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1. Introduction 

There have been a number of recent works that calculate the electron’s mag- 

netic moment between conducting plates separated by a distance a. These include 

Barton and Grotch,l Fischbach and Nakagawa,2 Boulware, Brown and Lee,3s4 and 

most recently, Bordag,5 and Kreuzer and Svozil.6 In this report, I will be con- 

sidering the situation outlined by Fischbach and Nakagawa, and Kreuzer and 

Svozil: that of an essentially free electron moving in a weak magnetic field. It 

should be noted that this differs from Boulware, Brown and Lee, and Bordag’s 

treatment of an electron trapped in the strong magnetic field of a Penning trap; 

and thus, the results of this paper are not directly applicable. The purpose of 

this comment is two-fold. First, the Abel-Plana and c-averaging methods’ of 

handling the difference of a divergent sum and integral are summarized and then 

applied to rederiving Kreuzer and Svozil’s expression for the shift in the value 

of a, = $ (g - 2) between conducting plates from that in free space. I find 

the c-averaging method particularly easy to follow, and hopefully, this method 

will make the final answer clearer. The second purpose is to clarify the present 

conflict in Fischbach and Nakagawa’s and Kreuzer and Svozil’s answer for Au,. 

First, I need to derive an appropriate form for a,. Let x denote the direction 

normal to the plates. Then doing the k, and two of the c integrals in the usual 

Feynman rule expression for a,, 

a, = ~ x2(1 - x) 
d4k [k2 _ m2x2]3 ' 

0 

gives the result 

(14 
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. 
An easier method of arriving at this answer is to do one of the zl integrals in 

the light cone quantization expression for - 8 

Equation (1.2) was derived for an electron in free space. Naively, one might 

expect that the modification to this expression caused by placing the electron 

between conductors is to make the replacement 

a3 
J dk, --+ E 2 , k, + n” . 

a a 
0 n=l 

(1.4 

Referring to the fully relativistic treatment of QED between conducting plates 

of Kreuzer and Svozil,6 one finds that this is indeed the correction prescription 

for the geometry under consideration. Making this substitution and doing the x 

integral gives a final answer of 

Aae=f {hz-[dx} [Iog”?-2(&T-Z-x)] (1.5) 

where h = r/ma. 



2. Mathematics of the Difference of a Divergent Sum and Integral 

Most of what follows is from Barton’s paper7 on this topic. For a more 

detailed treatment, please refer to his work. The problem is to evaluate 

D[f(n)] = S - I = [ 2 ’ - fdn ] f(n) 
n=O 0 

where S and I are individually divergent. The primed sum means 

E ‘f(n) - ; f(O) 
n=O n=l 

(2-l) 

(24 

To make sense of this expression, one needs to introduce a cutoff function g(nlx) 

and replace D by 

D(X) = S(X) - I(X) = [ 2 ’ - Jdn] f(n,A) 
n=O 0 

P-3) 

where 

The cutoff function g depends on the parameter X and must satisfy a number of 

conditions including 

i) s(f-44 - 1 and iJgsldns -0 for s = 1,2,3,... 
X-WY x+ca 

ii) g(nl A) approaches zero fast enough so that S(X) and I(X) are convergent 

iii) D(X) converges uniformly as X + 00. 

Certain other conditions on g and f may exist for the specific method em- 

ployed. This will become clearer in what follows. An example of a cutoff function 

is g(nlx) = exp(-n/X). If iirnm D(X) exists as defined above and has a finite value 

independent of the specific&m of g, one equates this with D[f(n)]. 
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Two methods of calculating D(X) are considered: the Abel-Plana formula 

and the c-averaging method. The Abel-Plana formula is applicable to f(zlx) 

that are analytic in z = x + iy and free of singularities either in the positive l/2 

plane x 2 xc for some xo < N (N is a non-negative integer), or to the right of 

the wedge formed by the lines y = f (x - xc) tanb, 0 < C$ 5 5. f(.zlX) must 

also vanish fast enough so that contour integrals draw no contribution from their 

arcs at infinity. For this class of f, 

emi j (N + pemi$(X) 
+ exp (2ripe+) - 1 

Once again, the details of deriving this are in Ref. 7. If the right hand side of 

this expression converges, the limit X + 00 is taken by simply replacing f(zlX) 

by f(z). For the case N = 0, C$ = 7r/2, 

W(n)] = j,mM D(X) = i / e2,$w 1 [f(G) - f(-+)I - (2.6) 
0 

Of course, for a specific f, one still needs to verify that a satisfactory cutoff does 

indeed exist so that S(X), I(X) converge and D(X) converges uniformly. 

For cases in which the sum and integral can be done for some finite upper 

limit X, the c-averaging technique is usually easier to implement than the Abel- 

Plana formula. The procedure is as follows. First, separate X into its integer and 

non-integer parts. 

k[X]+E=V+e P-7) 

and take 

g(nlA) = d(A - n) . (24 
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At this point, the limit X + oo of 

D(X) = [ 2 ’ - Tdn]B(r\ - n)f(n) 
n=O 0 

= [&I- jdn]f(n) ES(v)-I(X) 

0 

is not well defined since g(nlx) clearly does not satisfy the three conditions out- 

lined earlier (see following example for f(n) = n). In fact, one notes that due 

to the step-like nature of S(Y), D(X) oscillates violently as X increases from one 

integer to the next. What needs to be done is a smoothing out of S(Y) by taking 

an average of S(y) over values of E. That is, formally replace Y by X - E and 

define 
1 

s(X) E 
/ 

de S(X - E) . (2.10) 
0 

One then identifies 

(2.11) 

The compatibility of this answer with that derived using the Abel-Plana formula 

is described in Ref. 7. 

As a simple example, consider f(n) = n. From the Abel-Plana formula or 

the c-averaging method, 

(2.12) 

whereas the naive method of calculating sum minus integral gives D[n] = +oo: 

(2.13) 
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3. Calculation of g - 2 between Conductors 

I will apply the results of the previous section to the problem of calculating 

Aa,. For any physical system, electromagnetic modes with frequency greater 

than the plasma frequency of the conductors, A, do not experience the effect of 

the walls and are essentially free; thus, the upper limit in (1.5) should be replaced 

by A (see Refs. 2, 6). However, I will show that the dependence on A is weak 

and can be neglected for physical conductors. Making this replacement gives 

Aae=f{hg-]dx) 

t=nh 0 (34 

[ log l-l-lb-+X2 
X 

-2(4iTxx)] 

where X = Almh = ha/ r and v = [X] = integer part of X. 

Note that at this point, the sum and integral in Eq. (3.1) are individually 

finite for Y, X + 00 since the quantity within [ . . . ] goes like 2 as x + 00. 

Unfortunately, I do not know of a closed expression for some of the sums involved. 

On the other hand, I note that for a typical metal, A - 1 eV, for which vh B 

A/m = 1.96 x 10M6 < 1. This allows me to expand [ . . . ] in x, then keeping only 

the terms of 0(x0), one obtains 

Aae=${g-jdn}bog2-2-logh-logn+O(nh)] . (3.2) 
0 

Now the sum and integral diverge, and I will make use of e-averaging to define 

this expression. One defines 

Ax [f(n)] E [ 2 - ] dn] f(n) E s(X) - I(X) 
n=l o 

P-3) 

where the bar indicates c-averaged. The only difference between Ax and D 
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defined in Sec. 2 is the term i f(0) in the sum. For f(n) = 1, 

I(X)=& S(u)=u, s(x)=x-; , 

AX[l] = f . 

For f(n) = logn, 

I(X) = XlogX- x , 

S(u) = klogn = logu! 
(3.5) 

n=l 

At this point, a further approximation needs to be made. For a >> 10e5 cm 

and A = 1 eV, Aa w Y >> 1. Using the asymptotic form9 for log v! 

1 
S(Y) = vlogv--+ ;1og2nu+ - - 12u &3+O $ ’ ( > 

(3.6) 

and then substituting u = X - e and dropping terms of 0 (i) gives 

SP-4= (X+~-r)logX-X+~log2a+O(~) . (3.7) 

c-averaging this expression produces 

W) =xlogx-x+~log2?r+o ; , 
0 

resulting in 

A’( logn =~log2~+0 x . [ 1 1 0 
Using (3.4) and (3.9) in (3.2) gives us 

Aa,=* 
7r 

(3.10) 
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Dropping the small &, i corrections gives a final answer of 

Aae = & (2 - log4ma) . (3.11) 

Note that this result is effectively independent of the type of conductor since 

all terms involving the conductor (i.e., involving A) are 4-5 orders of magnitude 

smaller for a real conductor. Using the Abel-Plana formula (2.6) and looking up 

Barton’s7 answer for D[ln(n + q)] and D[l] also results in (3.11). 

4. Conclusions 

Much care must be taken when calculating sum minus integral. When this 

is done correctly, 

Aae = & (2 - log4ma) (4.1) 

which agrees with the answer of Kreuzer and Svozil.6 Recall that the derivation 

of this answer is valid for A/m < 1 and Aa k: v >> 1. Kreuzer and Svozil show 

that Eq. (5.1) is also valid for the region A/m >> 1. Note that for a perfect 

conductor (A + oo), the fr (&) - & (&)3 . . . correction to (5.1) goes to zero, 

giving a finite limit for Aa,. Also note that, as expected, Aae + 0 as a + 00. 

I now need to say a few words about Fischbach and Nakagawa’s answer2 of 

Aae = - & log 2aA , (4.2) 

First of all, this answer has the undesirable behavior of being infinite as A -+ 00. 

Formally, this answer can be derived by the following procedure. Define 

A+(n)] E [ 2-1 dn]f(n) 
n=l 0 

(4.3) 

with X = an integer. AX[f(n)] corresponds to using the non-differentiable cutoff 
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function g(n]x) = 0(X - n) and not d om an c-average. One easily finds . g 

AX[l] = 0, AA logn = f log 2rrX . [ 1 P-4) 

Using Aix in place of Ax in (3.2) gives the result (4.2). 

Finally, to get a feel for the size of the answer (4-l), let us set a = 1 cm. For 

this value, 

Aae = -3.09 x lo-l2 . (4.5) 

For general interest’s sake, I quote Van Dyck, Schwinberg and Dehmelt’slO recent 

experimental result of 

Se 
- = 1.001 159 652 209 f 0.000 000 000 031 2 (4.6) 

for the electron magnetic moment. I should note, however, that this paper con- 

siders the case of a free electron between conducting plates and therefore is not 

applicable to the Dehmelt experiment in which the electron is in a bound orbit. 
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