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Abstract. This talk will describe sensitivity of past, current and future water Cherenkov
detectors to a burst of supernova neutrinos.

1. Features of Water Cherenkov Detectors
Water Cherenkov detectors, in the form of large volumes of ultrapure water surrounded by
photomultiplier tubes (PMTs), are sensitive to the charged particles produced by interactions
of core collapse supernova neutrinos in the few to few tens of MeV range. Charged particles
moving faster than the speed of light in a medium produce Cherenkov photons if β > 1/n, where
n is the refractive index of the medium. Water is a convenient and cheap detector material,
suitable for neutrino detection because very large volumes can be deployed cheaply, even though
light yields are typically much lower than for scintillator. With index of refraction n ∼ 1.34,
the (total energy) Cherenkov threshold for electrons is 0.8 MeV; for muons the threshold is
160 MeV and for protons it is 1400 MeV. Energy loss is proportional to the number of photons
detected, and one may reconstruct the charged particle’s interaction vertex and direction via the
Cherenkov ring pattern (which has angle of 42◦ for relativistic particles). However it is important
to remember that heavy particles may be invisible in Cherenkov detectors, and signals from low
energy electrons, positrons and gammas (which are detected via Compton-scattered electrons)
may be lost.1

2. Past, Current and Future Water Cherenkov Detectors
Table 1 lists past, current and future supernova-neutrino-sensitive water Cherenkov detectors.

Famous past water Cherenkov detectors are the IMB and Kamiokande-II detectors, which
both observed the burst from SN1987A, with 19 events collected between them [1, 2]. SNO, with
1.7 kton of light water and 1 kton of heavy water, ran from 1999 to 2006, although no supernova
burst was observed during that time [3]. The only current example of a large water Cherenkov
detector is Super-Kamiokande (Super-K), which has been running since 1996 [4]; Super-K’s
data-taking phases are shown in Tab. 1. Super-K is currently running with an energy threshold
of about 4-5 MeV. A number of very large next-generation detectors are currently under

1 Note that long string ice- or water-based detectors like IceCube and Antares also detect Cherenkov photons
from supernova bursts. Although these detectors have very good timing capabilities, they do not reconstruct
interactions event by event. IceCube’s supernova capabilities were described in a separate presentation at this
symposium; therefore long string water Cherenkov detectors will not be addressed here.
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Table 1. Summary of past, current and future water Cherenkov detectors with supernova
neutrino sensitivity.

Detector Location Fiducial PMTs Effective pe/MeV Live
Mass (diameter, coverage dates
(kton) cm)

IMB-1 US 3.3 2048 (12.5) 1% 0.25 1982-1985
IMB-2 US 3.3 2048 (20) 4.5% 1.1 1987-1990

Kamiokande I Japan 0.88 1000/948 (50) 20% 3.4 1983-1985
Kamiokande II Japan 1.04 1000/948 (50) 20% 3.4 1986-1990+

Super-K I Japan 22.5 11146 (50) 39% 6 1996-2001
Super-K II Japan 22.5 5182 (50) 19% 3 2002-2005

Super-K III+ Japan 22.5 11129 (50) 39% 6 2006-
SNO Canada 1/1.7 (D2O/H2O) 9438 (20) 54% 9 1999-2006

LBNE WC US 100-300 TBD 10-40% 2-6 202x?
MEMPHYS Europe 440 TBD 30-40% ∼4-6 202x?

Hyper-K Japan 540 TBD ∼20% 5-6 202x?

development: these include the Long Baseline Neutrino Experiment (LBNE) water Cherenkov
detector in the US (100-300 kton) [5], Hyper-K in Japan (540 kton) [6] and MEMPHYS in
Europe (450 kton) [7]. For these, photosensors tend to be a driving cost; improvements to light
collection and quantum efficiency, currently a focus of worldwide effort, are of great interest.

3. Interactions in Water at Supernova Neutrino Energies
The total number of events expected scales as 1/R2, where R is the distance to the supernova
(a distance of 10 kpc, which is a bit beyond the center of the Milky Way, is usually taken as
a standard). A few hundred events per kton within a few tens of seconds are expected at this
distance; at underground sites under consideration for next-generation detectors, one expects a
clean signal out to Andromeda. See Fig. 1.

The cross-sections for relevant interactions in water are shown in Fig. 2. Some of these cross-
sections– in particular, charged current inverse beta decay ν̄e + p → e+ + n (IBD) and elastic
scattering (ES) of neutrinos on electrons νe,x + e− → νe,x + e−, which proceeds via both neutral
current (NC) and charged current (CC) channels, are known to few percent or better level. In
contrast, other interactions on 16O nuclei have relatively large uncertainties, and cross-sections
have never been measured in the few tens-of-MeV energy range.

IBD is overwhelmingly dominant in the supernova neutrino energy regime: water Cherenkov
detectors are primarily sensitive to the ν̄e component of the flux. The primary observable is
the Cherenkov radiation of the IBD positron. In principle one may also exploit the delayed
coincidence between the positron signal and a signal from capture of a neutron to tag the
interaction. For neutron capture on free protons, the time interval for neutron thermalization
and capture is about 200 µs, and a 2.2 MeV gamma is released from the capture. A gamma
of such low energy is difficult to detect in a large water Cherenkov detector (and the gammas
from positron annihilation are below Cherenkov threshold and hence their Compton scatters are
invisible).

A potential enhancement to improve detectability of the neutrons for IBD tagging is addition
of a Gd-containing solute to the water [8]. (Gd addition has been used successfully in scintillation
detectors). Gd has a huge cross-section for neutron capture (49,000 barns for natural Gd, in
contrast to a 0.3 barn neutron capture cross-section for free protons); after swallowing a neutron,
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Figure 1. Approximate number of events detected as a function of distance to the supernova
for Super-K (dashed line) and a 100 kton water detector (solid line). The horizontal green
lines indicate cosmic muon rates at SK depth (∼2300 meters water equivalent (mwe)) and the
Homestake mine depth (4290 mwe). (Note that cosmic muons can be effectively vetoed through
several orders of magnitude.)
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Figure 2. Cross-sections for relevant supernova neutrino interactions in water.

a Gd nucleus will release a cascade of gamma rays totalling about 8 MeV. Detection efficiency
has been measured using a test setup in Super-K to be about 67% [9]. However note that
because only about 4.5 MeV of energy per neutron capture is observed (because the gammas

TPC2010 IOP Publishing
Journal of Physics: Conference Series 309 (2011) 012028 doi:10.1088/1742-6596/309/1/012028

3



often Compton scatter electrons below Cherenkov threshold), good photocoverage is necessary
to achieve this efficiency. Possibly improved analysis techniques, such as the use of isotropy
information (as has been used for SNO in salt mode [10]), could be developed to improve
neutron tagging efficiency. The Gd technique is under study for Super-K using a test tank [11],
in order to answer questions of compatibility and purity of materials, feasibility of addition and
removal of Gd, and neutron background.

Elastic scattering, although a relatively small component of the signal, is of significance
because of its directionality. IBD positrons are emitted nearly isotropically, so are of little use
for pointing. In contrast, electrons are kicked in the direction of the incoming neutrino, and
the Cherenkov light cone allows determination of the charged particle direction. The pointing
quality scales approximately as ∼ 25◦/

√
N ; degradation by isotropic background results in about

5 degrees pointing accuracy for a few hundred kton detector at 10 kpc [12, 13]. The pointing
quality can be improved somewhat with the addition of Gd to reduce the isotropic background.
The angular information can be also used to select a flavor-enhanced sample (see Section 5).
Furthermore, if the direction to the supernova is known, neutrino energy can be more precisely
reconstructed for ES events.

There are also non-negligible contributions from charged current interactions on oxygen,
νe +16 O → e− +16 F, ν̄e +16 O → e+ +16 N, as well as neutral current excitations [14]. These
reactions have diverse final states, including ejected nucleons and deexcitation gammas. These
interactions are also asymmetric, and this asymmetry could potentially be of use in disentangling
flavor components. However the cross-sections and final states for oxygen interactions in
the supernova neutrino energy regime are relatively poorly understood both theoretically and
experimentally.

4. Interaction Rate Calculation
I report here preliminary results from a study of event rates in a future large water Cherenkov
detector, to be published in [15].

The predicted event rate from a supernova burst may be calculated by folding expected
neutrino differential spectra with cross-sections for the relevant channels, and with detector
response. We have performed the event rate computation by using estimated detector responses,
making use of the GLoBES software [16]. We employ only the front-end rate engine part of
GLoBES, and not the oscillation sensitivity part. GLoBES takes as input fluxes, cross-sections,
“smearing matrices” and post-smearing efficiencies. The smearing matrices incorporate both
interaction product spectra and detector response, determined using parameterized response
functions or detector simulation output, or both. We are able to modify the smearing matrices
to evaluate different detector configurations, such as for varied PMT coverages; in particular,
we looked at 100 kton detectors with 30% and 15% coverages of high-quantum-efficiency PMTs
(roughly corresponding to Super-K I and Super-K II capabilities). The software package used
for the study will be made publicly available; the results should be generally applicable to any
large water detector (as well as other detector types).

In this study, only the lepton in the final state for the CC interactions is considered,
taking into account the energy threshold of the interaction. For the NC interaction with 16O,
νx +16 O→ νx +16 O∗, we are using a simplified model of the resulting deexcitation gammas by
assuming relative final energy levels according to reference [14]. Because this reference does not
provide differential final state information, we approximate the distribution of these levels to
be independent of neutrino energy. The resulting gamma cascade was simulated using relative
probabilities of the transitions for a given excited state; the resulting gamma spectrum was then
run through the LBNE water Cherenkov detector simulation. We found rather poor efficiency
for detecting these gammas, in contrast to the results in reference [17], due to the fact that
gammas frequently scatter electrons below Compton threshold.
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Figure 3 shows the resulting differential energy spectra for the different channels. The
plot on the left shows the interaction rates as a function of neutrino energy. The plot on
the right shows the distribution of observed event energies in the detector. Table 2 shows
the breakdown of detected event channels, for two different specific supernova neutrino flux
models, the “Livermore” [18] and “GKVM” models [19]. We note that different flux models
can give substantially different event rates. In particular, because of the thresholds of the 16O
interactions, the rates of the CC interactions on oxygen are quite sensitive to the νe and ν̄e
spectra.
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Figure 3. Event rates in water, for the Livermore model and a detector configuration with 30%
high-quantum-efficiency PMT coverage (events per 0.5 MeV).

Channel Events, “Livermore” model Events, “GKVM” model
ν̄e + p→ e+ + n 27116 16211
νx + e− → νx + e− 868 534
νe +16 O→ e− +16 F 88 379
ν̄e +16 O→ e+ +16 N 700 490
νx +16 O→ νx +16 O∗ 513 124

Total 29285 17738

Table 2. Event rates for different models in 100 kton of water, for the 30% PMT coverage
detector configuration.

Figure 4 shows the difference in observed event rates between the 15% and 30% PMT coverage
configurations. For the 15% configuration, one loses about 10% of self-triggered events below
∼10 MeV. The loss includes most of the NC excitation events. (We note that clever triggering
may mitigate this loss.)

5. Disentangling Flavors in Water
The addition of Gd to a water detector will not substantially change event rates, but will
enhance ability to determine the flavor composition of an observed signal by allowing tagging
of IBD events (although note that interactions on 16O may produce ejected neutrons as well).
To get some general idea of the value of neutron tagging of ν̄e we performed a simple study: we
looked at flavor composition for tagged and untagged events. We assume that 67% of the true
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Figure 4. Comparison of event rates for 15% and 30% PMT coverage configurations in 100 kton
of water.

IBD events will be tagged; we also assume that no events without a neutron will be falsely tagged
as having a neutron (the false tagging rate should be ∼ 10−4 according to reference [9]). We also
take into account CC and NC reactions of neutrinos on 16O, for which some final states have
neutrons; to estimate this contribution we use tables II, III and IV from reference [14]. Figure 5
shows the contributions of the different interaction channels for tagged and untagged events, for
the GKVM flux. The neutron-tagged event rate is a nearly-pure IBD sample. The untagged
event rate has contributions from elastic scattering (ES), and from CC and NC interactions on
16O, but is dominated by untagged IBD.
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Figure 5. Total events in 100 kton of water showing contribution from the different interaction
channels, for neutron-tagged (left) and untagged (right) events.

Figure 6 shows the contributions of the different neutrino flavors for tagged and untagged
events. The tagged sample is nearly pure ν̄e. The untagged sample has contributions from other
flavors, and large contamination from untagged IBD ν̄e.

Another potential method for selecting a flavor-enhanced sample in a water Cherenkov
detector is to use the directionality of the neutrino-electron scattering signal: the ES sample is
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Figure 6. Total events in 100 kton of water showing contribution from the different flavors, for
neutron-tagged (left) and untagged (right).

enriched in νe and νx relative to ν̄e We estimate the quality of a flavor-enriched ES sample by
assuming that 66% of ES events will have cos θ > 0.9, where θ is the reconstructed angle of the
scattered event [12]. Such a cut will reduce isotropic background by 95%. Figure 7 shows the
interaction and flavor compositions of the “ES-enriched” sample selected by an angular cut, for
the GKVM model. The non-ES background can be determined by counting events outside of
the angular cut window.2 Figure 8 shows the background-subtracted ES-enriched signal, with
statistical error bars, for the GKVM flux. From Fig. 8 we can see that the ES component can
be identified with high statistical significance. However the sample contains contributions from
many flavors, and the relative amounts of the different contributions depend on the supernova
flux.
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Figure 7. For the GKVM model, interaction (left) and flavor (right) composition of the ES-
enriched sample in 100 kton of water.

One can also combine neutron-tagging and ES information, and imagine that there were an
independent measurement of the νe flux from a liquid argon detector (or some other νe-sensitive

2 We assume for the purpose of determining statistical uncertainty on the ES background subtraction that non-
ES events have isotropic background, although that is not completely true– IBD events have a weak asymmetry,
and interactions on 16O have a backwards asymmetry.
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Figure 8. Background-subtracted ES signal in 100 kton of water in 5 MeV bins, for the GKVM
flux. Error bars are statistical.

detector). In this case, one could in principle determine the νx flux, of considerable interest in
itself. Figure 9 summarizes the total ES, νe,xES , and νxES scattering rates for the GKVM flux,
assuming both neutron-tagging and angular selection.
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Figure 9. Inferred flavor components of a water Cherenkov ES signal, assuming neutron-
tagging, angular selection, and a νe measurement from LAr, for the GKVM flux. Error bars
include statistical and systematic contributions.

6. Summary
In summary, supernova neutrino detection with water Cherenkov detectors has a glorious
past (IBM/Kamiokande-II detection of 1987A), a glorious present (Super-K) and, potentially,
a glorious future: next-generation multi-hundred-kton scale detectors, possibly with neutron
tagging using dissolved Gd, will provide an enormous signal for a nearby supernova. One
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expects a few hundred events/kton; most of these will be ν̄e from IBD, but other interactions
contribute. ES is especially interesting because of its clean directionality. The supernova
neutrino physics capabilities of a water Cherenkov detector will be enhanced by combination
with other experiments’ different flavor sensitivities.
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