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Abstract

Arti�cial Neural Networks (ANN) are a powerful tool widely used

in High Energy Physics to solve track �nding and particle identi�ca-

tion problems. A entirely new class of application is related to the

problem of recovering the information lost during data taking or sig-

nal transmission. Good performance can be reached by ANN when

the events are described by quite regular patterns. Such a method was

used for the DELPHI luminosity monitor (STIC) to recover calorime-

ter dead channels. A comparison with more traditional techniques is

also given.
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1 Introduction

Arti�cial Neural Networks (ANN) are powerful nonlinear tools for data anal-

ysis often used in High Energy Physics to solve track �nding and particle

classi�cation problems [1, 2, 3]. More detector oriented issues are mainly

limited to trigger and cluster reconstruction [4, 5]. A new �eld where ANN

could be also fruitfully applied is related to possible loss of information during

data taking. Nowadays, most detectors in particle physics consist of many

independent channels. Each of them provides partial information about the

current event and, sometimes, in case of faulty channels the global response

of the detector can be reconstructed from the remaining active channels.

ANN can perform this operation and give an estimate of the lost informa-

tion. This technique is used for the DELPHI luminosity monitor (STIC) and

a comparison with more traditional methods is given.

2 The STIC electromagnetic calorimeter.

The Small angle TIle Calorimeter (STIC) [6] is a lead - scintillator sampling

calorimeter used to measure the LEP luminosity for the DELPHI detector

[7, 8]. The STIC is composed of two cylinders ("arms") located �220 cm

from the LEP interaction point; each arm of the STIC consists of 49 sampling

layers made of 3.4 mm lead plates and 3.0 mm thick scintillator tiles. The

tiles are arranged into 16 azimuthal sectors and 10 radial rings giving 160

towers projective to the interaction point (see �g. 1). The scintillation light is

read out by WLS �bers running perpendicular to the planes with a density of

about 0.8 �bers/cm

2

and is collected by Hamamatsu 1" R2149 phototetrodes.

A precision machined tungsten "mask" in front of one arm (arm "C") de�nes

the inner acceptance for the luminosity measurement.

The reconstruction of electromagnetic showers is performed by a cluster-

ing procedure which collects the energy deposited in the channels around the

tower with the maximum signal. Each cluster is described by its total energy

( E

tot

) and its position at the STIC front face ( radius R and azymuth ').

The main parameters of the STIC calorimeter are summarized in Table 1.
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3 Inuence of dead channels on the luminos-

ity measurement and review of the meth-

ods used

The STIC luminometer has provided the absolute luminosity ( L ) for DEL-

PHI since May 1994 with a precision better than 0.1%. During the �rst 25

days of 1994 data taking (which correspond approximately to an integrated

luminosity of 5 pb

�1

) three channels did not work (period "A" of the STIC

data taking). They were repaired and they were working properly for the

rest of data taking (period "B" of the STIC data taking). Two of them are

located in the outer rings of the calorimeter and, due to the angular depen-

dence of the Bhabha cross section, the number of lost events is negligible

for the luminosity measurement. The third channel

3

(number 154) is lo-

cated in the fourth ring and therefore in that case a correction for the loss

of events is needed. Without a speci�c procedure to recover dead channels

a contribution to the systematic error on luminosity not higher than 0.03%

is then expected

4

. Dead channels distort both the energy and the position

of the reconstructed electromagnetic clusters. Therefore the total number

of selected Bhabhas (see Appendix 1) can be modi�ed as well as the lumi-

nosity estimation. Since this error could give a contribution to the overall

systematics (see Table 2), we have been forced to look for di�erent methods

to recover the dead channel information.

As mentioned above, each cluster reconstructed by the STIC calorimeter

is described by three main parameters (E

tot

; R and ' ).

The cluster total energy is obviously E

tot

=

P

n

i=1

E

i

, where E

i

is the

energy detected by channel i and n is the total number of towers in a given

cluster. The other parameters (R and ') are calculated using the set of all

E

i

values by means of several estimators. In case of a dead channel it is

necessary to estimate the value of the dead channel energy ( E

dead

) starting

from the existing data. In principle, it is possible to reconstruct both R and

' without information on E

dead

, using only the existing energy deposition

3

In this paper this channel will be mentioned as C

154

and E

154

will be the energy

deposited in it.

4

Due to the 1=�

3

behaviour of the Bhabha cross section and the small number of

channels a�ected by this problem outside inner rings of the STIC calorimeter, the number

of a�ected events is limited.

3



pattern (see Appendix 2).

Two di�erent approaches for estimating E

dead

were used in the analysis:

� E

dead

parameterization as a function of the measured parameters of the

reconstructed cluster;

� E

dead

estimation using the Arti�cial Neural Network technique (see

Section 5).

4 Dead channel energy recovery using a clus-

ter parameterization

Di�erent models were used to �nd correlations between the dead channel

energy and the global cluster information. The sample of events from period

"B" of data taking, where channel C

154

was active, was used to set up and

test the methods.

Good precision in the reconstruction of the dead channel energy (E

154

)

can be obtained by exploiting the characteristic signature of a Bhabha event,

i.e. two back to back electromagnetic showers with energy around 45 GeV.

A function which provides the energy in C

154

can be built using as variables

both the radius of the opposite cluster (R

c

) and the total energy deposited in

the 8 towers surrounding the dead one (E

surr

tot

). This function is well-de�ned

only for a limited sample of events (a slice of f(R

c

; E

surr

tot

) is shown in �g. 2).

The cuts to de�ne the sample are the following:

� Arm "C" (no dead channels), for the cluster with maximum energy:

{ j'

max

� '

C

154

j � 22:5

o

{ 14 cm � R

max

� 21 cm

{ E

max

� 29 GeV

� Arm "A" (dead channel 154):

{ at least 7 hits around C

154

The original and corrected energy spectra of Bhabha events are shown in

�g. 3 and 4 (see also Table 3). The fraction of lost Bhabhas recovered with
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this method is 83%. Attempts to increase this fraction by using more re�ned

tuning of the same method were not successful.

The contribution to the overall systematic error in the luminosity mea-

surement due to the statistical precision of the used method for dead channel

correction is of the order of 0.01%.

5 Dead channel energy reconstruction with

an Arti�cial Neural Network

For the problem discussed here the best version of the ANN is the "func-

tion �tting net" with back propagation updating

5

. In this case the data

processing is performed in two steps:

� Network learning. At this step the calorimeter data from the period

"B" of the STIC data taking were used to train the ANN with the

maximum statistics available.

� Dead channel data reconstruction. Afterwards, data from both

periods "A" and "B" were used. A fraction of the period "B" data

(which was never seen by the network at the learning stage) were used

for learning tests and systematic error estimation. The data in period

"A" were used for physics analysis.

Two input data streams were implemented for the ANN learning:

� the vector of 48 values of energy detected by the channels surrounding

C

154

; this information is used to activate the top level of the network

and does not include channel 154 itself.

� the energy detected by channel 154 which is used as the tagged value

6

.

The network has 48 nodes in the input layer, two hidden layers and one

single node for the output. The architecture of the network is summarized

in Table 4 (the terminology of reference [9] is used).

5

The JETNET [9] ANN application package was used for the present analysis.

6

After some investigations the best representation of the tagged value was expressed

as: TagV alue = ln(

E

154

E

beam

+ 1:124) where E

beam

is the energy of the LEP beams.
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The learning required not more than 10000 events from period "B" .

The network learning e�ciency, which can be estimated in terms of mean

error of the last epoch, is quite satisfactory, shows a stable behaviour and

decreases with small uctuations (see �g. 5). The input data were given to

the network in a random order to make the learning procedure more e�cient

and all values were normalized in the range from 0 to 1. Since the radial

density of events varies signi�cantly, some additional e�orts were made to

obtain a more uniform learning and compensate for the 1=�

3

behaviour of

the Bhabha cross section. The patterns which are rare in the input data

sample were used 2-3 times more often for learning and on the contrary,

lower weights were given to the patterns which could have saturated the

network.

The ANN data reconstruction quality was tested with the same sample of

events used in Section 4 (20155 of these events were Bhabhas near the dead

channel C

154

).

Fig. 6 shows the distribution of �E

154

= E

orig

154

� E

rec

154

where E

orig

154

is the

original energy detected by channel C

154

and E

rec

154

is the reconstructed one.

The individual spectra of E

orig

154

and E

rec

154

are shown in �g. 7a and 7b. One

can see a good agreement between the two distributions for 0 � E

orig

154

� 20

GeV. For bigger values of E

orig

154

the response of the ANN is systematically

smaller, but it does not a�ect the �nal selection of the Bhabha events used

for the luminosity calculation. The total energy spectrum of the Bhabha

clusters recovered by the ANN is shown in �g. 8. The di�erence between

the original energy distribution and the distribution modi�ed by the dead

channel is clearly not negligible (�g. 8a); but the original and reconstructed

spectra (�g. 8b) are in good agreement.

The procedure to get the cluster position (R and ') used for the STIC

data analysis needs information about the energy deposited in the channels

around the barycenter of the cluster. The presence of the dead channel a�ects

both values (see �g. 9a and 10a). The C

154

energy recovery done by the ANN

leads to a signi�cant improvement in the cluster coordinate measurement (see

�g. 9b and 10b). In particular, both plots show no systematic shift in the

coordinate reconstruction. It has to be noted that the best precision for the

cluster radial reconstruction in case of dead channel recovery is reached in

the center of C

154

(� � 38�m) and it is worse near its border (� � 79�m).

This behaviour is opposite to the STIC radial resolution: all estimators in

use show better performance near the borders of the tiles. The studies to
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estimate the possibility of direct reconstruction of the cluster radial position

for events with dead channels are discussed in Appendix 2.

The presence of the dead channel a�ects the number of reconstructed

Bhabha events (some Bhabhas are recognised as non-Bhabhas and vice versa).

Using the test statistics these smearing e�ects can be estimated. In particu-

lar, we observed no di�erence between the real and the reconstructed event

distribution when applying radial and acoplanarity cuts (see Appendix 1). In

fact a distortion in the number of selected Bhabhas after the energy cut was

observed: 6 Bhabhas were recognized as non-Bhabhas and 27 non-Bhabhas

recognised as Bhabhas. The contribution to the systematic error in the lu-

minosity measurement due to the statistical precision of the method used to

recover dead channels is of the order of 0.005%, negligible compared to the

other sources of error shown in Table 2 and smaller than the one obtained

with standard methods (see Section 4)

7

.

The energy and impact cluster radius (R) are also reconstructed better

with ANN methods than with traditional ones, as can be seen from Table 5.

6 Events classi�cation with the ANN

ANN can be also used to classify Bhabha events directly without previous

dead channel recovery. The parameters of this network are summarized in

Table 6. The input layer of the ANN has a more sophisticated structure to

take into account information from both calorimeter arms. This layer consists

of 97 nodes. The �rst 48 values are reserved for the energy depositions

detected by the channels surrounding C

154

(the dead channel itself is not

included). The second group of 49 nodes is used to accept the energy of the

channels in arm "C" which are opposite to channel C

154

. The output layer

has one node with possible values in the range from 0 to 1. At the learning

stage

8

the tagged value is 1 to mark Bhabha events and 0 for non-Bhabha

events. At the testing stage the value of this node (V

answer

) is used for event

classi�cation.

The ANN learning was done with 20000 events (around 70% of these

7

The presence of dead channels can also introduce additional systematic errors as for

example an ine�ciency at trigger level (� 0:015% of the events can be lost in the case

considered).

8

Langevin learning with a Gaussian noise term is used.
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events were Bhabhas selected by the standard STIC criteria) and 6951 events

were used at the network testing stage (the total data sample was 40958

events).

Fig. 11 shows the network response for Bhabha (�g. 11a) and for non-

Bhabha (�g. 11b) events. The following cuts are used for event classi�cation:

� the event is a candidate Bhabha if V

answer

� 0:5

� the event is a non-Bhabha candidate if V

answer

< 0:5

The results of the ANN data analysis are summarized in the Table 7. A

conservative estimate of the systematic error of this method can be calculated

from the total number of wrongly classi�ed events in the total data sample

used for tests, giving a systematic error on luminosity smaller than 0.02%.

Conclusions

Two di�erent approaches for dead channel recovery were developed and

tested for the STIC luminosity monitor of DELPHI. The Arti�cial Neural

Networks approach shows the best results in both energy and coordinate re-

construction (see Table 5). An error as low as 0.005% can be obtained on the

luminosity measurement from the statistical precision of dead channel cor-

rection. Among the ANN models, the network described in Section 5 gives

the minimum contribution to the total systematic error in luminosity and

was �nally used for physics.

Appendix 1

At e

+

e

�

colliders, the luminosity is measured by counting the rate of Bhabha

events at small angles. The continuous progress in theoretical calculation of

the Bhabha cross section and Monte Carlo simulation have reached an accu-

racy of ' 0.2% which has stimulated the construction of better luminosity

monitors for high precision Z

0

physics at LEP.

In STIC luminosity analysis an event is classi�ed as Bhabha if:

� there is at least one cluster in each arm with energy greater than 65 %

of the beam energy (E

beam

= 45:638 GeV in LEP during 1994 data

taking)
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� the radial position of the clusters with the maximum energy in the arms

is: R

C

< 25:0 cm for arm "C" and 8:2 < R

A

< 28:0 cm for arm "A"

� the absolute value of the acoplanarity (e.g. the value of j'

A

� '

C

j) of

two maximum clusters in arms "A" and "C" is less then 20

o

Appendix 2

Reconstruction of cluster radius can be done directly by the ANN without

the intermediate step of E

154

recovery. In this case the network structure was

slightly modi�ed (28 and 6 neurons in the hidden layers). The output layer

provides a function of the cluster radius and the training procedure was set

with 151907 events selected with the criteria described in Section 5).

In the training step, the original radius was computed by the standard

STIC radial estimators

9

using also the information of C

154

(available during

period "B").

The testing step made use of a similar sample of events also from period

"B" of the STIC data taking. However, events with the maximum energy

deposit in rings number 1 or 7-10 were rejected since the performance of the

ANN is poor and the contribution of C

154

is negligible. These choices greatly

improve the reconstruction performance but the whole technique remains less

e�cient than the method which employs the ANN for E

154

reconstruction and

recovers R analytically by means of STIC radial estimators. In particular,

the long tails in the distribution of �g. 12 are essentially due to an implicit

misinterpretation of E

154

.
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Energy resolution for 45 GeV electrons 2.5 %

Energy linearity (from 10 to 100 GeV) within � 1.0 %

Radial resolution for di�erent 250 �m at the border of tiles

regions 1.2 mm at the tower center

Resolution in the ' direction for 1.0 mm at the border of sectors

di�erent regions 3.5 mm at the sector center

Number of hits for 45 GeV electron clusters 18:9� 2:2

Table 1: Main parameters of the STIC calorimeter

Source Contribution to

�L

L

a

Monte Carlo statistics 0.2

Interaction point position 0.6

Precision of tungsten mask 0.4

Outer radius cut 0.2

Inner radius cut 0.2

Acoplanarity cut 0.1

Energy cut 0.3

Background subtraction 0.2

Trigger ine�ciency 0.2

Total experimental 0.9

Total theoretical 1.6

a

fraction of per mill.

Table 2: Sources of systematic error in luminosity
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Method of Sect. 4 ANN method

Total number of Bhabha events 118761

Bhabhas lost if no correction done 990

Bhabhas not reconstructed 164 6

Non-Bhabhas reconstructed as Bhabhas 4 27

Table 3: Results from Bhabha reconstruction by the traditional (Section 4)

and ANN methods

Total number of layers used 4

Number of neurons in the 1-st hidden layer 25

Number of neurons in the 2-nd hidden layer 5

Number of patterns per update 10

Number of updates per epoch 100

Network activation function g(x) = x

Learning rate ( � ) 0.2

Momentum parameter ( � ) 0.5

Number of epochs used for the ANN learning 60

Table 4: Characteristics of the ANN for the dead channel energy reconstruc-

tion

Method of Sect. 4 ANN method

< E

rec

� E

orig

> (GeV) 0.110 0.051

�(E

rec

� E

orig

) (GeV) 1.594 0.114

< R

rec

�R

orig

> (cm) 0.009 0.0034

�(R

rec

�R

orig

) (cm) 0.11 0.0094

Table 5: Results from energy and radius reconstruction using the traditional

and ANN methods.
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Total number of layers used 3

Number of neurons in the hidden layer 40

Number of patterns per update 10

Number of updates per epoch 100

Network activation function g(x) =

1

1+exp(�2x)

Learning rate ( � ) 1.0

Momentum parameter ( � ) 0.5

Number of epochs used for the ANN learning 70

Width of Gaussian noise in Langevin updating ( � ) 0.01

Decrease in learning rate 0.999

Decrease in Langevin noise 0.99

Table 6: Characteristics of the ANN for the event classi�cation

Events type Number of ANN answer

events Bhabha non-Bhabha

Bhabha 4894 4888 6

non-Bhabha 2057 19 2038

Table 7: Results of the event classi�cation with the help of the ANN for

events near channel C

154

, out of the total sample of 40958 events.
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Figure 1: One plane of the calorimeter sandwich corresponding to one half

arm.
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Figure 11: The classi�cation ability of ANN for Bhabha (a) and non-Bhabha

(b) events.
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