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STABILITY OF TWO-DIMENSIONAL NON-LINEAR OSCILLATIONS

with periodical hemiltonisng applied to the

! \?I J;"""”

AR BETATRON OSCILLATIONS OF AN ALTERNATING-GRADIENT SYRTHRC

Summary.

ST AT AL

Yo consider a wechanical systen of two degrses of freedom. which cen be

ingeribed by a eystem of canonilcsl differential eguations. The hamilionian is

supposed to be ewxplicitly time-depsndent with poviod 2n. The aim i: o bring this
hpﬁa‘?

system by a sequence of cenonical and periodical transformations inioc a form,

o

new hawpilionian is constant end es simple as possibla. After the first of these
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formations one gets constant coefficients in the quadratic part of fhe hamiltomian

and these are te be interpreted as the frequencies of the correspondizng linearis

aystem. These two constants, uy and waﬁ, play a dominating pert irn this theory
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Ay B and p are integers (positive, negative and zero included}, tren it turns oud

2

that in principle resonancelike behsviour can occur on the lines n w. + agmq = P
R Y . o

Discussion of the final form of the Hamiltoni&n leads to the following resulis

a}) If n, and n, have different sigms: no resonance

O TS

stability behaviour depends on more specifications:

&) Tnsiability (Sangerous) for ’ %ul% 312§;:a 2
; :

B) Tnstability (mot necessarily dangerous) for jo, o d

v) Whether instability or stability depends o for %n \4. n /,

sone pumerical constants L § i

8) Stebility (in almost &11 cases ) ' for inh + n,‘gzvs
Thz corresponding resonance-1iines ave given in fig.Y, ML i1, 12 {p.60-
Theee resuiis ave dve o the construction of two constents of the mfist;.c

-~

iovarients) one oF whdeh is the new hapiltonian itealf; the other -

spedratic form in the smplitudes of the transformed coordinates.
one ig exectly constant, the hamiltonian can in practice bs calcwlalted only =

zome order N . and is constant then up to tewms of the order ¥ +

2 % NOV. 1355

n) If n, and n, have egual signs (including the case that one of them is meve) the
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From these two invariants one can,for each explicit example, decide which of the E/
possibilities in bB) and by) will hold, and one can calculate the smplitude ranges I
once the initial amplitudes are given. It is difficult however to ostimate how
accurate the numericel velues for amplitude ranges will be. Comparisons between
numerical solutions and ths predictions of the discussion of an invariant in the
one-dimensional case came out quite satisfactory - provided not too large non=
linearities {or amplitudas) were considered. One should at least expectwthe calculated
amplitude ranges to be a good qualitative estimate, which becomes quantitatively
accurate for very small non-linearities (or amplitudes)o This condition secems to
be. fulfilled quite good in the CERN proton synchrotron.

The above gqualitative statements, ﬁnwevar, concern the behaviour of soluw-

tions neighbouring the identical-zero-solution (and that means for vanishing
amplitudes) so that they remain valid also for large non=linear temms-coefficients.
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A.Introduction.

The equations of motién in an alternating gra&ient gynchrotron are of the
Hill-type containing non-linear terms too. In a slightly ideslized case they can be
written in hamiltonian form where the hamiltonisn conteins té¥ils higher than quadratic
and has time-dependent periodical coefficients. So we whigh to treat two-dimensional
non-linear oscillations obeying Hamilton®s equations with pariodicfal coefficients but
we shall have a look at the synchrotron ewvery now and then.

v Systems with one degree of freedom and coestant coefficients have been
attacked most successfully by using the phase-space and discussing the phase-tra-
. jecforigs, They are given by a function £(p,q) = const which means a function,
which is invariant under the tramsformation t=>t + 6. If one has no constant
coefficients, it is very difficult to find such functions and generslly they are
constent only approximateljo Nevertheless, if one gets such functions they will prove
to be useful in sofar as ome can discuss stability and amplitude-ranges. This has
been done in the onemdi;nénsional case by several authnrs, t"oxj‘ instance by J.Hoser (Mo)™
A.Schoch (Scho) and the present writer (not published). The two methods of Moser and
Schoch leed %o “the eame invariant functions, although it is not easy to see how.
A third method stems from PoStumck (stu 1) which also leads 'to the zame functions.
Pinally the present writer attacked the problem in a fourth way and arrived again
there. Thig and the compafison of the results with soms numerical intagmtions gave

us much confidence into the usefulness of these methods.

The genexralization into the case of two degrees of fresedom is difficult in
two respects: the phase-space becomes 4-dimensional and loses its evidence. Further-
more the phase-trajectory would be determined not by ome but by three independent

invariant functions and the methods used in the one~dimensional case will be helpful

to find only one of these.

Yet it\ is possibls to o%rcoma somewhat thess difficulties by restricting
oneself oﬁ amplitude ranges i;lstead of asking for the whole orbit. Thus the number
of variables of interest is reduced to two and having two invariant functions would
allow to fix the values of them both. These two functions are constiructed in this
paper by several transformations 1e$ding to a hémiltonian with constent coefficients
in a gimple normal form. This is the first invariant function and because it is not
only constant but also generates the equations of motion, it helps to get the second

invariant too, both being expressed as functions of the ampli‘i:udeso

wesemes

@ See Literature p.67
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B, The equations of motion

The general equations of motion in an A.G. Synchrotron can be written

e, + oy (B)x+ 0y (t)x, = - %K S ()
" _"1 P {tx %x, |
£, + gy (s, + myy (e - B2 1,00
*2

where X, and X, mean the deviations in radlai and horizontal direction
respactively from the equilibrium orbit of an ideal machine. The crossterms

and n,, refer to twists, the functions fl(t) and fé(t) to mis-

M2 21
alignments and the derivatives of 1?K(xl, 32 t) t0 non-linear terms. The
independent varisble +  does not mean the time but the arclength or the
azimuthal angle or something else with the only condition, that all functions
of t occurring in the equations are periodic with period 2m. Nevertheless,
for convenience's sske we shahl simply speak of "time" keeping in mind that
it has not necessarily the physical dimension of time. The peried 21 can be
achieved by normalizing and this pericd then correSponds'either to the
structure period in an ideal machine or 10 the full revolution in a real

' machine with coustruction srrors.

We now start simplifying the above aquatidns by several transformations
till we end up with a form where we can discuss the possible amplitude
variations. This form will not be expresssd in the origiral coordinaies and
therefore the discussion may seem 1o be of little use. We will see, however,
that if we take care tw keep the transformations in limits, this discussion
leads at least to estimates of orders of magnitudes and applies the more

directly to the original coordinates the smallex the nonlinsar paria become.

® Formulas are quoted like this: (5a) means page 5, formula (a).
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C. The Zeroth trensformation

The zeroth transformation serves to eliminate the functions £, (t)
and f,) (t) and consists simply in introducing a new reference orbit
‘PJL and Py which is definsd as the closed orbit (‘cha periodic solutlon)
of the simplified system

%) 0y %) 40 % = £ (5)

+D..%X, 40, .% ::fQ(t)

Xy ¥ By¥y ¥ By

2

If we introduce x

1
aAF(zlzzﬁ)
2 F 0% T RE E 7 7,
B+ 00BN, T mm‘BAF
* 2 2172 22 2 322

How, to save symbols, we replace _zi-m,% x; and AF—>4K 8o arriving at

( 5’9.) but without the terms fl and fzo Our coordinates now describe the
deviations from the closed qrbit qal(‘b) @2(-§}o of course we suppose that this
closed orbit exists and has a small amplitude. This is a question which can
be congidered as already settled by the linear theory. In the following we

shall forget sbout this transformation (which therefore is called the "zeroth® ).

D. The first transformetion

The Tirst transformetion also falls infto the scope of the linear theory ,
and serves to itransform the time dependence of the limear coefficients sway
end to decouple ithe linear part. If one considers an ideal machine, the

2, and n, are rot presenty in a real machine, however, they are present,

but they may be small. We shall consider the genersl case and not use its




lactual smallness, which of course is very convenient for the treatment of

oxplicit examples. The equations

R ¥ e s U o i

can be written

iz + nZJ.xl + n22x2 = w AKXQ

1 &

% ) ‘
%, A

51 = z2 = Kgg

b = ooy mmpls - AR, =Ky

53 = oA . = K&4

By = myly syl MK =Ky

(a) land K=K (8858, t) + K (gE8) . Here

() K = .232L (nmglz + ;22 + 2n12§l§3 + n22§32 + ;;42} is the hamiltonian of

the linear problem. (Note that this implies n , =By which in fact is
fulfilled in our machine.) We now try to transform to new variables
MyecoeT, 80 that the hamiltonian becomes o

‘ “L,2 2y Y2 2y

() mlnnymgnget) = 5 (0" +0,7) + 5 (0" + n,") +8nlaymynanyee) o

That is, the linear part of the equations for mn has-congtant coefficients

wy and w, and is decoupled. The equations




{a)

(b)

(c)

{e) |

703\ { hnz 0 wl
?2 g nhnl _ uw“ 0
’?3 hn 4 0 0
7 4 h'n5 0 0.

jwhereas the old ones may be writien

g1 K.gz
Kia

“54 Kes

o0 O

At first we dc not consider the higher terms but only try to

fifra.nsfom the linear problem, which is in matrix mtation

LLn

>0
i

where 2. and N are the matrices in (Ba,b)

$io
ﬂ%

@

The trensformation is done by a matrix At 5

%A&&(t}: n{%), where A, o =hA  anddet A=l

Tn the appendix 1 (page68 ) is derived, that this meirix has the

following form

R R | =1 ool
A = URET T = RDXT s R

The symbois Uy, R, D, T, X, F, have the following meaning:




{a)
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cosmlt sim)l‘.; 0 0
msimlt coawlt o - 0 |
U‘“i; = o) 0 cosw,.t sinw b and
. 2 2
0 0 msiw2§ coswzt
i i 0
i ed, 9}
R=op o ) (with p arbitrary) has the property that
0 4] i i
eiwlt 0
miw.it
R = = +=
U‘ﬁR DQZ eim 21,

T, is the transfermatrix which solves the equation E = NE by

£(t) = 1,£(0) = 7.8

X‘i; is the matrix, the column vectors of which are the four?lmuehsolutions'

{x) . i ! , o
£'/(%) which are defined by the property, that {because of '1",;‘},2“@ Tnga
(see eppendix p.H

(s oy o g ) _ (x)
g {(tw2m) = ﬁkgk(t) =T,0, 8 " =T MNE so that
/™
(k) (k) " i s P 2 =
Tanc = }kgc, or T an@ = X@ﬂ. 3 D= Aﬁ)\ = DQn
7 _

(The identity of £\ and D, is proven in the appendix p.70).

21



Therefors the initial vectors ggk) » which lead to the Floquet-

solutions, ave the eigen vectors of szo Then Xt = ?txao Apart fromw a
factor which may be chosen to be one, the Floquet~solutions are pairwise
complex conjugated [because the éiganvaluas of Tz—;;’ vhich is real, are
alsc:] : 5(2): E(l) H 5(4):. 2(5)@ We shall speak of X, as "the™ Floquet-

' te)

solution because Xt'aonaists of the four inde}pendent 4 as columnvectors.

Finally Ft is the periodic part of the Flogquet-solution, which can
namely be decomposed into factors in the following way (see p.72)

X, =FD, vwhere F = F and D, is defined sbove.

T Tyt te2m © Tt t .
Baecause Dt is periodic if and only if Z%’ z'g s Py q integers,
we shall call D, the non-periodic part of the Flngt-solution (inspite of

that it is practically slways periodic).

The unity determinanit of At is achieved by normalizing the column-

'vectors of Fo and then adjusting the numerical valwe of p in R.

E. Significance of the firast transformation:

o

We now consider the significance of ocur transformation and try to
gee what the new coordinates v mean. Becsuse of the importani properties
of the Floquetasolu‘éions it is most natural $o express any solution of

the linear equatians as & linear combination of Floquet vectors: ,

g(t) = alﬁ(l)('%;) + azi(z)(t) + a5€<3)(t) + 342(4)(i:)§ X e

Iif

where a
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Then with { 6a )

o] =d
1y = Até = RDtxt o X, = RD,a= RPF

% % g ° &

Y

That means, regarding the two last forue, = is {&'{‘Eﬁ.?ﬁ,“t from the

constant R) the"non-pericdic part” of the solution £ and A, is {apart

from R) the reciprocal of the "pericdic part" of the Floguet-solutiosic

Finally we remark that, if E has wesl compomenis, ihe same holds
for m . Because the a(k) are pairwise complex conjugaisd, the components

of s wmust be too: a, = & a=a, .
2 A

Thus

Dt& =

Since the cclumb-vectors of B are sgain palrwise -onplex

conjugated, N = RDta has real comporents.

In the following we shall only consider the motion of n and ite
atability. If quantitative statemenis on the particles’ amplitudes are
wanted, one hag to transform the results for n back duto

=1 =1 . . . .
A n= ¥R no This, however, is not always nacesmary, because sometines

&

G =

n  zlready provides enough information.
Thisz is i;he cage if F{h” the periodic part of the Flogust-sclution,
behawves reascnsbly - This is to be investigated in sach szplicit case
) one
soperately. No general answer ie here possible, bub/can sxpress "reascnabls

behsviour” of P_ in words: The badedransformation is nut pecessary if the

t
lipvear motion bas the following character
i
s P PN
e . . e _ ”\,k ’
Y e I 4 L3 & A
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which are limiting cases corresponding to w, , &1 or w , > 1
1,2 1,2

reapectively.

For the AG-Synchrotron the first is true if one considers an ideal
mé.chine with many structure periods per revolution and low Q-values because
then w

1,2
5 = Ql 2/M € 1. The other picture is true if one considers a real
2

are the mmbers of betatron oscillations per structure period

wl»
machine, where the structure period is necessarily 2n. Then W, o= Q 2? 1.

) e
The ideal machine with superperiod leads to an intermediate picture

because w. are then the numbers of betatron oscillations per supeirperiod

1,2
and have the order 1.

Of course we presuppose for all the following, that ithe linear system
is entirely stable. By the way, instability of the linear system would
express itself not in the periodiec part Ft but in Dtg where wy and w,
become then complex, so that some elements of Dt oy exponemtially? As
is well known from linear theory, the real parts of wl,Z obey then the

relation

-y Enlwl & nzwzj = p (integer) where n +B, =2

n D, 20

We therefore assume for the following

nyw, + nyw, sfe p (integer) for Enlﬁ + gnfggé 2

So far we have considered only the linear part of the equations of
motion and ox_),ly‘ in this restricted frame n has the meaning stated sbove.
If instead the whole sst of equations is considered, mn cannot be inter~
pi'eted longer as "the nm-periodic part” of a solution which is combined of
Floguet solutions. Instead we must now read all thisithe other way round:
We have constructed a transformation A*Z: by which we can simplify the
squations of motion. The new variables m follow these simplified equations.
Suppose them to be solved, then the actual motion of particles is déséribed
by E,ym A:lng Neither £ nor n bave then, in principle, anything to do ‘
with Floquet solutions. In fact, the latter only served to consitruct a
suitable transformation and to illusirate its aigmficance in saying what

£ and m would be if the equations were llinear.
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¥.The complete first transformation

Our transformation At transforms the linear equations with pericdic
coefficients into such ones with constant coefficients. But we wish to
transform the whols set of equations including the nondinear terms in such
a way, that the transformed equations are again canonical (i.e. follow from
a hamiltonian), For the limear part this is achieved by suitable construction
of A, o But as it is well known, it is not generally trus, that 1f the

+ ,
equations for & follow from K(E,t), the equations for n = ’Atg follow

from K(A:ln,, t)o

Therefore we must ask, how we get the new hamiltonian, of which we

know as yet only the quadratic terms:

’ [V} w,
L, 2 2 2 2 )
b (n) =75 (”1 +My) 50 {(n 3+ n4>

This we achieve with the formalism of

which is used throughout the papsr: v
If thers is a set of canonical variables and equations

I = KyQ

ke o

¥ 2 ngyl' ‘ .

5 =X with a Hamiltonian K(ylyzy.jy 4t)
3 4

$

Y4 "3

and we wish to go over to s new set of cenodical variables obsying ths
equations

9 =0

ﬁzf:a@Gul

G = Gy

o
uj

4

with a new Hamiltonian G(uluzujudgt)@
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This transformation can be generated by a function S(y1u2y3u4t) where

_ Sy * defines implicitely the transformation y&—p u.

L]
Then G(uJl 2 5&141:) = K(ylyzyiyﬁ) ST

with the y's expressed as functions of the u’s,is the new hamilionian.

Assume the four equations {a) solved for y:

=¥ (uluzuﬁu y t)
yzy<uaut) : vy y)
2 ul 23 then it follows that the Jacobian L 23' 4
= y,(u,unu,t) : dluyu 2%3%
V3 = I3\t Uisty

¥, = 34(11;11321;3114’!;)

This property of the Jacobisn is necessary and sufficient for the

transformation being cancnical.

We now treat in this manner the transformation of the hamiltonian.
¥We have the coordinate transformation 7 = AF with det 4= 1, so the

transformation is canonical, Hence
. : 93
h{mymyngn,t) = K(ZE8,88) + 5T -
If we split the hamiltonians in the guadratic part and the higher

termg, we have

+ Ah = “"‘“’(nf n25’ + "’"“(n} n4) +ah(n) =

KQ(A n) + 5 + AK(L™n) .




(a)

Here we have inserted E = 8% and so the old variables expressed

by the new ones. Because A was a linear transformation, 5 must bs a

quadratic function and?;% does not contribute to Ah(n) which therefore is

simply equal to AK(A™Mn), Thus without knowing 5(g;m,85m,t) explicitely,

we can state that

[#) i) .
1 o w;‘- 2 AL 2 P a-mgs 7 2 P 2\\* mJ‘LV o 3
h(ﬂﬁz”}%@ﬂ =73 (”,1 )+ (ﬂ5 & Tl o AK(At Ny t)

is the new hamiltonian.
h{n,t) has again pericd 2 because K(Z;%t) had, and A, has too.

This leads to a statement, which in several respects is useful.

If the equations of motien in an AG=Synchrotron can be written in
canonicel form, then it is always possible to replace them exactly by
another set of equations which have constant coefficients in the linear
part and of which all coefficients have period 2% (for an ideal machine
the structureperiod is assumed to be normalized to be 2a). The conmection
between the original coordinates and the new cnes involves only the
solution of the linear problem. So the equations

¥ 4 nam = F ()
are equivalent to the other set

£, + By Xy * BypX, = Fg(xlxzt) with constant frequencies w, and w,

i ue =0 (b Agh)

co

2 .
fig vty m, = 9, (nlnzniﬁ?_t)

T g means, that the effect of nousinear terms in these mew coor-
dinates is described by the deviations of thess coordinates from sinusgidal
motion, the irensformation back to the original particles coordinates being
unaffected by nondirearities. We shell assume that this linsar tramsformation
back to the 91d coordinmies behaves quite noxmel i.e. the linesar problem

has a solution which does not lsad to large amplitudes. If this is the case,
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wo may investigete the new coordinates under the following aspects :

under which conditions for u)l,, w, and the non-linear terms is it possible
to excite large oscillations even if the initial values are small? We

shall see, that this depends first of all on some rationality properties
of wy and W, and secondly on the grade of non~lingar terms bxat not so
essentially on the detailed structure of the right~hand side in the above
equations. This comeé, roughly speaking, from the fact, that the left-hand
side of the equations looks to the right-hand side selectively, it fears |
only those Fourier components which are in or near resonance with its own
frequencies and does not worry about all the other terms. So, for instance
it is, apart fyom a numerical factor, almost irrelevant whether the
coefficients of the right-hand side, which have period 2m, are pure sin and
cos functions or any other periodic function including §ariodic’ S=functions.
This gives some confidence into results coming from analeg meodels which work
with a two-dimensional linear oscillator of constant frequendies and exter=
nally introcduced non-linear terms, the coefficients of vhich are sinusoidal
or rectangular shaped functions. It is to believe that these moaels,_..one of
which is beginning to work in the CERN-PS Group, will show all essential
features of the behaviour of the particles. The existence 'oii‘.ﬁhe linear
transformation At derived sbove justifies therefore the use of simplified
models and slso the application of perturbation methods on the equations

with constant linear coefficients (which is relstively easy) instead of

the original ones.

Always keeping #n mind that the transformation back to the

1

original coordinates A“l = F R~ must be considersd separately and
1%

t
carefully, we deal from now on only with the coordinate set n{t) and the
namilionian h('n,,'t}, end we shall refer to these two as to the original

coordinates and the origipal hamiltonian.
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G, The second transformation

In order to inveatigate the behaviour of n{t) we ahall meke a
further canonical trensformation which serves to simplify the bhamiltonian
by removing its explicit time dependence and decoupling the two directions
as far as possibla. For all practical cases it must be presupposed that the
norsinsarities are small (in the ssme sense as for a perturbation treatment)
and that therefors the transformation has somewhat the character of an
infinitesimal one. This has one consgiderable advantage: Suppese we have
transformed into & form, where the behaviour of the new coordinates is sasily
 discussed, then it is not necessary to transform back to 1,  since this
does not change very much the results, because the new coordinates ars then
equal to 7 plus small higher terms. Therefore we need not worry' about
the significance of the new coordinates and can, without great error,
interpret them as if they wers equal {0 7. In practical cases it is e'caaily‘
decided whether one can do s0 or whether one must transform back: One solves
‘the transformation formulae ( i8¢} by itsration up %o second order terms and
sses whether they are swall or not. I not, them either one has chosen the
transformation unsuitable (see later, especially 1.24/25) or the initial
amplitudes are slready too large. In the first cass one changes the trans-
formation end in the second one, it is perhaps sufficient to transform back,
using the explicit transformation as found by iteration up to quadratic terms.
If not, thén the whole method will practically become toc complicated to
be useful for such large initisl amplitudes and one must restrict oneselve

» 140 smaller ones. Soms of the general results, however; do not s0 much depsnd

on the assumpiion of small nondinearitiszs and remein valid even if it would
be no more justified %o interpret the new coordinates as equal to 7.

We try to determine the generating function 5 of this {ransformation
in such a way, that as many coefficients of the new hamiitonian g a3 '
possible become zero or ai lsast sonstant. But we have to demand that S
is8 periodic, so that the transformation bhetwsen 7 and y is aslso periodic
and we are sure, that if we find y staying in limits, 7 cannot run away
after soms (strictly speaking: short) time. But even if S is pericdic,
it could happen, that y rewains small, buf within each psriod of the itrens-

formation n assumes very large values. This can be excluded if we demand

also that the coefficients {of period 2m) of S have small amplitudes.



(a)

(v}
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I will turn out that by these conditions
8) simplest possible form of g
b) S pericdic (strictly spesking: mearly periodic)
¢) emall coefficients in S

the generating function S as well as the new hamilitomian g are

almost uniquely fixed. But it will also turn out, that strictly speaking,
the condition c) is impossible to \f‘ulfil because of the same difficulty
which, in pesriurbation theory, is very well known under the name “small
denominators”. Fortunately, this does not affect the practical velidity
of the following treatment provided, that the initial values of the
variables are not too large. (for this, see also discussion on p.24/25)
This has been investigated from the mathematical point of view for the ome

dimensicnal case by J.Moser (Mo Yo

We sitart now with the following equations:

ﬂl = h’nz

N, ==h '

2 57 5 22

; h(ﬁ1ﬂ2n5n4t) = (n]:% n2)+ (ﬂ 'n4)v &h(nlnz%n ‘E')
T, = hm

3 4

Ay ==bg

Abh contains terms higher than quadratic and may be ordered in a
sequence of homogeneous paris of order n
{

i Wmoaaoh % onocoe

Wo transform to a new set of variables, which we call vy by means

of the generating function (see p. 13)

B(‘quz?;}yd‘i:) = ¥ + ¥y * 8(3)1} s<4)+ coos00000s

vhars s(n) mesns a homogenesous polyncmial of degree n.
Then

yl = syZ = 'nl ¥ soo (n) soo

:qz = B?rsl &= y2 + ooo (vi) 0eo

ys = By4 = 7!3 F oo0oe (n) coon

N E B = Ty hoees sé?»f 0oo
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o&. the transformation becomes the identical transformaiion if nomlinear

é‘i‘ems are neglected. This is bscause we do not wish of pourse to transform

o

H

nore than necessary: The quaedratic part of the hamiltonian shall remain

- unchanged.

The new hamiltomian g(ylyz%y 45@’) becomes

) = A V

‘and we wish to make g a8 simple ag possible. Assume ailse g split
| into homogeneous parts'

ga%‘ €fy§+ yg) \ary (y3 + y4) + gm; g(n)ﬂ-

We hawve to equate parts of equel degree om both sidss of {@). For
this, it is still necessery to express the old variables n as functions
of the new ones or vather, because ithis iavimposaibleg 1o write both sides
of 'the equation in those variables which occur sxplicitely in s, namely
¥y M3 Uy and to use (3,8:) to replace y, m, Y5 wherever they occur,
by deri'mtives of 8. 7Thia yields

fiy;@;‘ (32 & 2\,' ; w (3)(5 | .l o (4)_& on =

27 325» 49 3’4$ -“, " g # noon =

(4)# (3) (4) R
(\OO .fz)ﬁ 'J Q}'t 5 o 00

2, 2 (3)
m;( )"*M(WB'&" 5 J+ b (711:) ﬂl”nﬁaﬁ jst} +b

Assume ile expansion {18¢) for '8 inseried here. Bquating homcgensous

parts of degree n on both sides leads to

ik f?m (n)) **“'5' (?”'fB (§> )+ ooog@{nlyg%yyﬁ) =

w ). - (11}
(2‘?’,} {ﬂ)) _}35_, j24$(§}'§ & Gooh< ){‘ﬂly‘z’nﬁyd,t) B %f‘% o



c=20m

Here the dots indicate terms of order n containing only derivatives

of 8 5082)  ptipiied with powers of Tys¥yllyedy Suppose the

g(n°l)9 8(!1«*12)“08(3) and 3(3)“00%(5»1) already known, then we have,

because h(n) (nly2ﬁ3y49t) is given,
(n)
e (ye ®m W(n) ) * o (y o .53? g(n)(%yz”syztt) =

¢() ( n1y2n3y4t)

Hore f (n) is a known function and ( & ) therefore gives a first order
partial differential equation for a(n °

{n)

Yhenever possible we try to set the coefficients of g “zero,

(n)

remove a resonance between the inhomogenecus part and the rest of the
left-hand side of the equations., This will become clear if we now pruceed

but somstimes this is not possible because parts of g may serve to

to the

H.Formal solution of the squations for s

First of all we remark, that it is irrelavant, how the variables
are called in thess equations. That is, we may write

(n)_ \n} 3 k/1 m o {n)_ n) k1 m
3 ""zjm h T M ¥y ¢ 8 “Zyjﬂm%%ﬂ} T4

(:n) S {n) 1 kX 1m
Bl Pam M T2 M3y

where the coefficients are functions of time. This may be inserted into (a)
and the coefficients equated. We get therefore the same coefficients
independently of how we call the variables and we may therefors 1o solve

this system replace ﬂl"? ¥y and n3—@y4o




(a)

= 2] =

This gives

Y g(n) r ' a) n
TN A 552)1 v §f’4 ys(ﬂ)‘” Y;Bf,,,ﬂ" 3 )(yly2y§y4t)

t 127yl

£l )(s 1y2y3y4t)

It is now convenient tc introduce complex notation

¥y + iygn 7y y§+ iy P 52

t@%

Yy A, = % ERC/

This transformation is not strictly canonical because its deter-

iminant is not unity. But we can achieve, that the 2z°'s also obey

thamilions equations. For the y's we have

y 1 = gyz

3’2 - y1 and for the z's we assums a 1ew

V5 = €y hamiltopian @ (zlzlzzzgg %) so that

¥y 4 g-ﬂ‘ﬁ N

By Oy =y i, v g, - iy = ilg, - gy )-ile, v e = - 2igy
bacause

) and eimilar for y5 4 and Zyo
g

P N el e

@ij oz @'ﬁl ayg ’(}z Dzl

Tharefore

By = G

) with (}&ZT lz?zg”&) = - 21%(3’13’?753(4%)

]
with ¥y exprassed by the z's.



(a)

(v)
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Farthermore
v i v ;‘:’- = 1«“{% 2 i} similar for y and %
2 4\‘ - c; 7»; - A T’ A2 ’ » ’
27y, "Ny, THRTE T T 354 2

Ve get then, if we denots

(/s(ylygjyﬁ)as(ﬁ 1 Zo%,0)

et e ST

giylyz%yl#t)-— 6 (2,2 1 21% 2%)

By ¥p¥s¥, t /= 5 L8 (3,7,2,%,t)

j
|
\é“ )lz By % 222%;}

I.,

£(2) (v vy 3ar@t)---

the equation(2laln complex notaticns

B

US{n) T o ] P i - w
Dt T izlsﬁl - zlszlj A, %2352 - ‘”"zszz] -5 Ola;2,3,)2,t) =

\:a)
(2,3, 7,2,t)

By this notation we do nol lose any clarity because the quantities

we are most interssted in, nemely the amplitudes of the motion, are given

by yl-r y2 = zlzl and y} -+ y4 = 32z2 o

Writing

rd AY 2

{n} (n) J.k 1 ._m
s = Z, Suam 21 %1 %2 B
Wlm) YT ) d gk “1
¢ L,gm 2 By 2, %, | 0

Jrik+1+m=n
H(ﬂ) (ﬂ) 3 E;k 7 :*13
Boam %1 % %2 %2

§\(:ﬁ, (n) 3 -k RN
: Toam 1 %1 %2 %2



(a)

(r)

.
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s
We get For the m & order coc:zf‘flmen“ts

sz

%

() (m) _ o) i (¢)
gjjéd. + i {«w (x-3) + w fmﬁi)j S4iim fﬁclm > g_jklm

Here the f‘( n) are given fonctions of % with period 2w, wvhereas the

o ®y
coefficients g klm

shall set them zero or constant. The solution of (a), if we abreviate

_(n)

ml{-kwj) + wz(mml') = L1., can be written either by expanding s. Sl into a

are still at our disposal and wherever we can, we

Fourier-series, thereby exhibiting immediately the
demended periodicity, or by means of Greens formula, where the periodicity
condition is fulfilled by chosing a suitable initial valve:. The solution

is in Fourier representation (omitting here the indices jkim and (n})

+ 2 oiad oo -2'-
T i VT 8y
el s;,} s‘)a = = 4 i ’

| A——

‘23“‘& ‘5,,’3:.917

where ¥ and g, ave the Fouriazscéefficien‘ts of £ and g

One sees lmmediately, 1hat one can set all g, = O provided, that.ﬂ,
iz not an integer ps Hence g k:,p = 0 is possidle, If, howsver, o = p,
then the denominator with v = -p will vanish and for all &y = 0 we would
have one infinite term and no psriodic solution. But we can achieve

poricdicity by chosing ia this case
g = = ;: 4 and giving esmp eny desired valuc.

All the other Fourier components of g wo may again set zero as the

simplest poseibility. Therefore in the cass of resonsnce: n i

: : . 2n 3
a} ~ipt 2 fn‘ ~ipt |4 .
‘{lﬁ () = ~@ AR L J - s L Pl i a = s fiilm () e,x,p dzg




(a)

(v)
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In the integral rsprasentation the periodic solution is

1ot then
o i inr X :
a(t) = ey [f v+ 8 e ar , which is uniquely determined by
@ e~ g -

this integral if /% Zp.

Ifnn = p we obtain again zero in ths denominator and must

compensate this by demanding

{2

. b g ‘ )
J E’(t) %%g(a?] 6"P¥ v = 0 which is identical to (234)
: .

How we shall remove the embignity arising from the fact that in
this case "gf is involved. If namelyfl= D + & with small ¢, we demand,
that the solution behaves continwously for & = 0. By expanding (a) with

respect to £ we get for = = 0.

£427

oIt ; '
§§§m(t) Z ' oo g‘fggm (k) 4= g,g;]),m( )} eip?"dr

with ggkim (¢) given by(23e). This is for _Q = p

of courée, this corvesponds to setiing sggm » =0 in the
.
Fourier solution {as sesn by the argument of continuity ).
Forn #=p (integer) we can set g§ n) (t)z 0 and get

Pcen—

43‘3’ () M pup (imteger)

The above argument of continuity forfi-sp has a practical reason.
In o physical gystem the frequencies wl and w,, ars always datem;neﬁ tc &
finite accuracy and thersfore numbers J,k,1,m always exist to make.n2.
integer withinvhe physical accuracy. ¥e shall be interestédg espscially in
those cases, where this cen be achisved with low values of By = {k-v-aj) and

n o {m=1), If vy and W, change a little from such values, then cne generally
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needs large n, and n, to make .i again integer (cne-dimensional example 3

AL
Y% + v is a ratic of large numbers, if ¢ is small ). To do so, would mean
to compute for the new values of w o, the transformation again with
?

entirely different results. If namely for the case of Ll = p with low
oy =k-j and ng= mel (and low j,k,1,m), the corresponding gézlm(t) '
with low. n, had fo be adjusted to remove resonance, this is no longer

necessary if W, and @, have slightly changed because thsre is then

(n) n)
o Oc )
8 skcim g :}klm% The ' resonance
occurs now for another set J° k' 1Y m! in & very high order = in guch a
high order perhaps, that we ueed not consider it. We may then resign to

demand periodicity of S in thias high order and solve the equation for

no resonance at all for So we may set

Bé?;?}l -~ with initial ecndition 8(0) = 0. Tn this high order it will
build up very slowly and is to be neglected even for considerable large
times (see p-31). But we have thexi the curious behéviour that a small
change of wl and w, would bring to vanish g-coefficients discontinuously
and bring to change s-coefficients also discontinucusly:; At the low-order
resonance (j,K,1,m small numbers) we have enforced the s-coefficient to be
periodic with finite amplituda (by adjusting the g-coefficient according to
23¢) but as meationsd, we wore still free to chose .any desired mean value.
Very nsar to the rezzoné.nce (ioeo with very slightly changed wl and wé) we
do not need more to adjust the g-coefficient and can set it equsl to zero.

This, however, would have the consequence of very lavge amplitudes for

the s-coefficient { of order &i ?)o It seems therefore reasonabls to
investigate small environs of a "resonance line” (ih the Wy wgeplane)

| lemf% Byl =0= P by keeping the resgonance destructing g-coefficient in
the equation and giving it the same value as for the exact resonance.
Then the s-amplitudes behave smoothly within s amall neighbourhood of the
resonance line. So this is the reason for the sbove argument. Of course,
the pesighbourhood of the resonence line, in which this is allowed, must be
taken small., Sov small, that the higher resonance lines nsarby (thers are

of course infinitely manyl!) are all of considerably higher arder than the

goma that has beon considered.
i
There are cases, however, where ihe smoothness argument doss noi

1

igapplye Whatever the values of w, and w, are, wl(k@j Y wzimm;}l) =a=p=0
(which is, in the above sense, an integer) occurs if k = j and m = 1,

‘r;.
i
!
i



(a)

?’f’zzm by (238) g{n) is simply & constant. Here again s‘ ) ("H is a

j1i
pericdic fmtion vith undetermined mean value (or 1nitial va,lue) and there

is at first no reason for giving it any special value. In this way,from
each equation with kej, m=l we obtain a new free constant and these
constants of course enter intc the right-hand sides f(?kglhﬁﬂ of the

' ﬁquation& of higher order and accumulate there. In principle it would

probably be possible to leave them undetermined when they just occur and
to use them in higher order equations, where again j'= k' and m'= 1°

%o bring the mean value there {zeroth Fomtierccefficient) 6f

gla?)

“j“l ‘1" to zero. Thers it would not be necessary then to adjust

,g!;; 21311@ which could be set simply equal to zero.

In the present general exposé it is bardly possible to see what
would happen if one keeps these new constanta at first undetermined and uses ‘
i;hem whers they may be usefulo This would only be seen in explicit exemples

because the functions f iKim (t) become, with increasing order mn, rapidiy

very complicated and ’co pursuit undstermined constants into higher orders,

makes them s%ill more complicated. However, our aim to keep the coeffigients

g of the generating function S5 a8 small as possible, suggests to put ths
. (n)

mean valus of all coefficients s 4311 equal to gero and to use the
g=coefficients to remove all meonances forsflL = p = 0. This also bas the
economic reason of kesping the involved work in expiicit cases low., But
there might arise examples, where the whole question is to be considered

ans%Wo

Pinally we mention that the soluiion of the whole set of eguations
leads to a real function S, which is necessary to assure the nevw hamiltonian

i . . "
g(yly2y3y4t)w S ¢(z Zy 15252t) and ihe varigbles yloooyd being real too.

The proof is given in the appendix 2 (p.73 ) Thislms the comsequence that

=(n). _ (o)
g;;:ﬂ,m 31{?:111
zn) _ (a)
sicin = Tiggm

=(n) (n)
gjzlm “gkgml
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Jo Discussion of the principally pessible instabilities

Only to exhibit the kinds of arguments involved, k t us at first
assume the scademic case, that the values of Wy and w, &rs auch that
thers are no integers Dy Byy P at all for which ww, + Dy, = P &= 0
lis fuifilled. (wf: s wy= 1g 2 for instence). Then the only resonances
loft are those with Nz D= P o= 0 and {2%e) shows that all g=ocoefficients

gggil ars constant and &1l the other cnes ik  J and m% J may be set zero.

E:F“ the following we replac.e gj Ik by g ,jk} Thus the new hamiltonian is
independent of t:

! ] - - \2
;G(zjL 122z2) = am,wlzlzl miwzzzzz 4 820(2’1%:9, o+ goz(zzzz}

fa) 2 2
-+ gll(zlzl)(zzzz) # ooovo = g(rlg r2)
It ir a function of
2 2 2
= mE = yey, e
2 - 2 2
T, = B8, = yzﬁ 4 only
Pirst of all we see that in this case G(zl 1 %o 2) is & constant
of the motion or an jnvariant under the (camnicaj,) transformation
{63t + 5 |
This is becaunse
Z; = (}51 and 7, = Cr»z»? o The equations for %y and % follow
(b) . - by complex conjugating:
%,, = csz and gz = Gz,) , 80 that complex conjugated variables are at

the same time canonically conjugeted (as it

musat be)
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Then for any function @ (zl 1 zzzgt)
8 _30 . 2 ch L2
| actae Bl v B B0, b, or
{a) ,
|
U .
at "9t T G;Jﬁ)zl - Gzl‘%’?zl ¥ 0’22@52 - Gzz'?”z"z
This is zero for ? = G because?‘g = O,
ot
_ But even more:
E -
L With § = 2,2
. d"9 e o .m _
e (rl) = 2)Gz, ~ 2,6, = 0 and the same holds good for 2,7, o
This one immediately sees by mserting the geneml term
\n)(z.ﬁ )J(z )1 into this formula. So we have:
It Wy and w, are such, that no integers nl,, n, (positive and negativa)
‘ exiat so that By, & D, = P =}= 0, then (27a) is the transformed
(o) homiltonian and ‘
2 2 .2
r, = ?‘lgl =¥y ¥, .
- are constant. The motion is stable.
) : [ 2 3 114
| r.; =82, = Y§ N yi (for the definition of "stability" see 30~32)
}:’

For small amplitudes, there is no need to transform back to the
7 coordinates because 1 = y + small terms. But {28b)is stili true for

large initial amplitudesz then of course one must transform back because

i

i
[

the transformation may introduce large osclllations into the n - coordinates
 {see p.17/18).

In this case one can alsc give the explicit solutions

N © 3@
{ g =G = "‘"(""‘"" ° ' = g ° o | =i E = 1,2
{c) %, o = szﬁ) zp 3 zp(t) Z . axp E _szpt p =1,




{a)

(o)

{c}

(a)

Here 9, and g, are constant "effective frequencies”
26 2 2 Q212 2 ‘;
&D( )mw + 3 2&20 1 ‘%"gll 20"}' X “}‘Isglk 30 20'4?" o'so’

21 2ke2
Py = 4 3( 7)) T2 E?g02 20 * 311 10 oo v ke Tip Ty C°i§

because z 2 =T = Tr = const. The 8 ®&lways ere purely imaginary

nusbers (see 26a ) and «pl 2 are therefore real. . The "frequencyshifts"
P,y and 9y, are the most characteristic features of all non linear
oscillations. They will become very importent for the suppression of

resonances. {p. 56).
Now we abandon the assumption that nuw, +nyw, =D = 0 is impossible

and consider the more realistic case that this is fulfilled somswhere, say

for n, = k-] and B,= m-1. This determines at once a one-dimensional

manifold of w-values for which it is also fulfidled, namely the

" 1] X e
regonancs 1ine nlwl + n2w2 = Po
We shall consgider a fixed resonance line, i.s. given valuss

nl = fed

n, = mel and p = uwy (k-3 )+ wz(me»l)‘ =nu + W,

Obviouély there are infinitely many different values of k, j, m, 1
leading to the same %9 D,y P and for each such combination we must

compensate the resonance by

() mlp’i: (n) (n) j-ga (2R (n) ipt QTL o
Bicintt) = © MmO Vyan | ® ﬁ fpant e ab j conste

In this case the transformation Ny remaing periodic with small

. coefficients but the new hamilionian contains © explicitly

9 o000

?\.’75‘-“4

S L Jk
t)fmiwzz«:iwzz # coo ¥ €@ ijlmll

&lz, 2 2,3, 1% 2%5%)

and the arguments used for the statement (28b) bresk down. Whether thers is
stability or not must be decided more or less expliciily and for the

monent we must agsume the possibility of instable mot 'ns. Thersfore

' on any resonance line principally instability can uoccurm This lsads at



H
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firsgt sight to a hopeless situation because the wlwwg plone is denssly
covered with such lines and one can fear that thexe is no stable motion

at all = in contradiction to experience,

K. On the definition of “stability"

Before going ahead, we must define more precisely the term stability
but without doing it in a very rigorous mathematical way.

Stability in the synchrotron means practically amplitudes of less than
a few centimeters. Infinity is here the same as the aperture of the vacuum
chamber. Even if in a nonlinsar system no resonance can lead to infinite
anplitudes because of frequency shifts (29a)9 this stabilizing effect of

. mnlinearities can be practically worth less. Stability in the sense of

bounded amplitudes is not a useful concept because it is too weak. In

l1is sense nearly all nonlinear systems will be stable. There is the
definition of Liapunoff according to which a solution is stable with res=-
pect to a given one (here y == 0) if it remains always in its neighﬁdurhoodo
That is here: Small oscillations remain smalllo This definition is in some

respect too strong because we may wish to call a motion stable even if it

{ s away from zero bﬁt has & bounded amplitude within the allowed aperture
' of the vacuum chamber. So our definition has to keep the middle and we
shall call our system stable if

1) it is stable in Liapunoff’s sense around y=0 but also if

' 2) it is not stable around y=0 but hes small bounded amplitudes. We

| We shall distinguish these two cases as "strong" and "weak" stability

raspectively.
But thereis another peint. ALl that we can say concerns terms up %o

a finite order and there always remains in uncertainty of how the situation

of the system will be after very long times. Suppose the case considered

| ahove, where mw)+ By, 5= p for all ny, n, == 0, The rew hamiltonian

11 22

show¥s a stable motiono But in the transformation cccuxr coefficients,

widch indeed are periodic, but which have very latge amplitudes of order

e where R+ n, = ) (see (240)) and .. approaches mors and more

{an integer for suitable (high) n, end 0. On the other hand, the functions

ff‘gm become smaller and smaller for high orders if the coefficients of
(‘JIL

| the original hamiltonisn decrease mot too slowly. It is difficult to
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oversee this and to decide whether the fézzm decrsese {ss.ay than the
ﬁgf%ﬁ; o A vough estimate, however, may arise from the following
congideration: from ordinary psriurbation theory, using the representation
of ths solution by a series of trigonometric functions, it is a well known
fact that one can proceed in twé ways: din one way one solves the
equations iteratively beginning withbthe linear pert, inserits the aolution
into the non-linear terms and integrates the new inbhomogensous system and
80 on. Then one gets the "secular terms" which increase with t, tQOQQ o
The other one is, to begin with undetermined effective frequencies which
are then determined in such & way that the secular terms vanish. It can
be shown that both methods ars equivalent for not to long times, bacouse
the sscular terms correspond exactly to a Taylor expasnsion of the tri-

gonometric functions with changed frequencies around the original ones:

s8in L(w + z)m)*zs = 8in wt, cosfHwt + coswt, sinfut

& 2 T - 3
ginwt. &L s w%m{’ ooij 4+ coswt gfﬂwt A M“@" ooo

i

23 38

50 one can alsd renounce here on strict periodicity of S in high

orders and imsgine all terms pear t¢ resonance fo be integrated with the

, . {n)
initial condition ajklm O giving
L :
(n) _ <ins ; .(n) sar “ L
8 eig = © j@ Cam © & o St a=pes
(n) (n) ~ipt !
then fjil £ soooo fﬁkﬂmgmp @ 4 ooo and the
Jeading term of s<n) bacomes
. Jkim
( w3 L% iet | 7
ngiﬁzm’{{‘?) - fii{m . o 3.£0.% lgl ,twl e f(n} ﬁrmi‘{lt
it ,} A gp :J‘e,ﬁv p b o gk‘},mﬁ-”;pﬂ) 7 o

!
If, in the originel hamilionian the coefficienis dscrease Tasi snough
with increasing order (or if the smplitudes are sufficiently smsil)
¢{n) will be a very small number and s(n) will remsain small for

" jklm, -p Jgim
long tims ., OF course, there is no increase proportional 4o time for
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‘very long time intervals but only at the beginning. Later on it
increases more slowly and finally decreases again, rsaching a maximum
anplitude féiimgap/(ixmp) as the periodic solution. But by renouncement
‘of strict pericdicity of S in high orders we know that for t = C the
'acaffieients :ag;;m of high order start with zero amplitude and there=-
fore no back-transformation is mecessary - for a long, but not lnfiniteg
‘time, one can forget at all that there are high ccefficients thh small
gd@nominatﬂrso (A more rigorous mathematical estimate of the influence
Eof higher terms is given by Moser (Mo} for the oaewdimensibnal case. )
Jﬂur statenents about stability are always the result of considerations
'on terms of finite (and in fact low) order. We shall indicate the effects
iof higher terms in the following by speaking of "quasimstability rather
ith&n of stability. 5o we adopt from now on the terms ”5%?093 guagi=-

stability” and "weak quasi-stability" in the just develcpped sense.

i

LoClassification of resonance-lings

( ) Going back to p.19 we see(t?aﬁ 1n(20a)the inhomogeneous part
i“ (-.9
(n1y2ﬂ5y4, ) consists of (ﬂly?ﬂﬁyat) plus terms which come

2
fr@m h(hml)(n1§wlgm5gs Bgt), (ﬁ )(ﬂl 5,359 Bgt)ooococgon

\n 2)(%

(5) (n-1) )
(ﬂl ﬂlnis 5t> and g (s vazya 49y4t)9 py295y49y4¢)ooooq

(3)(& 29T 08 4gygt) where in these functions the derivatives of

s = 3( >% ﬂ(3)+ s(4> (1) are inserted and then all the terms of

cooocoacl

order n are collected., So in the most general case

(n) y o . (a) (n) - (n)

f (7313'273317’4%1 = “’“h (mﬁy2n§y42t> + :9 (n}yz?’s}yé%%) Wmm[p is a
volynomial of mﬁh degroe combined with the derivatives of S§n@L)9 ﬁinwz)ooo

; d)o In the form (23a)w§ere equal powers have been equated, we have

(n) i.m) ()

E%harefore fﬁklm = =2 P * ijlm

where pjklm is a2 more or less

(1) (-2

ge@mplicatad sum of products of coefiicients 8@6yﬁ 9 @QQG 1502090009

1 P <ﬁm1) (sz) and h(an) h(hmz) eoosocombined in such

CGC0O00D

DA e X
"'}\\\9&491)@{:‘ g gk“;p,”'@”«%g OrE 4 2 plg il

ia way that in any product the sum of upper indices is always equal to no



o 3%

The equation for s{?) is then

: Jilm

) (v) 1. (n) (r) (o)
s + 4 [wl(kmj) +* wz(m-»l_)] Sikim <7 h{k}m 2 Sakin  Pikim

- Jidm

and therefore the solution s( ) contains one additive part the magnitude
%@f which is proportional to the absolu’ce value of §ll and ancther
additive part proportional to the abdolute value of pj'ﬂ o ? vhich in
turn contains lower h-coefficients, g-coefficients and s-coefficients mixed.
The latter ones are again partly proportionsl to a h~coefficieant and
_icontain partly mixed, still lower, coefficients. So one can reduce by re-
cursion in this n‘ﬁm order equation, the right-hand side to h§§:’im

S ggz‘l) + (combination of lower h-coefficients).

That means:

Only h ( ) enters linearly into s( n) » All lower h-coefficients are

Jkim Jjxim
contained in S‘klm only in a mixed form and the higher cnes do not
appear at all in (n)
(a) ,jklm

From this follows: if in the hamiltonian h(ninl 57y t) a term of order
n is present, then it will show its strongest effect in the equation for

ﬂg;;!),m” smaller effects in higher order s—coefficients and no effect in

lower ones.

We now consider the equation for a fixed order n=N.

N, i W (¥
2

RO TR P O
A I S L e i L i

Jkim
(b) )

j+k+1+m=H8; jklmz O

o

 As already pointed out, one has to adjust a g§ ¥) (t) if
wy (i3 )+ wg(mal) =JdL = p(integer) and this means in principle that an
instability can occur (see p. 29 ) Thersfore we have called the line

.‘(i,n

wy zmplane)

wﬁh(kmj) + wz(mwj,) =p & resonance-line




(=)

(b)
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We can classify these lines by the following

Tet be  k=j=n, and j,k,1,m all 3 0O,

mal:ng

Then myw, + B, = P (integer) is called a resonance-line
of &ke order My if §n1§+§n2§z= M.
Furthermore, if both 1y and n, ere different from zé:mg we speak of a
sum-resonance=line if n, and n, have equal signs; of a

difference-resonance-line if n, and n, have different signs.

From the definition (a) follows (proof below)

@) Apart from a parallel shifting there are always Jjust 2 lines of
the order M pméen’c
8) In the Nth order equation {33b)these and only these orders of re-
sonance~lines can oceurs N, Ne2, Nedocoooo-
| y) Iif wl and m2 lie on a definite resonance=line nlmf nzwzz p of
the order Bnlgﬂn’zﬁs ¥, then in the set of the N8 order squations

there will be just two, for which resonance occurs. These are for

,g?]z’l“ , &and Bb(tii;)jﬁlﬂm" where the four indices j'k'1l'm® are .
uniquely determined by n1 and n, alone and two of them - one of

the first pair (39,k°) and one of the second pair (1',m') - will
be zero, hence j+k = E%E 1+m = E@zgw

413 this is nearly trivial:

o) gnlgwénzg = H implies
nl hid (H = a)

With & = 09192000%

n I a

2
Por a = 0 or M there ars two possibilitiss respectively,for

?3

a = 3,20.0.M-1 four possibilities at a time. So fogether

2x 2+ 4x (M1) =4 M. But now each line occurs twice

{as nlmf B, = p and as =Ty = Uy, = ~-p) and the xmmber of ‘iines‘
is 24,




(a)
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Lasums the possibility of 1ineorders B-L, whers at first L may be any
integer. Then, in the P order equation, the possible sign combinations
of n, and n, {left~hand column) give the four possible forms of the
equation |mj+/m, = N-L (second column from the left)

B, 1, 5nlg+§n2§: B-L adding and 2k+ 2m = 2N-L 2j421 = L
+ 1+ |ejtk-14m = N-L substracting 2j+ 2m = 2N=1L and ek+ 21 =L
sir | dkelms Ll gy Zee 2= 2NeL, 25+ 2m = L
4| = fodikilen = HeL, gives ' 23+ 21 = 2K-L 2+ 2m =L
e fe | Jektlem = N-L

At the extreme righiit-hand side ovs sees that 1L is positive because

i.k,1,m are and is an even number: L = 0,2,40000 This proves B).

¥} As an example take the second case nlé 4H nzz()g jnﬁtg -Jxrlﬂznzg

T»No

k¢

The resonance~line is of the order N; L must be zero. Again, becsuse
Jok,1,m Bre positive, k=1l=0and J+m=N= gnlg +3n2§o This
determines J zgnﬁand m ;snzg o It is similar for any of the other
cases. One also sess that the multiplication of both B, and N with =1
simply causes & change of J with k and 1 with ms but the resonance-
line remains the same by multiplication with =1,

Finally we combing {33a)and (3418 Yo obteinthe following statement:

If in the original hamiltonian, terms of the order n»3 are present,
any one of these can in principle excite resonance on iines of any order,
but a term of order N will generally have the strongest effect for the
lines of the order MN,U-2,H~doc.., and smsller effect on all the other
lines.

1% will be shoun, hosver, in the following, thaet in mearly all cases
%:,helines of the order M35 (Enﬁ +jn,) 2 5) are not excited at all

(1.0, they ave strongly quasi-stable) and that for the lower ones their
stability behaviour can be discussed explicitly if the original hamil-

tonian is given explicitly.
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The foregoing is quite generally true if the coelficients of the
original hamiltonian decreass with increasing order. If they sirongly
decrease and all have absolute values < 1, ons can even say wore: a
coefficient of the order N in the hamiltonian will cause according %o
{33a)and {34bresonances of the ordes H N-2,N-4....by & force directly
proportional to its absoiute valus, higher ones only by a force proportional
to the absolute wvalue of products of coefficients in which the mentioned
ﬂth order hamiltoniarn coefficient enters together with other Qn@so.These
products have, for strongly decreasing coefficients of tbﬁ.hamiitonian,
considerably smaller absclute values than the Kth srder @oeffieient itself
and may thersfore be neglgcted. Then one would say that the Nﬁh_order term
of the hamiltonian causes only the resonasnces N N-2 N-4... But now, generally,
in the hamiltonien also tewxms of the ordesl=2,N=4....will be prﬁsen; and
according to our presupposition they will imcrease in decreasing omler.

That mesns, the resonance-line of the order Néég for instance, may be
excited by the terms of the orders N, ¥-2,H-4 and N-6 of the original
hamiltonian. But becauze the coefficient of the ovder H-6 in the
hamiltonian is much larger than the higher ones, its sffsct will cover
that of all the latter, which only give small corrsciing contributions.

In this sense one may cowme to the qualitative statement:

If in the orxiginal hawmilionian h(n1n2ﬁ§n4t) the coefficients of terms of
the ordsr n# 3 have absclubte values, smaller than one, and decrease

(a) strongly with increasing h (all this attainable by & simple seale
transformation) then the term of the order N in the hamiltonian dan
excite resonances just of the order N {and practically only this one)

proportionally to the absoluie value of the Nth order coefficients in

the hamiltonian.

- The =sbove mentioned scale-transformation of course cannot change
the physical properties of the system -~ it merely liberates the systsn
of differential equations for the agzgm from sowe irregular order-ol-
magnitude~behaviour with respect to the order n and shifts the difficulty
to the question, for Whiéh range of amplitudes of the aaor&inatas(}éa)

remains trus.




(a)

(»)

(c)
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¥, The unew hamiltonian g(ylyQySydt} at resonance

We hawve already considered the form of the new hsmiltonian

& e . -
2ty = BB 0} T 880 5. GG t
g('{i&yeyﬁyd,t) 5 G‘;(zlzlz2 2‘%) for the case that w and w, dc not lie on

any resonance-line. ILet us now assume that they do:

B0+ D= P (integer) with EREAE

but that they do not lie at the sasme time on any other line.

(1f the case, that w, and w, ile on no resonance-line at all, is considered
as unrealistic of the order aﬁzg then the present assumption is still
unrealistic of the ordersobecause the line nlwf n2m2 = p will be crossed
by infinitely meny other lines. We rather mean that wy and W, 1ie on the
iline Bleﬁ n2w2 = P, not in the immediate neighbourhood of a point, where
another line crosses which is of an order comparable with or even lowsr
than M),

According to(#bB) , the lowest order equutions, in which (2)
causes a ragonance, are of the order X :

S 5 (W) (ﬂ) RONS .

S ein * * iwl(kmj) +w,(o-1)f s Sl = SAOE 2 ;;kJ,m £) 3 d¢kilem = N
and frouB4byJjust two of these equations lead %o resonance, because by
nl and n, a get of indices, say J',k",17,m’ is uniquely determined and by
maltiplying (a) with <1 the line remains the same bul j' changes wi'h k'
and m® with 19 . According to(2%bne has now two g§ N). (£) to adjust to
TEMOve resonance:

(@) oy ~ipt T4 (¥) o it
g{j}gkgquEB(@) = c‘: i '—r ; féﬁa'&ﬂlr} 0% j e y,: ‘:’k"l“mg am
C\

(w) : ipt [3 7 (1) ~Ap; ipt
g&c“ 'L m?(ﬂ T = J, qu“m“’”‘r) arf = e ngﬁﬁl“m“
. o

-
>

For Ly, S A7 P apd - =iy Wy =060, =P regpsctively, whers the ¥'s are constant,
& =b

n (1 (30)
As it has to be {see Appendi.x 2,0:73 ) € gy ipe™ = By sigeqe o Wo 1OV k0w
already how the new hemiltonian looks up to terms of the order N-1 from the
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case without resonance. To this form (27&) ; which remains unchanged

up to the order N=1 one has now %o add the terms coming from

bkt Rl m? 4, ki.30 mP.i?
J Ve 3

=ipt , pt
Tingogime 21 %y %2 % Yevgomoye 21 %y %2

=]

ard up to these terms the new hamiltonian becomes now {we replace

J%51'm’ by j k 1 m)

= = - T ) PRI TR 05 PR -
G(zslzlzzzzt) = miwlzlzl = 1wz, + 8y (zlzl) * ey (4121)(2252)
N .
(4}, - 2 oW - (N) N L
o 8'02 (2252> + ocoomoco gﬁ (2;131) £ gﬁa (lel) (2222)
=0 =31
2 2
'+ + (E)(z Z )% s o Pt 3Gk l-m
ccoT & | V% ‘ Yikam #1%1%2%
o=~ -
2
ipt k- mol
_ﬁ. e ijml lelzZZZ . 0O00QO0OO

(\%‘ is the smallest integer 2 'g)

1

- It is now easy to sese what will be ths general form of the higher

terms:

1} The resonance-line remsing the same, if it is multiplied by an
arbitrary factor. However, only integer factors a will lst
aul, anz and ap integer also., The same réssnance-—lina comes therefore
into action again in 21l those higher squations, where J" = ajs
k" = akg 1"= al and m" = am with & any integer. But then p" = ap and
.that means simply that we shall have higher terms from this argument

of the form
a
¥ o ewiptzj%kzlf%m? ‘
UL 17172 fig and the corresponding complex conjugated ones.

X
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2) Because n, =k-j and 1, = m-1, one can change the values of
Jklm tnthogf changmg ny and n, in the following ways
k—3k +a m—ym + B

j=—33 +a 1—)m + B with a, B positive integers

N~ N + 2a + 28

( Because j,k;1,m are positive by definition and two of them are

zero in the N grder equation, o and B must be positive. )

From this argument we see that any value of a and B leads again
%0 a rescnance and demands anolher gmcoefficiento But p is not changed .
and we shall therefore have terms of.the form

im

-8 m =ipt j.,.k; B
g 232 %%, (‘_’15 ) (z )

| : 1
T gy ge® Ee 1 % %2 % } = Vjﬂ'k"l”ﬁ“i

and the complex conjugated.

From 1) and 2) together follows that all higher terms containing the
time explicitly must be of the form
2

z
112
J

-ipt 3sk 1 o (z.3.0% (2.2 ) (and complex conjugated)
o > 171 272

multiplied with constant coefficients. Here & = 1,2,3.00 @8,8 = 0,1,20000

(a1l independently).

Finally there are still higher temms not containing the time. They

are the same as in the non-resonance case. 1If we denote

~ipt kalm‘_

e 232122“"@“(1;)
2 Z. mrz

5 N |

z2.2 Wrz

2% T T2

the total hamiltonian will be a power sevies with constanit eosfficients in

these three variables : r§ P 1'; and o~ (t)o




{(a)

()

Ae)

o AD

This is only formal - nothing is said on convergence-

Finally, i‘mm(ﬁbﬁ)g@"(t) must have one of the fellowing formas:

BHooo™
[;?nﬁ =
R
e . I
- (t) = 4+ ipt .< 1 2
R I I N
1 ¢ %2
i I Y o
\\1 ) ‘ ’

No The third transfommation into the normal-~-form

We can now get rid of the whole time dependence of the hamilitonian
by a simple rotation of the coordinate system. This third transformation
can be performed not in a general form but is specified by the resonance-

1ine on which w, and w, lis. The generating function for

1 2
nj;mf 1,0, = P is given by
W(zﬁ:f&t)m(zg«kzi)exp { g0 that
& gwgl 2y = Ey eEp s_gj’ n+ D %’;_‘
1 2
5 Y~ = o i 4 p .Ln - b4 z
& =¥, 7y = &y exp o 2% = Y
Loe A
or . obviously
— D 5 = EF
a =W, 5, = £, oxp| -4 —— Aoty = Eoby
Eg /58 . [ A Dl I+ 2
_— - . , B ]
o = M2 % = By exp - n 4+ n
- 1 T2 -




(a)

Then & tem & (%) goes over into

Jr dom o0 g T oskdem
%, 7, = expﬁngptj expl i (=jHk=1+m)0 e BIECE B ET

;. - L *@i n? I I e

Y I 2

oxp |~ipt 21%. %
P{ #1557
the twe exponential functions are cancelled,

=1lHR = nL b,
o2

Since «Jike
The new haniltonizr becomes now

Y

£) - Yy

In G the 2's are expressad by the

i e g = Glz. %
(g,8,8.8,) = 6lz7 2.7,
Eig very sinply by replacing z--F
U
expressed in € is

omitting the exponentisls. vy .
§252 } so that the final normal=form becomes

?t W 4 0 L 7
172
M Eek) = -illa- mR=) £ T 4 (uy —2—Jg F
LTLTETE R R ¢ 1 . !
4 By By -
u ”
} .
LY 2y} =\ 7 B
=2 ﬁ
\( ) £ ke‘; By Guco )t woe = *"\P (??2 o ¥}
‘) ‘al o 2 IV woq B 25-""
i "*‘“"
E smallest integer &
2
! :
with U= g gkgféa? (vhore either j or k and eitber I

Because:ét; is purely imsginary, I? is too.

Y

or m 18 Zero)
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O, Discussion of the hamiltonian T”(é;l&j %;2%;2)

The hamiltonian/ has two important properties
1) it gives the equations of motion for the E-coordinates

o

=12 s s;?ram i ' ;

&1 P&l ;o &y = £2 (and complex conjugated)

2) It does rot contain the time explicitly and is therefore a constant
of the motion or an invariant function under a transformation
t—>t + & (see 28 ). This remains valid, of course, also if one

expresses everything egain in the z°s,

One can now try to solve the equations of moticn (which indeed do
not contain time=dependent coefficients but are still coupled by non-linear
terms)o In special cases this may'bé of interest and can be done by ‘

numerical methods.

This requests 8pecialﬂinitial conditions and will mpever lead to
general statements. '
Tn the case without resonance (p. 27 ) we came to a quite general

statement ( 28b) about stability, which was based on the fact that x? and

FQ
"2

were invariants under time change. It is now our aim to find a similar
get of invariant functions of ri and r§° ' R

. Po The two invariant functions

. L _d 2 a 2
As in the non-resonance case we Look for at rl and at r2 s

20.:.0”‘ . 2, _ ] ﬁ . gopﬁq., ) m -
(rl) =5y H 56 = %173;1 " Byl (rp) = 5;23’;;2 e

Now all terms in [ ave of one of the three forms (see p.39)

T T o3&y, =B :
6o B18y) (855, or
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j*=3+A 192 1 4w A= 0,1,20000

et ok h e n e e 01,20, R0cPeRdently

or

J" k'? TL,' m"
Vymerpoe®y &1 82 %2 witn

u
&

J" = aj 1" - a = 2939400005
k" = ak n" = am {the seme for all forms)

Applying the operators

_F - 2y°
D= a3 " 8o (r) =
we have and
F 2 2y _p
D2 = %5, 'az;:g ST (ry) =,

for the three types of terms we find

g (5555, =0

i

O 8 I I
D, o a‘j‘-ﬁ;f E% a’;‘”

3. rd UK
1 Yyogerome =1 (k-3) Yyg0y0mo®) %

] ~v U L AL ) ) j"-'- v, mi
'Di‘L V;}"l{”l”m" % g g “;2 = (k'""a)° o Vj"’k"l"m" 51 1 g2 EZ

Therefore (symbolically)

. .
y ) o Jﬂ?,,kﬂ % %m? - ) jhsk 9%
Dyf" = (k-3) 2;.,,73 Limetl e 2 52 z; ¥ ymemynge 53 é‘ & “;gm

r-

and similar

. - J 2 QL v N jﬁ kw lca
DZZN = (w-1) \;:m Vj ko) 'm? E“?L g’? S Yj“k"l“m”g
Lreermon % a w

=




(2)

e

- A4 -

Because each time a is the same number for all four indices and
becguse the A and p which can be different for the 1~ and the 2- coordinate,
fall out, the two square brackets coniain exactly the seme sums (inclvding
the terms where j is changed with k and 1 with m for complex conjugation.

In the formula these terms are only omitted for the sake of comvenience),This

gives

‘“"12; 2

— Df'  ar

4t = & = - = Eod = 214‘ and therefore by integration
2 D 2 @l D

ar, 2 drz 2

constant or

qrzw_“’;;rzmrz 22, .
3 o, 2 10 , 20
n n :
2 M2 2 P22 :
%2 - ) r) = Thy rip= B = constant. (exactly?)
o
B = u*;;'ﬂa Fer vanishing n, or n, one form remains valid.

Tip and Tog denote the initial values.
As far as our presupposition is fulfilled, that w, and w, lie on

one resonance=liine, but not on any other one (crossing it)g we have here an

ezact invariant. If there is a2 crossing with snother line of ths order |

Nﬁéébﬁﬁ it will remain still approximately invariant - at least up to the

order N', In all the following we will not worry about that and idealize the

sintaticn by assuming our presupposition to be valid. The behaviour near

crossing points will perhaps be treated in a later report.

Apart from {44a)we still have another invariant function, that is the

hamiltonian itself. In order to write it also in r, end r, (as far as it is

considered as an invariant rather than as the hamiltonian) we introduce

io,

1
&, =Ty

3 9o
o = Typo

) i6
'f =Y @



(a)

(b)

!
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Ve need to express only this one yjklm because Tirstly the
gtability behaviour can be discussed Trom terms up to the order of the
considersd resonance alone and it secondly cemnot be discussed, if higher
terme ere included (i.e. if the emplitudes become so large, thai higher
terms become mportant) This will become clear in what follows. With this

we get for (41a)up to K*.order terms:

S ' p 2 p 2
ioﬁ(gl£l§2§2)3¢ (ryry0,9,) = (0~ nﬁng) ]+ (wy- nl+n2) Ty ¥
H/2
E 2““‘“’ . {on 20 2
“+ 1@5}5 )c 5 ?B
A=2  a+f=h
i} n
~ 217@08(@“37’1@1@ 2¢2>0T%n1 rzg 22}’ ooes00

%;igaﬁ is a real quantityg j+ka:§n1§ and 1+m =R, ‘agggrding to (3»4})7()

Whereas #4s)is exactly invariant and very simply constructed,
neither one is true for{45a) o 1f the dotted higher terms are neglected.
It is indeed very complicated, because in eny explicit case one will have

long calculations to do before getting the coefficients g a8 and ¥y jk.im
But at least we possess now two invariants and will use them in the

following to discuss stability.

Qo Discussion of the two invariants

We are left with the two invarisnts

. n !
2 M2 2 B oo 2 o2 2 FHoo
T, =TT s e =4 or - =T - =B and
1 n, 2 10 n, 20 2 ~ ny 1 20 a, 10
A
= (or)_
Py 2 _ b 2 ‘ 22} 2a 25 .
(wl n,ﬂi-:nj 1 (”*’2 n+ n, )rz"” a ig g r 2 7
* A=2 @B
" iy in
= mxxa.&lest integer > § lg i 25
2 ] + (g’geﬁ(ﬁwnlqyl 2P /T T, = ¢
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Here A and B can be calculated from the initial amplitudes alone

whereas in C also the initial phases P10 and P0 enter.

In the following we shall rsfer to these invarianis as to the

quadratic invariant and the ({N+1 )thmorder inveriant respectively.

0

2o

The latiter notation indisates that this form is indeed invariant up

the order N+l, This is because we have in the double-sum terms up to

E _ 4N for N even
2 7 {¥41 for N odd

and becsuse the next higher terms, which we have neglected, are of the
order N+2, (see p.38/39).

1)

¢
RPN

First we consider the quadratic invariant.

If *;n;" is négative, then Afor B) must be positive and

2
1™l 2 :
HNE A is8 an ellipse with the half axess
2
k
— N e
SN TN /
= \j:A =41 B
)
nz Tt . it S -
- - gB ﬂ \
el ’ —3
\ W
é%:%x’ﬂ

{of course, only positive values of r,l and r, are of sense)

1 ?E"‘ is positive, then Alor B) can be positive or negative (or zero)
n, .

zaud A snd B hove different szjigns,, The curves are now hyperbolas with

slope of the asympitote egual to *;;1?' and the half axes



(a)

(v)
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e
1

a., z::giﬁ = - B for A4>0

* i} ™ B< 0

)
a, x\m"‘""A :S\JEfOI‘ ALO
oy

B»0

.
a, =8,=0 fori=B=0 {pair of ™ 3
straight lines)

It is immediately clear, that the elliptic case means sirong
quasi-stability ( p.32): neither r, nor r, cen reach velues greater
than the larger of the two half axes, which are given by the initial
amplitudes and which vanish for zero initial values., In fact, the
discussion of the (Nﬂ)thmorder invariant may restrict the range even

more on a small piece of the firet quadrant of the ellipse. (see fig.4d)

The hyperbolic case does not allow any conclusion ~ it must be discussed
with the help of the (N«H,) worder invarisnt. Finally there rema;n the
cases that one of the m or n is zero. Here also the (N«z»l} B order

2
invariant is to be discussed, because the picture is as follows:

Ahy,

;T @

Fig., 3

For the following the elliptic casze drops out by the statement:

If m1 and w2 lie on a difference-resonance-iine (nl and n? of different

gigns) then one has strong quagi-stability and the meximum amplituvdes
ara given by the initiel values through (46a).




(a)

()

D 4 8 el

In other words: the resonance~lines with positive slope are never
excited, they are "suppressed resonance-lines®. This is the non-linear
analogon to the fact, that the lines w l 2 = p are suppressed in the linear

theory also - LSee for instance G.ILuders (L} j

2} The (N-e-l) b rder invariants.

In order to cover also the cases where nl or n, is equl Ho zero,
we use the quadratic invariant o eliminate rl or r, respsctively from the

(ﬁ\}#l)thworder invariant. In this way we get two forms:

n

o) Imserting xfg =B + “fn“lg' ri into the (m«mt order invariants
_ §
’ { 2% 0 necessary
? 1
i ?x) 2a
r(rljt,o%fxm.m;.)4p)=¢~n1 (;,3“--w Q) N
Z i Wi
A=2 a+ﬁ~3\>
gn )
o1 RPN
- + 2nlycos(6wn1¢l 2@2)3 (B+ -;; ©) < =0
7 smallest 1nteger}>“‘
or
‘ 2 ™2 . ,
8) Inserting r] = A+ 751, we get the slternative form
, o ‘ _
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We may use either of these forms to discuss the behaviour of
either Ty or r, and having found the possible amplitude variations of one
of these, the range of the other one is then easily derived by means of
the quadratic invariant. |It is, however, convenient to use (482) 1f
B»0 and (48b) if AD O, because then the variables r, or r, respectively
can reach zero and the picture is as in figs.4 ayb . Otherwise the

shaded area in these figures would start at some point r :@oﬁ

The first factor of 1'12 and rg regpectively in bogg,fomuias is
' ALE
nw 48w~ p= 0. But we may treat this factor also as/slightly different

1722
from zero} theréby exploring a small neighbourhood of the resonance=line.

Of course, even the slightest deviakion from this resonance-~line would
bring us on another line. But as already pointed out {p. 25 ), this -
neighbourhood, if small enough, contains only lines of considerably higher
order (apart from those crossing the con‘sidamd' o8 with 8 fairly large
angle). We can neglect them, if the amplitudes are sufficfiently small -
and we shall see, that we can neglect them not only because of the smallness
of higher terms, but aiso, because in practically all cages no rescnance
of order higher than four is excited. (As will b@ahcwn)o

The discussion of (48a) and (48b) is as follows:

We denote

(a)_ 0, + nzwzm p= ol

Then we have in each formula at first a polynomial — +y E
with constant coefficients and secondly, added to this, s pelynomial
multiplied with & sosious which can assume amf:vglue betwsen +1 and -1

(we do not lmow the phases%) We may then write

(v} Pl(r} o 0= Pz(r)a cos ~p,where L remains undgtermined.

The picture looks like this (Figs.da,b,c,d)o
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fo, ba,

Figeda. Strongly quasi-stable at the PR
origin. Some large amplitudes P i) ¢

possible with the same constant
Cs but they are not accessible
starting from zero.

F.'%. 4g

Fig.4db. Strongly quagi-stable .Br zero

initial amplitudes we would have
here the same picture at the ori-
gin as in fig.4a. But this fig.4b
refers to starting with finite
initial amplitudek which range of
variation remains small. lLsrger
amplitudes also possible but not
directly accessible from the

small one.
Fige4co. Ungtable at the origin. Even k)
vanishing initial amplitudes A D iy o
will grow up to considerable ] il

maximum values. If this meximum
amplitude, however, is small,
one has weak guasi-stability.

Ve

E‘% dd,

Fig.4d. Difference resonance, elliptic
guadratic invariant. Discussion
of (#+1)*heorder inveriant here
shows that only a part of the
ellipses first quadrant is accessible.
The whole quadrant corresponds to the

w2t FhSsn e ol 2o
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The polynomial Pl(r)mc is bound to stay between the limits

= Pg(r)o The latter region is shaded and only such values for r arve
possible, for which Pl(r)mc lies within this area. This gives immediately
the range of r-values, which however may be very largs and staxrt from

. the origin (instability, fig. 4c). There will be sometimss seversl allowed
reglions éeparated by forbidden ones. Furthermore the allowed region may
cover all phases (namely if Pl(r)mc crosseg the shaded area Fig.4b) or
some phases may be excluded (if Pl (r)-C enters the shaded region and

leaves it on the ssme side, Fig.4a). In the case of a difference-resonance

(elliptic form of the quadratic invariant) Pg(r) has zero's at r= 0 and

at r= ';;! A or i;l';B ’greapectively for r, or rl) if n, and n,30
In this case the picture looks like fig 4d and generally not the whole first
quadrant of the ellipse will be accessible. Therefore the difference-resonances

must not lead to a total energy exchange between both spatial directions.

¥ow it becomes also clear what "quasi-stability” means: the"constant™
C is in fact constant up %o the (Né-l)theorder only and begins to vary
pmporf;ienally to terms of the order N+2, which contain again phase~factors
cos{ ..o )o More exactly, the picture locks then like this (fig.5)

A

é@ Teems of orsler He)  Bomn
Hy, & Yigoni Poacch

Fig.h -~ Effects of neglected higher order terms
limiting the validity of predictioms on
amplitude ranges.
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One sees that negr the origin, these terms are of no importance
but will in fact devaluate the conclusions on the amplitude ra,ngeé for
larger amplitudes. Teking the inveriants literally, would lsad in fig.5
to a sscond finite amplitude~-range AgLr £B but considering the presence
of not calculated terms of higher order shows that the upper limit B may
lie far more outwards « if not in infinity. (One can, of course, also
calculate hipher terms. But in that case one will obtain further polynomials
maltiplied with cos (c..) with another argument and the shaded area has to

| be taken the largest possible for all possible valuss of the different

cos-functions., This firstly is difficult to find out and .z»econdly may lead
to 6o unfavourable estimates.) Finally even near to r = o such terms may
become important after extremely long times because of the uncontrollable
time=variation of the high transformation coefficients (see poi%i’z)

Fut after Moser's ( Mo ) work on the one-dimensional case one may believe
without the whole estimatigg work, that the condlusions drawn from our

“invariants" are valid for/fairly long time.

R. More explicit form of the (ml)aﬂh@dﬁér invariants.

Bumerical values for amplitude-renges can be given only on the base
of numerical wvalues of the original hamilionian-coefficients. Nevertheless,
it i=2 possible to go into more detail, even for the general formnla and to
give at least one general result. To obtain this, we write thegm Eand
the term combined with the cos (&nlmlmnzaya) in {48a) and (48b) more
explicitly and order them with respect to increasing powers:

r29r49r6ooooo Aﬁ;er elementary calculation 'walébtain in {48a) (n1 %::_-OE)

i i
2 n 8 2
{2a) 2a 22 8
i =
N Zm 2 By Ty (B'%”fl) =V 1g,g"
A2 aiB=h P=2
I i
= 2 2
2 T Bl g B
+ rl n, } igoﬁﬁB 3 ny Z‘” 1gmBE
- P=2 - B=1
al % 1ol
+ oy ingig, o+ Pyigy;* “%” ig 5ot Blooo J4ooo A}g r o + qoso

and in  (48b) (ngzgz_eg)
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b} K}
2 n 2
Zw Z-“- RS P B _ T,
i~ “8a8 (a+ o Tol Tp Fhy L{mfgao
A=2  a+fi=h =2
K i i ‘
2 2 .
2 . Qo) a .
(n) + rzinl % lgao“_A * n2E ig, A J i
a=2 oa=]
n§
4 RN R
* I‘2 %2ig02+ nlig11+ nz‘igzo"‘?‘ A(oao)"w“»ea}"ﬂ' r2 [ooc} + ooco
(in both formulas: "g smallest int,eger}'g“ )

Hers the first'term on the right~hand side is a constant and will be

put into Cl or C2 respectively. The next term is r2 with its

coefficient. We observe that these coefficients (for r§ or r,2, respectively )

vanish with vanishing B or A respectively. But because

= r2 :l r2 and B = - f"’% A they vamish gimultaneously first of all
7710 n, 20 T n y vam y )

2 1 T

: 2 M2
8 = = i =g anndiy o I

for T30 = Tog 0 and seccondly if 10 ,32‘-\,2 Ton and %;?2:$0 n these
cases for A= B = 0 no term r2, is left in the% % - In the terms

P r4 we have picked out those parts of the coefficients, which do not

A

contain B or A mspectivelyo S0 for A= 3B =0 a term éa’ will always

remain if not accjdentally 9
le '
8o T BBy T ZZ’ 8op = O endfor  nmoghyt nyg),+ }'{; €y = 0

(1f n&l,E:%: 0 otk vanish togetber or bofh{‘ar@:&:@}z; ©Ons sees easily that

also r6 has terms independent of A or B in iis coefficients and all higher

terms to0.

Omitting the constent terms, we write somewhat shorter, only

exhibiting the significant parameters in (48a) and (5ia)

na
2

' 8% .2 . ar .2 WL
(b) n1> ;-"- rlo B(RQX B R ﬁ;%’ B)"ﬂ‘ 1‘1 Elilllgz()ﬁ I&ZJL%I- ]11 1[%'02 i) B(l: S ;}j oomeo
- 2 s :




(a)

(o)

- B3 o

and in {48b) and (52a)
2

75, L2 ar . o WY ] |
, LZ”' rng(n],ZéA * nQZIA)#r?[nzlgozﬁ— nliguﬁ‘r n, 18,0 Aleso) x’Po.voo‘

where the meaning of the notation is obvious from comparison with (51a),
(52a).

Wow we have to write the terms multiplied by cos (@mn}i(p?,,w 2(;;2)
also more explicitly. We get in (48a)

oy 12 2H 3 i Sl H 2 H

1 1

P

B=»0

=

and in (48b)

+ sesooo

gea@ nl 2)5 ;nzi H a%ﬁ* 5%& %. §n%§”1.

‘)H

A= 0{112

™ E

We observe that the lowest term is Y or ¥, réspectlvely

if Aor B 3_.s:§c: 0, out for A or/and B equal to zero only rH remains. Not
7

vary correctly {because *2’;‘ QL o 2? may be half-integral and the series

becomes infinite) but expreasmg what is important here, we

simply wmta

n in
e Eé? ™ énl%% 2, | g% N
. -t _ 7 ) :
J]L {B‘%’ ﬂl I‘l) = 1‘1 Bﬁ i eoo ¥ (E—L Tl and
gngé oo rgé | Enzg g? ) Ejg N
Ay = pT ) = & [
5 {a+ oy ry) =y, AT Moo (mz) T,



(a)- |

(b)

{c)
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Finally with nw + njw, - p= & we obtain for {48a)

2
n,

2 N .
[r& B{n, Z% nlz B)gﬂ}ﬁ r {nllgzoﬂr O ) igoy* B(m og’ ¥oo0 = O =

2 311:}‘;0

= 2n1vcos(6m ny Py nz@a){ri sl 2, .. +=2)

B n, F%ﬁ %i

and in (48h)

2

E@» A(leZM nZA) 4+ F Elzggoz nig,* Zl 18yt A("‘oojj Fooo = Oy

n
= 2n,ycos(5-n, 9,-n,9,) {;j i al’? +Aoo“}(u—§—hp! ] $ by =0

The constants A, B have to be chosen accordingly to equ. (4%5b) '
and Cy, C, so that (54a,b) are fulfilled for the initialevalues

Tyo? Too® P10* P20°

S. Discussion of the (Nﬁ%l)thmordar invariants

1) Stability at the origin.

= = =B = C, = = tair
We assume YR Tog 0, Then A=B CJL 02. 0 and we cbiain

(a,40) for (54a) | ,

2

0
2 4 o e g2 . - _ }
xie + 1y %},lz’hgzoﬂr gy, + n igm;gﬁ.» con = ?Enlwcos(é 9, =0, X




and for (3467 (n,#0)

H

2
%

; 2
{ o i -t G 4 -
s&) r!¢+ T2 .., Igbz Ig51+ Wgéoi% cos = 2nzycas(é n1¢1 2¢2)( ) Ty

Because we do not know the phases, the cos-Tunction lies somewhere
between +1 . The picture is then generally of the fomm (fig.6)

(&) e + vrﬂd + o0 = DT

R 6

One sees immediately that this forces r to stay at zero in the

following cases:

@) e$0; N»3 foramy b

That iss very near to the resonance-line ome has still strong

quasi-stability.
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B) k=0 ; N»5 for any dz=0 ,
. strong quasi~-stability
N=4 for )bj(ld.i

On the other hand, if

¥)e=0 and N=3 one has no stability at thd origin. But according
to po 39  the next term containing a cos-function with unknown phases
in the argument is of the order N 4+ 2 = 5 whereas the next term on
the left-hand side is crﬁc So it now depends on the numerical values
whether the motion is bounded within a small range or not. The picture
looks like this: (figo7)

A Pobymmimer nbo T Loady Gasiidabd.
Eigo z L2} / | i
Weak quasi-stabi-
lity (red) and
instability(green)
for N = 3 on the
resonance-1line.

Fig3

Surely the amplitudes will not grow to infinity but they may reach
quite large values in the dotted case and quite small ones in the other
one. One sees that the essential quantity which decides whether stability

or not is the consgant coofficient of the rﬁmtermo'This is

n
. ! N . :
l[?ng2+ ng .+ n gzé] {or the same times nz) and one finds, by comparing
it with the frequency-shifts ( 29&)9 that there the same coefficients play

the determining pérto This is the mathematical egiivalent to the common
physical srgument, that no resonance would build up if the frequency-shifts
corresponding to increasing amplitudes are large enough to destroy the

necessary phase conditions,
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0

2) Stability near the origin 4

| Some of the conclusions remasin valid also for small initial-values
different from zero, so that AlBl 01, C2 are small numbers. -The picture
is like this (fig.8):

M @Ok&mw@a

A

%e.8

The critera have to be changed somewhati for instance, now not
£ is significant but & + B(ooo) or € + Acco) and one has to consider
all the terms in the polynomial multiplied by ¢08(o0s)o For N = 3 ome
now has perhaps stability for € = O but no more for ¢ + B(ooo) = O, That
is, the instability can, accoi'ding to the initial=values, occur on 8 line
parallel and close to the line nyw + W= po In the r,-r,~plane, the
representing point thus runs away along one of the hyperbolas (fig.2) and
to eaéh hyperbola belongs another value of & (another “effective" resonance=
line). Whether it is *:Ehen going to small or to large amplitudes depends on
the numerical values of the coefficients and. this must be considered

separately for each explicit case. If we collect the results, we come to

the following general statements.
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P, Genersl results

=

@) On and near to resonsnce-lines of the order ¥, 5 one has strong
quasi-gtability if '
2 2
n

o o o
By igy ot Boig)+ 5 1gb§%10 (or/ané).n21g02+ n,ig, igzoﬁn 0,

N

(This will quite gemerally be fulfilled).

‘ﬁ) On and near resonance lines of the order N z,h ons can have strong
quasi-gtability, if the jusi mentioned quantities are large enough
to overweigh the polynomial multiplied with the cos(éag1@1@ sz)’ but

one can also have wWesx quasi-stability or even no stability.

v) Hear resonance-=lines of the order ¥ = 3 one will slways find a line
parallel to the resonance-line on which one has no strong quasi-
stability. Whether weak quasi-stability or no stability at all,depends

on seversl numerical values,

$) All this concerns the sum-resonances, the difference-resonances being

always stable.

£) All conciusions become unvalid near crossing points (but presumably

only near crossings of lines of low order N<5).

2) Estimates of the amplitude-ranges are always available if an explicit

problem is given.

U, Graphical representation of vesonance-lines.

In fig.9, £igo.l0, fig.ll we plot in a wlwgmplan@ the resonance-
lines of second (linear theory), third and fourth order respectively.
Dotted lines represent difference-lines which are proven to be suppressed.
{ 470 ) In fig.12 are shown all gum-resonance-lines together up to the
order four., The network of resonance lines is given for k¢ mﬁQQ L k+ 1

and it is then contirued periodically over the whole plans.




mlgg mean physically the numbers of full oscillations within ome period
of the hamiltonian. FPor an example let% us consider the case that in a
proton synchrotron the values for Qx and Qy lie between 6 and 6,%. That is
with respect to the full circumference, 2%, of ths machine. Thus, for the
;f_g_g; Qdisturbed) machine Wy = Qx” w, = ng and the pictures represent the

&
square 6<w132 &7

Consgidering instead an jdeal machine w.xth S @*memods of length
Lz% we have 1:'?‘1' u)zzz‘?ls 3 ﬁ;forSzlﬁwe obtain 0,6

LW 1.2 40,65 and the pictures represcent the square O £ w1 o & <1 j

| This picture shows that the fourth order difference~resonance would be
dangerous, because it would be excited by the superperiod, which is a
quite strong perturbation. F‘or%unately,, the difference-resonance is;always
suppressed and no sum~resonance crosses the area in which the machiéxe is

supposed to work.

Finally for the Adeal machine wit without superperiods and wit!

M periods of length 1 = "%‘ we have w, = M‘f Eor = 50 we have

0912-5(0 46 130 The pictures again represent the ssuare 0<w 1 2,.@1] 0
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Pigo9. Resonance-lines of the order Nl = 2 (nlwl+ nyW,E B3]+ nof= 2)

The figure shows the lines (red) as predicted by the linear theory (not
derived in this paper) together with the working areas as provided for the
CERN-proton synchrotron. The large shaded square correspends ©0 & perturbed
machine with period 2m and Q-values between 6 and 6.5; the smaller square'
(0.64w. ., £ 0.65) is the same working area with respect to a machlnelggth

10 sup°r§ar10ds per revolution and the smallest square {0.12 <K 1<i[0 ip)
representu the working area with respect to the structure ’ by
peTJQd 50

Full red lives are excitable, dotted red line is suppressed and ¥ill
not be excited.
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Fig.10. Resonance-lines of the order N = 3 (n1w1+ DW= P §n1’+gngkx 2}

The figure shows the third-order resonance-lines (red\a on which, the
solution is never strongly quasi-stable, but may reach appreciable
amplitudes even if one 'starts from z=y=0. The dotted lines, however,
are suppressed and the solutions are there strongly quasi-stsble (see 470}
The squares denote the working areas (see text below f‘ige,9f90 '
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b3 foa
(635) &)

FigolloResonance_linea of the order N = 4 (n1w1+ nyuy= P ? | By # {0y = 4)

The figure shows the fourth-order resonance-lines. On-the full red lines
a solution may be either strongly quasi-stable or not, according to the
critera given on po5¢ . On the dotted lines the motidn is always strongly
quasi~stable. The squares denote the working areas (see text below fig.9).

i
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Fig.12, Bxcitable resonance-lines of the orders N = 2, 3, 4

In this figure‘all Jines on which a resonance will surely be
excited are given as full red lines. These are the sum-resonance=-lines
nlw + 0 oy = P with tn1+ nziz 2 or 3; the lines of the order 3 may be

waakly quasimstable and lead %o only small built up, but they can become
dangerous,

The green lines indicete the fourth-order sum-resonance—linesﬁ
nlwl+ Ny, = P g ;nl+ nzsz 4 . On these lines the motion will be strongly

quasi-stable if some critera (p. 5¢ ) are fulfilleds
There are no higher order resonance~lines which would become dangerous.

The squares denote the working areas (see text below £ig.9).

* oy and n, have equal signs.
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V. Concluding remarks

We have transformed the hamiltonian with periodic coefficients into a
normal form with constant coefficients by means of periodic canonical transformations.
This method stems from G.Birkhoff (Bi)9 who trests essentially dur case
n1m1+ D, #p (po 27 ). The idea to cancel large terms in the transformation,
“'by-adjusting some g-coefficients so that they remove the resonances, was first used
”B&vJoMoser (N@) and this here is thersfore the two~dimensional extension of the one=
dimensional Birkhoff»Mosefwmethodo On the other hand, the two- (and more) dimensional
caée for constant coefficients was already treated in several papers by Korteweg (o)
and Beth (Be) at about 1900, Only the difference-~resonances, which are not so
interesting in our case, weré treated and the essential difference beiween

gnlg + Bn254é4 and Enlg + §n25>4 was discovered. Of course, the case of constant

coefficients in the original hamiltonian is contained in our paper also. Either the
original hamiltonian is then already in the normal form and no transformation is
necessary, or it is not and can still be simplified by a transformation. The

equationé for the coefficients sgigm ére esgentially the same but can all be solved
by constants. For j = k and 1 = m the new coefficients of the hamiltonian are equal

to the 0ld ones and only if nlwl +‘n2w2 =0, one hasg to adjust further ge-coefficients,
which in this case are also constant because p = 0. Obviously, for p = ¢, which is

the only case of resonance character for constant coefficients, cnly difference lines

occour for positive wy and w, and therefore Korteweg and Beth did not explore the

sumlines.

Although the case with constant coefficients shows a similar structure on the
Tirst glance as the case with periodic ccefficients, the difference is essential:
Suppose a physical system with constant coefficients in cartesian coordinates. The
namiltonian can be separated uniquely into kinetic and potanfial energy. The kinetic
energ& is positively definite and the.stability behaviour at the origin depends orly
on the curvatures of the potential energy surface at this point (minimum, maximum,
saddle point) and not on aﬁy rationality relation between the basic frequencies. So
one sees that the”resonance” in such cases is induced only by the perturbation
treatment and expresses the fact that there is a sirong energy exchange hetwegn both
45b }:+ TFor difference-

directions, This is easy to see on our quadratic invariant (

: 2 2 2 .
resonance it becomes an ellipse and both, Ty =Ty + §i and‘rgz yg + i; can alternatively

become zero. That is, the whole energy is sometimes contained in one-dimensional

motion nnly (in the mew coordinates). That is not the case in sum-resonsnce. Here the
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essential thing really is resonance with extternal time-functions; namely the
periodic coefficients of the hamiltonian,

Independently and at the same time as the present writer, PoSturrock
attacked the two-dimensional case with periodic cocefficients by another methed and
obtained the same general results (private commumication and (Stu 2)).

One more word may be said concerning the discussion oflthe invariants. In
explicit cases, it may happen that the hemiltonian in the normsl form is such that it
can be separated into two additivé parts which can be interpreted (in the new
coordinates) as "potential"™ and "kinetic" ensrgy, the former being a function of
vy and4y3 and the latter of ¥y and yA only. If the "kinetic energy"™ is then
positively definite, the stability can be discussed from the "potential-energy-surface"”
This then is & function of two variables only and one can draw the equipotential lines
in thg yl.y3~p1ana and lodk'for saddle po%nts over which the motion can run away. In
this case, however, one has to be very careful about the physical {or kinematical)
meaning of the coordinaﬁes ¥y and y5 for which one finds the "equip@tentialélines"
and limits of the range. They generally contain at least small contributions from the

2

02 O
original momenta., Our ri gey§+ ¥, and Té = y§ + yi are somewhat simpler in this

respect.

The question of the validity of calculated amplitude ranges is a very delicate
| one because it depends on %o which order the transformation is sarried out, on the
initial émplitudes and on the effect of the back-transformation. in an explicit case
one knows the coefficients of the higher-terms in the original hamiltonian and one

can then decide for which amplitudes neglected terms become really small. If then the
calculated amplitude ranges lie within the limit, where neglected ierms remain small,
one may trust the calculation. But if the ca;culated ranges exceed this limit, the
actual upper amplitude~limit may lie very far from the calculated cne. Similar argu-
ments apply to the question whether the back-transformetion is necessary or not. From
experience in bhandling ths'onemdimsnsional case we know that calculating higher orders
in the invariant or transforming back the results make the formulas inconvenient and
sometimes nearly impossible to discuss them . Foritunately the numerical vslues
characterizing non-linearities in the CERN synchrotron turned out to be so smsll, that
generally it does not seem necessary mither to trensform to high orders nor to trans-
form back. Comparisons between predictions from considerations of invariants and

numerical solutions in the one~dimensional case, showed agreesble results, so that



one can believe that amplitude ranges calculated by the methods presented here,

will lead at least to very good estimates - even without back-transformations.

{See Schoch (Scho); also private communication by A.Schochs)
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X, APPENDIX 1

According to p.8 we determine thé transforming matrix At under
the following conditions

a) det A =1

b) At*&Zﬁ = At

Using E= 8§ fHienn and n=AE weget

ﬁg.;zE%AIﬁmAAg or
B =RA-aN. Setting A=TUAU, with 30:«;0 we have

R = ﬁlu’;la + wzldz =nA- AN so that

The first is easily solved remarking that the same equation

holds for every columnvector of U, ssparately and that thersfore four

o fed

basic solutions of the equation 1 =.Mn mnake up Ul"

Thus
| / ccawlt emlt 0 Q
maimolt e@e%»lt 4] 0
Ufs E% = ) : with U@ = 1
0 0 cosw,t  sinw,% )
2 2
G 0 msinwzt cc»swg‘i;




(a)

(b)
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Applying the same argument to the equation for U, we see that this

does not work because of the - sign and the wrong order as compared with

é = NE, But let us suppose the I=equation 28 being solyed.The Bolution can

be expressed by the transfermairix transfoming‘ from =0 to o
g(t) = 2,.8(0)

Now we have

d @r a (=2 0wl ) | ,
at L"Q} at |t a(t)j fe(e) + 7 W(t)E(t) = 0 or
%; L "”T:l N  so that IJ2 3.8 identical with the reciprocal of the

transfermatrix:
Uz = Tzl and also here Uz(o) =1 o Thus
<}
At = UtA T‘t

A 7oy serves to fulfil the periodicity condition:

=3 - 1
Af;«>2vn - U’te}?n Ac Tt«}vZn - UﬁA@Tt :

Since 'i‘t:; NtTf; and kafw@n:

]

wa?'n is again a solution and can therefore differ from T, but only by

& 2 3 - P = o = ' = o X
the initial -valuet ¥, . T& B where B=T, because TQ 1o The same

holds for U(HQT; = UtUZW"

Henca

A o= UtUg“A@’P;iTZl = %A@T‘;l and
.Uzva@T;i = Ao oF A;];UQ';:A@ = T2‘n:



= 0 =

This equation must be solved for A@o It expresses the fact, that
ATZT and U2 are similar and therefore have the same diagonsl representation.
This will determine the so far unknown values of Wy and o

There exists now a specisl set of four solutions %;( k) (t) which

iare called Floquet solutions with the property that

£9) (100 = Akg(k)(t) end, witn £00(0) = £'¥)

0 9

()
kkga °
If we denote the matrix compesed by the colummnveciors E;ék) with Xo

- (k)
gz.k &_‘, » ‘then

er;X@ = XQDQn with D21: =

U‘t can be transformed for any time into a diasgonal matrix by a

‘constant transformation R

. gkmlt et 0
RUTR = D, = : e 1 s
e
o ﬁwiwz’(‘v
z g 0 O
That this is true and that R = j’g m(_ﬁ;,B g g with arbitrary
0 0. iy ~id

a, B, v, &, is easily seen. We chose for simplicity’'s sake a =B =y =8 = p

so that




{(a)

(v)

| (c)

1100
i-1 0 0
B=9 100 1 1
OOimi/;

Because U21r and T are similar, we get

21

o =1 :
R UZ‘!IR = D27c = XQ TZ?EK@ or

XMW g™t =1
o) 2n o

and compering with (9b ) we conclude

2%
A = Ble
o 0
2w .27 , »
The elements e of D2n are the eigenvalues of T?n and
the values wy and w, are hereby determined. If, for instance, =a real

machine with construction errors is considered, its period is 2% and
W, = Qx” w = Qy are the common Q-values. For an ideal machine wl and

1
w, denote the nurberof betatron-=uacillations per simucture peried.

Finally AQ must have a unity determinant because det Usz=s=det Tt ==l
and this can be achieved in en infinite number of ways because each column-
rector of XO as well as bf R is determinéd only in dirsction, not in
length. The most comvenient way is probably ¢ normalize each columnvector
of X to uni%-léngﬁ:h {then dst X =1 because of lack of orthogonality)
and to normalize the colummnvectors of R to have equal length (as we
already did) and finally to uge the arbitrary constant o %o make
det(R') = 1. But then det A== 1 for all the time.-

é ==
Tnserting { TAb) into (69a) gives
“"JL .‘BJ
A tRxO T, °

(k)(t} as

If we denote ths matyix composed by the Floquet-solutions &
columvectors by X‘t” then
/

X, = ’i‘txn and we can speak of sz ag "the" Blogquet-solution.




(a)

= (b)

{c)

{4)

r

ad 72 ==y

Then we can write

=k =
At = UtRo xt = RD‘%;Xt °

Finally we may split the Flequet-solution into two factors:

th Xt o Dﬂtl)t = thb”t -] Dt = }.'t o .D_t o

Ft = X‘t"i}st is periodic with perded 2n:

X‘ﬁ;ﬂ%an" D@thﬁ =. Tt°TZ XQOD&“D& t" X«g;"Dn N because

This expresses the wellknown fact that the Flequet-solution can
ba written as a product of s Zm~periodic function F‘c and another one D*R;
which is generally mon-pericdic (in the 2-dimensional case) and which
we shall call the non-pericdic part. If we insert XZS' =D 1Ftl into {a}
we get a third repressntation of At s

A = RF ™ where R is given by { Tla ) and F, is the periodic part of the

)

Floque t-golution.
30 we have
"";{. ""”.1 “"’l
g; URX T = RDtXt mRFt
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Y. APPERDIZ 2

- We prove herc that the aystem(Qla)has real periodic solutions. This
is not trivial because the periodic solutions are in all non-resonance

cases uniquely determined and it could turn out, that they are not ail real,
We prove it by concluding from n to n#le

Assume the functions defined in(18b) and (19b)

(n']’)(ylyz%yyt)

all to be real.

2
8( )(yly2y3y4t)goeooooowms

2 o
g( ) (ylyg3y4t), seeosses og(n 1) (yl.v2y3y4t)

From this, and the fact that the old hemiltonian is real, follows

that
( ) (n) l -m i3 8lso

£(n) (ylyzy§y4t)-- (2,3, 3, Zt) = Jkin z 3 z2 z,

a real function. Then

{n) Y e ( ) - (@) 3-%x 1-m

8 (yyy gy ) = (z2,2,2,0) == ) s, %) 7y 5, %, and

( ) i <~ {n) §-k 1 -u

{y y2y534t) G Bac1n 2 2y % %

shall also be real. In the coefficients this reads:

B 7)o nariniea

Jlm k,jml
) )
Sikim 7 L]ml
shall be fuifilled for the solutions of (23a)
(n) (n)

Eaeim ~ Biciml



= T4 -

If there is 1o resonance, g_gg;m = (0 fulfils the condition.

In “he case of resonance (23d) gives

T(n} = - 2 f(n) go that ou account of the f's propsrties and
Jikim, -p i " jkdmye T '
the factor i the condition for g is again
fulfilled,
. (n) i (n} (n) .
Therefore the function f,jklm G gjklm = @ i in the integrand
of { 24b) has the property
. = q}(n) and thersfore from (24b) and (24c)
Jeim kjml )
T 2w ‘
. - . ipF B ‘
(@)  oiet v o (@ ar rorf = w () =
8,0 = ket 1 2
JKim 2n
t+2n

B ko
(n} e (n) vy 1% \
= ?: = [l o @g
5.ktm A, i’j ; (¥ e @ for _O. wl(k 3+ wz(m 1) =D
t N

Tn both formulas, interchanging k with J and m with L owill

csuse a change of sign of ‘é’z?,vand of the functions i"g;}m and gogg\a into

. (n) ={n)
the complex conjugated ones. Therefore also By m = ® gk

(m)<

g(m) {ylmoydt) up to m = p-1 are real, follows through the equations

(2) (2}

and g

Finelly, from the presupposition that all &" '(y c-oy 4&;) and

for s{n)(ijoyﬁt) and 'g(n)(yc{oooy4$> are real too. Hui 8

are real by construction [(1%) and (l?b)} which comp]etes the proof,

&





