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Abstract

The subject matter of the present thesis has been the investigation of the hadronic

properties in dense nuclear matter (DNM) with neutron-proton (n-p) density asym-

metry. As a result we find many interesting and amusing phenomenon in the char-

acteristic behavior of the mesons, particularly in the isovector sector, giving rise

to phenomena like mode splitting of the different charge states of mesons like pion

and ρ-meson or the mixing of different isospin states etc. which is not observed in

symmetric nuclear matter.

In particular, the present work deals mostly with pion propagation in asym-

metric nuclear matter (ANM) at high density within the framework of Quantum

Hadrodynamics (QHD). We expose how such asymmetry in neutron-proton density

can induce mixing of mesons having different isospins. Such matter driven phenom-

ena are akin to spontaneous symmetry breaking where the Hamiltonian respects

the symmetry, it is broken by the ground state. We estimate mixing amplitudes of

π-η and ρ-ω mixing with this additional contribution in ANM which actually win

over the corresponding vacuum mixing amplitudes. With this mixing amplitudes,

in this thesis, various charge symmetry violating (CSV) potentials have been con-

structed. In this case, apart from the density dependent effects, new sources of

vacuum symmetry breaking phenomena has been identified which also modifies pre-

viously known free space charge symmetry violating nucleon-nucleon potential. In

addition, calculation determining the effect of medium on hadron masses in nuclear

matter have also been performed including the effect of nuclear asymmetry on the

effective masses of various mesons.





Notations

µ, ν Space-time index of four vector

gµν Metric tensor, diag(1,−1,−1,−1)

N Nucleon index, (N = n for neutron, & p for proton )

M∗
N Effective nucleon mass

m̃i Mixing modified meson mass

kN Fermi momentum of nucleon

EN(E
∗
N) Fermi energy with nucleon mass MN(M

∗
N )

Γi Vertex factor

α Asymmetry parameter

ρn (ρp) Neutron (proton) density

∆i Scalar meson propagator in momentum space

∆µν
i Vector meson propagator in momentum space

GN Nucleon propagator in medium with MN

G∗
N Nucleon propagator in medium with M∗

N

Πij Mixing self-energy

ΠT
ij Transverse component of mixing polarization

ΠL
ij Longitudinal component of mixing polarization
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Chapter 1
Introduction

The properties of hadrons in dense nuclear matter has been at the core of high

energy nuclear physics research for quite some time now [1–4]. Such investigations

are important to provide answers to some of the pertinent queries involving nuclei,

nuclear matter, astrophysical objects like neutron stars, their evolution, structure,

supernovae explosion [5, 6] and several other issues related to the laboratory based

heavy ion collisions [7,8]. In astrophysical context, particularly many of the neutron

star properties are sensitive to the underlying nuclear the equation of state (EOS)

at densities much higher than those observed in ordinary nuclei [9]. Many models

have been proposed over time to calculate the nuclear EOS at high densities starting

from basic nuleon-nucleon interactions [10, 11]. The EOS is an essential ingradient

for calculating the balance between the gravitational pull and nuclear pressure in

neutron stars. Construction of such models are guided by the various observed

phenomena of ordinary nuclei, nuclear saturation properties, incompressibility etc.

[10–14].

Extrapolations of these models to higher densities can be tested against astro-

physical data or in the laboratory based measurements involving heavy ion collisions

where nuclear matter can be produced temporarily at densities few times higher

than that of the ordinary nuclei. This also includes the possibility of forming quark

gluon plasma (QGP) state of matter at extremely high temperature and/or densi-

ties. The experiments at relativistic heavy ion collider (RHIC) and large hadron

collider (LHC) have provided further impetus in this context where mainly the high

temperature effects have been the main focus [15]. The proposed experiments at

GSI, on the other hand, are geared to uncover the properties of compressed baryonic

1
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matter (CBM) where the baryonic chemical potential is likely to be much higher

compared to the temperature [16].

The nucleon-nucleus (N-A) and nucleus-nucleus (A-A) collisions also offer oppor-

tunities to measure various hadronic spectral functions both at normal and higher

nuclear matter densities. Such measurements allow one to study the effective masses

and the widths of the various hadronic resonances like σ, ω, π etc. In particular, the

dilepton invariant mass spectra, provide penetrating probe to pin-down the prop-

erties of the light vector mesons i. e. ρ, ω and φ in nuclear medium. Several

theoretical models have been advanced to study the in-medium properties of these

mesons [17,18]. Many experiments have also measured the vector meson mass shifts

in dense nuclear matter [19–22]. These apart, pion sprectral function in nuclear

matter has also been a subject of intense research for quite some time [23].

The basic input of all these studies are the two body nucleon-nucleon interaction

both in vacuum and in medium. Several investigatons have addressed these issues

using both non-relativistic [24–31] and relativistic models [32–37]. In particular,

the non-relativistic investigations like Brueckner-Hartree-Fock and Bathe-Salpeter

formalisms have been very successful to describe the properties of dense nuclear

matter [38–44].

To deal with nuclear matter at very high density such as what is found in neu-

tron stars, one must describe hydrodynamic flow of nuclear matter at velocity that

approaches to the speed of light and requires transport properties under extreme

conditions. It is more appropriate to use the relativistic nuclear many body formal-

ism in this regime [32–37].

The usual argument which is given in favour of using the non-relativistic model

has been that the nuclear binding energy is small compared to the nucleon mass.

But this small nuclear binding energy is a consequence of the cancellation between

two large Lorentz scalar and four-vector potentials, each of which is approximately

several hundred MeV even at ordinary densities [45]. In view of the above mentioned

points, it has been argued by several authors to use relativistic formalism in order

to study even ordinary nuclear systems. The evidence of such strong potentials

came from the one boson exchange potential (OBEP) analysis of nucleon-nucleon

scattering [46,47]. Furthermore, at high density nucleon mass reduces than its value

in free space which makes the lower component of the Dirac spinor larger. This

provides additional support in favour of using the relativistic models.



3 1.1 Nucleon-Nucleon interaction

1.1 Nucleon-Nucleon interaction

Yukawa, in 1935 proposed that the nucleon-nucleon interaction is generated by the

exchange of a massive particle, called meson [48]. He derived two body nuclear force

considering a charged scalar meson exchanged between proton and neutron [48–52].

In 1937 muon was discovered in the cosmic ray and it was thought as the Yukawa’s

particle. But, Pancini and Piccioni showed that muon does not interact strongly

with nuclei and therefore was not the proposed meson [53]. Later, a meson of mass

about 140 MeV was discovered in the cosmic ray which interacts strongly with

nucleon. This was the Yukawa’s particle and it was named ‘pion’.

Proca extended Yukawa’s original idea of scalar meson exchange to the vector

meson exchange [54] which provided a tensor force leading to the quadrupole mo-

ment of the deuteron with wrong sign. The correct sign of the quadrupole moment

can be obtained by the exchange of the isovector and pseudoscalar mesons [55, 56].

The nucleon-nucleon interaction mediated by different mesons operate at different

distance scale. In view of this Taketani, Nakamura and Sasaki proposed to subdivide

the range of nuclear force into three regions [57]:

1. Classical (or long-range) region: Distance between the centers of two

nucleons, r& 2 fm. In this region one-pion exchange (OPE) plays the dominant

role.

2. Dynamical (or intermediate) region: 1 fm . r . 2 fm. Two-pion ex-

change (TPE) becomes important in the intermediate region.

3. Phenomenological (or core) region: r . 1 fm. In this region multi-

pion exchange, heavy mesons of various kinds and the quark-gluon exchange

contribute.

This kind of subdivision may be helpful for developing the theory of nucleon-

nucleon interaction stepwise, that means it permits one different derivation for the

different regions of nuclear force.

It was well-established that the one-pion exchange accounts for the long-range

part of the nuclear force [58–64]. But serious problems appeared in the case of

two-pion exchange [65–70]. The discovery of heavy meson, specially the vector

meson, rescued from that problem leading to the construction of the one-boson ex-

change (OBE) models for nucleon-nucleon interactions [71]. The basic assumption
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Figure 1.1: Mesons in NN interaction.

of these models are that the multi-pion exchange could be replaced by the appro-

priate multi-pion resonances as if they form a single particle with definite mass and

definite intrinsic quantum numbers. For instance, the correlated two-pion S-wave

contribution can be well approximated as the exchange of scalar meson of mass is

about 500 MeV [72–79]. The ρ meson is a two-pion resonance in the P-state and

the ω meson is a three-pion resonance. In the OBE models isoscalar scalar mesons

like sigma (σ) meson or eta (η) meson dominate in the intermediate range of nuclear

force. On the other hand, rho (ρ) and omega (ω) mesons had been included for the

core region. Inclusion of other mesons were found to give negligible contribution.

The various meson parameters given in Table.1.1 have been borrowed from Ref. [80]:

Table 1.1: Meson parameters.

Meson JP T g2

4π
Mass (MeV) Λ (MeV)

π 0− 1 14.6 138.6 1300

η 0− 0 5.0 548.0 1500

ρ 1− 1 0.95 769.0 1400

ω 1− 0 20.0 782.6 1500

J = total spin, P = Parity, T = isospin and g = coupling constant.
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1.2 Classification of nuclear forces

For the construction of nucleon-nucleon potential one usually neglects the isospin

dependence. In general the nucleon-nucleon forces can have isospin dependence

also. According to the isospin dependence Henley and Miller listed four classes of

NN forces [81–84]. One of which is isospin neutral and others break this symme-

try. Before listing these four classes of nucleon-nucleon forces, we first discuss two

main issues viz. the charge independence and charge symmetry of the interacting

Hamiltonian.

Charge independence (CI) implies the equality between the neutron-neutron

(nn), proton-proton (pp) and neutron-proton (np) interactions. The charge sym-

metry (CS) implies that the interaction between two neutrons or two protons are

equal. The violation of CS automatically violates the charge independence (CI),

however, the converse might not be always true [85–87]. It is possible to have CS

even if the CI is violated which actually is a higher symmetry. In nature, both the

symmetries are broken.

The CI requires that the Hamiltonian (H) of the system will be invariant under

any rotation in isospin space i. e.

[H,T] = 0 , (1.1)

where, T is the isospin operator. Actually, the above relation implies isospin in-

dependence of the system. But, the term “charge independence” is often used to

indicate “isospin invariance” (II). The CS operator may be defined as

PCS = eiπT2 , (1.2)

if the third (or z) component of T is considered to be associated with the charge of

the particle. This definition of the CS operator was first introduced in Ref. [88] in

the context of CS of the up (u) and down (d) quarks. Since isospin is an additive

quantum number and for hadrons it is expressed equivalently from the quark content,

allows one to apply the quark based definition of CS to the hadronic systems. The

CS is expressed as

[H,PCS] = 0 . (1.3)

Thus CS implies the invariance of the system under 1800 rotation about the T2 axis
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in the isospin space, that means the charge-reflected system must be identical to the

original one under reflection on the T1-T2 (or Tx-Ty) plane in isospin space.

• Class (I): Class (I) forces are isospin or charge independent and the general

form is

V NN
I = a+ bτ(1) · τ(2), (1.4)

where a and b are isospin independent operators and τ is the Pauli’s isospin

operator. This force obeys [V NN
I ,T] = 0 .

• Class (II): This type of forces are charge symmetric but violate charge inde-

pendence:

V NN
II = c

[

τ3(1)τ3(2)−
1

3
τ(1) · τ(2)

]

. (1.5)

• Class (III): This force breaks both charge independence and charge symme-

try:

V NN
III = d [τ3(1) + τ3(2)] . (1.6)

where c and d are Hermitian operators. Since, [V NN
III ,T

2] = 0, it does not

causes isospin mixing in the two-body system. A class III interaction distin-

guishes nn and pp systems, but vanishes in the np system. An example of

charge symmetry violating class III interaction is the Coulomb force which

also contains class I and class II forces.

• Class (IV): The general form the Class IV NN force is

V NN
IV = e[τ3(1)−τ3(2)][σ(1)−σ(2)] ·L or f [τ(1)×τ(2)]3[σ(1)×σ(2)] ·L, (1.7)

where e, f are scalar operators and σ(1), σ(2) are the spin operators for

nucleons. This type of forces break charge symmetry and therefore charge

independence. The class IV forces have no effect on the nn and pp systems, but

causes spin-dependent isospin mixing effects in the np system. The magnetic

interaction between two nucleons is an example of class IV force.



7 1.3 Outline of the thesis

1.3 Outline of the thesis

The thesis is structured into seven chapters. A short introduction into the field and

important topics related to our study have been presented in Chapter 1. In chapter

2, we discuss about quantum hadrodynamic (QHD) models and consequently present

the Walecka model which is based on mean field (MF) approximation. This model

was the first of its kind where the field theoretic approach to describe the bulk

properties of nuclear matter had been formulated [10]. Here we also present a

derivation of in-medium nucleon propagator.

Chapter 3 has been devoted to the study of pion propagation in asymmetric

nuclear matter (ANM). Pions in nuclear physics assume a special status. It is re-

sponsible for the spin-isospin dependent long range part of the nuclear force as

mentioned before. In addition, there are variety of physical phenomena related to

the pion propagation in nuclear matter. One of the fascinating ideas in relation to

the pion-nucleon dynamics in nuclear matter is the pion condensation [89]. This

might happen if there exists space like zero energy excitation of pionic modes. The

short-range correlation, on the other hand, removes such a possibility at least upto

densities near the saturation densities. In relativistic heavy ion collision, the im-

portance of medium modified pion spectrum was discussed by Mishustin, [90] where

it was shown that due to the lowering of energy, pion, in nuclear matter, might

carry a bulk amount of entropy. Subsequently, Gyulassy and Greiner studied pionic

instability in great detail in the context of RHIC [91]. The production of pionic

modes in nuclear collisions was also discussed in [92].

In experiments, medium dependent pion dispersion relation can also be probed

via the measurements of dilepton invariant mass spectrum. The lepton pairs pro-

duced with invariant mass near the ρ pole are sensitive to the slope of the pion

dispersion relation in matter [7]. Particularly the softening of momentum depen-

dence of the pion dispersion relation in matter leads to higher yield of dileptons. Gale

and Kapusta were first to realize that the in-medium pion dynamics can be studied

by measuring lepton pair productions [93]. Most of the earlier studies of in-medium

pion properties were performed in the non-relativistic frame work [94–96]. A quasi-

relativistic approach was taken in [97–99] where the calculations were extended to

finite temperature. In particular, [99] discusses various non-collective modes with

the possibility of pion condensation. In [7], on the other hand, the dilepton produc-

tion rates were calculated using non-relativistic pion dispersion relations. Ref. [100]
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treated the problem relativistically but free Fermi gas model was used, while in [101]

pion propagation was studied by extending the Walecka model [10] including delta

baryon.

In recent years, there has been significant progress to calculate dilepton produc-

tion rates involving pionic properties in a more realistic framework [7,93,99,102–104].

The importance of relativistic corrections and density dependent pion mass split-

ting in ANM in the context of deriving pion-nucleus optical potential was discussed

in [105]. The formalism adopted in [105] was that of chiral perturbation theory.

Recently, in the context of astrophysics, pionic properties in ANM has also been

studied by involving Nambu-Jona-Lasinio model [106, 107].

The other aspect which we address in chapter 4 is the mixing of various meson

states due to symmetry violation. For example, it is known that, in nature, isospin

is not an exact symmetry and this leads to the mixing of isoscalar ω and isovector

ρ meson in vacuum. At the quark level this is driven by the mass splitting of the

up and down quark. At the hadronic level such mixing can be attributed to the

neutron and proton mass difference. Other well known example is the mixing of the

π and η meson.

The nuclear medium can permit even another class of mixing which does not

happen in vacuum. Matter induced σ-ω meson can here be cited as one of the

classic examples [108–110]. Such a scalar (σ)-vector (ω) mixing cannot take place

in vacuum because of Lorentz symmetry, which in medium is lost. There could be

additional sources of mixing in ANM driven by the asymmetric neutron and proton

density difference. This is akin to the spontaneous symmetry breaking where the

Hamiltonian respects the symmetry but the ground state does not. In this case, as

we shall see, even when Mn = Mp, various isospin states can mix. Here Mn and

Mp denote the neutron and proton masses respectively. The physical consequence

of this phenomenon constitutes a major part of the present thesis.

Physically, in dense hadronic system, intermediate mesons might be absorbed

and re-emitted from the Fermi spheres. In symmetric nuclear matter (SNM) the

emission and absorption involving different isospin states like π and η or ρ and

ω cancel when the contributions of both the proton and neutron Fermi spheres

are added provided the nucleon masses are taken to be equal. In ANM, on the

other hand, the unbalanced contributions coming from the scattering of neutron

and proton Fermi spheres, lead to the mixing which depends both on the baryon

density (ρb) and the asymmetry parameter, α = (ρn−ρp)/ρb, where ρn and ρp denote
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neutron and proton densities. This density driven mixing of π-η or ρ-ω and their

importance in nuclear physics will be elucidated further in chapter 4.

In chapter 5 we construct various charge symmetry violating (CSV) potentials

clearly delineating the difference between vacuum induced mixing due to the n-p

mass difference and density dependent modification of such mixing in ANM. We

include here few corrections to the existing two-body CSV potentials in vacuum. It

is to be noted that the mixing amplitudes calculated in chapter 4 are required to

construct such potentials which we accomplish in chapter 5.

In chapter 6, we present how the mixing further modifies the effective π and

η meson masses in ANM. Here we also present relevant pion dispersion relations.

Finally we summarize and conclude in chapter 7.





Chapter 2
Dense Nuclear Matter

Nuclear matter is a hypothetical uniform system with infinite number of nucleons

(A) in absence of Coulomb interaction. In the past several years, many theoretical

models have been proposed to study the bulk properties of nuclear matter [24–31].

Such studies find main applications in astrophysical contexts, particularly to study

the neutron star properties as mentioned already in the introduction. For finite

nuclei, the material at the center of 208Pb-nucleus may be considered as nuclear

matter.

For basic theoretical understanding of the bulk properties of nuclear matter,

one takes equal densities of neutron and proton i.e. ρn = ρp. This is known as

symmetric nuclear matter (SNM) where the neutron and proton Fermi momenta

which determine the density are the same i.e. kn = kp. In many cases, however, one

can deal with the asymmetric nuclear matter (ANM) i.e. when ρn 6= ρp. We shall

here first outline the formalism for the SNM and then in the next chapter issues

related particularly to ANM will be addressed.

A proper framework to describe nuclear matter at high densities and tempera-

tures is relativistic quantum field theory based on a local Lagrangian density. Among

these theories, the ones considering hadronic degrees of freedom are represented by

a generic name: quantum hadrodynamics (QHD). In this framework, the mean field

theory, or the Walecka model [10], was first introduced in the early seventies to study

dense nuclear matter in the context of neutron stars [11]. This model explains the

bulk nuclear matter such as the experimentally accessible observables: density and

binding energy [111], the strong spin-orbit splitting in finite nuclei [10,45,112,113].

In this approach, one also obtains the well-known feature of nucleon-nucleon inter-

11
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action known from nucleon-nucleon scattering experiments: a short range repulsion

and a long range attraction [46,114]. We will explain these features gradually as we

review the formalism of the Walecka model.

2.1 Walecka model

We start with the Lagrangian of QHD-I model, where nucleons interact via the

exchange of σ and ω mesons as shown in Fig.2.1:

L = ψ̄ [γµ (i∂
µ − gvV

µ)− (MN − gsφ)]ψ +
1

2

(

∂µφ∂
µφ−m2

sφ
2
)

− FµνF
µν +

1

2
m2

vVµV
µ + δL, (2.1)

where ψ represents the baryon field with mass MN , φ and V µ are the neutral scalar

and vector meson fields with masses ms and mv, respectively. F
µν = ∂µV ν − ∂νV µ

is the field tensor for spin-1 particle and δL contains the counter terms required for

renormalization of the model. In Eq.(2.1), the scalar meson couples to the scalar

density of baryon gsΨ̄Ψφ and vector meson couples to the conserved baryon current

through gsΨ̄γµΨV
µ. This was motivated by the large Lorentz scalar and four-vector

components observed in the nucleon-nucleon interaction [46, 47].

The Feynman amplitude for nucleon-nucleon interaction as shown in Fig.2.1 is

given by

Mi(q
2) = [ūN(p3)Γi(q)uN(p1)] ∆i(q

2) [ūN(p4)Γj(−q)uN(p2)], (2.2)

where, uN , Γi(q
2) and ∆i(q

2) denote the Dirac spinor, vertex factor and meson

propagator, respectively. The non-relativistic limit of Eq.(2.2) yields the one boson

σ ω

N3 N4

N1 N2

N3

N1

N4

N2

Figure 2.1: NN interaction is generated via the exchange of a scalar meson (σ) and
a vector meson (ω) in QHD-I.
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exchange potential in momentum space. The coordinate space potential can be

obtained by Fourier transformation of the momentum space potential. Thus one

obtains the following nucleon-nucleon interaction potential:

Veff(r) =

(

g2v
4π

)

e−mvr

r
−
(

g2s
4π

)

e−msr

r
. (2.3)

The well-known feature of nucleon-nucleon interaction as found from nucleon-

nucleon scattering experiment i.e. a short range repulsion and long range attraction

[46, 47, 114] is clearly understood from the above expression of Veff(r). The short

range repulsion between nucleons comes from vector meson (ω) exchange and scalar

meson (σ) exchange generates the long range attraction. With an appropriate choice

of the values of coupling constants gv and gs can give quantitative description of

nuclear matter which will be discussed later. First we focus on the field equations.

2.1.1 Field equations

The field equations of motion can be found from the following Lagrange’s equation

of motion:
∂

∂xµ

[

∂L
∂
(

∂q
∂xµ

)

]

− ∂L
∂q

= 0, (2.4)

One obtains the field equations of motion replacing the generalized coordinate q by

the fields φ, V µ and ψ̄.

[

∂µ∂µ +m2
s

]

φ = gsψ̄ψ (2.5a)

∂µFµν +m2
vV

µ = gvψ̄γµψ (2.5b)

[iγµ∂µ −MN ]ψ = [gvγ
µVµ − gsφ]ψ (2.5c)

Eq.(2.5a) and Eq.(2.5b) represent the Klein-Gordon equation with the ψ̄ψ as the

source and equation for the spin-1 particle with ψ̄γµψ as the current source. Eq.(2.5c)

is the Dirac equation for baryon interacting with mesons.

2.1.2 MF approximation

It is clear from Eqs.(2.5a)-(2.5c), the exact solutions are very complicated and the

perturbative approaches can not be applied because of the large value of the coupling

constants, gs and gv. One may solve these equations considering the mean field
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approximation. In this approach the meson fields are replaced by their ground state

expectation values.

φ −→ < φ >= φ0 (2.6a)

Vµ −→ < Vµ >= δµ0V0 (2.6b)

Now derivative of the meson field vanishes and the field equations (2.5a)-(2.5c) read

as

φ0 =
gs
m2

s

< ψ̄ψ >=
gs
m2

s

ρs, (2.7a)

V0 =
gv
m2

v

< ψ†ψ >=
gv
m2

v

ρb, (2.7b)

[iγµ∂
µ −M∗

N ]ψ = gvV0ψ. (2.7c)

where, ρs and ρb are the scalar density and baryon density, respectively. M∗
N is the

effective nuclear mass given by

M∗
N =MN − gsφ0 (2.8)

Now the field equations (2.7a)-(2.7c) become exactly solvable and in the mean field

approximation the Lagrangian given in Eq.(2.1) and the Hamiltonian reduces to

LMF = ψ̄
[

iγµ∂
µ −M∗

N − gvγ
0V0
]

ψ +
1

2
m2

vV
2
0 − 1

2
m2

sφ
2
0 , (2.9)

HMF =
∂LMF

∂ q̇i
q̇i −LMF

= −1

2
m2

v V
2
0 +

1

2
m2

s φ
2
0 − ψ̄

[

−iγi∂i + gvγ0 V0 +M∗
N

]

ψ . (2.10)

2.1.3 Solution of Dirac equation

To solve Eq.(2.7c) one may consider the solution of the form ψ = Φ(k, s)e− ik·x,

where k · x = kµx
µ = k0x

0 − k · x = ε(k)t− k · x and s denotes the spin index.

(α · k+ βM∗
N) Φ(k, s) = (ε(k)− gvV0)Φ(k, s) , (2.11)

where αi = γ0γi, β = γ0 and γµs are the Dirac’s gamma matrices. Multiplying β

to the both sides of Eq.(2.11) one obtains
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(γµkµ −M∗
N ) Φ(k, s) = 0, (2.12)

where k0 = ε(k)− gvV0. Multiplying Eq.(2.12) by (γµkµ +M∗
N ) yields,

ε(k) = gvV0 ±
√

k2 +M∗2
N = gvV0 ± E∗

N (k) ≡ ε±(k) . (2.13)

Thus, for positive and negative energies i.e. for ε±(k), Eq.(2.11) reduces to

(α · k+ βM∗
N)U(k, s) = (ε+(k)− gvV0)U(k, s)

= E∗
N(k) U(k, s) , (2.14a)

(α · k− βM∗
N)V(k, s) = − (ε−(k)− gvV0)V(k, s)

= E∗
N(k) V(k, s) , (2.14b)

where U(k, s) and V(k, s) represent the corresponding Dirac spinors with the fol-

lowing normalization condition:

∑

s, s′

U(k, s)†U(k, s′) =
∑

s, s′

V(k, s)†V(k, s′) = 2E∗
N(k) δss′ . (2.15)

The general solution is the superposition of the positive energy and negative energy

solutions:

ψ(x) =
∑

k,s

1
√

V 2E∗
N(k)

[

ak,s U(k, s) e− i(ε+(k)t−k·x) + b†k,s V(k, s) e−i(ε−(k)t+k·x)
]

.

(2.16)

Here a†k,s and ak,s are creation and annihilation operators for particles and likewise

b†k,s and bk,s are the creation and annihilation operators for antiparticles. The only

non-vanishing anticommutation relations are

{

ak,s, a
†
k′,s′

}

=
{

bk,s, b
†
k′,s′

}

= δ3(k− k′) δs,s′ . (2.17)

The scalar and baryonic density operators may be written as

ρ̂b = ψ†ψ =
1

V

∑

k,s

(

a†k,sak,s − b†k,sbk,s

)

, (2.18a)

ρ̂s = ψ̄ψ =
1

V

∑

k,s

M∗
N

E∗
N (k)

(

a†k,sak,s + b†k,sbk,s

)

, (2.18b)
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Thus the Eq.(2.10) reduces to

ĤMF =− 1

2
m2

v V
2
0 +

1

2
m2

s φ
2
0+gvV0 ρ̂b+

1

V

∑

k,s

E∗
N(k)

(

a†k,sak,s+b
†
k,sbk,s

)

. (2.19)

In medium, the vacuum |0 〉 is replaced by the ground state |Ψ0 〉 which contains

positive-energy particles with same Fermi momentum kN and no antiparticles. Since

|Ψ0 〉 contains only positive-energy particles, the operators follow that

bk,s|ψ0 〉 = 0 for all |k|, (2.20a)

ak,s|ψ0 〉 = 0 for |k| > kN , (2.20b)

a†k,s|ψ0 〉 = 0 for |k| < kN , (2.20c)

ak,sa
†
k,s|Ψ0 〉 = n(k)|Ψ0 〉 . (2.20d)

The value of n(k) is either 0 or 1 depending upon |k| is greater than or less than

kN . This can be accomplished with the step function θ(kN − |k|).

2.1.4 Scalar and Baryon densities

The ground state of nuclear matter is obtained by filling up momentum space states

up to Fermi momentum kN and spin-isospin degeneracy γ. In nuclear matter γ = 4

and γ = 2 in pure neutron matter. For infinitely large volume V ,

1

V

∑

k

−→
∫

d3k

(2π)3
. (2.21)

Therefore, the ground state expectation values of ρ̂s, ρ̂b and E yield the scalar density,

baryon density and energy density, respectively:

ρs =< ψ0|ρ̂s|ψ0 > =
γ

(2π)3

∫

M∗
N

E∗
N (k)

d3k θ(kN − |k|),

=
γM∗

N

4π2

[

kNE
∗
N −M∗2

N ln

(

kN + E∗
N

M∗
N

)]

, (2.22)

ρb =< ψ0|ρ̂b|ψ0 > =
γ

(2π)3

∫

d3k θ(kN − |k|),

=
γ

6π2
k3N , (2.23)
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E =
g2v

2 m2
v

(ρb)
2 +

m2
s

2 g2s
(MN −M∗

N)
2 + γ

∫

d3k

(2π)3
E∗

N (k) θ(kN − |k|) . (2.24)

Note that E∗
N =

√

k2N +M∗2
N denotes the Fermi energy of nucleon. From Eqs.(2.7a)

and (2.22) one obtains the self-consistency condition for the effective nucleon mass:

M∗
N =MN − g2s

m2
s

γM∗
N

4π2

[

kNE
∗
N −M∗2

N ln

(

kN + E∗
N

M∗
N

)]

. (2.25)

It is clear from Eq.(2.25) and (2.22) that ∆M∗ =M∗
n−M∗

p =Mn−Mp = ∆M as

the nucleon masses are modified by the scalar mean field, which does not distinguish

between neutron and proton. The Eq.2.25 can also be obtained by minimizing the

energy density E at fixed baryon density i.e.

(

∂E
∂M∗

N

)

ρb

= 0 . (2.26)

2.1.5 Coupling constants

The coupling constants gs and gv are chosen in such a manner to reproduce the

saturation properties of uniform nuclear matter. We use the values from Ref. [45],

C2
s = g2s

M2
N

m2
s

= 267.1 , C2
v = g2v

M2
N

m2
v

= 195.9 , (2.27)

which provide a binding energy,

E
ρb

−MN = −15.75 MeV. (2.28)

for a Fermi momentum kN = 1.42 fm−1 corresponds to the baryonic density ρb =

0.1934 fm−3. This small nuclear binding energy arises from the cancellation between

large attractive and repulsive contribution of scalar and vector fields, respectively.

We present the saturation curve in Fig.2.2. With this choice of coupling constants,

M∗
N/MN = 0.56 at the saturation density.
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Figure 2.2: Saturation curve for symmetric nuclear matter.

2.2 Nucleon propagator in medium

The in-medium nucleon propagator which is one of the basic ingredient of our calcu-

lation, is different from the usual nucleon propagator. Here we present a derivation

of in-medium nucleon propagator. The position space nucleon propagator in vacuum

is given by the vacuum expectation value of the time ordered product of Fermion

fields.

iGN(x− x′) = 〈 0| T [ψ(x)ψ̄(x′)] |0 〉 . (2.29)

In medium, |0 〉 is to be replaced by |ψ0 〉 and we denote the nucleon propagator in

medium, G∗
N to distinguish it from that in vacuum, GN . Thus,

iG∗
N(x− x′) = 〈Ψ0|ψ(x)ψ̄(x′)|Ψ0 〉 θ(t− t′)

− 〈Ψ0|ψ̄(x′)ψ(x)|Ψ0 〉 θ(t′ − t) . (2.30)

Note that the time-ordered product in Eq.(2.30) involves negative sign for Fermions

(nucleons). To derive the nucleon propagator in medium we neglect the modification

due to vector mean field (V0) [2, 45] implies that ε±(k) = ±E∗
N (k). Therefore,

Eq.(2.16) reduces to

ψ(x) =

∫

d3k
√

(2π)3 2E∗
N (k)

∑

s

[

ak,s U(k, s) e−ik·x + b†k,s V(k, s) eik·x
]

. (2.31)
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Now the ground state expectation values reads

〈Ψ0|ψ(x)ψ̄(x′)|Ψ0 〉 =

∫

d3k
√

(2π)32E∗
N(k)

∫

d3k′

√

(2π)32E∗
N(k

′)

×
∑

s,s′

〈Ψ0|ak,sa†k′,s′|Ψ0 〉 U(k, s)Ū(k′, s′)e−i(k·x−k′·x′)

=

∫

d3k

(2π)32E∗
N(k)

(k/+M∗
N )e

−ik·(x−x′)[1− θ(kN − |k|)] , (2.32)

〈Ψ0|ψ̄(x′)ψ(x)|Ψ0 〉 =

∫

d3k
√

(2π)32E∗
N(k)

∫

d3k′

√

(2π)32E∗
N(k

′)

×
∑

s,s′

[

〈Ψ0|a†k′,s′ak,s|Ψ0 〉 Ū(k′, s′)U(k, s)e−i(k·x−k′·x′)

+ 〈Ψ0|bk′,s′b
†
k,s|Ψ0 〉 V̄(k′, s′)V(k, s))e−i(k·x−k′·x′)

]

=

∫

d3k

(2π)32E∗
N(k)

[

(k/+M∗
N)e

−ik·(x−x′)θ(kN − |k|)

+ (k/−M∗
N)e

ik·(x−x′)
]

. (2.33)

The theta functions can be written as

θ(t− t′)e−ik·(x−x′) = e−ik·(x−x′) i

∫

dk′0
2π

[

e−ik′0(t−t′)

k′0 + iǫ

]

= ieik·(x−x′)

∫

dk′0
2π

[

e−i(k′
0
+E∗

N
(k)(t−t′)

k′0 + iǫ

]

= ieik·(x−x′)

∫

dk0
2π

[

e−ik0(t−t′)

k0 −E∗
N (k) + iǫ

]

= i

∫

dk0
2π

[

e−ik·(x−x′)

k0 −E∗
N (k) + iǫ

]

. (2.34)

Similarly,

θ(t′ − t)e−ik·(x−x′) = −i
∫

dk0
2π

[

e−ik·(x−x′)

k0 − E∗
N(k)− iǫ

]

, (2.35)

θ(t′ − t)eik·(x−x′) = i

∫

dk0
2π

[

eik·(x−x′)

k0 −E∗
N (k) + iǫ

]

. (2.36)
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Eqs.(2.33), (2.35) and (2.36) yields

〈Ψ0|ψ̄(x′)ψ(x)|Ψ0 〉 θ(t′ − t) = −i
∫

d4k

(2π)42E∗
N(k)

×
[

(k/+M∗
N )

e−ik·(x−x′)

k0 − E∗
N(k)− iǫ

θ(kN − |k|)
]

+ i

∫

d4k

(2π)42E∗
N(k)

[

(k/−M∗
N)

eik·(x−x′)

k0 −E∗
N (k) + iǫ

]

= −i
∫

d4k

(2π)42E∗
N(k)

e−ik·(x−x′)(k/+M∗
N )

×
[

θ(kN − |k|)
k0 − E∗

N(k)− iǫ
− 1

k0 + E∗
N(k)− iǫ

]

. (2.37)

To arrive at the last line of Eq.(2.37) we have changed k → −k in the last integral

of the second line of that equation. Similarly, from Eqs.(2.32) and (2.34) we obtain

〈Ψ0|ψ(x)ψ̄(x′)|Ψ0 〉 θ(t− t′) = i

∫

d4k

(2π)42E∗
N(k)

e−ik·(x−x′)(k/+M∗
N)

×
[

1− θ(kN − |k|)
k0 − E∗

N(k) + iǫ

]

. (2.38)

Substituting Eq.(2.37) and (2.38) in Eq.(2.30) one obtains

iG∗
N(x− x′) = i

∫

d4k

(2π)42Ek
e−ik·(x−x′)(k/+M∗

N)

×
[

1− θ(kN − |k|)
k0 − E∗

N(k) + ǫ
+

θ(kN − |k|)
k0 −E∗

N (k)− iǫ
− 1

k0 + E∗
N (k)− iǫ

]

. (2.39)

The first term of Eq.(2.39) represents particle propagation above the Fermi sea and

the second term indicates the propagation of holes inside the Fermi sea. The last

term shows the propagation of holes in the infinite Dirac sea. Here,

1

k0 − E∗
N(k) + iǫ

− 1

k0 + E∗
N (k)− iǫ

=
2E∗

N(k)

k2 −M∗2
N + iζ

, (2.40)

1

k0 −E∗
N (k)− iǫ

− 1

k0 − E∗
N(k) + iǫ

= 2iπδ(k0 − E∗
N(k)) . (2.41)
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From Eqs.(2.39)-(2.41),

iG∗
N(x− x′) = i

∫

d4k

(2π)4
e−ik·(x−x′)G∗

N(k), (2.42)

where G∗
N(k) represents the in-medium nucleon propagator in momentum space

which consists of

G∗
N(k) = G∗F

N (k) +G∗D
N (k) , (2.43)

Explicitly,

G∗F
N (k) =

k/+M∗
N

k2 −M∗
N + iζ

, (2.44a)

G∗D
N (k) =

iπ

E∗
N(k)

(k/+M∗
N ) δ(k0 −E∗

N (k)) θ(kN − |k|) . (2.44b)

The superscript F and D denotes the free and dense parts, respectively. Note that

delta function in Eq.(2.44b) indicates the nucleons are on-shell while θ(kN − |k|)
ensures that propagating nucleons have momentum less than kN .





Chapter 3
Pions in Asymmetric Nuclear Matter

In this chapter we investigate the pion propagation in asymmetric nuclear matter

(ANM) using relativistic models [10, 45]. The importance of relativistic corrections

and density dependent pion mass splitting in ANM in the context of deriving pion-

nucleus optical potential was discussed in [105]. The formalism adopted in [105] was

that of chiral perturbation theory. Such investigations are important to understand

the pion-nucleon dynamics at finite density. Medium modifies the pion masses. Such

mass shifts in nuclear matter can be used to calculate the pion-nucleus optical po-

tential [20,21,105,115–120] which are different for different charged states. Recently,

in the context of astrophysics, pionic properties in ANM has also been studied by

involving Nambu-Jona-Lasinio model [106, 107]. Furthermore, in-medium pion dis-

persion relations also determine the low mass dilepton yields in relativistic heavy

ion collisions which has been mentioned in the introduction [99, 102].

With this motivation, here we focus on the propagating modes of various charged

states of pions which are non degenerate in ANM. This is in sharp contrast with

most of the previous calculations which mostly deal with symmetric nuclear matter

(SNM) [98, 100].

3.1 Pion-Nucleon interaction

Pion is the least massive meson which is responsible for the long range nucleon-

nucleon interaction. The pion-nucleon interaction is strongly spin and isospin de-

pendent. To study the pion dispersion in ANM, we consider both the pseudoscalar

and pseudovector couplings of pion with nucleon.

23
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3.1.1 Pseudoscalar πN interaction

Historically, pion (π) and rho (ρ) mesons were first included by Serot [121] into

the original Walecka model for the realistic description of dense nuclear matter

(DNM). However, the calculation was restricted to the mean field (MF) level. The

renormalizibility of the theory was preserved by considering the pseudoscalar (PS)

πN interaction. Our starting point is the following Lagrangian [122]:

L = Ψ̄(iγµ∂
µ −M)Ψ− igπΨ̄γ5(~τ · ~Φπ)Ψ− 1

2
gρΨ̄γµ(~τ · ~Φµ

ρ)Ψ− gωΨ̄γµΦ
µ
ωΨ

+
1

2
(∂µΦs∂

µΦs −m2
sΦ

2
s) + gsΨ̄ΦsΨ− 1

2
m2

π
~Φ2
π +

1

2
m2

ωΦωµΦ
µ
ω +

1

2
gφπmsΦs

~Φ2
π

+
1

2
(∂µ~Φπ − gρ~Φρµ × ~Φπ) · (∂µ~Φπ − gρ~Φ

µ
ρ × ~Φπ) +

1

2
m2

ρ
~Φρµ · ~Φµ

ρ

− 1

4
GµνG

µν − 1

4
~Bµν · ~Bµν , (3.1)

where,

Gµν = ∂µΦων − ∂νΦωµ (3.2a)

~Bµν = ∂µ~Φρν − ∂ν~Φρµ − gρ~Φρµ × ~Φρν . (3.2b)

Here, Ψ, ~Φπ, Φs, ~Φρ and Φω represents the nucleon, pion, sigma, rho and omega

fields respectively and their masses are denoted by M , mπ, ms, mρ and mω. In the

present chapter we neglect the explicit symmetry breaking i.e. Mn =Mp =M and

M∗
n =M∗

p =M∗. In Eq.(3.1), the pion-nucleon dynamics is described by

LPS
πNN = −igπΨ̄γ5

(

~τ · ~Φπ

)

Ψ, (3.3)

where, gπ is the pion-nucleon coupling constant [123].

This model successfully reproduces the saturation properties of nuclear matter

and yields accurate results for closed shell nuclei in the Dirac-Hartree approxima-

tion [112]. But, the appearance of tachyonic mode for pions even at density as low

as 0.1ρ0, (ρ0 denotes normal nuclear matter density) poses a serious problem [124].

Such a non-propagating mode for the pions can be removed by extending the calcu-

lation beyond the MF level as showed by Kapusta [124].

This model has an added advantage because of the presence of π-σ coupling in

addition to the usual PS coupling of the pion with the nucleons which is responsible
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for the generation of small s-wave pion nucleon interaction in vacuum. This is

consistent with the observed characteristics of the pion-nucleon interaction which

is dominated by the p-wave scattering while the s-wave scattering length is almost

zero. In matter, however, as argued in [122, 124], such subtle cancellation does not

occur and pion gets unrealistically large mass in matter. To circumvent this problem

it was suggested in [124] to use the pseudovector coupling even though it makes the

theory non-renormalizable.

3.1.2 Pseudovector πN interaction

The theoretical challenge, therefore, is to construct a model with πN pseudovector

(PV) interaction which preserves the renormalizibility of the theory. This was ac-

complished in Ref. [122] following the technique developed by Weinberg [125–127]

and Schwinger [128]. Here one starts with the PS coupling and subsequently in-

vokes non-linear field transformations to obtain PV representation. Unlike straight

forward inclusion of PV interaction in this method one requires only finite number

of counter terms which makes the theory renormalizable.

We, here, start with this model developed by Matsui and Serot [122] to study

the pion propagation in ANM. Clearly, the model adopted here is different from

what we had invoked in our previous work [129]. Furthermore, in [129], for the

determination of pion self-energy in matter only the scattering from the Fermi sphere

was considered and the vacuum part was completely ignored. The latter gives rise

to a large contribution to the pion self-energy in presence of strong scalar density

(ρs).

To obtain the PV representation of πN interaction we start from the Lagrangian

given in Eq.(3.1) and perform the following nonlinear chiral transformation [122]:

Ψ =





1− iγ5~τ · ~ξ
√

1 + ~ξ2



Ψ′ , (3.4a)

~ξ =

(

fπ
mπ

)

~Φ′
π = gπ~Φπ/

[

M − gsΦs +

√

(M − gsΦs)2 + g2π
~Φ2

π

]

, (3.4b)

gsΦ
′
s = M −

√

(M − gsΦs)2 + g2π~Φ
2
π . (3.4c)
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The last two equations (3.4b) and (3.4c) are used to express the old fields Φs

and ~Φπ in terms of new fields Φ′
s and ~Φ

′
π.

~Φπ =

[

1− 2(fπ/mπ)Φ
′
s

1 + (fπ/mπ)2~Φ′2
π

]

~Φ′
π, (3.5a)

Φs =
(1− (fπ/mπ)

2~Φ′2
π )Φ

′
s + (gπ/gs)(fπ/mπ)~Φ

′2
π

1 + (fπ/mπ)2~Φ′2
π

. (3.5b)

After the above transformations the Lagrangian Eq.(3.1) reduces to

L′ = Ψ̄′(iγµ∂
µ −M)Ψ′ − 1

2
gρΨ̄

′γµ(~τ · ~Φµ
ρ)Ψ

′ + gsΨ̄
′Φ′

sΨ
′ − gωΨ̄

′γµΦ
µ
ρΨ

′

+
1

2
(∂µΦs∂

µΦs −m2
sΦ

2
s) +

1

2
(∂µ~Φπ − gρ~Φρµ × ~Φπ) · (∂µ~Φπ − gρ~Φ

µ
ρ × ~Φπ)

− 1

2
m2

π
~Φ2

π +
1

2
gφπmsΦs

~Φ2
π +

1

2
m2

ωΦωµΦ
µ
ω +

1

2
m2

ρ
~Φρµ · ~Φµ

ρ

− (fπ/mπ)
2

1 + (fπ/mπ)2~Φ′2
π

Ψ̄′γµ(~τ · ~Φ′
π)× (∂µ~Φ′

π − gρ~Φ
µ
ρ × ~Φ′

π)Ψ
′

− (fπ/mπ)

1 + (fπ/mπ)2~Φ′2
π

Ψ̄′γ5γµ~τ · (∂µ~Φ′
π − gρ~Φ

µ
ρ × ~Φ′

π)Ψ
′

− 1

4
GµνG

µν − 1

4
~Bµν · ~Bµν (3.6)

It is seen from the Eq.3.6 that the πN PS coupling has disappeared and instead the

pion-nucleon dynamics is now governed by the last term of the above mentioned

equation. At the leading order one obtains the usual PV coupling represented by,

LPV
πNN = − fπ

mπ

Ψ̄′γ5γ
µ∂µ

(

~τ · ~Φ′
π

)

Ψ′ (3.7)

Here fπ is the pseudo vector coupling constant and f2
π

4π
= 0.08 [23]. The factor fπ is

related to gπ with
fπ
mπ

=
gπ

2MN

(3.8)

The above mentioned model has various shortcomings too. In fact, the Ref. [122]

itself discusses its limitations in describing many body πN dynamics. For exam-

ple, the successful description of the saturation properties of nuclear matter in this

scheme requires higher scalar mass which gives rise to larger in-medium nucleon

mass compared to the MFT. In addition, it also fails to account for the observed
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pion-nucleus scattering length at finite density [122]. In the same work, chiral π-σ

model has also been discussed to which we shall come later. In the end, we present

results calculated using this non-chiral model together with what we obtain from a

chirally invariant Lagrangian.

3.2 Pion self-energy

It is well known that the particle dispersion changes in matter because of scatter-

ing with the medium constituents. This is characterized by the density dependent

self-energy of the particle. At low density, this can be calculated by multiplying

the forward scattering amplitude with the density, which, however fails at higher

density where multiple scattering becomes important. To incorporate the higher or-

der effects one needs to calculate the full self-energy by evaluating loops at various

orders. The real and imaginary parts of the self-energy determine the in-medium

mass and decay width of the particle.

The the one-loop contribution as shown in Fig.3.1, to the pion self-energy reads

Π∗(N)
ππ (q2) =

∫

d4k

(2π)4
Tr [ Γπ(q)G

∗
N(k)Γπ(−q)G∗

N (k+q) ] , (3.9)

where the subscript N stands for nucleon index (i.e. N = p or n), k = (k0,k)

denotes the four momentum of the nucleon in the loop and q = (q0,q) is the four

momentum of the meson. Γπ is the vertex factor. For PS coupling Γπ = −igπγ5 and
Γπ = iγ5γ

µqµ
fπ
mπ

for PV coupling.

The essential ingredient to calculate in-medium pion self-energy is the in-medium

nucleon propagator G∗
N which consists of free (or vacuum) part,G∗F

N and a density

π0 π0
p

p

+
π0 π0π0 π0

n

n
π+,− π+,−

n, p

p, n

(a) (b)

Figure 3.1: One-loop self-energy diagram for π0 (a), and (b) represents the same for
π±.
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π π π
N

N̄

(a) (b)

Figure 3.2: Cutting of nucleon loop implied by the product of two delta functions (a),
and the decay of pion into nucleon-antinucleon (b).

dependent (or medium) part, G∗D
N as shown in Eq.(2.44). Now the self-energy given

in Eq.(3.9) in terms of G∗F
N and G∗D

N reads

iΠ∗(N)
ππ (q2) =

∫

d4k

(2π)4
Tr
[

Γπ(q)G
∗F
N (k)Γπ(−q)G∗F

N (k+q)

+ Γπ(q)G
∗F
N (k)Γπ(−q)G∗D

N (k+q) + Γπ(q)G
∗D
N (k)Γπ(−q)G∗F

N (k+q)

+ Γπ(q)G
∗D
N (k)Γπ(−q)G∗D

N (k+q)
]

. (3.10)

Here the last term of Eq.(3.10) contains the product of two delta functions (G∗D
N (k)

G∗D
N (k+ q)) which puts both the loop-nucleons on-shell implying the cut in the loop

(Fig.3.2a). This means that pion can decay into nucleon-antinucleon (Fig.3.2b) pair

which happens only in the high momentum limit i.e |q| > 2kp,n and also q0 > 2E∗
p,n,

where E∗
p,n =

√

k2p,n +M∗2
p,n is the Fermi energy for proton (or neutron). Under

this conditions only last term of Eq.(3.10 contributes to the self-energy. But in the

present calculation, we investigate low momentum (of pion) collective excitations

only [11]. Thus the total self-energy consists of FF and (FD+DF ) parts. The FF

part of the self-energy contains the Dirac sea contribution, while (FD+DF ) contains

the Fermi sea contribution. We denote them by Π
∗(N)
ππ,vac and Π

∗(N)
ππ,med, respectively.

iΠ∗(N)
ππ,vac(q

2) =

∫

d4k

(2π)4
Tr
[

Γπ(q)G
∗F
N (k)Γπ(−q)G∗F

N (k+q)
]

, (3.11)

iΠ
∗(N)
ππ,med(q

2) =

∫

d4k

(2π)4
Tr
[

Γπ(q)G
∗F
N (k)Γπ(−q)G∗D

N (k+q)
]
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+

∫

d4k

(2π)4
Tr
[

Γπ(q)G
∗D
N (k)Γπ(−q)G∗F

N (k+q)
]

. (3.12)

Once the full self-energy Π∗
ππ(q

2) is calculated, one should use the Dyson-Schwinger

equation,

∆̃π(q
2) = ∆π(q

2) + ∆π(q
2)Π∗

ππ(q
2)∆̃π(q

2) , (3.13)

to find the in-medium dispersion relation. Diagrammatically this has been shown

in Fig.3.3. The poles of the dressed (meson) propagator, ∆̃π(q
2) of Eq.(3.13) gives

the dispersion relations i.e.

1−∆π(q
2)Π∗

ππ(q
2) = 0 , (3.14)

where ∆π(q
2) is the bare meson propagator given by

∆π(q
2) =

1

q2 −m2
π

. (3.15)

+ +∆̃π(q
2) = +

Figure 3.3: Dressed meson propagator.

3.2.1 Tachyonic mode of pion

The interaction Lagrangian Eq.(3.1) has a term involving the coupling of pions with

the scalar meson (σ meson) given by

Lσπ =
1

2
gφπmsΦs

~Φ2
π (3.16)

Here, gφπ is the coupling constant of the scalar to pion field. The πN scattering

amplitude would now involve both nucleon and σ meson in the intermediate state

causing sensitive cancellation between the two that gives reasonable value of the s-

wave scattering length [124] as mentioned before. At the self-energy level Eqs.(3.3)

and (3.16) will generate the exchange and the tadpole diagram as shown in Fig.3.4b
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+
π π

N

σ

π
N

π

N
(a) (b)

Figure 3.4: Tadpole contribution to the pion self-energy.

and 3.4a. First we consider the tadpole diagram whose contribution to the self-

energy is given by

Πtad = −gφπmsφ0, (3.17)

where,

φ0 =
gs
m2

s

(ρs,p + ρs,n). (3.18)

Note that ρs,N(N = p, n) represents the scalar density given in Eq.(2.22). It is to be

noted that in the mean field theory (MFT), only the tadpole diagram (see Fig.3.4a)

contributes, while Fig.3.4b is neglected. The origin of tachyonic mode can now easily

be understood. The pion mass in matter due to the tadpole is given by [124]

m∗2
π = m2

π +Πtad

= m2
π − gφπmsφ0

= m2
π −

gφπgs
ms

(ρs,p + ρs,n) . (3.19)

The second term of the last equation is quite large even at densities far below ρ0

density viz. m∗2
π < 0 for ρ ∼ 0.1ρ0, where ρ denotes the nuclear matter density.

3.2.2 Self-energy for PS coupling

Now we proceed to calculate the pion self-energies for different charge states of pion.

First we calculate the vacuum contribution (Dirac sea contribution) to the pion self-

energy using Eq.(3.11). For π± the coupling constant gπ gets replaced by
√
2gπ.

After calculating the trace we obtain

Π∗PS
ππ,vac(q

2) = 8ig2π

∫

d4k

(2π)4

[

M∗2 − k · (k + q)

(k2 −M∗2) ((k + q)2 −M∗2)

]

. (3.20)
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From Eq.(3.20) it is observed that Π∗PS
ππ,vac(q

2) is quadratically divergent. To elim-

inate these divergences we need to renormalizes Π∗PS
ππ,vac(q

2). Here we adopt the

dimensional regularization [130–132] technique to regularize Π∗PS
ππ,vac(q

2) with the

following results (details are discussed in Appendix B).

Π̃∗PS
ππ,vac(q

2) =
g2π
2π2

[

−3(M2 −M∗2) + (q2 −m2
π)

(

1

6
+
M2

m2
π

)

− 2M∗2 ln

(

M∗

M

)

+
8M2(M −M∗)2

(4M2 −m2
π)

− 2M∗2
√

4M∗2 − q2

q
tan−1

(

q
√

4M∗2 − q2

)

+
2M2

√

4M2 −m2
π

mπ
tan−1

(

mπ
√

4M2 −m2
π

)

+

(

(M2 −M∗2) +
m2

π(M −M∗)2

(4M2 −m2
π)

+
M2

m2
π

(q2 −m2
π)

)

× 8M2

mπ

√

4M2 −m2
π

tan−1

(

mπ
√

4M2 −m2
π

)

+

∫ 1

0

dx 3x(1− x)q2 ln

(

M∗2 − q2x(1− x)

M2 −m2
πx(1− x)

)]

. (3.21)

It is found that the result given in Eq.(3.21) is finite and no divergences appear

further. In the appropriate kinematic regime it might generate imaginary part:

Im Π∗PS
ππ,vac(q

2) = − g2π
2π2

∫ 1

0

dx
(

M∗2 − 3q2x(1− x)
)

× Im
[

ln
(

M∗2 − q2x(1 − x)− iξ
)]

= − g2π
4π

[

q
√

q2 − 4M∗2
]

θ
(

q2 − 4M∗2
)

. (3.22)

If we consider that (M∗ −M) is small enough then the last term of Eq.(3.21) can

be approximated to 2 ln(M∗/M) and the integral can be easily evaluated to give

Π̃∗PS
ππ,vac(q

2) ≃ − c̃+ d̃ q2, (3.23)
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where

c̃ =
g2π
2π2

[

3(2M2 −M∗2) + 2M∗2 ln

(

M∗

M

)]

, (3.24a)

d̃ =
3g2π
2π2

(

M

mπ

)2

. (3.24b)

Now we calculate the medium contribution (Fermi sea contribution) to the pion-self

energies using Eq.(3.12). After calculating the trace and performing integration over

k0 we obtain

Π∗0,PS
ππ,med(q

2) = −8g2π

∫

d3k

(2π)3E∗
APS (3.25)

Π∗±,PS
ππ,med(q

2) = −8g2π

∫

d3k

(2π)3E∗
[APS ∓BPS]

= Π∗0,PS
ππ,med(q

2) ∓ δΠ∗PS
ππ,med(q

2), (3.26)

where,

δΠ∗PS
ππ,med(q

2) = −8g2π

∫

d3k

(2π)3E∗
BPS. (3.27)

The self-energies of π0 and π± are denoted by the superscripts 0 and ± as shown

in Eqs.(3.25) and (3.26). The explicit expression for APS and BPS are presented

below:

APS =

[

(k · q)2
q4 − 4(k · q)2

]

(θp + θn), (3.28)

BPS =
1

2

[

q2(k · q)
q4 − 4(k · q)2

]

(θp − θn), (3.29)

with θp,n = θ(kp,n−|k|). We restrict ourselves in the long wavelength limit i.e. when

the pion momentum (q) is small compared to the Fermi momentum (kp,n) of the

system where the many body effects manifest strongly. In this case particle propa-

gation can be understood in terms of collective excitation [11] of the system which

permits analytical solutions of the dispersion relations [11, 133]. But in the short

wavelength limit i.e. when the pion momentum (q) is much larger than the Fermi

momentum (kp,n), particle dispersion approaches to that of the free propagation.
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Note that for SNM, BPS = 0 implying

Π∗±,PS
ππ,med = Π∗0,PS

ππ,med . (3.30)

In the long wavelength limit we neglect the term q4 compared to the term 4(k · q)2
from the denominator of both APS and BPS in Eqs.(3.28) and (3.29). Explicitly,

after a straight forward calculation we get,

Π∗0,PS
ππ,med(q

2) =
g2π
2π2

[

kp E
∗
p −

1

2
M∗2 ln

∣

∣

∣

∣

1 + vp
1− vp

∣

∣

∣

∣

]

+
g2π
2π2

[

kn E
∗
n −

1

2
M∗2 ln

∣

∣

∣

∣

1 + vn
1− vn

∣

∣

∣

∣

]

, (3.31)

and

δΠ∗PS
ππ,med(q

2) =
g2π
2π2

[

1

2
E∗

p ln

∣

∣

∣

∣

c0 + vp
c0 − vp

∣

∣

∣

∣

− M∗

√

c20 − 1
tan−1

(

kp
√

c20 − 1

c0M∗

)]

q2

|q|

− g2π
2π2

[

1

2
E∗

n ln

∣

∣

∣

∣

c0 + vn
c0 − vn

∣

∣

∣

∣

− M∗

√

c20 − 1
tan−1

(

kn
√

c20 − 1

c0M∗

)]

q2

|q| , (3.32)

where vp,n = kp,n/E
∗
p,n and c0 = q0/|q|. The approximate results of Eqs.(3.31)

and(3.32) are given below:

Π∗0,PS
ππ,med(q

2) ≃ ΩPS
ππ,med , (3.33a)

δΠ∗0,PS
ππ,med(q

2) ≃ = ẽ
q2

q0
. (3.33b)

where

ΩPS
ππ,med =

g2π
2π2

[

(

kp E
∗
p + kn E

∗
n

)

− 1

3
M∗2

(

k3p
E∗3

p

+
k3n
E∗3

n

)

− 1

5
M∗2

(

k5p
E∗5

p

+
k5n
E∗5

n

)

−M∗2

(

kp
E∗

p

+
kn
E∗

n

)]

, (3.34a)

ẽ =
g2π
2π2

[

1

3

(

k3p
M∗2

− k3n
M∗2

)]

. (3.34b)
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Thus the total pion self-energy with the tadpole contribution reads

Π
∗(0,±)PS
ππ,total (q2) =

[

Π̃∗PS
ππ,vac(q

2) + Π
∗(0,±)PS
ππ,med (q2)

]

+Πtad(q
2) . (3.35)

3.2.2.1 Dispersion without Dirac sea

In this subsection we use the self-energies of Eq.(3.58) to find the pion dispersion

relations. We obtain the dispersion relations solving the Dyson-Schwinger Eq.(3.14)

which reads
(

q2 −m2
π0,±

)

− Π
∗(0,±)PS
ππ,total (q2) = 0 (3.36)

Here mπ0,± are the masses of π0 and π±. Substituting every thing in Eq.(3.36) and

performing algebraic manipulation and after simplification the dispersion relations

can be cast into the following form:

q20 ≃ m∗2
π0,± + q2. (3.37)

The medium modified masses or effective masses of pions can be presented as

m∗2
π0 ≃ m2

π0 +Πtad + ΩPS
ππ,med , (3.38a)

m∗2
π± ≃

m2
π± + Πtad + ΩPS

ππ,med

1 ∓ δΩPS
ππ,med

, (3.38b)

where,

δΩPS
ππ,med =





ẽ
√

m2
π± +Πtad + ΩPS

ππ,med



 . (3.39)

3.2.2.2 Dispersion with Dirac sea

Solving the Eq.(3.36) and after simplification we obtain the following pion dispersion

relation:

q20 ≃ m∗2
π0,± + q2. (3.40)
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The medium modified masses or effective masses of different charged states of pions

in presence of Dirac sea can be presented as

m∗2
π0 ≃ 1

d̃

[

ΩPS
ππ,total − m2

π0

]

, (3.41a)

m∗2
π± ≃

[

ΩPS
ππ,total −m2

π±

(1 ∓ δΩPS
ππ,total) d̃

]

, (3.41b)

where,

ΩPS
ππ,total = c̃− Πtad − ΩPS

ππ,med, (3.42a)

δΩPS
ππ,total =





ẽ
√

(

ΩPS
ππ,total − m2

π±

)

d̃



 . (3.42b)

In the PS coupling the asymmetry driven mass splitting is of O(k3p(n)/M
∗2). The

terms δΩPS
ππ,total and δΩ

PS
ππ,med are non-vanishing in ANM and responsible for the pion

mass splitting.
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Figure 3.5: Pion dispersions for PS coupling at ρ = 0.17fm−3 and α = 0.2.

Pion dispersions (for PS coupling) at ρ = 0.17fm−3 and α = 0.2 are shown in

Fig.3.5. The dispersions for various charge states of pion without the effect of Dirac

sea are displayed on the left figure and on the right figure the same are displayed

with the contribution of Dirac sea. Without the Dirac sea, dispersions are found

to be different for different charge states of pion while, with Dirac sea contribution,



Chapter 3: Pions in Asymmetric Nuclear Matter 36

 

m
*
π
(M
e
V
)

200

300

400

500

600

ρ/ρ0

1 1.2 1.4 1.6 1.8 2

π0

π+

π-

 

m
*
π
(M
e
V
)

140

150

160

170

180

ρ/ρ0

1 1.2 1.4 1.6 1.8 2

π0

π+

π-

Figure 3.6: Density dependent effective masses of pion at α = 0.2 for PS coupling.

the π+ and π− dispersions are not distinguishable from each other. In Fig.3.6 and

Fig.3.7 we present, the density (ρ) and asymmetry parameter (α) dependent medium

modified masses for the various charged states of pions. In the left figure we present

the results without vacuum correction (Dirac sea). Here we include both the tadpole

and NN -loop.
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Figure 3.7: Asymmetry parameter (α) dependent pion masses at normal nuclear
matter density for PS coupling.

It is evident that the inclusion of (3.4b) diagram removes the tachyonic mode but

gives rise to effective pion masses unrealistically large as discussed by Kaputa [124].

This is shown in the left figure of Fig.3.6. It is found that with the increase of

asymmetry, α, effective mass of π+ decreases and for π− it increases rapidly. But

in presence of Dirac sea, the in-medium masses of π+ and π− are almost degenerate
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Table 3.1: Effective pion masses including the tadpole contribution to the self-energy
in PS coupling. Kapusta corresponds to ref. [124] and BDM corresponds to the
present calculation.

m∗2
π0 m∗2

π±

MFT m2
π0 +Πtad m2

π± +Πtad

Kapusta (m2
π0 +Πtad) + ΩPS

ππ,med

(m2

π±
+ Πtad) + ΩPS

ππ,med

1 ∓ δΩPS
ππ,med

BDM 1
d̃
[c̃ − (m2

π0 + Πtad + ΩPS
ππ,med)]

c̃ − (m2

π±
+ Πtad + ΩPS

ππ,med
)

(1 ∓ δΩPS
ππ,total

) d̃

below α = 0.4 as evident from the (right) Fig.3.7.

It is to be noted that the inclusion of the vacuum part reduces the effective

pion masses and gives reasonable value for the density dependent pion masses in

medium at normal nuclear matter density. The reason for this could be understood

from the Table 3.1 which enumerates expressions for the effective pion masses that

we obtain in three different cases. The top row represents effective pion masses

for the case considered in [121] which gives rise to the tachyonic mode, the second

row corresponds to the case discussed by Kapusta [124] and in the last row we

present results of the present work as by BDM. The presence of the additional term

d̃ somewhat tames the dispersion curve bringing the masses down compared to [124].

This can be noted that at the MFT level Πtad involves sum of the scalar densities ρs,n

and ρs,p. Therefore, in MFT, as expected, the masses are insensitive to asymmetry

parameter α.

3.2.3 Self-energy for PV coupling

First we calculate the Dirac sea contribution to the pion self-energy. After calculat-

ing trace we obtain from Eq.(3.11),

Π∗PV
ππ,vac(q

2) = 8i

(

fπ
mπ

)2∫
d4k

(2π)4

[

M∗2q2 + k · (k + q)q2 − 2(k · q)(k + q) · q
(k2 −M∗2)((k + q)2 −M∗2)

]

.(3.43)
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Direct power counting shows that the term Π∗PV
ππ,vac(q

2) is divergent. The appro-

priate renormalization scheme for the present model has been developed in Ref. [122].

We first consider a simple subtraction scheme described in Appendix B to obtain

Π̃∗PV
ππ,vac(q

2) =
q2

2π2

(

fπ
mπ

)2 [

2M∗2

∫ 1

0

dx ln

(

M∗2 − q2x(1 − x)

M∗2 −m2
πx(1 − x)

)]

. (3.44)

Now Π̃∗PV
ππ,vac(q

2) can be approximated to

Π̃∗PV
ππ,vac(q

2) ≃ c− d q2 . (3.45)

On the other hand borrowing results from [122] one has,

Π̃∗PV
ππ,vac(q

2) ≃ c′ + d′ q2 . (3.46)

Here,

c =

(

fπ√
6 π

)2

, (3.47a)

d =

(

fπ√
6 π mπ

)2

, (3.47b)

c′ =

(

fπ
π

)2 [
4

3
M(M −M∗)

]

, (3.47c)

d′ =

(

fπ
π mπ

)2 [

2M∗2 ln

(

M∗

M

)

q2
]

. (3.47d)

It might be mentioned, although Π̃∗PV
ππ,vac(q

2) are different their effect on the effective

pion masses and corresponding dispersion relations are found to be marginal as we

discuss later. Π∗PV
ππ,vac(q

2) develops the following imaginary part:

Im Π∗PV
ππ,vac(q

2) = −
(

fπ
mπ

)2
[ q

π
2M∗2

√

q2 − 4M∗2
]

θ
(

q2 − 4M∗2
)

. (3.48)

It is observed from Eq.(3.48) that Im Π∗PV
ππ,vac(q

2) is non-vanishing only if q2 > 4M∗2.

Now we proceed to calculate the density dependent (Fermi sea contribution) pion
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self-energy. After calculating trace and performing the k0 integration we obtain

Π∗0,PV
ππ,med(q

2) = −8

(

fπ
mπ

)2 ∫
d3k

(2π)3E∗
APV , (3.49)

Π∗±,PV
ππ,med(q

2) = −8

(

fπ
mπ

)2 ∫
d3k

(2π)3E∗
[APV ∓BPV ]

= Π∗0,PV
ππ,med(q

2)∓ δΠ∗,PV
ππ,med(q

2) , (3.50)

where,

δΠ∗PV
ππ,med(q

2) = −8g2π

∫

d3k

(2π)3E∗
BPV . (3.51)

The superscripts 0 and ± denote the self-energies of π0 and π±. The explicit ex-

pressions for APV and BPV are presented below:

APV =

[

M∗2q4

q4 − 4(k · q)2
]

(θp + θn) , (3.52)

BPV =
1

2

[

1 +
4M∗2q2

q4 − 4(k · q)2
]

(k · q)(θp − θn) . (3.53)

In the long wavelength limit considering collective excitations near the Fermi surface,

Fermi sea contribution to the pion-self energy can be evaluated analytically. In this

case we can neglect the term q4 compared to the term 4(k ·q)2 from the denominator

of APV and BPV in Eqs.(3.52) and (3.53). This is called hard nucleon loop (HNL)

approximation [133]. Explicitly, after a straight forward calculation, we get,

Π∗0,PV
ππ,med(q

2) =
1

2
M∗2

(

fπ
πmπ

)2 [(

ln

∣

∣

∣

∣

1 + vp
1− vp

∣

∣

∣

∣

− c0 ln

∣

∣

∣

∣

c0 + vp
c0 − vp

∣

∣

∣

∣

)]

+
1

2
M∗2

(

fπ
πmπ

)2 [(

ln

∣

∣

∣

∣

1 + vn
1− vn

∣

∣

∣

∣

− c0 ln

∣

∣

∣

∣

c0 + vn
c0 − vn

∣

∣

∣

∣

)]

, (3.54)

δΠ∗PV
ππ,med(q

2) =

(

fπ
πmπ

)2 [
2

3
k3p q0 −

M∗2q2

|q|

(

E∗
p ln

∣

∣

∣

∣

c0 + vp
c0 − vp

∣

∣

∣

∣

− 2M∗

√

c20 − 1
tan−1 kp

√

c20 − 1

c0M∗

)]
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−
(

fπ
πmπ

)2 [
2

3
k3n q0 −

M∗2q2

|q|

(

E∗
n ln

∣

∣

∣

∣

c0 + vn
c0 − vn

∣

∣

∣

∣

− 2M∗

√

c20 − 1
tan−1 kn

√

c20 − 1

c0M∗

)]

. (3.55)

The results of Eqs.(3.54) and (3.55) are approximated to

Π∗0,PV
ππ,med(q

2) ≃ a
q4

q20
+ b q2 , (3.56a)

δΠ∗PV
ππ,med(q

2) ≃ e′ q0 . (3.56b)

where,

a =

(

fπM
∗

π mπ

)2 [
1

3

(

k3P
E∗3

p

+
k3n
E∗3

n

)]

, (3.57a)

b =

(

fπM
∗

π mπ

)2 [
1

5

(

k5P
E∗5

p

+
k5n
E∗5

n

)]

, (3.57b)

e′ =

(

fπ
π mπ M∗

)2 [
2

5

(

k5p − k5n
)

]

. (3.57c)

The total pion self-energy for PV coupling is

Π
∗(0,±)PV
ππ,total (q2) = Π̃∗PV

ππ,vac(q
2) + Π

∗(0,±)PV
ππ,med (q2) . (3.58)

3.2.3.1 Dispersion without Dirac sea

Solving the Dyson-Schwinger Eq.(3.36) replacing Π
∗(0,±)PS
ππ,total (q2) with Π

∗(0,±)PV
ππ,med (q2)

and performing some algebraic manipulation we obtain the algebraic dispersion re-

lations for π0,± without the Dirac sea effect.

q20 ≃ m∗2
π0,± + γππq

2 +

[

γ2ππ
4

+ αππ

]

q4

m∗2
π0,±

, (3.59)

where

αππ =
a

1 − ΩPV
ππ,med

, (3.60a)
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γππ = 1−
ΩPV

ππ,med

1 − ΩPV
ππ,med

+
b

1 − ΩPV
ππ,med

. (3.60b)

and m∗2
π0,± is the effective pion masses without Dirac sea effect:

m∗2
π0 ≃ m2

π0

1 − ΩPV
ππ,med

, (3.61a)

m∗2
π± ≃ m2

π±

1 − (ΩPV
ππ,med ± δΩPV

ππ,med)
, (3.61b)

where,

ΩPV
ππ,med = a+ b , and δΩPV

ππ,med =
e′

mπ±

. (3.62)

3.2.3.2 Dispersion with Dirac sea

The dispersion relations including the effect of Dirac sea can be found by solving

Eq.(3.36) replacing Π
∗(0,±)PS
ππ,total (q2) with Π

∗(0,±)PV
ππ,total (q2). The dispersion relations for

π0,± can be written as,

q20 ≃ m∗2
π0,± +

[

γ′ππ + 2m∗2
π0,±δππ

]

q2 +

[

γ′2ππ
4

+ α′
ππ − δππ

(

m∗2
π0,± − 2γ′ππ

)

]

q4

m∗2
π0,±

.

(3.63)

The effective masses (m∗
π) of different charged states of pion are found from Eq.(3.63)

in the limit |q| = 0.

m∗2
π0 ≃ m2

π0

1 − ΩPV
ππ,total

, (3.64a)

m∗2
π± ≃ m2

π±

1 − (ΩPV
ππ,total ± δΩPV

ππ,med)
. (3.64b)

where,

ΩPV
ππ,total = ΩPV

ππ,med + c , (3.65a)

α′
ππ =

a

1 − ΩPV
ππ,total

, (3.65b)
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δππ =
d

1 − ΩPV
ππ,total

, (3.65c)

γ′ππ = 1−
ΩPV

ππ,total

1 − ΩPV
ππ,total

+
b

1 − ΩPV
ππ,total

+
c

1 − ΩPV
ππ,total

. (3.65d)

This is to be noted that, if one uses Eq.(3.46) instead of Eq.(3.45); m2
π0,± and d will

be replaced by

m2
π0,± −→ m2

π0,± + c′ , and d −→ d′ . (3.66)

and δππ will vanish. Numerically, as mentioned before, Eq.(3.45) and Eq.(3.46) give

results very close to each other.
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Figure 3.8: Pion dispersion relations (PV coupling) without (left) and with (right)
the effect of Dirac sea at ρ = 0.17fm−3 and α = 0.2.

The pion dispersions in ANM for various charge states of pion are presented in

Fig.3.8 for PV coupling. Unlike to the PS coupling, the dispersions for π+ and π−

are found to be clearly distinguishable even with Dirac sea contribution as shown

on right figure.

In Fig.3.9 we show results for the density dependence of effective pion masses for

various charge states at α = 0.2. It is observed that the π− mass increases in matter

while π+ decreases at higher density. The mass splitting is quite significant even at

density ρ & 1.25ρ0. The in-medium masses of π+ and π0 are found to be equal at
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Figure 3.9: Density dependence of effective masses for PV coupling without Dirac
sea (left) and with Dirac sea (right) at α = 0.2.

density ρ & 1.6ρ0. In the right figure we present results with vacuum corrections.

Evidently the effect of vacuum corrections is found to be small.

We also present results of asymmetry parameter dependence effective masses for

different charge states of pion in Fig.3.10 at normal nuclear matter density. The

left and right figures present the effective pion masses without and with vacuum

correction. It can be observed that the asymmetry parameter dependent pion mass

splitting is insensitive to the vacuum correction.
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Figure 3.10: Asymmetry parameter (α) dependent effective pion masses (for PV
coupling) at ρ = 0.17fm−3, without (left) and with (right) vacuum correction.
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Table 3.2: Pion mass shifts in Pb-like nuclei.

mass shift (MeV)
Dirac sea ∆mπ− ∆mπ0 ∆mπ+

without 139.2 120.7 102.0
PS

with 17.41 16.8 17.37

without 6.82 4.95 3.47
PV

with 8.02 6.07 4.6

It should however be mentioned that unlike to the PS coupling, the vacuum

correction part for PV coupling is rather small. For loops involving heavy baryons

it could be quite high. We refer the readers to [134, 135] for detailed discussion.

In present case we have taken only the nucleon-loop in presence of the scalar mean

field. Typical values of the pion mass shifts in ANM for PS and PV couplings at

ρ = 0.17fm−3 and α = 0.2 i. e. for Pb-like nuclei are presented in Table3.2.

3.3 Modern Technique

In the previous sections we have discussed pion propagation in ANM using both

the PS and PV interaction within the framework of non-chiral model. However,

the interactions as represented by Eq.3.1 and Eq.3.6, fail to describe in-medium πN

dynamics as shown in [122]. It was also observed that the chirally symmetric model

(linear) has also various limitations [122]. For example, as mentioned before, it fails

to account for the pion-nucleus dynamics in nuclear matter both in the PS and PV

representations. In fact, it gives too strong pion nucleon interaction in matter which

cannot be adjusted by fixing the s-wave πN interaction in free space even in PV

case. In this context the Dirac vacuum involving baryon loops was found to play a

significant role. If one uses the chiral model and breaks the symmetry explicitly, the

results are found to be very sensitive to the renormalization scheme [122]. In [136]

it was shown that the relativistic chiral models with a light scalar meson appear to

provide an economical marriage of successful relativistic MFT and chiral symmetry.

It, however, fails to reproduce observed properties of finite nuclei, such as spin-orbit
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splittings, shell structure, charge densities and surface energies. Since then, there

has been series of attempts to construct a model which has the virtue of describing

both the properties of nuclear matter and finite nuclei [134, 137–141].

Currently, the non-linear chiral effective field theoretic approach seems to be

quite successful in this respect. It might be recalled here, that, in such a frame-

work, the explicit calculation of the Dirac vacuum is not required, rather, on the

contrary, here, the short distance dynamics are absorbed into the parameters of the

theory adjusted phenomenologically by fitting empirical data [135, 140, 141]. Now

we proceed to calculate the effective pion masses in ANM in this approach.

By retaining only the lowest order terms in the pion fields, one obtains the

following Lagrangian from the chirally invariant Lagrangian [141]:

L = Ψ̄(iγµ∂
µ −M)Ψ + gsΨ̄φsΨ− gωΨ̄γµΦ

µ
ωΨ− gA

fπ
Ψ̄γ5γµ∂

µ~τ · ~ΦπΨ

+
1

2

(

∂µΦs∂
µΦs −m2

sΦ
2
s

)

+
1

2

(

∂µ~Φπ · ∂µ~Φπ −m2
π
~Φ2
)

+
1

2
m2

ωΦωµΦ
µ
ω

− 1

4
GµνG

µν + LNL + δL. (3.67)

The terms LNL and δL contain, respectively the nonlinear terms of the meson sector

and all of the counter terms. The explicit expressions for LNL and δL can be found

in [141]. It is to be noted that the meson self-energy can be found by differentiating

the energy density [141] at the two-loop level with respect to the meson propagator as

indicated in Fig 3.11. One may therefore, identify the FF , FD and DD parts of the

self-energy with the vacuum-fluctuation (V F ), Lamb-shift(LS) and exchange (EX)

contributions to the self-energy respectively. The V F and LS terms are related to

the short-range physics while EX part is related to the long-range physics. The

detailed discussion about this short and long distance separation can be found in

[135,140,141]. The diverging FF part of the self-energy and LS can be expressed as a

sum of terms which already exists in the effective field theoretical Lagrangian and can

(a) (b)

Figure 3.11: Two-loop self-energy diagram.
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be absorbed into the counter terms. The short distance physics, as shown in [141],

while calculating exchange energies, are either removed by field redefinitions or the

coefficients are determined by fitting with the empirical data. The long-range part is

computed explicitly that produce modest corrections to the nuclear binding energy

curve. This can be compensated by a small adjustment of the coupling parameters.

Recently in Ref. [141] the exchange energy contributions of pion has been calculated
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Figure 3.12: Pion mass in medium at different densities and α = 0.2.

within this theoretical framework. We adopt the same parameter set as designated

by MOA in [141] to calculate the π self-energy explicitly. The corresponding results

are presented in Fig.3.12. Here we simply depict the final results as the expressions,

at this order, for the pion self-energy and density dependent masses of π0 and π±

remain same as those of Eq.3.64b except for the coupling parameters. Quantitatively,

it is found that, for the lower density, i.e ρ ∼ ρ0, the effective masses for π− (dotted

curve), π0 (solid curve) and π+ (dashed curve) states are comparable with that of

PV coupling (Fig.3.9), while at higher density the mass splitting is significantly

enhanced. The charged states, i.e. π± show stronger density dependence compared

to PV coupling. We also observe that the density dependence of π0 is rather weak.



Chapter 4
Mixing of Hadrons in ANM

Mixing of hadrons, as we have mentioned in the introduction, is an effect of

symmetry violation of the strong interaction. Neutral mesons with the same spin-

parity but of different isospins can mix at the fundamental level† due to the finite

mass difference between up (u) and (d) quark [142]. At the hadronic level, neutron

(n) - proton (p) mass difference i.e. Mn 6= Mp causes various isospin pure resonant

states like π-η, ρ-ω etc. to mix without violating any conservation principles dictated

by other symmetries. On the other hand, if the ground state contains unequal

number of neutrons and protons i.e. ρn 6= ρp, ground state induced mixing takes

place even in the limit Mn =Mp [143].

Such matter induced mixing was first studied in Ref. [143] and was subsequently

studied in Refs. [129,144–147]. The calculations are mostly confined to the time-like

region where the main motivation is to investigate the role of such matter induced

mixing on the dilepton spectrum observed in heavy ion collisions, pion form factor.

It is also to be noted that such mixing amplitudes, in asymmetric nuclear matter

(ANM), have non-zero contribution even if the quark or nucleon masses are taken

to be equal. Interestingly, such mixing, as we shall show in the next chapter, can

modify the nucleon-nucleon interaction considerably giving rise to charge symmetry

violating (CSV) effects in various observables where medium corrections are relevant.

Here we present the study of π-η and ρ-ω mixing in ANM based on a purely

hadronic model. Such hadronic model has some added advantage. All the parame-

ters like masses, coupling constants etc. are well known in the hadronic description.

Furthermore, hadronic models are relatively successful for describing various nuclear

†
see Appendix A

47
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properties. The main assumption of our calculation is that the mixing is generated

by the NN̄ -loops and the mixing amplitude is driven by the difference between pro-

ton and neutron loop contributions as shown in Fig.4.1. We, in this chapter, neglect

medium modification of the nuclear mass due to scalar and vector mean field (MF)

and, consider both pseudoscalar (PS) and pseudovector (PV) representations for π-η

mixing.

To understand the origin of relative sign between p and n loops, we invoke the

meson-nucleon interaction Lagrangians of one-boson exchange (OBE) model where

the NN interaction is generated via the exchange of various mesons. One may

write the general form of isovector (i) meson-nucleon interaction and isoscalar (j)

meson-nucleon interaction explicitly as

Li NN = Ψ̄pΓiΦiΨp − Ψ̄nΓiΦiΨn, (4.1a)

Lj NN = Ψ̄pΓjΦjΨp + Ψ̄nΓjΦjΨn, (4.1b)

where Ψp (Ψn) is the proton (neutron) wave function, Φi (orΦj) represents the

meson field and Γi (orΓj) denotes the meson-nucleon vertex factors. From the above

Eqs.(4.1a) and (4.1b), it is clear that the isovector mesons like π or ρ couple to p

and n with opposite sign while the isoscalar mesons like η or ω, couple to p and n

with the same sign. This brings in a relative sign between the p and n loops.

Πij,total(q
2) = Π

(p)
ij,total(q

2)− Π
(n)
ij,total(q

2), (4.2)

where Π
(p)
ij,total(q

2) or Π
(n)
ij,total(q

2) is the contribution of total mixing self-energy due

to p-loop or n-loop.

ρ ω ρ ω ρ ω

π η π η π η
=

=

p− loop n− loop(a)

p− loop n− loop(b)

Figure 4.1: The mixing amplitude is generated by the difference between proton and
neutron loops. The crossed blob represents the CSV piece i.e. the mixing of mesons.
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The one-loop contribution to the mixing self-energy reads

iΠ
(N)
ij,total(q

2) =

∫

d4k

(2π)4
Tr [ Γi(q)GN(k)Γj(−q)GN(k+q) ] , (4.3)

where the subscript N stands for nucleon index (i.e. N = p or n), k = (k0,k) and

q = (q0,q) denote the four momenta of the nucleon and meson, respectively. Here

GN denotes in-medium nucleon propagator instead of G∗
N as we use the free nucleon

mass MN instead of mean field modified nucleon massM∗
N . The nucleon propagator

GN consists of a free (or vacuum) part GF
N and a density dependent (or medium)

part GD
N [45]:

GF
N(k) =

k/+MN

k2 −M2
N + iζ

, (4.4a)

GD
N(k) =

iπ

EN
(k/+MN ) δ(k0 − EN)θ(kN − |k|), (4.4b)

where EN =
√

M2
N + k2N is the energy of a nucleon with the Fermi momentum

kN . Substituting the full in-medium nucleon propagator like in previous chapter,

GN = GF
N + GD

N , in Eq.(4.3), one may identify a vacuum part, Π
(N)
ij,vac(q

2) which

involves GF
NG

F
N and a density dependent part, Π

(N)
ij,med(q

2) with the combination of

GF
NG

D
N + GD

NG
F
N + GD

NG
D
N . In the present study, the term proportional to GD

NG
D
N

does not contribute as it vanishes for low energy excitation [11]. Thus the Eq.(4.3)

reduces to

Π
(N)
ij,total(q

2) = Π
(N)
ij,vac(q

2) + Π
(N)
ij,med(q

2). (4.5)

Now explicitly the vacuum and density dependent parts read, respectively,

iΠ
(N)
ij,vac(q

2) =

∫

d4k

(2π)4
Tr
[

Γi(q)G
F
N(k)Γj(−q)GF

N(k+q)
]

, (4.6)

and

iΠ
(N)
ij,med(q

2) =

∫

d4k

(2π)4
Tr
[

Γi(q)G
F
N(k)Γj(−q)GD

N (k+q)
]

+

∫

d4k

(2π)4
Tr
[

Γi(q)G
D
N(k)Γij(−q)GF

N (k+q)
]

. (4.7)
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π η
=

π η

Π
p(n)
πη,vac Π

p(n)
πη,medΠ

p(n)
πη,total

ρ ω
=

ρ ω ρ ω

Π
p(n)
ρω,vac Π

p(n)
ρω,medΠ

p(n)
ρω,total

(a)

(b)

π η

Figure 4.2: Total mixing amplitude contains a vacuum part and a medium part.

4.1 π-η mixing : PS coupling

In this section we discuss π-η mixing considering the pseudo scalar coupling (PS)

of mesons to nucleons to describe πNN and ηNN interactions which are represented

by the following Lagrangians:

LPS
πNN = −igπΨ̄γ5τ ·ΦπΨ, (4.8a)

LPS
ηNN = −igηΨ̄γ5ΦηΨ, (4.8b)

where Ψ and Φ represent the nucleon and meson fields, respectively, and g denotes

the meson-nucleon coupling constants. For PS coupling the vertex factors are Γπ =

−igπγ5 and Γη = −igηγ5.

After calculating the trace, one obtains from Eqs.(4.6) and (4.7), the vacuum

and density-dependent parts of π-η mixing self-energy given by

Π(N)
πη,vac(q

2) = 4igπgη

∫

d4k

(2π)4

[

M2
N − k · (k + q)

(k2 −M2
N )((k + q)2 −M2

N)

]

(4.9)

and

Π
(N)
πη,med(q

2) = −8gπgη

∫ 1

0

d3k

(2π)3EN

[

(k · q)2
q4 − 4(k · q)2

]

θ(kN − |k|). (4.10)

Eq.(4.10) is obtained after the k0 integration. From the dimensional counting it is

found that the integral of Eq.(4.9) is divergent. We use dimensional regularization
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[130–132] to isolate the singularities in Eq.(4.9) which reduces to [148]:

Π(N)
πη,vac(q

2) =
gπgη
4π2

[

q2

3
+

(

M2
N − q2

2

)(

1 +
1

ǫ
− γE + ln(4πµ2)

)

−
∫ 1

0

dx[M2
N − 3q2x(1− x)] ln(M2

N − q2x(1− x))

]

. (4.11)

In Eq.(4.11) µ is an arbitrary scale parameter, γE is the Euler-Mascheroni constant

and ǫ = 2 − D/2, where D stands for the dimension of the integral. Notice, ǫ in

Eq.(4.11) contains the singularity and it diverges as D → 4. The divergences of

Eq.(4.11) can be removed by adding appropriate counter terms [122]. However, in

the present calculation we use subtraction method to remove the these divergences.

It is clear from Eq.(4.11) that unlike ρ-ω mixing amplitude, as we shall see in the

subsection 4.3, the singularities cannot be removed completely by simply subtracting

the neutron loop contribution from the proton loop contribution. This is because of

the singular term proportional to the mass term i.e. MN/ǫ. But one can eliminate

this singular term by subtracting Π
(N)
πη,vac(q2 = 0) from Π

(N)
πη,vac(q2) which yields

Π̂(N)
πη,vac(q

2) = Π(N)
πη,vac(q

2)− Π(N)
πη,vac(q

2 = 0)

=
gπgη
4π2

[

q2

3
+M2

N lnM2
N − q2

2

(

1 +
1

ǫ
− γE + ln(4πµ2)

)

−
∫ 1

0

dx[M2
N − 3q2x(1− x)] ln

(

M2
N − q2x(1− x)

)

]

. (4.12)

Note that Π̂
(N)
πη,vac(q2), however, is not finite but the divergent part proportional to

the mass term has been removed. Now one can easily obtain finite π-η mixing

amplitude in vacuum by subtracting Π̂
(n)
πη,vac(q2) from Π̂

(p)
πη,vac(q2).

ΠPS
πη,vac(q

2) =
gπgη
4π2

[

q2 ln

(

Mp

Mn

)

+ q
√

4M2
p − q2 tan−1

(

q
√

4M2
p − q2

)

− q
√

4M2
n−q2 tan−1

(

q
√

4M2
n−q2

)]

. (4.13)

Eq.(4.13) represents the q2 dependent vacuum part of π-η mixing amplitude which

has no divergences and is finite. We obtain ΠPS
vac(q

2 = m2
η) = −1197 MeV−2, while

experimentally it is found that ΠPS
πη,vac(q

2 = m2
η) = −4200 MeV−2 [148].
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Substituting q0 = 0 in Eq.(4.13) to obtain three momentum, q, dependent mixing

amplitude ΠPS
πη,vac(q

2). We have expanded the mixing amplitude ΠPS
πη,vac(q

2) in terms

of q2/M2
N and keeping the lowest order we obtain

ΠPS
πη,vac(q

2) ≃ −a1q2, (4.14)

where

a1 =
gπgη
4π2

ln

(

Mp

Mn

)

. (4.15)

If Mp = Mn, mixing amplitude in vacuum i.e. ΠPS
πη,vac(q

2) vanishes. Now we

calculate the density dependent part of the π-η mixing self-energy. Substituting

EN ≃MN and q0 = 0, and carried out the integration Eq.(4.10) reads

Π
(N)
πη,med(q

2) =
gπgη
π2MN

[

k3N
3

− q2kN
8

− q

8

(

k2N − q2

4

)

ln

(

q+ 2kN
q− 2kN

)]

. (4.16)

The above Eq.(4.16) represents three momentum dependent medium part of the π-

η mixing self-energy. After suitable expansion Eq.(4.16)in terms of q

kN
, the mixing

amplitude, as mentioned earlier, generated by the difference between contributions

from the proton and neutron loops reduces to

ΠPS
πη,med(q

2) ≃ a′0 − a′1q
2, (4.17)

where the leading order contribution has been considered and

a′0 =
gπgη
3π2

(

k3p
Mp

− k3n
Mn

)

, (4.18a)

a′1 =
gπgη
4π2

(

kp
Mp

− kn
Mn

)

. (4.18b)

From Eq.(4.18), it is clear that the medium part of π-η mixing amplitude given in

Eq.(4.17) does not vanish in ANM (kp 6= kn) even if Mp = Mn, while the vacuum

part vanishes as evident from Eqs.(4.14) and (4.15).

4.2 π-η mixing : PV coupling

In this section we consider pseudo vector (PV) coupling for meson-nucleon interac-

tion [45, 122]. The pseudo vector representation of πNN and ηNN interactions are
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given by the following effective Lagrangians:

LPV
πNN = − gπ

2MN

Ψ̄γ5γ
µ∂µτ ·ΦπΨ, (4.19a)

LPV
ηNN = − gη

2MN

Ψ̄γ5γ
µ∂µΦηΨ, (4.19b)

where Ψ, Φ and g have been defined in the previous subsection. τ is the isospin

vector. The factor fπ
mπ

( fη
mη

) has been replaced by gπ
2MN

( gη
2MN

). The vertex factors

are Γπ = igπγ5γ
µqµ/2MN and Γη = igηγ5γ

µqµ/2MN . The vacuum part and density

dependent part of π-η mixing self-energy for PV coupling are given by

Π(N)
πη,vac(q

2) = 4i

(

gπ
2MN

)(

gη
2MN

)
∫

d4k

(2π)4

×
[

q2(M2
N − k · (k + q))− 2q · (k + q)(k · q)
(k2 −M2

N)((k + q)2 −M2
N )

]

. (4.20)

and

Π
(N)
πη,med(q

2) = −8

(

gπ
2MN

)(

gη
2MN

)
∫

d3k

(2π)3EN

[

q2 M2
N

q4 − 4(k · q)2
]

θ(kN − |q|). (4.21)

Note that the integral Eq.(4.21) is divergent. We use dimensional regularization,

similar to PS coupling, to isolate the singularities.

Π(N)
πη,vac(q

2) =
gπgη
8π2

[

− 1

ǫ
+ γE − ln(4πµ2)+

∫ 1

0

dx ln(M2
N − q2x(1− x))

]

q2, (4.22)

where ǫ, µ and γE have been discussed earlier. It is important to note that unlike PS

coupling, there is no divergent term in Eq.(4.22) proportional to the nuclear mass

MN . Therefore, like ρ-ω mixing [149], simple subtraction of the n-loop contribution

from the p-loop contribution, will remove all the divergent parts yielding Π
(N)
πη,vac(q2)

finite which reads

ΠPV
πη,vac(q

2) =
gπgη
4π2

[

q2 ln

(

Mp

Mn

)

+ q
√

4M2
p − q2 tan−1

(

q
√

4M2
p − q2

)

− q
√

4M2
n − q2 tan−1

(

q
√

4M2
n − q2

)]

. (4.23)

It is to be noted from Eq.(4.23) and Eq.(4.13), the vacuum parts of the mixing
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amplitude for both PS and PV couplings are identical at the one-loop level. Similar

to the PS coupling, the leading order vacuum contribution of π-η mixing amplitude

is obtained

ΠPV
πη,vac(q

2) ≃ −a1q2. (4.24)

The three momentum dependent medium part of π-η mixing self-energy can now be

obtained from Eq.(4.21) substituting EN ≃MN and q0 = 0.

Π
(N)
πη,med(q

2) = − gπgη
8π2MN

[

q2kN + q

(

k2N − q2

4

)

ln

(

q + 2kN
q− 2kN

)]

. (4.25)

Similarly, the leading order medium contribution of the mixing amplitude reads

ΠPV
πη,med(q

2) ≃ −a′1q2 . (4.26)

Notice, the leading order density dependent mixing amplitude in PV coupling differs

with that of PS coupling only by the term a′0 given by Eq.(4.18a). Thus

ΠPS
πη,total(q

2) = a′0 +ΠPV
πη,total(q

2) . (4.27)

4.3 ρ-ω mixing

In this section we revisit the problem of ρ-ω mixing driven by the asymmetry of

the nuclear matter. To calculate the ρ-ω mixing amplitude we use the following

meson-nucleon interaction Lagrangians:

LωNN = gωΨ̄γµΦ
µ
ωΨ (4.28a)

LρNN = gρΨ̄

[

γµ +
Cρ

2M
σµν∂

µ

]

τ ·Φν
ρΨ (4.28b)

where Ψ and Φ denote nucleon and meson fields, respectively, and Cρ = fρ/gρ is the

ratio of vector to tensor couplings. The tensor coupling of ω is not included in the

present calculation because it is negligible in comparison to the vector coupling. All

the parameters used in the present calculation are taken from those given by the

Bonn group [80]. In this case the vertex factors are:
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Γµ
ω = gωγ

µ and Γµ
ρ = gρ

[

γµ − Cρ

2M
iσµνq

ν

]

. (4.29)

Once the interaction Lagrangians are given, one may proceed to to calculate the

polarization tensor of ρ-ω mixing. The total polarization tensor,

Π
µν,(N)
ρω,total(q

2) = Πµν,(N)
ρω,vac (q

2) + Π
µν,(N)
ρω,med(q

2) (4.30)

where Π
µν,(N)
ρω,vac (q2) and Π

µν,(N)
ρω,med(q

2) represent the vacuum and density dependent parts

of the polarization tensor of ρ-ω mixing.

iΠµν,(N)
ρω,vac (q

2) =

∫

d4k

(2π)4
Tr
[

Γµ
ω(q)G

F
N(k)Γ

ν
ρ(−q)GF

N(k + q)
]

, (4.31)

and

iΠ
µν(N)
ρω,med(q

2) =

∫

d4k

(2π)4
Tr
[

Γµ
ω(q)G

F
N(k)Γ

ν
ρ(−q)GD

N (k + q)
]

+

∫

d4k

(2π)4
Tr
[

Γµ
ω(q)G

D
N(k)Γ

ν
ρ(−q)GF

N (k + q)
]

. (4.32)

Since, ρ and ω being the vector mesons, their propagation through matter should

have longitudinal (L) and transverse (T ) components depending upon whether their

spins are parallel or perpendicular to the direction of propagation. However, in the

static limit i.e. q = 0, both the longitudinal and transverse components coincide.

We choose z-axis as the direction of propagation so that one may define the longi-

tudinal and transverse polarization:

Π
L,(N)
ρω,total = Π

33,(N)
ρω,total − Π

00,(N)
ρω,total (4.33a)

Π
T,(N)
ρω,total = Π

11,(N)
ρω,total = Π

22,(N)
ρω,total. (4.33b)

Note that the polarization tensor Π
µν(N)
ρω,total(q

2) can be expressed as the sum of longi-

tudinal component, Π
L,(N)
ρω,total(q

2), and transverse component, Π
T,(N)
ρω,total(q

2):

Π
µν,(N)
ρω,total(q

2) = Π
L,(N)
ρω,total(q

2)Aµν +Π
T,(N)
ρω,total(q

2)Bµν , (4.34)

where Aµν and Bµν are the longitudinal and transverse projection operators [150].

We, in the present calculation, use the average of longitudinal and transverse com-
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ponents of the polarization tensor instead of Π
L,(N)
ρω,total and Π

T,(N)
ρω,total. The average

mixing amplitude is denoted by

Π̄
(N)
ρ,ω,total(q

2) =
1

3

[

Π
L,(N)
ρω,total(q

2) + 2Π
T,(N)
ρω,total(q

2)
]

= Π̄(N)
ρω,vac(q

2) + Π̄
(N)
ρω,med(q

2). (4.35)

In Eq.(4.35), Π̄
(N)
ρω,vac(q2) and Π̄

(N)
ρω,med(q

2) denote the average ρ-ω mixing amplitudes

of vacuum and density dependent parts, respectively.

Now Eqs.(4.31) and (4.32) can be used to calculate various components of the

polarization tensor. The polarization tensor contains two parts one corresponding

to vector-vector (vv) and other the tensor-vector (tv) interactions. This is because

of the vertex factors shown in Eq.(4.29). Hence the polarization tensor reads

Πµν,(N)
ρω,vac (q

2) =
[

Πvv,(N)
ρω,vac(q

2) + Πtv,(N)
ρω,vac(q

2)
]

Qµν , (4.36a)

Π
µν,(N)
ρω,med(q

2) =
[

Π
µν,vv(N)
ρω,med (q2) + Π

µν,tv(N)
ρω,med (q2)

]

. (4.36b)

After evaluating the trace, one may find the vv and tv terms:

Πvv,(N)
ρω,vac(q

2) = 8igρgω

∫ 1

0

dx

∫

d4k

(2π)4

[

q2 x(1− x)

(k2 −M2
N + q2 x(1− x))

2

]

, (4.37a)

Πtv,(N)
ρω,vac(q

2) = 4igρgω

(

Cρ

2M

)
∫ 1

0

dx

∫

d4k

(2π)4

[

q2MN

(k2 −M2
N + q2 x(1− x))

2

]

, (4.37b)

and

Π
µν,vv(N)
ρω,med (q2) = 16gρgω

∫

d3k

(2π)32EN

[

q2Kµν − (q · k)2Qµν

q4 − 4(q · k)2
]

θ(kN − |k|) , (4.38a)

Π
µν,tv(N)
ρω,med (q2) = 4ρωCρ

∫

d3k

(2π)32EN

[

q4Qµν

q4 − 4(q · k)2
]

θ(kN − |k|) , (4.38b)

To derive Eqs.(4.37a) and (4.37b) we use Feynman parametrization. Here

Qµν = (−gµν + qµqν

q2
) , (4.39a)
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Kµν =

(

kµ − (q · k)q
µ

q2

)(

kν − (q · k)q
ν

q2

)

. (4.39b)

yielding,

qµQ
µν = qνQ

µν = 0 and qµK
µν = qνK

µν = 0 . (4.40)

It is clear from Eqs.(4.37)-(4.38), both Π
µν,(N)
ρω,vac (q2) and Π

µν,(N)
ρω,med(q

2) obey the current

conservation:

qµ Πµν,(N)
ρω,vac (q

2) = qν Πµν,(N)
ρω,vac (q

2) = 0, (4.41a)

qµ Π
µν,(N)
ρω,med(q

2) = qν Π
µν,(N)
ρω,med(q

2) = 0, (4.41b)

The dimensional counting shows that both the integrals given in Eqs.(4.37a) and

(4.37b) are ultraviolet divergent and dimensional regularization [130–132] is used to

isolate the divergent parts which are found to be

Πvv,(N)
ρω,vac(q

2) = −gρgω
2π2

[

1

6ǫ
− γE

6
−
∫ 1

0

dx(1− x)x ln

(

M2
N − x(1− x)q2

Λ2

)]

q2, (4.42a)

Πtv,(N)
ρω,vac(q

2) = −gρgω
8π2

Cρ

[

1

ǫ
− γE −

∫ 1

0

dx ln

(

M2
N − x(1− x)q2

Λ2

)]

q2, (4.42b)

where Λ is an arbitrary renormalization constant; γE is the Euler-Mascheroni con-

stant. ǫ = 2 − D/2 contains the singularity; ǫ → 0 as D → 4. Since the mixing

amplitude is generated by the difference between the proton and neutron loop con-

tributions, the divergent parts cancel out yielding the vv and tv parts finite.

Πvv
ρω,vac(q

2) = Πvv(p)
ρω,vac(q

2)−Πvv(n)
ρω,vac(q

2)

=
gρgω
2π2

∫ 1

0

dx(1− x)x ln

(

M2
p − x(1− x)q2

M2
n − x(1− x)q2

)

q2, (4.43a)

Πtv
ρω,vac(q

2) = Πtv(p)
ρω,vac(q

2)−Πtv(n)
ρω,vac(q

2)

=
gρgωCρ

8π2

∫ 1

0

dx ln

(

M2
p − x(1− x)q2

M2
n − x(1− x)q2

)

q2, (4.43b)

Thus the full vacuum part of the polarization tensor reduces to

Πµν
ρω,vac(q

2) = Qµν
[

Πvv
ρω,vac(q

2) + Πtv
ρω,vac(q

2)
]

= QµνΠρω,vac(q
2), (4.44)
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where

Πρω,vac(q
2) =

gρgω
2π2

q2
∫ 1

0

dx

(

(1− x)x+
Cρ

4

)

ln

(

M2
p − x(1− x)q2

M2
n − x(1− x)q2

)

. (4.45)

From the above Eqs.(4.44) and (4.45), one may now calculate the longitudinal com-

ponent, ΠL
ρω,vac(q

2), and the transverse component, ΠT
ρω,vac(q

2), of the vacuum mixing

amplitude. Since, ΠL
ρω,vac(q

2) = ΠT
ρω,vac(q

2), the average vacuum mixing amplitude

is found to be

Π̄ρω,vac(q
2) =

1

3

[

ΠL
ρω,vac(q

2) + 2ΠT
ρω,vac(q

2)
]

= Πρω,vac(q
2). (4.46)

Thus, Eq.(4.45) represents the four-momentum dependent vacuum part of the ρ-ω

mixing amplitude. We obtain Πρω,vac(q
2 = m2

ω) = −4314 MeV2 and Πρω,vac(q
2 =

m2
ρ) = −4152 MeV2. These are within the limit of experimentally extracted values

(∼ −4520± 600 MeV2) [151].

The three momentum dependent vacuum part of ρ-ω mixing amplitude can be

obtained from Eq.(4.44) substituting q0 = 0. Keeping the lowest order terms in q2,

we find

Πρω,vac(q
2) ≃ −b1 q2, (4.47)

where

b1 =
gρgω
12π2

(2 + 3Cρ) ln

(

Mp

Mn

)

. (4.48)

From Eq.(4.48), it is observed that the vacuum mixing amplitude Πρω,vac(q
2) van-

ishes if Mp =Mn.

To calculate density dependent mixing amplitude from Eq.(4.38a) and (4.38a)

we consider EN ≈MN . In the limit q0 → 0, one finds following expressions:

Π
00,vv(N)
ρω,med (q2) = − gρgω

4π2MN

[

4

3
k3N − 1

2
kNq

2 + 2kNM
2
N

−
(

q3

8
− qk2N

2
− qM2

N

2
+ 2

M2
Nk

2
N

q

)

ln

(

q− 2kN
q+ 2kN

)]

, (4.49a)

Π
00,tv(N)
ρω,med (q2) = −gρgωCρ

8π2MN

[

q2kN +

(

q3

4
− qk2N

)

ln

(

q− 2kN
q+ 2kN

)]

, (4.49b)
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and

Π
vv,11(N)
ρω,med (q2) =

gρgω
4π2MN

[

1

3
k3N − 3

8
q2kN −

(

3

32
q3 +

k4N
2q

+
q2kN
4

)

ln

(

q− 2kN
q+ 2kN

)]

,

(4.50a)

Π
tv,11(N)
ρω,med (q2) =

gρgωCρ

8π2MN

[

q2kN +

(

q3

4
− qk2N

)

ln

(

q− 2kN
q+ 2kN

)]

. (4.50b)

Note that the terms in the Eqs.(4.49a) and (4.50a) arise from the vector-vector

interaction while the terms in the Eqs.(4.49b) and (4.50b) arise from tensor-vector

interaction. The 33 component of the density dependent polarization tensor vanishes

i.e. Π
33,(N)
ρω,med(q

2) = 0. Now

Π̄ρω,med(q
2) =

1

3

[

ΠL
ρω,med(q

2) + 2ΠT
ρω,med(q

2)
]

, (4.51)

where

ΠL
ρω,med(q

2) = −
[

Π
00,(p)
ρω,med(q

2)− Π
00,(n)
ρω,med(q

2)
]

, (4.52a)

ΠT
ρω,med(q

2) = −
[

Π
11,(p)
ρω,med(q

2)− Π
11,(n)
ρω,med(q

2)
]

. (4.52b)

With the suitable expansion of Eqs.(4.49) and (4.50) in terms of |q|/kp(n) and keeping

O(q2/k2p(n)) terms we get

Π̄ρω,med(q
2) ≃ b′0 − b′1 q2, (4.53)

where

b′0 =
gρgω
12π2

[

3

(

k3p
MP

− k3n
Mn

)

+ 4(kpMp − knMn)

]

, (4.54a)

b′1 =
gρgω
12π2

[

3(1− Cρ)

(

kp
Mp

− kn
Mn

)

+
1

3

(

Mp

kp
− Mn

kn

)]

. (4.54b)

Clearly, Π̄ρω,med(q
2) is three momentum dependent medium part of ρ-ω mixing and

it vanishes in SNM if Mn =Mp, but it is non-vanishing in ANM.
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The ratio of vacuum part of ρ-ω mixing amplitude to that of π-η mixing ampli-

tude is found to be

Π̄ρω,vac(q
2)

ΠPS
πη,vac(q

2)
=

(

gρgω
gπgη

)[

2

3
+ Cρ

]

= 3.476. (4.55)

In Fig.4.3 three momentum dependent mixing amplitudes at normal nuclear

matter density are presented. On the left panel π-η mixing amplitudes are shown

and ρ-ω mixing amplitude on the right panel. The medium part of the mixing

amplitude for PS coupling (solid curve) is found to be negative compared to that of

PV coupling (dashed curve) for the momentum q . 500 MeV and both are positive

for q > 500. The magnitude of the medium part for PV coupling is found to be

larger compared to that for PS coupling. Clearly, the q2 dependent medium part of

ρ-ω mixing amplitude is negative compared to that of π-η mixing for PV coupling.
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Figure 4.3: Three momentum dependent mixing amplitudes normal nuclear matter
density and at α = 0.2.



Chapter 5
CSV Potential in ANM

The study of charge symmetry violation (CSV) in nucleon-nucleon (NN) inter-

action is an important area of research in nuclear physics. Because the small but

observable effects of CSV, as discussed earlier, might provide significant insight into

the dynamics of isospin symmetry breaking in the NN interactions.

Experimentally CSV can be observed at various levels [152–158]. For instance,

in NN interaction, the effect of CSV is traditionally inferred from the difference

of the pp and nn scattering lengths in the 1S0 state. The most recent scattering

data [88, 159, 160] observes that the amount of CSV in the 1S0 state is ∆aCSV =

aNpp − aNnn = 1.6 ± 0.6 fm, where the superscript N indicates the ‘nuclear’ effect

obtained after the electromagnetic (EM) corrections. Other convincing evidence

of CSV NN interaction comes from the binding energy difference of mirror nuclei

which is known as Okamoto-Nolen -Schifer (ONS) anomaly [161–163]. The modern

manifestation of CSV includes difference of neutron-proton form factors, hadronic

correction to g − 2 [164] and the observation of the decay of Ψ′(3686) → (J/Ψ)π0

etc. [164].

The charge symmetry phenomena giving rise to neutron-proton mass splitting

causes mixing of pure isospin states of various mesons like π-η or ρ-ω as we have

discussed in the last chapter. These issues had although been addressed earlier,

had some ingredient missing while constructing the vacuum level CSV potentials.

Most of the earlier calculations performed to construct CSV potential considered

the on-shell [165] or constant ρ-ω mixing amplitude [151], which are claimed to be

successful in explaining various CSV observables [151, 166]. This success has been

called into question [149,167] on the ground of the use of on-shell mixing amplitude

61
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Figure 5.1: Feynman Diagrams for CSV potential due to π-η mixing (a) and ρ-
ω mixing (b). The crossed blobs represent symmetry breaking piece. Nucleons are
indicated by the solid lines and dashed and wavy lines represent mesons.

for the construction of CSV potential.

First in [149] and then in [142, 168–171], it has been shown that the ρ-ω mixing

has strong momentum dependence which even changes its sign as one moves away

from the ρ (or ω) pole to the space-like region which is relevant for the construction

of the CSV potential. Therefore inclusion of off-shell corrections are necessary for

the calculation of CSV potential. In this chapter we construct CSV NN potential

in ANM which might be important to calculate various CSV observables.

5.1 CSV potential

The construction of CSV potential involves the evaluation of NN scattering dia-

grams with the intermediate states that include mixing of various isospin states

such as π-η and ρ-ω mesons. The relevant Feynman diagrams for the construction

of two-body CSV potential have been shown in Fig.5.1 where the crossed blobs

represent the CSV pieces in ANM i.e. the mixing of isovector-isoscalar mesons in

ANM. The mixing is assumed to be generated by the NN̄ loops. We will use the

three momentum dependent mixing amplitudes constructed in the previous chap-

ter to construct the CSV nucleon-nucleon potential in ANM. We start with the
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nucleon-nucleon scattering amplitudes obtained from the Feynman diagrams shown

in Fig.5.1:

MNN
ij (q2) = [ūN(p3)τ3(1)Γi(q)uN(p1)] ∆i(q

2)Πij(q
2)∆j(q

2) [ūN(p4)Γj(−q)uN(p2)]
+ [ūN(p3)Γj(q)uN(p1)] ∆j(q

2)Πij(q
2)∆i(q

2) [ūN(p4)τ3(2)Γi(−q)uN(p2)].
(5.1)

where i denotes π, ρmesons and j denotes η, ω mesons. uN ’s represent Dirac spinors,

pk, (k = 1 − 4) and q are the four momenta of nucleons and mesons, respectively.

τ3(1) and τ3(2) are isospin operators at vertices ‘1’ and ‘2’ (see Fig.5.1). The vertex

factors Γi(q) (or Γj(q)) can be found in chapter 4 (see 4.1, 4.2 and 4.3). The meson

propagators ∆i(q
2) (or ∆j(q

2)) are given by

∆π(η)(q
2) =

1

q2 −m2
π(η)

, (5.2a)

∆µν
ρ(ω)(q

2) =
gµgν − qµqν/q2

q2 −m2
ρ(ω)

. (5.2b)

Eq.(5.1) in the limit q0 −→ 0 leads to the CSV potential in momentum space

V NN
ij (q2) i.e

MNN
ij (q0 = 0) −→ V NN

ij (q2). (5.3)

Since the mixing amplitudes Πij(q
2) contain a vacuum part and a medium part,

the momentum space CSV potentials, therefore, contain a medium contribution,

V NN
ij,vac(q

2), together with the usual vacuum contribution, V NN
ij,med(q

2).

V NN
ij,total(q

2) = V NN
ij,vac(q

2) + V NN
ij,med(q

2) (5.4)

To derive the potential in momentum space, it is customary to expand the relativistic

energy EN of the Dirac spinor’s in powers of q2 and P2. Here, P = 1
2
(p2 + p4) =

−1
2
(p1 + p3) and is the average three momentum of the nucleon and the three

momentum transfer is denoted by q = (p1 − p3) = (p4 − p2). Keeping the lowest

orders in q2/M2
N and P2/M2

N , one obtains EN ≃ MN + P2/2MN + q2/8MN . Thus
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the Dirac spinor’s reads

uN(p1) ≃
(

1− P2

8M2
N

− q2

32M2
N

)

(

1
σ1·(P+q/2)

2MN

)

, (5.5)

where σ1(2) is the nucleon spin. The relevant expressions which will be needed to

construct the momentum space potential are the following:

ūN(p3)γ
0uN(p1) ≃ 1 +

[

P2

4M2
N

− q2

16M2
N

+ i
σ1 · (q×P)

4M2
N

]

, (5.6a)

ūN(p3)γuN(p1) ≃
[

σ1

(

σ1 · p1

2MN

)

+

(

σ1 · p3

2MN

)

σ1

]

, (5.6b)

ūN(p4)σl0q
luN(p2) ≃ i

(

q2

2M2
N

)

, (5.6c)

ūN(p4)σlkq
luN(p2) ≃ − (σ2 × q)k , where (l, k) = 1, 2, 3. (5.6d)

The potential in coordinate space is obtained by Fourier transformation of the mo-

mentum space potential.

V NN
ij,total(r) =

1

(2π)3

∫

V NN
ij,total(q

2) e−iq·r d3q. (5.7)

5.1.1 CSV potential due to π-η mixing

First we construct the CSV potential in momentum space for π-η mixing considering

pseudo scalar (PS) coupling of πNN and ηNN interactions. The three momentum

dependent mixing amplitudes (see chapter 4) are

ΠPS
πη,vac(q

2) = −a1q2, (5.8a)

ΠPS
πη,med(q

2) = a′0 − a′1q
2 (5.8b)

where

a1 =
gπgη
4π2

ln

(

Mp

Mn

)

, (5.9a)

a′0 =
gπgη
3π2

(

k3p
Mp

− k3n
Mn

)

, (5.9b)
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a′1 =
gπgη
4π2

(

kp
Mp

− kn
Mn

)

. (5.9c)

After a straight forward calculation on obtains the momentum space CSV potential

given by

V NN,PS
πη,total (q

2) = T+
3

(

gπgη
4M2

N

)

[

ΠPS
πη,vac(q

2)

(q2 +m2
π)(q

2 +m2
η)

+
ΠPS

πη,med(q
2)

(q2 +m2
π)(q

2 +m2
η)

]

×
[

1− q2

8M2
N

− P2

2M2
N

]

(σ1 · q)(σ2 · q), (5.10)

where T+
3 = τ3(1) + τ3(2). It is evident from Eq.(5.10) presents CSV class (III)

potential in momentum space [148,149,164]. Note that the terms within the square

bracket are the contributions coming from the external nucleon legs because of the

expansion of relativistic nucleon energy EN in the Dirac spinors as discussed in

section 5.1.1. This expansion is important as it contains nucleon mass MN , which

is also a source of CSV.

V NN,PS
πη,vac (q2) = − T+

3

(

gπgη
4M2

N

)

a1 q2

(q2 +m2
π)(q

2 +m2
η)
(σ1 · q)(σ2 · q)

− T+
3

(

gπgη
4M2

N

)

a1 q2

(q2 +m2
π)(q

2 +m2
η)

(

− q2

8M2
N

)

(σ1 · q)(σ2 · q). (5.11)

In Eq.(5.11) the − q2

8M2
N

dependent term is the correction over the central part due to

the contribution of the external nucleon legs. Notice that we drop the term 3P2/2M2
N

from Eq.(5.11) as this term is not important in the present context. However, it

should be noted that to fit the 1S0 and 3P2 phase shifts simultaneously this term is

necessary as P2 gives the operator ∇2
R in coordinate space. The usual vacuum CSV

potential in momentum space reads

V NN,PS
πη,med (q2) = T+

3

(

gπgη
4M2

N

)

a′0 − a′1 q2

(q2 +m2
π)(q

2 +m2
η)
(σ1 · q)(σ2 · q)

+ T+
3

(

gπgη
4M2

N

)

a′0 − a′1 q2

(q2 +m2
π)(q

2 +m2
η)

(

− q2

8M2
N

)

(σ1 · q)(σ2 · q). (5.12)

Eq.(5.12) represents the purely density dependent CSV potential in momentum

space. It is important to note that in the limit Mp = Mn vacuum CSV potential

does not exists as a1 = 0, but the density dependent part does not vanish in ANM.
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Figure 5.2: CSV potential in momentum space for π-η mixing.

Fig.5.2 shows the vacuum CSV potential (for 1S0 state) in momentum space. It is

observed that the potential is positive for on-shell mixing amplitude and is negative

for off-shell mixing amplitude (left). The magnitude of the potential is found to be

large for on-shell mixing amplitude compared to that for off-shell mixing amplitude

in the long range region. The figure in the right panel shows the effect of form

factor.

Now the potential in coordinate space can be easily obtained following Eq.(5.7).

First we present the potential in coordinate space with the on-shell mixing amplitude

given by

V NN,PS
πη,vac (r) = − T+

3

(

gπgη
48π M2

N

)

ΠPS
πη,vac(q

2 = m2
η)

×
[(

m3
π U(xπ)−m3

η U(xη)

m2
η −m2

π

)

+
1

8M2
N

(

m5
π U(xπ)−m5

η U(xη)

m2
η −m2

π

)]

(5.13)

Clearly the second term within the square bracket of Eq.(5.13) is the correction term

due external nucleon legs and the first term is the central part of the potential. Here

U(xi) = Y0(xi)(σ1 · σ2) + S12(r̂)Y2(xi) , (5.14a)

Y2(xi) =

(

1 +
3

xi
+

3

x2i

)

Y0(xi) , (5.14b)

S12(r̂) = 3(σ1 · r̂)(σ2 · r̂)− (σ1 · σ2) , (5.14c)

with xi = mir, i = π, η and Y0(xi) = e−xi/xi. Now the CSV potential in coordinate
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space with the three momentum dependent mixing amplitude reads

V NN,PS
πη,vac (r) = − T+

3

(

gπgη
48πM2

N

)[

a1

(

m5
πU(xπ)−m5

ηU(xη)

m2
η −m2

π

)]

, (5.15a)

V NN,PS
πη,med (r) = − T+

3

(

gπgη
48πM2

N

)[

a′0

(

m3
πU(xπ)−m3

ηU(xη)

m2
η −m2

π

)

+

(

a′0
8M2

N

+ a′1

)(

m5
πU(xπ)−m5

ηU(xη)

m2
η −m2

π

)]

. (5.15b)

Since mesons and nucleons are not point particles and they have internal structures

one needs to incorporate vertex corrections which, in principle, can be calculated

using renormalizable models based on hadronic degrees of freedom. In the present

calculation following phenomenological form factors have been used to incorporate

the vertex corrections,

gi(q
2) → gi

(

Λ2
i −m2

i

Λ2
i + q2

)

, i = π, η. (5.16)

Here Λi is the cut-off parameter. In fact, form factors were originally introduced

in the meson theory in a purely ad hoc manner. Now it is a theoretically well-

established concept [172]. With the inclusion of form factors Eq.(5.13) reduces to

V NN,PS
πη,vac (r) = − T+

3

(

gπgη
48π M2

N

)

ΠPS
πη,vac(q

2 = m2
η)

×
[{(

aπ m
3
π U(xπ)− aη m

3
η U(xη)

m2
η −m2

π

)

+
1

8M2
N

(

aπ m
5
π U(xπ)− aη m

5
η U(xη)

m2
η −m2

π

)}

− λπη

{(

bπ m
3
π U(Xπ)− bη m

3
η U(Xη)

m2
η −m2

π

)

+
1

8M2
N

(

bπ m
5
π U(Xπ)− bη m

5
η U(Xη)

m2
η −m2

π

)}]

, (5.17)

where

aπ =

(

Λ2
η −m2

η

Λ2
η −m2

π

)

, (5.18a)
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bπ =

(

Λ2
η −m2

η

m2
η − Λ2

π

)

, (5.18b)

λπη =

(

m2
π −m2

η

Λ2
π − Λ2

η

)

. (5.18c)

and Xi = Λir. Note that aη and bη can be found by replacing Λη → Λπ, mη → mπ

and mπ → mη in Eq.(5.18a) and Eq.(5.18b), respectively.

The CSV potential with three momentum dependent mixing amplitude and form

factors reads

V NN,PS
πη,vac (r) = − T+

3

(

gπgη
48πM2

N

)[

a1

{(

aπm
5
πU(xπ)− aηm

5
ηU(xη)

m2
η −m2

π

)

− λπη

(

bπm
5
πU(Xπ)− bηm

5
ηU(Xη)

m2
η −m2

π

)}]

, (5.19)

and

V NN,PS
πη,med (r) = − T+

3

(

gπgη
48πM2

N

)[{

a′0

(

aπm
3
πU(xπ)− aηm

3
ηU(xη)

m2
η −m2

π

)

+

(

a′0
8M2

N

+ a′1

)(

aπm
5
πU(xπ)− aηm

5
ηU(xη)

m2
η −m2

π

)}

− λπη

{

a′0

(

bπm
3
πU(Xπ)− bηm

3
ηU(Xη)

m2
η −m2

π

)

+

(

a′0
8M2

N

+ a′1

)(

bπm
5
πU(Xπ)− bηm

5
ηU(Xη)

m2
η −m2

π

)}]

. (5.20)

It is to be mentioned that the vacuum CSV potential for PV coupling is the same as

found in Eqs.(5.15a) and (5.19). The density dependent part of for PV coupling can

be obtained by substituting a′0 = 0 in Eqs.(5.15b) and (5.20). In Fig.5.3 we present

the difference between CSV nn and pp potentials at 1S0 state without form factors

(left) and with form factors (right). To obtain density dependent CSV potential we

consider nuclear matter density ρ = 0.148 fm−3 and asymmetry parameter α = 1/3.

The dotted and dashed curves represent density dependent contributions of PS and

PV couplings, respectively. The difference in the contributions of density dependent

part of CSV potential for these two types of coupling arises because of the term

a′0. The vacuum contribution (solid curve) of CSV potentials for both PS and PV

couplings are same.
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Figure 5.3: Difference between CSV nn and pp potentials at 1S0 state.

Notice, both the vacuum and medium parts contribute with the same sign. Note

that CSV potentials change sign with the inclusion of form factors. The medium

contribution near the core region is found to be much larger than the vacuum con-

tribution.

5.1.2 CSV potential due to ρ-ω mixing

In this section we will use the three momentum dependent ρ-ω mixing amplitudes

calculated in section 4.3 of chapter 4 to construct the CSV two-body potentials in

ANM. We will use average mixing amplitudes which read

Π̄ρω,vac(q
2) = − b1 q2, (5.21a)

Π̄ρω,med(q
2) = b′0 − b′1 q2, (5.21b)

where

b1 =
gρgω
12π2

ln

(

Mp

Mn

)

(2 + 3Cρ), (5.22a)

b′0 =
gρgω
12π2

[

3

(

k3p
MP

− k3n
Mn

)

+ 4(kpMp − knMn)

]

, (5.22b)

b′1 =
gρgω
12π2

[

3(1− Cρ)

(

kp
Mp

− kn
Mn

)

+
1

3

(

Mp

kp
− Mn

kn

)]

. (5.22c)

After calculation of the amplitude in Eq.(5.1) and taking the limit q0 −→ 0 one

arrive at the CSV potential in momentum space given by
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V NN
ρω,total(q

2) = − gρgω

[

Π̄ρω,vac(q
2)

(q2 +m2
ρ)(q

2 +m2
ω)

+
Π̄ρω,med(q

2)

(q2 +m2
ρ)(q

2 +m2
ω)

]

×
[

T+
3

{(

1 +
3P2

2M2
N

− q2

8M2
N

− q2

4M2
N

(σ1 · σ2)

+
3i

2M2
N

S · (q×P) +
1

4M2
N

(σ1 · q)(σ2 · q) +
1

M2
N

(q̂ ·P)2
)

− Cρ

2M

(

q2

2MN
+

q2

2MN
(σ1 · σ2)−

2i

MN
S · (q×P)

− 1

2MN
(σ1 · q)(σ2 · q)

)}

− T−
3

Cρ

2M

{(

q2

2M
− q2

2M
(σ1 · σ2)

+
1

2M
(σ1 · q)(σ2 · q)

)

∆M(1, 2)

M
− i

M
(σ1 − σ2) · (q×P)

}]

.(5.23)

Here T−
3 = τ3(1) − τ3(2) and S = 1

2
(σ1 + σ2) is the total spin of the interacting

nucleon pair. The spin dependent terms in Eq.(5.23) appear from the contribution

of the external nucleon legs. On the other hand, 3P2/2M2
N and −q2/8M2

N arise due

to expansion of the relativistic energy EN of the Dirac spinors. We define average

nucleon mass and neutron-proton mass difference as

M = (Mn +Mp)/2, (5.24a)

∆M = (Mn −Mp)/2, (5.24b)

∆M(1, 2) = − ∆M(2, 1) = ∆M. (5.24c)

Note that unlike the π-η mixing, ρ-ω mixing generates both class (III) and class

(IV ) potentials as found in Eq.(5.23), and both these class (III) and class (IV )

potentials break the charge symmetry of NN interactions. The class (III) NN

interaction differentiates between nn and pp systems but vanishes for np system.

On the other hand, class (IV ) interaction exists for np system only. In the present

thesis we focus on the class (III) NN potential only.

Now we present the spin independent central part of the CSV potential consid-

ering the on-shell ρ-ω mixing amplitude:

V NN
ρω,vac(q

2) = − T+
3 gρgω

Πρω,vac(q
2 = m2

ω)

(q2 +m2
ρ)(q

2 +m2
ω)
, (5.25)
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and in the coordinate space it becomes

V NN
ρω,vac(r) = −T+

3

(gρgω
4π

)

Πρω,vac(q
2 = m2

ω)

[

mρY0(xρ)−mωY0(xω)

m2
ω −m2

ρ

]

, (5.26)

where Y0(xi) is already defined in 5.1.1 and xi = mir, (i = ρ, ω). The potential

in Eq.(5.26) diverges near the core. This can be avoided by the inclusion of form

factors. The potential with the form factors of the type given in Eq.(5.16) with

i = ρ, ω:

V NN
ρω,vac(r) = −T+

3

(gρgω
4π

)

Πρω,vac(q
2 = m2

ω)

[(

aρmρY0(xρ)− aωmωY0(xω)

m2
ω −m2

ρ

)

− λρω

(

bρΛρY0(Xρ)− bωΛωY0(Xω)

m2
ω −m2

ρ

)]

, (5.27)

where

aρ =

(

Λ2
ω −m2

ω

Λ2
ω −m2

ρ

)

, (5.28a)

bρ =

(

Λ2
ω −m2

ω

m2
ω − Λ2

ρ

)

, (5.28b)

λρω =

(

m2
ρ −m2

ω

Λ2
ρ − Λ2

ω

)

. (5.28c)

where Xi = Λir. One can find aω and bω replacing Λω → Λρ, mω → mρ and

mρ → mω in Eq.(5.28a) and Eq.(5.28b), respectively. It is to be noted that in the

limit Λρ(ω) → ∞, Eq.(5.27) reduces to Eq.(5.26).

From Eq.(5.23) we extract a piece which, in coordinate space, gives rise to δ-

function potential. This is known as contact term. The appearance of such term

can be avoided by inclusion of form factors. In momentum space it is given by

δV NN
ρω,vac = T+

3 gρgωb1

[(

1 + 2Cρ

8M2
N

)

+

(

1 + Cρ

4M2
N

)

(σ1 · σ2)
]

, (5.29a)

δV NN
ρω,med = T+

3 gρgωb
′
1

[(

1 + 2Cρ

8M2
N

)

+

(

1 + Cρ

4M2
N

)

(σ1 · σ2)
]

. (5.29b)



Chapter 5: CSV Potential in ANM 72

0 50 100 150 200 250
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

V
(1

0
- 

6
M

e
V

- 
2
)

q(MeV)

  without form factor

 with form factor

0.0 0.2 0.4 0.6 0.8 1.0
-0.20
-0.16
-0.12
-0.08
-0.04
0.00
0.04

V
(1

0- 6
M

eV
- 

2 )

q(103MeV)

  without relativistic correction
  with relativistic correction

Figure 5.4: Central part of CSV potential in momentum space. The mixing amplitude
is taken to be three momentum dependent as found in Eq.(5.30).

The potentials with three momentum dependent ρ-ω mixing amplitudes are pre-

sented below. The spin independent central part neglecting the contributions due

to external nucleon legs and the ρNN tensor coupling, reduces to

V NN,0
ρω,vac(q

2) = −T+
3 gρgω

−b1 q2

(q2 +m2
ρ)(q

2 +m2
ω)
. (5.30)

and in the coordinate space without form factor

V NN
ρω,vac(r) = − T+

3

(gρgω
4π

)

[

b1

(

m3
ρY0(xρ)−m3

ωY0(xω)

m2
ω −m2

ρ

)]

. (5.31)

The importance of the relativistic correction (left figure) and the effect of form

factor (right figure) to the central part of the CSV potential are shown in Fig.5.4.

The three momentum dependent ρ-ω mixing amplitude is considered. It is found

that the relativistic correction, as expected, is marginal at low momentum (below

|q| ∼ 500 MeV). In the short distance regime i.e. near the core region, this correction

becomes significant which is clearly seen in Fig.5.4.

If one includes the contribution of the external legs and ρNN tensor coupling,

then the central part simplifies to

V NN
ρω,vac(r) = −T+

3

(gρgω
4π

)

[

b1

{(

m3
ρY0(xρ)−m3

ωY0(xω)

m2
ω −m2

ρ

)
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+
1 + 2Cρ

8M2
N

(

m5
ρY0(xρ)−m5

ωY0(xω)

m2
ω −m2

ρ

)}]

. (5.32)

In the above equation the first term in the bracket is same as one would have obtained

from Eq.(5.30) by taking the momentum dependent mixing amplitude, while the

second term contains the contribution coming from the Dirac spinors of the external

nucleon legs. The latter, clearly involves ρNN vector and tensor interactions, and,

as we shall see, the term containing the tensor coupling (Cρ) is significantly larger

compared to the vector interaction at distances below 0.75fm or so.
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Figure 5.5: Central part in the coordinate space (left) considering the constant on-
shell mixing amplitude (dotted curve) and three momentum dependent mixing ampli-
tude (solid curve). On the right side, the central part (dotted curve), the contribution
of external nucleon legs (dashed curve) and the ρNN tensor coupling (dot-dashed
curve) are shown. Form factors are not included.

It is to be noted that ρNN tensor contribution is present only when the external

legs are taken into account. We leave out the coordinate space contact terms from

Eq.(5.32). In Fig.5.5 we show the central part of CSV potential in coordinate space

due to both on-shell and off-shell mixing amplitudes (left figure). It is seen that the

contribution of the off-shell ρ0-ω mixing amplitude to the NN potential is opposite

in sign relative to the contribution obtained from using the on-shell value. This,

again, is consistent with the observation made in Ref. [149].

The individual contribution of different parts of the central potential given in

Eq.(5.32) are presented in Fig.5.5 (right figure). Clearly the contribution of ρNN

tensor coupling to the CSV potential is found to be much larger than the contribu-

tion of the first part (i.e. the central part without external legs and ρNN tensor
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contribution). Now we use the q2 dependent mixing amplitude instead of constant

on-shell value and for this we consider terms up to O(q2/M2
N). We drop the q2/2M2

N

term as it is not important in the present context. Taking all this into consideration

we obtain, after some algebraic manipulations, the coordinate space CSV potential

as

V NN
ρω,vac(r) = − T+

3

(gρgω
4π

)

[

b1

{(

m3
ρY0(xρ)−m3

ωY0(xω)

m2
ω −m2

ρ

)

+
1

M2
N

(

m5
ρVvv(xρ)−m5

ωVvv(xω)

m2
ω −m2

ρ

)

+
Cρ

2M2
N

(

m5
ρVtv(xρ)−m5

ωVtv(xω)

m2
ρ −m2

ω

)}]

. (5.33)

and

V NN
ρω,med(r) = − T+

3

(gρgω
4π

)

[

b′0

{(

mρY0(xρ)−mωY0(xω)

m2
ω −m2

ρ

)

+
1

M2
N

(

m3
ρVvv(xρ)−m3

ωVvv(xω)

m2
ω −m2

ρ

)

+
Cρ

2M2
N

(

m3
ρVtv(xρ)−m3

ωVtv(xω)

m2
ω −m2

ρ

)}

+ b′1

{(

m3
ρY0(xρ)−m3

ωY0(xω)

m2
ω −m2

ρ

)

+
1

M2
N

(

m5
ρVvv(xρ)−m5

ωVvv(xω)

m2
ω −m2

ρ

)

+
Cρ

2M2
N

(

m5
ρVtv(xρ)−m5

ωVtv(xω)

m2
ω −m2

ρ

)}]

, (5.34)

The spin-spin, tensor and spin-orbit interaction terms are explicitly contained in

Vvv(x) and Vtv(x) which are as follows:

Vvv(x) =
1

8
Y0(x)+

1

6
Y0(x)(σ1 · σ2)−

1

12
Y1(x)S12(r̂)−

3

2
Y2(x)L · S, (5.35a)

Vtv(x) =
1

2
Y0(x)+

1

3
Y0(x)(σ1 · σ2)−

1

6
Y1(x)S12(r̂)−2Y2(x)L · S. (5.35b)
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with,

Y1(x) =

(

1 +
3

x
+

3

x2

)

Y0(x) (5.36a)

Y2(x) =

(

1

x
+

1

x2

)

Y0(x) (5.36b)

S12(r̂) = 3(σ1 · r̂)(σ2 · r̂)− (σ1 · σ2) (5.36c)

In deriving both Eqs.(5.33) and (5.34) we have neglected the contact terms. The

first part of Eq.(5.33) represents the central part without contributions from external

legs. In addition, the last two terms of Eq.(5.33) are the contributions coming from

the external nucleon legs as discussed earlier. It is also to be noted that the central

part also receives contributions due to the presence of the first terms in Eq.(5.35a)

and Eq.(5.35b). The tensor contribution (Cρ) of ρ meson is contained in the third

term of Eq.(5.33).

Notice both Eqs.(5.33) and (5.34)does not include form factors. It diverges near

the core. This divergence can be removed by incorporating form factors. Thus the

complete CSV potentials with form factors reduces to

V NN
ρω,vac(r) = − T+

3

(gρgω
4π

)

[

b1

{(

aρm
3
ρY0(xρ)− aωm

3
ωY0(xω)

m2
ω −m2

ρ

)

+
1

M2
N

(

aρm
5
ρVvv(xρ)− aωm

5
ωVvv(xω)

m2
ω −m2

ρ

)

+
Cρ

2M2
N

(

aρm
5
ρVtv(xρ)− aωm

5
ωVtv(xω)

m2
ω −m2

ρ

)}

− λρωb1

{(

bρΛ
3
ρY0(Xρ)− bωΛ

3
ωY0(Xω)

m2
ω −m2

ρ

)

+
1

M2
N

(

bρΛ
5
ρVvv(Xρ)− bωΛ

5
ωVvv(Xω)

m2
ω −m2

ρ

)

+
Cρ

2M2
N

(

bρΛ
5
ρVtv(Xρ)− bωΛ

5
ωVtv(Xω)

m2
ω −m2

ρ

)}]

, (5.37)

and

V NN
ρω,med(r) = − T+

3

(gρgω
4π

)

[

b′0

{(

aρmρY0(xρ)− aωmωY0(xω)

m2
ω −m2

ρ

)
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+
1

M2
N

(

aρm
3
ρVvv(xρ)− aωm

3
ωVvv(xω)

m2
ω −m2

ρ

)

+
Cρ

2M2
N

(

aρm
3
ρVtv(xρ)− aωm

3
ωVtv(xω)

m2
ω −m2

ρ

)}

+ b′1

{(

aρm
3
ρY0(xρ)− a3ωmωY0(xω)

m2
ω −m2

ρ

)

+
1

M2
N

(

aρm
5
ρVvv(xρ)− aωm

5
ωVvv(xω)

m2
ω −m2

ρ

)

+
Cρ

2M2
N

(

aρm
5
ρVtv(xρ)− aωm

5
ωVtv(xω)

m2
ω −m2

ρ

)}

− λρωb
′
0

{(

bρΛρY0(Xρ)− bωΛωY0(Xω)

m2
ω −m2

ρ

)

+
1

M2
N

(

bρΛ
3
ρVvv(Xρ)− bωΛ

3
ωVvv(Xω)

m2
ω −m2

ρ

)

+
Cρ

2M2
N

(

bρΛ
3
ρVtv(Xρ)− bωΛ

3
ωVtv(Xω)

m2
ω −m2

ρ

)}

− λρωb
′
1

{(

bρΛ
3
ρY0(Xρ)− bωΛ

3
ωY0(Xω)

m2
ω −m2

ρ

)

+
1

M2
N

(

bρΛ
5
ρVvv(Xρ)− bωΛ

5
ωVvv(Xω)

m2
ω −m2

ρ

)

+
Cρ

2M2
N

(

bρΛ
5
ρVtv(Xρ)− bωΛ

5
ωVtv(Xω)

m2
ω −m2

ρ

)}]

. (5.38)

Note that Eqs.(5.37) and (5.38) contain the contribution of contact terms. Thus

potentials with form factors take care of the diverging behavior near the core region.

The 1S0 state CSV potential for pp system due to ρ0-ω mixing is shown in Fig.5.6

(left figure). The importance of the central part with relativistic correction (dashed

curve) and tensor contribution (dashed-dotted curve) are clearly revealed. The mag-

nitude of the contribution of tensor coupling is comparable with that of the central

part with relativistic correction in the core region. On the other hand, magnitude of

the contribution of tensor coupling is found to be much larger than the contribution

of the central part (dotted curve) without relativistic correction in the core region.

In the dynamical region, it is seen that all the contributions are comparable. The

solid curve in this figure represents the total contribution together with the rela-

tivistic correction.
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Figure 5.6: Different parts of CSV potential in coordinate space (without form fac-
tors) i.e. the central (dotted), central with external legs plus the ρNN tensor con-
tribution (dashed) and the spin dependent (dashed-dotted) parts at 1S0 state are
presented (left). On the right panel, total CSV potential with form factors for pp
system is presented by the solid curve and dotted curve shows the same without δVpp

ρω.
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Figure 5.7: Difference between CSV nn and pp potentials at 1S0 state without (left
panel) and with (right panel) formfactors.

The 1S0 CSV potential with form factors is displayed in on the right panel of the

Fig.5.6. It is seen that the inclusion of δVNN
ρω modifies the CSV potential dramati-

cally. It is to be noted that, with its inclusion, the CSV potential changes sign. We

show the difference of CSV potentials between nn and pp systems in Fig.5.7 for 1S0

state without form factor (left) and with form factor (right). To draw the density

dependent part we consider nuclear matter density ρ = 0.148 fm−3 with α = 1/3.
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Figure 5.8: Zero energy wave function.

5.2 Contribution to ∆a

The vacuum part of the CSV potential given in Eqs.(5.33) and (5.33)can be now

used to calculate the difference between nn and pp scattering lengths at 1S0 state.

The difference between scattering lengths, ∆a = app − ann. The difference between

CSV nn and pp potential, ∆Vij,vac = V nn
ij,vac − V pp

ij,vac, are related by

∆a = −a2M
∫ ∞

0

∆Vij,vac u
2
0(r) dr (5.39)

where a2 = annapp and u0(r) is the zero energy wave function, normalized to ap-

proach 1− r/a as r → ∞ and u(0) = 0. To calculate ∆a we use the following zero

energy wave function [173]:

u0(r) =
[

1− r

a

]

−
[

γ(1− λ)
r

2
+ (1 + λ)

] e−γr

1 + λe−γr
, (5.40)

where λ = (1− 2r0/a)
−1/2, γ = 2(1 + λ)/(r0λ) and r0 is the effective range.

In the present calculation we take r0 = 2.8 fm to calculate the ∆a. The dif-

ference in scattering length ∆a, was computed using the vacuum CSV potentials

constructed using q2 dependent π-η and ρ-ω mixing amplitudes. The results are

presented in Table 5.1. It is found that the contribution of π-η mixing to ∆a is

negligible compared to that of ρ-ω mixing. ∆a changes sign with the inclusion of

form factors. The value of ∆a when calculated using the potential of Eq.(5.37)

is markedly different from that calculated ignoring the term δVNN
ρω . It would be
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Table 5.1: Difference between pp and nn scattering lengths at 1S0.

∆a fm
without form factor with form factor

π-η mixing 0.00082 −0.0001

Cρ = 0 0.31 −0.06
ρ-ω mixing

Cρ = 6.1 2.14 −0.08

interesting to apply the potential presented here to calculate various other CSV

observables to delineate the role of tensor interaction further.





Chapter 6
Effective Hadron Mass with Mixing

In this chapter we shall discuss the effect of isovector-isoscalar meson mixing on

the mass and dispersion of hadrons in ANM. Such mixing of isospin pure states like

π-η, ρ-ω is observed in vacuum due to n-p mass difference and has been studied

in Ref. [148, 149]. But the mechanism we propose here for mixing is generically

different. Here, as we shall see, it is driven by the difference of the proton and

neutron Fermi momentum i.e. kp 6= kn and thus it is a purely density dependent

effect. We show that how the mixing modifies the π and η meson masses. This

above phenomenon, to the best of our knowledge, has not been addressed before.

To focus exclusively on the density dependent effect we neglect explicit symmetry

breaking and take Mp =Mn. Moreover, we consider the modification of in-medium

nuclear mass, M∗, due to scalar mean field while neglecting the contribution of

vector mean field. We consider the PV coupling for πNN and ηNN interactions. In

this representation, the density dependent part of the self-energy is given by

Π
∗PV,(N)
ij,med (q2) = −8

( gi
2M

)( gj
2M

)

∫ 1

0

d3k

(2π)3E∗
N

[

q2 M∗2

q4 − 4(k · q)2
]

θ(kN − |k|). (6.1)

Here, i(j) = π, η and N denotes the particle index and E∗
N =

√

k2N +M∗2
N . We

restrict ourselves in the long wave length limit i.e. when the pion or eta momentum

(|q|) is small compared to the Fermi momentum(kp,n) of the system. In this situation

the concept of individual scattering breaks and the many body effects manifest

strongly. In this condition we may neglect the q4 term compared to 4(k · q)2 from

the denominator of Eq.(6.1) as we have seen before in [129]. In effect this captures
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the spirit of hard nucleon loop approximation [133].

Π
∗PV,(N)
ij,med (q2) =

1

2

( gi
2π M

)( gj
2π M

)

[

ln
1 + vN
1− vN

− c0 ln
1 + vN

c0

1− vN
c0

]

. (6.2)

where c0 = q0
|q|

and vN = kN
E∗

N

. To find the in-medium meson mass, we substitute

q = 0 in Eq.(6.2) and making suitable density expansion we obtain the total π and

η self-energy, and π-η mixing amplitude in ANM.

Π∗PV
ππ,med(q

2
0) = ΩPV

ππ,med q
2
0 , (6.3a)

Π∗PV
ηη,med(q

2
0) = ΩPV

ηη,med q
2
0 , (6.3b)

Π∗PV
πη,med(q

2
0) = ΩPV

πη,med q
2
0 , (6.3c)

where,

ΩPV
ππ,med =

(

gπ M
∗

2π M

)(

gπ M
∗

2π M

)[

1

3

(

k3p
E∗3

p

+
k3n
E∗3

n

)

+
1

5

(

k5p
E∗5

p

+
k5n
E∗5

n

)]

, (6.4a)

ΩPV
ηη,med =

(

gη M
∗

2π M

)(

gη M
∗

2π M

)[

1

3

(

k3p
E∗3

p

+
k3n
E∗3

n

)

+
1

5

(

k5p
E∗5

p

+
k5n
E∗5

n

)]

, (6.4b)

ΩPV
πη,med =

(

gπ M
∗

2π M

)(

gη M
∗

2π M

)[

1

3

(

k3p
E∗3

p

− k3n
E∗3

n

)

+
1

5

(

k5p
E∗5

p

− k5n
E∗5

n

)]

. (6.4c)

Note the difference of sign in Eq.(6.4c) and Eq.(6.4a) or (6.4b). Clearly ΩPV
πη,med is

non-zero in ANM and vanishes for E∗
p = E∗

n.

In presence of mixing the pion and eta propagation gets coupled with each other

and can be represented by 2× 2 matrix [45, 143]









1− Π∗PV
ππ,med

q2
0

− m2
π

Π∗PV
πη,med

q2
0

− m2
π

Π∗PV
πη,med

q2
0

− m2
η

1− Π∗PV
ηη,med

q2
0

− m2
η









. (6.5)

Shifted masses are obtained by solving the following equation.

(

q20 −m2
π − Π∗PV

ππ,med(q
2
0)
) (

q20 −m2
η −Π∗PV

ηη,med(q
2
0)
)

−
(

Π∗PV
πη,med(q

2
0)
)2

= 0 . (6.6)
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The above equation Eq.6.6 can be simplified to

q40(1−∆πη)− q20(m
∗2
π0 +m∗2

η ) +m∗2
π0m∗2

η = 0 , (6.7)

where,

∆πη =

(

ΩPV
πη,med

1 − ΩPV
ππ,med

) (

ΩPV
πη,med

1 − ΩPV
ηη,med

)

, (6.8)

and m∗
π0 and m∗

η are the effective masses of π0 and η given by

m∗2
π =

m2
π

1 − ΩPV
ππ,med

, m∗2
η =

m2
η

1 − ΩPV
ηη,med

. (6.9)

These in-medium masses, m∗
π0 and m∗

η are further modified by π-η mixing and the

mixing modified effective masses can be found by solving Eq.6.7 which read

m̃π0 ≃ m∗
π0(1 +

1

2
∆πη)−

m∗
η

2

[

m∗
π0m∗

η

m∗2
η −m∗2

π

]

∆πη, (6.10a)

m̃η ≃ m∗
η(1 +

1

2
∆πη) +

m∗
π0

2

[

m∗
π0m∗

η

m∗2
η −m∗2

π

]

∆πη. (6.10b)
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Figure 6.1: Mixing modified mass shift in ANM.
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Here, m̃π0 (m̃η0) denotes the mixing modified pion (eta) mass. Note that in SNM,

mixing does not further modify the in-medium masses as ∆πη = 0 or ΩPV
πη,med = 0.

From Eq.(6.10a) and Eq.(6.10b), it is clear that, in ANM, due to mixing the effective

masses of π increases and that of η decreases.In Fig.6.1 we show the mixing modified

mass shift, ∆m∗ = m̃−m∗ at α = 0.2 as a function of density.

Finally we present pionic dispersion relation along with the dispersion relation

of eta in ANM with the possible π-η mixing:

(q20)π0 ≃ m̃2
π0 −

[

m∗2
π0(γππ + γηη − δπη)

(1−∆πη)(m∗2
η −m∗2

π0)
−

(γππm
∗2
η + γηηm

∗2
π0)

(m∗2
η −m∗2

π0)

]

q2, (6.11a)

(q20)η ≃ m̃2
η +

[

m∗2
η (γππ + γηη − δπη)

(1−∆πη)(m∗2
η −m∗2

π0)
−

(γππm
∗2
η + γηηm

∗2
π0)

(m∗2
η −m∗2

π0)

]

q2, (6.11b)

Where,

δπη = 4 ΩPV
πη,med

[

ΩPV
πη,med − βπη,med

(

1 − ΩPV
ππ,med

) (

1 − ΩPV
ηη,med

)

]

, (6.12)

βπη,med =

(

gπ M
∗

2π M

)(

gη M
∗

2π M

)

[

k5p/E
∗5
p − k5n/E

∗5
n

10
(

1 − ΩPV
πη,med

)

]

. (6.13)

The pure density dependent mixing at the η−pole is estimated to be Π∗PV
πη,med =

−1217.475 MeV2, Π∗PV
πη,med = −1661.11 MeV2, at α = 0.2 and α = 0.3, respectively

at normal nuclear matter density with coupling parameters same as those of [148]. It

is seen that even at normal nuclear matter density the mixing amplitudes are of the

same order as that of the vacuum mixing amplitude, Π∗PV
πη,med = −4200 MeV2 [148].



Chapter 7
Summary and Conclusion

In this thesis we have investigated the hadronic properties in nuclear matter

(NM), in particular we focus on the asymmetric nuclear matter (ANM) where the

results for symmetric nuclear matter (SNM) appear as a limiting case. First we

have examined the properties of pion in ANM, in particular the mass splitting of

different charge states of pion is clearly revealed along with their full dispersion

characteristics.

The in-medium modifications of pion properties in ANM has been studied in

chapter 3 within the framework of relativistic hadrodynamics in presence of the

scalar mean field. We start with the model developed in [122] and present analytical

results for the pion dispersion relations by making HNL approximation and suitable

density expansion of the pion self-energy calculated at the one-loop level. We also

discussed the contribution of Dirac vacuum to the dispersion relations as well as its

contribution to the in-medium pion masses. Subsequently, we invoke the chirally

invariant Lagrangian [174,175] by retaining only the lowest order terms in pion field

and compare the results with non-chiral model calculations.

The splitting of various isospin modes of pion in ANM is found to be quite

significant even at normal nuclear matter density. Such mass splitting is important

as it is related to the pion-nucleus optical potential [105, 129]. It is found that the

π− in neutron rich matter experiences more repulsion than π0 and π+ in agreement

with the chiral perturbation theory calculation [105]. Such mode splittings in ANM

is, in fact, a generic feature of all the isovector mesons. Therefore, it would be

interesting to estimate similar splitting for the ρ meson and other isovector states.
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In addition to the isospin mode splitting of pion, we have studied the mixing of

hadrons in chapter 4 which is an isospin symmetry breaking effect resulting from

the asymmetry in the number of protons and neutrons in the ground state. We have

concentrated on π-η and ρ-ω mixing via nucleon-nucleon excitations in ANM. In

principle such mixing should be derived from Quantum Chromodynamics (QCD).

We, in the present work, restrict ourselves to the hadronic model which has rea-

sonable phenomenological success. It would be interesting to compare the present

estimates of the mixing amplitude with calculations from other models, for example,

QCD in large Nc limit or QCD sum rule etc.

The mixing amplitude in ANM is found to be non-vanishing even if Mp = Mn.

In SNM, with degenerate nucleon mass the proton and neutron loop contributions

exactly cancel. It is found that the estimated values of on-shell vacuum mixing

amplitudes for both π-η and ρ-ω mixing are in well agreement with the experimental

values. We have studied the effect of density dependent π-η mixing on π0 and η

meson masses in chapter 6, considering the scalar mean field to understand the effect

of interacting ground state. It is shown that the mixing further modifies the masses

of pion and eta mesons. The effective pion mass is found to decrease by the π-η

mixing while eta mass increases. Though the mixing effect in this case is not large.

In chapter 5, we constructed various charge symmetry violating (CSV) poten-

tials with corrections due to n-p mass difference coming from the external legs. This

modifies the existing potential and contribution is found to be significant. Then

we incorporate the medium effect with the density dependent mixing amplitudes

calculated in chapter 4 to determine CSV potential in ANM. It is to be noted that

here we use three momentum dependent mixing amplitudes to construct CSV po-

tentials within the framework of one boson exchange (OBE) model. It is observed

that density dependent contribution of π-η mixing is larger than the vacuum con-

tribution near the core region. In case of ρ-ω mixing it is found that the vacuum

mixing amplitude and the density dependent mixing amplitude are of similar order

of magnitude and both contribute with the same sign. We have shown that the

contribution of density dependent CSV potential is not negligible in comparison to

the vacuum CSV potential. Various CSV observables will be able to probe such

effects.

It is observed in this work that the contributions coming from the external legs

are important, particularly in the isovector sector, because of the strength of the

ρNN tensor interactions. The charge symmetry violation at the external legs were
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ignored in the previous work [149]. The strength of the CSV interaction could

be significantly larger even when the off-shell amplitude for the ρ0 -ω mixing is

considered. It is important to note that contribution from the spinors also modifies

the central part of the two-body potential. It is observed that both for the density

dependent and vacuum parts, the role of π-η mixing is smaller than that of ρ-ω

mixing. We have estimated the contribution of π-η and ρ-ω mixing to the difference

of pp and nn scattering lengths at 1S0 state, where only the vacuum part of the CSV

potential contributes. The π-η contribution is found negligible compared to that of

ρ-ω mixing. We have shown explicitly the contribution of δVNN
ρω and it is found that

∆a changes sign with the inclusion of δVNN
ρω .

As a future outlook, it might be noted that in-medium properties of pion in

asymmetric nuclear matter find major applications in astrophysics where there are

enough scope to extend the present investigation. In particular, the inclusion of ∆

resonance might be an important step forward in this direction. On the other hand

the two-body CSV potential as presented here might be applied to see its conse-

quences on experimental observables and on existing calculations. Furthermore, the

mixing phenomena, particular the ρ-ω mixing can have important contribution to

the dilepton spectra in experiments with high baryon density. Therefore this might

be relevant for the compressed baryonic matter studies - an area which remains

relatively unexplored.





Appendix A
Mechanism of mixing

Mixing at QCD level

The mixing of hadrons can be understood at the QCD level. In the presence of

charge independence, the neutral mesons of u-d flavor are pure isospin states viz.

|T = 1 〉 = 1√
2
(|uū 〉 − |dd̄ 〉) , and |T = 0 〉 = 1√

2
(|uū 〉+ |dd̄ 〉) . (A.1)

Now consider the interaction Hamiltonian

H = md d̄d+mu ūu . (A.2)

The mixing matrix element

〈 T = 1|Hm|T = 0 〉 = mu −md 6= 0 . (A.3)

It is clear from the above equation that the mixing of |T = 1 〉 and |T = 0 〉 states
yields non-vanishing mixing matrix element as mu 6= md. The neutral mesons are

mixtures of |T = 0 〉 and |T = 1 〉 states, for example

|ρ0 〉 = a1|T = 0 〉+ a2|T = 1 〉 and |ω 〉 = b1|T = 0 〉+ b2|T = 1 〉 , (A.4)

Thus the matrix element of ρ0-ω mixing at the QCD level is found to be

〈 ρ0|Hm|ω 〉 ∼ mu −md. (A.5)

which is non vanishing.
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Appendix B
Dimensional regularization

⋆ PS coupling

After using Feynman parametrization, the term Π∗PS
ππ,vac(q

2) in Eq.(3.20) can be writ-

ten as

Π∗PS
ππ,vac(q

2) = 8ig2πµ
2ǫ

∫ 1

0

dx

∫

dNk

(2π)N

[

M∗2 − k · (k + q)

((k + qx)2 + q2x(1− x)−M∗2)2

]

=
g2π
2π2

∫ 1

0

dx
(

4πµ2
)ǫ Γ(ǫ)

1− ǫ

[

M∗2 − 3q2x(1 − x) + 2ǫq2x(1 − x)

(M∗2 − q2x(1− x))ǫ

]

=
g2π
2π2

q2

3
+

g2π
2π2

1

ǫ

(

M∗2 − q2

2

)

− g2π
2π2

(

M∗2 − q2

2

)

(

γ′E − ln
(

4πµ2
))

− g2π
2π2

∫ 1

0

dx
(

M∗2 − 3q2x(1− x)
)

ln
(

M∗2 − q2x(1− x)
)

. (B.1)

Here ǫ = 2− N
2
and µ is an arbitrary scaling parameter. γE is the Euler-Mascheroni

constant and γ′E = (γE − 1). The imaginary part of Π∗PS
ππ,vac(q

2) can easily be found

by simply replacing ln (M∗2 − q2x(1− x)) with ln (M∗2 − q2x(1 − x) −iξ) where ξ
is an arbitrarily small parameter and the term iξ comes from the denominator of

G∗F
N when Feynman parametrization is performed considering iζ in the denominator

of the propagator.

Here the term ln (M∗2 − q2x(1− x)) has branch cut only forM∗2−q2x(1−x) < 0

and it begins at q2 = 4M∗2 i.e. the threshold condition for nucleon-antinucleon pair

production. So the limit of x-integration changes from (0, 1) to (1
2
− 1

2
α, 1

2
+ 1

2
α)

91



Chapter B: Dimensional regularization 92

where α =
√

1− 4M∗2

q2
and we used Im ln (Z − iξ) = −π.Now,

∫ 1

2
+ 1

2
α

1

2
− 1

2
α

dx θ
(

q2 − 4M∗2
)

=

√

1− 4M∗2

q2
θ
(

q2 − 4M∗2
)

. (B.2)

The imaginary part of Π∗PS
ππ,vac(q

2) is,

Im Π∗PS
ππ,V ac(q

2) = − g2π
2π2

∫ 1

0

dx
(

M∗2 − 3q2x(1− x)
)

× Im
[

ln
(

M∗2 − q2x(1− x)− iξ
)]

= − g2π
4π

[

q
√

q2 − 4M∗2
]

θ
(

q2 − 4M∗2
)

. (B.3)

It is clear from the expression of Eq.(B.1) that the second term is divergent in

the limit ǫ → 0 (as N → 4). To remove the divergences we need to add the

counterterms [122] in the original Lagrangian interaction . The diverging part of

Eq.(B.1) is

DPS =
g2π
2π2

1

ǫ

(

M∗2 − q2

2

)

=
g2π
2π2

[

M2

ǫ
− 2

ǫ
Mgsφ0 +

1

ǫ
g2sφ

2
0 −

q2

2ǫ

]

. (B.4)

In Eq.(B.4) we substitute the effective nucleon mass M∗ = (M − gsφ0) where M

is the nucleon mass and φ0 is the vacuum expectation value of the scalar field φs.

The expression given in Eq.(B.4) tells us that we need to be added four counter

terms [122] with the original interaction Lagrangian to remove the divergences from

Π∗PS
ππ,vac(q

2). Therefore the counter term Lagrangian [122] is denoted as

LCT = − 1

2!
β1Φπ ·

(

∂2 +m2
π

)

· Φπ +
1

2!
β2Φ

2 +
1

2!
β3φsΦ

2
π +

1

2!2!
β4φ

2Φ2
π . (B.5)

The value of the counterterms β1, β2, β3 and β4 are determined by imposing the

appropriate renormalization conditions.

β1 =

(

∂Π∗PS
ππ,vac(q

2)

∂q2

)

q2=m2
π

(B.6)

β2 =
(

Π∗PS
ππ,vac

)

q2=m2
π

(B.7)
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β3 = −gs

(

∂Π∗PS
ππ,vac(q

2)

∂M

)

q2=m2
π

(B.8)

β4 = −δλ + g2s

(

∂2Π∗PS
ππ,vac(q

2)

∂M2

)

q2=m2
π

(B.9)

Here β1 and β2 are the wave function and pion mass renormalization counterterms

respectively while β3 and β4 are the vertex renormalizaton counterterms for the

φsΦ
2
π vertex and φ2

sΦ
2
π vertex respectively. The conditions of Eq.(B.6)-(B.7) implies

that the pion propagator ∆̃π = [q2 − m2
π − Π̃∗PS

ππ,vac(q
2)]−1 reproduces the physical

mass of pions in free space. The counterterm β4 determines the strength of coupling

of the φ2
sΦ

2
π vertex. In fact Π∗PS

ππ,vac(q
2) is found by simply replacing M∗ with M in

Eq.(B.1). We can set δλ = 0 to minimize the effects of many-body forces in the

nuclear medium [122] which is consistent with the renormalization scheme for scalar

meson. Using the onditions given in Eqs.(B.6)-(B.9) the following results are found:

β1 =
g2π
2π2

[

1

3
− 1

2

(

1

ǫ
− γ′E + ln(4πµ2)

)]

+
g2π
2π2

[
∫ 1

0

dx 3x(1− x) ln
(

M2 −m2
πx(1− x)

)

]

+
g2π
2π2

[
∫ 1

0

dx
M2x(1− x)− 3m2

πx
2(1− x)2

M2 −m2
πx(1− x)

]

, (B.10)

β2 =
g2π
2π2

[

m2
π

2
+

(

M2 − m2
π

3

)(

1

ǫ
− γ′E + ln(4πµ2)

)]

− g2π
2π2

∫ 1

0

dx
(

M2 − 3m2
πx(1− x)

)

× ln(M2 −m2
πx(1 − x)) , (B.11)

β3 =
g2π
2π2

[

−gs(2M)

(

1

ǫ
− γ′E + ln(4πµ2)

)]

+
g2π
2π2

[

gs(2M)

∫ 1

0

dx ln(M2 −m2
πx(1− x)

]

+
g2π
2π2

[

gs(2M)

∫ 1

0

dx

(

M2 − 3m2
πx(1 − x)

M2 −m2
πx(1− x)

)]

, (B.12)
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β4 = − g2π
2π2

6g2s +
g2π
2π2

[

2gs

(

1

ǫ
− γ′E + ln(4πµ2)

)]

− g2π
2π2

[

2g2s

∫ 1

0

dx ln(M2 −m2
πx(1 − x))

]

− g2π
2π2

[

2g2s

∫ 1

0

dx
4M2m2

πx(1− x)

(M2 −m2
πx(1− x))2

]

. (B.13)

The renormalized Π∗PS
ππ,vac(q

2) is

Π̃∗PS
ππ,vac(q

2) = Π∗PS
ππ,vac(q

2)− β1(q
2 −m2

π)− β2 − β3φ0 −
1

2
β4φ

2
0 . (B.14)

Substituting Π∗PS
ππ,vac(q

2) from Eq.(B.1) and β1, β2, β3, β4 from Eqs.(B.10)- (B.13) in

Eq.(B.14) it is found that divergences in Π∗PS
ππ,vac(q

2) are completely eliminated by

the counterterms. After simplification Π̃∗PS
ππ,vac(q

2) reduces to

Π̃∗PS
ππ,vac(q

2) =
g2π
2π2

[

−3(M2 −M∗2) + (q2 −m2
π)

(

1

6
+
M2

m2
π

)

− 2M∗2 ln

(

M∗

M

)

+
8M2(M −M∗)2

(4M2 −m2
π)

− 2M∗2
√

4M∗2 − q2

q
tan−1

(

q
√

4M∗2 − q2

)

+
2M2

√

4M2 −m2
π

mπ

tan−1

(

mπ
√

4M2 −m2
π

)

+

(

(M2 −M∗2) +
m2

π(M −M∗)2

(4M2 −m2
π)

+
M2

m2
π

(q2 −m2
π)

)

× 8M2

mπ

√

4M2 −m2
π

tan−1

(

mπ
√

4M2 −m2
π

)

+

∫ 1

0

dx 3x(1− x)q2 ln

(

M∗2 − q2x(1− x)

M2 −m2
πx(1 − x)

)]

. (B.15)

⋆ PV coupling

After Feynman parametrization Eq.(3.43) reduces to

Π∗PV
ππ,vac(q

2) = 8i

(

fπ
mπ

)2

µ2ǫ

∫ 1

0

dx

×
∫

dNk

(2π)N

[

(M∗2 + q2x(1− x) + k2) q2 − 2(k · q)2
((k + qx)2 + q2x(1− x)−M∗2)2

]
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= −q2
(

fπ
π mπ

)2 ∫ 1

0

dx
(

4πµ2
)ǫ
Γ(ǫ)

[

2M∗2

(M∗2 − q2x(1− x))ǫ

]

= q2 M∗2

(

fπ
π mπ

)2 [

−1

ǫ
+
(

γE − ln
(

4πµ2
))

+

∫ 1

0

dx ln
(

M∗2 − q2x(1− x)
)

]

. (B.16)

The imaginary part of Π∗PV
ππ,vac(q

2) can be found as

Im Π∗PV
ππ,vac(q

2) = −2q M∗2

(

fπ
π mπ

)2
√

q2 − 4M∗2 θ
(

q2 − 4M∗2
)

. (B.17)

It is clear from Eq.(B.17) that Π∗PV
ππ,vac(q

2) vanishes for q2 < 4M∗2. With the same

argument as stated for PS coupling, we excluded the imaginary part. The diverging

part of Π∗PV
ππ,vac(q

2) is

DPV = − q2 M∗2

(

fπ
π mπ

)2
1

ǫ
(B.18)

Here we use simple subtraction method to remove the divergence. So, the finite FF

part of the self-energy is

Π̃∗PV
ππ,vac(q

2) = Π∗PV
ππ,vac(q

2)− Π∗PV
ππ,vac(q

2 = m2
π)

= q2 M∗2

(

fπ
πmπ

)2 ∫ 1

0

dx ln

(

M∗2 − q2x(1− x)

M∗2 −m2
πx(1− x)

)

(B.19)
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