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ABSTRACT

We examine the formal foundations of quantum electrodyﬁam’ics
in the infinite momentum fra;me. We interpret the infinite momentum
limit as the change of variables r = 2—1/ 2(t+z), F= 2_1/ z(t—z), thus
avoiding limiting procedures. Starting from the Feynman rules, we
- derive a 7 -ordered perturbation expansion for the S-matrix. We then
show how this expansion arises from a canonical formulation of the
field theory in the infinite momentum frame. We feel that this approach
should lead to convenient approximation schemes for electrodynamics at

high energy.
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I. INTRODUCTION

The infinite momentum frame first appeared in connection with current
algebra1 as the limit of a reference frame' moving with almost the speed of light.
Weinlae:t'g2 asked whether this limit might be more generally useful. He con-
sidered the infinite momentum limit of the old-fashioned perturbation diagrams
for scalar meson theories and showed that the vacuum structure of these theories
simplified in the limit. Later, / Susskind?”éhowed that the infinities which occur
among the generators of the Poincaré group when they are boosted to a fast
moving reference frame can be scaled or subtracted out consistently. The
result is essentially a change of variables. Susskind used the new variables
to draw attention to the (two dimensional) Galilean subgroup of the Poincare€
group. He pointed out that the simplified vacuum structure and the non-
relativistic kinematics of theories at infinite momentum might offer potential-
theoretic iﬁtuition in relativistic quantum mechanics.

Bardakei and Halpern5 further analyzed the structure of theories at infinite
momentum, They viewed the infinite momentum limit as a change of variables
from the laboratory time and z-coordinates to a new "time" 1 = 2—1/ 2(1;+z) and
a new '"'space" coordinate 3= 2—1/ 2(1:--z) . Chang and Ma6 considered the Feynman
diagrams for a ([)3 theory and quantum electrodynamics from this point of view
and were able to demonstrate the édvantages of their approach in several il-
lustrative calculations.

In this paper, we examine the formal foundations of quantum electrodynamics
in the 1;nfinite momentum frame. We interpret the infinite momentum limit as the
change of variables r = 2—1/ 2(t+z) , = 2”1/ 2(t-z), thus avoiding limiting procedures.

We derive a 7 -ordered perturbation series and show how such a series arises from
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II. CHOICE OF VARIABLES

We shall regard the "infinite momentum frame" as the reference frame
obtained by choosing new space-time coordinates (7, X, ¥,5) related to the

usual coordinates (t, %, y, z) by

2.1
1
,f=_._.t_z N
7 \/'2_( )

Thus the 7- and F-axes of the new frame lie on the light cone, as shown in Fig. 1.
The infinite momentum frame is not a Lorentz reference frame, but is, in a certain
sense, the limit of a Lorentz reference frame moving in the -z direction with nearly
the speed of light. ?

It will be convenient to use the usual covariant tensor no_tation for quantities
in the new coordinate system. Let® = (5?0, fc\l, ’}22, 3?3) = ({t, X, y, z) be the
coordinates of a space-time point in the ordinary coordinate system,

xH = XO, xl, xz, x3) = (1,X,y,5 )be the new coordinates of the same point. Then

I '
=cf % , (2.2
1
where 0 0 272
1 0 0
(2.3
0 1 0

In general, we shall use hatted symbols for vectors and tensors in the

ordinary coordinate system, unhatted symbols for vectors and tensors in the




new coordinate system. . In particular, we shall use g{w for the metric tensor

in the new coordinate system:

N 0 (gNB,

8y R HBap (P (2.9
. . A Ao _

We take for the ordinary metric tensor @00 =1, 811~ 859 = 833" 1. Then

g = | . (2.5)

We use gW to lower indices, so that ay = a3, ag = ao ; - this may seem confusing,
but it has important consequences. For instance, the wave operator

B _ B : . . —

aua = 23,34 - 919, ~ 353, is only first order in 9y = 0/37 . |
. {
Let us consider the generators of the Poincaré group in the new notation.

Our conventions for the Poincaré algebra in the ordinary notation are
o497 -0 [§,.8]-i¢,8,-8, %
[ w? Fpf T1€p Py =B B
(2. 6)

A A A A A A AOD
A =1 ™ o+2 M -2 mM -2 Ry,
[Muv ‘pa] 18y * 8y My B My o 8y o My

The generators of rotations and boosts are, respectively, ﬁij = eijk Jk and

1/\\/110. = Ki . Using the matrix C”V to transform from the usual notation to the

new notation, we obtain

p*= @0, 2!, 0% % = (n, P, P2, B ' 2.7)




and
, \
0 -s, -5, K,
S. 0 J. B -
M, = 1 8 71 , (2.8)
s, -J; 0 B,
Ky -B; -B, 0
A Y
where 4
n--L @°%+9%
V2
H= -+ @°- 53
J2
B, = — +J,
1T 7 Ky +Jy)
. 9)
B, = — J
2= 75 Ky -J7)
S, = —= (K, -J
1_\/2_(1{1 2)
S, =~ ® %J)
2t d

The commutation relations among these generators are, of course, given

by (2. 6) without the hats. The commutation relations among the operators
H, Pl, Pz, n, d 3 Bl’ 32 are particularly interesting, They are the same as
the commutation relations among the symmetry operators of non-relativistic

quantum mechanics in two dimensions with

H -— hamiltonian |,

—

P

T — momentum




n —— mass ,.
Jg — angular momentum ,
B, and B 5 — generators of (Galiléan) boosts in the x and y

directions, respectively.

Indeed, we have

[H’ﬁT] =[H,n] = [—15),1,,7]] = [J3’H]=[J3’77] =[§,U] =0
[35,75) =i, P! [35B=i¢, B! (2. 10)
K

: [ .
(B, H]=-iP (B, P =-16ijn

b4

where €19= -1 = 1, €11= €9 = 0 . The commutation relations (2. 10) are

the result of an isomorphism between the subgroup of the Poincaré group generated

by PH, {3, and B and the Galilean symmetry group of non-relativistic quantum
mechanics in two dimensions. This isomorphism results in a non-relativistic
structure for quantum mechanics in the infinite momentum f]c'ame.10 As one
example of this ‘isom;)rphism, we note that the mass shell condition, m2 = pHtp
2nH —_ﬁTz , for a free particle implies that the free particle hamiltonian takes

the non-relativistic form

2
H=—L 4V

P
T o (2. 11)

where Vo = m2/277 is a constant potential.

It is easy to verify that the subgroup of the Poincaré group generated by Pl,

P2, n,d 3’ Bl’ B2 leaves the planes 7 = constant invariant. Thus these operators

might be called "kinematical” symmetry operators.

Consider now the operators S1 and 32 in connection with our non-relativistic

analogy. We find that S1 and S2 commute with each other and with the hamiltonian

H. Thus they play the role of the "dynamical" symmetry operators sometimes




encountered in non-relativistic quantum mec‘hanics.11 The operators S,, S,
form a vector S under rotations: [J 3 Sk] =1€,5) . The commutation relations
of §'with 7, f;T’ and B are

k

[(Sn)=-iP [sk,ﬁ!Z]: -id), H

—~
[N
M
=

N

S

ﬁkBﬂ=—kkr%+i%mK3 .

Finally,' we find from the commutation relations that the operator K3 serves

merely to rescale the operators we have considered so far:

iwK ~iwK

e °ne 3_ e¥n
iwK -iwK
3= 3 =
'e PT e = PT
iwK -iwK
e SHe ey ‘
iwK -iwK : '
3 3_ 7 (2.13)
e J3 e = J3 ‘
iwK ~-iwK
e °Be 3_evE
iwK -iwK,
e °Fe 3_ewg

The fact that the operators P, ‘MMV in the infinite momentum frame transform
under z-boosts according to simple scaling laws suggests that the infinite momentum

frame may be particularly adapted for high energy approximations.




IIl. SCATTERING THEORY

In this section, we regard the theory of quantum electrodynamics as being
defined by the usual perturbation expansion of the S-matrix in Feynman diagrams.
We rewrite the theory in the infinite momentum frame by systematically de-
composing each c‘ovariant Feynman diagram into a sum of non-covariant
T -ordered diagrams. We consider the Feynman expansion as a formal ex-
pansion; thus we shall not be concerned in this paper with the c'onvergence of
the perturbation series, or convergence and fegularization of the integrals;

A, Propagators
If we wanted fo derive t-ordered diagrams from the Feynman diagrams we

would begin by writing the Feynman electron propagator in the form

sp@ =00 sV + ot sO @ - 3.1)

We will try to do the same thing using ©(r) instead of @(t).

We start by considering the Klein-Gordon propagator
:  -ip xM -1
Ap® = (271)‘4/d4p e H [pvpv - m2+i€] (3.2
' ~i(ng-Pp ) |
-4 2>
= (27 _fde\fdne T 3. 9)

deH ¢ HHT [2771{ - §T2 ~m?+ ié] -1

We can do the H-integral by contour integration. If + > 0 we close the contour:

2

in the lower half H-plane. The integrand has one pole at H = (f)'T2+m -i€)/2n,
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which is in the lower (upper) half plane if 7 is positive (negative). ‘v Thus we

get
_.2 2

. dn pT > 3
Mg = o f Tf T T g Ry

Similarly, if r < 0 we get

0 [ 2 2
. P
Ap® =;1(§';)"3‘ / By f T ew [(“%ﬁ"‘— T g 15&"%)]
-0

Thus (with the change of variable 'f)’T 4'15’,1, and 71— -nfor 1 < 0) we have the
required decomposition for A (x) 12
-
+ip x
F<x>— /d f 7 fomy e i +@(-r)ye H R
2(2m)° |
where
po = H(T]’pT) = T’T——— (3' 5)

is the invariant differential surface element on the mass shell.
We can use the deomposition (3.4 of AF (%) to derive a decomposition for the

electron propagator,
= (i M . .
Sp® = (IBM)’ +m) ApX) . (3.6)
(In keeping with our convention, the y“ are the y-matrices in the new notation.

1
We shall useP¥ for the y -matrices in the ordinary notation; thus )’0= 272 0+§33)

etc. Table I in Section IV contains some useful identities for the new y-matrices.)
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When we differentiate AF (¥ in (3.4) we get a term proportional to @(r), a
term proportional to @(-r), and a third term proportional to d(r) = o 0@ (7).
As we will see, this third term results in an extra term in the infinite momentum

frame hamiltonian. Doing the differentiation we get

. R0 " -ip xM
Sp(®) = ——5 fdzﬁ'T/gﬁl (@('r) [15+ m] e H
2(21) p l +ip 5
+ @(_q-)[—ld + m] e H (3.7
Pan  ~UEPpEp)
1 0 [ 2 dn 7 Pp Xy
+ a(r)y /dp /-——-—e. ,_

We will also need a decompbsition for the photon propagator. We start
with »
~-ip %
4 fa ¥ -gH
DL®" = @n [d pe K 87 . (3.8)

”+i€
PHP

As we will see, a great simplification in the theory will result if we choose the
gauge A0 = 0, which might be called the infinite momentum gauge. To write the

propagator in this gauge we define the polarization vectors

1
@ = 3 (0,7,0,0)
(3.9)
p_ 1 :
@ =7 0,017,059
These polarizaition vectors satisfy the orthogonality conditions e )\Meplf - (5)\ 0’
e )\(p)” pu = 0 . By direct calculation, we find
2 v 1 v 1 v
_g[J-V = Z)\-':l e)\ (p)“ e)\(p) - —ﬁ" dus P - 77" p“' 0 3
(3.10)

1 — 2 MoV
52 GMH-Pr)s 363
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Let us make the replac
gauge terms n'l R lg 3 pV and 7 -1 p” 0 3 will not contribute to any physical process

because of current conservation. Thus we may drop these terms without changing

the theory. This leaves us with

-4 4 ~ip x* Ty esm exm)”
D" =@y [dpe ¥ L ea®” e
pup”+ie
(3.11)
| ~ip < p p"
-4 2 14 4 lp“ 1 ) i
e 6363-/dpe' n? pottie

p

We can do the H-integration in the first term by contour integration, just

as we did for AF(x) . The result is

| 00
fi : - -1 2, dZZ ‘ H 14
irst term 2 5 / d P (/ 7 (L, 2,0 & [® )

P in x*
ip x +ip
{@(fr) e H 4 O(-1) e H .

In the second term pﬂp’“ / (pup“ +i€) -1 as € 0+ so that the H-integral is

o0

de e T _ o 6(r)

-0
Thus the second term is

X iy Do)
6(7)(210‘36“3 6"3/d213’T f;'lg— e T
' _o0

This term will result in an extra term in the hamiltonian which is analogous
to the Coulomb force term which appears in quantum electrodynamics in the
Coulomb gauge.

In sum, then, our photon propagator takes the form
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[}

D" (%) U] e. e
p Z(ZW) ,0/,, @ 0, @), @)
~ip = +ip x“
omrye " +o-rye * 3.12)
1 - 1(773 pT T)
+ — 6(7)5 d _ ,
2 sn e o [ f
Wher‘e
—2 '
Py = H = p/27 . (3.13)
'B. Diagrams

We start with the usual Feynman rules in coordinate space. For definite-
ness, let us consider a particular diagram, say the one shown in Figure 2a. We

fix our conventions by writing out the contribution of this diagram to the S-matrix:

- (—ie)3fd4x1 a*x, d*x, 17y, RGN

(3.14)
<[T25) ¥, 15560, X5) 7, ¥y )] 1Dty -2 e (xg)”
The electron wave functions used here are
1 "'lp Xu
I(x) = (2(27r)) 2 b, s) (3.15)

where p and s are the momentum and spin of the electron and the spinors u(, s)
are normalized to uu = 2m. For positrons we use the charge conjugate wave

functions

_1 +1p XM
¥, = (2em’) T e F up,s), (3.16)

where p and s are the physical momentum and spin of the positron. The photon
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wave function is

dm = (2en®) _lp“xuekm)“ , | (3.17)

where eh(p) is one of our infinite momentum gauge polarization vectors. Finally,
it may be useful to note that although the yémat;'ices appearing explicitly in Eq.
(3.14) are, as always, the '""new" y-matrices, the old '/y\o stili plays a role in
7 =49 |

We begin the program of deriving the rules for 7-ordered diagrams by
inserting the momentum expansions (3.7) and (3.12) fbr the propagators into (3.14).
Let us, for the moment, ignore the contr.ibutipns to S F and D‘“;,V proportional to
6(1). Then each of the 3! possible 7-orderings of the vertices determines a

7-ordered diagram; let us consider, say, the ordering 7, < 7, < 7,. For this

1 2 3°
diagram we draw the picture in Figure 2b. The corresponding contribution to
the S-matrix is obtained by inserting @(73- 'rz) (7, 'rl) into (3.14). Thus only one
of the @&(7) or ®(-7) terms survives from each propagator. We can do the ;T—

and - integrations to give (2#)362 (ITT " ITT out)® My~ 3t each vertex. The

T~ integrals in this example are

j'dfr A7, 74 @(Tg= T,) (T~ 7)) eXD(=i[(Hy~ Hy= Hg) Ty + (Hy = Hy = Hp) 7, + (Hy +Hy= Hy) 757).
(3.18)
With the change of variables

Ty =7 =T
Ty = 79-7 Ty = TptT
Ty = 737 Ty T3 = To*T)+ Ty
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the 7-integrals become
deO dT1 de ®(T1)®(T2) exp(—i[(yfi—,%%)TO + (%i-, f)T1 + (%-%)TZJ), 3.19)

1
is the total "energy" of the first intermediate state, J(é = H3 + H4+ H

where JE = H +H, is the total "energy" of the initial state, J#; = Hy + H, + H,

7+H2 is

the total "energy" of the second intermediate state, and J(% = H3 +H 4 + H5 is the

total "energy" of the final state. The integrals can now be done using

o0
f dT e—m
w00

o0
T i
{dTe H+ie

Thus we get an overall factor of (27r)6(:£'%—,yfi) and a factor of i(Jt;— #o+ i€ )_l for

each intermediate state. With a little thought, one can convince himself that this

21 6(T)

(3.20)

results is completely general.

We now have fo consider the effect of the 6(7) terms in the propagators,
which we have so far omitted. To the contributions to the S-matrix from a par-
ticular Feynman diagram so far obtained, we should add the contributions obtained
by replacing the 7 # 0 parts of SF(X) and DF(X)” ¥ with the 6(T) part in any of the
internal lines. We will use the'pictures in Figure 3 for the 6(T) parts of SF(XZ"XI)
and DF(xz—Xl)” Y. Diagrams containing one or more of these &(7) internal lines
are then treated as before except that we consider structures such as those shown
in Figure 4 as single vertices when we do the 7-ordering. Thus we get
(2#)3625T in':f;T out)é(nin_ nout) at each end of a 6(7) internal line, an overall
(27r)6(J(%;,yfi), and a factor i(#~ A+ ie )"1 for each intermediate state between

twb different '""times".
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At this point, let us notice that diagrams in which two or more 6(7) parts
of propagators are linked together give a zero contribution to the S-matrix.
Indeed, consider a diagram containing a part like that shown in Figure 4c. The
corresponding contribution to the S-matrix contains 'yo'y“'yo times D/;,u or e”.
Because of aur choice of gauge, only u =1,2,3 occurs; but, since 'yo'yo = g°°= 0,
we have 707170 = =7 %, = 0, ¥%%,¥® = -7% %, = 0, and ¥,y ° = 7% % °=o.
Hence vy yu'y Ot = 'yo'y“'yo D;v = 0. Now consider a diagram in which the structure
shown in Figure 4d occurs. The corresponding contribution to the S-matrix con-
tains a factor 6% 6% -+ y 4%+ e0) = BH (e ®eee) = 8H (e 9%y %) = 0,

We are now in a positioh to summarize the rules for 7- ordered diagrams.
With our choice of gauge there are three types of interactions as shown in Figure 5.
These interactions are to be 7- ordered in 2all possible ways. We then associate

the following factors with the parts of the diagram:13

i) wave functions u(p, s), u(p,s), u (p, s), u (p, 8), and eA(p) for the external
lines;

il) @ +m) = E u(p, s) u(p, s) for electron propagators;
8

(-9 +m) = - “:s u,(p, 8) v, (p, 8) for positron propagators;

E}\e}\(p)“ eA(p)V for photon propagators;

iii) (4m) 52 e 'yu 6(nout- nm) 52(_5,1, out-i;T in) for each vertex as shown in

Figure 5a;

e2 v 1
—-————6 6 -—-—6(") )6(p p ) cllyouc'y s
4(271_)3 373 "72 out 1n Tout “Tin (7] v

0

for each vertex as shown in Figure 5b, where My is the total n transferred
across the vertex;




2
e o 1 2 -
-é—(-é—;r-)—é Yy ;'Y Y ;—7-(; 6(nout— 'r;in) 0 (pTout— P in) for each vertex as
shown in Figure 5c¢; |

iv) an overall factor of —21r16(9‘(%—yfi), and a factor of (Jt”f— I+ ie)"1 for

v) the usual overall sign from the Wick réduction, determined by the
structure of the original Feynman diagram;

00
vi) an integration f dZFT f 0 %’l for each internal line.

Note that since each line carries positive 7 and 7 is conserved in each
interaction, vacuum diagrams like those shown in Figure 6 cannot occur.

In the next section we shall deveiop the caﬁonical field theory for quantum
electrodynamics in the infinite momentum frame. As we will see, the hamil-

tonian we will obtain reproduces the scattering theory we have developed here.
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IV. CANONICAL FIELD THEORY

A. Equations of Motion

We base our field theory on the usual lagrangian density 14

n \

_ = T his - K_ _1 gtV
&) = TiGT -eh)y m}\lf 1 L 4.1)

where the electromagnetic field tensor 7 is related to the potential AH by
F*V =5V AF_9¥AY. variation of the fields ¥, ¥, and AH give the Dirac equation

and Maxwell's equations:
(iau—eAM)'y”—m ¥ =0 (4.2)

SAF”A = eTyPw = . (4.3)

It will be convenient to work in the infinite momentum gauge, A° (x) =0, In

this gauge the field tensor is related to the potential by

P = _ 90 = —a3A’“‘ ®=12,3) . (4.4)

In order to completely specify thé gauge, we must choose boundary conditions

for AH (x). For reasons of symmetry, we will require that AH (x°, xl, xz, +o0) =
- AH (xo, xl, X2, -), With these boundary conditions, the solution of (4.4) is
Aw = -3 fde e(P-6) PP H D ) (4.5)
where
' 1 x>0
€(x) =

-1 x< 0 .
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it is perhaps not obvious that the gauge conditions we have imposed are
consistent with Maxwell's equations. Thus it is reassuring to note that the de-
finition (4.5) of AH (X) Works for the classical electromagneﬁc field. If the field
il (%) is produced by a current which, say, is non-zero only in a bounded space -
time region, then the components FoH (x) go to zero like ('x3)_2 as | x3 [ — o0,
Thus the integral (4.5) is well defined. Using the homogeneous Maxwell's
equations, 8“ FV}‘ + Bv F}“u +.9 }‘F“ Vo 0, one can easily show that the potential
A" defined by (4.5) satisfies 8” AF-9# AY = F*” for all indices ,v.

We have eliminated one component of A (x) by our choice of gauge. Only
two of the remaining three components can be independent dynamical \;ariables ,
since the three components of AH (x) are related at any "time" x° by the differen-

tial equation

1 2 3, _ ol _ o]
83(61A + azA + 83A )= —GMF =-J° . (4.6)
It will be convenient to regard A1 and A2 as the independent components. Then A3
satisfies
3 _ j o]
8383A = - aSajA e R

(We adopt the convention that Latin indices are to be summed from 1 to 2.) The

solution of this equation which equals A3 as defined by (4.5) is

A% = -3 faersP-g | {836jAj(X°',x1,X2,E)+J°(X°,x1,x2,£) . (4.7)

To see that this equation reproduces our definition of A3 in terms of F°3, write
15

" it as
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A% = -3 fde 1261 0,700,420
= -3 fa (—% | x0-¢ |> 32, d, 2, £) 4.8)
' 0x"

-1 fas e-6) PP, 8

Thus only two components, Al(x) and A2 (x), of AH (x) are dynamical
variables. Ao(x) is identically zero, and A3 (x) is determined at any '"time" x°
by Al(x), A2 (x), and ¥(x) at that x° by means of Eq. (4.7). This reductioh in the
number of independent components of AR is a familiar feature of quantum electro-
dynamics in any reference frame.

In the infinite momentum frame, we find that the number of independent
components of the electron field k\If(x) is also reduced from four to two. In order
to show this we pause briefly to examine the properties of the infinite momentum
v~matrices, 'y“ = C":) ?V . The "ordinary" y-matrices ’37”’ are chosen to satisfy
:fy\” , ?V} = 23" ang $H T v, Thus the infinite momentum f—matrices satisfy
kP | =2g", yHT= v, From this it follows easily that P, = } 35 ° and
P = i 'yo'y3 are hermitian projection operators with P P_= Oand P + P_=1
These facts, as well as some others that we will need later are listed for con~
venient reference in Table 1.

It will be helpful to have a specific representation of the y - matrices in

mind. We will consistently use

0 1 : 0 -o¢
P° = , 2%={ (@=1,2,3), (4.9)
1 0 o 0
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where 0'1, 02, 03 are the usual 2 X 2 Pauli matrices. With this choice for the

'y”, we find that

1000 0000

p- (0000 p-fotoo}) (4.10)
0000 001 0
0001 0000

By applying the projection matrices P " to the electron field ¥(x) we obtain

two two~-component fields which we call ¥ +(X) and ¥_(x):,

¥ 0
| 0 ¥ '
v, =P, v=\ . v=rvs g - (4.11)

¥

With this preparation completed, we are ready to examine the dynamics of

the electron field ¥(x). If we multiply the Dirac equation by yoand recall that

'yo'yo= 0, we obtain
. o 3. - 0 . j
(183—eA3) yyY¥ = y[- (18j—eAj) yJ +m]¥ .
Using our y-matrix identities, this becomes
(1dg-eA

¥ = %[(iaj-eAj)'yJ+m:]'yo\If+

This differential equation is considerably simplified because of our choice of

gauge, A3 =A® = 0. Thus

B¥_ = - %—[(iaj-eAj) Y+ m]yOr, . @.12)
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For reasons of symmetry, we write the solution of Eq. (4.12) as

¥ (x) = -%jdg E(xg—é)%[iaj—eAj(xo,':_Z’T,i)]'yj+m%'yo‘1f+ (xo,?T,g) . (4.13)

Thus the two components of ¥ (x) are dependent variables in the infinite
momentum frame. They are determined at any ':"time" x° by the independent
fields ¥ +& and Aj (%) é.t the same x°. We recall that the dependent variable
A3 (x) is determined at any x° by Aj ‘and J° at that x°. It is reassuring to note

that the dependence of Jo(x) on the independent fields ¥ " Al is very simple:

o

° =T’ = 119°%°% =2 ulw, . @.14)

What are the equations of motion for our independent fields A (x) and

¥, (x)? For Al (x) we have the Maxwell's equations

8, (0" Al-dlA") = 41 |
or

i
2894 A

I

A +9ds AV - 5.01Ad
vV 1

P +ol 83A3

]

+ola.al - 50'A] (4.15)

il

J 4 aig AS ij
F +9 83A + aiF .
Using the definition (4.5) of Aj in terms of Foj', we have
. 3 Lo
aOAJ(x) = %_"dg € (% —g)aOaSAJ(x K £) - (4.16)

Substituting into (4.17) from (4.16), we obtain




-23 -

oA (x) = 30'fa E(X3-§)83A3(x°,_£T,§)
+3fat e ){Jj &% 6) +oF L6

Since the integral in the first term is just 2A3 (x) because of Eq. (4.5), we have,

finally,

oA .3, 3 j 0= . o= ‘
9,A0(x) = 30lA%x) + ﬂdg € (X -g){JJ(x K §) + O.F J(XO,XT,E)}. (4.17)

We can obtain the equation of motion for ¥ + &) by multiplying the Dirac equation

by 'y3. After making use of some of our vy -matrix identities, we obtain

9,%,(x) = ~ie A% (x) ¥, (%) --;- [(iajéeAj(x))yj+m]y3 T (%) . (4.18)

B. Momentum and Angular Momentum

The invariance of the langrangian under the Poincare group provides us,
using Noether's theorem, with a conserved momentum tensor Tpftx) and a con-

served angular momentum tensor J A (x):

12
A _glyg A Ao A
I, =¥z ¥+ (9,A -g 2, 4.19
u g Y ¥HQANF - g (4.19)
A A A A
Juv = XIJ.TV - XV TI»‘ -+ S[JV s (4.20)
where
ALy A A A A
S =5 YO [ 7V}+['y“,yv]y )Y +F A - F A . @.21)
If the fields satisfy the equations of motion, then TliL and J“vk are con-
served:
A A
= = . 22
o2 Ty 0 2 Juv 0 (4.22)
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Thus the total momentum,
- 2, 3,,0
P, = fa Rpdx” T, (4.23)
and the total angular momentum,
_ - 3 [o] f '
M,, = j' CEpax’y 2, 4.24)

are constants of the motion. In our quantum theory, P, and M _ are the

iy
e

generators of the Poincare group.16

We recall from our discussion of the Poincaré group in Section II that the
operators Pl’ Pz, P3, Lo M,13, and M2 g are "kinematical symmetry operato_rs
in that the subgroups of the Poincare group which they generate leaves the planes
T= constant invariant. Thus we might expect that they take a particularly simple

form. Indeed, we find that

T =V2el LT v - (5 AhE,A (@=1,2,3) (4.25)
3,° = XT -x,T° +V2 ¥ \ -;-yl V¥, +A1(B3A2) - A? (63A1) (4.26)
3 = ®Tg - xgT° | (4.27)
Jp” = %Ty - XgTy . (4.28)

Note that these operators involve only the independent fields ¥ + and Al, and thus
do not depend on the coupling constant e.
The most important operator in the theory is, of course, the hamiltonian

H=P, From the definition (4.19) we have
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- 0 oA =14 i v
ao'y \If+§80AA)F —\If%(gau—eAﬂ)y“—m \If+4l]5“ pr'

T, =¥

<
BDOj =

The first two terms cancel the terms in the lagrangian containing 94 and we are

left with

3
o _ _wli ¥V o= [l
T, \If<2 :Z,zlavy m)‘If+eA“\Ify ¥

(4.29)
12 3 3 3 j
t3F Fpm3 (05A7)(05A7) - (0,A7)(0g4)) .

C. Momentum Space Expansions of the Fields; Commutation Rélations

Let ¥ +6T’ 1;7) be the Fourier transform, at the "time" 7, of ¥ +(‘x), so that

— — —i(ng_? ';; ) -
v En 0 =en T ane T T fLmn . (4.30)

It will be useful to define operators b@T’ 1;8;7) and d('i)'T, 7;8;7), where s takes

the values +1 , by
o P ee 1 -
240 b, nits;T) = ¥, 1@pn;7) forn >0,

-1 1 .
240 2b@qni-557) = ¥ ,@,n:7) forn >0,

(4.31)
2780 2 a G i di ) = W, (Fp-mim) forn >0,
-l _.‘% T—-> 1 —
2%n 2d @ n-537) = ¥ (P -137) forn > 0.
Then our Fourier expansion of ¥ +(x) takes the form
=] .
- . .-1/4, -3/ f 2, f L -1/2
‘I'+(7:XT,9’) = 2 (271') d pT A d77 n Es=:1: 1/2
(4.32)
=115 =P Xep) +1(1F =Dy Ky
X {w(s)e T Tb(p;s;7') +w(~-s)e T TdT(P;S;T) ’
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where the spinors w(s) are

w(+3) = w(-3) = . (4.33)

OO O
oo o

Let us see what the electron parts of the momentum operators Pl’ P2,
P3 look like in momentum space. Taking the operators Pa from (4.23) and (4.25),

and doing a little algebra, we get

_ > T — i —
Poz(electron) - fd XTdy\/Z— Y (T, x05) 5 0, %,(T, X #)

| @3
pa{bT@; s;'r)b(p;s;'r)—d(p;s;'r)dT(p; S;T)

(x =1,2,3) .

Up until now we have not mentioned the commutation relations of our in-
dependent fields. The form of (4.34) makes a very clear suggestion as to what
commutation relations to choose. We are led to interpret b(p;s;7)and d(p;s;T) as
destructionoperators for electrons and positrons, respedtively. (Theminus sign in (4.34)
can then be disposed of by normal ordering.) We thus postulate the covariant

anticommutation relations

» 2 -
bpisim), blprstn)| = awisim, dlpnssn| = oy mom-n08 BB (4.35)

with all other anticommutators vanishing. Transforming back to coordinate

space, we obtain the following equal- 7 anticommutation relations:
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—— ‘ T - ' _ _];_ 2—-> -->'
b Fpan, ¥l S = P00 6"y T

(4.36)

{\I""(T’;ET’;)’ ‘I’+(T,—}?{[‘,g')§ = {‘I’_T_(T,QT,ﬁ),‘I’_T_(T,;{:'r,f')} =0 .

We will use the same procedure to find commutation rules for the field

Al (x). Since Al (x) is to be hermitian field, we write its Fourier expansion as

o0

2
Vo - 3]-3 - dnz;
AN(T,%,5) = [2(271')] fd P f—— O,
. T T 1A

~i(NF=PrXrr)
X {e TT

(4.37)

+i(N5=PrEr) 4
a@’T,n;A;THe T TaT(pT,n;?»;’r) .

In terms of the operators a(p;A;T), the photon part of the momentum Pa is

Pcz(photom) - "fd Zpdy (0 A (T2 X 3)) (BgA(T, X 7))

0 (4.38)

- &5, ,[ D, :4:,1-;- lamism)al @insm) +al Rinim) ainsT)

(@=1,2,3) .

The interpretation of (4.38) is clear if we let the operators a(p;A;7) be destruction
operators for photons and normal order the expression for Poe' Thus we are led

to postulate the covariant commutation relations

i

[a@n), alosann] = 6 nom-1n02 By

(4.39)

il
o]

[a@;A;7), a@tA',T)]
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Transforming back to coordinate space, we obtain easily the equal-7 com-

mutation relations

i, — i | 2> —
[83A (T’ Xr_[\’f): AJ (T: Xr‘]:wy')] = - § ) 1]5 (3’"’3") ) (XT"' X'!.[‘) - (4‘40)
Utilizing the relation (4.5) between Ai and 83Ai = - FOi, we obtain
[Ai(T Xoug), AT, R ;;")] = ls el EZ ) @4
2 T;é”' 9 H T’ 4 ij T T L] .

We also assume, of course, that the photon creation and destruction operators

commute (at equal 7) with the fermion creation and destruction operators. Thus

[Ai(T,§T,g), ~II+(7,3;"T,34')] =0 . (4.42)

Our field theory in the infinite momentum frame is based on the equal-T
commutation relations (4.36), (4.41), and (4.42). We would expect, a priori,
that dynamical effects could propagate from one point to another in a plane
T = constant along a line ;T = constant (i. e. along a light cone). Thus We might
expect that the commutation relaﬁons would depend on the coupling constant e.
The commutation relations among the independent fields of the theory are in fact
independent of e. However, the electrodynamic interaction does affect in the
equal- 7 commutation relations among the components of the complete fields
AH (x) and ¥(x), since the charge e appears in the definition of the "auxiliary"

components, A3 and ¥_, of the fields. We find, for instance, that

[A (T2 X5 5)s \If+(7',x,'r,g'):| =5 1551 0" Xp=x) ¥ (T, XIg")
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We can gain further confidence in the equal- 7 commutation relations by
using them to show that the operators PM and Mp,v actually generate translations
and Lorentz transformations when commuted with the independent fields of the |
theory. The verification for the "kinematical" operators is particularly simple

because thesé operators involve only the independent fields. One finds

i[Pj,Ai(x)] = ain(x) i[:]LDj,IIf+(x)] = 8%, ()

i[n,Ai(x)- = a,A'x) i[r),\If+(x)] = 8, (x)

iLJ3,Ai(xﬂ = (85~ %,8)) Al -y A

. ] . (4.43)
g B0 = (x0y-%8) ¥ (%) + 3 779 ¥, (%)

T i

le’A (x)_ = (xsaj—xj63)A (x)

i[BJ.,‘IQ_(x): = (50-%09) ¥, (¥) -

It is considerably more tedious to show that the operators H, Sl’ Sz, and K3 have

the proper commutation relations with the fields. We present in Appendix A some

details of the calculation which verifies the crucial assertion

i[H, Ai(x)]

{0

Similar but lengthier algebra gives

8,A ()
(4.44)

]

9, (%)
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i[KS’ Ai(x)]

(x083 - x380) Ai(x)

i[K3, \If+(x) = (‘xOE)3 - XSBO) v +(x)
T (4.45)
- . . .

i[Si,'AJ ®| = 659 - %)) Ax) - g,JiAO(x) + BJAi(X)

i[Si, \If_l_(x)j = ,(xiao - XOSi) \If+('x) +1 Yi%0o ¥(x) - ie Ai(x) \If+(x) s

where Ai(X) = %—jd‘g’ € (X3-§ )Ai(xo,'_fT, ¢) is that function which preserves the

gauge during the Lorentz transforma’cion.17

D. Free Fields

Let us see how the methods of the preceeding sections work if the interaction
~ is turned off. Consider first the electron field ¥(x). With no interaction, each

component of ¥(x) satisfies the Klein-Gordon equation
208g + 9,8  +mH) T = 0 . | (4.46)

Using this in the Fourier expansion (4.32) of ¥ (%), we find that the operators

bp;s;T), dT(p;s;'r) satisfy the differential equations

(-2in & +Po+m’) bips;T) = 0
(+2in 2=+ P +md) dTpissT) = 0

Solving these equations, we get

-ipo'r
e b(p;s;0)

b(p;s;T)
+ipyT (4.47)

dT(p;s;'r) e dT(p;s;O) ,

1l
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where Py = (p +m )/277 is the free particle hamiltonian. Thus the Fourier

expansion for ¥ +(x) takes the form

¥ (x) = 2(27r) fd f——-

{ 1 "'lp X“ 1 +1p XM

l
N]l—l

(4.48)

2492 wis)e boss;0) 28 nZwiesje ¥ al(;s:0)
The auxiliary field ¥_(x) is given in terms of ¥ +&) by equation (4.13),

¥ (%) = - fl_ f de e(x3-g)(iajyj'+ m) v ¥, (°, %, £) (4.49)

Substituting the Fourier expansion of \If+(x) into this equation and doing the £ -

integration we obtain

¥ (x) = (2(2n)3)‘%fd 'f)T /%’-72

0 s=t3
{2

-2

i —1p X/'L
K (05 y+m)yOws)e * be;s;0) (4.50)

p‘lm

+ip x‘u

Pt

-3
4

-‘-

N (-pyy’+m)y Owi-s) e d'(p;8;0) ) .

We have now only to add ¥ +(X)and ¥_(x) to obtain the complete field ¥(x):

(x) = 2(27r) ﬁ* f d”

Nb—«

(4.51)
~-ip Xu +1p Xu I
{u(p,s)e H b(p;s;0) + v(p,s) e dT(pSO)’ »
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where 101 p.yj +m
u@,s) = 2492 1+—L2";7—-"')/ w(s)
| (4.52)
oY O L
v(p,s) = 2%n% |1+ 57 v w(-8) .
Recalling the definition of the spinors w(s) from Eq. (4.33), we can calculate
u(p, s) and v(p, s). We find
e\ | 0
1 "% ‘% 1 "i "% '
u(pa+'§) = 2 n : m U—(P,"E) = 2 n —p1+ip2
0 ﬁ n
(4.53)

0 . \/5 n
-m p1+ip2

S A §

-m

A/En 0 .

If the field ¥(x) which we have obtained in the infinite momentum
frame is to be equal to the usual free Dirac field, then the spinors u(p, s) should
be solutions of the Dirac equation normalized to U (p, s)u(p,s') = 2m ass' and the
spinors v(p, é) should be related to u(p, s) by charge conjugation. Indeed, a quick
check shows that this is the case.

The destruction operator b(p;s; 7) destroys an electron with momentum p

described by the Dirac spinor u(p,s). Using the explicit form of u(p,s), we can
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clarify the physical meaning of the spin index s. In a short calculation presented
in Appendix B, we find that s is the helicity of the electron as measured in a
Lorentz reference frame moving with (almost) the speed of light in the -z
direction. |

We can also check to see that, with the interaction turned off, our field
AH (%) is just the usual free photon field (in the appropriate gauge). The calculation
is completely analogous to the calculation for ¥(x), so we just state the result.

With e = 0, we find |
_ . )
Feo = end)d [, f 2—31 e,

-ip = ) +1p z*
X {e H a(E;x;0) +e T(p A O)}

(4.54)

where the eh(p)“ are just the infinite momentum gauge polarization vectors de-
fined in Eq. (3.9). Using the explicit repfesentation of the polarization vectors,
we can clarify the physical meaning of the index A. An easy calculation shows
that the creation operators 2"% (aT(p;I;O) + iaT(p;Z;O)) create photons with

helicity + 1.

E. Scattering Theory

We have seen that infinite momentum gquantum electrodynamics is the same
as ordinary quantum elecfrodynamics in the trivial case e = 0. The two theories
can be compared for e # 0, at least formally, by constructing the S-matrix in
old fashioned perturbatioh theory in the infinite momentum frame and comparing

it with the S-matrix given by the 7-ordered diagrams of Section IIL




The perturbation expansion of the S-matrix takes a familiar form once
we have divided the hamiltonian into a free part and an interaction part. To
make this division, we start with the hamiltonian density Tg (x):

o ) e 3 3o
T(;) = -\Ir([-;-‘é;—eAj]yJ-m)\p- T 55,y v +eA’ Ty ¥ + 4 F

12
Fia

-1 aA BA - BA 8Aj

The integrated hamiltonian can be somewhat simplified if we realize that the
first term is equal to -2 times the second term after an integration by parts in

the transverse variables X]', xz. To see this, write -2 times the second term as

Tig,y e = o790 5w = \aul 150 .

Using Eq. (4.12) for 83\If_ , this is

- Lt o (i'a}-eAj)yj-m]\If

vz T ¥
1 o7 38[ = j
_I\/—2L\Ii+'y _(—18j—eAj)'y —m]i[f_

With an integration by parts in the transverse variables, we can replace 1-83. and
{5, by L5 and obtain
7Y 7Y -

1 . o 3 i j ]
—ﬁﬁ' (P_vy P++P+'y P_)[(-z- aj-eAj)'y -m|¥ .

But P_y%P,+P 4 P = 4%+ 4% =42 $°, so this is just
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-T[(%-"é;—eA]) 'yj-—m]‘lf

Thus the hamiltonian density can be rewritten as

o] ie 3 3= o 12 3 3 3 j
To = ¥ 50,7 ¥+eA° T %0 +1iF Flz—f% (95A7) (95A )-(8,A )(BSAJ) . (4.56)
At this point we realize that part of the interaction is buried in the de-

pendence of ¥ and A3 on e. Inorder to bring out this dependence we write ¥

as the sum of a "free’ part $_and an "interaction part" T, where

b@® = - %Idg e(5-£) {iajyj+m}y°qz+(x°,'£,r,§) (4.57)
@) = 7 fak e(d-6) AT 6 1y 0,00 F L) (4.58)

We also define z/)+ = \I_f+ and ¥ = ¢+ +¥_. Similarly, we Writé A3 =v¢3 + ¢, where

22w = -3 [ar 156100 AT 0) (4.59)
6w = -4 [a 125-61°00,F0) (4.60)

and we put.) = AJ, %= 0. Let us insert ¥ =y + T and A .t + o4 ¢ into our
hamiltonian density (4.56) and simplify the result.

From the first term in T(;) we get four terms

= i <= 3 _ Ti<—. _ '{‘.i—‘-—
¥ oy ¥ =2 25 =2y 2 Fp

(4.61)

+J2_TT;-‘5:3T +2y! -;-%‘ST+J?TT§-§§¢_ .
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The first two terms can be left as they stand. The infegrated form of the third

term can be integrated by parts so that-%— 3; is replaced by 13;. This integration

by parts can be justified simply by using the definitions (4.57) and (4.58) to write

- j' ds a9t () 1) -%jv dydt 0,91 () € (5-£) 03 T(E)

+3 | e o8 () € (6-7) 8y TE)

+jde oIy o 1)

Similarly, we can replace %—3; by - -;—33 in the fourth term. Then, making use
of the definition (4.58) of T, we obtain for the sum of the third and fourth terms '

of (4.61)

£ 4Tp .0 3 i, - : j
N/;?_zp (P_f)ﬂ/‘ P+'+P+'y P_)tggij exd y' Y . (4.62)

Turning now to the second term in Tg ,» We write simply

3 3

eA’F v = eA’T 10U, = el°T % + e0T ¢ . (4.63)

The third term in Tg can be left unchanged since it involves only Al =4,

The fourth term requires some work. With an integration by parts we can make
18
the replacement

3 3 3 3
-3 (05A%)(854%) — + 3 A% 8,8,4° .

Writing A =3 4 ¢, we obtain the sum

3 3 | 3 3
3% 050,47 + % $838a0 + % §0,0,.° + 00, 6 (4.64)
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We write the first and second terms simply as

3 3 3 j
300 000" = ~Fd asajvdi‘ (4.65)
and

%¢8333¢ = -3 ¢J = - -26-¢$'y0¢ . (4.66)

We see, with use of the definitions (4.59) and (4.60), that the integrated forms

of the third and fourth terms in (4.64) are equal. Indeed,

Jas @pg0m2’) = 3 f d5dE (90,0 (7)) | 7~ | (Bydgt® (£)) = f at (8 )(85097° (£))
Thus we can write for the sum of the last two terms in (4.64)
3 90,040° + 143 8,0,0 — ¢ asagd?’ - ¢ agajdx—:j . (4.67)

Finally, we consider the fifth term of ,Tg , which we write, using an inte-
gration by parts of the variables xl, xz, as

o . (4.68)

3,0 ady L A3
- (0A°) (852) ~ A7 50

b o_ i 3
50A7 = ¢ 0300 +°9

The integrated hamiltonian is now in the form we wanted. Adding up the

pieces, we have
H=H,+V , (4.69)

where
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= 27" j i_ ].2 1%3 j

H, fd deyl«/E;b_ 5 0g0_ +EF Fp,+ 840yt (4.70)
s =fd2§Td;,f {eﬂu?ﬁ v*y +«/2_TT;—"3;T +—12-e¢$y°¢§ . (4.71)

If we work in the Schroedinger picture, we can evaluate all Heisenberg operators

at "'time'" 7 = 0. We note that the Fourier expansions of the fields ¢ (x) and .« K (%)
at T = 0 in terms of creation and destruction operators are the same as the ex- |
pansions (4.51) and (4. 54) for free fields. Thus the free hamiltonian HO generates

¥

the free motion of the quanta created by .a (p;A;0), bT(p ;8;0), dT(p ;830). The
remaining part of the _hamiltonian, V, gives rise to the scattering of these quanta.
We can formally calculate the scattering matrix with the aid of the "old

fashioned" perturbation theory expansion

Sfi = ,-2mib (gq.—,yfi) V + V(%—H0+ ie)-1 Vderep . = (4.72)
In a field theory in an ordinary Lorentz frame, this formula leads to a set of rules
for calculating scattering matrix elements using time ordered diagrams. In the
present case, we are led in the same way19 to rules for 7-ordered diagrams.

These rules are the same as the rules developed directly from the covariant
Feynman rules in Section III. This can be seen by calculating a few matrix

elements of the interaction hamiltonian V. One finds that the interaction term
- [P#3.a 7 L H 73
Vi = )4 xpdy e ¥ 7Y (4.73)

gives the "ordinary" vertices of Figure 5a.  The second term in V, when

written out in full using the definition of T, is
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v, = -349?- f dEETd;dée(y-g)%’(0,?:“,1,,3«)#%(0?}?1,,;)7Ov"ﬂ,,<0,§'T,SW OFpt)
(4.74)
Using
fdy ¢ e (5) = ?ni , (4.75)

one finds that the interaction V, gives the vertices of Figure 5c.

The third term in V, written out in full, is

2 '
V= - PR atl -6 1505050 v 0T TOF YW 0T )
(4.76)

Using

fdy SCEPTIERE- S (4.77)

it is easily shown that the interaction V3 gives the "Coulomb" vertices of
Figure 5b.

Thus when we formally calculate the S-matrix from canonical field theory
developed in the infinite momentum frame, we get the same results as when we
directly transform the S-matrix for ordinary quanium electrodynamics to the

infinite momentum frame.
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APPENDIX A

In this appendix we will show that the canonical hamiltonian presented in section
4B generates the correct equations of motion for the independent field operators

Al(y). We begin with expression (4.56) for the hamiltonian,

H=fd1‘cgi 1/2‘1’8‘I’+A3 -1 5,4° 8A+;F12F1-8A 3. (A

In order to compute [H, Al(y)] we need to first compute two rather complicated

equal-T commutators which we list here,

(weo.alml  =-F [ -0 et s R T w0000
3 i _ 1.8 8120
[Boalo] gy (A2)

These relations follow from the definitions of the auxiliary fields, ¥ (y) and A3(y),
and the basic equal-T commutators of the independent fields.

With these preliminaries done, we can compute

vz dx[ T 43 w_(x>,Ai<y)]

+ @ % (4%, 4 (y)]xo_y

-3 f dz [83A3(x) 83A3(x),Ai(y)] 0 .

SRR
LH,A (y)] =2 omyo

1 [o]n12 i
+5 Jdx [F (%) F (%), A (Y)]
2 f 12 ] o0

Y S N j i
f dx .[ajA (x) BSA (x), A (y)] Omgd . (A3)
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For convenience we label these five terms (I.), (II.), (IIl.), (IV.), (V.), and

compute each in its turn:.

1= 2"2faz|wl iy %33ql_(x),A,i(y)] o ' (Ad)
x°=y

s 2"1/7&3 q;'f(x) [33 ,lP_'(x),Ai(Y)] o

[l al
om0 [, (_Y)]x°=y° 35 WD)

-3, ¥ [ (), a1 [ i, Al
33 Wioo (w09, (y)]xozyo o5 ¥, 4] oo .‘"-""i

—1 2724 ; -5 <’y % E T vl
-2 [aE -8 et -5 SRy Tp U0 ) ¥y oy 1

+ 758 ™) (s v 7@ T 35 W /40U, 50K 8

+§ e’ %@, T ) Wi o -‘v_(x)%

. -7/2(, 3 , 3 3/ — 3 0ig,0— 3 38 3ig,o0— 3]
=ie2 2 fax® ey )%wf(y°,yT,x 170y B, T )+ 05 P Y 0T )

e 7% M axat e(x-4) e(é—y?’);wi(y",‘y’T: &7 30T x0T oy W (997 ¢
=i fe 0700 .0 L (45)

We have observed in this calculation that

\P‘(Y) - %fdé E(y3— f) a3 !ll_(yo,?T’ £)
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and ; _ »
Ty =272 ég!lff(y) 7 L + w2 e !
Continuing, ’
_ 0 3 i | _ ‘
(II-)-j ax J (X)[A (x), A (Y):Ix°=3r° | (A6)
=ZLIT dx J (x)Ix -y Ia‘ 3‘2(x —yT)
= -Z]ii-fdx'g |-y a‘J°(y°,"T,x ) . (AT)
Next, .
1 =[x A3 3 i
(L) = - Ef [83A (%) a3A’ (x), A (Y)] xo-—-yo | (A8)

=322 23 3 Lo
- dx ‘3A (X) [83A (X)’ A (Y)'IX():YO

=1Hfdx 63A (%) 815 (Xp=¥op) €(x R )
== %1- B:’l/‘dx3 e(y3—x3) 53A %,y ,x)

=-5 0% . o | - (49

We have applied here the definition (4. 5) of A3(x).

The fourth term becomes

Iv.) =% fd:? [Flz(x) F (%), Ai(y)]xozyo | (A10)

= f dx Flz(x) {BZAl(x) - BlAz(x), Ai(Y)] 0. 0
‘ X =y
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=Z:-L'i'fdx Flz(x)géli 525 EpYp) € -y") _6218 ) (XT_yT) €(x°-y )g

1 3 ,.3 3 12, o— .3 3 83 8. w2l o= _3
=52511fdx €x-y') 0, F (.V°,YT»X)+62L/;1X €x"-y) 3, F (3" T pox )z

- f xS e(y5-xY) 3, FIG0 55D - (A11)
Finally,
(V.)=- di[a A3x) BéAj(x), Ai(y):l (Alz)
.J ‘ X°=y0
AR N j i 3 i j
== f dx;ajA (%) 33[A (x), A (.Y)]x°=y° + aij (x, A (y)]x"=y° dgA (x)%

-~ —_ . o 3 .

_ 1
—-41./632

281A3<x)of(§—§r> + 150t ajA-j(x)zs?Gc’T-‘s‘rT)t
=31 A7) - 741{3’1] ax” [x>-y") a:%aj{s‘j(yo Fpx) - | (AL3)
Collecting these five terms - we have the result
[’ = f® (%) g 3550 + 3P ,;T,x3)§
- 7::1- o dx3 lx3-y3l 3538jAj(y°,*§T,x3) + Jo(yo,_ir,xg)g . (A14)

Recalling the relation (4.7) for A3(x), we have, more simply,

a4 = L far® e<y3—x3)3f(y°,"§T,x3> + aiji(y°,‘§T,x3)§ +5388% . (A1)
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Referring to (4.17), we see that we have indeed verified our claim ,
i _1 i
[1.4%0] - 334"
The verification of the Heisenberg relation
9,0 = 32%,m
* T i 0+

is also tedious but straight-forward.

(A16)

(A17)
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APPENDIX B

We will discuss here the physical meaning of the spinors appearing in the

expansion (4.51) of the free Dirac field. We will show that these spinors are

eigenstates of helicity referred to a Lorentz reference frame moving with (almbst)

the speed of light in the -z direction. To do this, we consider, using the repre-

sentation (4.9) of the y~matrices, the helicity operator in the laboratory frame

p P
1 1/ P VP3
~>°-> 2 -
hy @)=5 S == i
5] |5 0 0
0 0
Where20 pi=p1:tip2.

frame moving in the z-direction with a velocity v, = ~tanh (w) is

h @ =exp (- £ 9%°) ny(@ exp

where

=A@t p"

coshw 0
0 1
A'(w)p'v =
0 0
sinhw 0
We compute
3 )
q € q_
3
1/2 eq -
h,p) = :
g 0 0
0 0

s | (B1)
P P_

3
P, P

Then the operator which measures helicity from a reference

21

o 3

) (B2)
0 sinhw

0 0

1 0

0 coshw/

0
0
5w (B9)
e q_
3
9, -
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Now let w — . Then

- 3 1 w 3 -1/2 w
|q|,q———§e @°+p) =2 /en,
and
1 0 0 0\
1Mep s/ -1 0 o
h (P) ~h,(p) =5 . (B4)
0 o 1 Vap s
0 0 0 -1

We can now verify that the spinors listed in (4.53) are eigenstates of h_(p):

ho(p) W(p,+ 1/2) =+3 u(p,+1/2)
-1 (B5)
ho(p) V(p, £ 1/2) =F 5 v(p,+1/2).
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TABLE 1

- y—Matrix Identities

14 14
7”,v}=2g” =y,
_ 1.3.0 _ 1.0.3
P, =377y P =37y
T - 2 _
p,' = @) =P,
P, +P_=1 PP =P P =0
3, _ 3 _ 5, _p.3_.3
y P, =P vy =0 yP_ =Py =y
0p _ 5.0 _ 0, _ 0_.0
')/P_—P+')/ =0 'yP+—P_')/—'y
o_ 1 ,0 1
= =0+ = L e %, ey’ )
V2 V2
/\,070_ 2P+ {),\073-_—\/5'13
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FIGURE CAPTIONS

_ The coordinate axes of the infinite momentum frame.

Typical Feynman diagram in coordinate space (a), and in momentum space
after T-ordering (b).

Pictures used for the §(r) terms in the electron propagator (a) and the photon
propagator (b).

Structures considered as single vertices. Structures like (c) and (d) give zero.

Vertices in the infinite momentum frame.

Typical diagrams that vanish because of 7-conservation.
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Fig. 2
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Fig. 6




