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Abstract

This article analyses possible limitations in the method
to search for the electric dipole moment (EDM) using
polarized particles in a storage ring [1]. It is well known
that for discovery of the electric dipole moment one needs
to create such conditions where the particle's spin
oscillations can be caused only by the EDM. There is
some number of possible methods for EDM search using
a storage ring. For instance at present we know the
resonant spin build-up method in a magnetostatic ring and
“frozen” spin method in a pure or partly electrostatic ring
with magic energy. Both methods have common
limitations caused by spin decoherence. In a previous
article [2] we considered the main reasons leading to
incoherent spread of spin tune taking into account only
second-order nonlinearity. In this article, we have
extended this method to the case for the higher orders,
and the reasons of the spin decoherence are classified
independently on method.

SPIN DECOHERENCE ORIGIN

As we know from the T-BMT and motion equations the
spin tune is v, = )G . If the equilibrium energy (energy

averaged over one turn) has a spread <Ayeq> dependent

on the particle parameters the spin tune spread for N,
turns has incoherent spread:
27(Av, ) =27G(A7e )N, (1)

Thus the source of incoherent spread of spin tune is an
incoherent energy spread. Then we have to ask what
determines the incoherent energy spread. Obviously, this
answer may be obtained from the motion equations. In
paper [2] an analysis of longitudinal motion together with
transverse motion has been done using the basic
“synchrotronous acceleration principle”. For small
amplitude of synchrotron oscillation we can write the

equation for momentum deviation o _P°Ps from
Ps

synchronous level:

d25 evrfwrzf( 1]
—tt——| ¢y —— .0 =

dt>  27hfB’E 72
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where E is full energy, [ is relative velocity, eV ; is

(2)

energy gain per turn with V,; voltage gap, @,; =2zhf

rev

is angular frequency of RF field, h is a harmonic number,
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f.op =1/T,, is revolution frequency, the momentum

. Ap .
compaction factor a =g +a1—p introduced through

S

sleep-factor n =« _Lz and the orbit lengthening due to

. AL
the betatron motion| — | .
L /s
Solving (2) we can define an influence of the betatron
oscillation, the square term of momentum compaction

factor ; and the slip factor 7 onto the equilibrium
level energy shift Ad, :
2 2 2
: 0
Aéeq :2]/—‘5 _m[al+§ﬂ_2_a_g+i4J+(£J
Vs Qo -1 2 2 V4 Vs Vs L [}

3)

Thus due to the asymmetric shape of the separatrix in

the momentum and lengthening orbit the equilibrium
momentum has incoherent character.

ORBIT LENTHENING WITH
MULTIPOLE FIELD

If with the contribution of asymmetry separatrix
everything is clear, and it is quite easy to be taken into
account in determining of the spin tune spread then the
contribution of the betatron motion depends on the order
of the considered multipole.

In absence of multipole in paper [2] has been shown
that the orbit lengthening just due to the linear betatron
oscillation is:

(A—;jﬂ = 2—71[ Vi +8yvy], 4)

where &, and v,  are emittance and tune in horizontal

and vertical planes correspondingly and ¢, , for each

2
£
particle has own value { —2 ) =2 X'g .
ﬁx,y Yﬂ

Sextupoles

First let us suppose that we have quadrupoles and
sextupoles in the ring:

X”+&.X+l.&.(){2_ 2) 1 )

1+6 2146 T o(s) 146 )
. K(s)  S(s) ’
1+6 1+6
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2 2
d OB, (s)
wherex”:—;,y":—zy, K(s)=— and
ds ds p, Ox

e OBj(s)
S(s)=— is quadrupole and sextupole

p ox?
components in the ring correspondingly. Since we should
exclude the third integer resonance we can use just the

- 1
average value ofS= Ey Zl: Sil; .
Snyder formalism [3] we introduce the new variables:

ne=x/B: ny=y/[By:  BoVorydd=ds (6)

The new independent variable ¢ is periodic with 27

Following Courant-

and corresponds to the period of circumference C = 27R
bys.Taking oJ<<1 we get the equations system:

771 + Vgx(] - 5)’7)( =
8B (pun? - pon? )+ v (1-8)p32 2

) +vi, (=8, =Sv, (1=8)8;" B *n. By *n,

1
_Esvgx(] -

(7)
To simplify further discussion we will pass to a simpler
representation of equations (7) in  coordinate

dd,,=o,,-dgp with the new designations of the

coefficients:
1

2 2 2 2 2 «p3/2
@ :Vox(1_5)§woy :Voy(1_5)’ AZEWOXSIBX ;
o2 ®)
Cy =T 22 =, 51"

We retain only the average value of coefficients in the
right side of equations (7), because their typical
frequencies differ from the betatron tunes. Then the
equation system (7) is written as:

oins + @0, = A(ﬁxﬂf —ﬂyﬂ§)+cs "8

2. 1/2 p1/2
yny+w-0y77y:Bﬁx IBy nxny

Obviously the sextupole term gives small contribution
in the solution, and it can be considered as small
perturbation of motion.

Following Landau method [4] we seek a solution in:
nx,y = 770x,y +771x,y +772x,y + (10)
Oy =Wy + Oy + O+

Omitting the intermediate steps, we obtain the solution
for first approach:

=&, cos I, + C§2.5

Tox

(€))

(1)

and for the next approach:
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2
_ A ﬁxgx ﬂyg}’ Aﬂx C55
hx =7 2 | 2 Tl
Wox Tox \ Dox

£
A &cos 28, + Fyey cos 29,
6 v/ @y))

@, 2(1- 4

n, =—e B e.B.
{ cos(S -8 )

(@, ~@,) o,]

0y

ql~ (@, +@,) /@, ]

oy

cos(9 +9) }

(12)
Substituting (11, 12) in x= ﬁ1/2(77()x+771x) and

y= ,Bllz(noy + 771y)’ we have:

2 & S. B¢
x=ﬂ—x5—lzsiﬂ,§ ﬁ_h _5zlzﬁ+
p L i 2 2 L i p2

£
lzsiﬁfi Py cos 29, + 'Byzy S—cos 29,
L5 2(1-4ag, /@)

+ & LBy O8I,
y= Vgxﬂx ngﬁy %zslﬁ;
{ COS(Lgy —SX)

cos(, +9,) }

1—(ZUOY _wox)zlwgy 1_(ZUOy +w0x)2/wgy
+&,B, cos I,
(13)
and:

=L 38 52 Dsin2g, 4 —— 2 in2g
Tt B Y (-4ad, 1ad) !
C[Ex

\ B,

' 1 2 gx gy
y :__Zsiﬂi] e
L i Y le ﬁy

{(,Bx - B,)-sin(9, —3X)+ (B, + B,)-sin(8, +9X)}_

1-(@,

&
— sin Sy
By

2, 2 2, 2
—@y) lay,  1-(@y, +@,)" @,

(14)
The same can be done for the tune shift:
(N 45 Iﬂ SD dg= 5_281 Qleiﬂxi
5 (15)
o, =— [ﬁ SD,d 9= 5—25 @Dy By
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Finally we should substitute (13, 14) with D, = ,Bf /p in
the common expression for the orbit lengthening:

12 12
ALY Lyl x (X HYE g
L B L\ p 2

(16)
As we can see it consists of two terms. The first is:
AL 1 o.D
_ = ids:_J._XdS ZSI 51Dxiﬁxi+
L)x L p L° p
p (17)
y ZSI lex1ﬂyl - ZSI Sl
and the second one for the case B, =B, and @y, =@,
1 2
e —3'S B2
AL 1 Xl2 +y/2 5 X LZI: 1ﬁx1
e :—f—ds = —- +
L),, L 2 4 3
sy (18)
&
8)( + y
4B, 4B,

In the second term both quadrupoles and sextupoles
introduce the orbit lengthening, but the sextupoles have
the contribution several orders of magnitude less because

of the factor (§8x)”2

(2] ~Zlwirew,]
L), 2L

Obviously in order to compensate the orbit lengthening
we have to fulfil conditions:

__ZSI %1 Lngx

and we can take that finally:

19)

(20)

T
_yzsilsliiﬂyi = ZEYV}’

——251 D2 = a,5°

itsi

and for the chromatlclty compensation:

5 ZSI 51 :_5‘/3)(
2n
5 ZSI lex1ﬂyl __5ng

Multipoles

For the higher order multipoles up to M, we have:

NSO NN S(S)_(xz_y2)+

1+0 2 1+0
1 O(s
8'14_
., K(s)

1+6
1 0O(s)
6 1+0

-(x3 —3xy2)+...+MnX = p(ls) %

1+0

(3 y— y)+...+Mny=0 )
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Following once again Courant-Snyder formalism with the

new variable for the horizontal plane only in order

simplify the final expression we can reduce the equation

to the general form:

2 2 2 3 4

O+ Toxl]x = G + il + Aol + 03113 + 0Ty + e
(23)

with coefficients:

~DX.§; a ~0; a4~D

where & is momentum spread, D, is dispersion, S, O, D

are  sextupole, octupole and decapole terms

correspondingly. It is no reason to repeat all routine

calculations which have been done for the sextupole in

previous section, and we will write the final solution for

the tune shift affected on chromaticity and change of
average position affected on the orbit lengthening:

2, .
~&D-O’ 0!2~S, 0{3

om 1 a, ooy 050052 L% 3a’
e e T e e
@ 2| @ @ @ zUo 4
quadrupole  sextupole octupole
3 n-1
420% %0 %
@ a;"
| —
decapole n—pole (24)
2 3
&= %o 1 oo ciay 3 32003 %)%
av
R R
quadrupole sextupole octupole
2 4
3 4« agay  opa
SatTh 3,208 0 (25)
) @y @y
decapole

where a =(¢g,0,) )2 is amplitude of radial oscillation.

CONCLUSION

Thus, we can see that any multipole changes the
betatron tune and simultaneously it shifts the average
position of the orbit, extending or shortening it. By the
latter we can change the average level of energy, and
hence the spin tune.
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