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Numerical simulations of expanding plasma based on the AdS/CFT correspondence as well as kinetic 
theory and hydrodynamic models strongly suggest that some observables exhibit universal behaviour 
even when the system is not close to local equilibrium. This leading behaviour is expected to be 
corrected by transient, exponentially decaying contributions which carry information about the initial 
state. Focusing on late times, when the system is already in the hydrodynamic regime, we analyse 
numerical solutions describing expanding plasma of strongly coupled N = 4 supersymmetric Yang–Mills 
theory and identify these transient effects, matching them in a quantitative way to leading transseries 
corrections corresponding to least-damped quasinormal modes of AdS black branes. In the process we 
offer additional evidence supporting the recent identification of the Borel sum of the hydrodynamic 
gradient expansion with the far-from-equilibrium attractor in this system.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Given the critical role of hydrodynamics in the physical picture 
behind the evolution of quark-gluon plasma created in heavy ion 
collisions, it is very important to have a reliable understanding 
of how relativistic systems in highly nonequilibrium initial states 
tend toward local equilibrium. It is useful to view this process as 
consisting of two stages. The first is characterised by the quasi-
exponential decay of transient effective degrees of freedom – the 
nonhydrodynamic modes, which in the case of N = 4 supersym-
metric Yang–Mills theory (SYM) plasma are in one-to-one corre-
spondence with the quasinormal modes of AdS black branes [1,2]. 
The second stage is dominated by slowly-evolving hydrodynamic 
modes, whose time evolution is determined by conservation laws. 
This pattern holds both in microscopic theories and at the level 
of hydrodynamic models, such as the Müller–Israel–Stewart (MIS) 
theory [3,4] and its variants.

This qualitative picture can be made quantitative and appre-
ciated most clearly when examining certain special observables 
which enjoy universal behaviour at late times: they evolve (up 
to exponentially small corrections) in a way determined solely by 
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some microscopic model and independently of the initial condi-
tions. Such quantities, to which one may refer as universal ob-
servables, exhibit distinct attractor behaviour: for a wide range of 
initial conditions numerical solutions tend to a distinguished at-
tractor solution in an approximately exponential fashion [5]. This 
universal behaviour often sets in while the system is still highly 
non-isotropic, and at later times coincides with the prediction of 
Navier–Stokes hydrodynamics. It is natural to interpret hydrody-
namization in the sense of Refs. [6,7] as a manifestation of this 
phenomenon.

This set of ideas leads to the notion that the decay of tran-
sient modes describes the way the system approaches a far-from-
equilibrium attractor [5,8–10] which can be thought of as “hydro-
dynamics beyond the gradient expansion” in the sense of Refs. [11]
and [5]. The simplest and most widely studied example appears 
in the context of conformal Bjorken flow, where the pressure 
anisotropy turns out to have such universal behaviour when ex-
pressed as a function of the dimensionless variable w ≡ τ T (which 
is the proper time in units of the shear-stress relaxation time, up 
to a constant factor). This behaviour is captured by the gradient 
expansion of the pressure anisotropy, which in this particular case 
takes the form of a series in 1/w . More general expressions for 
such universal observables – valid also without assuming confor-
mal symmetry or boost invariance – were recently described by 
Romatschke [12].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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An important point is that the gradient expansion itself does 
not depend on the initial state of the system. However, this asymp-
totic solution receives exponentially-suppressed corrections which 
on the one hand reflect the spectrum of nonhydrodynamic modes, 
and on the other carry information about initial conditions. Specif-
ically, at the linearized level each black-brane quasinormal mode 
introduces a transseries sector, which is an infinite series of expo-
nentially damped corrections, with the damping rate determined 
by the quasinormal mode frequency. Each such sector enters with 
an amplitude dependent on the initial state. The entire solution 
takes the form of a transseries [5,13] whose leading element is the 
hydrodynamic gradient expansion.

As first shown in Ref. [14], the hydrodynamic gradient expan-
sion in N = 4 SYM plasma is divergent, and the precise form of the 
large order behaviour of the expansion coefficients contains infor-
mation about the nonhydrodynamic modes of the system. In fact, 
each transseries sector contains an asymptotic series in 1/w . The 
transseries structure, together with resurgence relations connect-
ing expansion coefficients in different sectors, gives a consistent 
solution when all the divergent power series are properly summed 
(e.g. using Borel techniques). The Borel summation of the hydrody-
namic gradient series itself gives an approximation of the far-from-
equilibrium attractor [15], while the non-trivial transseries sectors 
describe the dissipation of initial state information as the attrac-
tor is approached. Indeed, the transseries structure – which was 
developed in the study of asymptotic series (see e.g. [16] and ref-
erences therein) and has a wide array of applications – is perfectly 
suited to capture this phenomenon.

It was shown in Ref. [13] that the complex-conjugate pair of 
least-damped quasinormal modes implies a specific form of the 
leading transseries correction to the hydrodynamic solution. Thus, 
in the case of N = 4 SYM the dominant terms are known pre-
cisely, apart from two amplitudes which reflect particular initial 
conditions. The calculations reported here are aimed at compar-
ing the form of this leading correction with numerical solutions 
of the full time evolution starting from some randomly chosen 
initial states. Such calculations, based on the AdS/CFT correspon-
dence, were performed in Refs. [6,7]. It is well-known that in the 
first approximation, at sufficiently large times the behaviour of 
these solutions approaches the prediction of the leading order of 
the gradient expansion. The issue addressed here is how the time 
evolution matches expectations based on a quantitative analysis of 
late-time asymptotics.

In a typical initial state many of the nonhydrodynamic modes 
will be excited, leading to the complex patterns seen at early 
times in the solutions of Refs. [6,7]. As transients decay, the sys-
tem tracks the attractor more and more closely. Soon beyond the 
regime where hydrodynamization occurs, one should expect that 
the least-damped nonhydrodynamic modes will become the dom-
inant deviation from purely hydrodynamic behaviour [17]. These 
subtle traces of the initial state must be present even deep in the 
hydrodynamic regime. The aim of the work reported here was to 
verify that these effects are indeed present. We show how one 
can isolate these contributions and confirm that they have the 
expected form, so one can say that late-time behaviour of the 
pressure anisotropy describes damped oscillations around the hy-
drodynamic attractor. We demonstrate that to see this effect one 
really needs more than just the gradient expansion truncated at 
some low order. Finally we compare the attractor of N = 4 SYM to 
the attractor of conformal BRSSS hydrodynamics [18] and find that 
the two are essentially identical once the transport coefficients 
are matched, which may be a part of the reason why relativistic 
second order hydrodynamics is so successful in the description of 
quark–gluon plasma [19].
2. Universal observables

The notion of a universal observable is implicit in much of the 
recent work on hydrodynamic attractors [5,8–10,12,19–25], and is 
rooted in observations made in Ref. [6]. It is best illustrated in 
the case of Bjorken flow in conformal BRSSS hydrodynamics [18]. 
In terms of the longitudinal and transverse pressures PL , PT and 
equilibrium pressure at the same energy density P = E/3, the 
pressure anisotropy is defined by

A ≡ PT −PL

P
. (1)

This quantity exhibits universal behaviour [7,14] at late times 
when expressed in terms of the dimensionless “clock variable”

w = τ T (τ ). (2)

This can be inferred directly from the equations of BRSSS hydro-
dynamics, which imply the following equation for the pressure 
anisotropy A(w) [5,10]:

Cτπ

(
1 + A

12

)
A′ +

(
Cλ1

8Cη
+ Cτπ

3w

)
A2 = 3

2

(
8Cη

w
−A

)
(3)

where Cη ≡ η/s is the ratio of the shear viscosity to entropy den-
sity, and Cτπ , Cλ1 are dimensionless second-order transport coeffi-
cients. At late times, which corresponds to large values of w , this 
equation possesses an asymptotic solution of the form

A(w) =
∞∑

n=1

an w−n = 8Cη

w
+ . . . (4)

This solution contains no trace of initial conditions, and thus it is 
universal in the sense that all solutions tend to it regardless of 
the initial state. One can go beyond the asymptotic solution (4)
by including exponential corrections – this is the subject of the 
following section.

The leading term describing the way in which the pressure 
anisotropy approaches zero at late times depends on the shear vis-
cosity to entropy ratio, so it will depend on the physical system 
under consideration. However, if one rescales the clock variable by 
introducing [20]

w̃ ≡ w

4πCη
(5)

then the leading asymptotic behaviour of the pressure anisotropy

A(w̃) = 2

π w̃
+ . . . (6)

is universal not only in the sense of being independent of initial 
conditions, but is also independent of any transport coefficients. 
The choice of scaling in Eq. (5) is such that the leading term in 
Eq. (6) takes the form of Eq. (4) when the shear viscosity to en-
tropy density ratio assumes the value Cη = 1/4π .

Although the discussion in this section was framed in the con-
text of BRSSS fluid dynamics, it is in fact far more general. The 
asymptotic behaviour of universal observables expresses the fact 
that the predictions of any sensible theory of hydrodynamics ap-
proach those of Navier–Stokes theory at late times. While this is 
obvious by construction, it is only apparent if one examines a uni-
versal observable such as A(w). In the evolution of non-universal 
quantities such as the temperature, this basic fact will be obscured 
by the dependence on initial conditions.
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3. The form of transients

The universal behaviour of A(w) makes it possible to study 
transient effects – the decay of nonhydrodynamic modes – in an 
unambiguous way. Since the asymptotic expansion given in Eq. (4)
is independent of initial conditions, all solutions are guaranteed to 
behave in accordance with it up to exponential corrections. These 
effects, at least in hydrodynamic theories and in strongly coupled 
N = 4 SYM plasma, are captured by the transseries representa-
tion [5,13]. The need to include transseries corrections is also a 
reflection of the fact that the gradient expansion in Eq. (4) is di-
vergent both at the microscopic level [14,20] (see also Ref. [26]) 
and in hydrodynamics [5,13].

The pressure anisotropy can be written as a sum of two contri-
butions

A = AH + δA (7)

where AH represents the purely hydrodynamic, universal part of 
the solution and δA is a correction which will depend on the ini-
tial conditions, and will thus be different for different solutions. 
Due to the divergence of the gradient expansion AH has to be un-
derstood either in the sense of a truncation of the gradient series 
at some low order, or as the result of a applying a procedure such 
as Borel summation.

The precise form of the correction depends on the spectrum of 
nonhydrodynamic modes. Roughly speaking, at the linearized level 
each nonhydrodynamic mode makes a contribution of the form

δA(w) = σ wβe−Aw	(w) (8)

where 	 is an infinite series in powers of 1/w whose coefficients 
are determined in terms of the parameters of the theory, as are 
the constants A and β . The amplitude σ however depends on the 
initial conditions. In general all these parameters are complex.

In the case of N = 4 SYM each AdS black-brane quasinormal 
mode makes a contribution of the form (8), where the parameter A
is proportional to the complex QNM frequency. The precise form of 
the correction due to the complex-conjugate pair of least-damped 
nonhydrodynamic modes can be inferred from Refs. [13,14,17,27]
and reads

δA(w) ∼ e− 3
2 
I w wβR

[
	+(w) cos

(
3

2

R w − βI log(w)

)

+ 	−(w) sin

(
3

2

R w − βI log(w)

)]
. (9)

In this equation, 	±(w) denote infinite series of the form simi-
lar to Eq. (4) appearing in the first transseries sectors, but with a 
constant leading term:

	±(w) = σ±

(
1 +

∞∑
n=1

a(±)
n w−n

)
. (10)

The quantities σ± play the role of integration constants. The re-
maining coefficients a(±)

n are independent of initial conditions, but 
their specific values are not relevant for the present study and we 
will approximate the entire series in Eq. (10) by constant ampli-
tudes, i.e. by the leading contributions given by the integration 
constants σ± . In what follows we will fit these amplitudes to nu-
merical data from AdS/CFT simulations.

The values of the remaining parameters appearing in Eq. (9) are 
known. The least-damped AdS black brane QNM frequencies [28]
(corresponding to an operator of conformal weight � = 4, apart 
from a factor of π ) are given by:
Fig. 1. The difference between two numerical solutions (blue, dotted) fitted to the 
form given in Eq. (13) (red, continuous). Only the amplitudes C, ̃C appearing in 
Eq. (13) are fitted. Clearly, for w < 1 the single QNM correction is a very poor 
approximation, but already at w ≈ 3/2 one notes excellent agreement. For colour 
figures please see the web version of this article.


R ≈ 9.800, 
I ≈ 8.629 (11)

and, furthermore

βR ≈ 0.6866, βI ≈ 0.7798 (12)

which can be extracted from Ref. [14].
There are two types of correction to Eq. (9): nonlinear terms, 

which are damped by powers of the exponential already appearing 
there and further contributions of a similar form, but with param-
eter values corresponding to more strongly-damped QNM of the 
AdS black brane. These contributions are subleading and will be 
ignored in the following.

4. Matching numerical evolution to the leading QNM

We now turn to examining numerical solutions of Bjorken flow 
with the aim of confronting their late time behaviour with the 
expectations discussed in the previous section. Suitable solutions 
can be obtained using the approach of Ref. [7] (using methods 
developed earlier in Refs. [6,29]). The focus of that study was 
on hydrodynamization, so randomly generated initial conditions 
were evolved only until hydrodynamic behaviour was identified 
– this occurred overwhelmingly for w < 1. Note that one could 
contemplate interpreting solutions at times preceding hydrody-
namization in terms of compositions of quasinormal modes, in 
the spirit of what was done in Refs. [30,31] for the isotropisation 
problem. In the present study however, we are interested in tran-
sient effects after hydrodynamization, which requires evolving the 
asymptotically-AdS geometry to much later times, where only the 
least damped pair of quasinormal modes is relevant. This is based 
on the observation that while at early times all the quasinormal 
modes can a priori play an important role in a given solution, 
some time after hydrodynamization occurs only the least-damped 
QNM should dominate deviations from the asymptotic form given 
in Eq. (4).

To isolate this effect explicitly we will first make use of the 
observation also used in Ref. [32], which is that the universal part 
AH will cancel in the difference of any pair of solutions A1(w), 
A2(w), so that

A1(w) −A2(w) = e− 3
2 
I w wβR

[
C cos

(
3

2

R w − βI log(w)

)

+ C̃ sin

(
3

R w − βI log(w)

)]
(13)
2



24 M. Spaliński / Physics Letters B 784 (2018) 21–25
Fig. 2. Left plot: the difference between a numerical solution and the first-order truncation of the gradient expansion. Right plot: the difference between a numerical solution 
and the attractor (approximated by the Borel sum). The red line is obtained by fitting the amplitudes in Eq. (9) to the numerical data (blue, dotted).
where the coefficients C, C̃ are given by the differences of am-
plitudes σ± of the QNM contributions to each of the solutions 
A1(w), A2(w). Since apart from these amplitudes all the parame-
ters appearing in Eq. (13) are known, one can fit the constants C, C̃
and check if one can reproduce the behaviour of differences of nu-
merical solutions. As seen from Fig. 1, at early times this fails, but 
already at w > 3/2 it works very well. This is completely in line 
with expectations. Only one pair of solutions was used to generate 
Fig. 1, but we considered a number of such pairs and confirmed 
that they all lead to the same conclusion.

There is an alternative to the approach described above. Instead 
of considering the difference of two numerical solutions one can 
consider the difference between a numerical solution and some 
approximate representation of the universal hydrodynamic contri-
bution AH . As mentioned earlier, there are two obvious choices 
here: a truncation of the series in Eq. (4), or its Borel sum. If ei-
ther of these choices provides an accurate representation of AH

we should find that subtracting it from any numerical solution will 
again leave an exponentially-damped correction of the form (13).

If one considers, instead of Eq. (13), the difference between a 
numerical solution and a truncation of the gradient series, one 
finds a situation such as that depicted in left plot of Fig. 2, which 
results in the case of truncating the gradient expansion at first-
order. Clearly, such an approximation is inadequate for the present 
purpose. It turns out that going to second order does not improve 
the situation.

The other option is to use the Borel sum of the gradient ex-
pansion of N = 4 SYM which was recently computed in Ref. [15]. 
It was also shown there that the Borel sum acts as a far-from-
equilibrium attractor for numerical solutions such as those dis-
cussed in the previous section. This fact can be taken as supporting 
evidence for the idea that this sum represents “hydrodynamics be-
yond the gradient expansion” and gives motivation for considering 
it as a useful estimate of AH . Indeed, as seen from the right-hand 
plot in Fig. 2, subtracting the Borel sum is, at least qualitatively as 
effective as subtracting a full numerical solution.

Note that if we were to study the difference between some nu-
merical solution and the attractor determined as a solution of the 
AdS equations of motion (such as was done in Ref. [9]) this would 
just be a special case of the argument given earlier in this section, 
since the attractor is (after all) also a solution – albeit a rather 
special one. However, if we instead take the Borel sum of the gra-
dient expansion [15] this can be interpreted as a test of whether 
such a procedure yields a result which is exponentially close to a 
full numerical solution.
5. Conclusions and outlook

The existence of universal observables which exhibit attractor 
behaviour and the availability of very precise numerical simula-
tions of Bjorken flow [7] makes it possible study transient effects 
in the late time behaviour of numerical solutions of the full non-
linear evolution equations based on the AdS/CFT correspondence. 
The fact that these effects can be explicitly detected in the numer-
ical simulations supports the general picture of hydrodynamization 
developed in a number of recent works [5,7–10,14,19–25,27,33,34]. 
It is gratifying that these effects can be found in the precise form 
expected on the basis of the identification of transient, nonhydro-
dynamic modes of the expanding plasma with the quasinormal 
modes of AdS black branes and the realization that the hydrody-
namic gradient expansion is the leading element of a transseries.

We have also demonstrated that the Borel sum of the gradi-
ent series, which was calculated and shown to act as an attractor 
in Ref. [15], is a useful proxy for the notion of “hydrodynamics 
beyond the gradient expansion” [5,11]. In view of this it is inter-
esting to ask to what extent the attractor of N = 4 SYM coincides 
with the attractor of MIS theory, which is most commonly used to 
model the hydrodynamic stage of evolution of quark–gluon plasma 
created in heavy-ion collisions. The result of such a comparison is 
presented in Fig. 3, where the BRSSS variant of MIS theory is used, 
with the shear viscosity, relaxation time and λ1 transport coeffi-
cients fitted to their N = 4 SYM values known from fluid-gravity 
duality [35]:

Cτ� = 2 − log(2)

2π
, Cλ1 = 1

2π
, Cη = 1

4π
. (14)

It is striking that the two attractors coincide almost as soon as the 
Borel summation can be considered reliable (and coincides with 
the result of a calculation reported in Ref. [9] which was based on 
a different approach). This is in contrast to the attractor of kinetic 
theory in the relaxation time approximation (RTA) [9,36,37], which 
is not very well reproduced by BRSSS hydrodynamics. Indeed, in 
a recent study [21] the attractor of RTA kinetic theory was com-
pared to the MIS attractor, as well as to the attractor of anisotropic 
hydrodynamics (see e.g. Ref. [38,39]). In that case the MIS attrac-
tor was found to converge to the exact kinetic theory result rather 
late, with anisotropic hydrodynamics reproducing it well already 
at very early times. Similar results were found in Ref. [22], where 
also the DNMR hydrodynamic theory [40] was considered. In this 
context note that the recent study of Ref. [41] suggests that de-
spite similarities in hydrodynamization [20] the approaches based 
on kinetic theory and on the AdS/CFT correspondence are quite 
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far apart by some metrics. It is an open question at the moment 
which of these two paradigms captures essential features of quan-
tum chromodynamics more closely.

Fig. 3. The attractor of BRSSS theory (gray) and the Borel sum of the gradient series 
of N = 4 SYM (red, dotted). Also shown in the first order truncation of the gradient 
expansion (magenta, dashed).
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[5] M.P. Heller, M. Spaliński, Hydrodynamics beyond the gradient expansion: resur-
gence and resummation, Phys. Rev. Lett. 115 (7) (2015) 072501, arXiv:1503 .
07514 [hep -th].

[6] M.P. Heller, R.A. Janik, P. Witaszczyk, The characteristics of thermalization of 
boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602, 
arXiv:1103 .3452 [hep -th].
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