yet they do not get
complex-conjugated upon the CP -transformation. In fact, this law looks as a generalized P -
transformation rather than CP . One can question whether identifying it with CP is legitimate
at all. Even if it is, how did it happen that the conjugation disappeared upon a mere basis
change?

An intuitive answer to these doubts is as follows. The C-transformation is expected,
physically, to exchange one-particle states a†|0〉 with the corresponding antiparticles. If
particles can be clearly distinguished from antiparticles via their gauge couplings, no ambiguity
arises. However if we deal with several mass-degenerate gauge-blind scalars, then the particle
vs. antiparticle distinction is blurred. The freedom of particle-antiparticle assignment and,
consequently, of the basis changes allowed becomes larger. It is this enlarged basis change
freedom that erases the complex conjugation upon CP .

To see how it occurs, let us step aside from the CP4-3HDM and consider an even simpler
situation with two complex scalar fields φ1 and φ2, which are mass-degenerate and gauge-blind
(that is, these fields do not participate in conserved gauge interactions). Suppose the model

is invariant under the CP -symmetry φ1
CP−−→ φ∗2 and φ2

CP−−→ φ∗1. Let us perform a usual basis
rotation and define new complex fields η = (φ1 + φ2)/

√
2 and ξ = (−φ1 + φ2)/

√
2. Then,

η and ξ have “normal” CP properties: η
CP−−→ η∗, ξ

CP−−→ −ξ∗. In total, we have four real
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degrees of freedom, two of them being CP -even (Re η and Im ξ) and two are CP -odd (Re ξ and
Im η). Since all four of them are mass-degenerate, we are allowed to recombine them differently:
Φ = Re η − iIm ξ and Φ̃ = Re ξ − iIm η. Then, we immediately see that upon the same CP -

transformation, Φ
CP−−→ Φ and Φ̃

CP−−→ −Φ̃. The conjugation disppeared.
To get further insight, we can express the two-step passage (φ1, φ2) → (η, ξ) → (Φ, Φ̃) as a

single transformation:
(

Φ

Φ̃

)

=
1√
2

(

1 1
−1 1

)(

φ1
φ∗2

)

. (12)

We are allowed to perform this non-holomorphic basis change in the two-complex-dimensional
space because there is no physical quantity which distinguishes φ’s from φ∗’s. This enhanced
basis change belongs to the group O(4) which is larger than the complex-structure-preserving
group U(2) usually associated with basis changes. We have more freedom to reshuffle CP -even
and CP -odd degrees of freedom, and it is this freedom that undoes the complex conjugation.

In short, when defining the general CP transformation in models with mass-degenerate gauge-
blind scalars, the question of conjugating the fields or not becomes a basis-dependent choice.

In this example we used for the purpose of illustration the CP -transformation of order 2. A
very similar phenomenon happens in the 3HDM with CP4. We start with a usual GCP which
involves conjugation (2) and observe that the physical neutral Higgses with the same mass reside
in two different complex fields (9). Since after the spontaneous symmetry breaking the neutral
Higgses do not participate in the electromagnetic interactions, one can combine h with a and H
with A to form new complex fields. This combination is made possible by the enhanced freedom
of basis changes.

We mention that this is not the first example of CP -transformation acting on complex fields
without conjugation. A similar situation happens in models with a complex scalar singlet
S = h1 + ih2, see for example chapter 23.6 of the book [1]. The general argument is that
when building a model gauge-blind singlets, we are free to assign CP properties of h1 and h2.
This assignment defined the CP -transformation of the complex field S itself. If both h1 and

h2 happen to be CP -even, then S
CP−−→ S. Of course, CP acts on the SM fields in the regular

way; it is only in the singlet sector that it acts trivially. In the absence of fermion and gauge
interactions, this transformation, if it leaves the lagrangian invariant, can be identified with the
CP symmetry of the model. Thus, in models with one Higgs doublet and one complex singlet,
there is no CP -violation in the scalar sector even if the S self interaction potential has complex
coefficients. One would need to enlarge the particle content of the model, for example, by adding
vector-like quarks, in order for CP -violation to take place and CP -violating effects to become
observable [19, 20, 21].

In the case of CP4-3HDM, we do not even need to assume this choice. The pairwise
degeneracy between components of the two inert doublets happens automatically as a result
of the discrete symmetry imposed. Thus, it provides an example where this construction with
non-congugated gauge-singlets appears naturally.

2.3. Coupling CP -half-odd scalars Yukawa

The simplest phenomenologically viable version of CP4-3HDM assumes that the inert doublets
φ2 and φ3 do not couple to fermions, just like in the usual Inert doublet model (IDM)
[22, 23, 24, 25]. However if one extends CP4 to the fermion sector and, in particular, assumes
that it can also mix the fermion generations, then it is possible to couple CP -half-odd scalars
with fermions via the usual Yukawa-type interactions.

Consider the quark Yukawa sector

−LY = Q̄LiΓa,ijdRj φa + Q̄Li∆a,ijuRj φ̃a + h.c . (13)
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The scalar doublets transform under the CP as φa → Xabφ
∗
b with X given by (7), while the

nf = 3 generations of fermions are transformed

ψi
CP−−→ Y ∗ij · γ0Cψ̄T

j , Y ∈ U(nf ) . (14)

As usual, one can find a basis in which

Y =





1 0 0
0 0 eiα

0 e−iα 0



 . (15)

QL, dR, and uR can in principle transform differently under the CP -transformation, with the
three matrices YL, YdR, and YuR, but for the sake of demonstration we assume YdR = YuR =
YL = Y . The requirement that the Yukawa sector is CP4-invariant translates into

Y †Γ∗1Y = Γ1 , −iY †Γ∗2Y = Γ3 , iY †Γ∗3Y = Γ2 ,

Y †∆∗1Y = ∆1 , iY †∆∗2Y = ∆3 , −iY †∆∗3Y = ∆2 . (16)

These requirements can be simultaneously satisfied in two cases:

• case 1: α = ±π/4 + πk:

Γ1 =





g1 0 0
0 g2 0
0 0 g∗2



 , Γ2 =





0 0 0
0 0 g23
0 g32 0



 , Γ3 =





0 0 0
0 0 ±g∗32
0 ∓g∗23 0



 . (17)

• case 2: α = ±π/2:

Γ1 =





g1 0 0
0 g2 g3
0 −g∗3 g∗2



 , Γ2 =





0 g12 g13
g21 0 0
g31 0 0



 , Γ3 = ±





0 −g∗13 g∗12
g∗31 0 0
−g∗21 0 0



 .

(18)

In both cases g1 is real and all other entries are complex and independent. The expressions for
∆a are of the same form, with parameters di instead of gi and with the exchange of index 2↔ 3.
For leptons, one gets the similar construction as for the down quarks. Notice that in case 1, the
GCP transformation is in fact of order 8 within the fermion sector. Thus, we have constructed
the desired CP -conserving Yukawa sector in CP4-3HDM. The extra doublets do not have to be
inert after all. We also mention that a similar problem of extended higher-order GCP to Yukawa
sector was studied in [8] for 2HDM.

After spontaneous symmetry breaking, generation 2 and 3 fermions are mass-degenerate. For
example, in the lepton sector, with the notation `i = (e, µ, τ) we have mµ = mτ as the result
of the conserved CP4. Expressing the Yukawa interactions via physical scalar bosons Φ, ϕ, and
the physical fermions, we obtain for case 1 the following interaction pattern [17]:

−LY = (µ̄τ)(gΦ− g̃ϕ) + (τ̄ γ5µ)(g̃
∗Φ+ g∗ϕ) + h.c., (19)

where complex parameters g and g̃ are expressed via the entries of the matrices (17).
Each interaction term here is separately CP4-invariant. For example, the µ-τ mixing GCP

transformation with matrix Y given by (15) renders the bilinear µ̄τ CP -half-odd: µ̄τ
CP−−→ −iµ̄τ ,

and its −i factor compensates the i factor from Φ. Also, notice that insertion of γ5 changes q-

charge by two units: µ̄γ5τ
CP−−→ iµ̄γ5τ . This is equivalent of an extra CP -oddness introduced
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with γ5 , just like it happens in the usual case. A slightly longer expression is obtained for case
2:

−LY = (ēµ+ τ̄ e)(g+Φ− g̃+ϕ)− (µ̄e− ēτ)(g̃∗−Φ+ g∗−ϕ)

+ (ēγ5µ− τ̄ γ5e)(g−Φ− g̃−ϕ)− (µ̄γ5e+ ēγ5τ)(g̃
∗
+Φ+ g∗+ϕ) + h.c., (20)

where the coupling constants are again expressed via the Yukawa matrices entries (18).

3. The clash of definitions

The resulting Yukawa interactions (19) and (20) exhibit a peculiar asymmetric pattern of
couplings of the CP -half-odd scalars and their conjugates to fermion pairs. It is tempting
to interpret interaction terms such as µ̄τΦ as a source of lepton flavour violation. However when
reading physical processes off such interactions, one must not forget that particle-antiparticle
assignments become tricky in the case of mass-degenerate fields.

Indeed, let us first consider scalars. After quantization, a complex scalar field is written in
terms of creation and annihilation operators that satisfy the standard commutation relations,
and it reads

φ(x, t) =

∫

d̃p
[

a(p)e−ipx + b†(p)eipx
]

, (21)

where px ≡ Et − px and d̃p ≡ d3p/[2E(2π)3]. The standard assignment is that the one-
particle states a†(p)|0〉 and b†(p)|0〉 correspond to a particle and its antiparticle. As a natural
consequence of this convention, one postulates that the C-transformation acts on operators by
exchanging a and b. In our case, we have CP -half-odd fields Φ and ϕ with CP -properties

Φ
CP−−→ iΦ. Then it unavoidably follows that the corresponding operators aΦ and bΦ are not

exchanged under CP4:

aΦ(p)
CP−−→ iaΦ(−p) , bΦ(p)

CP−−→ −ibΦ(−p) . (22)

This means that a†Φ|0〉 is a one-particle state labelled Φ, which is its own antiparticle. The

other one-particle state b†Φ|0〉 is labelled as Φ∗ and it is another particle, not antiparticle of Φ.
Therefore, the field Φ in the interaction lagrangian can lead either to production of a particle
Φ∗ or to annihilation of a different particle Φ. Diagrammatically, when drawing a line ending in
such a vertex, one must label it differently for the incoming and outgoing lines.

A similar convention must be used for fermions. The interaction µ̄τΦ in case 1 describes
the Φ decay to a µ+µ− pair (or τ+τ− transition into Φ∗), while τ̄µΦ∗ describes the Φ∗ decay
to a τ+τ− pair. As a result, Φ and Φ∗ have different decay preferences, but since they are not
antiparticles of each other, these results are hardly surprising. The situation is less trivial in
case 2, where at least the lepton-flavor-violating coupling between e and µ/τ exists.

However, in contrast with scalars, the fermions are charged and participate in the
electromagnetic interactions via (µ̄γµµ + τ̄ γµτ)Aµ. This interaction is apparently diagonal in
the fermion flavor. However expressing it via creation and annihilation operators, one sees that
it leads not only to (virtual) subdiagrams µ− → µ−γ but also to µ−τ+ → γ. One arrives at the
counter-intuitive conclusion that, although a fermion can emit a photon without changing its
flavor, it must pick up a different antifermion to annihilate into a photon.

One might find this conclusion sufficiently disturbing to revert the fermion-antifermion
convention back to the usual one. That is, one assumes that a given fermion field contains
the creation operator of a particle and the annihilation operator of its antiparticle. With this
physically appealing definition, fermion annihilates together with its antifermion. But then the
Yukawa interactions (19) and (20) will be manifestly CP -violating: each interaction term gives
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preference to a fermion over its antifermion. However the model is still CP -conserving by all
accepted standards.

To summarize this discussion, our model reveals a clash between two different conventions
for particle-antiparticle assignments for charged fermions. One is “technical”, it is consistent
with the conserved CP -symmetry, but it leads to counter-intuitive transitions like µ−τ+ → γ.
The other is “physical”; it requires that, at tree-level, particles can only annihilate with their
antiparticles into a photon. But in this case one must accept that a CP -conserving model leads
to manifest CP -violation.

There is a third way: to simply avoid assigning who is antiparticle of whom. In this case, there
is no such transformation as C-parity, and CP4 is just a peculiar symmetry linking different fields,
not the CP symmetry. However it is not clear how one should phrase the physical phenomenon
of CP violation and baryogenesis within this “C-agnostic” point of view.

Yet another possibility is that it is premature to draw any phenomenological conclusion
from the above observations because this is a toy model with mass-degenerate µ and τ . It
will be interesting to see whether in a phenomenologically relevant version of CP4-3HDM with
spontaneously broken CP4 any interaction of this type persists and leads to observable signals.
To this end, we notice that our model resembles the 2HDM with “maximal CP -symmetry”
suggested and explored in [5, 6]. That model is also based on a GCP transformation of essentially
the same family-mixing kind but only with two doublets. This has two key consequences in which
it differs from CP4-3HDM. First, when applied twice on two doublets, it leads to an overall sign
flip on both doublets, which is proportional to the unit matrix and can be removed by an overall
sign flip. Thus, the transformation is effectively of order two, not four. In our case, an extra
doublet stays invariant and it prevents removing the overall sign. Second, with two doublets,
this initial symmetry must be broken by the vevs. As a result, it leads to a bunch of remarkable
flavor violating signatures. In our unbroken-CP4 case, it is the first doublet which acquires the
vev, and the symmetry persists. If broken, it may lead to similar flavor-violating signals, but
since they arise now in addition to the first Yukawa structure, the strength of these effects can
be controlled.

4. Towards phenomenology of CP4-3HDM

We have not yet explored the phenomenology of CP4-3HDM. Since it realizes the novel form of
CP -conservation, it is definitely worth investigating its phenomenological manifestations, either
in its simplest version with two inert doublets, or with CP4 symmetry extended to the Yukawa
sector and then spontaneous broken. Below, we list several issues to be studied in future.

• In CP4-3HDM with exact CP4 and inert doublets, there are two mass-degenerate real scalar
DM candidates. Unlike simpler scalar DM models with two DM candidates, such as IDM
with λ5 = 0, these two DM candidades do not coannihilate via Z-boson. This strongly
affects the relic density calculations for light DM masses.

• The model we constructed is based on a novel form of CP -conservation, CP4. However
it is not clear whether there can exist, even within the toy model, any phenomenological
manifestation which can distinguish this and the usual CP. For that, one would need to find
a process which cannot be mimicked by any CP -conserving model with the usual definition
of CP . The only suggestions we have is to look into pairs of CP -half-odd scalars Φ. Since

(CP)a†Φa
†
Φ(CP)−1 = −a

†
Φa
†
Φ , (23)

we find that such a pair must be only in even-partial-wave states, which are CP -odd. This
peculiar assignment is impossible for any pair of CP -even/CP -odd scalar fields. However,
we have not yet found any specific process that would recevie this peculiar feature.
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• For a model with CP4 extended to the Yukawa sector, one would need to break CP4
spontaneously to produce a physical fermion sector. Although the CP4-symmetric Yukawa
structures (18) contain many free parameters, it is not a priori clear if one can use it to fit
all quark masses and mixing and, simulnatenously, avoid too large FCNCs. Fitting flavor
sectors within this models and looking for its characteristic features is the next step along
these lines. Including the neutrino sector in this description is also highly desirable.
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