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Abstract. It is shown that the Dirac-Nambu-Goto brane can be described as a point particle
in an infinite dimensional space with a particular metric. This can be considered as a special
case of a general theory in which branes are points in the brane space M, whose metric is
dynamical, just like in general relativity. Such a brane theory, amongst others, includes the flat
brane space, whose metric is the infinite dimensional analog of the Minkowski space metric ηµν .
A brane living in the latter space will be called “flat brane”; it is like a bunch of non interacting
point particles. Quantization of the latter system leads to a system of non interacting quantum
fields. Interactions can be included if we consider a non trivial metric in the space of fields.
Then the effective classical brane is no longer a flat brane. For a particular choice of the metric
in the field space we obtain the Dirac-Nambu-Goto brane. We also show how a Stueckelberg-like
quantum field arises within the brane space formalism. With the Stueckelberg fields, we avoid
certain well-known intricacies, especially those related to the position operator that is needed
in our construction of effective classical branes from the systems of quantum fields.

1. Introduction

Relativistic membranes of arbitrary dimension (branes) [1]–[4], are very important objects in
theoretical physics. An attractive possibility is the brane world scenario [5]–[26] in which our
spacetime is a 4-dimensional surface embedded in a higher dimensions space. Quantization of
gravity could then be achieved by quantizing the brane. Unfortunately, quantization of the
Dirac-Nambu-Goto brane, satisfying the minimal surface action principle, is a tough problem
that has not yet been solved in general. Although the quantization of the string, an extended
object whose worldsheet has two dimensions, is rather well understood [27]–[29], this is not so
in the case of branes with higher dimensional worldsheets (also called “worldvolumes”).

We will show how to solve this problem by considering the brane as a point in an infinite-
dimensional brane spaceM that in general can be curved. The idea is that the metric ofM is
dynamical, just like in general relativity [23, 30, 31]. In particular the metric ofM can be such
that it gives the Dirac-Nambu-Goto brane, which is just the usual “minimal surface” brane. For
other choices ofM-space metric we have branes that differ from the Dirac-Nambu-Goto brane,
i.e., they do not satisfy the minimal surface action principle, but some other action principle.
In particular, theM-space metric can be “flat”, which means that at any point ofM it can be
cast into the diagonal form. Then we have a brane analogue of a point particle in flat spacetime.
Such a brane, from now on called flat brane, sweeps a worldsheet that is a bunch of straight
worldlines (Fig. 1).

A flat brane is thus just like a continuous system of point particles. Quantization of a
flat brane then leads to a system of non interacting quantum fields, ϕr(x). The index r
distinguishes one field from another, and because in the classical theory we had a continuous set

http://creativecommons.org/licenses/by/3.0
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Figure 1. A schematic illustration of a “flat brane”. For some exact plots see Fig. 2.

of point particles, r must be continuous. If we consider interactions among the quantum fields,
λrsϕ

r(x)ϕs(x), then the effective classical theory gives a brane living in a curved brane space,
which, in particular, can be the Dirac-Nambu-Goto brane [31].

Instead of one brane a system can consist of many branes. Within the framework of such an
enlarged configuration space it is possible to formulate the Stueckelberg quantum field theory
with an invariant evolution parameter. We show how the latter parameter is embedded in the
system’s configuration.

Each of those branes can be described with a finite number of degrees of freedom, namely, with
the center of mass, and additional degrees of freedom that take into account finite extension of the
brane. Such extra degrees of freedom can be the coordinates of the Clifford space [32]–[39] that
includes scalars, oriented lengths, areas, volumes and 4- volumes (pseudoscalars). In describing a
multi brane system we can choose one brane and sample it with the coordinates of Clifford space,
while for the remaining branes we retain the description with embedding functions. Clifford
space is a 16-dimensional ultrahyperbolic space with neutral signature (8,8). From the scalar
and pseudoscalar coordinates that span a 2-dimensional subspace with signature (+−), we can
form, with a suitable superposition, the analog of the light cone coordinates. In ultrahyperbolic
spaces the Cauchy problem in general cannot be well posed, unless we determine initial data
on the “light cone”. In such a way we obtain the generalized Stueckelberg description [40]–[51],
[23] of particles and branes, both classical and quantum. The Stueckelberg theory is based on
the introduction of an evolution parameter τ , which is invariant under Lorentz transformations.
In the literature we can find various explanations about the physical origin of τ , but none is
generally accepted. In the approach pursued in this and in a series of previous papers [23, 50],
the evolution parameter τ is a superposition of the scalar and pseudoscalar coordinate of the
Clifford space, and is thus embedded in the configuration of the chosen brane. The latter brane,
which in fact need not be just a brane, but whatever extended object that can be sampled as a
brane, thus serves as a clock with which we measure the motion of the remaining branes that
form the considered system.

2. Brane as a point in the brane space M
The Dirac-Nambu-Goto brane is described by the minimal surface action

I = κ

∫

dp+1ξ (−γ)1/2, (1)

where γ ≡ det γab, γab ≡ ∂aX
µ∂bXµ is the determinant of the worldsheet embedding functions

Xµ(ξa), µ = 0, 1, 2, ..., D − 1, a = 0, 1, 2, ..., p.
An equivalent action is the Schild action [52]

ISchild =
κ

2k

∫

dp+1ξ (−γ), (2)
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from which as a consequence of the equations of motion we obtain

∂a(−γ) = 0. (3)

The determinant of the induced metric γ is thus a constant whose choice determines a gauge.
We will choose a gauge such that

−γ = k2, (4)

in which case the canonical momentum πµ
c = κ

√−γ ∂cXµ derived from the action (1) coincides
with the canonical momentum κ(−γ)∂cXµ/k derived from the action (2). Additionally, we can
choose a gauge so that the determinant factorizes according to

(−γ) = Ẋ2(−γ̄), (5)

where Ẋ2 ≡ ẊµẊµ, Ẋ
µ ≡ ∂Xµ/∂τ , and γ̄ ≡ det ∂āX

µ∂b̄Xµ, ā, b̄ = 1, 2, ..., p, the worldsheet
parameters being split as ξa = (τ, ξā). Then instead of (2) we have

ISchild =
κ

2k

∫

dτ dpσ Ẋ2(−γ̄), (6)

which can be written as

ISchild =
κ

2k

∫

dτ dpσ dpσ′ (−γ̄) ρµν(σ, σ′) Ẋµ(τ, σ)Ẋν(τ, σ′), (7)

which is the τ -integral of a quadratic form in an infinite dimensional spaceM with the metric

ρµν(σ, σ
′) = (−γ̄) ηµν δ(σ − σ′). (8)

At this point it is convenient to introduce a compact notation

Ẋµ(σ)(τ) ≡ Ẋµ(τ, σ) , ρµ(σ)ν(σ) ≡ ρµν(σ, σ
′), (9)

and write [31]

ISchild =
κ

2k

∫

dτ ρµ(σ)ν(σ′)Ẋ
µ(σ)(τ)Ẋν(σ′)(τ). (10)

Here we use the generalization of Einstein’s summation convention, so that not only summation
over the repeated indices µ, ν, but also the integration over the repeated continuous indices
(σ), (σ′) is assumed. Indices are lowered and raised, respectively, by ρµ(σ)ν(σ′) and its inverse

ρµ(σ)ν(σ
′). The infinite dimensional space M is called brane space, because its points xµ(σ)

represent kinematically possible branes [23, 30].
The quadratic form ρµ(σ)ν(σ′)Ẋ

µ(σ)(τ)Ẋν(σ′)(τ) is invariant under diffeomorphisms in the
brane spaceM. A curve inM is given by the parametric equation

xµ(σ) = Xµ(σ)(τ), (11)

where Xµ(σ)(τ) are τ -dependent functions. The velocity of a “point particle” in M is

Ẋµ(σ) ≡ ∂Xµ(σ)

∂τ .
The canonical momentum belonging to the action (10) is

pµ(σ) =
κ

k
ρµ(σ)ν(σ′)Ẋ

ν(σ′) =
κ

k
Ẋµ(σ) =

κ

k
(−γ̄)Ẋµ(σ). (12)
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Its contravariant components are

pµ(σ) = ρµ(σ)ν(σ
′)pν(σ′) =

pµ(σ)

(−γ̄) , (13)

where pµ(σ) = ηµνpν(σ).
The canonical momentum associated with the action (6) is

pµ(σ) =
κ(−γ̄)Ẋµ

k
=
κ
√−γ̄Ẋµ
√

ẊµẊµ

, (14)

where we have taken into account

k =
√

Ẋ2
√−γ̄, (15)

which follows from (4) and (5). Using the latter equation (15), we verify, that both momenta,
(12) and (14), are equal, as they should be. In our notation pµ(σ) = pµ(σ), whereas p

µ(σ) is given
by Eq. (13).

The momentum pµ(σ) satisfies the following constraint:

pµ(σ)p
µ(σ) = ηµνpµ(σ)pν(σ) = κ2(−γ̄). (16)

We can also form the quadratic form of the momenta inM-space,

pµ(σ)p
µ(σ) = ρµ(σ)ν(σ

′)pµ(σ)pν(σ′) = κ̃2, (17)

in which the integration over repeated indices (σ) and (σ′) is assumed. Comparing (17) and
(16), we obtain

κ̃2 =

∫

κ2 dσ. (18)

Let us introduce the quantity

k̃2 = ρµ(σ)ν(σ′)Ẋ
µ(σ)Ẋν(σ′) =

∫

dσ(−γ̄)ẊµẊν =

∫

k2dσ, (19)

and take into account that Eqs. (18) and (19) imply κ̃/k̃ = κ/k, i.e.,

κ̃
√

Ẋµ(σ)Ẋµ(σ)

=
κ

√

(−γ̄)ẊµẊµ

. (20)

Then we can write the Schild action (10) in terms of the quantities κ̃ and k̃:

ISchild =
κ̃

2k̃

∫

dτ ρµ(σ)ν(σ′)Ẋ
µ(σ)(τ)Ẋν(σ′)(τ). (21)

The latter action is just a gauge fixed action obtained from the action [23, 30, 31]

I = κ̃

∫

dτ
(

ρµ(σ)ν(σ)Ẋ
µ(σ)(τ)Ẋν(σ′)(τ)

)1/2
, (22)

which gives a minimal length worldline, i.e., a geodesic in M-space. Indeed, the equations of
motion derived from the action are [31]

∂I

∂Xµ(σ)
= κ̃

d

dτ





Ẋµ(σ)
√

˙̃X
2



− κ̃

2
∂µ(σ)ρα(σ′)β(σ′′)

Ẋα(σ′)Ẋβ(σ′′)

√

˙̃X
2

= 0, (23)
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where
˙̃X
2
≡ Ẋµ(σ)Ẋµ(σ) = ρµ(σ)ν(σ′)Ẋ

µ(σ)Ẋν(σ′). (24)

We use the following notation for functional derivatives:

∂µ(σ) ≡ ,µ(σ)≡
∂

∂xµ(σ)
≡ δ

δxµ(σ)
. (25)

Using Ẋµ(σ) = ρµ(σ)ν(σ)Ẋ
ν(σ), and introducing the connection inM,

Γ
µ(σ)
α(σ′)β(σ′′) =

1

2
ρµ(σ)γ(σ

′′′)(ργ(σ′′′)α(σ′),β(σ′′) + ργ(σ′′′)β(σ′′),α(σ′) − ρα(σ′)β(σ′′),γ(σ′′′)), (26)

we can write Eq. (23) in the form

1
√

˙̃X
2

d

dτ





Ẋµ(σ)

√

˙̃X
2



+
Γ
µ(σ)
α(σ′)β(σ′′)Ẋ

α(σ′)Ẋβ(σ′′)

˙̃X
2 = 0, (27)

which is the equation of geodesic inM. If we insert into the latter equation the metric (8), then
we obtain the equation of motion for the Dirac-Nambu-Goto brane. Equivalently, if we insert
the metric (8) into the action (22) we obtain

I = κ̃

∫

dτ L[Ẋµ(σ), Xµ(σ)], (28)

where the Lagrangian

L[Ẋµ(σ), Xµ(σ)] =

(∫

dpσ (−γ̄)Ẋ2

)1/2

(29)

is a functional of infinite dimensional velocities and coordinates. From the Euler-Lagrange
equations

d

dτ

δL
δẊµ(σ)

− δL
δXµ(σ)

= 0 (30)

we obtain

d

dτ





κ̃
√

˙̃X
2
(−γ̄)Ẋµ



+ ∂ā





κ̃(−γ̄)Ẋ2∂āXµ
√

˙̃X
2



 = 0, (31)

where ˙̃X
2
≡ Ẋµ(σ)Ẋµ(σ) =

∫

dpσ (−γ̄)Ẋ2. Inserting Eq. (20) into the latter equation, we obtain

d

dτ

(

κ
√−γ̄
√

Ẋ2
Ẋµ

)

+ ∂ā

(

κ
√−γ̄

√

Ẋ2∂āXµ

)

= 0. (32)

The same equation follows from the Dirac-Nambu-Goto action (1) in a gauge (5).
We have arrived at the minimal length action (22) by using a particular metric (8). However,

once we have such an action, we can assume that the metric need not be of that particular form.
We can generalize the validity of the action (22) and the corresponding geodesic equation to any
metric. In fact, we can assume that the metric ofM is dynamical, like in general relativity, and
that to the action (22) we have to add a kinetic term for the metric ρµ(σ)ν(σ′). An approach along
such lines was investigated in Ref. [23]. Within such a generalized theory the metric (8), leading
to the usual Dirac-Nambu-Goto brane, is just one of many other possible metrics, including the
metric that is the brane space analog of the flat spacetime metric ηµν .
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3. Special case: flat brane space M
The brane theory simplifies significantly if into the action (22) we plug the metric

ρµ(σ)ν(σ′) = ηµ(σ)ν(σ′) = ηµνδ(σ − σ′). (33)

Then we have [31]

I = κ̃

∫

dτ

(∫

dp σ ηµνẊ
µ(τ, σ)Ẋν(τ, σ)

)1/2

. (34)

This is like an action for a point particle in a flat background space,

I = m

∫

dτ (ηµνẊ
µẊν)1/2, (35)

Figure 2. Examples of flat 1-branes for various choices of initial conditions.

but the background space is now infinite dimensional. Variation of (34) gives the following
equations of motion

d

dτ





Ẋµ(τ, σ)
√

˙̃X
2



 = 0, (36)

where now we have ˙̃X
2
≡ Ẋν(σ)Ẋν(σ) =

∫

dpσ Ẋµ(σ)Ẋν(σ)ηµν . Choosing a gauge in which

˜̇X
2
= 1, we obtain the following simple equations of motion:

Ẍµ(τ, σ) = 0, (37)
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whose solution is
Xµ(τ, σ) = vµ(σ)τ +Xµ

0 (σ). (38)

This describes a bunch of straight worldlines that altogether form a special kind of brane’s
worldsheet, namely a worldsheet of a “flat brane”. Equation (38) thus describes a continuum
limit of a system of non-interacting point particles, tracing straight worldlines.

In Fig. 2 we give examples of flat 1-branes (i.e., strings) for various solutions of Eq. (38), i.e.,
for various choices of vµ(σ). In Fig. 3 we illustrate how the situation looks in the case of a metric
that differs from (33). For comparison, in Fig. 4 we show two examples of the usual Nambu-Goto
strings.

Figure 3. Examples of “curved” 1-branes for various choices of initial conditions. In all cases the brane space

metric is ρµ(σ)ν(σ′) =
(

1 + X′2

Ẋ2

)

ηµνδ(σ − σ′).

We see that flat branes can form involved self intersecting objects in spacetime. In the
last example in Fig. 2 the worldsheet does not self intersect, which is a consequence of suitable
boundary conditions.

Quantization of the system described by the action (34) can be performed in analogous way
as the quantization of the point particle, described by (35).

In the case of the point particle (35), we have the constraint

pµpµ −m2 = 0 , pµ =
mẊµ

(Ẋ2)1/2
, (39)

which upon quantization becomes the Klein-Gordon equation,

(p̂µp̂µ −m2)φ(xµ) = 0 , p̂µ = −i∂µ ≡ −i
∂

∂xµ
. (40)

In the case of the brane (22) with the metric (33) we have the constraint

pµ(σ)pµ(σ) − κ̃2 = 0 , pµ(σ) =
κ̃Ẋµ(σ)
√

˙̃X
2
, (41)
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Figure 4. Examples of a special kind of curved 1-branes: the Nambu-Goto strings

which upon quantization becomes the generalized Klein-Gordon equation,

(p̂µ(σ)p̂µ(σ) − κ̃2)φ(xν(σ)) = 0 , (42)

p̂µ(σ) ≡ −i∂µ(σ) ≡ −i
∂

∂xµ(σ)
= −i δ

δxµ(σ)
. (43)

Here

pµ(σ)pµ(σ) = ρµ(σ)ν(σ′)p
µ(σ)pν(σ

′) =

∫

dpσ ηµνp
µ(σ)pν(σ), (44)

and
φ(xν(σ)) ≡ φ[xµ(σ)] (45)

is a functional of the brane’s embedding functions. The point particle equation (40) can be
derived from the action

I[φ(xµ)] =
1

2

∫

d4x (∂µφ∂
µφ−m2φ2), (46)

whereas the corresponding action for the brane equation (42) is

I[φ(xµ(σ))] =
1

2

∫

Dxν(σ)(∂µ(σ)φ∂µ(σ)φ− κ̃2φ2). (47)

Explicitly, the equation of motion derived from the latter action is
(

∂µ(σ)∂
µ(σ) + κ̃2

)

φ = 0, (48)

In ordinary notation this reads

∫

dpσdpσ′ ηµνδ(σ − σ′)
(

δ2

δxµ(σ)δxν(σ′)
+ κ̃2

)

φ = 0. (49)

As a classical flat brane is like a bunch of free point particles, so a (“first”) quantized brane is
like a “bunch”, that is, a continuous set of “free”, i.e., non interacting quantum fields. Therefore,
we can write a solution of Eq. (48) as the product [31]

φ(xµ(σ)) =
∏

σ′′

ϕ(σ′′)(xµ(σ
′′)), (50)
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where for every σ′′ we have a field ϕ(σ′′) which is a function of four spacetime coordinates xµ(σ
′′)

that bear a label σ′′. This is just like a separation of variables that is commonly used in solutions
of partial differential equations. We will now use Eq. (18) and introduce the mass

m = κ∆σ (51)

within a region ∆σ ≡ ∆pσ ≡ ∆σ1∆σ2...∆σp. We will also use the following relation between
the functional derivative and the partial derivative at a fixed point σ on the brane:

∂µ(σ)φ ≡
δ

δxµ(σ)
φ = lim

∆σ→0

1

∆σ

∂µϕ
(σ)

∂xµ(σ)

∏

σ′′ 6=σ

ϕ(σ′′)(xµ(σ
′′)). (52)

From (48),(50)–(52) we thus obtain

(

ηµν
∂2

∂xµ(σ)∂xν(σ)
+m2

)

ϕ(σ)(xµ(σ)) = 0. (53)

Because σ is fixed, we can now rename the four spacetime coordinates xµ(σ) into xµ and write
the latter equation simply as

(

ηµν
∂2

∂xµ∂xν
+m2

)

ϕ(σ)(xµ) = 0. (54)

In our setup a segment of a classical flat brane around σ behaves as a free point particle, and
after quantization it satisfies at each σ the Klein-Gordon equation. Because σ is any point on the
brane, we have a continuous set of non interacting scalars fields ϕ(σ), every one of them satisfying
the Klein-Gordon equation (54). In other words, we describe the flat brane by means of many
particle non interacting field theory. Different segments of the brane behave as distinguishable
particles, each being described by a different scalar field.

In the case of a discrete set of non interacting scalar fields ϕr(x), the system is described by
the action

I[ϕr(x)] =
1

2

∫

dDx

N
∑

r=1

(

∂µϕ
r∂µϕr −m2(ϕr)2

)

. (55)

In the continuum limit, the discrete index r becomes the continuous index (σ) , and ϕr(x)
becomes ϕ(σ)(x) ≡ ϕ(σ, x), or shortly, ϕ(σ) ≡ ϕ(σ). The action is then

I[ϕ(σ)] =
1

2

∫

dDx

∫

dpσ
(

∂µϕ(σ)∂
µϕ(σ)−m2ϕ2(σ)

)

. (56)

A discrete system based on the action (55) can be straightforwardly second quantized, and so
can be the continuous system (56). In the discrete case, the canonically conjugate variables, the
fields ϕr(t,x) and momenta Πr(t,x), become the operators satisfying the equal t commutation
relations

[ϕr(t,x),Πs(t,x′)] = iδ3(x− x′)δrs,

[ϕr(t,x), ϕs(t,x′)] = 0, [Πr(t,x),Πs(t,x′)] = 0. (57)
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4. An interacting bunch of scalar fields

The action for our system of a continuous set of non interacting scalar fields (56) can be written
in the form [31]

I[ϕ(σ)] =
1

2

∫

dDx
(

∂µϕ
(σ)∂µϕ(σ′) −m2ϕσ)ϕ(σ′)

)

s(σ)(σ′), (58)

where
s(σ)(σ′) = δ(σ)(σ′) = δ(σ − σ′). (59)

The latter form of the action suggests its generalization to a continuous set of interacting fields.
We see that s(σ)(σ′) has the rôle of a metric in the space of the fields ϕ

(σ). In principle it need not
be the simple metric (59), but can be a generic metric. In such a way we introduce interactions
among the fields, satisfying the action principle (58) in which now s(σ)(σ′) is no longer the simple
metric (59), but a more general metric.

The equations of motion derived from the action (58) are

∂µ∂
µϕ(σ) +m2ϕ(σ) = 0, (60)

where ϕ(σ) = s(σ)(σ′)ϕ
(σ′). Assuming that s(σ)(σ′) has the inverse s

(σ)(σ′), so that

s(σ)(σ
′′)s(σ′′)(σ′) = δ(σ)(σ′) ≡ δ(σ − σ′), (61)

then we also have ϕ(σ) = s(σ)(σ
′)ϕ(σ′). Applying the latter relation on Eq. (60), we obtain

∂µ∂
µϕ(σ) +m2ϕ(σ) = 0, (62)

which is the equation of motion for ϕ(σ).
A peculiar property of the system so constructed is that even when the metric is non trivial

so that there are interactions among the fields, a general solution of the equation of motion (60)
has the familiar form

ϕ(σ)(x) =

∫

dD̄k
√

(2π)D̄2ωk

(

a(σ)(k)e
−ikx + a†(σ)(k)e

ikx
)

, (63)

where ωk =
√
k2 +m2, and D̄ = D − 1.. The quantities ϕ(σ)(x), a(σ)(k), and a

†

(σ)(k) can be

raised by means of the inverse metric s(σ)(σ
′), so that we obtain

ϕ(σ)(x) =

∫

dD̄k
√

(2π)D̄2ωk

(

a(σ)(k)e−ikx + a(σ)
†
(k)eikx

)

, (64)

which is a solution of Eq. (62).
The canonically conjugated variables ϕ(σ) and Π(σ) = ∂L/∂ϕ̇(σ) = ϕ̇(σ) satisfy

[ϕ(σ)(x),Π(σ′)(x
′)]
∣

∣

x0=x′0
= δ(σ)(σ′)δ

D̄(x− x′) (65)

[ϕ(σ)(x), ϕ(σ′)(x′)]
∣

∣

x0=x′0
= 0 , [Π(σ)(x),Π(σ′)(x

′)]
∣

∣

x0=x′0
= 0. (66)

From those quantities we construct the Hamiltonian as usual,

H =

∫

dD̄x (Π(σ)ϕ̇
(σ) − L) = 1

2

∫

dD̄x (Πσ)Π
(σ) − ∂iϕ(σ)∂iϕ(σ) +m2ϕ(σ)ϕ(σ)). (67)
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and rewrite it in terms the operators a(σ)(k), and a
†

(σ)(k). From Eqs. (63)–(66) we find that the

latter operators must satisfy

[a(σ)(p), a†(σ′)(p
′)] = δ(σ)(σ′)δ

D̄(p− p′). (68)

[a(σ)(p), a(σ′)(p
′)] = 0, [a(σ)

†
(p), a†(σ′)(p

′)] = 0. (69)

The relation (68) can be written in the following equivalent forms:

[a(σ)(p), a
†

(σ′)(p
′)] = s(σ)(σ′)δ

D̄(p− p′), (70)

[a(σ)(p), a†(σ
′)(p′)] = s(σ)(σ

′)δD̄(p− p′). (71)

The Hamilton then becomes

H =
1

2

∫

dD̄kωk

(

a†(σ)(k)a
(σ)(k) + a(σ)(k)a†(σ)(k)

)

=

∫

dD̄kωk a
†

(σ)(k)a
(σ)(k) +Hz.p., (72)

where Hz.p. is the ”zero point” Hamiltonian, and

a†(σ)(k)a
(σ)(k) = a(σ)

†
(k)a(σ

′)(k)s(σ)(σ′) = a†(σ)(k)a(σ′)(k)s
(σ)(σ′). (73)

More generally, by using the standard field theoretic techniques that involve the Noether
theorem, we obtain the stress-energy tensor

Tµ
ν =

∂L
∂∂µϕ(σ)

∂νϕ
(σ) − Lδµν . (74)

Integrating the latter tensor over a space like hypersurface, we obtain the D-momentum
Pν =

∫

dΣµT
µ
ν . In the reference frame in which the hypersurface has components dΣµ =

(dΣ0, 0, 0, ..., 0) with dΣ0 = dD̄x, the zero component of the D-momentum is the Hamiltonian

(67), whilst the spatial components are Pµ̄ =
∫

dD̄x ϕ̇(σ)∂µ̄ϕ
(σ), where µ̄ = 1, 2, ..., D̄. After

using the expansion (63),(64), we have

p̂ =
1

2

∫

dD̄k k
(

a†(σ)(k)a
(σ)(k) + a(σ)(k)a†(σ)(k)

)

=

∫

dD̄k k a†(σ)(k)a
(σ)(k) + p̂z.p., (75)

where p̂z.p. is the “zero point” momentum.

By means of the operators a(σ)(k) and a
†

(σ)(k) we can construct the states of our system.

Defining the vacuum state according to

a(σ)(k)|0〉 = 0, (76)

the states with definite momenta are created by a†(σ)(k),

|k1〉 = a†(σ)(k1)|0〉 , |k1k2〉 = a†(σ)(k1)a
†

(σ)(k2)|0〉 , ... . (77)
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These are basis states, from which we can form various more general states. For instance, we
can form single particle wave packet profile states at every σ, and sum (i.e., integrate) them
over σ:

|ψ〉 =
∫

dp g(σ)(p)a†(σ)(p)|0〉, (78)

where
g(σ)(p)a(σ)(p) = g(σ)(p)a†(σ

′)(p)s(σ)(σ′). (79)

The action of an annihilation operator on such a state gives

a(σ
′)(p′)|ψ〉 = g(σ

′)(p′)|0〉, (80)

so that we have
〈ψ|a†(σ′′)(p′′)a(σ′)(p′)|ψ〉 = g∗(σ

′′)(p′′)g(σ
′)(p′)〈0|0〉. (81)

We normalize the vacuum according to 〈0|0〉 = 1.
Let us now consider the state which is the product of ”single particle” wave packet profiles [31]:

|ψ〉 =
∏

σ

∫

dD̄p(σ) g
(σ)(p(σ))a

†

(σ)(p(σ))|0〉 no integration over (σ). (82)

The action of an annihilation operator to the latter state gives

a(σ
′)(p′(σ′))|ψ〉 =

∫

dp(σ)dσ
′δ(σ′ − σ)δ(p′(σ′) − p(σ))g

(σ)(p(σ′))|ψ̄〉 = g(σ
′)(p′(σ′)|ψ̄〉, (83)

where |ψ̄〉 is the product of all the single ”particle” states, except the one picked up by a(σ′)(p′(σ′)):

|ψ̄〉 =





∏

σ 6=σ′

∫

dp(σ)g
(σ)(p(σ))a

†

(σ)(p(σ))



 |0〉. (84)

We thus have

〈ψ|a†(σ′′)(p′′(σ′′))a(σ
′)(p′(σ′))|ψ〉 = g∗(σ

′′)(p′′(σ′′))g
(σ′)(p′(σ′))〈ψ̄|ψ̄〉, (85)

where normalization can be such that 〈ψ̄|ψ̄〉 = 1.
We are now going to calculate how the expectation value of the momentum operator changes

with time t ≡ x0. Using the Schrödinger equation we obtain [31]

d

dt
〈ψ|p̂|ψ〉 =

(

d

dt
〈ψ|
)

p̂|ψ〉+ 〈ψ|p̂ d
dt
|ψ〉 = (−i)〈ψ|p̂H −H†p̂|ψ〉. (86)

In the above derivation we assumed that the Hamilton operator is not Hermitian. This
is the case, if the mass m = κ∆σ depends on position σ on the brane1, so that also
√

m2(σ) + k2 = ωk(σ) is a function of σ. From the expression (72) for the Hamiltonian in
which instead of a σ independent ωk stays ωk(σ), we then find H

† 6= H.
If we insert into Eq. (86) either a state (72) or (82) we obtain [31]

d

dt
〈ψ|p̂|ψ〉 = (−i)

∫

dD̄pp g∗(σ,p)g(σ′,p)s(σ, σ′)(ωp(σ)− ωp(σ
′))dσdσ′, (87)

1 In the discrete case this is equivalent to every particle (field) having a different mass mr. In the continuous
case this means that the brane’s tension κ is σ dependent.
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where we now write g(σ)(p) ≡ g(σ,p), and s(σ)(σ′) ≡ s(σ, σ′) and explicitly denote the integration
over σ and σ′ In the case of a σ independent ωp the above expression vanishes, which means that
the expectation values of the system’s total momentum is conserved in time. This is indeed the
case for an isolated system, whose tension κ, and thus ωk cannot change with σ. If the system
is in interaction with another system, then in principle tension can depend on σ.

Let us now assume that there is the following local interaction between nearby brane
segments [31]:

s(σ)(σ′) ≡ s(σ, σ′) = (1 + λc∂ā∂
ā) δp(σ − σ′). (88)

Using the latter expression in Eq. (87), we obtain

d

dt
〈p〉 ≡ d

dt
〈ψ|p̂|ψ〉 = (−i)λc

∫

dD̄p dpσ pωp(σ)(g
∗∂ā∂

āg − ∂ā∂āg∗g). (89)

In the expression for the total brane’s momentum,

〈ψ|p̂|ψ〉 =

∫

dp dσ dσ′ p g∗(σ,p)g(σ′,p)s(σ, σ′)

=

∫

dp dσ p(g∗g + g∗∂ā∂
āg) = 〈p̂〉 =

∫

dσ〈p̂〉σ, (90)

where there is the integrations over dσ ≡ dpσ. If we omit this integration, then we have the
expected momentum density of a brane’s segment:

〈p̂〉σ =
∫

dpp(g∗g + g∗∂ā∂
āg) = 〈ψ|σp̂|ψ〉σ, (91)

where

|ψ〉σ =
∫

dp g(σ,p)a†(σ,p)|0〉, (92)

is the state of the brane’s element at σ ≡ σā, i.e., the state (82) with the product over σ being
omitted.

The time derivative of such an expected momentum density is obtained from Eq. (89), if we
omit the integrations over dpσ:

d

dt
〈p̂〉σ = (−i)λc

∫

dD̄ppωp(g
∗∂ā∂

āg − ∂ā∂āg∗g). (93)

The latter expression can be different from zero even if ωp does not change with σ. In fact this
is the continuity equation for the current density on the brane, isolated from its environment.

If, instead a wave packet profile in momentum space, we take a wave packet in coordinate
space, the Fourier transformation being

g(σ,p) =
1

(2π)D̄/2

∫

e−ipxf(σ,x)dx, (94)

then Eq. (93) becomes

d

dt
〈p̂〉σ = −λc∂ā

∫

dD̄x
[

f∗(σ,x)
(

∇
√

m2 + (−i∇)2) ∂āf(σ,x)
)

−
(

∇
√

m2 + (−i∇)2) ∂āf∗(σ,x)
)

f(σ,x)
]

. (95)
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Though we have not explicitly denoted so, the wave packet profiles g(σ,p) and f(σ,x) depend
on time as well. Therefore a state such as (92) is time dependent and satisfies the time
dependent Schrödinger equation with the Hamilton operator (72). The wave packet profile
then satisfies [53]–[55],[56]

√

m2 + (−i∇2) f = −i ∂
∂t
f. (96)

Using the latter equation, we can express (95) in terms of the time derivative:

d

dt
〈p̂〉σ = −λc∂ā

∫

dD̄x

[

f∗(σ,x)

(

∇(−i) ∂
∂t
∂āf(σ,x)

)

−
(

∇(−i) ∂
∂t
∂āf∗(σ,x)

)

f(σ,x)

]

(97)
If we rewrite Eq. (97) in components,

d

dt
〈p̂µ̄〉σ = −λc∂ā

∫

dD̄x

[

f∗(σ,x)

(

−i ∂
∂t
∂ā∂µ̄f

)

−
(

−i ∂
∂t
∂ā∂µ̄f

∗

)

f

]

, (98)

where ∇ ≡ ∂µ̄, µ̄ = 1, 2, ...D̄, then we immediately recognize that the right-hand side of Eq. (98)
is the divergence of the expectation value of the operator

π̂āµ̄ = −iλc
∂

∂t

↔

∂
ā
∂µ̄ ≡ −iλc

∂

∂t

(

←

∂
ā
−
→

∂
ā
)

∂µ̄, (99)

Close to the initial time t = 0 the solution of Eq. (96) for a minimal wave packet can be
approximated with a Gaussian wave packet if its width is greater than the Compton wavelength:

f ≈ Ae
−

(x−X̄(σ))2

2σ̃0 eip̄xeip̄0t, (100)

where X̄(σ), p̄ and p̄0 are the coordinates, momentum and energy of the wave packet center,
respectively, whilst A is the normalization constant.

Inserting the wave packet (100) into (98), we obtain [31]

〈p̂µ̄〉σ
dt

= −λc∂ā
(

p̄0
∆S

∂āX̄µ̄

σo

)

, (101)

where ∆S =
∫

dpσ. This is reminiscent of the brane equation of motion (32).
Let us now consider the following metric in the field space, covariant under reparamerizations

of the brane parameters σā:

s(σ, σ′) =
√

−γ̄(σ) δp(σ − σ′) + λc∂ā

(

√

−γ̄(σ)γāb̄∂b̄
)

δp(σ − σ′) (102)

where γ ≡ detγāb̄. With such a metric, instead of (101) we obtain [31]

〈p̂µ̄〉σ
dt

= −λc∂ā
(

p̄0
∆S

√−γ̄ γāb̄∂b̄X̄µ̄

σo

)

, (103)

where now we have ∆S =
∫ √

−γ̄(σ)dpσ. The latter equation is in fact the equation of motion
(32) of a classical Dirac-Nambu-Goto brane if we make the following correspondence:

〈p̂µ̄〉σ ≡ 〈p̂〉σ −→ pµ̄(σ) =
κ
√−γ̄Ẋµ̄
√

Ẋ2
(104)

λc
p̄0
∆S

γāb̄∂ b̄X̄µ̄ −→ κ
√−γ̄

√

Ẋ2∂āXµ̄ = p0(σ)Ẋ
2∂āXµ̄, (105)

and take Ẋ2 = 1−v2 = 1. The latter equality holds in a gauge in which τ = x0, if v2 = 0. Recall
that Eq. (103) has been calculated for the wave packet at t ≈ 0, therefore v2 = 0 is consistent

with vanishing 〈p̂µ̄〉 ∝ ˙̄Xµ̄, µ̄ = 1, 2, ..., D̄ at t ≈ 0.
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5. Generalization to arbitrary configurations

The exercises with the brane space were just a tip of an iceberg. Instead of one brane, a
configuration can consist of many branes, or point particles, or both, as illustrated in Fig. 4.
The action for such a system is a straightforward generalization of the brane action (22) to such
an extended configurations space C:

I = κ̃

∫

dτ(ρMNẊ
MẊN )1/2 (106)

Here we use the same compact indices M , N for coordinates in C in various cases:
M = iµ many point particles
M = µ(σ) a single brane
M = kµ(σ) many branes
M = µ1µ2...µr oriented r-volume associated with a brane,

where µ = 0, 1, 2, ..., D̄ denotes coordinates of D-dimensional spacetime, i = 1, 2, 3, .... counts
different particles, and k = 1, 2, 3, ... different branes. The meaning of the last line will be
explained shortly below.

Figure 5. A configuration can consist of many branes, or point particles, or both.

We thus adopt a generic notation so that xM and XM ≡ XM (τ) denotes, respectively,
coordinates and τ -dependent functions in whatever configuration space, either a system of many
particles, a single brane, or a system of many branes, or a Clifford space associated with a
brane. Thus, depending on the considered physical system, M = iµ, M = µ(σ), M = kµ(σ), or
M = µ1µ2...µr. Then Eq. (106) and derived equations are valid for all those cases of configuration
spaces.

Figure 6. One of the branes within a configuration can be chosen to serve as a clock.
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As a consequence of the invariance of the action (106) under reparametrizations of τ , the

momenta pM = κ̃ẊM√
ẊN ẊN

satisfy the constraint

pMpM − κ̃2 = 0. (107)

Let us consider a configuration which consists of many particles and/or branes. Let us choose
one brane and denote its coordinates as XMc (Fig. 6).

A way to sample a brane is to describe it as a set of 16 oriented r-areas (or r-volumes) of all
possible dimensionalities, r = 0, 1, 2, ..., D. We shall take D = 4. In Refs. [37] it has been shown
how a brane, described by an infinite dimensional vector xµ(σ), can be mapped into a vector of
the space spanned by the basis elements of a Clifford algebra Cl(1, 3):

xµ(σ) → xµ1µ2...µrγµa
∧ γµ2

∧ ... ∧ γµr
≡ xMcγMc

(108)

To avoid multiple counting of the terms, it is convenient to order the indices according to
µ
1
< µ

2
< ... < µ

r
, r = 0, 1, 2, 3, 4.

Figure 7. A brane can be sampled by coordinates of Clifford space.

If instead of one brane we consider two, three or more branes, such a system can also be
described by 16 coordinates of the Clifford space [37] (see Fig. 8).

Figure 8. An effective (“center of mass”) brane associated with a system of many branes.

Clifford algebra can be considered [32]–[39] as a tangent space to a manifold, called Clifford

space, C. We will consider flat Clifford space, which is isomorphic to Cl(1, 3). Therefore, the
points of C can be described by xµ1...µr . In eq. (108) we have thus a mapping from the infinite
dimensional brane space to the 16-dimensional Clifford space. A brane can be sampled by 16
coordinates xM ≡ xµ1...µr of the Clifford space.

The metric of Clifford space is given by the scalar product of two basis elements:

η
McNc

= γ‡Mc
∗ γ

Nc
= 〈γ‡Mc

γ
Nc
〉
0
, (109)
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where “‡” denotes reversion of the order of vectors in the product γMc
= γµ1

γµ2
...γµr

. The

subscript “0” denotes the scalar part of the expression. Explicitly the metric (40) is [38]

ηMcNc
= diag(1, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1). (110)

Clifford space is thus an ultrahyperbolic space.
The scalar product of X‡ = (xMcγMc

)‡ and X = xMcγMc
) gives

X‡ ∗X = ηMcNc
xMcxNc

= s2 + ηµνx
µxν + 1

4(ηµβηνα − ηµαηνβ)x
µαxνβ + ηµν x̃

µx̃ν − s̃2

= ηµ̂ν̂x
µ̂xν̂ + s2 − s̃2, (111)

where s, s̃ = 1
4!ǫµνρσx

µνρσ and x̃µ = 1
3!ǫ

µ
νρσx

νρσ are the scalar, pseudoscalar and pseudovector

coordinates, respectively. In the last expression we introduced xµ̂ = (xµ, xµν , x̃µ). We thus have
xMc = (s, s̃, xµ̂).

Upon (“first”) quantization the constraint (107), associated with the action (106), becomes
the Klein-Gordon equation in the configuration space:

(

ρMN ∂2

∂M∂N
+ κ̃2

)

φ. (112)

The corresponding action for the scalar field φ(xM ) is

I =

∫

DxM
(

ρMN ∂φ∗

∂xM
∂φ

∂xN
− κ̃2φ∗φ

)

, (113)

where DxM ≡
∏

M

dxM is a volume element in the configuration space. In the case of many

branes,
∏

M

dxM =
∏

kµ(σ)

dxkµ(σ), whereas in the case of many particles it is
∏

M

dxM =
∏

iµ
dxiµ.

5.1. Non interacting case

If the metric ρMN is a generalization of the Minkowski metric to the configuration space, then
we have the Klein-Gordon equation in flat configuration space. We will now consider such a non
interacting case.

By splitting the index M according to M = (Mc, M̄), where Mc refers to one chosen brane,
described in terms of the coordinates xMc = (s, s̃, xµ̂) of the Clifford space, whereas M̄ refers to
the remaining particle and/or branes, and then renaming M̄ back into M , the field action (113)
becomes

I =
1

2

∫

DxMc DxM
(

∂φ∗

∂xMc

∂φ

∂xMc

+
∂φ∗

∂xM
∂φ

∂xM
− κ2φ∗φ

)

, (114)

Let us introduce the light-cone coordinates (where now the symbol τ has different meaning
than in Sec. 2.)

τ =
1√
2
(s+ s̃) , λ =

1√
2
(s− s̃), (115)

so that instead of the coordinates xMc = (s, s̃, xµ̂), we have now the coordinates x′Mc = (τ, λ, xµ̂).
The field φ then depends on the light-cone coordinates τ , λ, the remaining 12 coordinates xµ̂ of
the Clifford space associated with the chosen brane, and on the coordinates xM of the remaining
objects (branes or particles) within the configurations.
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Taking the ansatz

φ(τ, λ, xµ̂, xM ) = eiΛλeipµ̂x
µ̂

ψ(τ, xM ), (116)

the action (114) becomes

I0 =
1

2

∫

dτ DxM
[

iλ

(

∂ψ∗

∂τ
ψ − ψ∗∂ψ

∂τ

)

+ ∂Mψ
∗∂Mψ − (κ2 − pµ̂pµ̂)ψ∗ψ

]

. (117)

We have omitted the integration over λ and xµ̂, because it gives a constant factor which can
be absorbed into the redefinition of the action I0. The equation of motion is the Stueckelberg
equation in the configuration space:

i
∂ψ

∂τ
= − 1

2Λ
(∂M∂

M +M ′2)ψ, (118)

where M ′2 = κ2 − pµ̂pµ̂. The general solution is

ψ(τ, xM ) =

∫

DpM c(pM ) exp

[

ipMx
M − i

2Λ
(pMp

M −M ′2)τ

]

, (119)

in which there is no restriction on momenta pM , therefore initial data at τ = 0 can be freely
specified.

In particular it can be c(pM ) = c(p1µ(σ))c(p2µ(σ))...c(pNµ(σ)), for a multi brane configuration,
or c(pM ) = c(p1µ)c(p2µ)...c(pNµ) for a multi particle configuration. Then the field φ(xM ) can be
written as the product of sigle brane or single particle states. In the case of particles we have:

ψ(τ, xM ) = ϕ(τ, x1µ)ϕ(τ, x2µ)...ϕ(τ, xNµ) e
i
2Λ

M ′2τ , (120)

where

ϕ(τ, x1µ) =

∫

d4p1 c(p
1µ) exp

[

ip1µx
1µ − i

2Λ
p1µp

1µτ

]

, (121)

and similarly for other particles labelled by 2, 3, ..., N .
Writing now

ψ(τ, xM ) = ϕ(τ, xµ)χ(xM̄ ), (122)

where ϕ(τ, xµ) ≡ ϕ(τ, x1µ) is the field associated with a chosen particle (labelled by ‘1’), and

χ(τ, xM̄ ) =

∫

dτ dD−4p̄ c(p̄) eipM̄xM̄

e−
i
2Λ

(pM̄pM̄−M ′2)τ (123)

is the field over the configuration of the remaining particles with coordinates xM̄ ≡ xīµ,
ī = 2, 3, ..., N , the action (117) becomes

I = Q

∫

dτ d4x

[

−i2Λϕ∗∂ϕ

∂τ
+ ∂µϕ

∗∂µϕ−m2ϕ∗ϕ

]

, (124)

where

m2 =
(1−Q)
Q

M ′2, (125)

and

Q =

∫

dD−4x̄ χ∗χ =

∫

dD−4p̄ c∗(p̄)c(p̄). (126)
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We can normalize χ so that Q = 1. Then

I =

∫

d4x

[

−i2Λϕ∗∂ϕ

∂τ
+ ∂µϕ

∗∂µϕ

]

, (127)

which is the Stueckelberg action [40]–[51],[23] for a single particle field ϕ(τ, xµ). From (127) we
obtain the Stueckelberg field equation

i
∂ϕ

∂τ
= − 1

2Λ
∂µ∂

µϕ. (128)

The non interacting many particle Stueckelberg equation (118) thus contains the single particle
Stueckelberg equation (128).

Upon quantization, ϕ(τ, xµ) becomes the operator that annihilates, and ϕ∗(τ, xµ) the operator
ϕ†(τ, xµ) that creates a particle (more precisely, an ‘instantonic’ particle or and ‘event’) at xµ.
The evolution of the system is given in terms of the Stueckelberg evolution parameter τ , which
in our setup is associated with the brane sampled by the coordinates xMc of the Clifford space.
The latter brane2 is a part of the overall considered configuration, and is given the role of a
clock, which can be a “Stueckelberg clock”. The Stueckelberg evolution parameter τ is thus
embedded in the configuration.

In the Stueckelberg quantum field theory, the position operator is not considered as
problematic3. It creates an event in spacetime.

5.2. Bunch of Stuckelberg fields interacting in a particular way

The procedure with branes and interacting quantized fields that we have performed in Sec. 4
can be done à la Stueckelberg as well. The Stueckelberg field action (127) or its more general
form (124) refers to a single quantum field. Instead of one such a field we can have many fields,
and even a continuous set of such fields, as in Sec. 4. But instead of the field action (58) we now
have (upon quantization) the following action

I[ϕ(ξ)] =
1

2

∫

d τdDx

(

−i2Λϕ†(ξ)∂ϕ
(ξ′)

∂τ
+ ∂µϕ

†(ξ)∂µϕ(ξ′) −m2ϕ†(ξ)ϕ(ξ′)

)

s(ξ)(ξ′), (129)

where ξ ≡ ξa, a = 1, 2, ..., d, are d parameters. If the metric is s(ξ)(ξ′) = δ(ξ, ξ′), then this is
the action for a continuous set of non interacting Stueckelberg fields, otherwise it is an action
for interacting Stueckelberg fields. The momentum, canonically conjugate to the field ϕ(ξ)(x) is
Π(ξ) = −iΛϕ†(ξ)(x). We have the following commutation relations

[ϕ(ξ)(τ, x)Π(ξ′)(τ, x
′)] = iδ(ξ)(ξ′)δ

D(x− x′), (130)

[ϕ(ξ)(τ, x), ϕ(ξ′)(τ, x′)] = 0 , [Π(ξ)(τ, x),Π(ξ′)(τ, x′)] = 0. (131)

The equation of motion derived from (129) is

i
∂ϕ(ξ′)

∂τ
= − 1

2Λ
(∂µ∂

µ +m2)ϕ(ξ′). (132)

Its solution can be expanded according to

ϕ(ξ)(τ, x) =
1

√

(2π)DΛ

∫

dDp a(ξ)(p)exp

[

ipµx
µ +

i

Λ
(pµpµ −m2)τ

]

, (133)

2 It need not be only one brane, there can be many branes, altogether sampled by xMc (see Ref. [37]).
3 A careful analysis reveals that position operator is not problematic [31] even in the usual quantum field theory.
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where the commutation relations (130) are satisfied provided that

[a(ξ)(p), a†(ξ′)(p
′)] = δ(ξ)ξ′)δ

D(p− p′), (134)

while, as usually, the commutators of equal type operators, vanish.

An operator a†(ξ)(p) creates and a
(ξ)(p) annihilates a (ξ)-type particle with momentum p ≡ pµ,

µ = 0, 1, 2, ..., D. Vacuum state is defined according to a(ξ)(p)|0〉 = 0. The Fourier transformed
operators

a†(ξ)(x) =
1

√

(2π)D

∫

dDp a†(ξ)(p)e
−ipµxµ

, (135)

a(ξ)(x) =
1

√

(2π)D

∫

dDp a(ξ)(p)e
ipµxµ

, (136)

are creation and annihilation operators for a particle event at a spacetime point xµ. Up to a

factor
√
Λ they coincide with the field operators ϕ(ξ)(τ, x) and ϕ

†

(ξ)(τ, x) at a fixed value of τ

(say τ = 0).
A many particle event state is obtained by successive action of creation operators on the

vacuum. In the limit of infinitely many densely packed events such a configuration can be a
brane (an extended event) in spacetime:

∏

ξ

a†(ξ)(xξ)|0〉 ≡ A†[Xµ(ξ)]|0〉 = |Xµ(ξ)〉, (137)

where Xµ(ξ) are a brane’s embedding functions of d parameters ξ ≡ ξa, which now need not be
all space like; one of them can be time like [23]. In such a case Xµ(ξ) describes a brane that
extends into d− 1 spacelike directions and into one time like direction of the embedding space.
General states are superposition of the states (137) or their momentum space counterparts.

The Hamilton operator is

H =

∫

dDx(Π(ξ)∂τϕ
(ξ) − L)

=
1

2Λ

∫

dDx (∂µϕ
†(ξ)∂µϕ(ξ′) −m2ϕ†(ξ)∂µϕ(ξ′))s(ξ)(ξ′)

=
1

2Λ

∫

dDp (p2 −m2) a†(ξ)(p)a(ξ
′)(p)s(ξ)(ξ′). (138)

Similarly, we obtain the momentum operator:

p̂µ =

∫

dDp pµ a
†(ξ)(p)a(ξ

′)(p)s(ξ)(ξ′) (139)

Let us now calculate how the expectation value of the momentum operator changes with the
evolution parameter τ . The procedure is analogous to that in Sec. 4. Instead of the state (82)
we now take

|ψ〉 =
∏

ξ

∫

dDp(ξ) g
(ξ)(p(ξ))a

†

(ξ)(p(ξ))|0〉 no integration over (ξ). (140)

Taking m = m(ξ) and introducing

h(p, ξ) =
Λ

2
(p2 −m2), (141)
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we obtain

d

dτ
〈ψ|p̂µ|ψ〉 = (−i)

∫

dDp pµ g
∗(ξ, p)g(ξ′, p)s(ξ, ξ′)(h(p, ξ)− h(p, ξ′))dξdξ′, (142)

where g(ξ, p) ≡ g(ξ)(p) and s(ξ, ξ′) ≡ s(ξ)(ξ′).
If we take the field space metric

s(ξ, ξ′) = (1 + λc∂
a∂a) δ

d(ξ − ξ′), (143)

then
d

dτ
〈pµ〉 ≡

d

dτ
〈ψ|p̂µ|ψ〉 = (−i)λc

∫

dDp dpξ pµ h(p, ξ)(g
∗∂a∂

ag − ∂a∂ag∗g). (144)

This is the time derivative of the expectation value of the total momentum of the brane, and it
vanishes if h(p, ξ) does not change with ξ.

The expectation value of the total momentum is given by the integral over the momenta of
the brane’s segments:

〈ψ|p̂µ|ψ〉 =

∫

dp dξ dσ′ pµ g
∗(ξ, p)g(ξ′, p)s(ξ, ξ′)

=

∫

dp dξ pµ(g
∗g + g∗∂a∂

ag) = 〈p̂µ〉 =
∫

dξ〈p̂µ〉ξ (145)

where

〈p̂µ〉ξ =
∫

dp pµ(g
∗g + g∗∂a∂

ag) = 〈ψ|ξp̂µ|ψ〉ξ (146)

From Eq. (144) we then read the following expression for the τ derivative of the momentum of
a brane segment:

d

dτ
〈pµ〉ξ = (−i)λc

∫

dDp pµ h(p, ξ)(g
∗∂a∂

ag − ∂a∂ag∗g), (147)

which in general is different from zero even if h(p, ξ) does not change with ξ.
If in Eq. (147) we express the wave packet profile g(ξ, p) in term of its position space

counterpart f(ξ, p),

g(ξ, p) =
1

(2π)D/2

∫

e−ipµxµ

f(ξ, x)dx, (148)

then we obtain

d

dτ
〈p̂µ〉ξ = −λc∂a

∫

dDx

[

f∗(ξ, x)

(

1

2Λ
(∂µ∂

µ −m2) ∂a∂µf

)

−
(

1

2Λ
(∂µ∂

µ −m2) ∂a∂µf
∗

)

f

]

.

(149)
Though not written explicitly, the wave packet profiles g and f depend on the evolution time

τ . Using the Schrödinger equation with the Hamiltonina (138) for the state (140), we obtain
the equation of motion for the wave packet profile f :

1

2Λ
(∂µp

µ −m2)f = −i ∂
∂τ
f. (150)

Using the latter equation in Eq. (149) we obtain

d

dτ
〈p̂µ〉ξ = −λc∂a

∫

dDx

[

f∗(ξ, x)

(

−i ∂
∂τ

∂a∂µf

)

−
(

−i ∂
∂τ

∂a∂µf
∗

)

f

]

, (151)
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For a Gaussian wave packet profile

f ≈ Ae
−

(x−X̄(ξ))2

2σ̃0 eip̄µx
µ

eih̄,τ , (152)

where

h̄ =
1

2Λ
(p̄2 −m2), (153)

equation (151) becomes
〈p̂µ〉ξ
dτ

= −λc∂a
(

h̄

∆S

∂aX̄µ

σ̃0

)

. (154)

The expressions with the metric (143) are not covariant with respect to arbitrary
reparametrizations of ξa. If we take the metric

s(ξ, ξ′) =
√

−γ(ξ)δd(ξ − ξ′) + λc ∂a

(

√

−γ(ξ)γab∂b
)

δd(ξ − ξ′) (155)

where γ ≡ detγab, then the expressions become covariant, and instead of (154) we obtain

〈p̂µ〉ξ
dτ

= −λc ∂a

(

h̄

∆S

√

−γ(ξ)γab∂bX̄µ

σ̃0

)

. (156)

The latter equation tells how the expected momentum density 〈p̂µ〉ξ changes with the evolution
parameter τ , which in the Stueckelberg theory is the “true” time, whereas x0 ≡ t is just one
of spacetime coordinates. In Appendix we show that Eq. (156) corresponds to the equation of
motion of a classical Stueckelberg brane (see [23]), which is a generalization of the Stueckelberg
point particle.

5.3. Self interacting Stueckelberg field in configuration space

In the absence of interactions, a field ψ(τ, xM ) ≡ ψ(τ, x1µ, x2µ, ..., xNµ) over a many particle
configuration is the product (120) of the single particle fields. In the presence of interactions,
in general this is no longer the case. An interacting field theory is described by the action (117)
to which we add an interactive term Iint, so that the total action is

I = I0 + Iint. (157)

We will take Iint = −G0
4! (ψ

∗ψ)2. Let us also assume that a particle, say, No. 1, can be singled out
from the rest of the configuration according to (122). Inserting Eq. (122) into the action (157),
we obtain the Stueckelberg action for the scalar field ϕ(τ, xµ) with the quartic self interaction:

I =

∫

dτ d4x

[

−i2Λϕ∗∂ϕ

∂τ
+ ∂µϕ

∗∂µϕ+mresϕ
∗ϕ− g0(ϕ∗ϕ)2

]

, (158)

where g0 = G0

∫

dD−4x̄(χ∗χ)2, and

m2
res =

∫

dD−4x̄

(

∂M̄χ
∗∂M̄χ− i2Λχ∗∂χ

∂τ

)

, (159)

is the residual mass that is determined by the presence of the field χ(τ, xM̄ ) due to all the
other particles of the configuration. In general, m2

res is different from zero. In particular, in the
absence of an interaction, χ is given by Eq. (123) and then m2

res = 0.
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For an interacting field theory the factorization (120) of a field ψ(τ, xM ) is valid only if the
particle No. 1 is not entangled with the other, mutually interacting, particles. If it is entangled,
then (120) does not hold. We must then work with the field ψ(τ, xM ) without factoring out a
single particle field.

We have thus arrived at the many particle analog of the brane theory, described by the
classical action (22) or the first quantized action (47), in which now the metric ρµ(σ)ν(σ′) of the
brane space is not flat. Then one cannot describe a brane as a bunch of point particles. Similarly,
in general one cannot describe a many particle configuration as a bunch of point particles. Only
if the metric is gMN ≡ g(iµ)(jν) = δijgµν one has a bunch of point particles. In general, the metric
need not be diagonal in the indices (iµ), (jν). Then the particles are intertwined more than it
is usually assumed. The physics, either classical or quantized, has to be done in a configuration
space C of many particles/branes. The metric ρMN of C in general is curved. An interactive
term such as Iint = −G0

4! (ψ
∗ψ)2 can be obtained from the dimensional reduction of the action of

the form (117), along the lines similar to that of Ref. [57].

6. Conclusion

Within this approach configuration space C is primary even in classical physics, and the action
principle must be formulated in C, not in spacetime. In other words, physics, both classical
and quantum, must be formulated in configuration space which can be a space of many point
particles and/or branes. Space or spacetime is a subspace of a configuration space (Fig. 9). The
concept of spacetime has to be revised by considering spacetime as a subspace of a configuration
space, which ultimately is that of the whole universe.

In the configurations C1 , C2 , C3

position of this particle is different,

whereas positions of all other

particles are the same.

Figure 9. Space(time) as a subspace of configuration space.

We have arrived at such a conclusion by inspecting the action of a Dirac-Nambu-Goto brane.
We have found that a brane can be considered as a point in an infinite dimensional brane space
M, moving along a geodesic inM. The metric ofM is not fixed, it is dynamical, like in general
relativity. For a particular metric we obtain the usual Dirac-Nambu-Goto brane. More general
metrics give us interesting fancy branes (Fig. 3) that might be useful in scenarios for quantum
gravity in the presence of matter, where matter is given by the brane’s self intersections [23, 24].
The simplest is the “flat” metric that gives us “flat branes” (Fig. 2). A flat brane can be
straightforwardly quantized as a bunch of point particles. If we take suitable interactions between
the quantum fields, we obtain as an “expectation value” the classical Dirac-Nambu-Goto brane.

We have thus found how to quantize branes: via flat brane space. Non flat branes are then
objects of an effective classical theory that arises from the underlying QFT of many interacting
fields.

The concept of configuration space is associated not only with branes, but with whatever
physical systems, in classical and quantum theory. A configuration can be:

- a single brane, considered as a bunch of point particles,
- a discrete system of point particles,
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- a mixed system of many branes and point particles,
- etc.
A closed brane or a system of closed branes (Fig. 8) can be approximately described by a finite

number of degrees of freedom, which are coordinates of the 16-dimensional Clifford space. The
latter space has signature (8,8), i.e., its points can be described by eight “time like” coordinates
(associated with the plus sign of the metric) and eight “space like” coordinates (associated with
the minus sign of the metric). By picking up one time like and one space like coordinate, and
composing from them the analog of two light-cone coordinates, we have derived the Stueckelberg
action for a scalar field. We have also shown how a continuous set of such locally interacting
fields leads to the effective classical branes à la Stueckelberg. The latter objects satisfy the
equations of motion that can be obtained by calculating the time derivative of the expectation
value of the momentum operator with respect to certain “wave packet” like quantum states
created by the Stueckelberg field operators.
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Appendix: Stueckelberg point particle and its generalization to a brane

The phase space action for a point particle in a (D + 2)-dimensional space with signature
(2, D) is

I =

∫

dτ̃
[

pM ẋ
M − α

2
(pMp

M −M2)
]

, (160)

where τ̃ is an arbitrary parameter4 and α is a Lagrange multiplier whose variation gives the
constrain pMp

M − M2 = 0. The signature of the extra two dimensions is (+−), whilst the
signature of the D-dimensional space is (1, D − 1). Now we take D = 4, so that we have an
extra fifth and sixth dimension. If x5 and x6 are “light-cone” coordinates (also denoted as τ ,
λ), then the action reads

I =

∫

dτ̃
[

pµẋ
µ + p5ẋ

5 + p6ẋ
6 − α

2
(pµp

µ − 2p5p6 −M2)
]

. (161)

Taking a gauge in which τ̃ = x5 ≡ τ , we have

p6 ≡ −Λ =
ẋ6
α
; x5 ≡ τ ; α = − ẋ6

Λ
=
ẋ5

Λ
=

1

Λ
. (162)

The action (161) can then be written as

I =

∫

dτ

[

pµẋ
µ + p5 −

1

2Λ
(pµp

µ −M2)

]

. (163)

Here Λ is not a Lagrange multiplier, but a fixed quantity, namely Λ ≡ −p6.
But we can omit p5 in the above action, because it does not contribute to the x

µ equations
of motion. Then we have

I =

∫

dτ

[

pµẋ
µ − 1

2Λ
(pµp

µ −M2)

]

. (164)

4 Because, in accordance with the usual practice, we wish to use the symbol τ for the Stueckelberg evolution
parameter, we now denote the arbitrary monotonically increasing parameter as τ̃ .
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The corresponding Hamiltonian is

H =
1

2Λ
(pµp

µ −M2) (165)

The above action is the Stueckelberg action. It is derived from the higher dimensional action.
The Stueckelberg evolution parameter occurring in (164) is identified with the extra coordinate
x5.

From the constraint pMp
M −M2 = pµp

µ − 2p5p6 −M2 we have

p5 =
1

2p6
(pµp

µ −M2) = −H, (166)

which means that the Hamiltonian is given by the fifth component of momentum, and is thus a
generator of translations along x5 = τ , whilst the constant Λ is given by the sixth component
of momentum.

Now let us do the same for a brane. Let ξ ≡ ξa, a = 1, 2, ..., d, be d parameters of a brane
in (D+ 2)-dimensions. Now a brane need not be space like. It can extend either into space like
or into time like directions, or both [23]. If D = 4 then the extra two dimensions are x5 and x6,
but we may keep the same notation for the extra two dimensions even if D > 4. We then have
xM = (xµ, x5, x6), µ = 0, 1, 2, 3, 7, 8, ..., D − 3. Again, x5 and x6 are assumed to be ”light-cone”
coordinates.

The phase space brane action is

I =

∫

dτ̃ddξ

[

pM ẋ
M − α

2κ
√−γ (pMp

M − κ2(−γ)
]

=

∫

dτ̃ddξ

[

pµẋ
µ + p5ẋ

5 + p6ẋ
6 − α

2κ
√−γ (pµp

µ − 2p5p6 − κ2(−γ)
]

. (167)

Choosing a gauge τ̃ = x5 ≡ τ , and using

p6 = −
√−γΛ̃; ẋM =

α

κ
√−γ pM ; ẋ6 =

α

κ
√−γ (−

√−γΛ̃) = −ẋ5 = −1, (168)

we obtain

I =

∫

dτddξ

[

pµẋ
µ − p5 −

1

2
√−γΛ̃

(pµp
µ − κ2(−γ))

]

. (169)

Let us omit p5, because this term does no influence the xµ equations of motion. Then we obtain
the following unconstrained (Stueckelberg) action,

I =

∫

dτddξ

[

pµẋ
µ − 1

2
√−γΛ̃

(pµp
µ − κ2(−γ))

]

(170)

which is a generalized of the Stueckelberg point particle action. The corresponding Hamiltonian
is

H =

∫

ddξ(pµẋ
µ − L) =

∫

ddξ
1

2
√−γΛ̃

(pµp
µ − κ2(−γ)) =

∫

ddξH. (171)

From the constraint pµp
µ − 2p5p6 − κ2(−γ) = 0 we have

p5 =
1

2p6
(pµp

µ − κ2(−γ)) = −H. (172)
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The Hamiltonian of a brane segment is

h = ∆ξ
1

2
√−γΛ̃

(pµ(ξ)p
µ(ξ)− κ2(−γ)). (173)

Here pµ(ξ) is the momentum density. We introduce the momentum and the mass of a brane
segment

pµ = pµ(ξ)∆ξ , m = κ
√−γ∆ξ (174)

We also define
pµ(ξ)

Λ̃
=
pµ
Λ
=
pµ(ξ)∆ξ

Λ
(175)

from which it follows
Λ = Λ̃∆ξ (176)

The Hamiltonian of a brane segment thus becomes

h =
1

2Λ
(pµp

µ −m2) (177)

Equation of motion derived from the Stueckelberg brane action (170) is

dpµ(ξ)

dτ
+ ∂a

[

1

2Λ̃

(

1√−γ p
µpµ − κ2

√−γ
)

∂axµ

]

= 0 (178)

This corresponds to the quantum expectation value equation (156).
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[23] Pavšič M 2001 The Landscape of Theoretical Physics: A Global View; From Point Particles to the Brane

World and Beyond, in Search of Unifying Principle (Dordrecht: Kluwer Academic)
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[31] Pavšič M 2016 Int. J. Mod. Phys. A 31 1650115 (Preprint 1603.01405 [hep-th])
[32] Castro C 1999 Chaos, Solitons and Fractals 10 295
[33] Castro C 2000 Chaos, Solitons and Fractals 11 1663
[34] Castro C 2001 Chaos, Solitons and Fractals 10 1585
[35] Castro C 2000 Found. Phys. 30 1301
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[39] Castro C and Pavšič M 2006 Prog. Phys. 1 31
[40] Fock V 1937 Phys. Z. Sowj. 12 404
[41] Stueckelberg E C G 1941 Helv. Phys. Acta
[42] Stueckelberg E C G 1942 15 23
[43] Horwitz L P and C. Piron C 1973 Helv. Phys. Acta 46 316
[44] Horwitz L P and Rohrlich F 1981 Phys. Rev. D 24 1528
[45] Horwitz L P, Arshansky R I and Elitzur A C 1988 Found. Phys 18 1159
[46] Feynman R P 1951 Phys. Rev 84 108
[47] Fanchi J R 1993 Found. Phys. 23 287, and many references therein
[48] Fanchi J R 1993 Parametrized Relativistic Quantum Theory (Dordrecht: Kluwer)
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[50] Pavšič M 2011 J. Phys. Conf. Ser. 330 012011 (Preprint 1104.2462 [math-ph])
[51] Horwitz L P Relativistic Quantum Mechanics 2015 (Dordrecht: Springer)
[52] Schild A 1977 Phys. Rev. D 16 1722
[53] Rosenstein B and Horwitz L P 1985 J. Phys. A: Math. Gen. 18 2115
[54] Rosenstein B U and Usher M 1987 Phys. Rev. D 36 2381
[55] Wagner E R, Shields B T, Ware M R, Su Q and Grobe R 2011 Phys. Rev. A 83 062106
[56] Al-Hashimi M H, and Wiese U J 2009 Annals of Physics 324 2599
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