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Abstract

Quantum chromodynamics (QCD) is a theory which describes the strong
interactions of the quarks. When the energy is lower than about 1 GeV, the
QCD coupling become so large that we can not study it perturbatively. Lattice
QCD can be used to study QCD non-perturbatively and is suitable for the low
energy region.

Much remains to be studied in QCD), such as resonances in scattering processes.
Liischer’s formula can relate the scattering process in finite volume lattices with
phase shifts in the infinite volume scattering in the real world. In this study, we
will construct a model for m — 7 scattering on a lattice. We will use this model
to investigate Liischer’s approach. p — 77w, and p — 7w channels in the J =1
isovector m — 7 scattering will be considered.
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Chapter 1

Introduction

1.1 Prelude

There are four basic forces in the universe, namely electromagnetism, the
weak interaction, the strong interaction, and gravity. The Standard Model
(SM) developed in the twentieth century unifies the first three of them, electro-
magnetism, the weak interaction, and the strong interaction. Although theories
have been developed to include the remaining force, the inclusion of gravity still
needs further investigations.

The known world of matter is composed of quarks and leptons. In the
Standard Model, leptons, such as electrons, undergo the influence of electro-
magnetism and the weak interaction, while quarks experience one more force,
the strong interaction. Quarks are bound together by the strong interaction,
forming hadrons. Hadrons, in turn, can be categorized into baryons, composed
of three quarks, and mesons, composed of a quark and an antiquark.

The two most common hadrons are the protons and neutrons. They are
the components of the atomic nuclei. Protons and neutrons are composed of up
quarks and down quarks. Besides protons and neutrons, there are other hadrons
with higher energies, which are referred to as resonances.

The sign of the existence of the resonances can be found in scattering exper-
iments. For example, an experiment in the Brookhaven National Laboratory in
which a K~ meson interacted with a proton led to the discovery of the resonance
Q7 .[1][2] Since the existence of the resonances are largely due to the strong in-
teraction, which binds their components together, these resonances can provide
us with good information for studying the strong interaction. However, there is
still much to learn about them.[3]
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Fig. 1.1.1 The discovery of Q~ in the bubble chamber photo on the left and a diagram
of particle tracks on the right. Photo courtesy Brookhaven National Laboratory.[4]

We can study the resonances with quantum chromodynamics (QCD), a the-
ory describing the strong interaction, which plays an important role in these
hadrons. QCD can be studied perturbatively when the coupling constant in the
strong interaction is not large. However, this is not the case for energy region
below about 1 GeV.[5] The masses of many resonances are situated in this en-
ergy region. While QCD can not be studied perturbatively in this region, we
can investigate it with the help of lattice QCD.

A scattering process can be modelled in a finite volume lattice with imposed
boundary conditions. Such lattices have states with a discretized energy spec-
trum from which phase shifts can be extracted. Martin Liischer proposed a
method to calculate the phase shifts assuming that the finite volume effect is
small. Thus, Liischer’s formula relates the phase shift of infinite volume scat-
tering in the real world with the finite volume model. We would like to compare
the finite volume resonant phase shifts acquired by Liischer’s formula with the
phase shifts of the infinite volume case.

1.2 Overview of Contents

We will start with a simple model involving the scattering of two pions in the
presence of a fictious low-lying sigma resonance. The mass of the pion is about



0.138 GeV,[6] well within the lower energy region for QCD where perturbative
methods can not be applied. The scattering process will be studied on a lattice
with periodic boundary conditions imposed on it.

In Chapter 2, we first introduce the setting of the lattice. We are going
to see the effects of imposing a lattice with periodic boundary conditions on
a scattering process. We will review the theoretical background of Liischer’s
formula. The employment of the t-matrix and the r-matrix in the infinite volume
scattering will also be included.

In Chapter 3, we will build a toy model. First we construct a Hamiltonian
for 0 — 7w scattering, where 7 is a scalar meson which we use to investigate
Liischer’s approach. We use the Hamiltonian to get the energy eigenvalues at
certain lattice sizes. Then, the phase shifts at these energy eigenvalues can be
acquired by Liischer’s formula. The exact infinite volume phase shifts can be
calculated by evaluating the t-matrix or r-matrix. Thus, we can compare the
finite volume phase shifts acquired by Liischer’s formula and the infinite volume
phase shifts.

In Chapter 4, we are going to apply our techniques to the p decay in the real
world. First we only consider the p — w7 channel. Then we will include both
the p — 77 channel and the p — wn channel. We will compare the phase shifts
obtained using Liischer’s formula with the exact infinite volume phase shifts.



Chapter 2

Theoretical Background

2.1 Overview

Atomic nuclei are composed of protons and neutrons. Protons and neutrons
are in turn composed of quarks. In scattering processes, besides the proton
and neutron, there are other resonances with higher energies which are also
composed of quarks. The quarks in hadrons such as protons, neutrons, and
other resonances, are governed by the strong interaction.

Quantum chromodynamics (QCD) is a theory which describes the strong
interactions of the quarks. The strong interaction has a peculiar feature called
asymptotic freedom. Quarks in a hadron are subject to the strong force which
binds them together. The larger the distance between two quarks, the larger the
energy associated with them. When quarks are close to each other, the strong
force is reduced, as if they were free particles. When two quarks in a hadron get
further away from each other, the force which binds them gets stronger, and it
needs more energy to separate them further. If the energy becomes too large,
the hadron becomes two, and a new pair of quarks appear, each of which reside
in a hadron. Hence, the quarks are always found in hadrons and never observed
in isolation. This is known as the color confinement.

In the high energy area, QCD can be studied perturbatively and analytically.
However, in the low energy area, which is below about 1 GeV, the coupling
constant

1
g (k?) ~ ———
Bo ln(%)
becomes large, and QCD can not be studied perturbatively.[7] There still re-
mains much to study for QCD in this region, for example, the identification of
resonances in the low energy region.[8]



Lattice QCD is a technique to study the strong interaction non-perturbatively,
and hence can be used to study QCD in the low energy regime.[9] By us-
ing lattice QCD and fitting techniques, the resonance masses have been ex-
tracted successfully from the pion scattering spectrum in the region m2 >
0.3GeV2.[10][11]. A lattice is a box of spacetime with finite volume specific
boundary conditions. By using a lattice, the macroscopically continuous space-
time has been to be discretized. Hence, some finite volume effects would be
introduced.[12][13][14][15][16]

Lattice QCD has proven very successful in studying low energy QCD. In
addition, by twisting the boundary conditions, it can be used to study many
specific aspects, such as multichannel scattering.[17] A problem for lattice QCD
is that, when the lattice volume gets bigger, the required computational capacity
increases drastically and becomes very demanding. Many methods have been
used to tame the demand of the computational capacity, such as the quenched
approximation, in which the sea quarks are ignored.[18] However, the computa-
tional cost is still a barrier which lattice QCD must face.

Besides the problem of computational cost, lattice QCD is subject to finite
volume effects. For example, for a scattering process on a lattice, because of the
finite volume and the imposed boundary conditions, the wave functions of the
resonances as the intermediate states only allow certain discretized momentum
values, and hence, certain discretized energy levels. However, a resonance in
a scattering process in the real world does not correspond to any specific en-
ergy level in the lattice. We have to take the limit L — oo, which demands
computational capacity.

For the low energy regime, M. Liischer proposed a method to extract the
scattering phase shifts of the waves from the discretized energy spectrum of a
lattice. Liischer’s formalism can relate the scattering process in finite volume
lattices with phase shifts in the infinite volume scattering in the real world.
There is an inventory of literature about two-pion scattering with o as the reso-
nance in the intermediate state. However, investigations of Liischer’s formalism
for different situations, such as other resonances, still need to be carried out.
In this study we will look at ¢ — w7 scattering first. Then, we will direct our
investigation to p — 7w scattering. In the latter case, the p — mw channel will
also be considered.

In order to investigate Liischer’s formula, we have to set up a model of
scattering on a lattice and calculate its energy spectrum. Then, we can use
Liischer’s formula to get the phase shifts of the allowed energy levels. We will
also compute the infinite volume scattering phase shifts, so that we can compare
the phase shifts acquired from the finite volume lattice with those in the infinite
volume case. So, in the following sections, we will start with the introduction
of the setting and the construction of our scattering model.

2.2 Setting of Lattice

We first construct a toy model to investigate the scattering of two identical
scalar mesons, for example, pions, in the center of mass frame. We will model



this scattering process in a lattice of finite volume L x L x L with periodic
boundary conditions.

L
Fig. 2.2.1

The particle positions are x, y, and each particle has mass m,, momentum
k, energy W. We have

r=x-—-y

2
k:%r\n\7 ncZ?

The energy of two non-interacting mesons is

k2
W =2m, + —
2p

for non-relativistic case, where  is the reduced mass, or

W =2y/m2 4+ k?

for the relativistic case. For now we take the non-relativistic case as we are
interested in studying a matter of principle, not a realistic problem.
We limit our toy model to two pion elastic scattering:

W < dm,

with spin 0, i.e. scalar fields. We have W < 4m, instead of W < 3m, because
G-parity forbids 7 + 71 — 7w+ 7 + 7.

2.3 Constructing Hamiltonian

We will construct a Hamiltonian and use it to get the energy spectrum of
the system on the lattice. In our toy model, we take a fictious ¢ meson as a

10



resonance lying just above the two-pion threshold. This ¢ then dominates the
low-energy m — 7 scattering.

Fig. 2.1.2

Assume the interaction Lagrangian is

2
Lint = gom
In this interaction Lagrangian, there is no derivative term, and we can con-

struct the Hamiltonian as

H=Hy+ H;

Hy=-L;

We are going to construct H by finding the elements (j |H|i) where |i), |5)
are the two-pion states.

In the center of mass frame and non-relativistic kinetics, suppose the mo-
menta of the pions are k and —k, then

Hylo) = myo

Ho 7 ()m(—k)) = 2my + &

24
where the reduced mass is
M
h=
By periodic boundary condition of the lattice we must have k = %’T |n|,

where n = (n1,n2,n3), n1,n2,n3, n| € N. Denote the allowed k’s by k;. kg is
just %’Tq, and we have

11



mego

2my 0
k2
2mg + b
Ho = M+ ,
e + 2
i 2
0 2m, + 24

where m,q is the bare mass of o.
The interaction part of the Hamiltonian is

0 g(ko) g(k1) g(ka) g(ks) g(ka)
g(ko)
g(k1)
Hy = | 9(k2)
g(ks3) 0
g(ka)

and the allowed values of k are

2w
k=—
Lq

where ¢ = |n|. So we have g9 = 0 for kg, ¢ = 1 for ky, g2 = 2 for ks, etc.
However, for ky, there are six corresponding pairs of n’s for the center of mass
coordinates coming in three pairs, namely {{0, 0, 1}, {0, 0, -1}}, {{0, 1, 0},
{0, -1, 0}}, {{1, 0, 0}, {-1, 0, 0}}. Hence, we will have three rows and columns
corresponding to k1 in H;. To make H; more compact, we can re-weight each
k, according to the number of corresponding n’s.

The re-weighted interaction Hamiltonian is

0 VCog(ko) Cig(kr) Cag(ks) Csg(ks) +/Caig(ks)

where g(k,) is the coupling constant and C; is the number of distinct 3-D
vectors n = (n1,ng,ng) where ny,na,ns, |n| € Z and |n| = ¢q. Then, the full
Hamiltonian is

12




Mmoo VCoglke) Cig(kr) Cag(k2) VCsg(ks) /Cag(ks)

VCog(ko) 2my
VCig(k1) 2mg + TI%
H = \/@9(@) 2mg + 7],%
VCsg(ks) 2my + %
VCig(ks) 2my + 24

It is then straightforward to extract the energy eigenvalues Wy, Wy, Ws...
of the full Hamiltonian H at different lattice sizes.

2.4 Avoided Level Crossing

If there is no interaction, the full Hamiltonian is just Hy, and the energy
2k2

eigenvalues are just mg, 2m ., 2m, + o An example of the relation between
energy eigenvalues and L can be seen from Fig. 2.4.1.

220 | EEsEs ]
5 - == Ry S ]
E 215 p—u1{ 1 _ —— ]
= T — — ]

210 F T e o

205 B =

200k : — — — :

) 34 36 38 40
L [1fmz]

Fig. 2.4.1 An example of the energy
spectrum (in units of m,) with no interaction

When the interaction is turned on, the full Hamiltonian is Hy + H;, and the
relation between energy eigenvalues and L becomes what are displayed in Fig.
2.4.2.

13
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Fig. 2.4.2 An example of energy
spectrum (in units of m,) with interaction

The eigenvalues of H will exhibit the phenomenon of avoided level crossing.
This phenomenon makes extracting resonance masses more complicated.[19]

2.5 Liischer’s Formalism

In this section we are going to review Liischer’s formalism based on his
papers.[20][21]

Liischer’s formalism relates the scattering phase shift, §, of the infinite vol-
ume case in the real world to the momentum, k, and hence length, L, of the
finite volume lattice model.

We are looking at the low energy regime, so we begin with a non-relativistic
toy model. The Hamiltonian operator in this case is

1
H=-—>+4V
o V V()

The Hamiltonian above is an elliptic operator. The elliptic regularity im-
plies that any locally square integrable, i.e. normalizable, solution ¥(r) of the
Schrédinger equation

HY =EV

is smooth. Hence, the expansion of ¥(r) in spherical harmonics

0 l
'1/1(1') = Z Z )flm(gv(z))\:[llm(r)

=0 m=—1

converges rapidly, i.e. the deviation of ¥, (r) from j;(kr) approaches 0 as
I — oo, where ¥,,,(r) are smooth solutions of the radial Schrodinger equation

14



d? 2d I(l+1)

Gt e

Because of the potential, the total mass of a two-body system may be less
than the sum of the mass of each particle. For example, in a hydrogen atom,

which is composed of a proton and an electron, we have

+ k2 = 2uV (r) ¥ (r) =0

myg < myp + Me
So for two identical particles, we could have W < 2m, and in this case by
W =2vVm?2 + k?

we have a pure imaginary momentum k. For the present case, we are looking
at scattering above threshold, so we only consider real k’s.

Let w;(r, k) be solutions of the radial Schrodinger equation, for r near the
origin, we have

liII(l) 7~y (r, k) = constant
r—
and

\I'lm(r) = bimuy (7‘, k)

for some constants by,,.

In the region where the potential is small, i.e. r > R, the solution wu;(r, k)
of the radial Schriodinger equation is a combination of two linearly independent
spherical Bessel functions j;(kr) and n;(kr):

u(r, k) = ay(k)gi(kr) + B, (k)ni(kr)

where oy, [3; are constants and

aj (k) = au(k")
Bi (k) = Bi(kY)
al(fk) = 70&[(/€)

Bi(=k) = =B, (k)

For real £ > 0 and angular momentum /[,

zioi) = 1R T, (k) (2.5.1)

ou(k) — iBy(k)
where §;(k) is the phase shift in the sense that it is the shift in the phase of the
wave function in the region where the potential V' = 0 caused by the interaction.

15



U(r) is called a singular periodic solution of the Helmholtz equation

(V2 + K2 W(r) = 0
if
(i) ¥(r) is a smooth function defined for all r # 0 (mod L).
(ii) ¥(r) satisfies the Helmholtz equation.
(iii) ¥(r) is periodic with period L.
(

iv) near r = 0, ¥(r) is bounded by 7, ie.
r
sup ’T‘A-H\I/(I‘)‘ <oo, AeZ
o<r<i

All other solutions can be constructed from these singular periodic solutions.

Since the expansion of ¥(r) converges rapidly as [ increases, we can introduce
an angular momentum cutoff at [ = A.

Since the Green function has the form

G(r, k?) = ‘SZP 72

where p = 2fn, n € Z3. We discuss the solution U(r) of the Helmholtz equation

in two cases: the case where k € R, k 75 |n| n € Z3 and the case where

kER,k:f|n|,n€Z3.

In the region where the potential V(r) = 0, the Schrodinger equation be-
comes the Helmholtz equation. The Helmholtz equation in spherical coordinates
can be solved by separation of variables as a product of the radial part and the
angular part.[22] As shown in [20], because of the non-spherical boundary condi-

tions, for k € R, k 75 |n| n € Z3, in the solutions of the Helmholtz equation

with angular momentum cutoff of two particle scattering can be written as

) U
Z Z vlm kl“( (Q,qb)nl(kr)—i—z Z M 1 Yirm (0, ) jir (kr))

=0 m=—1 I'=0m/=—1"

(2.5.2)

And by expansion of ¥(r) in products of spherical harmonics and ¥y, (r), we
have

o0

\I/(I‘) = ZZ:O ZI: l}/lm(ev (b)qjlm(r)
0m=" (2.5.3)

o0

= Z Z }/lm(ev ¢)blm(al(k)jl(kr) =+ ﬂl(k)knl(kr))

1=0m=-1

Since (2.5.2)=(2.5.3) , by comparing the j;(kr) part, we have

16



A l

[e's) l
Z Z )/lm(aaﬁb)blmal ]l kr Z Z Ulm — k'lJrlZ Z Mlm l’m’}/l’m( (;5)_]y(k?’l“)

=0 m=-1 =0 m=-1 =0m’'=-1
where

I+ J

Mlm,l’m’ = kl+1 Z Z aq )Clm ,Jjs,l’'m/’

J=[=U] S—ﬂ

with Z;5(1,¢%) being the zeta function and Ci, jsm/ being related to the
Wigner 3j-symbols through

ow
[ BN
~
A/~
SN
» .
‘N
3 7
~

Com it = (<17 @@+ D@ 1) (

By cubic symmetry in My, i7m/, it becomes

[e's) l
S Yim(0, @)bimau (k)i (kr) Z Z O Y “Z Z Misrmt i Y (8, 0)r (k)

=0 m=—1 U'=0m'=-1" =0 m=—1
(2.5.4)
By comparing the j;(kr) part we have
_ )l’
blmal Z Z Ul’m/ kl + Ml/m’ Im (255)
U'=0m’'=-=U
By comparing the n;(kr) part we have
oo 1 A l .
Z Z Y'lm(eagﬁ)blmﬁl( )TL[ k'f’ Z Z 'Ulm lirlY (evd))nl(kr)
1=0 m=—1 =0 m=—1
and hence
(D" 1
bim 3 (k) = vy —2 kT
imBi (k) = v A
SO
47
Vim = blmﬂl(k) (—1)lk;l+1 (256)

for I < A. Put v, of (2.5.6) into (2.5.5) we have

bimou(k Z Z birm B (B) My im

=0m/=—U

17



Move the right hand side to the left we have

Al
blmal(k) — Z Z bl/mfﬂl/(k)./\/ll/m/’lm =0 (257)
I'=0m'=—1
Hence we have a system of homogeneous linear equations for the coefficients by, .
For by, [ can be from 0 to A. So the number of equations equals the number of
variables. Since it is a homogenerous system, b;,,, = 0 must be its solution, unless
the associated determinant of the linear equation system is zero. So the problem
is to find values of k corresponding to the eigenvalues of the Hamiltonian with
introduced angular momentum cutoff such that the associated determinant of
the linear equation system of (2.5.7) becomes zero.
We can define linear operators

[le'm/]lm = Ml’m’,lm
[Av]l’m = O‘l(k)vhn

[Bv]lm = ﬂl<k)vlm
Then from (2.5.1) we have

A—1iB
The associated determinant of the linear equation system of (2.5.7) becomes
det(A— BM). In order to have non-zero solutions for by,,, the associated deter-
minant has to be

det(A—BM)=0

In the case where k is real, since M is Hermitian and since the eigenvalues of
A — iB do not vanish, we have

det((A — iB)(M —4)) £ 0

So we have
det(A — BM) = det((A — BM) Eﬁ — zg% — z;) =0
— det((=2i)(A — BM) Ej - g% = 3) —0
e =) =
qer(AM A+ iBJ(\ith)(ﬁ{i)iA +iBM B,

18



(A+iB)(M —1i) — (A—iB)(M +1i)
(A—iB)(M —4)
A+iB M+i
A—iB_M—i)

det(

) =0

det( =0

= det(e?® —U) =0 (2.5.8)
where

M+
M —i

U =
2 3 .
For k € R, k = T [n|, n € Z°, let p be any of these special values of k,

then the solutions of the Helmholtz equation with angular momentum cutoff of
two particle scattering can be written as

l
=47 Z Wyp Z Z ilYltn(HIH ¢p)5/lm(03 ¢).]l (p7‘)

=0 m=—1
_ L) U
+ Z Z UZTYL kl+1( (07 (]S)nl(k’/’)-i-z Z Mg’rn,l"rn')/llﬂll (07 ¢)«]l/(k’r))
1=0 m=—1 U=0m/=—1'
where
1 2 J U <% / 2.2
Mumttms = q1—1>r\rrlll Q- n2( T |n| zp:Z Ylm(ep’ d)p)ylm(@p, ¢p))+Mlm,l’m’+O(q n)

With cubic symmetry, it becomes

—47TZ’LU[)Z Z it Yl/m/ 9p7¢ VY (0, )i (pr)

U'=0m/'=-1"

l

kl Y (0, ) (k1) 1YY Mips 1o Yi (6, 9) (k)

+Z Z Ul/m’ -

U=0m'=—1' 1=0 m=—1
(2.5.9)
By comparing the j;(kr) part of (2.5.3) and (2.5.9), we have
bimay (k —47rprZ Z it Y, Op,(b +Z Z V'
U=0m'=—1' 0m'=—1'
(2.5.10)
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By comparing the n;(kr) part of (2.5.3) and (2.5.9), we have

—1)!
blmﬂl(k) = Ulm,%k“rl

If we set by, = 0 and vy, = 0, then by (2.5.10)

[e'S) U

ary w, Yy > Y (6,,6,) =0
p I'=0m/=—1U

There will be no solutions for a fixed k since the number of spherical harmonics
is larger than the number of p’s. When by, # 0, there are further solutions if
and only if

lir‘n | det(e*® —U) =0
q—|n

which can be seen as a special case of (2.5.8). So now we have considered all
real k’s.

If the spherical component of a smooth periodic solution of the Helmholtz
equation for ¥(r) can be written as

Wi (1) = bim (cu(k)ji(kr) + B, (k)ni(kr))

L
i.e. such by, exists in the region R < r < 2 then there exists a unique

eigenfunction of the Hamiltonian H which coincides with ¥(r) in the region

L
R<r< 3 Hence, eigenfunctions of H can be related with «;(k) and §,(k),
and from (2.5.1) the energy spectrum of an energy interval is calculable when
the scattering phase shifts in that energy interval are known.
2
In our simple model, we have k = il |n| by the periodic boundary conditions

of the lattice and consider the S wave case. In the case of S wave, where the
quantum number [ is equal to 0, the homogeneous linear equation system is
reduced to one equation, and the dimension of the matrix e?*® — U is reduced
to 1 x 1. Hence

(2ido _ 0+ _

Moo — 1
where mqg is the matrix element of M in this case.
Let ¢(q) be a function such that

moo +7 o —2i6(a)

’I’I’Loo—i

Then we have Liischer’s formalism

20



e2ido(k) — 00 T —2ig(q) (2.5.11)

Moo — 1
where
#(0) =0
S
= o

1 2
Mmoo = mzoo(laq )

and Zgo(1, ¢?) is the zeta function at j = 0, s = 0, namely:

1 1
Zoo(1,¢%) =
00(1,47) \/Engsnz_(f
And we have 5
T2q
tano(q) = " Zoo(1,¢?)

We need to calculate Zoo(1,¢?). Zo0(1,¢?) has infinities when n? = ¢2, and
we need to remove the infinities, i.e. regularize it. We can write

1 1 11
nz_qz _n2—q2 n2 n2
_ n2 — (nz _ qz) i
n2(n22 - q2) n? 2 2
q L @ @

i —g) 2 nt
n*¢® —q¢*(n°¢*) 1 ¢

Let N = n?, we have

! ¢ 1. ¢
n2—q¢> N2(N—-¢2) N N2

Because we are summing over n € Z3, the terms involving N = n? should be
weighed by C), as in Section 2.3. Hence we have

1 R q* 1 q
Zm__?+;CN(m+N+W)

nezs

which can be written as[20]
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1 1 e q4
Zoo(1,¢%) = —=(—— + Jo+ i® + > On~gri—g
OO( ,q ) \/E( q2 + 0 + 19 +N:1 NNQ(N_q2))

where Jop = —8.91363292 and J; = 16.53231596

200 [~ T
_ 1wl ]
W | |
= | [ |
g 0 = 'I . B, ,JIJ".l' ,"I .|I:.' IJ'I.'I .’I}I| |||| |J
% II/-'_ ||I/- |r/ i |II |IIII |II |||I II.I' r |IIIH I |I ll l-

[ | '
= -muil ‘ |
[T 1 O — — PO | 1 1
o 1 2 3 4 5
q

Fig. 2.5.1 Regularized Zy(1, ¢?) function

#(q) can be obtained from Zyy(1,¢?) with an adjustment. The adjustment
arises from the periodicity of the tan function and does not effect Liischer’s
formula. This adjustment will be introduced in Section 2.7.

2.6 Infinite Volume Phase Shift

Now we turn to the phase shift for scattering in infinite volume. We assume
the interaction Lagrangian as

Lin: = g(k)or?
and potential operator in the form

9(k)g (k')
E— (my, —2my)

The corresponding Lippmann-Schwinger equation is

t=v+vGt

where t is the t-matrix.
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Fig. 2.6.1 Schematic diagram of the t-matrix

The t-matrix has the general form

Lk, K5 BY) = g(R)g(k)r(E) (2.6.1)
where
2+ 2
Ef=F (R g

2m  n—02m
When momenta are written in vector,

24
f Kk, k)t (K, ko; 2o
)v(k,ko)+/d‘3k’k’2vl< 7 Jull ko)
Yo

2m

kot
2m

tl(kvk/; K o2
+in— 5~

Let us separate the directions and magnitudes of momenta, so that we have

~ ~ 24 ~ ~
> Vi (k) Y72, (ko) (b, kios 5-) = 3 Vi () Y5, (Ko )un (K, ko)
lm

lm

24
o L vk, Kt (K ko; S
+ Z fooo dk‘lk'IQY'lm(k)le,m/(kO) fdkyvlm(kl)yvl’m' (k/) ( k2 ) ( 1/22 L)

’ ’
lLm,’m Ty 5m

+in —
Using the orthonormality of the spherical harmonics, we find:

K2+ oo K (K s )
9y = vy (k, ko) + / dk'k? —— o

ti(k, ko; 5
0

m 2m

Substitute ¢; and v; by t(k,k'; ET) = g(k)g(k')7(ET) and v = %
and replace m by p we have

k)g(k © dk'k2g(k)g(k') g(k')g(k)r(ET
g(k)g(k)r(EY) = 9(k)g(k) +/ 9(k)g(K) g(K)g( ,2)7( : )
E+2m,; —myo o E+4+2m;—mgo E—g—u—f—zn
2 2 kot
k2t 1 o 1 dk'k=g*(K")7(3)
T(ﬂ)fE—i—%nﬂ—mgo /0 E+42m,; —myo E_%i+in
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(k§+)(1 /oo 1 dk’k/292(k/) 1
T — —_— fr—
2/ 0 E+2mﬂ—mgoE+—%+in E +2my; —mgo
k2t 1
( = dk k’2 2
o0 ’ (k/)
2,“ B+ —+ Qm,r — Mgy — 0 m
kot 1
( )_ k2 fe'o) 1112 2 ’
2‘UJ ﬁ + 2m7‘r — Mgo — 2/1 f dkkzk k’2<l(>]:77)
Hence we have
k’2+ gZ(k)
ik by 5—) = 4 ST (2.6.2)
Ry _ av Brgm\rv )
M 21 + 2m71' Mmeo — 2#[ k2 k'2+i7]

Now we look at the relation between the ¢ matrix and the r matrix. In
operator form, from

r(E) = v+ vGE (E)r(E) (2.6.3)

where G¥' means adopting the Cauchy principal value of the Green’s function
in Gy, and from

tHEY) =v+vGo(ET)HET) (2.6.4)
if we multiply (2.6.3) by v~! on the left and 7~! on the right, we have
v =714+ GE(E)
and if we multiply (2.6.4) by v~! on the left and ¢t~! on the right, we have
L =t"HEY) + Go(ET)
So we have
“HEY) =r7H(E) + (Gy (B) — Go(B™))
HET) =1(E) + r(E)(Go(ET) — Gy (E)H(E™)
By Sokhatsky—Weierstrass theorem,

b
lim M:P /f (x —c)d

n—0J, x—c=xin o

where a < ¢ < b. Hence

12

> k
bk ot BY) = ko B) = i [ AR 3 E)S(E — 5t o E)
0 m
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Let

oK
2m
Then by
k2 (kE + /fl)(]ﬂE — k/)
0(E—-5—) = o 5 )
= Dslky — k)
ke

we have

ti(k, ko; ET) = ri(k, ko; E) — irmkgri(k, kg; E)ti(kg, ko; ET) (2.6.5)

Let k = kg in (2.6.5), we have
ti(ke, ko; ET) = ri(kg, ko; E) — irmkgri(kg, ke; E)ti(kg, ko; ET)
ti(kg, ko; EY)(1 + immkgri(kp, kg; E)) = ri(kg, ko; E)

ri(ke, ko E)
t ]{) k ,E“F — k)
= ti(kg, ko; ET) 1+ immkgr(kg, kg; E)

2+ 24
For elastic scattering, we need ¢;(kg, kg; %) and r(kg, kg; I;Lm), so we set

2+ 24
k() as kin tl(kE, /{10; E+) and ’I"l(kE, ko; E) to get tl(kE, kE; %) and ’I"l(k'E, kE; %)
For convenience, let

T = —mmkg

Then we have

kg, kg E)
'E+ _ Tl( Ey,NVE,
tl(kE’kE7 ) 1—ixrl(kE,kE;E)

wty(kp, kp; ET) 1

xrl(kE,kE;E) o 1—z'xrl(kE,kE;E)

. at)(kg, kp; EY) 1+ iari(kp, kg; E)
1— kg, kg E =
|1 —ixr|(kg, kg; E)| ary(kg, kg E) |1 +ixr)(kg, kg; E)|

Let

1+ iJZTl(kE, kE; E)

- = cosd; +isind
|1+Z$Tl(kE7k‘E;E)| ! !
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where §; is real and called the phase shift. Then

LCT[(kE, kE; E)

sind; =
YT ¥ iwr (kg ke B)|
5 1
cosd; =
T+ iz (kg kg B))|
Then we have
E2F A
vt (kg, kE; ﬁ) = ¢ sin 4
k2 e gin §,
= ti(kp, kp; )= ——"—— 2.6.6
l( E,NE, Zm) Tmkg ( )
and
k2 tan d;
= r(kp, kp; 22) = — 2.6.7
’I"l( E,NVE, Qm) kaE ( )
From (2.6.2) and (2.6.6) we have
2 k k2+ 07 o} )
k2 ¢ (1 o di' k22 (k) tulk, k; 207) - _%
Z+2mﬂ-_ma—0_2ﬂf0 m /’L w0
Similarly from (2.6.3) we have
k3 g*(k)
ri(k,k; 5%) = = s (2.6.8)
2#' ﬁ + 2m7r — Mgo — 2MP fo d]%ﬁk/qz_i(_];])
From (2.6.7) and (2.6.8) we have
2(k k2 tan
k2 . o dREPGR(R) rulk, k; 270) T :Hkl (2.6.9)
ﬁ“‘Qmﬂ——mo—O—Ql},Pfo m M HRo

An alternative way is that the  matrix has the general form

r(k, ks E) = g(k)g(k')p(E)

and by applying the same method of derivation of t-matrix from (2.6.1) to (2.6.2)
on r-matrix we can also find (2.6.9).

By (2.6.9), we can calculate the infinite volume phase shifts for 77 scattering
through the coupling to the o with its bare mass, myq, chosen to yield a dressed
pole position at £ = 2.1 (m).
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Fig. 2.6.2 Infinite volume phase shift

2.7 Finite Volume Phase Shift

Liischer’s formula relates the infinite volume phase shifts to the energy eigen-
values of the finite volume scattering problem. For [ = 0 case, from (2.5.11),

2ido(k) — 00T _2ig(q)
moo — )

where (k) is the phase shifts. Then

¢(q) =rm — do(k),r €N

¢(q) is a continuous function and ¢(0) = 0. However, since

3
m2q
tan =
*(2) Zoo(1,4?)
We then can plot ¢(q) as
T3q
= arctan(— ———< 2.7.1
4(@) (g (271)

. . . i . .
since the codomain of arctan is between :I:E, we would have a discontinuous

#(q) as
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In order to make ¢(g) continuous, starting from ¢ = 0 in the direction of in-
creasing ¢, we should add appropriate multiples of 7 to ¢(q) every time when

3
m2q . . .
————— goes from oo to —oo. The adjusted ¢(q) is continuous
Zoo(1,¢) @

14':' [ T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T ]
i y
120 e
[ A
L _.-”
10 b //'
an [ ¥
= [ ,f'/
5 L ey
1] C //_
i -
s [ ot
o
an | e ]
L - 1
|:| L " ._.—1—'1_'_.'_'_. PR R Rt 1 1 1 1 1 ]
] 1 2 3 4 5 ] 7
q
Fig. 2.7.2

and the adjustment does not affect the value of e=2*¢(9) in Liischer’s formula

2
Since k = iq, we can plot ¢(q) and rm — do(k) in the same diagram as in Fig

2.7.4.
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Fig. 2.7.4 Solutions of ¢(q) = rm — do(k) at L =24 (1/m,)

In Fig. 2.7.4, the intersections where ¢(q) crosses rm — do(k) are solutions of

o(q) =rm —do(k),r €N

and at a fixed L we have a set of solutions. By identifying §(k) in section 2.6
as do(k), we can relate ¢ and hence, k, in the finite volume scattering with the
infinite volume phase shifts. And by

2

E=2m;+ —
m+2u
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k=2u\/E—2m;,
q= %QM\/E —2m,

we have

¢>(%2u\/E —2mg) =17 —5(2u\/ E — 2m;)

Thus we can relate the energy spectrum of the finite volume scattering with the
infinite volume phase shifts.
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Chapter 3

Pion-Pion Scattering by
Hypothetical Sigma

3.1 Overview

In this chapter we will study our model for ¢ — 77 scattering problem in
more detail.

Consider two-pion scattering with ¢ as the intermediate state in the low
energy region above threshold. Our model is a non-relativistic one. We model
the scattering in a finite volume lattice with settings as mentioned in Section
2.2 and 2.3. With the Hamiltonian operator acting on the wave function in the
Schrédinger Equation

HY = EV

we can get the energy eigenvalues of the Hamiltonian, i.e. the energy spectrum
of the finite volume scattering. By calculating the r matrix for 77 scattering,
we can determine the infinite volume phase shifts, §(k). With Liischer’s formula

(2id0(k) — 00 T _2ig(q)
moo — )

we can obtain the phase shifts in terms of the energy eigenvalues in finite volume
scattering. Hence, we can study m7 scattering with our finite volume model,
extracting, for example, the energy of the w7 resonance in the continuum.

3.2 Interaction Coupling

In the Hamiltonian matrix:
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Moo VCog(ko) Cig(k1) /Cag(ks)
mg(kO) 2m7‘r

2
H = VCig(k1) 2m, + %

V 029(k2) 2m7r + %

there are non-zero off-diagonal terms g(k). These involve the coupling constant,
together with some momentum dependence:

9(k) = g(0)u(k)

where u(k) is a form factor. w(k) turns off the interaction in the high energy
region while retaining the interaction in the low energy region. We set g(0) =

0.13 (mx 1/ %) and adopt a form factor of Gaussian form
2
u(k) = e
In our toy model, we set m, = 2.1 (m), choose

A~ /mymgs
and set A = /2.1 (m,). Hence we have

g(k) = g(0)e™ 2

with above mentioned g(0) and A. The shape of the form factor g(k) is shown
in Fig. 3.2.1.

E [z

Fig. 3.2.1 Dependence of the form factor g(k) on energy
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For the discretized case such as g(k,) in the Hamiltonian, there should also

27
be a factor (f)% because of the normalization. Hence

3 27T 3 _ﬁ 277 3 r2
Meo \/C’O(f)ig(O) vCl(f)EQ(O)e AZ VCQ(T)EQ(O)e A%
2
V() 9(0) 2
. 2T 3 _k k2
H=1 VCi(7)2g(0)e » 2 + AL
o >
VCa(T)3g(0)e 200+

3.3 Momentum Cutoff in the Hamiltonian

In the Hamiltonian describing the ¢ — w7 interaction, although we have
figured out the form of the elements, we have not figured out the dimension
of the matrix. We have to give a finite dimension to our Hamiltonian, since
numerically it is impossible to get the energy eigenvalues of a Hamiltonian of
infinite volume. We should set a reasonable cutoff which would not greatly
influence the energy eigenvalues.

First we note that, for an m x m matrix A,,, if {\1, A2...\;,} are its eigen-
values, then the n x n matrix A,

Am 0

An = )‘m+1
>\m+2

An

has eigenvalues {A1, A2...Amy A1, A2 An }e

2
kn

2
In our Hamiltonian, the off-diagonal elements are in the form \/Cn(—ﬁ)%g(O)e* Az,

L
k2 ke
which has a form factor e” 22. When k,, is very large, e~ 32 will become very
2 k3
small, hence we have \/Cn(%)%g(O)e_T? ~ 0 for large k,,.

Hence, the infinite dimensional Hamiltonian H can be approximated as
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H ~0 ~0

T
I

~0 Am+1
~0 )\m+2

where H is an m X m Hamiltonian with momentum cutoff. If H has eigenvalues
{1, A2...An }, the eigenvalues of H will approximately be the eigenvalues of H
and non-interactive energy levels {41, Am2...}, since the corresponding off-
diagonal terms are close to 0. Hence, we can remove the rows and columns
corresponding to very large momenta without influencing the remaining energy
eigenvalues greatly. That is, we can impose a cutoff on the Hamiltonian.

We plot matrix dimensions and the lowest five energy eigenvalues with real
momenta i.e. W > 2m, for different values of momentum cutoff, &y .y, for the
Hamiltonian at different L’s, as shown in Figs. 3.3.1 to 3.3.6.

Sl:l y y y T y y i T i T i T i i i T

14 — la — 148 — 2.0 — 2.2 — 24
b (z)
Fig. 3.3.1 Matrix dimensions at different ky.x and at L =24 (1/m,)
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2105 (= i -. 1 |- i |- L -. i -I i -u i -I .- H |-
14 la 1.2 2.0 2.2 2.4
Iy (M)

Fig. 3.3.2 Lowest five eigenvalues with real
momenta at different kpyax and at L =24 (1/my)

200 T T T T T T T T T T T T T T T T

i
160 [ o ]

40 [ ]

A
N
b1
b Y
‘.
b
LY

1m0 [ - g

an -

eol— .y
1.4 la 1.3 2.0 2.2 2.4

Py (M)
Fig. 3.3.3 Matrix dimensions at different ky.x and at L =40 (1/m,)
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400 [ > 1
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Fig. 3.3.5 Matrix dimensions at different kmax and at L =60 (1/m;)
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Fig. 3.3.6 Lowest five eigenvalues with real
momenta at different kpax and at L =60 (1/m;)

We find that the lowest five eigenvalues do not change significantly according
to different Kk ax in the plotted region. So the momentum is large enough in the
plotted region to be chosen as the momentum cutoff k., for the Hamiltonian.

We choose kpyax ~ 4.4 m, in our model.

3.4 Energy Spectrum

By working on a finite volume lattice, we will get a discrete energy spectrum
from the eigenvalues of the Hamiltonian operator for the scattering process, as

shown in Fig. 3.4.1.

30

W ity )

L {1jmz)

Fig. 3.4.1 Energy Spectrum of the ¢ — 77 system around L = 60 (1/m.)
with m, marked as the horizontal line at W = 2.1 (m,)
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Each line of the energy spectrum corresponds to the energy of an eigenstate
of the Hamiltonian operator. However, ¥ is not an energy eigenstate of the
Hamiltonian operator in infinite volume but a mixture of the energy eigenstates.

At a fixed lattice size, we can get a set of energy eigenvalues, as shown in
Fig. 3.4.2.

L (1jmz)
Fig. 3.4.2 Energy eigenvalues (dots) of ¢ — 7w scattering at L = 60 (1/m)
with m, marked as the horizontal line at W = 2.1 (m,)

Since ¥ is a mixture of the eigenstates of the Hamiltonian operator, none
of the energy eigenvalues in Fig. 3.4.2 corresponds to the exact resonance en-
ergy, or the exact resonance mass. However, we can extract the phase shifts of
these energy eigenvalues by Liischer’s formula and try to locate the mass of the
resonance.

3.5 Quasi-Infinite Volume Phase Shifts

By imposing finite volume conditions, we have acquired a discrete energy
spectrum. We can also find the influence of finite volume conditions on the
r-matrix. From (2.6.9), in the infinite volume case, the r-matrix is

2 2
9°(k) - .@):_tan&

0o dk'k?g> (k') ) ko
fo kZ—k'2+in a a

k2
ﬁ +2m; — myo — 2uP

From

P/OO /(@) dx:/oowdm

2 — q? T
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and since for spherically symmetric function f(x)

/000 daa?® f(z) = % /dQ /OOO dea f(z) = % /d3xf(x)

we have

0o dk’k’zgz(k’) _p 00 dk/k’292(kl)
0 k2_k/2+in Jo k/2_k2_in
dk k:/2 2(k/) k‘2 2(k')
k/2

0
e <] k/2 2 k/ k2 2
/ k/2 / dk/k/2
Q 2g2( a 2 2 2
/ k’k +/ dp KR (k)
. ) K2(k2 — k? i

1 g (k') L[~ k*g*(k)
= 47r/ d3k/k/2 L2 + 7/ dgklk/z(kzz — k2)

P

In finite volume case, we can discretize the integral with the following sub-
stitutions:

Jaw ) = S CEPC, )

q

with C the number of distinct 3-D vectors n = (nq, ng, ng) where ny, no, ng, n| €
Z and |n| = q. Then by putting

and through discretized version of (2.6.9) we have

g% (k) _ tand
% +2my — Mgy — 2uY Tk
where
- _(2E)2m ) o _2(W=_2mm)
- _L(ZLT)BZ Cylgoe” 27 ) 1 21 3 Co2u(W — 2mz)(goe A2 )
dr " L = (32)2q — 2pu(W — 2m,) 47r L o (22)2q((25)2q — 2u(W — 2m,))
So we have
—mpkg® (k)

)

0 = arctan(

k2

o 4+ 2my — My — 242

Of course, the § here is not the phase shift of the real infinite volume case.
Hence, we shall call the such ¢ calculated from the discretized r-matrix with
finite volume conditions "quasi phase shift".
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In numerical calculation, we have to give ¢ an upper limit to the discrete
(F)2a?

sum over g. Since we have a term e~ A2 within the sum, we set the upper
limit at 10L.

We can observe the influence of finite volume conditions by plotting the quasi
infinite volume phase shifts against different L’s.

[l
u

& fmd)

W ()

Fig. 3.5.1 Infinite Volume Phase Shifts (L = oo) and Quasi
Phase Shifts at different L’s with L in the unit of 1/m,

As shown in Fig. 3.5.1, the curves of the quasi infinite volume phase shifts
move towards to the curve of the real infinite volume phase shifts. This is
in agreement with the expectation, as the model approaches infinite volume
scattering.

3.6 Extracting Phase Shifts from the Energy Spectrum

For an infinite volume scattering process, the allowed phase shifts of the
resonance form a continuous curve, with Fig. 2.6.1 as an example. When the

T
energy is at the resonance mass, the phase shift is —.

For a finite volume scattering process, the allowed energies of the system
take a series of discrete values. By Liischer’s formalism, they correspond to the
solutions, with Fig. 2.7.4 as an example. Hence, by applying Liischer’s formula
to the energy eigenvalues of the Hamiltonian established in Section 3.2 and 3.3,
we can acquire the corresponding phase shifts.

For the finite volume case, the allowed k’s are

2
k:%\n\,n€Z3
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Hence, we will have a discrete sum over k’s. From 2.7.1

3
m2(qg
= arctan(—————+
$(q) ( Zoo (L. 0
where
Zoo(1 2):L( —+Jo+J +ZC L)
o0ll,q N 0 19 P NN(Nti)
as in Section 2.5. Hence we have
s
0 = arctan( ¢ )

=S 4 2
e+ 3 Gl + )

Then, for the z-th lowest energy eigenvalue W, we have

0, = arctan( =

Replacing g, by (%) 2u(W, — 2m,), we have

N\W

(2 ) 2M(W _Qmﬂ)

0, = arctan( = EATETA——

(52)22n(Wa

—2mz)) ))

1
\/ﬁ( (&= )2(2#(W —2my)) E_: (m2 (m—(52)2(2u(Wo—2mn))) + m?
(3.6.1)
By (3.6.1), we can extract the phase shift of a specific energy eigenvalue through
Liischer’s formalism.
In numerical calculation, we need an upper limit for the m in (3.6.1). We
make this upper limit adaptively increasable. In the codes, we compare the sum
for m =1 to n, denoted by S, and the sum for m = n + 1 to n + 1000, denoted

by S,. When =2 is smaller than a certain acceptable value, then the loop is
stopped, the upper limit is m = n 4 1000, and S + S,, is assigned to the sum.
If not, then we increase m by 1000 and repeat the process.

In the following plots, shown in Figs. 3.6.1 through 3.6.10, the phase shifts
acquired by Liischer’s formula at different values of L.
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Fig. 3.6.1 Infinite volume phase shifts (L = o)
and phase shifts at L = 15, 16, and 17 (m,).
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2.12 113

e e
2.07 2.08

IE.EIQ 2.10 Iﬂ.ll
W )
Fig. 3.6.2 Infinite volume phase shifts (L = o)
and phase shifts at L = 18, 20, and 22 (m,).
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IE.I:IQ 2.10 Iﬂ.ll Iﬂ.lﬂ I 213
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Fig. 3.6.3 Infinite volume phase shifts (L = o)
and phase shifts at L = 24, 26, and 28 (m,).

nf

Iﬂ.ﬂg 2.10 Iﬂ.ll Iﬂ.lﬂ I 2.13
W )
Fig. 3.6.4 Infinite volume phase shifts (L = o)
and phase shifts at L = 30, 33, and 36 (m).

43



4 [rad)

07 I Iﬂ.UEI I IE.I:IQ. I 210 I Iﬂ.lll I Iﬂ.lﬂl I 213
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Fig. 3.6.5 Infinite volume phase shifts (L = o)
and phase shifts at L = 40, 43, and 46 (m.).
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Fig. 3.6.6 Infinite volume phase shifts (L = o)
and phase shifts at L = 50, 53, and 56 (m).
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4 [rad)

2.07 208 2.0 2.10 211 2.12 213
W [rtz)
Fig. 3.6.7 Infinite volume phase shifts (L = o)
and phase shifts at L = 60, 63, and 66 (m.).
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Fig. 3.6.8 Infinite volume phase shifts (L = o)
and phase shifts at L = 70, 73, and 76 (m).
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Fig. 3.6.9 Infinite volume phase shifts (L = o)
and phase shifts at L = 80, 85, and 90 (m.).
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Fig. 3.6.10 Infinite volume phase shifts (L = o)
and phase shifts at L = 95, 100, and 105 (m).

We can observe that the phase shifts extracted from Liischer’s formula ap-
proach the infinite volume phase shifts as the lattice size increases.

In Fig. 3.6.1 to Fig. 3.6.10, the finite volume phase shifts calculated from
Liischer’s method are discrete dots and do not fall exactly on the pole position.
We calculated the pole position by interpolation, which coresponds to the in-

tersection of the straight line between the two closest dot below and above the
pole and the horizontal line which marks § = g In Fig. 3.6.1 to Fig. 3.6.10,
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all of the dots representing phase shifts extracted from Liischer’s formula lie
very close to the curve of the exact infinite volume phase shift. This means
that Liischer’s formula works quite well at L > 15 1/m,. By observing cases
with smaller values of L, for example, in Fig. 3.6.1 and Fig. 3.6.2, we can find
that the problem of deciding the pole position comes from the scarce numbers
of dots of phase shifts extracted from Liischer’s formula, which caused the devi-
ations of the pole position calculated by interpolation. In cases of larger values
of L, for example, in Fig. 3.6.9 and Fig. 3.6.10, with more densely distributed
dots of phase shifts extracted from Liischer’s formula, the deviations of the pole
position calculated by interpolation decrease significantly.

Another factor which may cause the deviations of the pole position is the
finite volume effect. The finite volume effect is exponentially suppressed as
the lattice size increases. As L approaches oo, the finite volume phase shifts
approach to the exact infinite volume phase shift.

We use a linear fit to obtain the finite volume phase shifts at the pole position
and denote it d7,, where L is the side length of the lattice. At the pole position,

b
the infinite volume phase shift, 0, is 3" We calculate the difference ratio

oL — 96 6L — 90
L 7% for the 0 — 7 scattering. The difference ratio LT g plotted
L

L
against L as shown in Fig. 3.6.11.

0 ]
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] 20 40 an a0 100 120

L [1/mz]

Fig. 3.6.11 Difference ratio between finite and infinite volume phase shifts
(solid line) and its exponential fit (dashed line) of the o — 77 scattering

In Fig. 3.6.11, we can find that at smaller L values, the oscillation of the

% is larger. The larger oscillation at smaller L val-
L

ues is because of the scarce numbers of dots of phase shifts extracted from
Liischer’s method. Hence, the pole positions calculated by interpolating these
dots are prone to be influenced by the positions of neighboring dots calculated

by Liischer’s method from the energy eigenvalues.

difference ratio
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We use an exponential fit to plot the relation between the difference ratio
o — 4
L "% and L, which is shown as the dashed line in Fig. 3.6.11. We can find
L
that, besides the oscillation mentioned above, the absolute value of the difference
ratio in exponential fit diminishes as L increases. This result is in accordance
with the decrease of finite volume effect at larger values of L as expected.

48



Chapter 4

Rho-Pion Scattering

4.1 Overview

In this chapter we apply our toy model to a vector meson in the real world.
We will investigate the 7-m scattering in p — 77 channel first and then with
both p — 77 and p — mw channels included.

The p meson is a vector meson with total spin 1 and odd parity. The w
meson is also a vector meson with total spin 1 and odd parity, while the 7 is a
pseudoscalar meson with total spin 0 and odd parity. The self-energy of the p
meson through the p — w7 channel is shown in Fig. 4.1.1.

Fig. 4.1.1

The decay of the p meson in p — 7w channel is shown in Fig. 4.1.2.




We will attend to the scattering phase shifts first and then to the finite
volume estimates of the phase shifts.

4.2 R-matrix for Pi-Pi Scattering in Rho Decay

In this section we only consider the p — 77 channel. The pole is situated
at about 5 to 6 m,, so instead of treating the energy non-relativistically as in
Chapter 3, we adopt a relativistic picture. For the decay of the p meson in the
p — mm channel in Fig. 4.1.1, the t-matrix takes the form

G2 (k) G2 (k) 506
ook ) = Br = = By = BBy A0 80

where

E = 2wy, = 24/k% +m2

G(k) is a coupling parameter, ¥, (E™) is the p meson self energy correction
term, and A(k) is a normalized factor associated with the pole in the self energy
denominator.

From[23]
2 2,2(1./
k“u® (k')
Y oan(ET :fpm/d“k:’ -
prr(B7) G (e 2 — B2 — in)
_ fp7r7'r/ 3 / kJ2 2(k/)
373 (2w ) (E? — (2wpr)? +im)
p7r7r /d , k/4 2(]{1)
37‘(2 wk/(E 7(2(4)]4) +Z'77)
and from
/dk/ 2G2(kl)
P7r7r E2 — ka,) +i77

by comparison we have

2 K2 (R)

G*(k) = 3772 W

where u(k) is a form factor. We define the resonance position as the point at
which the real part of the full p-propagator passes through zero,

E? —m2y — Sprr(m,) =0

mi = m;2>0 + Zprn(my)
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hence

toole = Ggole(k) _ Ggole(k)
? E? — mio — Zprr(my) Im ¥ prr (M)
At the pole we also have
T
0= —
2
SO
tpole - A(kpolp) 1
Let
m2
kpole = Tp - m721—
then

tpole = A(p) X
Since the energy at the pole has the following form
my = 4(p* +m3)

then the imaginary part of ¥, has the form

2 2 oo 14,2
—ImYer(m,) = —Im( ”’;’T/ aw— )

32 J, wrr (M2 — (2wpr)? + i)
2f e /°° " lu? (k') )
3r2 J, wr - 4(p? — K2 +in)

2 0o 14,2 (1.

T k k .

- 6p 5 / ap ) -imé(p? — k%)
s 0 Wpr

= —TIm(

By using the relation for a Direc delta function

§(z* —a?)

= w(S(x —a)

we have
ife [ KN )0(p ~ )
—ImY¥ = T dk’
m P (mp) 67T 0 Wi |2p‘
i f e u?(p)
127w,

then the t-matrix at the pole is
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2
Gpole
—Im EPM

2fp7r7r p UQ(P)
- 3r2 T w,
T if2 . pPu(p)
127w,
81
P

and we can derive the normalized factor A(k) from

tpole

= A(k) = ——

So the relationship between the t-matrix t(k) and the phase shift §(k), in this
case is

1) = —%e%(’@ sin 6 (k)
So we find
G*(k) 8  _is(k)
=t(k) = ——e k) g 421
fZ m,%o S Y a0 t(k) 7rk:e sin 0 (k) ( )
and the r-matrix is
G?(k) 8
= = 4.2.2
2, P, (B) r(k) —= tan 6(k) ( )

The principal value of the loop integral X, is

2Uprr o [ gy K ()
Pzpﬂ'ﬂ'(E) - 372 P/ dk wk/(Ez — (2Wk’)2)
2 0 14,201
_ P7T7TP/ dk/ kK u (k)
3772 o wi((wp)? — E?)
14,2 (k!
P7I'7T P/ dk/ 1 k (k )
3772 4Wk’ k2 — (LE2 —m2)
2 00 "4 2 /
_ pTT P/ dk/ P
672 0 wy, K2 —k?
Since
o0
1
P/ dx 5
o T

p/ o SO
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p[Tasd p [ a1

xr2 — g2 r2 — g2

When f(z) has a factor of x, then f(z) — f(a) has a factor of = — a, hence there
left a factor = + a in the denominator and the integral is real. In this case the
principal integral becomes a standard integral:

T Ny RS [
0 0

2 — g2 xr2 — g2

So we can write

2

o [ 1 KFWAE) kMR (R
Pzpﬂ-ﬂ-(E) _ _’P / dk’ ( U( )_ U( ))
672 J, 2 — K2\ wr (423
o 3777r /oodk/ 1 ( k'4u2(k’) B k4u2(k) ) WL
- 6r K2 =k K2+ m2 k% +m2
Substituting PY,~(F) into (4.2.2) and using (4.2.3) we have
212 K2u2(k) .
372 Wik
. - - =r(k) = —— tand(k)
AR 4 mg)? —m2y + L [0 db g (B ki mh

\/k’2+m3r \/kz—&-m?‘_

We can get the value of m,g by fitting it so that the pole occurs at F =

2VEk? +my; =m, and 0(k) = g

4.3 R-matrix for Infinite Volume Rho Decay with Lin-
ear Denominator

In the last section we found the r-matrix, as shown in (4.2.1). In order to
match the propagator appearing in the Feynmann diagramms associated with

1
p — 7w, the Green’s function on left hand side of (4.2.1) has the form 7
of which the denominator is quadratic. In order to simplify the solution of the

problem using Hamiltonian methods on a finite lattice, we choose to linearize
the problem. That is, we take the Green’s function in the from ﬁ
The t-matrix with a linear denominator takes the form
G2

Efmpof

t(k, k, ET) = A(k)e®™® sin §(k)

Spnn(BF)
2mp0

The normalization factor, A(k), must be re-evaluated. At the pole, let
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m
kpole =p= Tp - m721—
then we have
2 2
toole = Gpole _ 2mPOGpole
pole — -
My — Mpo — E’J#(::”) Im ¥ 77 (1))
and
tpole = A(p) 1
So
2f3w2w p2u?(p)
tpole = 2Mpo~ i dy
ey
16m 01
= p—
16m 0
Alp) = ——
™
16m 0
= A(k) = -—2%
(k) _—

This is the form of the t-matrix with a linear denominator

G2 16mp0 _is(r)
S5 =t(k) =— % €

2m 0

sin 3 (k) (4.3.1)
FE— mpo —

and the r-matrix is

Gz(k) 16mp0
Py — TR =

2m 0

tan (k) (4.3.2)

E— mpo —
Substituting PX .. (E) into (4.3.2) using (4.2.3), we have

212 k2u2(k)

372 Wi :’r(k):—

f2 o0 1 E4u2 (k') k4u? (k)
2¢/ (k2 4+mz)2 —m s kEE dk’ —
(k* +mx) p0 + 2m,0 672 fo k2 k2 ( N \/k2+m3r)

(4.3.3)
This is the r-matrix with a linear energy denominator which we want to find.
We can get the value of m,o by fitting it so that the pole occurs at £/ =

2VE2 4+ myz =m, and §(k) = g

The form factor u(k) appearing in (4.3.3) is taken to be

16mp0

tan

o(k)



4
which is of a Gaussian-like form. The reason for the factor e~ A% in u(k) is so
that the p — 77 coupling, which is matched to give the experimental value for
the resonance width, is not scaled at the pole k = p.

The vertex function is
[2f 2 ku(k
G(k) — P 'LL( )
3n2 | Jwi

which is shown in Fig. 4.3.1.
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Fig. 4.3.1

By using the following parameter values from phenomenology[24][25]

form = 6.028
m, = 0.770 GeV
my = 0.138 GeV

A =0.585 GeV

we find

mpo = 0.80404 GeV

By (4.3.3), we can calculate the infinite volume phase shifts for p decay in
the p — w7 channel, as shown in Fig. 4.3.2.
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4 [rad)

E [tV
Fig. 4.3.2

4.4 Constructing the Hamiltonian

We will now construct a Hamiltonian and use it to get the energy spectrum
for the p — 77 scattering on the lattice, as we have done in Section 2.3. The
Hamiltonian, in this case, is in the form

mpo Gl G1 GQ G2
Gl 2wk1
Gl —kal
H = GQ 2wk2
G2 72&)]62

The energy eigenvalues of the Hamiltonian are

G2
where

En = 2wkn

(4.4.1) matches the effective filed theory in the weak coupling limit where
A= E,| > 0. In this case A >~ m,. So we can replace A by m,g in the right
hand side and have
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G2
A== 2mn 3
,00

The p pole is identified by the solution of
E? =m2, 4+ Xpnrn(E)
By expanding
)\2 = mio + Epﬂ—ﬂ—()\>
we have

A= Sy (M)

Sprn(N)

= mp[) + Qmpo

And in the weak coupling limit the p pole is identified by

Y oan(m
m, >~ My + 7p2n§ UpO)
P
So near the pole we have
GQ
M, > Mpo — 2Mpo Z o 2 —m2, (4.4.2)
n n 14
and
Y oan(m
m, o~ myg 4 LI QTT(L 0”0) (4.4.3)
P

We should choose G, so that the two equations, (4.4.2) and (4.4.3), are the
same. The discretized version of

2 12,2 (1.
__Jpmm 3 1./
mer(E) T 343 /d k (ka/)((ka’)Q - EQ)

is

— f27r7r 27 C’ﬂk?tu2(kn)
Yprn(E) = — 3P7T3 (f)s ; (2wr, ) ((2wr,, )? — E?)

So we have
Eprr (Myp0) _ 1 pm <m 32 Crkiu?(kn)
2m 0  2m0 37r3 L — (2w, ) (2w, )? — m2)
and

Epmr (Mp0) G
ZomMe0) _ g,
20 - Zn: (2w, )? —
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Hence

/2 o 5 Crk2u?(ky)
2 _ __Jpmm (2R y3nlns \Pn 4.4.4
Gn=73 4m,%07r3( 7) o (4.4.4)

Here, L is the size of the lattice, C,, is the number of 3-D vectors 7 =
(n1,n9,n3) satisfying the condition n1,n2,n3 € 0 or N and the condition |ﬁ| =

q € N,and k,, = %q. Then we can get the energy eigenvalues of the Hamiltonian
by solving the equation

2T Ch k2u?(k,
)\:mpo—2mpop7(f)gz ()

(2 1 (B2 + ) — X2

for A\. In order not to have a Hamiltonian with too large a size, we take the
form factor as

and truncate the entries of the Hamiltonian at u(k,) ~ 1072

4.5 Finding Finite Volume Phase Shifts

As in section 3.6, for the finite volume case, the allowed k’s are

2
k:%\n\,nez?’

From (2.7.1)
ﬂ%q
= arctan(— ——=
where
Zoo(1 q2)_i(—i+J +Jq2+§:0 L)
oold, FrAp 0 1 Z NNZ(N )
Hence we have
-
0 = arctan( a

= )
J e+ 5 Gty + 50)

m?2(m—gq m?

Then, for the z-th lowest energy eigenvalue W,, we have
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0, = arctan(

Since

we can replace ¢, by (%) w2 ;mf, and have
T3 () §WE - m2
O = aretan(— | S (Rrawromye | (RPGWEom2)
Ve t 2 GEm s ey T e )
(4.5.1)

By (4.5.1), we can extract the phase shift of a specific energy eigenvalue through
Liischer’s formalism.

As in Section 3.6, for numerical calculation, we make the upper limit for
m adaptively increasable. In the codes, we compare the sum for m = 1 to n,
denoted by S, and the sum for m = n + 1 to n + 1000, denoted by S,,. When

S,

— is smaller than a certain acceptable value, then the loop is stopped, the

upper limit is m = n+ 1000, and S + S, is assigned to the sum. If not, then we
S

increase m by 1000 and repeat the process. In this case we set — < 5 x 1074,

‘We plot the phase shifts of the p — 7 channel acquired by Liischer’s formula
at different L’s, as shown in Figs. 4.5.1 through 4.5.7.

zof

25 F

& [rad)

|:|_|:|: i S R U T T T S T R T S T SR T T
0.4 0.4 0 1.0 1.2 14

W [V
Fig. 4.5.1 Infinite volume phase shifts (L = o)
and phase shifts at L = 3 (fm)
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Fig. 4.5.2 Infinite volume phase shifts (L = o)
and phase shifts at L =5 (fm)

o f

af

& [rad)

1L5F

U.U: C P S T S L LT L LR e S [ S R o S S [ A LR i
0.4 0.4 0z 1.0 12 14

W [V
Fig. 4.5.3 Infinite volume phase shifts (L = o)
and phase shifts at L =7 (fm)
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Fig. 4.5.4 Infinite volume phase shifts (L = o)
and phase shifts at L =9 (fm)
30 I ' I : &
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Fig. 4.5.5 Infinite volume phase shifts (L = o)
and phase shifts at L = 12 (fm)
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Fig. 4.5.6 Infinite volume phase shifts (L = o)
and phase shifts at L = 24 (fm)

To verify that finite volume phase shifts moves towards the infinite volume
phase shifts as L increases, we find the finite volume phase shifts by interpolation
at W = 0.77 (GeV) and L = 3 (fm), 5 (fm), 7 (fm), 9 (fm), 12 (fm), 24 (fm) as
shown in Fig. 4.5.7.

| T o e s (R . B

16[

1:F ]

Fabion s peen e s pen e ap gy e ap ey e s ey
] 5 10 15 20 25

L [
Fig. 4.5.7 Finite Volume Phase Shifts (Solid Lines) Compared
with Infinite Volume Phase Shifts (Dashed Lines)

In Fig. 4.5.7, we can observe that, as L increases, the finite volume phase

shifts at all of the five different energies move towards the infinite volume phase
shifts.
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4.6 Inclusion of the Omega Meson

In this section we are going to include the w meson. Hence, we include two

coupled channels, that is, the p — w7 channel in Fig. 4.1.1 and the p — wm
channel in Fig. 4.1.2.

The self energy correction term arising from the p — wm channel is[23]

2
fpﬂ'w

— dk’
s | e

Zpﬂw -

/4,2 !
R, (F) (4.6.1)
+m2 +my, —2y/k?+m2)

where

e = gpﬂ';f'fr\/m

Gprew = 16 GeV !

fr =0.0924 GeV
and the form factor is

k4
Unw (k') = €™ a7

To obtain the t-matrix in this case, we can replace ¥, in (4.3.1) by X, +
Y pnw and get

G* + 16mp0 _ish) .
R Epm(EZHme(E*) =t(k,k,ET) = % ¢ sin d(k)
mpo
and the r-matrix is
G*(k) 16mpo
=r(k) = ——2= tand(k)
PYprn (E)FPEprw(E)
E - Mpo — . 2mpo 3 mk

By (4.6.1), as long as k < mTi — m2, there will be no pole in X ,,,.

We can get the value of m,g by fitting it so that the pole occurs at m, and
r matrix goes to co. We use

2

T ku‘/rW(k)
G<k) - 3;2 A/ WE
o4
e AT
U (k) = o4
e A%

as in Section 4.3.
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By using the following parameters from phenomenology|[25]

forr = 6.028
m, = 0.770 GeV
m,, = 0.782 GeV
my = 0.138 GeV

A =0.585 GeV

we find

mpo = 0.833 GeV

The infinite volume phase shifts for p decay with p — 7w and p — 7w
channels included are shown in Fig. 4.6.1.

4 [rad]

E [55V)
Fig. 4.6.1

4.7 Finite Volume Phase Shifts with Omega and Pion
Included

The Hamiltonian incorporating the p — 7m channel and the p — 7w channel
is
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mpo Gﬂ'l G7r1 Gwl Gwl

GTrl 2Wﬂ'l
GTrl _2w7r1
Gu Wr1 + Wl
Gwl 7((*)71'1 + wwl)

H= Gﬂ'2
Gﬂ'2
Gw2
Gw2

Gﬂ—g Gﬂ—g Gw2 GwQ
2w (4.7.1)
—2(4)7.-2
Wr2 + Wew2
_(wﬂ'Z + ww2)
The energy eigenvalues are
A =m0 — 2my0 Z —TT 2my Z E2 PRy (4.7.2)
71'7L wn
where
E, =2w;,
k2 +m2
Ew = Wy T Wr
~my, + k% +m2
The discretized version of (4.6.1)
» _ pfrw / k/4u3\'w(k/)
P 3m2f2 VE? +m2(E? +m2 +my, — 2/k% + m2)

is

b __fg’ﬂ'w QI SZCk% 72Tw(k)
e 3m2f2\ L)~ wen(Bun — E)

So we have
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Spre _ 1 fon (%)“”’chkiuiw(kn)wmm

2my  2mu03n2f2 \ L Wan (B2, — E?)

And we also have

So we have G, in (4.7.1) as

G — ,’?‘ﬂw (QI)S aniuiw(kn)(Ewn + E)
wn 48mi07r3f,2r L Wan

And we already have G, as in (4.4.4)

G2 — fﬂzﬂﬂ (QI)Ban’%uz(kn)

™ 24m§07r3 L Wan,

With G, G2,,, and (4.7.2), we can find the energy eigenvalues \’s.

Suppose one of the \’s has a value of W, then we can send it to (4.5.1) and
get the finite volume phase shifts. In this case, we set — < 5 x 107 as in

Section 4.5 and calculate the phase shifts at L = 3 (fm), 5 (fm), 7 (fm), 9 (fm),
12 (fm), and 24 (fm).

0s w7 os  os 1b
W [Gel]
Fig. 4.7.1 Infinite volume phase shifts (L = c0)
and phase shifts at L = 3 (fm)
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Fig. 4.7.3 Infinite volume phase shifts (L = o)
and phase shifts at L = 17 (fm)
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Fig. 4.7.5 Infinite volume phase shifts (L = o)
and phase shifts at L = 12 (fm)
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Fig. 4.7.6 Infinite volume phase shifts (L = o)
and phase shifts at L = 24 (fm)

To verify that finite volume phase shifts moves towards the infinite volume
phase shifts as L increases, we find the finite volume phase shifts by interpolation
at W = 0.77 (GeV) and L = 3 (fm), 5 (fm), 7 (fm), 9 (fm), 12 (fm), and 24
(fm).
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Fig. 4.7.7 Finite Volume Phase Shifts (Solid Line) Compared
with Infinite Volume Phase Shifts (Dashed Lines)

We also put the phase shifts where only p — 77 channel is considered into
Fig. 4.7.7 for comparison. We can observe that, as L increases, the finite volume
phase shifts at W = 0.77 (GeV) moves towards the infinite volume phase shifts
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in both cases where only the p — 77 channel is considered and where both
p — 7w and p — 7w channels are included.

In Fig. 4.7.1 to Fig. 4.7.6, the finite volume phase shifts calculated from
Liischer’s method are discrete dots and do not fall exactly on the pole position.
We calculated the pole position by interpolation, which coresponds to the in-
tersection of the straight line between the two closest dot below and above the

pole and the horizontal line which marks § = g In Fig. 4.7.1 to Fig. 4.7.6, all

of the dots representing phase shifts extracted from Liischer’s formula lie very
close to the curve of the exact infinite volume phase shift. This means that
Liischer’s formula works quite well at L > 3 fm. As discussed in Chapter 3, the
problem of deciding the pole position comes from the scarce numbers of dots of
phase shifts extracted from Liischer’s formula at small L values, which caused

the deviations of the pole position calculated by interpolation.
o — 0
As in Chapter 3, we calculate the difference ratio % The difference
L

-0
% is plotted against L as shown in Fig. 4.7.8 for the case where
L

only the p — 7 channel is considered and in Fig. 4.7.9 for the case where both
p — mm and p — 7w channels are included.

ratio

0030 ————
0025t

0.0 b

dr

0015 |

4. -dr

0.0

0.005 |

o000 L - 1
i 15 20 a5

L (fixy)

Fig. 4.7.8 Difference ratio between finite and infinite volume phase shifts
(solid line) and its exponential fit (dashed line) of p — 77 channel
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Fig. 4.7.9 Difference ratio between finite and infinite volume phase shifts (solid line)
and its exponential fit (dashed line) of p — 77 channel and p — 7w channel
As in Chapter 3, we use an exponential fit to plot the relation between the
difference ratio ————=2 and L, which is shown as the dashed lines in Fig. 4.7.8

L
and Fig 4.7.9. In Fig. 4.7.8, the difference ratio in exponential fit diminishes
as L increases. This result is in accordance with the decrease of finite volume
effect at larger values of L as expected.
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Chapter 5

Conclusion

5.1 Deviations of the Pole Position

In Chapter 3 we have calculated the infinite volume phase shifts and the
finite volume phase shifts of 0 — 77 scattering. In Chapter 4 we have calculated
the infinite volume phase shifts and the finite volume phase shifts of p decay
in p — 7m channel with and without the p — 7w channel. We use a linear
fit procedure to obtain the finite volume phase shifts at the pole position and
denote it d,, where L is the side length of the lattice. At the pole position, the
500 - 5L

oL
for the 0 — 7w scattering and the p decay in the p — 7w channel with and
without the p — mw channel.

The dots which represent the finite volume phase shifts calculated by Liischer’s
formula lie close to the curve of the exact infinite volume phase shift in all our
calculations in Chapters 3 and 4. This shows that Liischer’s formula works quite
well at the L values we have chosen. However, there are still deviations in pole
positions in our calculations.

The deviation of the pole position calculated by Liischer’s formula can be
attributed two factors. First, at small L values, the distribution of the en-
ergy eigenvalues of the Hamiltonian is scarce, and the pole position calculated
by Liischer’s formula through interpolation is prone to be influenced by the
positions of neighboring dots calculated by Liischer’s method from the energy
eigenvalues. Second, although Liischer’s method works quite well, there is still
the finite volume effect.

7r
infinite volume phase shift, 0, is —. We calculate the difference ratio

5.2 Lattice Effects

In the low energy region, QCD can not be studied perturbatively. Hence,
lattice QCD is an important method for investigating QCD and the resonances
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in the lower energy region. However, the imposition of a lattice with periodic
boundary conditions will cause discrepancies in the results of the finite volume
models compared to the infinite volume results. Increasing the lattice size can
reduce such discrepancies, but the cost is a huge demand in computational
capacity.

Liischer’s formula can relate the energy spectra of finite volume models to
infinite volume scattering processes. In this project, we have presented a finite
volume model, extracted the energy eigenvalues, and found the corresponding
phase shifts through Liischer’s formalism. We have applied our model to ¢ — 7
scattering and p decay in the p — 7m channel with and without the p — 7w

channel. For ¢ — 7w scattering, the exponential fit of the difference ratio
0oo — 0
2> L at the pole position is less than 1% when L > 21 (1/my). For p decay

oL,
0o — 0
in the p — 7m channel, the exponential fit of the difference ratio oo 7L at

o,
the pole position is less than 0.01% when L 2> 12 (fm). For the p decay in both

the p — 7 channel and the p — 7w channel included, the exponential fit of the

o0

0o — 0
TL at the pole position is at about 0.01% when L 2 10
L

difference ratio
(fm).

Because we extracted the finite volume phase shifts from the energy spectrum
of the scattering system, the finite volume phase shifts are discretized. When
there are not many energy eigenstates in the Hamiltonian, it is difficult to
determine the pole position from the finite volume phase shifts. The problem is
not so much the inaccuracy in Liischer’s method but the absence of a reliable way
to get the pole position from calculated phase shifts when their distribution is

— 67

sparse. We can find that, in order to keep the difference ratio small, we

L
need the lattice side length larger than a certain value. This is understandable,
since when L goes to oo, the volume of the lattice becomes infinite, the model
recovers the infinite volume scattering result, and the lattice effects decrease.

5.3 Prospect

We have presented the application of our model on the p meson. As a
prospect, our model may also be used for investigating other resonances in the
low energy region. For example, it can be used to investigate the excited states
of the nucleons, such as the A baryon.[26]

For the A baryon, we can fit the Hamiltonian matrix with A, g(0), and mag
as parameters to get the discrete energy spectra. With fitting technique and
a good choice of regulator, the Hamiltonian matrix approach can improve the
results calculated from Liischer’s method. An example of a good choice is a
regulator in the dipole form.

The Hamiltonian matrix approach is also easier for calculation, since it can
be difficult to generalize Liischer’s formula when we include more channels for
the A baryon. If an additional channel is included, a new generalization of
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Liischer’s formula might be needed. As for the Hamiltonian matrix, we only need
to adjust its rows and columns adequately when more channels are included, and
the Hamiltonian matrix approach can also help improve the results calculated
from Liischer’s method when multiple channels are included. In addition to the
A baryon, it can also be used to investigate other resonances.
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