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Abstract

Quantum chromodynamics (QCD) is a theory which describes the strong
interactions of the quarks. When the energy is lower than about 1 GeV, the
QCD coupling become so large that we can not study it perturbatively. Lattice
QCD can be used to study QCD non-perturbatively and is suitable for the low
energy region.
Much remains to be studied in QCD, such as resonances in scattering processes.

Lüscher�s formula can relate the scattering process in �nite volume lattices with
phase shifts in the in�nite volume scattering in the real world. In this study, we
will construct a model for � � � scattering on a lattice. We will use this model
to investigate Lüscher�s approach. � ! ��, and � ! �! channels in the J = 1
isovector � � � scattering will be considered.
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Chapter 1

Introduction

1.1 Prelude

There are four basic forces in the universe, namely electromagnetism, the
weak interaction, the strong interaction, and gravity. The Standard Model
(SM) developed in the twentieth century uni�es the �rst three of them, electro-
magnetism, the weak interaction, and the strong interaction. Although theories
have been developed to include the remaining force, the inclusion of gravity still
needs further investigations.
The known world of matter is composed of quarks and leptons. In the

Standard Model, leptons, such as electrons, undergo the in�uence of electro-
magnetism and the weak interaction, while quarks experience one more force,
the strong interaction. Quarks are bound together by the strong interaction,
forming hadrons. Hadrons, in turn, can be categorized into baryons, composed
of three quarks, and mesons, composed of a quark and an antiquark.
The two most common hadrons are the protons and neutrons. They are

the components of the atomic nuclei. Protons and neutrons are composed of up
quarks and down quarks. Besides protons and neutrons, there are other hadrons
with higher energies, which are referred to as resonances.
The sign of the existence of the resonances can be found in scattering exper-

iments. For example, an experiment in the Brookhaven National Laboratory in
which aK� meson interacted with a proton led to the discovery of the resonance

�.[1][2] Since the existence of the resonances are largely due to the strong in-
teraction, which binds their components together, these resonances can provide
us with good information for studying the strong interaction. However, there is
still much to learn about them.[3]
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Fig. 1.1.1 The discovery of 
� in the bubble chamber photo on the left and a diagram
of particle tracks on the right. Photo courtesy Brookhaven National Laboratory.[4]

We can study the resonances with quantum chromodynamics (QCD), a the-
ory describing the strong interaction, which plays an important role in these
hadrons. QCD can be studied perturbatively when the coupling constant in the
strong interaction is not large. However, this is not the case for energy region
below about 1 GeV.[5] The masses of many resonances are situated in this en-
ergy region. While QCD can not be studied perturbatively in this region, we
can investigate it with the help of lattice QCD.
A scattering process can be modelled in a �nite volume lattice with imposed

boundary conditions. Such lattices have states with a discretized energy spec-
trum from which phase shifts can be extracted. Martin Lüscher proposed a
method to calculate the phase shifts assuming that the �nite volume e¤ect is
small. Thus, Lüscher�s formula relates the phase shift of in�nite volume scat-
tering in the real world with the �nite volume model. We would like to compare
the �nite volume resonant phase shifts acquired by Lüscher�s formula with the
phase shifts of the in�nite volume case.

1.2 Overview of Contents

We will start with a simple model involving the scattering of two pions in the
presence of a �ctious low-lying sigma resonance. The mass of the pion is about

6

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 



0:138 GeV,[6] well within the lower energy region for QCD where perturbative
methods can not be applied. The scattering process will be studied on a lattice
with periodic boundary conditions imposed on it.
In Chapter 2, we �rst introduce the setting of the lattice. We are going

to see the e¤ects of imposing a lattice with periodic boundary conditions on
a scattering process. We will review the theoretical background of Lüscher�s
formula. The employment of the t-matrix and the r-matrix in the in�nite volume
scattering will also be included.
In Chapter 3, we will build a toy model. First we construct a Hamiltonian

for � ! �� scattering, where � is a scalar meson which we use to investigate
Lüscher�s approach. We use the Hamiltonian to get the energy eigenvalues at
certain lattice sizes. Then, the phase shifts at these energy eigenvalues can be
acquired by Lüscher�s formula. The exact in�nite volume phase shifts can be
calculated by evaluating the t-matrix or r-matrix. Thus, we can compare the
�nite volume phase shifts acquired by Lüscher�s formula and the in�nite volume
phase shifts.
In Chapter 4, we are going to apply our techniques to the � decay in the real

world. First we only consider the � ! �� channel. Then we will include both
the �! �� channel and the �! !� channel. We will compare the phase shifts
obtained using Lüscher�s formula with the exact in�nite volume phase shifts.
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Chapter 2

Theoretical Background

2.1 Overview

Atomic nuclei are composed of protons and neutrons. Protons and neutrons
are in turn composed of quarks. In scattering processes, besides the proton
and neutron, there are other resonances with higher energies which are also
composed of quarks. The quarks in hadrons such as protons, neutrons, and
other resonances, are governed by the strong interaction.
Quantum chromodynamics (QCD) is a theory which describes the strong

interactions of the quarks. The strong interaction has a peculiar feature called
asymptotic freedom. Quarks in a hadron are subject to the strong force which
binds them together. The larger the distance between two quarks, the larger the
energy associated with them. When quarks are close to each other, the strong
force is reduced, as if they were free particles. When two quarks in a hadron get
further away from each other, the force which binds them gets stronger, and it
needs more energy to separate them further. If the energy becomes too large,
the hadron becomes two, and a new pair of quarks appear, each of which reside
in a hadron. Hence, the quarks are always found in hadrons and never observed
in isolation. This is known as the color con�nement.
In the high energy area, QCD can be studied perturbatively and analytically.

However, in the low energy area, which is below about 1 GeV, the coupling
constant

�s(k
2) ' 1

�0 ln(
k2

�2 )

becomes large, and QCD can not be studied perturbatively.[7] There still re-
mains much to study for QCD in this region, for example, the identi�cation of
resonances in the low energy region.[8]
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Lattice QCD is a technique to study the strong interaction non-perturbatively,
and hence can be used to study QCD in the low energy regime.[9] By us-
ing lattice QCD and �tting techniques, the resonance masses have been ex-
tracted successfully from the pion scattering spectrum in the region m2

� >
0:3GeV 2.[10][11]. A lattice is a box of spacetime with �nite volume speci�c
boundary conditions. By using a lattice, the macroscopically continuous space-
time has been to be discretized. Hence, some �nite volume e¤ects would be
introduced.[12][13][14][15][16]
Lattice QCD has proven very successful in studying low energy QCD. In

addition, by twisting the boundary conditions, it can be used to study many
speci�c aspects, such as multichannel scattering.[17] A problem for lattice QCD
is that, when the lattice volume gets bigger, the required computational capacity
increases drastically and becomes very demanding. Many methods have been
used to tame the demand of the computational capacity, such as the quenched
approximation, in which the sea quarks are ignored.[18] However, the computa-
tional cost is still a barrier which lattice QCD must face.
Besides the problem of computational cost, lattice QCD is subject to �nite

volume e¤ects. For example, for a scattering process on a lattice, because of the
�nite volume and the imposed boundary conditions, the wave functions of the
resonances as the intermediate states only allow certain discretized momentum
values, and hence, certain discretized energy levels. However, a resonance in
a scattering process in the real world does not correspond to any speci�c en-
ergy level in the lattice. We have to take the limit L ! 1, which demands
computational capacity.
For the low energy regime, M. Lüscher proposed a method to extract the

scattering phase shifts of the waves from the discretized energy spectrum of a
lattice. Lüscher�s formalism can relate the scattering process in �nite volume
lattices with phase shifts in the in�nite volume scattering in the real world.
There is an inventory of literature about two-pion scattering with � as the reso-
nance in the intermediate state. However, investigations of Lüscher�s formalism
for di¤erent situations, such as other resonances, still need to be carried out.
In this study we will look at � ! �� scattering �rst. Then, we will direct our
investigation to �! �� scattering. In the latter case, the �! �! channel will
also be considered.
In order to investigate Lüscher�s formula, we have to set up a model of

scattering on a lattice and calculate its energy spectrum. Then, we can use
Lüscher�s formula to get the phase shifts of the allowed energy levels. We will
also compute the in�nite volume scattering phase shifts, so that we can compare
the phase shifts acquired from the �nite volume lattice with those in the in�nite
volume case. So, in the following sections, we will start with the introduction
of the setting and the construction of our scattering model.

2.2 Setting of Lattice
We �rst construct a toy model to investigate the scattering of two identical

scalar mesons, for example, pions, in the center of mass frame. We will model
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this scattering process in a lattice of �nite volume L � L � L with periodic
boundary conditions.

Fig. 2.2.1

The particle positions are x, y, and each particle has mass m�, momentum
k, energy W. We have

r = x� y

k =
2�

L
jnj; n 2 Z3

The energy of two non-interacting mesons is

W = 2m� +
k2

2�

for non-relativistic case, where � is the reduced mass, or

W = 2
p
m2
� + k

2

for the relativistic case. For now we take the non-relativistic case as we are
interested in studying a matter of principle, not a realistic problem.
We limit our toy model to two pion elastic scattering:

W < 4m�

with spin 0, i.e. scalar �elds. We have W < 4m� instead of W < 3m� because
G-parity forbids � + � ! � + � + �.

2.3 Constructing Hamiltonian

We will construct a Hamiltonian and use it to get the energy spectrum of
the system on the lattice. In our toy model, we take a �ctious � meson as a
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resonance lying just above the two-pion threshold. This � then dominates the
low-energy � � � scattering.

Fig. 2.1.2

Assume the interaction Lagrangian is

Lint = g��2

In this interaction Lagrangian, there is no derivative term, and we can con-
struct the Hamiltonian as

H = H0 +HI

HI = �LI
We are going to construct H by �nding the elements hj jHj ii where jii, jji

are the two-pion states.
In the center of mass frame and non-relativistic kinetics, suppose the mo-

menta of the pions are k and �k, then

H0 j�i = m�0

H0 j�(k)�(�k)i = 2m� +
k2

2�

where the reduced mass is

� =
m�

2

By periodic boundary condition of the lattice we must have k = 2�
L jnj,

where n = (n1; n2; n3), n1; n2; n3; jnj 2 N. Denote the allowed k�s by ki. kq is
just 2�L q, and we have
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H0 =

0BBBBBBBBBBB@

m�0

2m� 0

2m� +
k21
m�

2m� +
k22
m�

2m� +
2k23
m�

0 2m� +
2k24
m�

. . .

1CCCCCCCCCCCA
where m�0 is the bare mass of �.
The interaction part of the Hamiltonian is

HI =

0BBBBBBBBB@

0 g(k0) g(k1) g(k2) g(k3) g(k4) � � �
g(k0)
g(k1)
g(k2)
g(k3) 0
g(k4)
...

1CCCCCCCCCA
and the allowed values of k are

k =
2�

L
q

where q = jnj : So we have q0 = 0 for k0, q1 = 1 for k1, q2 = 2 for k2, etc.
However, for k1, there are six corresponding pairs of n�s for the center of mass
coordinates coming in three pairs, namely {{0, 0, 1}, {0, 0, -1}}, {{0, 1, 0},
{0, -1, 0}}, {{1, 0, 0}, {-1, 0, 0}}. Hence, we will have three rows and columns
corresponding to k1 in HI . To make HI more compact, we can re-weight each
kn according to the number of corresponding n�s.
The re-weighted interaction Hamiltonian is

HI =

0BBBBBBBBB@

0
p
C0g(k0)

p
C1g(k1)

p
C2g(k2)

p
C3g(k3)

p
C4g(k4) � � �p

C0g(k0)p
C1g(k1)p
C2g(k2)p
C3g(k3) 0p
C4g(k4)
...

1CCCCCCCCCA
where g(kq) is the coupling constant and Cq is the number of distinct 3-D
vectors n = (n1; n2; n3) where n1; n2; n3; jnj 2 Z and jnj = q. Then, the full
Hamiltonian is
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H =

0BBBBBBBBBBB@

m�0

p
C0g(k0)

p
C1g(k1)

p
C2g(k2)

p
C3g(k3)

p
C4g(k4) � � �p

C0g(k0) 2m�p
C1g(k1) 2m� +

k21
m�p

C2g(k2) 2m� +
k22
m�p

C3g(k3) 2m� +
2k23
m�p

C4g(k4) 2m� +
2k24
m�

...
. . .

1CCCCCCCCCCCA
It is then straightforward to extract the energy eigenvalues W1, W2, W3...

of the full Hamiltonian H at di¤erent lattice sizes.

2.4 Avoided Level Crossing

If there is no interaction, the full Hamiltonian is just H0, and the energy
eigenvalues are just m�; 2m�; 2m� +

2k2i
m�
. An example of the relation between

energy eigenvalues and L can be seen from Fig. 2.4.1.

Fig. 2.4.1 An example of the energy
spectrum (in units of m�) with no interaction

When the interaction is turned on, the full Hamiltonian is H0+HI , and the
relation between energy eigenvalues and L becomes what are displayed in Fig.
2.4.2.
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Fig. 2.4.2 An example of energy
spectrum (in units of m�) with interaction

The eigenvalues of H will exhibit the phenomenon of avoided level crossing.
This phenomenon makes extracting resonance masses more complicated.[19]

2.5 Lüscher�s Formalism

In this section we are going to review Lüscher�s formalism based on his
papers.[20][21]
Lüscher�s formalism relates the scattering phase shift, �, of the in�nite vol-

ume case in the real world to the momentum, k, and hence length, L, of the
�nite volume lattice model.
We are looking at the low energy regime, so we begin with a non-relativistic

toy model. The Hamiltonian operator in this case is

H = � 1

2�
52 +V (r)

The Hamiltonian above is an elliptic operator. The elliptic regularity im-
plies that any locally square integrable, i.e. normalizable, solution 	(r) of the
Schrödinger equation

H	 = E	

is smooth. Hence, the expansion of 	(r) in spherical harmonics

 (r) =
1X
l=0

lX
m=�l

Ylm(�; �)	lm(r)

converges rapidly, i.e. the deviation of 	lm(r) from jl(kr) approaches 0 as
l!1, where 	lm(r) are smooth solutions of the radial Schrödinger equation
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(
d2

dr2
+
2

r

d

dr
� l(l + 1)

r2
+ k2 � 2�V (r))	lm(r) = 0

Because of the potential, the total mass of a two-body system may be less
than the sum of the mass of each particle. For example, in a hydrogen atom,
which is composed of a proton and an electron, we have

mH < mp +me

So for two identical particles, we could have W < 2m, and in this case by

W = 2
p
m2 + k2

we have a pure imaginary momentum k. For the present case, we are looking
at scattering above threshold, so we only consider real k�s.
Let ul(r; k) be solutions of the radial Schrödinger equation, for r near the

origin, we have

lim
r!0

r�lul(r; k) = constant

and

	lm(r) = blmul(r; k)

for some constants blm.
In the region where the potential is small, i.e. r > R, the solution ul(r; k)

of the radial Schrödinger equation is a combination of two linearly independent
spherical Bessel functions jl(kr) and nl(kr):

ul(r; k) = �l(k)jl(kr) + �l(k)nl(kr)

where �l, �l are constants and

��l (k) = �l(k
�)

��l (k) = �l(k
�)

�l(�k) = ��l(k)

�l(�k) = ��l(k)

For real k > 0 and angular momentum l,

e2i�l(k) =
�l(k) + i�l(k)

�l(k)� i�l(k)
(2.5.1)

where �l(k) is the phase shift in the sense that it is the shift in the phase of the
wave function in the region where the potential V = 0 caused by the interaction.
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	(r) is called a singular periodic solution of the Helmholtz equation

(52 + k2)	(r) = 0

if
(i) 	(r) is a smooth function de�ned for all r 6= 0 (modL).
(ii) 	(r) satis�es the Helmholtz equation.
(iii) 	(r) is periodic with period L.

(iv) near r = 0, 	(r) is bounded by
1

r
, i.e.

sup
0<r<L

2

��r�+1	(r)�� <1; � 2 Z
All other solutions can be constructed from these singular periodic solutions.
Since the expansion of 	(r) converges rapidly as l increases, we can introduce

an angular momentum cuto¤ at l = �.
Since the Green function has the form

G(r; k2) = L�3
X
p

eipr

p2 � k2

where p = 2�
L n; n 2 Z

3. We discuss the solution 	(r) of the Helmholtz equation

in two cases: the case where k 2 R, k 6= 2�

L
jnj, n 2 Z3 and the case where

k 2 R, k = 2�

L
jnj, n 2 Z3.

In the region where the potential V (r) = 0, the Schrödinger equation be-
comes the Helmholtz equation. The Helmholtz equation in spherical coordinates
can be solved by separation of variables as a product of the radial part and the
angular part.[22] As shown in [20], because of the non-spherical boundary condi-

tions, for k 2 R, k 6= 2�

L
jnj, n 2 Z3, in the solutions of the Helmholtz equation

with angular momentum cuto¤ of two particle scattering can be written as

	(r) =
�X
l=0

lX
m=�l

vlm
(�1)l
4�

kl+1(Ylm(�; �)nl(kr)+
1X
l0=0

l0X
m0=�l0

Mlm;l0m0Yl0m0(�; �)jl0(kr))

(2.5.2)
And by expansion of 	(r) in products of spherical harmonics and 	lm(r), we
have

	(r) =
1P
l=0

lP
m=�l

Ylm(�; �)	lm(r)

=
1P
l=0

lP
m=�l

Ylm(�; �)blm(�l(k)jl(kr) + �l(k)knl(kr))

(2.5.3)

Since (2.5.2)=(2.5.3) , by comparing the jl(kr) part, we have
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1X
l=0

lX
m=�l

Ylm(�; �)blm�l(k)jl(kr) =
�X
l=0

lX
m=�l

vlm
(�1)l
4�

kl+1
1X
l0=0

l0X
m0=�l0

Mlm;l0m0Yl0m0(�; �)jl0(kr)

where

Mlm;l0m0 =
(�1)l
4�

kl+1
l+l0X

j=jl�l0j

jX
s=�j

ij

qj+1
Zjs(1; q2)Clm;js;l0m0

with Zjs(1; q2) being the zeta function and Clm;js;l0m0 being related to the
Wigner 3j-symbols through

Clm;js;l0m0 = (�1)m
0
il�j+l

0p
(2l + 1)(2j + 1)(2l0 + 1)

�
l j l0

0 0 0

��
l j l0

m s �m0

�
By cubic symmetry inMlm;l0m0 , it becomes

1X
l=0

lX
m=�l

Ylm(�; �)blm�l(k)jl(kr) =

�X
l0=0

l0X
m0=�l0

vl0m0
(�1)l0

4�
kl

0+1
1X
l=0

lX
m=�l

Ml0m0;lmYlm(�; �)jl(kr)

(2.5.4)
By comparing the jl(kr) part we have

blm�l(k) =

�X
l0=0

l0X
m0=�l0

vl0m0
(�1)l0

4�
kl

0+1Ml0m0;lm (2.5.5)

By comparing the nl(kr) part we have

1X
l=0

lX
m=�l

Ylm(�; �)blm�l(k)nl(kr) =
�X
l=0

lX
m=�l

vlm
(�1)l
4�

kl+1Ylm(�; �)nl(kr)

and hence

blm�l(k) = vlm
(�1)l
4�

kl+1

so

vlm = blm�l(k)
4�

(�1)lkl+1 (2.5.6)

for l < �. Put vlm of (2.5.6) into (2.5.5) we have

blm�l(k) =
�X
l0=0

l0X
m0=�l0

bl0m0�l0(k)Ml0m0;lm
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Move the right hand side to the left we have

blm�l(k)�
�X
l0=0

l0X
m0=�l0

bl0m0�l0(k)Ml0m0;lm = 0 (2.5.7)

Hence we have a system of homogeneous linear equations for the coe¢ cients blm.
For blm, l can be from 0 to �. So the number of equations equals the number of
variables. Since it is a homogenerous system, blm = 0must be its solution, unless
the associated determinant of the linear equation system is zero. So the problem
is to �nd values of k corresponding to the eigenvalues of the Hamiltonian with
introduced angular momentum cuto¤ such that the associated determinant of
the linear equation system of (2.5.7) becomes zero.
We can de�ne linear operators

[Mvl0m0 ]lm =Ml0m0;lm

[Av]lm = �l(k)vlm

[Bv]lm = �l(k)vlm

Then from (2.5.1) we have

e2i� =
A+ iB

A� iB
The associated determinant of the linear equation system of (2.5.7) becomes
det(A�BM). In order to have non-zero solutions for blm, the associated deter-
minant has to be

det(A�BM) = 0
In the case where k is real, since M is Hermitian and since the eigenvalues of
A� iB do not vanish, we have

det((A� iB)(M � i)) 6= 0
So we have

det(A�BM) = det((A�BM) (A� iB)(M � i)
(A� iB)(M � i) ) = 0

) det((�2i)(A�BM) (A� iB)(M � i)
(A� iB)(M � i) ) = 0

det(
�2i(A�BM)
(A� iB)(M � i) ) = 0

det(
AM � iA+ iBM +B �AM � iA+ iBM �B

(A� iB)(M � i) ) = 0
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det(
(A+ iB)(M � i)� (A� iB)(M + i)

(A� iB)(M � i) ) = 0

det(
A+ iB

A� iB � M + i

M � i ) = 0

) det(e2i� � U) = 0 (2.5.8)

where

U =
M + i

M � i

For k 2 R, k =
2�

L
jnj, n 2 Z3, let p be any of these special values of k,

then the solutions of the Helmholtz equation with angular momentum cuto¤ of
two particle scattering can be written as

	(r) = 4�
X
p

wp

1X
l=0

lX
m=�l

ilY �lm(�p; �p)Ylm(�; �)jl(pr)

+

�X
l=0

lX
m=�l

vlm
(�1)l
4�

kl+1(Ylm(�; �)nl(kr)+

1X
l0=0

l0X
m0=�l0

M0
lm;l0m0Yl0m0(�; �)jl0(kr))

where

Mlm;l0m0 = lim
q!jnj

1

q2 � n2 (�
2

� jnj
X
p

il�l
0
Y �lm(�p; �p)Ylm(�p; �p))+M0

lm;l0m0+O(q2�n2)

With cubic symmetry, it becomes

	(r) = 4�
X
p

wp

1X
l0=0

l0X
m0=�l0

il
0
Y �l0m0(�p; �p)Yl0m0(�; �)jl0(pr)

+
�X
l0=0

l0X
m0=�l0

vl0m0
(�1)l0

4�
kl

0+1(Yl0m0(�; �)nl0(kr)+
1X
l=0

lX
m=�l

M0
l0m0;lmYlm(�; �)jl(kr))

(2.5.9)
By comparing the jl(kr) part of (2.5.3) and (2.5.9), we have

blm�l(k) = 4�
X
p

wp

1X
l0=0

l0X
m0=�l0

il
0
Y �l0m0(�p; �p)+

�X
l0=0

l0X
m0=�l0

vl0m0
(�1)l0

4�
kl

0+1M0
l0m0;lm

(2.5.10)
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By comparing the nl(kr) part of (2.5.3) and (2.5.9), we have

blm�l(k) = vlm
(�1)l
4�

kl+1

If we set blm = 0 and vlm = 0, then by (2.5.10)

4�
X
p

wp

1X
l0=0

l0X
m0=�l0

il
0
Y �l0m0(�p; �p) = 0

There will be no solutions for a �xed k since the number of spherical harmonics
is larger than the number of p�s. When blm 6= 0, there are further solutions if
and only if

lim
q!jnj

det(e2i� � U) = 0

which can be seen as a special case of (2.5.8). So now we have considered all
real k�s.
If the spherical component of a smooth periodic solution of the Helmholtz

equation for 	(r) can be written as

	lm(r) = blm(�l(k)jl(kr) + �l(k)nl(kr))

i.e. such blm exists in the region R < r <
L

2
, then there exists a unique

eigenfunction of the Hamiltonian H which coincides with 	(r) in the region

R < r <
L

2
. Hence, eigenfunctions of H can be related with �l(k) and �l(k),

and from (2.5.1) the energy spectrum of an energy interval is calculable when
the scattering phase shifts in that energy interval are known.

In our simple model, we have k =
2�

L
jnj by the periodic boundary conditions

of the lattice and consider the S wave case. In the case of S wave, where the
quantum number l is equal to 0, the homogeneous linear equation system is
reduced to one equation, and the dimension of the matrix e2i� � U is reduced
to 1� 1. Hence

e2i�0 � m00 + i

m00 � i
= 0

where m00 is the matrix element of M in this case.
Let �(q) be a function such that

m00 + i

m00 � i
= e�2i�(q)

Then we have Lüscher�s formalism
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e2i�0(k) =
m00 + i

m00 � i
= e�2i�(q) (2.5.11)

where

�(0) = 0

q =
kL

2�
= jnj

m00 =
1

�3=2q
Z00(1; q2)

and Z00(1; q2) is the zeta function at j = 0, s = 0, namely:

Z00(1; q2) =
1p
4�

X
n2Z3

1

n2 � q2

And we have

tan�(q) = � �
3
2 q

Z00(1; q2)
We need to calculate Z00(1; q2). Z00(1; q2) has in�nities when n2 = q2, and

we need to remove the in�nities, i.e. regularize it. We can write

1

n2 � q2 =
1

n2 � q2 �
1

n2
+
1

n2

=
n2 � (n2 � q2)
n2(n2 � q2) +

1

n2

=
q2

n4(n2 � q2) +
1

n2
� q2

n4
+
q2

n4

=
n2q2 � q2(n2q2)
n4(n2 � q2) +

1

n2
+
q2

n4

=
q4

n4(n2 � q2) +
1

n2
+
q2

n4

Let N = n2, we have

1

n2 � q2 =
q4

N2(N � q2) +
1

N
+

q2

N2

Because we are summing over n 2 Z3, the terms involving N = n2 should be
weighed by Cn as in Section 2.3. Hence we haveX

n2Z3

1

n2 � q2 = �
1

q2
+

1X
N=1

CN (
q4

N2(N � q2) +
1

N
+

q2

N2
)

which can be written as[20]
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Z00(1; q2) =
1p
4�
(� 1
q2
+ J0 + J1q

2 +
1X
N=1

CN
q4

N2(N � q2) )

where J0 = �8:91363292 and J1 = 16:53231596

Fig. 2.5.1 Regularized Z00(1; q2) function

�(q) can be obtained from Z00(1; q2) with an adjustment. The adjustment
arises from the periodicity of the tan function and does not e¤ect Lüscher�s
formula. This adjustment will be introduced in Section 2.7.

2.6 In�nite Volume Phase Shift

Now we turn to the phase shift for scattering in in�nite volume. We assume
the interaction Lagrangian as

Lint = g(k)��2

and potential operator in the form

v =
g(k)g(k0)

E � (m� � 2m�)

The corresponding Lippmann-Schwinger equation is

t = v + vGt

where t is the t-matrix.
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Fig. 2.6.1 Schematic diagram of the t-matrix

The t-matrix has the general form

t(k; k0;E+) = g(k)g(k0)�(E+) (2.6.1)

where

E+ =
k2+0
2m

= lim
�!0

(
k20
2m

+ i�)

When momenta are written in vector,

tl(k;k
0;
k2+0
2m

) = v(k;k0) +

Z
d3k0k02

vl(k;k
0)tl(k

0;k0;
k2+0
2m )

k20
2m + i� �

k02

2m

Let us separate the directions and magnitudes of momenta, so that we have

P
l;m

Ylm(k̂)Y
�
lm(k̂0)tl(k; k0;

k2+0
2m ) =

P
l;m

Ylm(k̂)Y
�
lm(k̂0)vl(k; k0)

+
P

l;m;l0;m0

R1
0
dk0k02Ylm(k̂)Y

�
l0m0(k̂0)

R
dk̂Y �lm(k̂

0)Yl0m0(k̂0)
vl(k; k

0)tl(k
0; k0;

k2+0
2m )

k20
2m + i� �

k02

2m

Using the orthonormality of the spherical harmonics, we �nd:

tl(k; k0;
k2+0
2m

) = vl(k; k0) +

Z 1

0

dk0k02
vl(k; k

0)tl(k
0; k0;

k2+0
2m )

k20
2m + i� �

k02

2m

Substitute tl and vl by t(k; k0;E+) = g(k)g(k0)�(E+) and v = g(k)g(k0)
E�(m�0�2m�)

and replace m by � we have

g(k)g(k)�(E+) =
g(k)g(k)

E + 2m� �m�0
+

Z 1

0

dk0k02g(k)g(k0)

E + 2m� �m�0

g(k0)g(k)�(E+)

E � k02

2� + i�

�(
k2+0
2�
) =

1

E + 2m� �m�0
+

Z 1

0

1

E + 2m� �m�0

dk0k02g2(k0)�(
k2+0
2� )

E � k02

2� + i�
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�(
k2+0
2�
)(1�

Z 1

0

1

E + 2m� �m�0

dk0k02g2(k0)

E+ � k02

2� + i�
) =

1

E + 2m� �m�0

�(
k2+0
2�
) =

1

E+ + 2m� �m�0 �
R1
0

dk0k02g2(k0)

E+� k02
2� +i�

) �(
k2+0
2�
) =

1
k20
2� + 2m� �m�0 � 2�

R1
0

dk0k02g2(k0)
k20�k02+i�

Hence we have

tl(k; k;
k2+0
2�
) =

g2(k)
k20
2� + 2m� �m�0 � 2�

R1
0

dk0k02g2(k0)
k20�k02+i�

(2.6.2)

Now we look at the relation between the t matrix and the r matrix. In
operator form, from

r(E) = v + vGP0 (E)r(E) (2.6.3)

where GP0 means adopting the Cauchy principal value of the Green�s function
in G0, and from

t(E+) = v + vG0(E
+)t(E+) (2.6.4)

if we multiply (2.6.3) by v�1 on the left and r�1 on the right, we have

v�1 = r�1 +GP0 (E)

and if we multiply (2.6.4) by v�1 on the left and t�1 on the right, we have

v�1 = t�1(E+) +G0(E
+)

So we have
t�1(E+) = r�1(E) + (GP0 (E)�G0(E+))

t(E+) = r(E) + r(E)(Go(E
+)�GP0 (E))t(E+)

By Sokhatsky�Weierstrass theorem,

lim
�!0

Z b

a

f(x)dx

x� c� i� = P

Z b

a

f(x)dx

x� c � i�
Z b

a

f(x)�(x� c)dx

where a < c < b. Hence

tl(k; k0;E
+) = rl(k; k0;E)� i�

Z 1

0

dk0k02rl(k; k
0;E)�(E � k02

2m
)tl(k

0; k0;E
+)

24



Let

E =
k2E
2m

Then by

�(E � k02

2m
) = �(

(kE + k
0)(kE � k0)
2m

)

=
m

kE
�(kE � k0)

we have

tl(k; k0;E
+) = rl(k; k0;E)� i�mkErl(k; kE ;E)tl(kE ; k0;E+) (2.6.5)

Let k = kE in (2.6.5), we have

tl(kE ; k0;E
+) = rl(kE ; k0;E)� i�mkErl(kE ; kE ;E)tl(kE ; k0;E+)

tl(kE ; k0;E
+)(1 + i�mkErl(kE ; kE ;E)) = rl(kE ; k0;E)

) tl(kE ; k0;E
+) =

rl(kE ; k0;E)

1 + i�mkErl(kE ; kE ;E)

For elastic scattering, we need tl(kE ; kE ;
k2+E
2m ) and rl(kE ; kE ;

k2+E
2m ), so we set

k0 as k in tl(kE ; k0;E+) and rl(kE ; k0;E) to get tl(kE ; kE ;
k2+E
2m ) and rl(kE ; kE ;

k2+E
2m ).

For convenience, let

x = ��mkE
Then we have

tl(kE ; kE ;E
+) =

rl(kE ; kE ;E)

1� ixrl(kE ; kE ;E)

xtl(kE ; kE ;E
+)

xrl(kE ; kE ;E)
=

1

1� ixrl(kE ; kE ;E)

j1� ixrl(kE ; kE ;E)j
xtl(kE ; kE ;E

+)

xrl(kE ; kE ;E)
=
1 + ixrl(kE ; kE ;E)

j1 + ixrl(kE ; kE ;E)j
Let

1 + ixrl(kE ; kE ;E)

j1 + ixrl(kE ; kE ;E)j
= cos �l + i sin �l
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where �l is real and called the phase shift. Then

sin �l =
xrl(kE ; kE ;E)

j1 + ixrl(kE ; kE ;E)j

cos �l =
1

j1 + ixrl(kE ; kE ;E)j
Then we have

xtl(kE ; kE ;
k2+E
2m

) = ei�l sin �l

) tl(kE ; kE ;
k2+E
2m

) = �e
i�l sin �l
�mkE

(2.6.6)

and

) rl(kE ; kE ;
k2E
2m
) = � tan �l

�mkE
(2.6.7)

From (2.6.2) and (2.6.6) we have

g2(k)
k20
2� + 2m� �m�0 � 2�

R1
0

dk0k02g2(k0)
k20�k02+i�

= tl(k; k;
k2+0
2�
) = �e

i�l sin �l
�m�k0

Similarly from (2.6.3) we have

rl(k; k;
k20
2�
) =

g2(k)
k20
2� + 2m� �m�0 � 2�P

R1
0

dk0k02g2(k0)
k20�k02+i�

(2.6.8)

From (2.6.7) and (2.6.8) we have

g2(k)
k20
2� + 2m� �m�0 � 2�P

R1
0

dk0k02g2(k0)
k20�k02+i�

= rl(k; k;
k20
2�
) = � tan �l

��k0
(2.6.9)

An alternative way is that the r matrix has the general form

r(k; k0;E) = g(k)g(k0)�(E)

and by applying the same method of derivation of t-matrix from (2.6.1) to (2.6.2)
on r-matrix we can also �nd (2.6.9).
By (2.6.9), we can calculate the in�nite volume phase shifts for �� scattering

through the coupling to the � with its bare mass, m�0, chosen to yield a dressed
pole position at E = 2:1 (m�).
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Fig. 2.6.2 In�nite volume phase shift

2.7 Finite Volume Phase Shift

Lüscher�s formula relates the in�nite volume phase shifts to the energy eigen-
values of the �nite volume scattering problem. For l = 0 case, from (2.5.11),

e2i�0(k) =
m00 + i

m00 � i
= e�2i�(q)

where �0(k) is the phase shifts. Then

�(q) = r� � �0(k); r 2 N

�(q) is a continuous function and �(0) = 0. However, since

tan�(q) = � �
3
2 q

Z00(1; q2)
We then can plot �(q) as

�(q) = arctan(� �
3
2 q

Z00(1; q2)
) (2.7.1)

since the codomain of arctan is between ��
2
, we would have a discontinuous

�(q) as
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Fig. 2.7.1

In order to make �(q) continuous, starting from q = 0 in the direction of in-
creasing q, we should add appropriate multiples of � to �(q) every time when

� �
3
2 q

Z00(1; q2)
goes from 1 to �1. The adjusted �(q) is continuous

Fig. 2.7.2

and the adjustment does not a¤ect the value of e�2i�(q) in Lüscher�s formula.

Since k =
2�

L
q, we can plot �(q) and r� � �0(k) in the same diagram as in Fig.

2.7.4.
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Fig. 2.7.3 r� � �0(k) at L = 24 (1=m�)

Fig. 2.7.4 Solutions of �(q) = r� � �0(k) at L = 24 (1=m�)

In Fig. 2.7.4, the intersections where �(q) crosses r�� �0(k) are solutions of

�(q) = r� � �0(k); r 2 N
and at a �xed L we have a set of solutions. By identifying �(k) in section 2.6
as �0(k), we can relate q and hence, k, in the �nite volume scattering with the
in�nite volume phase shifts. And by

E = 2m� +
k2

2�

29



k = 2�
p
E � 2m�

q =
L

2�
2�
p
E � 2m�

we have

�(
L

2�
2�
p
E � 2m�) = r� � �(2�

p
E � 2m�)

Thus we can relate the energy spectrum of the �nite volume scattering with the
in�nite volume phase shifts.
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Chapter 3

Pion-Pion Scattering by
Hypothetical Sigma

3.1 Overview

In this chapter we will study our model for � ! �� scattering problem in
more detail.
Consider two-pion scattering with � as the intermediate state in the low

energy region above threshold. Our model is a non-relativistic one. We model
the scattering in a �nite volume lattice with settings as mentioned in Section
2.2 and 2.3. With the Hamiltonian operator acting on the wave function in the
Schrödinger Equation

H	 = E	

we can get the energy eigenvalues of the Hamiltonian, i.e. the energy spectrum
of the �nite volume scattering. By calculating the r matrix for �� scattering,
we can determine the in�nite volume phase shifts, �(k). With Lüscher�s formula

e2i�0(k) =
m00 + i

m00 � i
= e�2i�(q)

we can obtain the phase shifts in terms of the energy eigenvalues in �nite volume
scattering. Hence, we can study �� scattering with our �nite volume model,
extracting, for example, the energy of the �� resonance in the continuum.

3.2 Interaction Coupling

In the Hamiltonian matrix:
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H =

0BBBBBB@

m�0

p
C0g(k0)

p
C1g(k1)

p
C2g(k2) � � �p

C0g(k0) 2m�p
C1g(k1) 2m� +

k21
m�p

C2g(k2) 2m� +
k22
m�

...
. . .

1CCCCCCA
there are non-zero o¤-diagonal terms g(k). These involve the coupling constant,
together with some momentum dependence:

g(k) = g(0)u(k)

where u(k) is a form factor. u(k) turns o¤ the interaction in the high energy
region while retaining the interaction in the low energy region. We set g(0) =
0:13 (m

�1=2
� ) and adopt a form factor of Gaussian form

u(k) = e�
k2

�2

In our toy model, we set m� = 2:1 (m�), choose

� � pm�m�

and set � =
p
2:1 (m�). Hence we have

g(k) = g(0)e�
k2

�2

with above mentioned g(0) and �. The shape of the form factor g(k) is shown
in Fig. 3.2.1.

Fig. 3.2.1 Dependence of the form factor g(k) on energy
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For the discretized case such as g(kn) in the Hamiltonian, there should also

be a factor (
2�

L
)
3
2 because of the normalization. Hence

g(kn) = (
2�

L
)
3
2 g(0)e�

k2n
�2

and the Hamiltonian becomes

H =

0BBBBBBBBBBB@

m�0

p
C0(

2�

L
)
3
2 g(0)

p
C1(

2�

L
)
3
2 g(0)e�

k21
�2

p
C2(

2�

L
)
3
2 g(0)e�

k22
�2 � � �

p
C0(

2�

L
)
3
2 g(0) 2m�

p
C1(

2�

L
)
3
2 g(0)e�

k21
�2 2m� +

k21
m�

p
C2(

2�

L
)
3
2 g(0)e�

k22
�2 2m� +

k22
m�

...
. . .

1CCCCCCCCCCCA

3.3 Momentum Cuto¤ in the Hamiltonian

In the Hamiltonian describing the � ! �� interaction, although we have
�gured out the form of the elements, we have not �gured out the dimension
of the matrix. We have to give a �nite dimension to our Hamiltonian, since
numerically it is impossible to get the energy eigenvalues of a Hamiltonian of
in�nite volume. We should set a reasonable cuto¤ which would not greatly
in�uence the energy eigenvalues.
First we note that, for an m �m matrix Am, if f�1; �2:::�mg are its eigen-

values, then the n� n matrix An

An =

0BBBBBBBBB@

0@ Am

1A 0

�m+1
�m+2

0
. . .

�n

1CCCCCCCCCA
has eigenvalues f�1; �2:::�m; �m+1; �m+2:::�ng.
In our Hamiltonian, the o¤-diagonal elements are in the form

p
Cn(

2�

L
)
3
2 g(0)e�

k2n
�2 ,

which has a form factor e�
k2n
�2 . When kn is very large, e

� k2n
�2 will become very

small, hence we have
p
Cn(

2�

L
)
3
2 g(0)e�

k2n
�2 � 0 for large kn.

Hence, the in�nite dimensional Hamiltonian ~H can be approximated as
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~H =

0BBBBBBB@

0@ H

1A � 0 � 0 � � �

� 0 �m+1
� 0 �m+2
...

. . .

1CCCCCCCA
where H is an m�m Hamiltonian with momentum cuto¤. If H has eigenvalues
f�1; �2:::�mg, the eigenvalues of ~H will approximately be the eigenvalues of H
and non-interactive energy levels f�m+1; �m+2:::g, since the corresponding o¤-
diagonal terms are close to 0. Hence, we can remove the rows and columns
corresponding to very large momenta without in�uencing the remaining energy
eigenvalues greatly. That is, we can impose a cuto¤ on the Hamiltonian.
We plot matrix dimensions and the lowest �ve energy eigenvalues with real

momenta i.e. W > 2m� for di¤erent values of momentum cuto¤, kmax, for the
Hamiltonian at di¤erent L�s, as shown in Figs. 3.3.1 to 3.3.6.

Fig. 3.3.1 Matrix dimensions at di¤erent kmax and at L = 24 (1=m�)
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Fig. 3.3.2 Lowest �ve eigenvalues with real
momenta at di¤erent kmax and at L = 24 (1=m�)

Fig. 3.3.3 Matrix dimensions at di¤erent kmax and at L = 40 (1=m�)
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Fig. 3.3.4 Lowest �ve eigenvalues with real
momenta at di¤erent kmax and at L = 40 (1=m�)

Fig. 3.3.5 Matrix dimensions at di¤erent kmax and at L = 60 (1=m�)

36



Fig. 3.3.6 Lowest �ve eigenvalues with real
momenta at di¤erent kmax and at L = 60 (1=m�)

We �nd that the lowest �ve eigenvalues do not change signi�cantly according
to di¤erent kmax in the plotted region. So the momentum is large enough in the
plotted region to be chosen as the momentum cuto¤ kmax for the Hamiltonian.
We choose kmax � 4:4 m� in our model.

3.4 Energy Spectrum
By working on a �nite volume lattice, we will get a discrete energy spectrum

from the eigenvalues of the Hamiltonian operator for the scattering process, as
shown in Fig. 3.4.1.

Fig. 3.4.1 Energy Spectrum of the � ! �� system around L = 60 (1=m�)
with m� marked as the horizontal line at W = 2:1 (m�)
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Each line of the energy spectrum corresponds to the energy of an eigenstate
of the Hamiltonian operator. However, 	 is not an energy eigenstate of the
Hamiltonian operator in in�nite volume but a mixture of the energy eigenstates.
At a �xed lattice size, we can get a set of energy eigenvalues, as shown in

Fig. 3.4.2.

Fig. 3.4.2 Energy eigenvalues (dots) of � ! �� scattering at L = 60 (1=m�)
with m� marked as the horizontal line at W = 2:1 (m�)

Since 	 is a mixture of the eigenstates of the Hamiltonian operator, none
of the energy eigenvalues in Fig. 3.4.2 corresponds to the exact resonance en-
ergy, or the exact resonance mass. However, we can extract the phase shifts of
these energy eigenvalues by Lüscher�s formula and try to locate the mass of the
resonance.

3.5 Quasi-In�nite Volume Phase Shifts

By imposing �nite volume conditions, we have acquired a discrete energy
spectrum. We can also �nd the in�uence of �nite volume conditions on the
r-matrix. From (2.6.9), in the in�nite volume case, the r-matrix is

g2(k)
k20
2� + 2m� �m�0 � 2�P

R1
0

dk0k02g2(k0)
k20�k02+i�

= rl(k; k;
k20
2�
) = � tan �l

��k0

From

P

Z 1

0

f(x)

x2 � a2 dx =
Z 1

0

f(x)� f(a)
x2 � a2 dx
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and since for spherically symmetric function f(x)Z 1

0

dxx2f(x) =
1

4�

Z
d


Z 1

0

dxx2f(x) =
1

4�

Z
d3xf(x)

we have

P

Z 1

0

dk0k02g2(k0)

k2 � k02 + i� = �P
Z 1

0

dk0k02g2(k0)

k02 � k2 � i�
= �

Z 1

0

dk0
k02g2(k0)� k2g2(k)

k02 � k2

= �
Z 1

0

dk0
k02g2(k0)

k02 � k2 +
Z 1

0

dk0
k2g2(k)

k02 � k2

= �
Z 1

0

dk0
k02g2(k0)

k02 � k2 +
Z 1

0

dk0
k02k2g2(k)

k02(k02 � k2)
= � 1

4�

Z 1

0

d3k0
g2(k0)

k02 � k2 +
1

4�

Z 1

0

d3k0
k2g2(k)

k02(k02 � k2)

In �nite volume case, we can discretize the integral with the following sub-
stitutions: Z

d3k0f(k0)!
X
q

(
2�

L
)3Cqf(kq)

with Cq the number of distinct 3-D vectors n = (n1; n2; n3) where n1; n2; n3; jnj 2
Z and jnj = q. Then by putting

g(k) = g(0)e�
k2

�2

and through discretized version of (2.6.9) we have

g2(k)
k2

2� + 2m� �m�0 � 2��
= � tan �

��k

where

� = � 1

4�
(
2�

L
)3

1X
q=1

Cq(g0e
� ( 2�

L
)2m

�2 )2

( 2�L )
2q � 2�(W � 2m�)

+
1

4�
(
2�

L
)3

1X
q=1

Cq2�(W � 2m�)(g0e
� 2�(W�2m�)

�2 )2

( 2�L )
2q(( 2�L )

2q � 2�(W � 2m�))

So we have

� = arctan(
���kg2(k)

k2

2� + 2m� �m�0 � 2��
)

Of course, the � here is not the phase shift of the real in�nite volume case.
Hence, we shall call the such � calculated from the discretized r-matrix with
�nite volume conditions "quasi phase shift".

39



In numerical calculation, we have to give q an upper limit to the discrete

sum over q. Since we have a term e�
( 2�
L
)2q2

�2 within the sum, we set the upper
limit at 10L.
We can observe the in�uence of �nite volume conditions by plotting the quasi

in�nite volume phase shifts against di¤erent L�s.

Fig. 3.5.1 In�nite Volume Phase Shifts (L =1) and Quasi
Phase Shifts at di¤erent L�s with L in the unit of 1=m�

As shown in Fig. 3.5.1, the curves of the quasi in�nite volume phase shifts
move towards to the curve of the real in�nite volume phase shifts. This is
in agreement with the expectation, as the model approaches in�nite volume
scattering.

3.6 Extracting Phase Shifts from the Energy Spectrum

For an in�nite volume scattering process, the allowed phase shifts of the
resonance form a continuous curve, with Fig. 2.6.1 as an example. When the
energy is at the resonance mass, the phase shift is

�

2
.

For a �nite volume scattering process, the allowed energies of the system
take a series of discrete values. By Lüscher�s formalism, they correspond to the
solutions, with Fig. 2.7.4 as an example. Hence, by applying Lüscher�s formula
to the energy eigenvalues of the Hamiltonian established in Section 3.2 and 3.3,
we can acquire the corresponding phase shifts.

For the �nite volume case, the allowed k�s are

k =
2�

L
jnj ;n 2 Z3
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Hence, we will have a discrete sum over k�s. From 2.7.1

�(q) = arctan(� �
3
2 q

Z00(1; q2)
)

where

Z00(1; q2) =
1p
4�
(� 1
q2
+ J0 + J1q

2 +
1X
N=1

CN
q4

N2(N � q2) )

as in Section 2.5. Hence we have

� = arctan(
�
3
2 q

1p
4�
(� 1

q2 +
1P
m=1

( q4

m2(m�q2) +
q2

m2 ))
)

Then, for the x-th lowest energy eigenvalue Wx, we have

�x = arctan(
�
3
2 qx

1p
4�
(� 1

q2x
+

1P
m=1

(
q4x

m2(m�q2x)
+

q2x
m2 ))

)

Replacing qx by ( L2� )
p
2�(Wx � 2m�), we have

�x = arctan(
�
3
2 ( L2� )

p
2�(Wx � 2m�)

1p
4�
(� 1

( L2� )
2(2�(Wx�2m�))

+
1P
m=1

(
( L2� )

4(2�(Wx�2m�))2

m2(m�( L2� )2(2�(Wx�2m�)))
+

( L2� )
2(2�(Wx�2m�))

m2 ))

(3.6.1)
By (3.6.1), we can extract the phase shift of a speci�c energy eigenvalue through
Lüscher�s formalism.
In numerical calculation, we need an upper limit for the m in (3.6.1). We

make this upper limit adaptively increasable. In the codes, we compare the sum
for m = 1 to n, denoted by S, and the sum for m = n+ 1 to n+ 1000, denoted

by Sn. When
Sn
S
is smaller than a certain acceptable value, then the loop is

stopped, the upper limit is m = n + 1000, and S + Sn is assigned to the sum.
If not, then we increase m by 1000 and repeat the process.
In the following plots, shown in Figs. 3.6.1 through 3.6.10, the phase shifts

acquired by Lüscher�s formula at di¤erent values of L.
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Fig. 3.6.1 In�nite volume phase shifts (L =1)
and phase shifts at L = 15, 16, and 17 (m�).

Fig. 3.6.2 In�nite volume phase shifts (L =1)
and phase shifts at L = 18, 20, and 22 (m�).
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Fig. 3.6.3 In�nite volume phase shifts (L =1)
and phase shifts at L = 24, 26, and 28 (m�).

Fig. 3.6.4 In�nite volume phase shifts (L =1)
and phase shifts at L = 30, 33, and 36 (m�).
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Fig. 3.6.5 In�nite volume phase shifts (L =1)
and phase shifts at L = 40, 43, and 46 (m�).

Fig. 3.6.6 In�nite volume phase shifts (L =1)
and phase shifts at L = 50, 53, and 56 (m�).
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Fig. 3.6.7 In�nite volume phase shifts (L =1)
and phase shifts at L = 60, 63, and 66 (m�).

Fig. 3.6.8 In�nite volume phase shifts (L =1)
and phase shifts at L = 70, 73, and 76 (m�).
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Fig. 3.6.9 In�nite volume phase shifts (L =1)
and phase shifts at L = 80, 85, and 90 (m�).

Fig. 3.6.10 In�nite volume phase shifts (L =1)
and phase shifts at L = 95, 100, and 105 (m�).

We can observe that the phase shifts extracted from Lüscher�s formula ap-
proach the in�nite volume phase shifts as the lattice size increases.
In Fig. 3.6.1 to Fig. 3.6.10, the �nite volume phase shifts calculated from

Lüscher�s method are discrete dots and do not fall exactly on the pole position.
We calculated the pole position by interpolation, which coresponds to the in-
tersection of the straight line between the two closest dot below and above the
pole and the horizontal line which marks � =

�

2
. In Fig. 3.6.1 to Fig. 3.6.10,
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all of the dots representing phase shifts extracted from Lüscher�s formula lie
very close to the curve of the exact in�nite volume phase shift. This means
that Lüscher�s formula works quite well at L > 15 1=m�. By observing cases
with smaller values of L, for example, in Fig. 3.6.1 and Fig. 3.6.2, we can �nd
that the problem of deciding the pole position comes from the scarce numbers
of dots of phase shifts extracted from Lüscher�s formula, which caused the devi-
ations of the pole position calculated by interpolation. In cases of larger values
of L, for example, in Fig. 3.6.9 and Fig. 3.6.10, with more densely distributed
dots of phase shifts extracted from Lüscher�s formula, the deviations of the pole
position calculated by interpolation decrease signi�cantly.
Another factor which may cause the deviations of the pole position is the

�nite volume e¤ect. The �nite volume e¤ect is exponentially suppressed as
the lattice size increases. As L approaches 1, the �nite volume phase shifts
approach to the exact in�nite volume phase shift.
We use a linear �t to obtain the �nite volume phase shifts at the pole position

and denote it �L, where L is the side length of the lattice. At the pole position,
the in�nite volume phase shift, �1, is

�

2
. We calculate the di¤erence ratio

�L � �1
�L

for the � ! �� scattering. The di¤erence ratio
�L � �1
�L

is plotted

against L as shown in Fig. 3.6.11.

Fig. 3.6.11 Di¤erence ratio between �nite and in�nite volume phase shifts
(solid line) and its exponential �t (dashed line) of the � ! �� scattering

In Fig. 3.6.11, we can �nd that at smaller L values, the oscillation of the

di¤erence ratio
�L � �1
�L

is larger. The larger oscillation at smaller L val-

ues is because of the scarce numbers of dots of phase shifts extracted from
Lüscher�s method. Hence, the pole positions calculated by interpolating these
dots are prone to be in�uenced by the positions of neighboring dots calculated
by Lüscher�s method from the energy eigenvalues.
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We use an exponential �t to plot the relation between the di¤erence ratio
�L � �1
�L

and L, which is shown as the dashed line in Fig. 3.6.11. We can �nd

that, besides the oscillation mentioned above, the absolute value of the di¤erence
ratio in exponential �t diminishes as L increases. This result is in accordance
with the decrease of �nite volume e¤ect at larger values of L as expected.
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Chapter 4

Rho-Pion Scattering

4.1 Overview

In this chapter we apply our toy model to a vector meson in the real world.
We will investigate the �-� scattering in � ! �� channel �rst and then with
both �! �� and �! �! channels included.
The � meson is a vector meson with total spin 1 and odd parity. The !

meson is also a vector meson with total spin 1 and odd parity, while the � is a
pseudoscalar meson with total spin 0 and odd parity. The self-energy of the �
meson through the �! �� channel is shown in Fig. 4.1.1.

Fig. 4.1.1

The decay of the � meson in �! �! channel is shown in Fig. 4.1.2.

Fig. 4.1.2
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We will attend to the scattering phase shifts �rst and then to the �nite
volume estimates of the phase shifts.

4.2 R-matrix for Pi-Pi Scattering in Rho Decay

In this section we only consider the � ! �� channel. The pole is situated
at about 5 to 6 m�, so instead of treating the energy non-relativistically as in
Chapter 3, we adopt a relativistic picture. For the decay of the � meson in the
�! �� channel in Fig. 4.1.1, the t-matrix takes the form

t(k; k;E+) =
G2(k)

E2 �m2
�

=
G2(k)

E2 �m2
�0 � ����(E+)

= A(k)ei�(k) sin �(k)

where

E = 2!k = 2
q
k2E +m

2
�

G(k) is a coupling parameter, ����(E+) is the � meson self energy correction
term, and A(k) is a normalized factor associated with the pole in the self energy
denominator.
From[23]

����(E
+) = �

f2���
3�3

Z
d3k0

k
02u2(k0)

(2!k0)((2!k0)2 � E2 � i�)

=
f2���
3�3

Z
d3k0

k02u2(k0)

(2!k0)(E2 � (2!k0)2 + i�)

=
2f2���
3�2

Z
dk0

k04u2(k0)

!k0(E2 � (2!k0)2 + i�)
and from

����(E
+) =

Z
dk0

k
02G2(k0)

E2 � (2!k0)2 + i�
by comparison we have

G2(k) =
2f2���
3�2

k2u2(k)

!k

where u(k) is a form factor. We de�ne the resonance position as the point at
which the real part of the full �-propagator passes through zero,

E2 �m2
�0 � ����(m�) = 0

m2
� = m2

�0 +����(m�)
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hence

tpole =
G2pole(k)

E2 �m2
�0 � ����(m�)

= �
G2pole(k)

Im����(m�)

At the pole we also have

� =
�

2
so

tpole = A(kpole) � i

Let

kpole = p =

r
m2
�

4
�m2

�

then

tpole = A(p) � i

Since the energy at the pole has the following form

m2
� = 4(p

2 +m2
�)

then the imaginary part of ���� has the form

� Im����(m�) = � Im(
2f2���
3�2

Z 1

0

dk0
k04u2(k)

!k0(m2
� � (2!k0)2 + i�)

)

= � Im(
2f2���
3�2

Z 1

0

dk0
k04u2(k0)

!k0 � 4(p2 � k02 + i�)
)

=
f2���
6�2

Z 1

0

dk0
k04u2(k0)

!k0
� i��(p2 � k02)

By using the relation for a Direc delta function

�(x2 � a2) = 1

j2aj�(x� a)

we have

� Im����(m�) =
if2���
6�

Z 1

0

dk0
k04u2(k0)�(p� k0)

!k0 j2pj

=
if2���p

3u2(p)

12�!p

then the t-matrix at the pole is
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tpole =
G2pole

� Im����

=

2f2���
3�2

p2u2(p)
!p

if2���p
3u2(p)

12�!p

= � 8i
�p

and we can derive the normalized factor A(k) from

A(p) = � 8

�p

=) A(k) = � 8

�k

So the relationship between the t-matrix t(k) and the phase shift �(k), in this
case is

t(k) = � 8

�k
e�i�(k) sin �(k)

So we �nd

G2(k)

E2 �m2
�0 � ����(E+)

= t(k) = � 8

�k
e�i�(k) sin �(k) (4.2.1)

and the r-matrix is

G2(k)

s�m2
�0 � P����(E)

= r(k) = � 8

�k
tan �(k) (4.2.2)

The principal value of the loop integral ���� is

P����(E) =
2f2���
3�2

P

Z 1

0

dk0
k04u2(k0)

!k0(E2 � (2!k0)2)

= �
2f2���
3�2

P

Z 1

0

dk0
k04u2(k0)

!k0((2!k0)2 � E2)

= �
2f2���
3�2

P

Z 1

0

dk0
1

4!k0

k04u2(k0)

k02 � ( 14E2 �m2
�)

= �
f2���
6�2

P

Z 1

0

dk0
1

!0k

k
04u2(k0)

k02 � k2

Since

P

Z 1

0

dx
1

x2 � a2 = 0

P

Z 1

0

dx
f(a)

x2 � a2 = 0
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P

Z 1

0

dx
f(x)

x2 � a2 = P

Z 1

0

dx
f(x)� f(a)
x2 � a2

When f(x) has a factor of x, then f(x)� f(a) has a factor of x�a, hence there
left a factor x + a in the denominator and the integral is real. In this case the
principal integral becomes a standard integral:

P

Z 1

0

dx
f(x)

x2 � a2 =
Z 1

0

dx
f(x)� f(a)
x2 � a2

So we can write

P����(E) = �
f2���
6�2

Z 1

0

dk0
1

k02 � k2 (
k04u2(k0)

!k0
� k4u2(k)

!k
)

= �
f2���
6�2

Z 1

0

dk0
1

k02 � k2 (
k04u2(k0)p
k02 +m2

�

� k4u2(k)p
k2 +m2

�

)
(4.2.3)

Substituting P����(E) into (4.2.2) and using (4.2.3) we have

2f2���
3�2

k2u2(k)
!k

4(k2 +m�)2 �m2
�0 +

f2���
6�2

R1
0
dk0 1

k02�k2 (
k04u2(k0)p
k02+m2

�

� k4u2(k)p
k2+m2

�

)
= r(k) = � 8

�k
tan �(k)

We can get the value of m�0 by �tting it so that the pole occurs at E =

2
p
k2 +m� = m� and �(k) =

�

2
.

4.3 R-matrix for In�nite Volume Rho Decay with Lin-
ear Denominator

In the last section we found the r-matrix, as shown in (4.2.1). In order to
match the propagator appearing in the Feynmann diagramms associated with

�! ��, the Green�s function on left hand side of (4.2.1) has the form
1

E2 �H2

of which the denominator is quadratic. In order to simplify the solution of the
problem using Hamiltonian methods on a �nite lattice, we choose to linearize

the problem. That is, we take the Green�s function in the from
1

E �H .
The t-matrix with a linear denominator takes the form

t(k; k;E+) =
G2

E �m�0 � ����(E+)
2m�0

= A(k)ei�(k) sin �(k)

The normalization factor, A(k), must be re-evaluated. At the pole, let
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kpole = p =

r
m2
�

4
�m2

�

then we have

tpole =
G2pole

m� �m�0 � ����(m�)
2m�0

= �
2m�0G

2
pole

Im����(m�)

and

tpole = A(p) � i
So

tpole = 2m�0

2f2���

3�2
p2u2(p)

!p

if2���p
3u2(p)

12�!p

= �16m�0i

�p

A(p) = �16m�0

�p

=) A(k) = �16m�0

�k

This is the form of the t-matrix with a linear denominator

G2

E �m�0 � ����(E+)
2m�0

= t(k) = �16m�0

�k
e�i�(k) sin �(k) (4.3.1)

and the r-matrix is

G2(k)

E �m�0 � P����(E)
2m�0

= r(k) = �16m�0

�k
tan �(k) (4.3.2)

Substituting P����(E) into (4.3.2) using (4.2.3), we have

2f2���
3�2

k2u2(k)
!k

2
p
(k2 +m�)2 �m�0 +

1
2m�0

f2���
6�2

R1
0
dk0 1

k02�k2 (
k04u2(k0)p
k02+m2

�

� k4u2(k)p
k2+m2

�

)
= r(k) = �16m�0

�k
tan �(k)

(4.3.3)
This is the r-matrix with a linear energy denominator which we want to �nd.
We can get the value of m�0 by �tting it so that the pole occurs at E =

2
p
k2 +m� = m� and �(k) =

�

2
.

The form factor u(k) appearing in (4.3.3) is taken to be

u(k) =
e�

k4

�4

e�
p4

�4
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which is of a Gaussian-like form. The reason for the factor e�
p4

�4 in u(k) is so
that the �! �� coupling, which is matched to give the experimental value for
the resonance width, is not scaled at the pole k = p.
The vertex function is

G(k) =

r
2f2���
3�2

ku(k)
p
!k

which is shown in Fig. 4.3.1.

Fig. 4.3.1

By using the following parameter values from phenomenology[24][25]

f��� = 6:028

m� = 0:770 GeV

m� = 0:138 GeV

� = 0:585 GeV

we �nd

m�0 = 0:80404 GeV

By (4.3.3), we can calculate the in�nite volume phase shifts for � decay in
the �! �� channel, as shown in Fig. 4.3.2.
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Fig. 4.3.2

4.4 Constructing the Hamiltonian

We will now construct a Hamiltonian and use it to get the energy spectrum
for the � ! �� scattering on the lattice, as we have done in Section 2.3. The
Hamiltonian, in this case, is in the form

H =

0BBBBBBB@

m�0 G1 G1 G2 G2 � � �
G1 2!k1
G1 �2!k1
G2 2!k2
G2 �2!k2
...

. . .

1CCCCCCCA
The energy eigenvalues of the Hamiltonian are

� = m�0 � 2�
X
n

G2n
E2n � �2

(4.4.1)

where

En = 2!kn

(4.4.1) matches the e¤ective �led theory in the weak coupling limit where
j�� Enj � 0. In this case � ' m�0. So we can replace � by m�0 in the right
hand side and have
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� = m�0 � 2m�0

X
n

G2n
E2n �m2

�0

The � pole is identi�ed by the solution of

E2 = m2
�0 +����(E)

By expanding

�2 = m2
�0 +����(�)

we have

� =
q
m2
�0 +����(�)

' m�0 +
����(�)
2m�0

And in the weak coupling limit the � pole is identi�ed by

m� ' m�0 +
����(m�0)

2m�0

So near the pole we have

m� ' m�0 � 2m�0

X
n

G2n
(2!kn)

2 �m2
�0

(4.4.2)

and

m� ' m�0 +
����(m�0)

2m�0
(4.4.3)

We should choose Gn so that the two equations, (4.4.2) and (4.4.3), are the
same. The discretized version of

����(E) = �
f2���
3�3

Z
d3k0

k02u2(k0)

(2!k0)((2!k0)2 � E2)
is

����(E) = �
f2���
3�3

(
2�

L
)3
X
n

Cnk
2
nu

2(kn)

(2!kn)((2!kn)
2 � E2)

So we have

����(m�0)

2m�0
= � 1

2m�0

f2���
3�3

(
2�

L
)3
X
n

Cnk
2
nu

2(kn)

(2!kn)((2!kn)
2 �m2

�0)

and

����(m�0)

2m�0
= �2m�0

X
n

G2n
(2!kn)

2 �m2
�0
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Hence

G2n =
f2���

24m2
�0�

3
(
2�

L
)3
Cnk

2
nu

2(kn)

!kn
(4.4.4)

Here, L is the size of the lattice, Cn is the number of 3-D vectors �!n =
(n1; n2; n3) satisfying the condition n1; n2; n3 2 0 or N and the condition j�!n j =
q 2 N, and kn = 2�

L q. Then we can get the energy eigenvalues of the Hamiltonian
by solving the equation

� = m�0 � 2m�0

f2���
24m�0�3

(
2�

L
)3
X
n

Cnq
( 2�qL )

2 +m2
�

k2nu
2(kn)

4(( 2�qL )
2 +m2

�)� �2

for �. In order not to have a Hamiltonian with too large a size, we take the
form factor as

u(kn) =
e�

k4n
�4

e�
p4

�4

and truncate the entries of the Hamiltonian at u(kn) ' 10�12.

4.5 Finding Finite Volume Phase Shifts

As in section 3.6, for the �nite volume case, the allowed k�s are

k =
2�

L
jnj ;n 2 Z3

From (2.7.1)

�(q) = arctan(� �
3
2 q

Z00(1; q2)
)

where

Z00(1; q2) =
1p
4�
(� 1
q2
+ J0 + J1q

2 +
1X
N=1

CN
q4

N2(N � q2) )

Hence we have

� = arctan(
�
3
2 q

1p
4�
(� 1

q2 +
1P
m=1

( q4

m2(m�q2) +
q2

m2 ))
)

Then, for the x-th lowest energy eigenvalue Wx, we have
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�x = arctan(
�
3
2 qx

1p
4�
(� 1

q2x
+

1P
m=1

(
q4x

m2(m�q2x)
+

q2x
m2 ))

)

Since

Wx = 2
p
k2x +m

2
�

we can replace qx by ( L2� )
q

W 2
x�m2

�

4 and have

�x = arctan(
�
3
2 ( L2� )

q
1
4W

2
x �m2

�

1p
4�
(� 1

( L2� )
2( 14W

2
x�m2

�)
+

1P
m=1

(
( L2� )

4( 14W
2
x�m2

�)
2

m2(m�( L2� )2(
1
4W

2
x�m2

�))
+

( L2� )
2( 14W

2
x�m2

�)

m2 ))

(4.5.1)
By (4.5.1), we can extract the phase shift of a speci�c energy eigenvalue through
Lüscher�s formalism.
As in Section 3.6, for numerical calculation, we make the upper limit for

m adaptively increasable. In the codes, we compare the sum for m = 1 to n,
denoted by S, and the sum for m = n + 1 to n + 1000, denoted by Sn. When
Sn
S
is smaller than a certain acceptable value, then the loop is stopped, the

upper limit is m = n+1000, and S+Sn is assigned to the sum. If not, then we

increase m by 1000 and repeat the process. In this case we set
Sn
S

< 5� 10�4.
We plot the phase shifts of the �! �� channel acquired by Lüscher�s formula

at di¤erent L�s, as shown in Figs. 4.5.1 through 4.5.7.

Fig. 4.5.1 In�nite volume phase shifts (L =1)
and phase shifts at L = 3 (fm)
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Fig. 4.5.2 In�nite volume phase shifts (L =1)
and phase shifts at L = 5 (fm)

Fig. 4.5.3 In�nite volume phase shifts (L =1)
and phase shifts at L = 7 (fm)
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Fig. 4.5.4 In�nite volume phase shifts (L =1)
and phase shifts at L = 9 (fm)

Fig. 4.5.5 In�nite volume phase shifts (L =1)
and phase shifts at L = 12 (fm)
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Fig. 4.5.6 In�nite volume phase shifts (L =1)
and phase shifts at L = 24 (fm)

To verify that �nite volume phase shifts moves towards the in�nite volume
phase shifts as L increases, we �nd the �nite volume phase shifts by interpolation
at W = 0:77 (GeV) and L = 3 (fm), 5 (fm), 7 (fm), 9 (fm), 12 (fm), 24 (fm) as
shown in Fig. 4.5.7.

Fig. 4.5.7 Finite Volume Phase Shifts (Solid Lines) Compared
with In�nite Volume Phase Shifts (Dashed Lines)

In Fig. 4.5.7, we can observe that, as L increases, the �nite volume phase
shifts at all of the �ve di¤erent energies move towards the in�nite volume phase
shifts.
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4.6 Inclusion of the Omega Meson

In this section we are going to include the ! meson. Hence, we include two
coupled channels, that is, the � ! �� channel in Fig. 4.1.1 and the � ! !�
channel in Fig. 4.1.2.
The self energy correction term arising from the �! !� channel is[23]

���! = �
f2��!
3�2f2�

Z
dk0

k04u2�!(k
0)p

k02 +m2
�(
p
k02 +m2

� +m! � 2
p
k2 +m2

�)
(4.6.1)

where

f��! =
g��!f�
2

p
m�

g��! = 16 GeV
�1

f� = 0:0924 GeV

and the form factor is

u�!(k
0) = e�

k04
�4

To obtain the t-matrix in this case, we can replace ���� in (4.3.1) by ����+
���! and get

G2

E �m�0 � ����(E+)+���!(E+)
2m�0

= t(k; k;E+) = �16m�0

�k
e�i�(k) sin �(k)

and the r-matrix is

G2(k)

E �m�0 � P����(E)+P���!(E)
2m�0

= r(k) = �16m�0

�k
tan �(k)

By (4.6.1), as long as k <
q

m2
!

4 �m2
�, there will be no pole in ���!.

We can get the value of m�0 by �tting it so that the pole occurs at m� and
r matrix goes to 1. We use

G(k) =

r
2f2���
3�2

ku��(k)p
!k

u��(k) =
e�

k4

�4

e�
p4

�4

as in Section 4.3.
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By using the following parameters from phenomenology[25]

f��� = 6:028

m� = 0:770 GeV

m! = 0:782 GeV

m� = 0:138 GeV

� = 0:585 GeV

we �nd

m�0 = 0:833 GeV

The in�nite volume phase shifts for � decay with � ! �� and � ! �!
channels included are shown in Fig. 4.6.1.

Fig. 4.6.1

4.7 Finite Volume Phase Shifts with Omega and Pion
Included

The Hamiltonian incorporating the �! �� channel and the �! �! channel
is
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H =

0BBBBBBBBBBBBBBB@

m�0 G�1 G�1 G!1 G!1
G�1 2!�1
G�1 �2!�1
G!1 !�1 + !!1
G!1 �(!�1 + !!1)
G�2
G�2
G!2
G!2
...

G�2 G�2 G!2 G!2 � � �

2!�2
�2!�2

!�2 + !!2
�(!�2 + !!2)

. . .

1CCCCCCCCCCCCCCCA
(4.7.1)

The energy eigenvalues are

� = m�0 � 2m�0

X
n

G2�n
E2�n � �2

� 2m�0

X
n

G2!n
E2!n � �2

(4.7.2)

where

E� = 2!�
= 2

p
k2 +m2

�

E! = !! + !�
' m! +

p
k2 +m2

�

The discretized version of (4.6.1)

���! = �
f2��!
3�2f2�

Z
dk0

k04u2�!(k
0)p

k02 +m2
�(
p
k02 +m2

� +m! � 2
p
k2 +m2

�)

is

���! = �
f2��!
3�2f2�

�
2�

L

�3X
n

Cnk
2
nu

2
�!(kn)

!�n(E!n � E)

So we have
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���!
2m�0

= � 1

2m�0

f2��!
3�2f2�

�
2�

L

�3X
n

Cnk
2
nu

2
�!(kn)(E!n + E)

!�n(E2!n � E2)

And we also have

���!
2m�0

= �2m�0

X
n

G2!n
E2!n � �2

So we have G!n in (4.7.1) as

G!n =
f2��!

48m2
�0�

3f2�
(
2�

L
)3
Cnk

2
nu

2
�!(kn)(E!n + E)

!�n

And we already have G�n as in (4.4.4)

G2�n =
f2���

24m2
�0�

3
(
2�

L
)3
Cnk

2
nu

2(kn)

!�n

With G!n, G2�n, and (4.7.2), we can �nd the energy eigenvalues ��s.
Suppose one of the ��s has a value of Wx, then we can send it to (4.5.1) and

get the �nite volume phase shifts. In this case, we set
Sn
S

< 5 � 10�4 as in
Section 4.5 and calculate the phase shifts at L = 3 (fm), 5 (fm), 7 (fm), 9 (fm),
12 (fm), and 24 (fm).

Fig. 4.7.1 In�nite volume phase shifts (L =1)
and phase shifts at L = 3 (fm)
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Fig. 4.7.2 In�nite volume phase shifts (L =1)
and phase shifts at L = 5 (fm)

Fig. 4.7.3 In�nite volume phase shifts (L =1)
and phase shifts at L = 17 (fm)
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Fig. 4.7.4 In�nite volume phase shifts (L =1)
and phase shifts at L = 19 (fm)

Fig. 4.7.5 In�nite volume phase shifts (L =1)
and phase shifts at L = 12 (fm)
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Fig. 4.7.6 In�nite volume phase shifts (L =1)
and phase shifts at L = 24 (fm)

To verify that �nite volume phase shifts moves towards the in�nite volume
phase shifts as L increases, we �nd the �nite volume phase shifts by interpolation
at W = 0:77 (GeV) and L = 3 (fm), 5 (fm), 7 (fm), 9 (fm), 12 (fm), and 24
(fm).

Fig. 4.7.7 Finite Volume Phase Shifts (Solid Line) Compared
with In�nite Volume Phase Shifts (Dashed Lines)

We also put the phase shifts where only � ! �� channel is considered into
Fig. 4.7.7 for comparison. We can observe that, as L increases, the �nite volume
phase shifts at W = 0:77 (GeV) moves towards the in�nite volume phase shifts
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in both cases where only the � ! �� channel is considered and where both
�! �� and �! �! channels are included.
In Fig. 4.7.1 to Fig. 4.7.6, the �nite volume phase shifts calculated from

Lüscher�s method are discrete dots and do not fall exactly on the pole position.
We calculated the pole position by interpolation, which coresponds to the in-
tersection of the straight line between the two closest dot below and above the
pole and the horizontal line which marks � =

�

2
. In Fig. 4.7.1 to Fig. 4.7.6, all

of the dots representing phase shifts extracted from Lüscher�s formula lie very
close to the curve of the exact in�nite volume phase shift. This means that
Lüscher�s formula works quite well at L > 3 fm. As discussed in Chapter 3, the
problem of deciding the pole position comes from the scarce numbers of dots of
phase shifts extracted from Lüscher�s formula at small L values, which caused
the deviations of the pole position calculated by interpolation.

As in Chapter 3, we calculate the di¤erence ratio
�L � �1
�L

. The di¤erence

ratio
�L � �1
�L

is plotted against L as shown in Fig. 4.7.8 for the case where

only the �! �� channel is considered and in Fig. 4.7.9 for the case where both
�! �� and �! �! channels are included.

Fig. 4.7.8 Di¤erence ratio between �nite and in�nite volume phase shifts
(solid line) and its exponential �t (dashed line) of �! �� channel
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Fig. 4.7.9 Di¤erence ratio between �nite and in�nite volume phase shifts (solid line)
and its exponential �t (dashed line) of �! �� channel and �! �! channel

As in Chapter 3, we use an exponential �t to plot the relation between the

di¤erence ratio
�L � �1
�L

and L, which is shown as the dashed lines in Fig. 4.7.8

and Fig 4.7.9. In Fig. 4.7.8, the di¤erence ratio in exponential �t diminishes
as L increases. This result is in accordance with the decrease of �nite volume
e¤ect at larger values of L as expected.
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Chapter 5

Conclusion

5.1 Deviations of the Pole Position

In Chapter 3 we have calculated the in�nite volume phase shifts and the
�nite volume phase shifts of � ! �� scattering. In Chapter 4 we have calculated
the in�nite volume phase shifts and the �nite volume phase shifts of � decay
in � ! �� channel with and without the � ! �! channel. We use a linear
�t procedure to obtain the �nite volume phase shifts at the pole position and
denote it �L, where L is the side length of the lattice. At the pole position, the

in�nite volume phase shift, �1, is
�

2
. We calculate the di¤erence ratio

�1 � �L
�L

for the � ! �� scattering and the � decay in the � ! �� channel with and
without the �! �! channel.
The dots which represent the �nite volume phase shifts calculated by Lüscher�s

formula lie close to the curve of the exact in�nite volume phase shift in all our
calculations in Chapters 3 and 4. This shows that Lüscher�s formula works quite
well at the L values we have chosen. However, there are still deviations in pole
positions in our calculations.
The deviation of the pole position calculated by Lüscher�s formula can be

attributed two factors. First, at small L values, the distribution of the en-
ergy eigenvalues of the Hamiltonian is scarce, and the pole position calculated
by Lüscher�s formula through interpolation is prone to be in�uenced by the
positions of neighboring dots calculated by Lüscher�s method from the energy
eigenvalues. Second, although Lüscher�s method works quite well, there is still
the �nite volume e¤ect.

5.2 Lattice E¤ects

In the low energy region, QCD can not be studied perturbatively. Hence,
lattice QCD is an important method for investigating QCD and the resonances
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in the lower energy region. However, the imposition of a lattice with periodic
boundary conditions will cause discrepancies in the results of the �nite volume
models compared to the in�nite volume results. Increasing the lattice size can
reduce such discrepancies, but the cost is a huge demand in computational
capacity.
Lüscher�s formula can relate the energy spectra of �nite volume models to

in�nite volume scattering processes. In this project, we have presented a �nite
volume model, extracted the energy eigenvalues, and found the corresponding
phase shifts through Lüscher�s formalism. We have applied our model to � ! ��
scattering and � decay in the � ! �� channel with and without the � ! �!
channel. For � ! �� scattering, the exponential �t of the di¤erence ratio
�1 � �L
�L

at the pole position is less than 1% when L & 21 (1=m�). For � decay

in the � ! �� channel, the exponential �t of the di¤erence ratio
�1 � �L
�L

at

the pole position is less than 0:01% when L & 12 (fm). For the � decay in both
the �! �� channel and the �! �! channel included, the exponential �t of the

di¤erence ratio
�1 � �L
�L

at the pole position is at about 0:01% when L & 10

(fm).
Because we extracted the �nite volume phase shifts from the energy spectrum

of the scattering system, the �nite volume phase shifts are discretized. When
there are not many energy eigenstates in the Hamiltonian, it is di¢ cult to
determine the pole position from the �nite volume phase shifts. The problem is
not so much the inaccuracy in Lüscher�s method but the absence of a reliable way
to get the pole position from calculated phase shifts when their distribution is

sparse. We can �nd that, in order to keep the di¤erence ratio
�1 � �L
�L

small, we

need the lattice side length larger than a certain value. This is understandable,
since when L goes to 1, the volume of the lattice becomes in�nite, the model
recovers the in�nite volume scattering result, and the lattice e¤ects decrease.

5.3 Prospect

We have presented the application of our model on the � meson. As a
prospect, our model may also be used for investigating other resonances in the
low energy region. For example, it can be used to investigate the excited states
of the nucleons, such as the � baryon.[26]
For the � baryon, we can �t the Hamiltonian matrix with �, g(0), and m�0

as parameters to get the discrete energy spectra. With �tting technique and
a good choice of regulator, the Hamiltonian matrix approach can improve the
results calculated from Lüscher�s method. An example of a good choice is a
regulator in the dipole form.
The Hamiltonian matrix approach is also easier for calculation, since it can

be di¢ cult to generalize Lüscher�s formula when we include more channels for
the � baryon. If an additional channel is included, a new generalization of

73



Lüscher�s formula might be needed. As for the Hamiltonian matrix, we only need
to adjust its rows and columns adequately when more channels are included, and
the Hamiltonian matrix approach can also help improve the results calculated
from Lüscher�s method when multiple channels are included. In addition to the
� baryon, it can also be used to investigate other resonances.
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