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We propose the notion of a classical/quantum duality in the gravitational case (it can be extended to 
other interactions). By this one means exchanging Bohm’s quantum potential for the classical potential 
V Q ↔ V in the stationary quantum Hamilton–Jacobi equation (QHJE) so that V Q + V = −V 0 (ground 
state energy). Despite that the corresponding Schrödinger equations, and their solutions differ, their 
associated quantum Hamilton–Jacobi equation, and ground state energy remains the same. This is 
how the classical/quantum duality is implemented. In this scenario Bohm’s quantum potential (which 
coincides with the attractive Newtonian potential) is now correlated to a classical repulsive gravitational 
potential (plus a constant). These results suggest that there might be a quantum origin to the classical 
repulsive gravitational behavior (of the accelerated expansion) of the universe which is based on this 
notion of classical/quantum duality. We hope that the notion of classical/quantum duality raised in this 
work in connection to the QHJE may cast further light into the deep interplay between gravity and 
quantum mechanics.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
David Bohm showed long ago [1] that the Schrödinger equation 
for the complex valued wave function �(�r, t) is equivalent to the 
coupled pair of equations

−∂ S

∂t
= (�p)2

2m
+ V Q + V = (∇ S)2

2m
− h̄2

2m

∇2√ρ√
ρ

+ V (1)

∂ρ

∂t
+ ∇ · (ρ ∇ S

m
) = 0 (2)

The first equation is the Quantum Hamilton–Jacobi Equation 
(QHJE) involving an external potential V (�r), and including Bohm’s 
quantum potential V Q = − h̄2

2m
∇2√

ρ√
ρ

(ρ is the probability density 
and S is the action). The second equation is the continuity equa-
tion. The substitution

�(�r, t) ≡
√

ρ(�r, t)eiS(�r,t)/h̄ (3)

into eqs. (1)–(2) yields the Schrödinger equation

ih̄ (
∂�(�r, t)

∂t
) = − h̄2

2m
∇2�(�r, t)) + V (�r)�(�r, t) (4)

Bohm’s quantum potential V Q = − h̄2

2m (∇2√ρ/
√

ρ) was shown 
to be proportional to the difference of the Weyl and Riemann 
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scalar spatial curvature produced by an ensemble density of paths 
associated with one, and only one particle, as shown in [2]. The 
constant of proportionality is − h̄2

2m . It can be generalized to the rel-
ativistic case. This geometrization process of quantum mechanics 
(not to be confused with geometric quantization) allowed to derive 
the Schrödinger, Klein–Gordon [2] and Dirac equations [3–5]. Most 
recently, a related geometrization of quantum mechanics was pro-
posed [6] that describes the time evolution of particles as geodesic 
lines in a curved space, whose curvature is induced by the quan-
tum potential. This formulation allows therefore the incorporation 
of all quantum effects into the geometry of space–time, as it is the 
case for gravitation in the general relativity.

The above result of Bohm can be generalized to many parti-
cles as well where the wavefunction depends on all of the particle 
coordinates (configuration space). In Bohmian mechanics the time 
evolution of a quantum system comprised of N particles is driven 
by the nonlocal quantum potential V Q (�r1, �r2, · · · , �rN ; t) which is a 
function of the entire configuration space and time. In the case of 
two particles [9], it is convenient to express all physical quantities 
in terms of the center of mass coordinate �R , and the relative radial 
coordinate �r given by

�R = m1�r1 + m2�r2
, �r = �r1 −�r2 (5)
m1 + m2
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the total mass M and reduced mass m are

M = m1 + m2, m = m1m2

m1 + m2
(6)

When the temporal dependence of the action is of the form

S = S(�r, �R, t) = S(�r, �R) − E t (7)

the stationary quantum Hamilton–Jacobi equation (QHJE) associ-
ated with the two particles can be decomposed in terms of the 
motion of the center of mass plus the motion relative to the cen-
ter of mass as follows

E = (∇r S)2

2m
+ (∇R S)2

2M
− h̄2

2m

∇2
r
√

ρ√
ρ

− h̄2

2M

∇2
R
√

ρ√
ρ

+ V (�r) (8)

ρ(�r, �R) = σ(�r)ζ(�R) = σ(r, θ,φ)ζ(R, θcm, φcm), R = |�R|, r = |�r|
(9)

S(�r, �R) = S1(�r) + S2(�R) (10)

To simplify matters we shall freeze the angular and temporal 
dependence of the physical quantities and focus solely on the ra-
dial dependence only. Hence, the functional dependence of ρ and 
S simplifies and reduces to the form

ρ(�r, �R) = σ(r)ζ(R), S(�r, �R) = S1(r) + S2(R) (11)

so that

h̄2

2m
√
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1
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∂r(r

2∂r

√
ρ(r, R))

= h̄2

2m
√

σ(r)

1

r2
∂r(r

2∂r

√
σ(r)) (12)

h̄2

2M
√

ρ(r, R)

1

R2
∂R(R2∂R

√
ρ(r, R))

= h̄2

2M
√

ζ(R)

1

R2
∂R(R2∂R

√
ζ(R)) (13)

The continuity equation in the stationary case is

∇r(ρ
∇r S

m
) + ∇R(ρ

∇R S

M
) = 0 (14)

Introducing a potential of the form V = V (r), separating (de-
coupling) the motion of the center of mass from the motion 
relative to the center of mass, and inserting the expressions in 
eq. (12)–(13), leads to the following stationary QHJEs, and conti-
nuity equations

E − E = (∇r S1(r))2

2m
− h̄2

2m
√

σ(r)

1

r2
∂r(r

2∂r

√
σ(r)) + V (r) (15)

E = (∇R S2(R))2

2M
− h̄2

2M
√

ζ(R)

1

R2
∂R(R2∂R

√
ζ(R)) (16)

∇r( σ (r)
∇r S1(r)

m
) = 0, ∇R( ζ(R)

∇R S2(R)

M
) = 0 (17)

where E is the energy associated with the center of mass motion.
A careful inspection reveals that the following solutions (below 

we shall explain the physical origin of these solutions)

σ(r) = σoe Ar, (A < 0), ζ(R) = ζo
eB R

R2
, (B < 0) (18)

with σo, ζo constants, yield the following quantum Bohm poten-
tials
− h̄2

2m
√

σ(r)

1

r2
∂r(r

2∂r

√
σ(r)) = − h̄2

2m
(

A

r
+ A2

4
) (19)

− h̄2

2M
√

ζ(R)

1

R2
∂R(R2∂R

√
ζ(R)) = − h̄2

2m
(

B2

4
) (20)

A < 0, B < 0 must be negative due to the normalization condition

∞∫
0

σ(r)4πr2dr = 1,

∞∫
0

ζ(R)4π R2dR = 1 (21)

otherwise the integrals would diverge. Despite that ζ(R) diverges 
at R = 0 it is normalizable.

Because A < 0, the quantum Bohm potential in eq. (19) leads 
to a repulsive gravitational potential plus a constant (a zero-point 
energy)

− h̄2

2m
(

A

r
+ A2

4
) = Gm1m2

r
− V 0, V 0 = h̄2 A2

8m
(22)

From eq. (22) one learns that

A = −2G

h̄2
m1m2m = − 2G

h̄2

(m1m2)
2

m1 + m2
⇒

V 0 = 1

2h̄2
m(Gm1m2)

2 (23)

The quantum Bohm potential is tantamount of a repulsive
gravitational potential (plus a constant), and is cancelled out 
by the attractive Newtonian gravitational potential V = V (r) =
−(Gm1m2/r) stemming from the gravitational interaction of the 
two particles of masses m1, m2. In doing so, the stationary QHJE 
(15) becomes effectively a classical-like stationary Hamilton–Jacobi 
equation for a free particle with a shi f ted energy

E − E + V 0 = (∇r S1(r))2

2m
(24)

and from which one learns

pr = ∂r S1(r) = √
2m(E − E + V 0) ⇒ S1(r) = prr (25)

we set the constant of integration to zero in the last terms of 
eq. (25).

At this stage it is very important to emphasize that there are 
key differences from our results and those of [9]. Firstly, Matone 
[9] set the potential V (r) = 0, which is not the case here. One 
cannot ignore the gravitational potential generated by the presence 
of two masses m1, m2. Secondly, he proposed a quantum potential 
of the form

V Q = − Gm1m2

r
+O(h̄) (26)

which is very different from our findings in eq. (22). Our quan-
tum potential generates a repulsive gravitational interaction plus
a constant proportional to h̄−2.

The quantum potential associated to the center of mass is

− h̄2

2M
√

ζ(R)

1

R2
∂R(R2∂R

√
ζ(R)) = − h̄2

2M
(

B2

4
) (27)

such that

(∇R S2(R))2 − h̄2 B2

4
= 2M E ⇒

∂R S2(R) = P R =
√

h̄2 B2
+ 2ME ⇒ S2(R) = P R R (28)
4



548 C.C. Perelman / Physics Letters B 788 (2019) 546–551
we set the constant of integration in the last term of eq. (28) to 
zero.

To finalize one needs to study the continuity equations

1

m
∇r · (σ (r)∇r S1(r)) = 1

m

1

r2
∂r( r2σ(r)∂r S1(r) ) = 0,

1

M
∇R · (ζ(R)∇R S2(R)) = 1

M

1

R2
∂R( R2ζ(R)∂R S2(R) ) = 0 (29)

The solutions to the above continuity equations, when σ(r), ζ(R)

are given by eqs. (18), will require then that the constant momenta 
pr, P R in eqs. (25), (28) should be trivially zero

∇r S1(r) = pr = √
2m(E − E + V 0) = 0 ⇒ E − E + V 0 = 0 ⇒

E − E = E ′ = −V 0 = − m

2h̄2
(Gm1m2)

2 (30)

∇R S2(R) = P R =
√

h̄2 B2

4
+ 2ME = 0 ⇒ − h̄2 B2

8M
= E (31)

The ground state energy of the Hydrogen atom (ignoring rela-
tivistic corrections) is

E(n = 1) = −me4

2h̄2
= − 1

2m
(m

e2

h̄c
c)2 = −mc2

2
α2

e (32)

we wrote the E(n = 1) in this form above to remind the reader 
that the mean electron velocity in the ground state is c/137. By 
analogy, one can define the “gravitational” fine structure αG from 
the correspondence

αe = e2

h̄c
↔ Gm1m2

h̄c
= αG (33)

such that

E ′ = −V 0 = −mc2

2
(

Gm1m2

h̄c
)2 = −mc2

2
α2

G (34)

The value of E ′ < 0 is negative as expected for a (gravitationally) 
bound two-particle system. In the ground state the two particles 
are in static equilibrium configuration with respect to their center 
of mass.

The stationary Schrödinger equation in the spherically symmet-
ric case for the two-particle system can be decomposed into the 
following two Schrödinger equations. The first one is

− h̄2

2m

1

r2
∂r(r

2∂r�(r)) + V N(r)�(r) = (E − E)�(r) = E ′�(r) (35)

where V N is the attractive gravitational Newtonian potential 
−(Gm1m2/r). As usual, m is the reduced mass, and r = |�r1 − �r2|
is the relative separation of the two particles. The other equation 
is

− h̄2

2M

1

R2
∂R(R2∂R�(R)) = E�(R) (36)

where M is the total mass m1 + m2, and R is the radial coordi-
nate of the center of mass. One can verify by a simple inspec-
tion that �(r) = √

σ(r) ∼ exp(Ar/2), (A < 0), and �(R) = √
ζ(R) ∼

exp(B R/2)/R, (B < 0), solve the above two Schrödinger equations, 
respectively.

Another physical solution for the center of mass motion occurs 
when B = 0 ⇒ P R = √

2ME, E > 0. In this case one has ζ(R) ∼
1/R2, and the continuity equation 1

M R2 ∂R(R2ζ(R)P R) ∼ ∂R P R = 0
is obeyed without restricting the value of P R to zero. One can 
verify again that given S2(R) = P R R = √

2MER , the wavefunc-
tion �(R) ∼ 1 exp(i P R R/h̄) (a spherical analog of a plane wave 
R
solution) obeys the Schrödinger equation (36). Since �(R) is not 
normalizable, as it is usual with the plane wave solutions one con-
fines the particle to a “box” of finite size; i.e. one introduces an 
infrared cutoff.

The normalized wavefunction solutions to the Schrödinger 
equation corresponding to the Hydrogen atom (associated to a 
Coulomb potential) in spherical coordinates are

�nlm(r, θφ) =
√

(
2

nao
)3 (n − l − 1)!

2n(n + l)! e−�/2 �l L2l+1
n−l−1(�)Y l

m(θ,φ)

(37)

where � is defined by � = 2r/nao , and ao is the Bohr radius 
ao = h̄2/me2. L2l+1

n−l−1(�) is a generalized Laguerre polynomial of de-

gree n − l − 1, and Y l
m(θ, φ) are the spherical harmonics. In the 

gravitational case one just replaces e2 → Gm1m2 in all the expres-
sions.

One may notice that the ground state wavefunction,
�n=1,l=0,m=0 ∼ exp(−�/2), has the same functional form as√

σ(r) ∼ exp(Ar/2), A < 0 in eq. (18). The expression for the quan-
tum potential V Q (

√
σ(r)) based on 

√
σ(r) ∼ exp(Ar/2), A < 0, 

coincided exactly with the repulsive gravitational potential (plus 
a constant). The continuity equations led to pr = P R = 0, and fi-
nally to the value of E ′ = E − E in eq. (34), and which has exactly 
the same expression as the ground state energy for the Hydrogen 
atom (32), after the correspondence e2 ↔ Gm1m2 is made.

Does this correspondence occur for the other excited states 
n = 2, 3, . . .?, and for other values of l, m besides l = m = 0 when 
one includes the rotational degrees of freedom? It should occur 
because the Schrödinger equation is equivalent to the coupled 
system of 2 differential equations (1)–(2). Namely, �nlm(r, θ, φ) =√

σnlm(r, θ,φ)cos(Snlm(r, θ, φ)/h̄) solves the Schrödinger equation 
if, and only if, σnlm(r, θ, φ) and Snlm(r, θ, φ) solve the coupled sys-
tem of 2 differential equations (1)–(2), and vice versa.

The excited states will no longer correspond to static mass con-
figurations with respect to the center of mass, and the expression 
for V Q (ρexcited) will no longer be equal to the repulsive gravita-
tional potential (up to a constant) cancelling the attractive New-
tonian potential, but it will be a more complicated function. The 
momenta pr will no longer be constant and there will be a non-
trivial motion relative to the center of mass.

Can these results be generalized to other potentials V (r) re-
flecting the interaction between two particles, besides the Newto-
nian one, or V ∼ 1/r potentials are special? Let us study the 3D
spherically symmetric harmonic oscillator case, assuming the in-
teraction between the particles is governed by a harmonic oscilla-
tor. The Gaussian ground state wavefunction � ∼ √

ρ ∼ exp(−λr2)

yields a quantum potential

V Q = 3h̄2λ

m
− 2h̄2λ2

m
r2 (38)

which will cancel out the contribution of the 3D spherically sym-
metric harmonic oscillator potential Vosc = 1

2 mω2r2 (leaving a con-

stant) when (2h̄2λ2)/m = 1
2 mω2. Solving for λ = (mω/2h̄) gives 

V Q + Vosc = 3h̄2λ
m = ( 3h̄2

m )(mω/2h̄) = 3
2 h̄ω which is precisely the 

ground state energy of the 3D spherically symmetric harmonic 
oscillator. This procedure works for other potentials since setting 
V Q (ρground) + V = E0, and ∇ S = 0 (zero momentum is a trivial 
solution to the continuity equation) into the QHJE leads always to 
E = E0.

We propose next the notion of a classical/quantum duality in 
the gravitational case (it can be extended to other interactions). 
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By this one means exchanging V Q ↔ V in the stationary QHJE, so 
that V Q + V = −V 0 (as before) and leading to

V Q = − h̄2

2m
(
∇2√σ(r)√

σ(r)
) = V N = − Gm1m2

r
,

V (r) = −V N − V 0 = Gm1m2

r
− V 0 (39)

We should remark that over the years di f f erent notions of classi-
cal/quantum duality than ours have appeared in the literature, see 
[10] for some references. One must not confuse these different no-
tions of classical/quantum duality.

The differential equation to be solved now is

r2 d2√σ(r)

dr2
+ 2 r

d
√

σ(r)

dr
− Cr

√
σ(r) = 0, C = 2Gm1m2m

h̄2
> 0

(40)

The solutions must also be normalizable 
∫ ∞

0 σ(r)4πr2dr = 1. They 
are given in terms of modified Bessel functions of the first I1, and 
second kind K1

√
σ(r) = a1

I1(2
√

Cr)√
Cr

+ a2
K1(2

√
Cr)√

Cr
(41)

The normalization condition requires to discard the I1 contribution 
because I1 diverges at r = ∞, leaving the K1 function which van-
ishes at r = ∞. In doing so, the normalization condition will fix 
the value of the a2 coefficient in terms of C > 0. Note that C has 
an explicit h̄-dependence, as it should, in order to have V Q = V N . 
The right hand side has no h̄ factor, so there must be a cancellation
of the h̄ factors in the left hand side.

The stationary Schrödinger equation in the spherically sym-
metric case involving the repulsive gravitational potential (plus a 
constant) is now given by

− h̄2

2m

1

r2
∂r(r

2∂r�(r)) + (
Gm1m2

r
− V 0)�(r)

= (E − E)�(r) = E ′�(r) (42)

Eq. (42) should be compared with eq. (35). They both differ how-
ever the QHJE (15) remains the same. This is how the classi-
cal/quantum duality is implemented. Despite that the solutions 
to eq. (42) differ from the solutions to eq. (35), the ground
state energy solution to eq. (42) is the same as before (34) E ′ =
E − E = −V 0 = −mc2

2 α2
G . One can verify this by checking that 

� = a2
K1(2

√
Cr)√

Cr
solves the stationary Schrödinger equation (42)

with the ground state energy E ′ = E − E = −V 0 = −mc2

2 α2
G .

In this scenario Bohm’s quantum potential associated to the 
ground state V Q (σground(r)) = V N coincides with the attractive 
Newtonian potential, and is now correlated with the classical 
repulsive gravitational potential (plus a constant) of eq. (39). And 
vice versa, under the exchange V Q ↔ V . This 2-particle model can 
be generalized to the N-particle case. One would have to verify 
that the gravitational attraction (in the ground state configuration) 
is compensated by the repulsive contribution of the N-particle 
quantum potential corresponding to the ground state probability 
density.

The accelerated expansion of the Universe is generally assumed 
to be driven by a positive vacuum energy density (like a positive 
cosmological constant), or by some scalar field φ(t) (quintessence) 
whose potential V (φ(t)) at late stages of the universe mimics the 
behavior of the cosmological constant. Here we are proposing a 
very different scenario in which there might be a quantum ori-
gin to the classical repulsive gravitational behavior of the universe 
based on this notion of classical/quantum duality. An account of 
the historical developments of gravity from Newton to the repul-
sive gravity of the vacuum energy can be found in [11].

A key remark is in order. The explicit presence of h̄−2 in the 
expression for V 0 (34) (and which is part of the potential V (r) in 
eq. (39)) is not very common in the Quantum Mechanical problems 
that we are familiar with. However, as emphasized by Klauder in 
his monograph [8], the principal purpose of his Enhanced Quan-
tization program is to describe and apply a new way to quantize 
classical systems, which in turn, lead to classical enhanced Hamil-
tonians that explicitly contain nonvanishing h̄ terms. The Enhanced 
Quantization program of Klauder relies on the coexistence of the 
classical and quantum world, and consequently it involves the ex-
plicit presence of h̄, and without taking the h̄ → 0 limit. Therefore, 
having an h̄-dependence on V 0 is not an alien property that should 
be dismissed and which would disqualify V (r) as a “classical” po-
tential.

To finalize we shall discuss another way in which repulsive 
gravity emerges. In [7] we proposed the novel equation1 which we 
coined as the “Bohm–Poisson” (BP) equation (for static solutions 
ρ = ρ(�r))

∇2 V Q = 4πGmρ ⇒ − h̄2

2m
∇2 (

∇2√ρ√
ρ

) = 4πGmρ (43)

the purpose of eq. (43) was to replace the well known (among the 
experts) nonlinear Newton–Schrödinger equation. The fundamen-
tal quantity is no longer the wave-function � (complex-valued in 
general) but the real-valued probability density ρ = �∗�. The logic 
behind eq. (43) was based on the idea that the laws of physics 
should themselves determine the distribution of matter. This is 
going one step further from General Relativity where a given dis-
tribution of matter determines the geometry.

The B P equation (43) is invariant under the transformations 
ρ ↔ −ρ , and G → −G . Thus solutions with G < 0 are associated to 
repulsive gravity. If, in addition to the Bohm–Poisson (BP) equation 
one were to add the Schrödinger equation for the complex-valued 
wave-function � ≡ √

ρeiS/h̄ , one can obtain consistent solutions, 
which avoids having an overdetermined system of equations, when 
the external potential is itself a function of ρ . The functional form 
of the potential V cannot be arbitrary, but it is subjected to sat-
isfy a system of equations. One equation is the BP equation (43). 
The second equation is the QHJE, and the third equation is the 
continuity equation. The latter two equations are equivalent to the 
Schrödinger equation. Therefore, one has a system of 3 equations 
for the 3 unknowns ρ(r), S(r), V (r). The potential itself is deter-
mined from the equations instead of being put in by hand.

One can also propose another system of 3 equations (for 
the 3 unknowns ρ(r), S(r), V (r)) where the first equation is 
V Q (ρ) = V N . The second and third equations are the usual 
QHJE and continuity equation, respectively. In principle, one could 
have a family of many solutions consisting of the many triplets 
{ρ1(r), S1(r), V 1(r)}, {ρ2(r), S2(r), V 2(r)}, · · · {ρN(r), SN (r), V N(r)}. 
There could even be an infinite number of solutions. This last set 
of 3 equations would correlate the classical potentials V 1, V 2, · · ·
with the quantum potential V Q = V N . Classical/Quantum duality 
selected one specific classical potential given by V = −V N − V 0 in 
eq. (39).

Extensions of the Bohm–Poisson equation to the full relativistic
regime were developed in [13]. In the case of a real-valued scalar 
field φ = φ∗ , the relativistic field theory analog of the Bohm–
Poisson equation in D dimensions was given by [13]

1 To our knowledge eq. (43) has not appeared before.
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(
h̄

m
)2�

(�φ(�r, t)

φ(�r, t)

)
= 4πGgμν Tμν,

� ≡ 1√|g|∂μ(
√|g| gμν∂ν), c = 1 (44)

where the trace of the stress energy tensor T = gμν Tμν associated 
with the scalar field appears in the right hand side. The stress en-
ergy tensor for the scalar field is defined in term of the matter 
terms Sm in the action by Tμν = − 2√

g
δSm(φ,gμν)

δgμν .

In 4D , given the Lorentzian signature (−, +, +, +), the action 
in a curved background with a cosmological constant was chosen 
to be

S =
∫

d4x
√−g

(
(R − 2�)

16πG
− gμν

2
(∂μφ) (∂νφ) − V (φ)

)
(45)

and is associated with a canonical real scalar field φ with a poten-
tial V (φ). The FLRW metric is

ds2 = −(dt)2 + a2(t)

(
(dr)2

1 − kr2
+ r2(d�)2

)
, k = 1,0;−1 (46)

k is the spatial scalar curvature parameter with units of (length)−2.
The equations of motion corresponding to the action (45), com-

bined with the Relativistic Bohm–Poisson equation (44), leads to 
a family of solutions for a(t), φ(t) and V (φ). Once again, the 
potential V (φ) is not put in by hand but instead it is derived
from the above system of equations. Two specific solutions for 
a(t), φ(t), V (φ) were provided [13] encoding the repulsive nature 
of dark energy. One solution leads to an exact cancellation of 
the cosmological constant, but an expanding decelerating cosmos; 
while the other solution leads to an exponential accelerated cos-
mos consistent with a de Sitter phase, and whose extremely small 
cosmological constant is � = 3

R2
H

, consistent with current observa-

tions. For further details we refer [13].
In passing we should mention that of the many articles sur-

veyed in the literature pertaining the role of Bohm’s quantum 
potential and cosmology, [14], [15], [16] we did not find any re-
lated to the novel Bohm–Poisson equation proposed in this work.2

The authors [15], for instance, have shown that replacing classi-
cal geodesics with quantal (Bohmian) trajectories gives rise to a 
quantum corrected Raychaudhuri equation (QRE). They derived the 
second order Friedmann equations from the QRE, and showed that 
this also contains a couple of quantum correction terms, the first 
of which can be interpreted as cosmological constant (and gives 
a correct estimate of its observed value), while the second as a 
radiation term in the early universe, which gets rid of the big-
bang singularity and predicts an infinite age of our universe. The 
model of “dark energy without dark energy” based on the sub-
quantum potential associated with the CMB particles by [17] also 
differs from the work presented here.

A different quantum potential than Bohm’s was proposed by 
[9] based on the Quantum Equivalence postulate of Quantum 
Mechanics under D-dimensional Mobius transformations. In one-
dimension, their quantum potential Q was given in terms of 
the Schwarzian derivative of the action with respect to x by 
Q = h̄2

4m {S, x}. The Schwarzian derivative is defined by {S, x} =
(S ′′′/S ′) − 3

2 (S ′′/S ′)2. The Schwarzian derivative is Mobius invari-
ant {γ (S), x} = {S, x}, where the Mobius transformation is de-
fined as γ (S) = aS+b

cS+d , ad − bc = 1. In one-dimension the continu-

ity equation in the stationary case is d
dx [(ρ(x)/m)(dS/dx)] = 0 ⇒

2 A Google Scholar search provided the response “Bohm–Poisson equation and 
cosmological constant did not match any articles”.
ρ(dS/dx) = constant . Inserting √ρ ∼ (dS/dx)− 1
2 into Q = h̄2

4m {S, x}
yields the expression for Bohm’s quantum potential after some 
straightforward algebra [9].

Schwarzian Quantum Mechanics has recently been a very ac-
tive topic of research in connection to the Sachdev–Ye–Kitaev 
(SYK) model [18]. Another very relevant topics of current research 
related to the emergence of gravity are holographic quantum 
complexity, entanglement entropy, information geometry, quantum 
computation and information theory, black holes, Cayley graphs, 
· · · , see [19] and the references therein. The close relation between 
gravity and quantum mechanics has been analyzed by Susskind 
[20]. Our main goal, if possible, is to geometrize quantum me-
chanics. The emergence of quantum mechanics from the fractal 
geometry of spacetime has been advanced long ago by Nottale 
[12]. We hope that the notion of Classical/Quantum Duality raised 
in this work in connection to the QHJE may cast further light into 
the deep interplay between gravity and quantum mechanics.
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