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ABSTRACT 

We examine the formal foundations of quantum electrodynamics 

in the infinite momentum frame. We interpret the infinite momentum 

limit as the change of variables 7 = 2 -1’2(t+z), y= 2-1’2(t-z), thus , 

. - avoiding limiting procedures. Starting from the Feynman rules, we 

derive a 7 -ordered perturbation expansion for the S-matrix. We then 

show how this expansion arises from a canonical formulation of the 

field theory in the infinite momentum frame. We feel that this approach 

should lead to convenient approximation schemes for electrodynamics at 

high energy. 
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1. INTRODUCTION 

The infinite momentum frame first appeared in connection with current 
. 

algebra’ as the limit of a reference frame moving with almost the speed of light. 

Weinberg’ asked whether this limit might be more generally useful. He con- 

sidered the infinite momentum limit of the old-fashioned perturbation diagrams 

for scalar meson theories and showed that the vacuum structure of these theories 

simplified in the limit. Later, Susskind 3’% s owed that the infinities which occur 

among the generators of the Poincare group when they are boosted to a fast 

moving reference frame can be scaled or subtracted out consistently. The 

result is essentially a change of variables. Susskind used the new variables 

to draw attention to the (two dimensional) Galilean subgroup of the Poincare’ 

group, He pointed out that the simplified vacuum structure and the non- 

relativistic ,kinematics of theories at infinite momentum might offer potential- 

theoretic intuition in relativistic quantum mechanics. 

Bardakci and Halpern’ further analyzed the.structure of theories at infinite 

momentum. They viewed the infinite momentum limit as a change of variables 

from the laboratory time and z-coordinates to a new “time” 7 = 2 -1’2(t+z) and 

a new trspacel~ coordinate y= 2 -l/2 (t-z). Chang and Ma6 considered the Feynman 

diagrams for a e3 theory and quantum electrodynamics from this point of view 

and were able to demonstrate the advantages of their approach in several il- 

lustrative calculations. 

In this paper, we examine the formal foundations of quantum electrodynamics 

in the infinite momentum frame. We interpret the infinite momentum limit as the 

change of variables r = 2 -l12(t-tz), g= 2-1/2 (t-z), thus avoiding limiting procedures. 

We derive a r -ordered perturbation series and show how such a series arises from 
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ient approximation schemes for electrodynamics at high energy. 

we hope to discuss, in a future paper, the recent extensive results 

Wu7 on high energy processes in electrodynamics. 

! this paper into several sections; In Section II we introduce the 

ables which defines the infinite momentum frame and review 

ucture of the Poincare/ group in the new variables. In Section III 

iginning with the Feynman rules, the rules for the construction of 

plitudes from 7 -ordered diagrams. The results are similar to 

!sults concerning the infinite momentum limit of scalar meson 

the appearance of spin results in new terms in the infinite momentum 

In Section IV we look at the field theoretic basis for the infinite 

attering theory rules. We begin with the usual lagrangian and \ 
eory along the lines of the canonical formalism usually used in an 

rence frame. In the infinite momentum frame, several new features 

s because the planes “time 1’ = constant play a preferred role in the 

nalism, and in the infinite momentum frame these planes are light- 

an space-like surfaces. We find, however, that it is possible to 

~1 t%me*l commutation relations which give a formally consistent 

‘duce the free field theories if the interaction is turned off, and give 

atrix expansion which agrees with the rules found in Section III. 
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II. CHOICE OF VARIABLES 

We shall regard the t’infinite momentum frame” as the reference frame 

obtained by choosing new space-time coordinates (7, x, y, 3) related to the 

usual coordinates (t, x, y, z) by 

(2.1) 

$= *(t-z) , 

Thus the 7 - and y-axes of the new frame lie on the light cone, as shown in Fig. 1. 

The infinite momentum frame is not a Lorentz reference frame, but is, in a certain 

sense, the limit of a Lorentz reference frame moving in the -z direction with nearly 

the speed of light. 
9 

It will be convenient to use the usual covariant tensor notation for quantities 

in the new coordinate system. Let d-1 = go, f;l, q2, e3) = (t, x, y, z) be the 

coordinates of a space-time point in the ordinary coordinate system, 

2= (x0,x1,x2,x3) = ( T , x, y,g)be the new coordinates of the same point. Then 

xP=c$ GV , 

where 

In general, we shall use hatted symbols for vectors and tensors in the 

ordinary coordinate system, unhatted symbols for vectors and tensors in the 

(2.2) 

(2.3) 
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new coordinate system. ,In particular, we shall use g for the metric tensor 
W 

in the new coordinate system: 

We take for the ordinary metric tensor go0 = l,;gll = 8,, = $?33 = -1. Then 

i 0 0 0 .l 

0 -1 0 0 
gw = 1 . (2.5) 

0 0 -1 0 

1 0 0 0 

We use g 
lJV 

to lower indices, so that a0 = a3, a3= a0 ;. this may seem confusing, 

but it has important consequences. For instance, the wave operator 

a,aP = 23, a3 - ala1 - a2az is only first order in a, = a/a7 . 
I 

Let us consider the generators of the Poincare group in the new notation. 

Our conventions for the Poincare algebra in the ordinary notation are 

The generators of rotations and boosts are, respectively, kj = eijk Jk and 

ii& = Ki . Using the matrix CcLv to transform from the usual notation to the 

new notation, we obtain 

PP= (P0,P1,P2,P3) = (Q,P1,P2,H) (2.7) 
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and 

M 
P 

where 

= 

-sl 

0 

-J3 

-B1 

B1=-+ (K1 
d-i- 

-I- J2) 

B2- - 1 cK2 - J1) 
fi 

s1 = 1 (K1 - J2) 
a 

s2 = 1 (x2+ J1) . 
Ji 

(2*8) 

(2.9) 

The commutation relations among these generators are, of course, given 

by (2.6) without the hats. The commutation relations among the operators 

K P’, P2, rl, J39 B1, B2 are particularly interesting. They are the same as 

the commutation relations among the symmetry operators of non-relativistic 

quantum mechanics in two dimensions with 

H -+ hamiltonian , 

3T - momentum , 
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q w mass , 

J3 - angular momentum , 

B1 and B2 ----* generators of (Galilean) boosts,, in the x and y 

directions, respectively. 

Indeed, we have 

[H,gT] = [H, 711 = [2T,q] = [J3,H] =[J3,‘l] =[z,Q) = 0 

[ J3, Pk] = iekQ P’ [ J3, Bk] = ieke B’ 

[Bk, PI] = -i 6 ij r) , 

(2.10) 

where El2 = - E21 = 1, El1 = E22= 0 . The commutation relations (2.10) are 

the result of an isomorphism between the subgroup of the Poincar6 group generated 

by 9, \3, J and s and the Galilean symmetry group of non-relativistic quantum 

mechanics in two dimensions. This isomorphism results in a non-relativistic 
3 

10 
structure for quantum mechanics in the infinite momentum frame. As one 

1 
example of this isomorphism, we note that the mass shell condition, m2 = P’“Pp = 

253 -3; , for a free particle implies that the free particle hamiltonian takes 

the non-relativistic form 

-42 
pT 

H=2rl -0 ’ 
(2.11) 

where V. = m2/21 is a constant potential. 

It is easy to verify that the subgroup of the Poinca& group generated by P’, 

P2, rl, J3, I+ B2 leaves the planes T = constant invariant. Thus these operators 
. 

might be called ttkinematical” symmetry operators. 

Consider now the operators S1 and S2 in connection with our non-relativistic 

analogy. We find that S1 and S2 commute with each other and with the hamiltonian 

H. Thus they play the role of the “dynamical” symmetry operators sometimes 
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11 encountered in non-relativistic quantum mechanics. The operators S1, S2 

form a vector g under rotations: [J3, s] = i ekQ Sa . The commutation relations 

of gwith Q, ST, and 5 are 

[%,q] = -i Pk [Sh,PI]= -idke H 

(2.12) 

[Sk, Ba] = -ieke J3 + idke K3 . 

Finally, we find from the commutation relations that the operator K3 serves 

merely to rescale the operators we have considered so far: 

iWK 3 -iwK3 
e 77e = e”q 

iwK 
e 3 3 

T 
e-iUK3 = “p 

T 
iWK -iUK3 

e 3 He = emw H 

iwK 3 -iwK 
e J3 e 

(2.13) 

WK -iwK 
e 3se 3=ewg 

iwK 
e 32e =e’“s 

-iwK3 
. 

The fact that the operators Pp, -M in the infinite momentum frame transform 
PV 

under z-boosts according to simple scaling laws suggests that the infinite momentum 

frame may be particularly adapted for high energy approximations. 
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III. SCATTERING THEORY 

In this section, we regard the theory of quantum electrodynamics as being 

defined by the usual perturbation expansion of the S-matrix in Feynman diagrams. 

We rewrite the theory in the infinite momentum frame by systematically de- 

composing each covariant Feynman diagram into a sum of non-covariant 

r-ordered diagrams. We consider the Feynman expansion as a formal ex- 

pansion; thus we shall not be concerned in this paper with the convergence of 

the perturbation series, or convergence and regularization of the integrals. 

A. Propagators 

If we wanted to derive t-ordered diagrams from the Feynman diagrams we 

would begin by writing the Feynman electron propagator in the form 

SF(x) -&l(t) S’*‘(x) + Q(-t) d-) (x) : 

We will try to do the same thing using @(T) instead of o(t) . 

We start by considering the Klein-Gordon propagator 

OF(x) z (2~)-~ J d4p e 
-ippi 

c 

-1 
PVPv - m2+ie 1 

(3.1) 

(3.2) 

We can do the H-integral by contour integration. If T > 0 we close the contour 

in the lower half H-plane. The integrand has one pole at H = GT2 +m2 - ie)/% q , 
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which is in the lower (upper) half plane if rl is positive (negative). Thus we 

get 

Similarly, if 7 < 0 we get 

Thus (with the change of variable Ej;l -, -gT and I]+ -qfor Q- < 0) we have the 

required decomposition for A,(x) 12. . 

where 

PO = H(q ,?T, = T2 2 T -tm 
2r7 (3.5) 

is the free particle hamiltonian. Notice that 

is the invariant differential surface element on the mass shell. 

We can use the deomposition (3.4) of A,(x) to derive a decomposition for the 

electron propagator, 

SF (x) = (iaPyP + m) AF (x) . (3.,6) 

(In keeping with our convention, the yP are the y-matrices in the new notation. 

We shall usevP for they -matrices in the ordinary notation; thus Y”= 2 -1 0 A3 2# +y ) 

etc. Table I in Section IV contains some useful identities for the new y-matrices.) 
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When we differentiate A,(x) in (3.4) we get a term proportional to e(r), a 

term proportional to @(-7)) and a third term proportional to d(7) = a,Q (T) . 

As we will see, this third term results in an extra term in the infinite momentum 

frame hamiltonian. Doing the differentiation we get 

SF(x) = -i 3 dyT mm 
2GM J s 

rl 

0 

(3.7) 

We will also need a decomposition for the photon propagator. We start 

with 

DF(x)@’ = (271)-~ 
f 

d4p e . (3.8) 

As we will see, a great simplification in the theory will result if we choose the 

gauge A0 = 0, which might be called the infinite momentum gauge. To write the 

propagator in this gauge we define the polarization vectors 

elm p - L (0, ??,O,P = q 5 

(3.9) 
e2@lP = $ (O,O, t7 ,p3 . 

These polarization vectors satisfy the orthogonality conditions e ‘e 
A PP 

= - c?&, , 

eh(@Ykp = 0 . By direct calculation, we find 

2 
-gpv = xAzl eA @f e*(p)’ -+ (p3pv + pY f, 

(3.10) 



-12- 

Let us make the replacement (3.10) in our integral for DF(~)‘V. We note that the 

gauge terms r/ -l,S’ pv and ?~-‘p’6’ 3 3 will not contribute to any physical process 

because of current conservation. Thus we may drop these terms without changing 

the theory. This leaves us with 

DFQQPV = (27r)-4 
/ 

d4p e 

(3.11) 

+f27i) -4 I-J b 3f3 
s 

d4p e 
-ipp# 1 P Pp 

7 pclpI.l, ie 
. 

We can do the H-integration in the first term by contour integration, just 

as we did for A,(x). The result is 

i 

-ip X~ 
O(T) e p 

+iph# 
-k 0(-T) e 

i 
. 

In the second term pppfi/(pppcl + ie) -, 1 as e-+ 0’ so that the H-integral is 

cc 

J 
dH e-ii%- 

=27rd(7-) l 

-Co 

Thus the second term is 

This term will result in an extra term in the hamiltonian which is analogous 

to the Coulomb force term which appears in quantum electrodynamics in the 

Coulomb gauge. 

In sum, then, our photon propagator takes the form 
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1 ‘O(r) e 
-ipPx! 

+ 0(-T) e 
+ ip&x! 

i 
(3.12) 

where 

PO = H = $/2q . 

B. Diagrams 

(3.13) 

We start with the usual Feynman rules in coordinate space. For definite- 

ness, let us consider a particular diagram, say the one shown in Figure 2a. We 

fix our conventions by writing out the contribution of this diagram to the S-matrix: 

M = 

(3.14) 

The electron wave functions used here are 

t)(x) = (2(27r)3)-6 e 
-ipPx! 

u@,s) , (3.15) 

where p and s are the momentum and spin of the electron and the spinors u(p, s) 

are normalized to ik = 2m. For positrons we use the charge conjugate wave 

functions 

#(x), = (2(27r)3)-g e 
+ ipP# 

UtP, Gc 9 (3.16) 

where p and s are the physical momentum and spin of the positron. The photon 
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wave function is 

e’(x) = (2 (2@3)-8 e 
-ipPx? 

e-p)’ , (3.17) 

where e,(p) is one of our infinite momentum gauge polarization vectors. Finally, 

it may be useful to note that although the y-matrices appearing explicitly in Eq. 

(3.14) are, as always, the tfnew” y-matrices, the old 9’ still plays a role in 

q = &“. 

We begin the program of deriving the rules for T- ordered diagrams by 

inserting the momentum expansions (3.7) and (3.12) for the propagators into (3.14). 

Let us, for the moment, ignore the contributions to SF and flFV proportional to 

6(r). Then each of the 3! possible r- orderings of the vertices determines a 

T- ordered diagram; let us consider, say, the ordering r 1 < r2 < T 3 . For this 

diagram we draw the picture in Figure 2b. The corresponding contribution to 

the S-matrix is obtained by inserting O( 73- 72) @(TV- T+ into (3.14). Thus only one 

of the O(T) or @(-T) terms survives from each propagator. We can do the FT- 

and 3- integrations to give (27Q3S2 6 T in- pT out) 6 ( qin- qout) at each vertex. The 

T- integrals in this example are 

I dTld72d73@(T3- T~,)@(T~- TV) exp(-i[(Hl-H3 - H& + (I-&- H4- H7F2 +(H7 ‘H2- H5P3]b 

(3.18) 

With the change of variables 

To 1 = 7 

T1 = r2-r1 

T2 = r3-r2 

Tl = To 

?2 = To+Tl 

T3 = To + Tl f T2 , 
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the T - integrals become 

W1MT2) e;Yp(-i[@q-3$P., + q-Xf)Tl + (%-Xf)T2]), (3.19) 

where $65 = Hl + H2 is the total “energyf’ of the initial state, 21 = H3 + Hs + H2 

is the total “energy” of the first intermediate state, H2 = H3 + H4 + H7 + H2 is 

the total I1 energy 11 of the second intermediate state, and Xf = H3 + H4 + H5 is the 

total If energy” of the final state. The integrals can now be done using 

dT e 
&-pJy 

= 2n6(T) 
.Jia 

.(3.20) 
co 

dTem = a 
0 &Z?:ie ’ 

Thus we get an overall factor of (27r)6($~~-~i) and a factor of i(Z$.- YP-k ie) 
-1 for 

each intermediate state. With a little thought, one can convince himself that this 

results is completely general. 

We now have to consider the effect of the 6(r) terms in the propagators, 

which we have so far omitted. To the contributions to the S-matrix from a par- 

ticular Feynman diagram so far obtained, we should add the contributions obtained 

by replacing the T # 0 parts of SF(x) and DF(x)lrv with the 6(r) part in any of the 

internal lines. We will use the pictures in Figure 3 for the 6(~) parts of SF@-xl) 

and DF(x2- xI,~~. Diagrams containing one or more of these 8(r) internal lines 

are then treated as before except that we consider structures such as those shown 

in Figure 4 as single vertices when we do the T- ordering. Thus we get 

(2a)3s2@” T in-FT out)S(qin- qout) at each end of a 6(~) internal line, an overall 

(2n)6(Xf-$K), and a factor i(Xf- X-t ie)-’ for each intermediate state between 

two different ‘1 times 11 . 
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At this point, let us notice that diagrams in which two or more 6(r) parts 

of propagators are linked together give a zero contribution to the S-matrix. 

Indeed, consider a diagram containing a part like that shown in Figure 4c. The 

corresponding contribution to the S-matrix contains y ‘yPyo times #FV or eP. 

Because of our choice of gauge, only /..J = 1,2,3 occurs; but, since y”y ’ = go’= 0, 

we have y”ylyo = -y”yoyl = 0, y”y2yo = -y”yoy2 = 0, and y”y3yo = y”yoyo= 0. 

Hence y ‘yPyoeP = yoypyo Dr zz 0. Now consider a diagram in which the structure 

shown in Figure 4d occurs. The corresponding contribution to the S-matrix con- 

tains a factor 61.13 6 “3 (* l l y, y”* l l ) = 6: (9 l l y3yo* . l ) = 6: (0 l l y”yo* l l ) = 0. 

We are now in a position to summarize the rules for T- ordered diagrams. 

With our choice of gauge there are three types of interactions as shown in Figure 5. 

These interactions are to be T- ordered in all possible ways. We then associate 

the following factors with the parts of the diagram: 13 

i) wave functions u@, s), u@, s), uc@, s)~, uc(p, s), and e,(p) for the external 
lines; 

ii) <pr t- m) = C u(p, s) u@, s) for electron propagators; 
S 

(-ld -km) = - Es uc(p, s) u,(p, s) for positron propagators; 

Zheh@)’ e,@)V for photon propagators; 

iii) (4n) - 3/2 
e yp 6(??out- qh) ~3~ GT out-FT in) for each vertex as shown in 

Figure 5a; 

for each vertex as shown in Figure 5b, where no is the total n transferred 

across the vertex; 
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e2 
-3 y, y” yp t 6hout- &) 62FTout-FT h) for each vertex as 
8(2n) 

shown in Figure 5c; 

iv) an overall factor of -2ai6(Xf-Xi), and a factor of (Hf-X+ it-) -’ for 

each intermediate state; 

v) the usual overall sign from the Wick reduction, determined by the 

structure of the original Feymnan diagram; 

vi) an integration $d2FT J; F for each internal line. 

Note that since each line carries positive Q and r] is conserved in each 

interaction, vacuum diagrams l&e those shown in Figure 6 cannot occur. 

In the next section we shall develop the canonical field theory for quantum 

electrodynamics in the infinite momentum frame. As we will see, the hamil- 

tonian we will obtain reproduces the scattering theory we have developed here. 
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IV. CANONICAL FIELD THEORY 
. 

A. Equations of Motion 

We base our field theory on the usual lagrangian density l4 

($TP-eAP)yP-m ?P-atiYFPY , 
1 (4.1) 

where the electromagnetic field tensor l?” is related to the potential AP by 

JjJ% &p&y . Variation of the fields P, T, and A’ give the Dirac equation 

and Maxwell’s equations: 

(iah-eAP)yP-m 9 = 0 

ahFPA = e3Fy’Ik - Jll. 

(4.2) 

(4.3) 

It will be convenient to work in the infinite momentum gauge, A’(x) = 0. In 

this gauge the field tensor is related to the potential by 

Fop = -aOQ = -a Ap 
3 (/.L =1,2,3) . (4.4) 

In order to completely specify the gauge, we must choose boundary conditions 

for AP(x). /Jo12 For reasons of symmetry, we will require that A (x , x , x , +a) = 

-A’(x”,x1,x2, - ~0). With these boundary conditions, the solution of (4.4) is 

A’*(x) = -*Id5 ~(~3-5) FoP(xo,xl,x2,~), (4.5) 

where 

i 

1 x>o 
E(X) = 

-1 x<o . 
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It is perhaps not obvious that the gauge conditions we have imposed are 

consistent with Maxwell’s equations. Thus it is reassuring to note that the de- 

finition (4.5) of A’(x) works for the classical electromagnetic field. If the field 

FPv (x) is produced by a current which, say, is non-zero only in a bounded space- 

time region, then the components FOP(x) go to zero like 3 -2 (x ) as I x3 I - w. 

Thus the integral (4.5) is well defined. Using the homogeneous Maxwellts 

equations, 9’Fvh + 3’ FhCL + 8 ‘FPV = 0, one can easily show that the potential 

A’ defined by (4.5) satisfies 9 “AP- 8l-l AV = FiFGV for all indices p, v 0 

We have eliminated one component of A’(x) by our choice of gauge. Only 

two of the remaining three components can be independent dynamical variables, 

since the three components of Al”(x) are related at any uptime” x0 by the differen- 

tial equation 

s,(a$ + a2A2 + a3A3) = - ap”o” = -JO . (4.6) 

It will be convenient to regard A1 and A2 as the independent components. Then A3 

satisfies 
3 . 

a3a3A = - a3ajAJ - JO . 

(We adopt the convention that Latin indices are to be summed from 1 to 2. ) The 

solution of this equation which equals A3 as defined by (4.5) is 

A3(x) = j -8 d5 I x3-i I a3ajAj(xo,xl,x2,c) + J”(xo,x1,x2,~, (4.7) 

To see that this equation reproduces our definition of A3 in terms of F 03 , write 

it as l5 
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A3W = -#4 I x3-[ I a3F03(xo,x1,x2,,g 

= -- ; d5 J ( -!- 1 x3-t I 
a9 

Fo3(xo,x1,x2,[) 

= -4 dt ~(x~-r$)F’~(x?,x~,x~,t) . J 

(4.8) 

Thus only two components, Al(x) and A2(x), of A”(x) are dynamical 

variables. A’(x) is identically zero, and A3(x) is determined at any ~ftirne~’ x0 

by Al(x), A2(x), and 9?(x) at that x0 by Jneans of Eq. (4.7). This reduction in the 

number of independent components of Ar” is a familiar feature of quantum electro- 

dynamics in any reference frame. 

In the infinite momentum frame, we find that the number of independent 

components of the electron field 9(x) is also reduced from four to two. In order 
. 

to show this we pause briefly to examine the properties of the infinite momentum 

y - matrices, yp = C”, F”, The f’ordinary” y-matrices cp are chosen to satisfy 

IT”, q”} = 2pv and Gpt = yp. Thus the infinite momentum y -matrices satisfy 

[YP, YV I= 28” 9 ypT= $0 From this it follows easily that P, = 4 y 3 y ’ and 

P- = 4 y”y3 are hermitian projection operators with P+P-, = 0 and P, + P = 1. 

These facts, as well as some others that we will need later are listed for con- 

venient reference in Table 1. 

It will be helpful to have a specific representation of the y -matrices in 

mind. We will consistently use 

( 
0 1 

) 
0 -0. a 

A0 
Ao! 

Y = , Y = 
( CP- > 

TV =1,2,3) , (4.9) 
1 0 0 
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where cl, c2, c3 are the usual 2 x 2 Pauli matrices. With this choice for the 

YP , we find that 

10 0 0 

P+= ( 0 0 0 0 

0000 

0001 

1 P= 0 0100 0010 0 0 0 

4 0 0 0 0 

By applying the projection matrices PA to the electron field Q(x) we obtain 

two two-component fields which we call ‘E+(x) and 9- (x): 

(4.10) 

*+ = P, Q = (4.11) 

With this preparation completed, we are ready to examine the dynamics of 

the electron field Q(x). If we multiply the Dirac equation by y’and recall that 

y”yo= 0, we obtain 

(ia3-eA3)yoy3?@ = y”[-(iaj-eAj)j+m]?l!. 

Using our y - matrm identities, this becomes 

(i a3- eA3) P- z i [(iaj-eAj) yj+ m]y’\II+ . 

This differential equation is considerably simplified because of our choice of 

gauge, A3 = A0 = 0. Thus 

a39 = - i [(iaj- eAj) yj + m] yolk, . (4.12) 
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For reasons of symmetry, we write the solution of Eq. (4.12) as 

9-(x) = - $ Idt e(x3-5){paj- 1 0 eAj(xo,~T,5)]yj+m~y *+(x”~~T~~) l (4.13) 

Thus the two components of P- (x) are dependent variables in the infinite 

momentum frame. They are determined at any “time” x0 by the independent 
. 

fields 9+(x) and A1 (x) at the same x0. We recall that the dependent variable 

A3(x) is determined at any x0 by Aj and Jo at that x0. It is reassuring to note 
. 

that the dependence of Jo(x) on the independent fields a+, AJ is very simple: 

Jo = $y”I = 9’T”yoP = fi 9-J 9, . (4.14) 

What are the equations of motion for our independent fields Aj (x) and 
. 

e+(x)? For AI(x) we have the Maxwell’s equations 

au ($Aj-ajAV) = Jj , 

or 

za,a,Aj = Jj + aja Au - 
V 

a aiAj i 
. 

= JJ + aj a3A3 + ajaiAi - aia iAj (4.15) 

= Jj +ajasA3+a.Fij , 1 

Using the definition (4.5) of Aj’in terms of F”j,, we have 

aoAj (x) = 4 I d[ E(x3-.$)3 3 k&X0? 5) 03 ‘T’ ’ (4.16) 

Substituting into (4.17) from (4.16), we obtain 
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a,Aj (x) = $ a is dt E (X3- 5 ) a3A3(Xo,yT, 5 ) 

+ & J Jj (x",yT, 5 ) -I- aiF ij (xO,yT* 4 ) ) 
l 

Since the integral in the first term is just 2A3(x) because of Eq. (4.5), we have, 

finally, 

a,Aj(X) = fr ajA3(X) + +g E(X~-+‘(X~,~~,<) + aiFi’(Xo9~T?t))’ 

We can obtain the equation of motion for ‘E,(x) by multiplying the Dirac equation 

by y3* After making use of some of our $ -matrix identities, we obtain 

so*+(x) = -ieA3(x) 9+(x) - k 
. 

(iaj-eAj(x))yj + m 
I 

y3 9-_(x) . 

B. Momentum and Angular Momentum 
. 

The invariance of the langrangianunder the Poincarh group provides US, 

using Noether’s theorem, with a conserved momentum tensor T;qx) and a con- 

served angular momentum tensor J ax. 
/Au ( 1 . 

J A 

W 
=xTA-.Th+S A 

P lJ v P luv ’ 

where 

If the fields satisfy the equations of motion, then Tt and Jpv’ are con- 

served: 

ah T’ = 0 aJh=O. 
a P 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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Thus the total momentum, 

pcl = 3 0 Id%Tdx Tel 9 

and the total angular momentum, 

M = 
/Jv I d2%,dx3 Jpvo , 

(4.23) 

are constants of the motion. In our quantum theory, PcL and M are the 
W 

16 
generators of the Poincare group. 

We recall from our discussion of the PoincarG group in Section II that the 

operators Pl, P2, P3, M12, M13, and M23 are If kinematicalfl symmetry operators 

in that the subgroups of the Poincare group which they generate leaves the planes 

T= constant invariant. Thus we might expect that they take a particularly simple 

form. Indeed, we find that 

(4.24) 

Tao = &i a?! $- Ta ‘E+ - (aQAi) (a3Ai) (a! = 1,2,3) 

J12’ = xlT2’-x2Tlo +fi *+t ; y1 y2*+ + A1(9,A2) - A2(a3A1) 

J13’ = xlT3’ - x3T10 

(4.2 5) 

(4.26) 

(4.27) 

J230 = x2T3’ - x3T2’ . (4.28) 

. 
Note that these operators involve only the independent fields ?l?+ and A’, and thus 

do not depend on the coupling constant e. 

The most important operator in the theory is, of course, the hamiltonian 

H=Po. From the definition (4.19) we have 
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TO0 = ~~~oyo%+(80A-JFoh-~ (iaP-eAP)yP-m !I!+~tiVF 
I P’ 

The first two terms cancel the terms in the lagrangian containing a,, and we are 

left with 

Too = 

3 

c 
v=l 

q yv- @ + eAPF yP?E 

(4.29) 
-t- 1 2 F12F 12-fr (a3A3)(a3A3) - (ajA3)(a3Aj) . 

C. Momentum Space Expansions of the Fields; Commutation Relations 

Let *+GT, n ;T) be the Fourier transform, at the Wmefl r , of X&+(x), so that 

*+(T ,zT, 5 ) = (2779” 3’2sd%Tdn e *+GT, 77 iT) . 

It will be useful to define operators bFT, q ;s;T) and dFT, q ;s;.r), where s takes 

the values f 4 , by 

,-a q-*,,- T’ 
Tj;-++;T) = $! +1 F T9%T) forr] >‘, 

(4.30) 

24 q -+ bGT, q ;-& ;T) = ‘T;4FT, 7 ;T) for 7j > 0 , 

2-a ?1 -adt~T,q;+~;r) = P+4(--ijT,-?j;~) for q > 0 , 

(4.31) 

2-a f-+ d’gT, q;-& ;T) = ‘+ It-%$’ -q;r) for ?j > 0. 

Then our Fourier expansion of ‘1;(x) takes the form 

*+(T,TT’& = 2 -1’4(2n) -3’2h%T [dn v -l/“cs = f 1,2 

(4.32) 

X w(s)e 
1 

-itv,i+?T*~T) +it%+‘;;,- T p -2) 
b(p;s;r) + w(-s) e d @;S;T) , 
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where the spinors w(s) are 

1 0 

w(+& = 0 0 o W-4) = 0 0 o . 
0 1 

(4.33) 

Let us see what the electron parts of the momentum operators Pl, P2, 

P3 look like in momentum space. Taking the operators Po from (4.23) and (4.25), 

and doing a little algebra, we get 

P o! (electron) = / d2?iTd~~Qf(T,~T,$) ;??a9’+(~,T;T,& 

=sdzp’T -s’% zs=,- ( ’ (4.34) 
pa! b @; s;r)b@;s;7) -d(p;s;T)d t 

2 
(p; s; 7) 

(a =1,2,3) . 

Up until now we have not mentioned the commutation relations of our in- 

dependent fields. The form of (4.34) makes a very clear suggestion as to what 

commutation relations to choose. We are led to interpret b(p;s,;T)and d(p;S;T) as 

destructionoperators for electrons andpositrons, respedtively. (Theminus sign in (4.34) 

can then be disposed of by normal ordering. ) We thus postulate the covariant 

anticommutation relations 

t b@;s;r), b @‘;S’;T) 
t L d@;s;r), d @‘;S’;7)j ass, q G(q -r) f>s2 6$-s&) 3 

with all other anticommutators vanishing. Transforming back to coordinate 

space, we obtain the following equal- T anticommutation relations: 
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We will use the same procedure to find commutation rules-for the field 
. . 

Al(x). Since Al(x) is to be hermitian field, we write its Fourier expansion as 

In terms of the operators a@;h;~), the photon part of the momentum P, is 

P a(photon) = 

=ld2F;, {$ba?il${ a@;h;r) a?@;h;r) + a (p;h;r) a(p;A;r) t 

(4.37) 

(4.38) 

(0~ =1,2,3) . 

The interpretation of’(4.38) is clear if we let the operators a(p;h;r) be destruction 

operators for photons and normal order the expression for Po. Thus we are led 

to postulate the covariant commutation relations 

[a@;h;r), app’;h’;r)] = 6hh’q6(q-q ‘)“2$T-$T) t 

(4.39) 

[a@;h;r), a(pW,r)] = 0 . 
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Transforming back to coordinate space, we obtain easily the equal- T com- 

mutation relations 

. . 
a3A1(‘LTT,g), &T&,,P) 1 = - ; SijS (g-g’) 62(;T-5;iT) . 

Utilizing the relation (4.5) between Ai and a3Ai L - Foi, we obtain 

. . 
AJ (T,+) I = - $6 ij E (g-2’) 62($T-~~) l 

(4.40) 

(4.41) 

We also assume, of course, that the photon creation and destruction operators 

commute (at equal 7) with the fermion creation and destruction operators. Thus 

[ 
. 

AltT~-i;~,g), Q+(T,;;iT,gT) 3 
= 0 . (4.42) 

Our field theory in the infinite momentum frame is based on the equal- 7 

commutation relations (4.36), (4.41), and (4.42). We would expect, a priori, 

that dynamical effects could propagate from one point to another in a plane 

7 = constant along a 1ineZ T = constant (i. e. along a light cone). Thus we might 

expect that the commutation relations would depend on the coupling constant e. 

The commutation relations among the independent fields of the theory are in fact 

independent of e. However, the electrodynamic interaction does affect in the 

equal- 7 commutation relations among the components of the complete fields 

A’(x) and 9(x), since the charge e appears in the definition of the “auxiliaryf’ 

components, A3 and !P-, of the fields. We find, for instance, that 
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We can gain further confidence in the equal- T commutation relations by 

using them to show that the operators PI-l and M 
W 

actually generate translations 

and Lorentz transformations when commuted with the independent fields of the 

theory. The verification for the “kinematical” operators is particularly simple 

because these operators involve only the independent fields. One finds 

ibj, Ai( = ajAi(x) 

. i r7, A’(x) 1 1 = a,A$x) 

ikj 9 Q+(X)] = aj *‘,(X) 

i rl , Q+(x) [ 1 = a3*+w 

(4.43) 

i[J3, A’(x)] = (3a2- %a+ Ai - E ij Aj (x) 

ibj,Ai(x)] = (x3aj-xj3,)Ai(x) 

ibj, *+cXd = (%aj-xja3) 9+(x) . 

It is considerably more tedious to show that the operators H, Sl, S2, and K3 have 

the proper commutation relations with the fields. We present in Appendix A some 

details of the calculation which verifies the crucial assertion . 
i H, Al(x) [ 1 = a,A’(x) 

i H, *+(x) [ 1 = ao9+(x) . 

(4.44) 

Similar but lengthier algebra gives 
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i[K3,Ai(xd = (xoB3 - x33,)Ai(x) 

i[K3, *+N] = (x08, - %ao) *+w 
(4.45) . 

i Si, AJ (x) [ 1 = (xiao - xoai)Aj(x) - giiAo(x) + ahp) 

iFi, @+(x)-j = (Xiao - xoai) 9+(x) + 4 yiyo *(x) - ie A,(X) 9+(x) , 

where hi(x) = 4 Jdt E (x3- 4 ) Ai(xo,?$, .!j ) is that function which preserves the 

gauge during the Lorentz transformation. 17 

D. Free Fields 

Let us see how the methods of the preceeding sections work if the interaction 

is turned off. Consider first the electron field 9(x). With no interaction, each 

component of Q(x) satisfies the Klein-Gordon equation 

(2a,a, + a,a i f m2) *E(X) = 0 . (4.46) 

Using this in the Fourier expansion (4.32) of @+(x), we find that the operators 

b(p;s;~), d t @;s;T) satisfy the differential equations 

(-2i7j & +jTt + m2) b(p;s;r) = 0 

(+2iq = 0 . 

Solving these equations, we get 

-ip r 
b(p;s;T) = e ’ b(p;s;O) 

t d (p;s;r) = e +ipoTdt@.,.,) , , , 

(4.47) 
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where p. = &$, + m2)/2q is the free particle hamiltonian. Thus the Fourier 

expansion for Q+(x) takes the form 

9+(x) = (2(2r)“)-” sd”fiT -s’ $’ c 
s=++ 

(4.48) 

1 -ip 
2aqiw(s)e lJ 

2 
b(p;s;O) + 2* qi w(-s) e 

+ ipPx? 
d?(p;s;O) . 

1 

The auxiliary field !k- (x) is given in terms of P+(x) by equation (4.13), 

*- (x) = - $ 
/ 

d{ E (x3- 5 )(iaj +.+ m) 7’ @+(x’,TT, 5 ) . (4.49) 

Substituting the Fourier expansion of XI?+(x) into this equation and doing the 5 - 

integration we obtain 

4?-(x) = (2(27Q3)-+j=d2GT [? C 
s=+f -2 

-.g -g 
2 q (pjyj+m)yow(s)e 

-ipP,# 
b@;s;O) 

-2+ ?,I (-pj y j + m) y”w(-s) e 
+ ipPxV 

We have now only to add @+(x)‘and !I?- (x) to obtain the complete field JEr(x): 

1 Ww9 e 
-ipP$ 

b(p;s;O) + v@, s) e 
+ ipPx? 

&w;O) , t 
( 

(4.50) 

(4.51) 
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where 
. 

p.yj+m 
0, s) = ,t,+ 

l++y” 

(4.52) 

v@, s) = &,Q 
( 

I+ pj Yj.-m 0 
1 

2?j y - l 

w( s) 

Recalling the definition of the spinors w(s) from Fq. (4.33), we can calculate 

II@; s) and v(p, s). We find 

u(p,+& = 2-a q-9 (y-f) u&-4) =,-a,+ (3 

(4.53) 

( 

0 \ 
-m 

v@,+$) = 2-t f-& -pl +ip2 

A rl/ 

If the field 9(x) which we have obtained in the infinite momentum 

frame is to be equal to the usual free Dirac field, then the spinors u@, s) should 

be solutions of the Dirac equation normalized to ?i(p, s)u@, sl) = 2m ass, and the 

spinors v@, s) should be related to u(p, s) by charge conjugation, Indeed, a quick 

check shows that this is the case. 

The destruction operator b@;s; T) destroys an electron with momentum p 

described by the Dirac spinor u@, s). Using the explicit form of u(p, s), we can 
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clarify the physical meaning of the spin index s, In a short calculation presented 

in Appendix B, we find that s is the helicity of the electron as measured in a 

Lorentz reference frame moving with (almost) the speed of light in the -z 

direction. 

We can also check to see that, with the interaction turned off, our field 

A’(x) is just the usual free photon field (in the appropriate gauge). The calculation 

is completely analogous to the calculation for @(x), so we just state the result. 

With e = 0, we find 

x e 1 -ipP$l 
a@;h;;O) + e 

+ ip@x! 
t a (FGW 

1 
, 

(4.54) 

where the e,@p are just the infinite momentum gauge polarization vectors de- 
, 

fined in Eq. (3.9). Using the, explicit rep&entation of the polarization vectors, 

we can clarify the physical meaning of the index h. An easy calculation shows 

that the creation operators 2-* (a?(p;l;O) 2 iat@;2;0)) create photons with 

helicity + 1. 

E. Scattering Theory 

We have seen that infinite momentum quantum electrodynamics is the same 

as ordinary quantum electrodynamics in the trivial case e = 0. The two theories 

can be compared for e # 0, at least formally, by constructing the S-matrix in 

old fashioned perturbation theory in the infinite momentum frame and comparing 

it with the S-matrix given by the T- ordered diagrams of Section III. 



-34- 

The perturbation expansion of the S-matrix takes a familiar form once 

we have divided the hamiltonian into a free part and an interaction part. To 

make this division, we start with the hamiltonian density T:(x): 

To” = -s(&T-eAj]yj-m) * - 3 kT33y39 +eA3% y”?l’ + 9 F12 F12 

-4 (a3A3)(a3A3) - (ajA3)(a3Aj) . 

(4.55) 

The integrated hamiltonian can be somewhat simplified if we realize that the 

first term is equal to -2 times the second term after an integration by parts in 

the transverse variables x1, x2. To see this, write -2 times the second term as 

Using Eq. (4.12) for a39-, this is 

1 *I y" 

-ti C 
(i?-eAj) yj-m]@+ 

J- ?tfy3 
-46 -eAj) yj-ml,- , 

With an integration by parts in the transverse variables, we can replace and 
. 

- i%j by AT and obtain 2j 

- 19 (P-y”P++P+y3P-) t 
. 

&t 
($T-eAj) yj-m 1 f . 

But P- y’P++ P+y3P = ?‘+ y3 =@q’, so this is just 
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1 
. . 

-v ($-?$-eAj) yJ-m * . 1 
Thus the hamiltonian density can be rewritten as 

To” 
. 

= T$r3y 3 I+eA3Ty - + (8,A3)(i3,A3)-(SjA3) (B,Aj) . (4.56 

At this point we realize that part of the interaction is buried in the de- 

pendence of ?P- and A3 on e. In order to bring out this dependence we write XP 

as the sum of a “free” part $ and an “interaction part” Y’, where 

T(x) = 2 d[ e(x3-5) Aj(xo,?;T,[)yjyo*+(xo,~T& l 

(4.57) 

(4.58) 

We also define ++ = II!+ and $ = $+ + $ . Similarly, we write A3 =2 + $, where 

d3@) = -4 
/ 

d5 I x3-5 I a .a Aj(x’,;;T, 5) 3j (4.59) 

$(x) = - $ dt I x3- 5 I J”(xo,jiT, t) , (4.60) 

. 
and we pu& = AJ, do = 0. Let us insert P = $ f ‘I’ and A’ =dP + 6: C$ into our 

hamiltonian density (4.56) and simplify the result. 

From the first term in To” we get four terms 

(4.61) 
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The first two terms can be left as they stand. The integrated form of the third 
. 

term can be integrated by parts so that i T3 is replaced by iT3. This integration 

by parts can be justified simply by using the definitions (4.57) and (4.58) to write 

Similarly, we can replace $ F3 by - k %3 in the fourth term. Then, making use 

of the definition (4.58) of ‘I?, we obtain for the sum of the third and fourth terms 

of (4.61) 

e $‘(P- y”P+ + P+r39)jejyj$ = e4ij7 yj$ . 
Irz .. 

(4.62) 

Turning now to the second term in Ti , we write simply 

eA3?i? ~‘9 = eA3$+yo9+ = e2Fy”$ -t e@7y”$ . (4.63) 

. . 
The third term in Ti can be left unchanged since it involves only Aj = &j. 

The fourth term requires some work. With an integration by parts we can make 

the replacement 
18 

- 8 (a3A3) (a3A3) -c$A3a3a3A3 . 

Writing A3 = d3 -t- $, we obtain the sum 

*.a3a3a3d3 i-4 +a,a,+ +& $a3a3dit3 +6d3a3a3@ l (4.64) 
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We write the first and second terms simply as 

+p3a3a3d3 = 
. 

-+Z3a a&J 
3j (4.65) 

and 

(4.66) 

We see, with use of the definitions (4.59) and (6.60) , that the integrated forms 

of the third and fourth terms in (4.64) are equal. Indeed, 

Thus we can write for the sum of the last two terms in (4.64) 

5 $ a,a# + 4d3 a,a,$ - $ a3a3d3 = - 6 a3ajdj 
l 

Finally, we consider the fifth term of Tl, which we write, using an inte- 

1 2 gration by parts of the variables x D x , as 

- (ajA3)(a3Aj) - ~~9 a ~j = 45 a 3 j ad +d3a3ajJ . 
33 

(4.67) 

(4.68) 

The integrated hamiltonian is now in the form we wanted. Adding up the 

pieces, we have 

H= Ho- , (4.69) 

where 
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If we work in the Schroedinger picture, we can evaluate all Heisenberg operators 

at “time” 7 = 0 . We note that the Fourier expansions of the fields $ (x) andd’(x) 

at T = 0 in terms of creation and destruction operators are the same as the ex- 

pansions (4.51) and (4.54) for free fields. Thus the free hamiltonian Ho generates 

the free motion of the quanta created by ‘t .a (p;h;O), b?(p;s;O), d t (p;s;O). The 

remaining part of the hamiltonian, V, gives rise to the scattering of these quanta. 

We can formally calculate the scattering matrix with the aid of the “old 

fashioned” perturbation theory expansion 

Sfi = ,-2niG(&f-xi) {V+V(&-HO+ie)-‘V+*** 

In a field theory in an ordinary Lorentz frame, this formula leads to a set of rules 

for calculating scattering matrix elements using time ordered diagrams. In the 

present case, we are led in the same wayl’ to rules for T-ordered diagrams. 

These rules are the same as the rules developed directly from the covariant 

Feynman rules in Section III. This can be seen by calculating a few matrix 

elements of the interaction hamiltonian V. One finds that the interaction term 

(4.73) 

gives the “ordinaryl’ vertices of Figure 5a. The second term in V, when 

written out in full using the definition of T, is 
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(4.74) 

Using 

dg eiqy 6 (3) = y , (4.75) 

one finds that the interaction V2 gives the vertices of Figure 5c. 

The third term in V, written out in full, is 

e2 v3= -4 I d2;;,dg d[I 9-4 I F(O,ZT$g) y”$ (O,~TP~)J~(O,~T, 5 )Y’$ (O,zTy 5) 
l 

(4.76) 

Using 

it is easily shown that the interaction V3 gives the llCoulomb~~ vertices of 

Figure 5b. 

Thus when we formally calculate the S-matrix from canonical field theory 

developed in the infinite momentum frame, we get the same results as when we 

directly transform the S-matrix for ordinary quantum electrodynamics to the 

infinite momentum frame. 

(4.77) 
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APPENDIX A 

In this appendix we will show that the canonical hamiltonian presented in section 

4B generates the correct equations of motion for the independent field operators 

A’(y). We begin with expression (4.56) for the hamiltonian, 

-li2 Y-‘$, Y- + A35” - f a3A3 a3A3 -I ; F12F12 - ajA3 a,Aj o (Al) 

In order to compute we need to first compute two rather complicated 

equal-T commutators which we list here, 

. [A369 ,A’t~)jl xoyo = & lx3-y3 ‘I ab2@tT-yT) D W) 

These relations follow from the definitions of the auxiliary fields, Y-(y) and A3(y), 

and the basic equal-T commutators of the independent fields. 

With these preliminaries done, we can compute 

a 3Aj(~),Ai(y) 1 l 

X0=9 
(A3) 
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For convenience we label these five terms (I.), (II.), (III.), (IV,), (v.), and 

compute each in its turn: 

(I.)= Z1’~+‘_t(x) ; td3 YJx), Ai(y;l 
XO=yO 

(A41 

+ &/df E(x3-() E( 5 -Y3) d2tzjjyT) ‘3 y!tx) yiYo y+tyo;;fT’ 4) 

-,- ; 6(x3-y3) d2(%&) y;(x) y3yi y-tx> 
1 

. 

= +- / dS cty3-t) Ji(yo&, <) ; . 

We have observed in this calculation that 

(A51 



and 

Continuing, 

(II.) = j ti J”(x)k3(x), Ai(y] 
xO=yO 

=- ii rdz J’(X) 1 x3-y31$ s2(TT-TT) 

= - $jti” 1X3-y3( ai J”(yo,TT,x3) D 

Next, 

(91.) = - $j&[aiA3(x) a3A.3(x), Ai 
X0-y” 

= - [dir =\ A3(x) 3 A3(x) , Ai(yi 
x0+ 

= 5 s d% a3A3tx) ai d2(TT-yT) E(x3-y3) 

’ 
=-xi 

a ydx3 ,(Y3-X3) a,A 3(yo ,$ x3) 

= - 4 aiA.3(y) . 

We have applied here the definition (4.5) of A3(x). 

The fourth term becomes 

(IV.) = $2 [F12(x) F12(x), Ai 
X0-y” 

(AlO) 

= 

(A7) 

W3) 

W) 

WI 



dli a”~?“(~~-~, ,(x3-y3) - d2i a1d2(~T-~T) E(x3-y3) 

,(x3-y3) a 2 F “(y’,j, ,x3) + d2i s dx3 qx3-y3) a, F21(yo,j$x3) 

Z-7 4’, s dx3 e(y3-x3) aj F’j($,3;+ x3) . ’ (All) 

Finally, 

(V.) = -j&[ajA.“(x) a3Aj(x), Ai 
X0-y” 

ajA3(x) 3,[Aj(x), Ai 1 r x”=y” 
+ aj A3(x& Ai 3 x”=y” 

a3Aj(x) 

=-- ii 
rl 
dx’ a jA3(x)6ij d2(TT-;;,) a3 ~(x~-~~) + aj 9 ~J~F~-;;~) I x3-y31 a3d(x) 

i 

=-$ diA3(y) - 4i ’ aijk3 1X3-y3( a3ajAj(yo&,x3) , 

Collecting these five terms,. we have the result 

[H,A’(y;l = $jix” c(y3-x3) Ji(yo&x3) + ~jF”i(yo,$,x3)/ 
I 

- & iildX3 1X3-Y3 a3ajAj(yO&,x3) + ~‘(y’,$,x~) 
‘I 

o 

Recalling the relation (4.7) for A3(x), we have, more simply, 

(Al2) 

I 
VW 

W4) 

[H,Ai(y)l = $jti3 qy3-X3) iffyo,j$,X3) + ajFji(yo,$,x3)i + & aiA3(y) . (A15) 
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Referring to (4.17), we see that we have indeed verified our claim, 

E 1 H, &Y) = + a,Ai(y) ., 

The verification of the Heisenberg relation 

is also tedious but straight-forward. 

(AW 

(Al? 
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APPENDTX B 

We will discuss here the physical meaning of the spinors appearing in the 

expansion (4.51) of the free Dirac field. We will show that these spinors are 

eigenstates of helicity referred to a Lorentz reference frame moving with (almost) 

the speed of light in the -z direction. To do this, we consider, using the repre- 

sent&ion (4.9) of the y-matrices, the helicity operator in the laboratory frame 

P3 P, 6 6 

P+- -p3 0 0 
P3 P, 1 ’ (W 0 0 

0 0 P+ -P3 

where 2o p, = p1 -f ip20 Then the operator which measures helicity from a reference 

frame moving in the z-direction with a velocity vz = -tanh (CO) is 21 

h&4 = exp (- $ y”y3) ho(q) exp (2 ~‘7~) , ( w 
where 

cash o 0 0 sinhw 

Am 
0 -10 0 

= . v 0 01 0 
I 

SinhO 0 0 cash w J 
We compute 

m h&2 = y 
hl 

I 
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Nowlet O-CO. Then 

and 

I 1 s’, q3 - + e” (PO + p3) = 2-112 eW7) , 

We can now verify that the spinors listed in (4.53) are eigenstates of h,(p) : 

h,(p) U(P, f l/2) = *; UtP, 2 w4 

h&4 v(p, * l/2) = 7 + v(p,rt: l/2). 

(W 

U35) 
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TABLE I 

y-Matrix Identities 

I l-J 4 =z$“v 
Y ¶Y j ,@T = 

yP 

p+= 3o +?Y Y P 0 3 z +y y 

P t = (P*)2 * = p* 

P++P- = 1 P+P- = P-P+= 0 

Y3P+ 7 P-y3 = 0 Y3P- = p+y3 = y3 

YOP- = P+yO = 0 yOP+ = P-y0 = y" 

A0 
Y = L. (y0+y3) = 

h- 
A (PmYOP+ + P+Y3PJ 
& 

A0 0 
YY 

A0 3 =@P+ yy =fip- 
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FIGURE CAPTIONS 

1. The coordinate axes of the infinite momentum frame. 

2. Typical Feynman diagram in coordinate space (a), and in momentum space 

after T -ordering (b). 

3. Pictures used for the d(r) terms in the electron propagator (a) and the photon 

propagator (b) . 

4. Structures considered as single vertices. Structures like (c) and (d) give zero. 

5. Vertices in the infinite momentum frame. 

6. Typical diagrams that vanish because of q-conservation. 
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