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Abstract. The realization of multimessenger astrophysics is opening up a new field of
exploration of the most energetic phenomena in the universe. Astrophysical messengers
associated with each of the four fundamental forces reach detectors buried deep underground
or underwater, spread across wide swaths of land, and orbiting high above us in space. Recent
detection of coincident real-time signals amongst these experiments heralds the birth of high-
energy multimessenger astronomy and enables us to begin exploring and understanding their
astrophysical sources. The Astrophysical Multimessenger Observatory Network (AMON) is
currently linking multiple current and future high-energy neutrino, cosmic ray, gamma ray and
gravitational wave observatories into a single virtual system, facilitating real-time coincidence
searches for multimessenger astrophysical transients. AMON will generate alerts that will enable
rapid follow-up of potential electromagnetic counterparts. We present the science case, design
elements, partner observatories, and status of AMON.

1. Introduction

Multimessenger astronomy is the observation of a single astrophysical source that has emitted
two or more distinct messengers: photons, gravitational waves, neutrinos and/or cosmic-
rays, representing the four fundamental forces. Detection and subsequent detailed follow-up
observations of such sources help us unveil the underlying mechanism(s) that power them,
perhaps helping to resolve the enduring mystery of how ultrahigh energy cosmic rays are
produced. Multimessenger observations also provide a unique opportunity to study the instrinsic
properties of the messengers themselves, coming to us as they do over extremely long baselines,
all while traveling alongside other types of messenger particles, each type with its own set of
distinct properties.

After decades of searching, we have but a handful of detections of multimessenger sources.
At lower energies, we have detected photons and neutrinos from the sun and supernova
SN1987A [1, 2, 3]. At higher energies, we have recently detected gravitational waves from
a binary neutron star merger (GW170817) [4] in coincidence with numerous electromagnetic
follow-up observations. Even more recently, we have also seen the first indication of a high-
energy neutrino (IceCube-170922A) [5] in coincidence with an x-ray signal from Swift [6, 7],
and clear flaring activity observed by the Fermi [8] satellite and the MAGIC [9] ground-based
telescope from the active galactic nucleus (AGN) TXS 0506+056 [10], a known “blazar” (an
AGN with its jet pointed towards earth).

These detections are very exciting, and our knowledge grows in leaps and bounds with each
one. However, for multimessenger astronomy to grow as a field, the rate of coincident detections
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will need to increase considerably. One way to accomplish this is to improve the sensitivity
of the individual detectors. Detector upgrades are either underway or in the proposal stage
for all four messengers (see, for example, [11, 12, 13, 14, 15, 16, 17, 18]), and while these
upgrades are virtually guaranteed to improve the detection rate, the time it takes for them to be
implemented is O(years). In this proceeding we focus on a second approach that implements a
virtual observatory to enable the various detectors to search jointly for coincidences, employing
data that could not otherwise be used standalone for astrophysical source searches. Furthermore,
this approach performs its searches and provides alerts to follow-up observatories in real-time,
enhancing the sensitivity to transient astrophysical phenomena.

2. The Multimessenger High Energy Universe Status Quo

Particle astrophysics experiments typically began their searches for astrophysical sources with
the goal of making standalone discoveries. These searches required very strong signals which,
not surprisingly, are rare, coming about once per month. The strong but rare signals detected
thus far include:

e gravitational waves from binary blackhole and binary neutron star mergers by the LIGO
and VIRGO Collaborations [19, 20, 21, 4],

e astrophysical neutrinos from unidentified sources by the IceCube Collaboration [22], and

e ultrahigh energy cosmic-rays by the Telescope Array [23] and Pierre Auger [24]
observatories.

(By contrast, large numbers of high-energy photons have been detected from a wide range of
sources by ground-based observatories such as HAWC [25], H.E.S.S. [26], MAGIC [27], and
VERITAS [28], and by satellite observatories such as Swift [29] and Fermi-LAT [30].)

The next step taken by a number of these observatories was to send out their strong signals to
partner observatories for follow-up. These bilateral, unidirectional agreements were established
mostly with electromagnetic follow-up observatories, i.e.,, mainly with traditional telescopes.
With O(100) such follow-ups performed, the high energy astrophysics community has met with
success twice, first with gravitational wave GW170817 [4] and then with the high-energy neutrino
IceCube-170922A [5]. A great deal was learned through the follow-up of GW170817, including
its redshift [31]; the follow-up to IceCube-170922A is not yet as well-studied, but its detection
provides evidence in favor of the hadronic acceleration model for blazars (see, for example, [32]).

3. Multimessenger Virtual Observatories

In principle, particle astrophysics experiments can garner more signal by lowering their
thresholds, but they are generally prevented from doing so by backgrounds that overwhelm
the astrophysical signal. Gravitational wave detectors experience background from intrinsic
detector and environmental noise, and strong signals that arrive during single-interferometer
operations have inadequate pointing for follow-up; neutrino detectors cannot distinguish between
atmospheric and astrophysical neutrinos at lower neutrino energies; and gamma-ray detectors
have difficulty separating showers induced by gamma-rays from those induced by cosmic-rays.
Below about 10! eV, cosmic-ray detectors can no longer count on detected events pointing back
to their source due to the effect of (inter)galactic magnetic fields. With pointing resolutions
reaching up to thousands of square degrees, a remaining background is astrophysical, since in
regions of space within particle astrophysics detectors’ error circles there are always at least a
few sources.

Virtual observatories provide a means to use these “sub-threshold” data as well as a
mechanism for reducing the astrophysical background. They accomplish these two objectives by
imposing a temporal and directional coincidence requirement on data from two or more detectors,
and by issuing low-latency alerts to maximize the probability that follow-up observatories
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Figure 1. Schematic of the AMON system, indicating the different types of observatories with
their approximate locations around the globe. The central point designates the location of the
AMON servers at the Pennsylvania State University in University Park, PA, USA.

will see transient or unusual flaring activity in the specified direction. The SuperNova Early
Warning System (SNEWS) [33] network, running for well over a decade, is an early example
of a virtual observatory. SNEWS uses sub-threshold neutrino signals from multiple detectors
to increase our aggregate sensitivity to supernova neutrino bursts. Started in 2009, the
Astrophysical Multimessenger Observatory Network (AMON) [34, 35] has created a virtual
observatory with multiple particle astrophysics detectors sharing their sub-threshold data in
real-time, and multiple follow-up observatories agreeing to view regions of the sky in response to
coincidence alerts. More recently, The Astronomy ESFRI and Research Infrastructure Cluster
(ASTERICS) [36] is being constructed with similar goals in mind. We focus the rest of this
proceeding on the design, current status and near-term future plans of AMON.

4. The Astrophysical Multimessenger Observatory Network (AMON)

4.1. Design

AMON provides a robust, high-uptime software framework for multiple particle astrophysics
experiments to share data and increase their aggregate sensitivity to multimessenger transient
events. Operating in real-time with low latency, it gathers sub- and above-threshold data,
executes searches designed by the participating observatories for temporal and directional
coincidences, and issues alerts for rapid follow-up to designated partner observatories. AMON
also supports archival searches. A schematic of the network is shown in Fig. 1.

AMON simplifies coincidence searches by establishing a standardized event transmission
scheme based on the VOEvent [37] protocol, by creating a cleaner interconnect topology
between triggering and follow-up observatories, and by providing a straightforward connection
to the Gamma-ray Coordinates Network (GCN) [38], a trusted conveyer of astrophysical alert
information. The standardized events are distillations of the originating observatory’s data and
are sufficiently small in size to keep the aggregate accumulated data flowing into the AMON
database to about one TB/yr. The database will enable archival analyses for estimation of false
alarm rates and for in-depth study of the past multimessenger behavior of coincidence signals
detected in real-time. Furthermore, observatories need only sign a single AMON Memorandum
of Understanding (MoU) [39] to begin working with any of the other participating observatories.
Figure 2 shows the general layout of the AMON system.

With the current AMON membership, 94% of 47 sr-yr is within the view of three or more
observatories, and at least two observatories view any given part of the sky at the same time. A
key requirement for any real-time follow-up operation, especially one with such high coverage,
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Figure 2. Diagram showing the processes running in the AMON servers. Events arrive at the
server asynchronously (using the Python-based Celery [40] package), are written into the local
database and simultaneously searched for coincidences based on pre-programmed algorithms
provided by participating collaborations. Alerts are saved in the database and are also sent to
GCN for broader (private or public) distribution.

is to maximize system uptime. AMON has met this goal by deploying two redundant, high-
uptime servers in distinct physical locations. With full backup power and a clustered database,
the system has experienced less than one hour of downtime per year during its first three years
of operation.

4.2. Current Status

The first phase of AMON operations was to enter public data into the AMON database and
perform archival searches for sub-threshold multi-messenger coincidences. This phase has been
completed, with several published studies involving combinations of Fermi-LAT, VERITAS,
and IceCube public data [41, 42]. The second phase of operations moved AMON into the real-
time realm, with the system acting as a “pass-through” for IceCube real-time HESE and EHE
neutrino alerts [43], and with prototype real-time sub-threshold analyses using scrambled data.
The third and final phase will move AMON into true real-time operations, using sub-threshold
data from participating triggering observatories and issuing alerts to follow-up observatories.
Table 1 shows the observatories currently participating in AMON.

5. Conclusions

An impressive array of innovative and exciting particle astrophysics have come online in recent
years, giving us access for the first time to astrophysical messengers from all four fundamental
forces. Initially concentrating on making standalone discoveries of astrophysical sources, often
focusing first on known sources of high-energy electromagnetic radiation, the collaborations
subsequently teamed up with traditional EM telescopes to perform rapid follow-up with the
aim of finding transient sources. AMON extends this program in a powerful way by enabling
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Observ- Stream Stream TLS Test Test Real-time
atory name content certificates (simulations) (blinded data) data
IceCube singlet v’ v’ v’ v’ in progress
IceCube multiplet v’ v’ v’ v’ v’
IceCube HESE v’ v’ v’ v’ v’
IceCube EHE v’ v’ v’ v’ v’
Pierre Auger sub-threshold v’ v’ v’ v’ in progress
FACT sub-threshold v’ v’ v’ v’ in progress
HAWC daily-maps v’ in progress  in progress in progress in progress
Swift BAT  sub-threshold v n/a n/a n/a v’
Fermi LAT  sub-threshold v’ n/a n/a n/a v’

Table 1. Status of the active AMON real-time streams. All the non-public data streams
have been established and tested, and real-time operations have commenced for IceCube HESE
and EHE pass-through data. Real-time operations with coincident searches using sub-threshold
IceCube and HAWC data will begin soon.

triggering observatories to use sub-threshold data inaccessible to standalone analyses due to high
backgrounds. Providing a real-time network, standardized data transfer and format protocols,
AMON facilitates cooperation between disparate particle astrophysics observatories, leveraging
the large investments in these cutting-edge detectors to enlarge their discovery space in a
meaningful and potentially tranformative way.
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