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Abstract, We review the theory of Chaplygin gas. This theory arises from 
die non-relativistie fluid mechanics with exotic state equation. This condi­
tion actually admits that the fluid theory reduces to the simple relativistic 
geometrical objects. This means that the non-relativistie fluid theory has hid­
den Poincare symmetry. We will show that the geometrical object is the brane 
described by the Nambu-Goto action. The application of this Chaplygin gas 
to tile universe model is also briefly reviewed.

1. Introduction

We consider the non-relalivislic fluid dynamics without viscosity. In this case the 
dynamical equation reduces to the usual Euler equation. We further give the exotic 
state equation lo this theory such as

P

with pressure P , density p, and some constant A.
Such a fluid is called a Chaplygin gas which turns out to be a special effective 
theory of the gas fluid. Despiles thaï il seems to be a trivial classical problem, this 
theory contains marvellous symmetries and beautiful geometrical contents. The 
symmetry is one-dimensional higher lhal the Poincare symmetry, and the related 
geometrical object is the brane with less extrinsic mean curvature. This means lhal 
the theory of Chaplygin gas is equivalent lo the relativistic brane theory [10-13], 
In this paper, we briefly sketch the relation lo brane picture, then we find many 
types of solutions, and we show the symmetries of this theory. According lo the 
relation lo relativistic brane, we find the equivalence lo the Born-Infeld theory. 
From this picture, we find different types of solutions. In the final section, we

(1)
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discuss the application of exotic state equation to the universe model, called Chap­
lygin cosmology. The quantization of this theory is not yet done, but it is a very 
attractive open problem.

2. Fluid Mechanics

Let us start with the non-relativistic Euler equation in D +  1-dimensional space 
time

dv  , V P
—  +  (v • V )v  = -------
at p

We assume the irrotational condition,

(2)

v = ve. (3)

Making use of the state equation (1) the equation (2) can be obtained from the 
action

S dD+1x op | ( W ) 2 + (4)

After eliminating the variable p by using the equation of motion, we can simplify 
the action to the form

5  =  - 2  y/x iD+l
X

The Euler-Lagrange equation for this action is

(5)

d  1 

dt \ /0 +  (V9)2/2
+  V -

ve
= o. (6)

3. Brane Solution

Let us consider the solution for 0. First we consider the static solution. Its equation 
is

Div(re) =  0 (7)
where

n = ve
Iw T

The unit vector n  above is normal to the hypersurface

e i x 1 X x D) =  0.

(8)

(9)

Let us now consider the meaning of the equation (7). For that purpose we intro­
duce the hypersurface Q defined by equation (9), and set the curved coordinate 
q1, . . .  ,qD ~1 on this hypersurface as shown in Fig. 1. Then we can define the
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Figure 1. Surface Q with coordinates and metric

metric tensor on Q as
_  d X  d X

3 d(f dt f
( 10)

where Latin indices (i, j )  run from 1 to D —1, and X  =  X i q 1, . . . ,  gD_1) specifies 
a point on Q. We further introduce another coordinate qD in normal direction by 
using the relation

d x
n = ~£kp

where x  specifies the point of D-dimensional Euclidean space. Making use of 
this coordinate, the hypersurface Q is defined by qD =  0. The set of coordinates 
{q1, . . . ,  qD} covers all D-dimensional Euclidean space x  =  x iq1, . . . ,  qD).
The line element in this D-dimensional space is given by

dS2 =  gflvdq,Idqv ( 11)

where
_ = dx  d x  _  fg tJ 0 \
9,Jl' =  W 1 ’ d( f  ~  v 0 V  '

The Greek indices g,, u , . ..  run from 1 to D. And we have the relation

9 i j  =  S i j  ( (1 =  0 )-

(12)

The extrinsic curvature of the hypersurface Q is defined by

d X  d n
dq1 dqi

K i j  — (1 3 )
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The extrinsic mean curvature is given by
, d X  dn  dx  dn

K =  gtJ-
dn  dx
— r =  q1 -----
dqi a dq>1

-DD dx  dn
■,D ;D

=  8-AB dx  dn
dxA dxB

(14)
+  (last term) =  Div(re)

where the last term vanishes due to the fact that n  =  d x /d q D.
Therefore the meaning of the equation (7), k =  0, is that O is a minimal hypersur­
face just like the soap film which boundary is a closed line [19].

4. Time Dependent Solution

Now we look for the time dependent solution. Since our theory is just the non 
relativistic fluid mechanics, it has the Galilean invariance. The Galilean boost is 
defined by

x' =  x  — Vq t. (15)

The corresponding Lie transformation for the velocity potential is given by the 
following relation [14-16]

9(x, t) —» 9'(x, t) =  9(x +  tVo, t) — x  ■ Vq — — Vgt.  (16)

We can easily find its validity by taking the space derivative, i.e., it reduces to the 
relation v' =  v  — Vq.
By using this boost, we can construct time dependent solution from time indepen­
dent solution 9s(x)

9(x, t ) =  9s(x +  tV0) - x - V 0 -  T^Vot. (17)

Note that we have hidden symmetry as follows. The time independent solution 9S 
satisfies the equation

v ' ( ^ ) = 0 ' (18)

The above equation is invariant under the transformation with any function F(x) 
satisfying dF/dx  ^  0

9S ^ 9 'S =  F(9S). (19)

Therefore, more general solution for the Chaplygin gas is given as

9(x, t ) =  F(9s(x +  tV0)) -  x  ■ V0 -  T^Vot. (20)

We have obtained (D, 1) =  (space, time) dimensional solution for Chaplygin gas 
from D — 1 dimensional minimal hypersurface. Two examples of two-dimensional
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Figure 2, Calenoid and helicoid

minimal hypersurfaces are shown in Fig. 2 [9,19]. Tire corresponding solution 
generated by the calenoid is

0s(x, y, z) = z — A  arccosh
\ / x 2 +  ;

.4

and that one associated with the helicoid is given by

= arc,an ( f )

(21)

(22)

5. Another Solution

We look for the solution in the form

0 =  t  — v/2/(x '1, x'2, . . . ,  x D). (23)

By pulling this expression into (6), we obtain

g (  aA f  \
dxA { y / l  + ( V f ) 2J

=  0 (24)

where A  =  1 , 2 ,D.  The meaning of this equation is as follows. Let us con­
sider the D-dimensional hypersurface in (D +  l)-dimensional Euclidean space in 
the form

£ =  / ( x \x - 2, . . . ,x - D). (25)
This is shown in Fig. 3. The infinitesimal area of this hypersurface dS  is related to 
the projected area dx-Mx2 • • • dxD on the flat D-dimensional hypersurface

cos o dS  =  dx^dx2 • • • dx-D (26)

where o  is the angle between n  and the positive z direction. Therefore cos o  =  nz 
and we obtain the hypersurface area

S
dx,:Ldx2 • • • dx,D

n
(27)
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Figure 3. D-dimensional hypersurface

The normal vector n can be calculated as
V „ . , ( c  / )n  —

k - V f
(28)

\VD+1( z - f ) \  v/1 +  ( V / F

where V d+ i is (D +  l)-dimensional differential operator and k  is the unit vector 
in £ direction. Then we have

S  = j yjl +  ( V f ) 2 dx-Mx-2 • • • dx-D. (29)

The Euler-Lagrange equation for this action (surface area) gives the equation (24). 
This lime we have obtained (D, l)-dimensional solution for Chaplygin gas from 
D-dimensional minimal hypersurface [19].

6. Symmetries of Chaplygin Gas

The theory has two kinds of hidden symmetries. One is Dilatation (lime rescaling) 
with the scalar parameter A

8'(t, x ) =  ex8(ext, x ) (30)

and the other one is the highly non-linear transformation called field dependent 
transformation [1,2] generated by the vector parameter tu

T(t, x)  =  t  +  tu • x  +  - tu 20(T, R )

R(t ,  x)  =  x  +  lu0(T, R)

0?(t, x) = 0(T,R).

(3 1 )
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This transformation mixes the field and space time parameters.
Actually the theory includes the following symmetries [1,2,10-13]:

• Time and Space translations: D  +  1 generators
• Space rotations: D( D — l ) / 2  generators
• Galilean boost: D  generators
• Field translation: one generator
• Time rescaling (dilatation): one generator
• Field dependent transformation: D  generators.

This means that the total number of generators is (D  +  2) (D +  3)/2 which is the 
same as that of (D  +  2)-dimensional Poincare generators, and they really induce 
the Poincare algebra.

7. Relativistic Brane

The fact that the theory has the Poincare symmetry, means that it can be interpreted 
as a relativistic object. To see this point clearly, we start from the relativistic action 
of D-brane in (D +  1,1) space time. The action is the Nambu-Goto action given 
by

S dD+1q J ( —l ) D det
' d X ^ d X v '

Qga Qgh (32)

where X  is the target space variable with its indices (//, i/, . . .  ) =  0 , 1 , . . . ,  D  +  1, 
and metric: rj =  diag(l, —1, —1, . . . ,  —1). The local coordinates on the brane are 
given by q with indices (a, b, . . .  ) =  0 , 1 , . . . ,  D  as shown in Fig. 4.
To fix the gauge degrees of freedom, and to check the non-appearance of ghost 
field, we go to the path integral formulation. Since our theory include a Hamilton­
ian, momentum constraints and the gauge constraint x, we have

Z =  J  D X  J  D P  n S(Ta) n S(xb) I d e t{T a, / }  | exp ^i j  PßX ^ d D+1qJ .

h (33)
Here P  is the momentum conjugate to X.  The Hamiltonian and momentum con­
straints are

T0 =  PflP tl -  ( -1  )d GG00, Tt =  (34)

The metric field is given by

G ab Vß
d X >1 d X v 

' dqa dqb
G  =  det ( G a b ) . (35 )
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(D +  l)-dimensionaI space 

Figure 4, Relativistic D-brane

Now we fix the gauge in two different ways. First we use the light cone gauge 
defi ned by

X° =  ?0 - ^ ( A ' °  +  A'd+1), x k = qk ~ X k, k = 1 , . . . ,  D. (36)

By inserting above equations into (33), we obtain the new action

S iD+l (37)

where the relations 0 = - ^ ( X °  — X D+1) and p = - i ( P °  — P D+1) have been 
used.
By using the equation for p, we obtain the action

S,chap =  -> /2 dD+1q (38)

This is just the theory of Chaplygin gas as we have already seen.
On the other hand, we can use another gauge fixing condition called a Cartesian 
gauge

X° = q ° - X 0, x k = (lk ~ X k, k = l , . . . , D . (39)
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Then we have the action

S d D+1q Op V 1 +  (V0)2 (40)

where this time 9 =  X D+1, p =  P D+1 were used. By using the equation for p we 
obtain also the action

=  (41)

This action is called Born-Infeld action [1,2,5,6,9-16,19].
We have two theories due to the different choices of the gauge. These two theories 
have the same origin and there should be some relation between their solutions. 
This point is clarified by Jackiw and Polychronakos [14-16], Let 0cimp and $bi be 
the respevtive solution in each of these theories. Then these solutions are related 
to each other by the equations

T(t, x) +  0 Ch ap(T , x) =  V2t  (42)

9m (t,x) =  y / 2 T ( t , x ) - t .  (43)

First we define the field T  by the first equation, then the second equation follows. 
This relation is easily understood from the difference in the two choices for the 
gauge,i.e., (36), (39) and the definitions of the fields öcimp =  - ^ ( X ° —X D+1) and
0bi =  X D+1. Since there exists an explicit relation between the solutions of the 
two theories we can find the solution from the Born-Infeld theory. Let us compare 
the equation (41) and the action of (D  +  1)-dimensional minimal hypersurface 
(similar to (29))

Sms =  - j  àD+1q\J  1 +  ( Vf )  2. (44)

By noting p =  diag(l, —1, —1, . . . ,  —1), we find the relation between the two 
theories

0m(q°,q) =  f( iqO,q).  (45)

This means that (D, 1) Chaplygin or Born-Infeld solution is produced from (D  +  
1)-dimensional minimal hypersurface [19]. Before finishing this section we give 
some conclusions concerning all previous discussions, namely

• Chaplygin gas is deeply related to the minimal hypersurfaces
• D — l, D , D  +  1 minimal hypersurfaces gives (D, 1) solutions of Chaplygin 

gas
• The origin of Chaplygin gas and Born-Infeld theories is the relativistic 

membrane theory.
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8. Application to the Universe Model

It was believed for a long time that the expansion of universe has been decelerating. 
This is because Einstein equation requires it should decelerate unless unknown 
energy with negative pressure does not exist. In 1998, however, super nova la data 
showed that the universe expansion is really accelerating [7,20,21]. To explain this 
fact, some new universe models have been discussed. One of them is the Chaplygin 
cosmology [3,4,8,17,18]. To see this deceleration property of universe, we first 
consider the homogeneous and isotropic universe which requires the metric of the 
form

ds2 =  d t2 -  a(f)2do-2. (46)

Here a  is the spatial parameter given by

+  r 2d 0 2 (47)
1 -  K r 2

where dO2 is the metric on the two-dimensional sphere. The value of K  coincides 
with the scalar curvature of our three-dimensional space. More exactly, K  >  0 
means a closed universe S3 , K  < 0 means an open universe, i.e., a hyperbolic 
space, and K  =  0 means flat universe. By putting above relation into Einstein 
equation without cosmological term, we have the Friedmann equation

c2K
(48)

à y  8 irG 
a )  ~  3c2 P

and the energy conservation equation

d(pc2a3) — _jp da3
(49)

Using these two equations, we obtain the deceleration parameter of the universe
SirGpad 1 f  3 P

q =  - T j  =  ~ ( 1 H------az 2 \  p
3=2 ( i

(50)

Then we see that
aä

q = —T77 > 0a*
(51)

holds under the condition
p  > ~ p . (52)

To obtain the accelerating universe, we need the exotic matter satisfying

p  < — p.
y

(53)

Such a “matter” is called a dark energy.
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What happens to our universe if we suppose that our matter field satisfies the state 
equation of Chaplygin gas? This problem was discussed by several authors [3,4,8, 
17,18], under the name Chaplygin cosmology. In this review we briefly sketch the 
discussion by Kamenshchik et al [17].
Taken together the Chaplygin state equation and the energy conservation equa­
tion (49) give us

f = \ A + I  (54)
where B  is the integration constant.
From this equation for early universe, i.e., when a6 <c B /A  one gets

\ [B

This relation with energy conservation law (49) requires

(55)

P  =  0. (56)

That is, the universe is dust dominated and decelerating, i.e., q >  0. For example 
in the case of the Einstein-de Sitter model K  =  0, a(t) =  ao(t/to)2̂ .  The 
decelerating property of universe in its beginning is important for the universe has 
time of life, i.e., if it is accelerating exponentially, we do not have to consider its 
birth.
On the other hand, for the large value of the cosmological radius, i.e., if a6 B / A

p = \ f A .  (57)

When combined with energy conservation law (49) this relation requires (in c =  1 
unit)

P  =  -y /Ä .  (58)

The situation is the same as in the case of the empty universe with a cosmological 
constant

A =  \[A. (59)

Then by using the Friedmann equation (48) with the condition

we obtain

a2 »
3r' | /v|
8ttGA

a(t) ~  ag exp (60)

So we have inflation for the large universe. In this sense, Chaplygin gas interpolates 
two phases of the universe. First it expands in power law (deceleration) and later 
expands exponentialy (inflation).
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Let us compare the Chaplygin cosmology with the observational data. The present 
observational fact can also be described by the dust matter with cosmological con­
stant. In such a case

P  =  P a +  P m  =  —A
a (6!)P — PA +  PM — A +- pM •

Then the observational data at present time can be represented as

~ \  (62)
present ^

If we believe in the Chaplygin cosmology P  =  —A / p ,  we obtain

A  =  A(A +  p M ) ~  1.43A2 (63)
and then we have also

a[ A  ~  1.2A.

Since a[ A  is the cosmological constant for large scale universe, the above result 
shows the increasing cosmological constant [17], Such a “dynamical cosmolog­
ical constant’’ or dark energy is usually called Quintessence [7], Therefore, the 
Chaplygin cosmology can be one of picks of the Quintessence.

9. Summary

In this article, we have considered various aspects of the Chaplygin gas. To sum­
marise the previous discussions, we will list them again:

• Chaplygin gas has a geometrical meaning of a minimal hypersurface
• Hidden Poincare symmetry is included
• Theory of the relativistic brane is equivalent to the Chaplygin gas and Bom- 

Infeld theory
• Chaplygin’s state equation works as a model for accelerating universe. 
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