
SELF-CONSISTENT COMPUTATION OF ELECTROMAGNETIC FIELDS
AND PHASE SPACE DENSITIES FOR PARTICLES ON CURVED PLANAR

ORBITS ∗

G. Bassi, University of Liverpool, J. A. Ellison † , K. Heinemann, University of New Mexico,
M.Venturini, LBNL, and R. Warnock, SLAC

Abstract

We discuss our progress on the self-consistent calcu-
lation of the 4D phase space density (PSD) and electro-
magnetic fields in a Vlasov-Maxwell formulation. We em-
phasize Coherent Synchrotron Radiation (CSR) from arbi-
trary curved planar orbits, with shielding from the vacuum
chamber, but space charge forces are naturally included.
Our focus on the Vlasov equation will provide simulations
with lower numerical/statistical noise than standard PIC
methods, and will allow the study of issues such as emit-
tance degradation and microbunching due to space charge
and CSR in bunch compressors. The fields excited by the
bunch are computed in the lab frame from a new double in-
tegral formula. The field formula is derived from retarded
potentials by changes of variables. It is singularity-free and
requires no computation of retarded times. Ultimately, the
Vlasov equation will be integrated in beam frame coor-
dinates using our method of local characteristics. As an
important intermediate step, we have developed a “self-
consistent Monte Carlo algorithm”, and a corresponding
parallel code. This gives an accurate representation of the
source and will help in understanding the PSD support. In
addition we have (1) studied carefully a 2D phase space
Vlasov analogue and (2) derived an improved expression of
the field of a 1D charge/current distribution which accounts
for the interference of different bends and other effects usu-
ally neglected. Bunch compressors will be emphasized.

INTRODUCTION

Our basic starting point is the Vlasov-Maxwell system
in 6D, i.e., we assume collisions can be ignored and that
the N−particle bunch can be approximated by a contin-
uum. Our coordinate system, (Z,X, Y ), is shown in Fig.
1. We assume an external force due to a magnetic field,
Bext(R), in the Y−direction. We define a reference or-
bit, Rr(s) = (Zr(s), Xr(s)), lying in the Y = 0 plane,
which is a solution of the Lorentz equation for E = 0
and B = Bext(R)eY . Here R := (Z,X) and s is arc
length along the reference orbit. In Fig. 1 we sketched
Rr(s) for a 4 dipole magnetic chicane bunch compres-
sor. We focus on the evolution of E := (EZ , EX , BY )
and take (EY , BZ , BX) = 0. We model shielding by the
vacuum chamber by taking E = 0 at Y = ±g, where
h = 2g is the height of the vacuum chamber as shown
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Figure 1: Basic lab frame setup.

in Fig.1. We let H(Y ) be the fixed Y density defined for
|Y | ≤ g, then the coupled 4D Vlasov-Maxwell system
for the field vector E(R, Y, u) and the phase space density
H(Y )δ(PY )Ψ(R,P, u), with the shielding boundary con-
dition, takes the form:

�E(R, Y, u) = H(Y )S(R, u), (1)

∂uΨ + Ṙ · ∇RΨ + Ṗ · ∇PΨ = 0, (2)

E(R, Y = ±h/2, u) = 0, (3)

where u = ct, c is the speed of light,˙= d/du, � = �−∂2
u,

and

S(R, u) = Z0Q

⎛
⎝

c∂Zρ+ ∂uJZ

c∂Xρ+ ∂uJX

∂XJZ − ∂ZJX

⎞
⎠ , (4)

Ṙ = P/mγ(P )c,

Ṗ =
q

c

[
E‖(R, Y, u) + (cṘ × BY (R, Y, u))

]
. (5)

Here Z0 is the free space impedance, Q is the total
charge, QH(Y )ρ(R, u) is the lab frame charge density
(with

∫
HdY =

∫
ρdR = 1), QH(Y )(JZ , JX)(R, u)

is the current density (which, of course, has no Y com-
ponent), m is the electron mass, q is the electron charge
(so that Q = Nq where N is the number of particles in
the bunch), γ is the Lorentz factor, E‖ = (EZ , EX) and
BY = (Bext(R) + BY (R, Y, u))eY . Equations (1-2) are
incomplete without the coupling between S and Ψ given
by

ρ(R, u) :=
∫
dPΨ(R,P, u), (6)

J‖(R, u) :=
∫
dP(P/mγ(P ))Ψ(R,P, u), (7)
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where J‖ = (JZ , JX). We use (c, Z0) as our basic param-
eters instead of (ε0, μ0), where Z2

0 = μ0/ε0, c
2 = 1/μ0ε0.

Integrating the Vlasov equation over P and using (6-7)
yields the continuity equation ∂uρ + 1

c∇R · J‖ = 0. We
are investigating energy conservation, a type of Poynting
theorem, for our model. In addition, we would like to
characterize the ISR and CSR in analogy with N particles
under uniform motion on a circle using a Klimontovich
source. In that model the particle positions are IID ran-
dom variables with probability density f(θ), and one ob-
tains Prad =

∑
n[N + (N2 − N)| ∫ f(θ)einθdθ|2]�eZn.

Here the first term is identified with the ISR and the second
with CSR.

While we believe (1-7) is a good approximation to
the full 6D dynamics at high energies where space
charge effects are small, we are investigating ways to
check this. Consider the 6D case and define ρ3 :=
Qδ(Y )ρ(R, u), J3 := Qδ(Y )(JZ , JX , 0) and Ψ3 :=
δ(Y )δ(PY )Ψ(R,P, u). Then plugging these into the 6D
Vlasov-Maxwell system we find that (1-7) must be satisfied
withH(Y ) = δ(Y ). This will also give wave equations for
E⊥ = (EY , BZ , BX) and we can investigate its size.

FIELD FORMULA

Solving (1) with Dirichlet’s boundary condition (3) and
zero initial conditions, E(R, Y, u = u0) = ∂uE(R, Y, u =
u0) = 0, gives

E(R, Y, u) = − 1
4π

∫ u−u0

−(u−u0)

dηG(η, Y )
∫ u−|η|

u0

dv ×
∫ 2π

0

dθS(R +
√

(u− v)2 − η2eθ, v), (8)

for u ≥ u0, |Y | ≤ g, eθ = (cos θ, sin θ), and

G(η, Y ) =
∑
p≥1

Hp cosαpηψp(Y ), αp = pπ/h,

ψp(Y )=sinαp(Y + g), Hp =
1
g

∫ g

−g

H(Y )ψp(Y )dY. (9)

We emphasize that the integrand in our formula has no sin-
gularities and a retarded time calculation is not necessary.

Equation (8) was derived by the eigen expansion E =∑
p Epψp(Y ), where each Ep(R, u) satisfies a nonho-

mogeneous Klein-Gordon equation. If Êp(R,W, u) :=
exp(iαpW )Ep(R, u) then Êp satisfies the nonhomogeneous
wave equation, in (Z,X,W ), with zero initial data and no
boundary conditions. The resulting 3D wave equation is
solved using the retarded Green function. Making the tem-
poral argument in the source an integration variable gets
rid of the singularity and gives (8). The formula can also
be derived by the more physical method of images start-
ing from Eq.(6) in [1], taking proper account of the initial
conditions and again making the temporal argument of the
source an integration variable.

In principal the initial value problem for (1-3) should be
solved with the actual physical initial conditions. However
these are not known, so researchers often take u0 = −∞,
assume the source is given a priori for (−∞, ũ], and then
start the self-consistent calculation at ũ. For the bunch
compressor, we choose ũ = 0 as the time the bunch en-
ters the chicane. For numerical integration the contribu-
tion from the source is neglected for v less than a certain
cutoff, uc, to give a finite interval of integration. Another
view leading to (8) is to solve the initial boundary prob-
lem in terms of the unknown initial condition. This adds a
homogeneous solution of (1) to (8). Then u 0 is then cho-
sen enough negative so that the homogenous solution has
”passed through” the bunch compressor before the bunch
arrives and thus can be ignored in the solution.

To reduce the computation time we can average (8) with
respect to H(Y ). This reduces the (3+1)D space-time grid
to (2+1)D. A further reduction is obtained by assuming the
Y extent of the beam is small compared to h. This amounts
to approximatingH(Y ) by δ(Y ), which reduces the 3D in-
tegration to a 2D one. The order of the two approximations
can be reversed by first letting H(Y ) = δ(Y ), and then
averaging over Y (which amounts to setting Y = 0). For
H(Y ) = δ(Y ), (8) becomes

E(R, Y, u) = − 1
4π

∑
k

(−1)k

∫ u−|Y −kh|

u0

dv1[u0,∞)(v)

∫ 2π

0

dθS(R +
√

(u − v)2 − (Y − kh)2eθ, v), (10)

where 1I(v) is the indicator function of the interval I . This
is the exact solution for the H = δ case discussed in the
introduction. Putting Y = 0 gives the formula we use and
the interest is in (10) for R in the bunch at time u, i.e.,
R ≈ Rr(βru).

An important feature of (10) is that the second argument
of the source does not depend on θ and the θ integration
depends only on the bunch at time v. For Y = 0, the θ inte-
gration is over an arc centered at the observation point R at
time u with radius

√
(u− v)2 − (kh)2 and whose extent

is its intersection with the bunch at time v. This is illus-
trated in the Fig. 2 for k = 0. When v is close to u the two
bunches overlap and the θ−support of the source is large.
However, for most v the θ−support is small and it is impor-
tant to determine the approximate support as shown in the
figure. Currently the θ integration is done with the super-
convergent trapezoidal rule. The remaining v−integrand
varies with v, R and u in ways we have not yet quantified
and so use an adaptive integrator.

BEAM FRAME

In our approach the Maxwell equations are solved in the
lab frame and the Vlasov equation is solved in the beam
frame. Here we discuss the beam frame coordinates and
the transformation of the densities between the two frames.
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Figure 3: Beam frame coordinates.

The beam frame is defined in terms of the reference or-
bit using the Frenet-Serret coordinates (s, x), where s is the
arc length along the reference orbit and x is the perpendic-
ular distance along n from the orbit at Rr(s) as shown in
Fig. 3. Recall the reference orbit for a bunch compressor
in Fig. 1.

The transformation (Z,X) to (s, x) is

R = Rr(s) + xn(s), (11)

where Rr(s) := (Zr(s), Xr(s)) and the unit normal vec-
tor n(s) := (−X ′

r(s), Z
′
r(s)). The corresponding tangent

vector is t(s) = R′
r(s) = (Z ′

r(s), X ′
r(s)). In addition,

we define ps and px by P := Pr(pst(s) + pxn(s)), where
Pr = mγrβrc is the momentum of the reference particle.
Finally, we define the curvature κ(s) by n ′(s) = κ(s)t(s)
and it follows that t′(s) = −κ(s)n(s). In terms of Fig. 1
this makes κ negative in the first magnet, positive in the
second and so on.

Our lab to beam transformation has three steps:

(Z,X, PZ , PX ;u)→ (s, x, ps, px;u) (12)

→ (u, x, ps, px; s) → (z, x, pz, px; s).

The first step is the transformation just discussed, in the

second step the variables s and u are interchanged making
s the new independent variable and in the final step z :=
s− βru replaces u as a dependent variable and pz := (γ −
γr)/γr replaces ps. (11) defines s = s(R) and x = x(R)
so that z = z(R, u) = s(R)−βru and we have the identity
R ≡ Rr(z(R, u) + βru) + x(R)n(z(R, u) + βru). Now z
is small in the bunch and expanding for small z gives R =
Rr(βru) + M(βru)r + O(κ(z2 + xz) and we obtain ob-
tain the approximate inverse r = M T (βru)(R−Rr(βru)).
Here M(s) = (t(s), n(s)) and r = (z, x)T .

The equations of motion in (z, x, pz, px; s) have the
fields E(R, u) evaluated at R = Rr(s)) + xn(s) and
u = (s − z)/βr. We have the following approximations
E(Rr(s) + xn(s), (s − z)/βr) ≈ E(Rr(s + z) + xn(s +
z), s/βr) ≈ E(Rr(βru) + M(βru)r, s). At the first ap-
proximation we use the fact that the fields are slowly vary-
ing in s for fixed r. The second approximation uses the fact
that βr ≈ 1 and we are only interested in the fields in the
bunch for r small. We obtain

z′ = −κ(s)x p′z = Fz1(R̂, s) + pxFz2(R̂, s)
x′ = px p′x = κ(s)pz + Fx(R̂, s), (13)

where R̂ := Rr(s) +M(s)r and ′ = d/ds. The self-forces
are given approximately by

Fz1 =
q

Prc
E‖ · t(s), Fz2 =

q

Prc
E‖ · n(s)

Fx =
q

Prc
(−EZX

′
r(s) + EXZ

′
r(s) − cBY ), (14)

where (EZ , EX , BY ) are evaluated at (R̂, s). We have ex-
panded Fx in order to point out that each of the last two
terms are large whereas their difference is small.

The equations of motion (13), without the self fields,
have been linearized. They can be solved and the solution
written ζ = Φ(s)ζ0, where ζ = (z, x, pz, px)T . Here Φ is
the principal solution matrix which is defined in terms of
the dispersion function, D(s), and R56(s) (see [2]). The
equations of motion in the interaction picture become

ζ′0 = Φ−1(s)(0, Fz , 0, Fx)T (s, ζ0). (15)

Φ(s) varies more slowly than the self-forces and so we nu-
merically solve these rather than (13). A larger time step,
which is controlled entirely by the self-forces, can be used.

Our field formula is in the lab frame so the lab charge
and current densities must be determined from the beam
frame PSD. The relation between lab and beam PSDs is

ΨL(Z,X, PZ , PX ;u) =
β2

r

P 2
r

fB(z, x, pz, px; s). (16)

This leads to

ρL(R;u) ≈
∫
dpzdpxfB =: ρB(r; s), (17)

JL(R;u) ≈ βrc[ρB(z, x; s)t(s) + τ(z, x; s)n(s)], (18)

where τ(z, x; s) =
∫
pxfB(z, x, pz, px; s)dpzdpz . Us-

ing the fact that fB(z, x, pz, px; ·) is slowly varying



and ρB(r, s) has its support for r small, we have
ρB(z(R, u), x(R); z(R, u) + βru) ≈ ρB(r̂;βru), where
r̂ = MT (βru)(R − Rr(βru)). Thus

ρL(R;u) ≈ ρB(r̂;βru) (19)

JL(R;u) ≈ βrc
[
ρB(r̂;βru)t(z + βru) +

τ(r̂;βru)n(z + βru)
]
, (20)

where the JL approximation is derived similarly to that for
ρL.

There is a subtlety in the second transformation caused
by interchanging the roles of u and s as independent and
dependent variables. The phase space density transforma-
tion and the approximations are discussed in detail in [3].

UNPERTURBED SOURCE MODEL (UPS)

In this model we uncouple the Vlasov-Maxwell system
so that it becomes a Liouville-Maxwell system. Here the
source evolves with no self-fields and the fields are calcu-
lated from this unperturbed source. The Vlasov equation
thus becomes a Liouville equation which defines the evo-
lution of the beam frame phase space density.

We have focused on the bunch compressor with an ini-
tial Gaussian PSD density in the beam frame. Because (13)
with out self-forces is a linear system, the unperturbed PSD
is Gaussian at each s and thus the Lab frame charge density
in (19) is Gaussian. This fact speeds up the field calcula-
tion considerably. We define an {si} grid along the ref-
erence orbit and a (Z,X) grid at each si which contains
the bunch and is based on the evolution of the unperturbed
charge density. We then calculate the self-forces (14) on
this grid. We could integrate the Liouville equation using
the method of local characteristics discussed below. To date
we have proceeded as follows. We generate an initial en-
semble of beam frame phase space points. We then move
the points from si to si+1 using (15) with the self-forces at
si. We interpolate to determine the self-forces at points off
the (Z,X) grid.

The UPS model is not self-consistent nor is it the first
term in a systematic perturbation expansion in the size of
the self-forces. Nevertheless, it has been helpful in the de-
velopment of our self-consistent code because it is a good
testing ground for our numerical and approximation pro-
cedures and computation with a Gaussian is fast. Fur-
thermore, it may give a good approximation to the self-
consistent case in some parameter range, [4, 5, 6].

Two particular points are worth mentioning. Our study
of the UPS has given us insight into how to construct a
space-time grid for the SCMC algorithm described below.
In addition, we have found that for certain parameters, e.g.,
a small uncorrelated energy spread, a moving grid will be
necessary for the PSD.

SELF-CONSISTENT VLASOV-MAXWELL
ALGORITHMS

We have discussed our method for calculating the fields
in the lab frame and the determination of the lab frame
charge and current densities from the beam frame PSD.
Here we discuss two approaches for coupling the numerical
integration of the Vlasov equation with field calculation.

Self-Consistent Monte Carlo (SCMC) Method

Here the basic algorithm is the same as in the UPS case
except the field calculation cannot be done up front and
ρL can not be computed analytically. We discuss the ba-
sic algorithm and contrast it with the PIC method used in
Vlasov-Poisson codes.

1. We generate an ensemble of IID phase space points
from the density fB(z, x, pz, px; 0) using the rejection
method. As an improvement we investigate a Quasi-
Monte Carlo approach “which seeks to construct a set
of initial points that perform significantly better than
the average of a Monte Carlo approach”, see [7]. A
similar procedure could be used in a PIC code.

2. We create a globally smooth lab frame charge den-
sity from the scattered beam frame phase space points.
We fit the data with a finite Fourier series where the
Fourier coefficients are calculated, as in Monte Carlo
integration, from the scattered data. This is a tech-
nique used in statistical estimation, see e.g., [8]. We
have found that a smooth representation is quite im-
portant as Borland found for Elegant before us. Note
that this is a meshless proceedure in contrast to the
charge deposition of a PIC code.

3. We calculate the fields from the history of the Fourier
coefficients using our field formula in (10). In a PIC
code the Poisson equation is solved at this step (of
course, the history of the beam is not needed).

4. We use 3) to advance the particles in the interaction
picture of (15). In a PIC code 3) is also used to ad-
vance the particle positions.

5. The procedure is iterated going back to 2.

We note that our approach can treat a Vlasov-Poisson sys-
tem as a special case. Also, our method is not a macropar-
ticle method in the sense of modeling an N particle bunch
with M � N macroparticles and letting them interact as
point particles. We assume the electron bunch is well ap-
proximated by a continuum evolved by the Vlasov equa-
tion and hope that our algorithm approximates the true
Vlasov dynamics. This is analogous to Monte Carlo inte-
gration where convergence follows from the strong law of
large numbers and the central limit theorem and we hope to
prove convergence. However, even though we expect con-
vergence, the calculation of the PSD is probably beyond
current or near future computing capability.



A parallel code has been developed and results for a
bunch compressor are presented in [6].

Method of local characteristics

The beam frame Vlasov equation is given by

∂sf + z′∂zf + x′∂xf + p′z∂pzf + p′x∂pxf = 0, (21)

using (13-14). The basic idea of the method of local char-
acteristics for an arc length step from s → s + Δ is quite
simple: (i) let values of (14) on the interval [s, s+Δ] be the
value at s. Thus the Vlasov equation becomes a Liouville
equation on that interval, (ii) The Liouville equation can
then be solved on that interval by the standard method of
characteristics, which integrates (13) backward from s+Δ
to s. It’s hard to imagine a better approach, as long as the
collective force is not rapidly varying, since this approach
preserves the geometry of the solutions.

We implement this method as follows. Assume that at si

we have a phase space grid containing the bunch, the PSD
on the grid and the self-fields on the projected spatial grid.
We then determine a phase space grid at si+1, integrate
these points back to si and place them in the grid at si.
Since these points will generically not be grid points, the
PSD at si+1 can then be determined in terms of the PSD at
si using interpolation. The source can now be constructed
and the self-fields determined. The scheme is now iterated.
A parallel implementation will be necessary.

We traced the numerical implementation of this method
back to [9] in the seventies. In the late nineties Warnock
developed this approach in a study of the saw tooth insta-
bility in [10]. Most of the work to date has been done in the
2D case. Warnock’s code has been further developed by
Venturini and it has been extended by Bassi in a stochastic
dynamics study.

Applications to storage rings are reviewed in [11]. Re-
cent work by Venturini et al. has been focused on longitu-
dinal phase space for single-pass systems, in particular the
linac and bunch compressors for an Xray FEL [12]. Space
charge forces and an elemental description of CSR were
included. The Vlasov solution required special coordinate
changes owing to the long and thin distribution in phase
space resulting from energy chirp. The resulting scheme
is able to handle the question of microbunching with low
computational noise, and thus represents a substantial ad-
vance over particle simulations.

DISCUSSION

In [6] we discuss our SCMC results and compare them
with our previous UPS results, [4]. The main point here
is that we now have a self-consistent code which runs on
a UNM parallel cluster and at NERSC. Somewhat surpris-
ingly the UPS turns out to give quantitative agreement with
our SCMC and other codes applied to the Zeuthen bench-
mark at 5GeV. This is discussed in detail in [4, 5, 6]. We

expected big differences at 500 MeV because collective ef-
fects should be stronger, and while we find significant dif-
ferences, the UPS calculation is still a worthwhile first ap-
proximation to the SCMC results. For these comparisons
we had a Gaussian source with linear chirp, evolving under
lattice dynamics. We have preliminary results for the same
with nonlinear chirp and a parabolic density in z.

Our biggest strategic challenge at present is to develop
the Vlasov technique for single-pass systems, with 4D
phase space and energy chirp. Vlasov solutions in 4D have
already been done by Sobol [13], for the coherent beam-
beam interaction. There the meshing problems and com-
plexity of the distribution are not severe, and programming
the force calculation (by a Poisson solver) is much simpler.
On the other hand, the time of integration is very much
longer. We hope that in our single-pass problem the rela-
tively short time of integration, combined with coordinate
changes and the interaction picture, will lead to feasible
calculations. Since a large time is required for the force
calculation, we must devote more work to optimizing that
part of the algorithm. For that the 1D source model [14]
may provide insights as well as fast force evaluations for
exploratory work.

REFERENCES

[1] R. Warnock, G. Bassi, J.A. Ellison, Nucl. Instr. and Meth. A
558(2006) 85-89.

[2] S. Heifets, G. Stupakov, S. Krinsky, Phys. Rev. ST Accel.
Beams 5 (2002) 064401

[3] G. Bassi, J.A. Ellison, R. Warnock, “Relation of phase space
densities in laboratory and beam centered coordinates”, to be
submitted.

[4] G. Bassi, J.A. Ellison, K. Heinemann, EPAC06, Edinburgh,
June 2006.

[5] G. Bassi, J.A. Ellison, K. Heinemann, R. Warnock, “Coher-
ent Synchrotron Radiation from Arbitrary Planar Orbits: A
Vlasov-Maxwell Approach”, in progress.

[6] G. Bassi, J.A. Ellison, K. Heinemann, R. Warnock, PAC07,
Albuquerque, June, 2007.

[7] H. Niederreiter, “Random Number Generation and Quasi-
Monte Carlo Methods”, SIAM, 1992

[8] S. Efromovich, “Nonparametric Curve Estimation: Methods,
Theory, and Applications”, Springer, 1999.

[9] C.Z. Cheng, G. Knorr, J. Comp. Phys. 22(1976)330.

[10] R. Warnock, J.A. Ellison, in: The Physics of High Bright-
ness Beams,World Scientific, Singapore, 2000, also SLAC-
PUB-8404(2000).

[11] R. Warnock, Nucl. Instr. and Meth. A 561(2006) 186-194.

[12] M. Venturini, R. Warnock, A. Zholents, Phys. Rev. ST Ac-
cel. Beams, 10, 054403(2007).

[13] A. Sobol, Ph.D. Dissertation, University of New Mexico,
July, 2006.

[14] R. Warnock, PAC07, Albuquerque, June, 2007.


