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consider a mechanical system of ti-ro degrt•es of freedom. can be 

a ~ystem of canonica.l differential equ.ationeo The hamiJ tonian is 

:l. sequence of canonical and periodical tx·ansf'ormations :into a form, where tbc'il 

one gets constant coefficients in tho quadratic part of tr"'' hamiltoniJ3.U 

1md these are to be interpreted as th.a frequencies of the correspo.rn:ltr1~ linea:r:Li;t;1d 

n 
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~Fhese two constantsD 1.111 and w2;; play a dominatir>.g part in <;l::r\.s theory_, If 

and p are integers (positive~ negative and zero includadL tb.en it turns oixt 

that in pr:i,nciple resonancelike behaviour can occu:c· on the lines 

Discuss:i.on of the final fom of the hamil ton:lan leads to the follow'.i.:ng results 
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From thest~ two imraria.nts one can9 for each explicit example~ decide which of the 

possibilities in bf3) and by) will hold, and one can calculate the amplitude ranges 

once the initial amplitudes are giveno It is difficult however to estimate how 

accurate the numerical values for amplitude ranges will beo Comparisons between 

numerical solutions and the predictions of the discussion of an invariant in the 

one-dimensional case CaJllS 01.lt quite satisfactory - provided nOt too large non-

lineari tiea (or amplitudes) were consideredo One should at least expect _the calculated 

amplitude ranges to be a good qualitative estimate, which becomes quantitatively 

accurate for very small non-linearities (or amplitudes)o This condition seems to 

be <fulfilled quite good in the CERN proton synchrotrono 

The above qualitative statements, ho:wever1 concern the behaviour of solu ... 

tions neighbouring the identical-zero-solution (and that means for vanishing 

amplitudes) so that they remain valid also for large non-linear te:rms-coefficientso 
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A,,Introductiono 

The equations of motion in an alternating gradient synchrotron are of the 

Hill-type conta.ini.ng non~linear terms tooo In a slightly idealized case they can be 

wri. tten in hamil tonian form where the ha.mil tonian contains · tel?illS higher tl:ltm quadratic 

and has t;m,e-dependent periodical co~fficientsa So we wru,sn to treat two-dimensional 

non-linear oscillations obeying Hamilton 11 a equations with periodic~ coefficients but 

we shall ha.«1e a look at tbe synchrotron every now and theno 

Systems with one degree of freedom and cc~sta:nt coefficients have been 

attacked most successfully by using the phase-space and discussing the phase-tra.~ 

, jectori~s. They are given by a :function f(p,q) = const which means a function~ 

which is invariant under the transformation t~t + Oo If one has no constant 

coefficients, it is very difficult to find such fUI1ctions and generally they a.re 

constant only approximatelyo Nevertheless, if one gets such functions they will prove 

to be useful i:n sofar as one can discuss stability and amplitude-rangeao This has 

been done in the one-dim.ansional case by sevexal authors, for instance by J oMoser (f/.o {ii> 
AoSchoch (Scho) and the present writer (not publiahed)o The two .methods of Moser and 

Schoch lead 'to -the same invariant functions, al though it is :not easy to see how. 

A third method stems :from PoStu.rrock. (Stu 1) which also leads to the same functionso 

Finally the present writer attacked the problem in a fourth way and arrived again 

theree This and the comparison of the results with some numerical integrations gave 

us much confidence into the usefulness of these methodso 

The generalization :lnto tlw case of two degrees of freedom is difficult in 

two respects: the phase-space becomes 4-dim.ensional and loses its evidence. Further­

more the phase-trajectory would be determined not by one but by three independent 

invariant functions and the methods used in the ona...a.imensional case will be helpful 

to find only ona of theseo 

Yet it is possible to o'iarcome somewhat these difficulties by restricting . 
oneself on amplitude raDt,o-es instead of asking for the whole orbH~ Th:us the number 

of variables of interest is reduced to two and having two invariant functions would 

allow to fix the values of them botho These two functions are constructed in this 

paper by several transformations leading to a hamilton..ian with constant coefficients 

in a simple normal formo This is t.h.o first invariant function and because it is not 

only constant but also generates the equations of motion, it helps to get t!L~ second 

invariant too, both being expressed as functions of the amplitudeso 

@ See Literature po67 



(a) 

Ba The equations of motion 

The general equations of motion in an AoGo Synchrotron can be written 

where x1 and x2 mean the deviations in radial and horizontal direction . 

respectively from the equilibrium orbit of an ideal machine" The crossterms 

n12 and n21 refer to twists~ the functions r1 (t) and :r2 (t) to mis­

alignments and the derivatives of L! IC(~~ x2 t) to non-;..linear termso The 

independent variable t does not mean the time but the arcle:ngth or the 

azimuthal angle or sometm.ng else with the only co.udi tion, that all functions 

of t occu.uing in the equations are :periodic with peri.od 21to Nevertheless~ 

for convenience~ i:: sake we shaYlll simply speak of utime" 11keeping in mind that 

it has not necessartly the physical dimension of timec The period 2'1t can be 

achieved by normalizing and this period then corresponds either to the 

structure period in an ideal machine or to the full revolution in a real 

machine with construction errors" 

We now start simplifying the above equations by several transforma.tj.ons 

cill we end up with a form where we c:an discuss the possible amplitude 

Yariationso This form will not be expressed in the origir..al coordinates and 

therefore the discussion may seem to be of little ueeo We wHl see, however, 

that if we take care 'i;o keep the transformations in limits, this discussion 

leads at laaat to estimates of orders of magni tude:s and applies the more 

d:i.rectiy to the orig-lnal coordinates the smwUer the non:tin.ear parts become,, 

® . Formulas are quoted like this: (5a) means page 5? formula (a)o 



Co The Zeroth transformation 

The zeroth transformation se:rVes to eliminate the f~~tions r1{t) 

a.nd r2(t) and consists simply in;introducing a new reference orbit 

'Pi and cp2 which is defined as the closed orbit (the periodic solution) 

of the aimplif ied system 

.. o .AF(z1 z2 t) 
zl + ~lzl + 11.2z2 = = z1 

Now, to save symbols, we replace z. ~ x. and /J F-=--J-jj'K so arriving at 
. 1 1 

( 5a) but without the terms r1 and r2o Our coordinates now describe the 

deviations from the closed orbit , 1 (t) <p2(t)o of' course we suppose that this 

closed orbit exists and has a small ampli tudeo This is a question which can 

be considered as a~ready settled by the linear theoryQ In the following we 

shall forget about this transform.a ti on {which therefore is called the "zeroth")" 

Do The firat transformation 

The first transformation also falls into the sco}JS of the linear theory 

and serves to transform the time dependence of the linear coefficients away 

and to decouple the linear parto If one considers an ideal machine~ the 

~2 w..d. n21 are not present; in a real machine, however, they are present, 

but they may be smallo We shall consider the general case and not use its 



ctual smallness. which of course is very conven:!.ent for the treatment of 
'.·••.·, 

xplicit e:x:amplese The equations 

can be written 

xl ~ 
i:t. t2 

- =t 
x2 t, 

·<> 

·~ ::;;; t2 :;;:; ~ 
~ 

ll~ .'2 = ""11.1 ti .,. ~2~3 - =~~ 
~ 

t = '-. = \4 ; -"t 

.. 
tl~3 t4 :::;; -n21 ti "'" n22l;; "" ="" ~;· 

{a) . and Here 

(b) is the hamiltonian of 

the line~ problemo . (Note that this implies ~2 = n21 which in fact is 

fulfilled in our machine o) We now try to transform to new variables 

T)l 0 Q ca TJ4 so that the ha.mil tonian becomes 

~ ( . 2 2 . 002 ( 2 2 ( ) 
(c) h(n1n2~1l4"t)::;:; 2 Tli + 112 ) +2 113 + 1'!4 ) +Ah 1l1'i12"l'!J4~t " 

. 
That is~ the linear part of the equations for Tl · bas··,:conetant coefficients 

l"'i. and ..,2 and iS decouplodo Tho equations 



(a) 

(b) 

( c) 

(d) 

(e) 

(o\ { fjhn2 '11 • . hn2 0 °'1 0 0 "Ii l 
0 

0 ... Ahn ! n2 ~h7) -w 0 0 '1')2 1 1 1 

v3 
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hri4 
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0 0 0 + 
ilh114 ' Tl 3 

'l'J4 h1'13 0 o. -ro2 Tl4 ~ fJh~) 

herea.a the old ones may be written 

~, ~ 0 l 0 o) I fJ K,.2 
~ ·~. "'nil 0 =~2 0 =· i3K0 
0 - - + 

sr~ 
0 0 0 l ·11~4 

t4 ~K~} ._,,~2 0 -n22 ~ fJK 
~3 

At first we do not consider the higher terms but only try to 

iitransform the linear problem, which is in matrix rotation 

I 

where A and N are the matrices in (8a9 b) 

The transfol'll'.ation is done by a matrix At g 

ml-~ 0 .vmbo'' 0 U R D T X m have the :folJlowil'lD' meaninu~ uw "'.;- .t,.., tl) ~ t~ tll' t~ ""t ""<> •"t) 
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sinw1t 0 0 

-si?JW1t cosw1t 0 0 

u == t 0 0 cosw2t s~t and 

0 0 -siDl)2t 

l 1 0 0 

i -i 0 0 
R. = p 0 0 1 l 

(with p arbitrary) has the property that 

0 0 i -i 

0 

0 

• 
T.._ is the transfermatrix which solves the equation. t = Nt. by 

i. 

~(t} :;o; Tt~{O) = T ~ t 0 

· Xt is the matrix, the column vectors of wh:i.ch are the four Floquef;.solutions 

t (k) ( t) which are defined by the property, that (because of Tt·>-2'1t= 1\'1'27t 

(see appendix pa6J] 

t(k)(t+21t): 'A. f(t) = 'f T t(k) ;;; '? ]\., t(k) 
. .lC t 2'lt 0 t K'. ·~ 

130 that 

(The identity of .A a:cd D2n: is proven in the appendix po -p),. 
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There:fore the ini tia.l vectors !; (k) ~ which lead to the Floquet­
o 

solutions, are the eigen vectors of T2 o Than Xt = T.._X o Apa.rt :from a 
'1t . " 0 

factor whic~ may be chosen to be one, the Floquet-solutiona are pair-dse 

complex conjugated [because the eigenvalues of T21t, which is real~ are 

also] : t;(2 )= ~(l) v ~(4 )== t(3) .. We shall speak of X. as "the" Floquet-

solution because Xt consists of the four independent t fk) as column.vectors., 

Finally Ft is the periodic part of the Floquet-solution, which can 

namely be decomposed into factors in the following way (see p~ 72) 

Xt = FtDt where Ft+21t = Ft and Dt is defined a~ove,. 

Because Dt is periodic if and only if ....! = l ~ p, q integers~ 
w2 q 

we shall call Dt the non-periodic part of the Floquet-solution (inspite of 

that it is practically always periodic)o 

The unity determinant of At is achieved by normalizing the column.­

vectors of F and tben adjusting the nu.mer.foal value of p in R .. 
0 

E .. Significance of the first transforma.tionf, 

We now consider the significance of our transformation and try to 

see what the new coordinates 1J maa.no Because of the important properties 

of the Floquet-solutions it is most natural to express any solution of 

the linear equations as a linear combination of Floquet vectors; 

I ~(t) .~ ":tt{l)(t) + ai2)(t) + ai5l(t) + ai4)(t)= X ta 

where a --
, al\ 

a.2 



Then with (Se) 

That means~ ::regarding the two last fo:r.r.wv 'l'l is (a.pai·t from the 

oonst:ant R) the1900lil= periodic part" of the solution t a;"'ld At is (a.part 

from R) the reciprocal of the "periodic part" of the Ji'l0<p.~et-solutiono 

Finally we remark thatt if t .has :real oomponeut:s,, the same holds 

for ~ o Because the t(k) are pairwise complex conjugated~ the components 

of too: 
f,~ ... 

a must be a2 ~ 8i~ a4'!;; a} . 
Thus 

i~t 
8ie 

'=-'Ub t 
·= l 
a,e 

Dta :: "' 
iw2t 

Q 

83¥J 

= 
""iw2t 

a-,;a. 

Since the oolumn-rectors of R are Ri..,oa'ii.n painise ';;oraple:x: 

conjugated~ fl = RDta has real componentso 

In the following we shall only consider the moUon c1:f ·11 and its 

st;abilityo lf quantitative statements on the particles" am.pl:ttudea are 

wantadw 'one bas to transform the results for T) back irftfa°ll 

~·1 .,...i t ;;;; A& '11] ~ F-fuR f)o This~ hoveverll1 is not alWS¥S neceseaxy~ because sometimes 
'" .~ 

ri already provides enough informationa 

This is the case if Ft!.' the periodic pa.rt of the F'l~H{twt =solution9 

helm.we reasonably ., This f,s to be investigated in each e~plc,icH; ©aae 

aepe.r£1,t~lly,, No gemiral answer is here possible, bu:?:ar~ exp:tjess "1-easona.ble 

belmviour'~ of Ft :J!.n words: The b~ransformat.ion is :not necessary if the 

liP.Jear motion hae the following character 
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which are limiting cases corresponding to w1 ~ 2 ~ 1 or w1 ~ 2 ~ 1 

respectively. 

For the A~Synchrotron the first is true if one considers an ideal 

machine wi t.h many structure periods per revolution and low ·~values because 

then w1 ., 2 are the numbers of betatron oscillations J~r structure period 

w1 ~ 2 :::: ~t1/M < lo The other pictµre is true if one considers a real 

machine, where the structure period is necessarily 21to Thell w1 t1 2= (hi 2 > 1 o 

The ideal machine with superperiod leads to an intermediate picture 

because w1 ~ 2 are then the numbers of betatron oscillations per eupe1--period 

and have the order lo 

Of course we presuppose for all the following, that ·~he linear system 

ia entirely stableo By the way~ instability of the linear sy13tem would 

express itself 11.°t in the periodic part Ft but in Dt~ where w1 and w2 

become then complex, so that some elements of D t gJ'OW expone:n.tially ~ As 

is well known from linear theory, the real parts of w1 ~ 2 0"1bey then the 

relation 

where n,, + n2 = 2 .. 

We therefore aa~ for the following 

So far we have considered only the linear part of the equations of 

motion and only in this restricted frame n has the meaning stated above~ 

! I:f instead the whole set of equations is oonsidere,d, TJ cannot be inter-

preted longer as "the ncn-t::eriodic part" of' a solution which is combined of 

Floquet solutions~ Instead we must now :read all this' the other way round: 

We have constructed a transformation At by whicl1 we can simplify the 

equations of motiono The new variables '11 follow these simplified equation.so 

Suppose them to be solved, then the actual motion of particles is descdbed 
~l 

by ~ = At ?}o Neither ~ nor Tl have then~ in principle~ anything to do 
I . 

with FJJ.oquet solutionso In fact, the latter only Sl'~rved to construct a 

suitable transformation and to illustrate its significance in saying what 

!! and ri would be if the equations were linear,, 



(a) 

F ~The complete first transf'orr.!lation 

Our transformation At transforms the linear e~uations With periodic 

coefficients into such ones with constant coefficientso But we wish to 

transform the whole set of' equations including the non~near terms in Sl.lCh 

a way, that the transformed equations are again canonical (ioe~ :follow from 

a hamiltonian)o For the linear part this is achieved by suitable construction 

of At o But as it is well kno·.m~ it is not generally true 9 that if the 

equations for ~ follow from K(~wt)~ the equations for~~ Att follow 

from K(A;1~9 t)o 

Therefore wa must ask, how we get the new hamil tonian, of which w 

know as yet only the quadratic terms: 

Thia we achieve with the formalism of canonical transformations, 

which is usad throughout the paper; 

If there is a set of canonical variables and equations 

Y1 ~ K 2 - y 
"'.J _Jj' 

Y2 ;;-;;~-.ti.yl 

0 with a Hamiltonian K(y1y~Y3y4t) Y3 go; K a 'C y, 

Y-4 ~y3 

and we wish to go over to a oow set of canonical variables obeying the 

equations 

~ ~ Gu2 

u2 g;;; ""Gul 

~ :;;;; G .. A 
J ""'1' 

u4,,,;:; =Gu' 
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'\ = 3u2 

Y2 = Syl 

u3:::;; su.4 

Y4:;;; Sy3 

u 14 -

defines implici tely the t:ransforma tion y ~--? Uo 

with the y 0e expressed as functions of the u~e~is the new hamiltoniano 

Assume the four equations (a) solved for yg 

y1 = y1 (~u2u3u4t) 

y2 g; y2 (~u2u3u4·t) 

Y;;;;;; y3(~u2~u4t) 

Y4 ~ y4(u}u2,~u4t) 

This property of the Jacobian is necessary and sufficient for the 

trans~ormation being canonicalo 

We now treat in this manner the transformation of the hamil toniano 

We have the coordinate transformation fl ;;;:; Al; with det A ~;: ll' &'.J the 

t:ranafo:rma.tion is canonicalo Hence 

If we split the hamiltonians in the quadratic part and the higher 

0 



.,. 15 ... 

""l Here we have inserted t = A 'e'I and so the old variables expressed 

by the new oneso Because A was a linear trans:forma tion8 S must be a. 
. ~s ( ) quadratic function and =it does not contribute ·to ~h T} which therefore is 

simply equal to iiK(A-111)0 Thus without knowing s(~ ~t5n4 t) explieitely~ 
We can state that 

is the new ha.miltoniano 

This leads to a statement, which in several respects is usefulo 

If the equations of motion in an Aa....$.ynchrotron can be vri tten in 

canonical form~ then it is always possible to replace them exactly by 

another set of equations which have constant coefficients .in the linear 

part and of which all coefficients have period 211: (for an ideal machioo 

the atructureperiod is assumed to be normalized to be 21l)o The connection 

between the original coordinates and the new ones involves only the 

solution of the linear problemo So the equations 

are equivalent to the other set 
! 2 + n21; J,l> n2~2 = F2(;_x2t) .With constant frequencies w1 and w2 

\. + ··wi·. Vl1 ~ $1 ( T}l Vl211.1l2!) 

'12,41' ·""~ 112 = f2 (1\ Tl2\-1f2t> 

This means, that the effect of non-Ji.Dear terms in these new ooo,r... 

dinates is described by the deviations of these coordinates from sinusoidal 

motion9 the transformation back to the original particles coordinates being 

unaffected by non-lineari.tieso We shall ass~ that this linear transformation 

back to the old coordinates behaves quite normal i-0ea ·the linear problem 

has a solution which does not lead to large amplitudeso If this is the case 9 
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. we may in~stigate the new coordinates under the following aspects : 

under which conditions for 001~ w2 and the non-linear terms is it possible 

to excite large oscillations even i:f' the initial values are small? We 

shall see, that this depends first of all on some rationality properties 

of w1 and w2 and secondly on the grade of non-li:D13ar terms but not so 

essentially on the detailed structure of the right-hand aide in the above 

equationso This comes, roughly speaking, from the fact, that the left-hand 

side ot the equations looks to the right-hand side selectively, it fears 

only those Fourier components which are in or near resonance with its own 

frequencies and does not wonj about all the other terms .. So, for instance 

it is, apart from a numerical factor, almost irrelevant whether the 

coefficients of the right-hand side, which have period 21t, are pure siri and 

I cos functions or any other periodic function including p$riodipF 6-fun.ctionso 

This gives some confidence into reeul ts coming from analog mod.els which work 

with a two-dimensional linear oscillator of constant frequeruliea and exter­

nally introduced non.,,linear terms, the coefficients of which are sinusoidal 

or reotatl8Ular shaped functionso It is to believe that these models, .one of 

which is begimling to work in the CE.RN-PS Group, will show all essential 
.. ,_ 

features of the behaviour of the particles .. The existence of the linear 

tranaf ormation At derived above justifies therefore the use of simplified 

models and also the application of perturbation methods on tba equations 

with constant linear coefficients (which is relatively easy) instead of 

. the original oneso 

I Always l<»eping m mind that the transformation back to tha 

! -1 -1 
original coord1nates At ::::: FtR must be considered separately and 

carefully~ we deal from now on only with the coordinate set f)('t) and the 

hamiltonian b(11~t), and.we shall refer to these two as to the original 

coordinaites and the origin.al hami.l toJ!!~o 
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G., The second transformation 

I In order to imestigate the behaviour of TJ( t) we shall make a 

further canonical transformation which serves to simplify the h.!:tmiltonian 

I by removir)g its e~plici t time dependence and decoupling the two directions I as far as possibl.eo For all practical cases it must be p""'1lpposed that the 

'

. nor-J.neari ties are small (in the same sense as tor a perturbation treatment) 

i and that therefore the transformation has so•what the character of an 

I infiniteaimal oneo Thia baa one considerable advant869: Suppose we have 

transformed into a form, where the behaviour of the new coordinates is easily 

. discusaed, then. it is not necessary to transform back to n, since this 

does oot change very much the resul ta, because the new coordinates are then 

equal to '11 plus miall higher texms.. 'l'heref'o:re we need not worry about 

the.significance of the new coordinates and can, without great error~ 

interpret them as if they were equal to 110 In practical cases it is easily 

decid(ild whether one can do ao or whether one must transform back: One solves 

'the transformation formulae ( 18c) by i tere.tion up to second order terms and 

sees whether they are amall or noto If. not, then either om has chosen the 

transformation unsuitable (see laterB especially po24/25) or the initial 

amplitudes are already too large., In the first ease one changes the trans­

formation and in the second one, it is parhaps sufficient to transform back, 

using the explicit transformation as found by iteration up to quadratic terms .. 

If not, then the whole method will practically become too complicated to 

be useful for such large initial amplitudes and one must restrl~t oneaelve 

\. ' to . smaller oneso Some of the general resul tst> however.,'': dq not so llUch depend 

on the assumption of small no!l"'Jinearities and remain valid even if it would 

be no more. justified tc interpret the new coo:rdiriates as equal to 'lflo 

We try to determine the generating :function S of this transformation 

in such a way~ that as many coefficients of the new hamiltonian g aa 

possible become zero or at least consta.nto But we have to demand that S 

is periodic, so that the transfo:rmation between 11 and y is aloo periodic 

and we are sure, that if ve find y staying in limits21 1) cannot run away 

after some (strictly spe:ak:ingg short) timeo But even if S is :i:eriodic11 

it could happen, that y remains small, but within each ~riod of the t:rana­

formation n assumes very large values.. This can be excluded if we demand 

also that the coefficients (of period. 2~) of S have small amplitudeso 
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It will turn out that by these conditions 

a) simplest possible form of g 

b) S periodic {strictly speaking: marly :periodic) 

c) small coef'ficients in S 

the generating function S as well as the new h.amil tonian g are 

almost uniquely fixed., But it will also tum out, that strictly speaking, 

the condition c) is impossible to fulfil because of the same difficulty 
', 

which, in perturbation theo:ry, is very well known under the name "small 

denominators" a Fortunately, this does. not affect the practical velidi ty 

of' the following treatment provided, that the initial values of the 

variables are not too largeo (for thisp see also discussion on pa24/25) 

This bas been investigated from the mathematical point of view for the one 

dimensional case by J oMoser ( Mo ) e 

We start now with the following equations: 

0 

T) = hT)2 l 

ii2 =-bl\ 

~3 = h1)4 

144 =-hT)} 

.6h contains tems higher than quadratic and may be ordered in a 

sequence of homogeneous parts of order n 
(:~) (4) · (n) 

Ah:= h + h + "1t>o•ooh + 00000• 

We transform to a new set of variables, which we call y 1 by means 

of the generating :function (see po 13) 

( ) (, ) (3) (4) 
b s ~1y2~3y4t s 1liY2 + ~3y4 +a +a + eoo•eoooo@ 

vb.ere a 
(n) 

means ·a homogeneous polynomial of degree no 

Then 

Y1 ::;;: ay2 = 
(n) 

~ + (JOO + sy2 + QOO 

112 = sfll 
(n) 

= y 2 + o " o + a'Vl1 + o 00 

(c) (n) 
Y-; ::: ay4 ::::: ~3 + OUQ * sy4 + 000 

'114 ~ s (n) = y4 + ooo + s~, + ooo 
''13 



";e" the transformation becomes the identical tra.nsforma cm if noD<linear 

terms are neglected" 'rhia is because we d.o not wish of <;ouroo to transform 

more th.an necessary: The quadratic part of the hamil ton.i.a:n shall remain 

t.mchanged,, 

The new hamiltonian g(y11r;1-.;Y4 ~t) beoomaa 

. -
(a) g(y1Y-if·:l4t) ~ b.(ri11l21i3'114t) ;· * e(~y2'1'}3Y4t) 

and we wish to make g as simple as possibleo Assum.a also g split 

into .homogeneous parts~ 

~ 1 2 2 w2 1 2 . 2 (3). {n) 
(b) g ~ 2 \Yf{}· y2) ii· 2 ~y, + y4) i1' g + ooo g + 000 

We have to equate parts of equel degree on both sides of (~)o For 

this, it is still necessary to exp1.'6as the old variables n $!S :functions 

of the new ones or rather0 because this ia impossible~ to write both sides 

of ·the equation in those variables which occur e:x:plicitely in Sw namely 

n1 :ir2 '1'13 y4 end to use (18c) to replac-e y1 ri2 y3 TJ4 whi:u·~Jnrer they occur\, 

·by derivatives of So 'lhls yields 

Assume tl:e expansion (18c) for · s in~rted here o F;quating homcgeneoua 

parts of degree n on both sides leads to 

0 



(a) 

I 

I 

= 20 "' 

Here the dots indicate terms of order n containing only derivatives 

(n-l) (n.,·2) . . 
of s 11 a ooo multiplied with powers of '111 .,y2113wy4 ,., Suppose the 

S(n ... l) 9 i/n·-~2 )0001!!1(3 } and g(})oooog{n-l) already known~ tbe.n we have 9 

!because h(n)(,1ih~~y4,t) is given, 

I~ Jn) ·( (n) (n) ) f (n) (n)) (n)( ) tTt + wl Y287jl ~ 1fiiS y2;r 7 W2\.:4a1'J3 ""fl3Sy4/""' g ~Y2fl3Y4t = 

I 
!Here f (n) is a known funotion and 
" 

( e. ) therefore gives a. first order 
(n} 

partial differential equation for e o 

Whenever possible we try to set the coefficients of g(:n)zeroj! 

!but sometimes this is not possible because parts of g (n) may serve to 

remove a resonance between the inhomogeneous part and the rest of the 

left=hand side or the equations., This will become clear if wei now proceed 

to the 

Ho Formal solution of the equations for s 

First of all we remru.'k11 that it is irrelevant, how the variables 

are called in these equutionso That ia11 we may write 

I 

!where the ooeff.icients are !"'unctions of timeo This may be inserted into (a) 

land the oosfficients equatedo We get therefore the same coefficients 
I 

jindependently of how we call the variables and we may tli..ere:fore to solve 

}this l!Z.!~I! replace 111 -> y 1 and 113 """"Y 4 ° 

I 



(a) 

i 
I 
! 
! 
g 

i 
1 
! 
~ 

I 
l 

= 21 = 

, 'r:r...is gives 

It is now convenient to introduce complex nota.tion 

Thie transformation is not stricitly canonical because its deter-

!minant is not unityo But we can achievey that the 
i 

!nam:.tltons equatio:nso For the yus we have 
l 
l 
l 

l"i ;;;;:: gy2 
§ 
a"' 
IY2 ;;:;;-gyl 
I -

jY-,;;;: gy4 

J 0 I Y4 ;;;;-gy3 
i 

because 

G= 
z2 

hamil tonian G (z z11 z2z2 ~ t) so that 
J.l . .& 

' 

z as also obey 

with y, expressed by the 21 n So 
l, 



(a) 

(b) 

( c) 

= 22 "~ 

Furthermore 

We get then~ if we denote 

(s(y1 Y-;l ;Y 4 t) s S(z1 z1 z2i 2 t) 
~ 

J g(y1Y;f3Y4t)=:tG (":!Zlz2Z2t) 

I h(Y1Y;f3Y4 t)i!!! t H <z1•1•2•2t) 

, (n)( )"""' (n) ( = "" .·, \ f y1y,.;y"K.y4t -F .,Z11 ~~ z2z2t1 
\ ,;; ,J ·'' ,Jl, 

the equation(2la~n complex notation8 

By this notation we- do oo·t lose any clarl. ty because the quanti tiea 

we are most interested in11 namely the amplitudes of the motion9 are given 
2 2 '"' 2 2 = 

by y1+ y2 ~ z1z1 and y3 + 14 :;;;; z2z2 o 

Writing 

s(n) r= (n) j ~k 1 'ff,m ') 
~ 1=~ 8 jkl:m zl zl z2 2 ( 

1-. fo.) ~· \~'·~- (n) j Ji; l ~ ~ 
"' - L gjklm zl z! z2 "'2 \ 

u (n) ~~L" · {n) j. o;k JL ..,,m. ( 
ll - hjklm •1 "1 •2 '2 J 

~(n) \-~(n) j -k l • ., f' 
~ '=-L ~jklm zl :i;Jl z2 z2 J 



(a) 

(t) 

(c) 

) 

for the order cocff icients 

Here the f ~::-}. are gi.ven functions of t with period 2~t~ whereas the 
.r~m (n.) 

coefficients gjklm are atiH at our disposal and wherever we can,, we 

shall set ·them zero or consta:nto The solution of (a)~ if we a.breviate 

" can be wr.1. tten either by expanding a~~! into a 
,JA.1l!l 

Fourier- se:d.es, thereby e:iililbi ting· immediately the 

demanded periodi.ci ty v or by means of Greens fonnula 9 where the periodici t<J 

condition is fulfill('ld by ohos::l.ng a suitable initial valu.EL The solution 

::;;.s :i.n Fourier representation (omi:tttng here the indices jklm and (n)) 

One aees :l.mmed.iately't that one can sat all gi> ".:c 0 provided,, that....!l 
!' ) 

• 4 • • H ,J.1 0 . . ;..l IP .... ~ is no,; an 1ntege:r p6 ... encrs gjklm .= is ross11.' So J. 1. rn,iw1:nrer $A~;';'; pl'l 

then the denomi.J::JJ;ltor with -,.:1 ·~"" ''"P wll1 vanish and for aJ l g~ ;;;;; 0 ~e would 

one infinite term and no periodic solutiono But we can achieve 

periodiei ty by chos:i:og in th:l.s case 

the other 

'I'hei:refore in th.e caa~ of resonance~ 

jk:'lm 



(a) 

(b) 

,,., 24 -

In the :lntegral rspraaentation the periodic aolubon is 

I 
! =in.t 
I s(t) ~ 0

2'-:--
l 1U,A I e cnl 

I 
.~ 

i.n.r 1o.o e d~ 9 which is uniquely determined by 

this integral if ..Jl.. ~po 

I If A :::: p w obtain a.gain zero in the denominator and must 

j compensate this by demanding 

l 
1 
~ 
~ 

I 
I 

t-t,.2n 

j which J.s identical to (23d) 

i Now we shhll remove the ambignHy arising from the fact that in 

I this case% is involvedo If namelyA;:;: i"' + •$ with small !.::~ we demandw I that the eol~tion behaves continuously for rs ;::;; o" By expanding (a) with 

I :respect to ~ we get for ~· ~ 00 

I 
~·· f~(n) ''t) _,_.! (n) (?)] ipl"'dl"" 
"' 

0 l ~ jklm \\. " 2 gjklm , 6 I 
If 

1,1 with g(n) (r) given hy(2;Je)" This is for ..Q.~ p 
! jklm 
1.' I i 
--~~~~~~~~----~-·-------------------~~~~---------~~~ i 

•1l Of course, this corresponds to setting aj(~J . = 0 in the 
. l:Ubm9-p 
l Fourier solution (as sesn l:ty too argument of Gontinui ty) o 

: For.tl.'f:.p (integer) we can set g~~m (t).=r 0 and get 11-:--· .~!AA t>;;;~. ~fn) ___ 01_n_r~·-----·---1 
lj s . . ( t) g:; ---:-- ) f ~ 1 ( t') e" · d~·r Jl.~P finteger )J' 
lf' jklm e 2n.t~ ~ . .jklm 
~I \.G 

' ~&=-_.,,,,>=:-__ ~· ~"'"~=~~=""""'=-"""---"'-~,.,..----='""'" "'""""....,,..=-~~~-----

,~ 

I The ahove- argument of conti:nui ty :for.f.1,7p has a practic:al reason a 

'

I. In a physical system the frequencies w1 and w2 are always determined to a 

i finite accuracy and thert,fore numbers j~k0 l 0m always exist to maka...a.. 

I i.ntegar wi.W.n ~he physical accuracy o We shall be interes tad~ especially in 

I! f { ~)' d those cases~ where thia ~an be achieved vi th low values o ~g ,,k·.;i an· I n2;;;; (m-l)o If u)1 and w2 change a l:ltU~ from su©h values. then one generally 

I 
r 



1 ueed.a large ~i and n2 to make ..n_ again integer ( one-di.rue:ns:lonal example ; 

IY; + r; is a ratio of large numbers, if I:'; is small ),, To do so, would mean 

jto compute for the new values of w1 ;i 2 the transformation again w:i th 

I entirely different resul tao If namely for the casa of ..Q. = p with low 
~ . fu) !11. = k~j and n.2: Jn-.>1 (and low j~k~liYm)~ the corresponding g~kln/t) 

with low n;1 had to be adjusted to remove :resonance9 this is no .longer 

1necessary if w1 and w2 have slightly changed b3cauoo thare is then 

lno resonance at all for a~~Lno So we may set g.~~miE.Oc The resonance 

joccure now for another set j 0 k" l u me in a very high order - in such a 

jmgh order perhaps~ that we i.Jaed not oo~ider ito We may then .reaign to 

!demand periodicity of S in this high order and solve the equation for 

ls(n~,) id.th initial •Y·:-.Jition s(O):;;; Oo In this high order it will 
I, j gk: UJL 11.m g 

!buiJ d up vary slowly and is to be neglected even for considerable large 
' I . . 

!times (see pojl)o But we have then ·too curious behaviour that a small 

I cllange of w1 and w2 would bring to vanish g-coefficients discontinuously 

jand bring to change a-coefficients also discontinuously: At the low-order 
' lreoor.ance (jwk~:;\~m small ntl!llbers) ve have enforced the a=coefficient to be 

! periodi.c with finite amplitude (by adjusting the g-=coefficient according to 
' ! 2}0) but as mentioned~ we ~t''!tre still free to chose .any desired mean valueo 
I . 
'Vary near to the rev..onance (ioeo with very slightly changed w1 and w2) we 

ldo not need more to adjust the g-coefficient and ©a?l set it equiµ to zeroo 
l 
jThis~ however~ would have the consequence of very large amplitudes for 
l J1 j t:be ~coefficient ( of order ,;;:~,~p) o It seems therefore reasonable to 

!imrestigate small environs of a "reaonanca line" (iii. the w1 P (1;)2=plane) 

ln1w1+ n2w2 =n:..;;;: p by keeping the :resonanoo destructing g-coafficient in 

lt~1e equation and giving it the same ·~ntlue as for the exact reso:oo.nceo 
\ . 

!Then the S=·ampHtudea behave smoothly within a small neighbourhood of the 
i 
!resonance linae So this ia the reason for the above argumento Of course~ 
~ 

!the neighbourhood of the resonance line~ in which this is allowed, !llUSt be 

Jtak:en smallo So small'} that the higher reson'.ln©e lines nearby (there are 

lo:f cou..rae infinitely many~) are fil of considerably higher fil"dar than the 
l 

I one that has beon considered,. 

There are cases, however, where the smoothness argument does not 

l applyo Whatever the values of w1 and w2 are~ w1 (k=j),;i., w2 (m=l) :;;;A.~ p = 0 

j(wbich isy in tha above sense,, an integer) occurs it k ;;--·rand m = lo 
I 
l 
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(a.) 

~ 26 -

/Tl1en by (23e) gj~~l)l is simply a conatanto He:re again s .. 11 (t) ia a 
i J . JJ. I periodic function with undetermined mean value (or initial value) and there 

/is at first no reason for giving it any special valueo In this wa.y~frOJP 
! 
!each ,equation with k~J, m=l we obtain a new :tree oonstant and tr..ese 
I . (n') . 
1constants of course enter into the right-hand aid.es fjuknlomft of the 

·/equations of higher order and acclllllU.late thereo In prinOipla it would 

I probably be possible to leave them w:rdetermined whe·n· they just occur" and 

to use them in higher order equations~ where a~in j w::;: kg and :m. a,o;;:: 1 3 . 

lito bring the mean value there (zeroth Fouriercoefffoient) of 
(nu) 

f j Qj 01 ~1 o to zeroo There it would not be necessary then to adjust 

(n~) 
lgjajnpp~ which could be set simply equal to zeroo 

I In tba present general expos~ it is hardly possible to see what 

would happen if ons keeps these new c.9nstanta at first undett:?:rmined and uses 

jthem where they may be usef'ulo This would only be seen in explicit e:x:emples 

I because the functions. r,~~m ( t) become, with increasing order n~ rapidly 

lveey complicated and to pursuit und.etennimd constants into higher orders~ 
l 
!makes them s'f;ill more complicatedo However~ our aim to keep the coefficients 

! a of the generating :function S as small as possible, suggests to put the 
i (n) 
jmean val1:ia of all coefficients sjjll --~" t d t th i . eqw:u. o zero an o use e 
I 
jg=coefficJ.ents to remove allm<.'rona.'l'J.ces for~<J..;;;; p = Oo This also has the 
I . 
!economic reason of keeping the :tmrolved work in explicit cases lowo But 

I there might arise examples, where the whole question is to be considered 
i 
janeva 

! I Finally we mention that the solution of the whole sot of equations 

I leads to a real function S~ which is necessary to assure the new hamil tonian 

lg(y1y~3y4t)ni; G(z1z1zi~2t) and the vatiablee y1 oooy4 being real tooo 

j The proof is given in tbs appendix 2 (po 73 ) Thia ms tba consequence tht\t 
.! 

I =(n). (n) 
's - a: I jkJ1m """ Kjml 
I I f(n) ~ f(n) 
1 jklm kjml 

I I =(n) _ (n) 
i gJkb1 ~ - ~ml 

I 



(a) 

(b) 

- 27 ~ 

J" Discussion of the principally possible inatabili ti.es 

I Only to exhibit the kinds of' arguments involved, Jet us at first 

assume the academic case~ that the values of w1 and 1.1)2 are such that 

there a.re no integers 11.~ n2;, pat all for which r;,w1+ n2, 2 ;;:;; p * 0 

! is fuJ.filledQ (w1~ 11:~ w2= lg 2 for in.ata.nce)o Then the only resonances 

. left a.re those with I1i;:;;;; n2= p ::;; o and (2~) shows that al} g=coefficients 

g~;J1 are constant and .all the other one"" ~ ~ j and mt y may be set zeroo 

~ tb.e following we replace gjjkk by gjk J 0 Thus the new hamil tonian is I independent of t: 

I . 
I ( - - ) - - ( ""' )2 ( - )2 ! G zl zl z2z2 g.:: =iJl)l zl zl ~iw2z2z2 + 8'20 z.1 zl + ~2 z2z2 

I 
I 

It is a function of 

i 2 - 2 2 ! r1 :';:l ZJL z1 ;;;;; y14~ y2 and. 

I 2 m • 2 2 
r2:;;;: z2z2 g Y3+ Y4 only 

I 
i 
l First of all we- see that in this case G(z1i 1z2z2) ie a constant 

I of the motion or an invariant under the ( eanonical) t-rans:torma.tion 
l 
1t~t~;.,5 

This is because 

The equations for z1 and 

by ,i;Qmplex conjugating: 

follow 

so \\:hat comple:x conjugated va.ria.bles are at 

the same time' canonically conjugated (as it 

.must be) 



(a) 

,. 

(b) 

(c) 

or 

iii C)G 
T = G because -Ft"= 0 .. This is zero for 

I But own mores 
' I = • With t = z1z1 

'!'his one immediately sees by inserting th! general term 
(n)( )j( )1 . g;jl · z1 ! 1 z212 into this :formula.. So we have: 

r~--- . 
I ~f w1 and w2 are .such, that no in:tegers 11." ~ (positive and negative) 

' exist 80 that ~wl + _n2"'2 :;; p + o, then (27a) is the transformed 

ha.miltoni.an and 

2 . 2 2 
I rl = 8111 :;; 11 + 12 

. ·1... 2 w 2 2 
r2 :;; 212;,i,2 ~ 13 + 34 

t~·--.,. .... -.... -~ ......... , .......... _ ... ,., .... .,.,,,. __ ........ ,__..:.a .... --...--~----------------

are oonstanto The motion' is stableo 
{for the definition of "stability" see 30-32) 

' 

1.· 

! 
I 
I 
I 
I 

For small amplitudes~ there is no need to ·transform baclt to the 

11 coordinates be.cause 11 = y + small termso But (28b) is still true for 

large ini tiiSJ, amplitudes; then of course one must transform back because 

the transformation may introduce large oscillations into the ~ - coordinates 

(aae po 17/18)0 

In this case one can also give the explicit solution: 



(a) 

(c) 

(d) 

- 29 -

Rere·q>1 and. q.i2 are constant "effective frequencies" 

because z z = r = r ;:: consto The ll..k always are purely imagin.a..ry p p p po -l. 

numbers (see 26a ) and q>192 a:re therefore real . ., . The "frequencyshifts" 

CJl:f'c{1)1 and rp2=U>2 are the most characteristic features of ·all non linear 

oscillationso They will become very important for the suppression of 

resonances .. (po 56)., 

Now we abandon the assumption that x;_w1 + n2w2 :;;; p + 0 is impossible 

and consider the more realistic case that thil3 is fulfilled somewhere, say 

for 11,. = k-j and D..i= 111.=lo This determines at once a one-dimensional 

manifold of 00=values for which it is also fulfiiUed, namely the 

We shall consider a fixed resonance line, ioeo given values 

n1 ~ k""j 

n2 :::;; mr-1 

Obviously there are infinitely many different values of k 9 j~ m~ 1 

lead~ng to the same 11, 9 n2w p and for each such combination we must 

compensate the resonance by 

... k~.- (n} _f .! .Jr21t f(n) (t") ip't'd~J- . t 
.. uc....... Yjt..'11- - .· jkl e \), -· cons e 

A-.llMA l w o m 

In this case the transformation 11..,lY remains periodic with small 

ccllefficienta but the new hamil tom.an contains t explicitly 

and the arguments used for the stateirent (28b) break downo Whether there is 

V stability or not must be decided more or less explicitly and for the 

~ moment we must assune the possibility of instable mot' ·ms,, Therefore 

1; on any resonance line principally instability can occur., This leads at 
~ . 

tl 



I fj.rst sight to a hopeless situation because the w1 aoW2 plane is densely 

covered with such lines and one can fear that there is no stable motion 

at all - in contradiction to experience 9 

Ko On the definition of "stability0 

Before going ahead, we must define more precisely the term stability 

but without doing it in a very riS\'.)rous mathematical wayo 

Stability in the synchrotron means practically amplitudes of less than 

a few centimeterso Infinity is here the same as the aperture of the vacuum 

chamber., Even if in a nonlinear s.rstem no resonance can lead to infinite 

amplitudes because of frequency shifts (29a)9 this stabilizing effect of 

! nonlinearities can be practically worth lasso Stabil,ity in tl:e sense of 

bounded amplitudes is not a useful conclitpt because it is too weako In 

1 this sense :nearly all nonlinear systems will be stable o There is the 

definition of Liapunoff according to which a solution is stable with res­

pect to a. given one (here y s 0) if it remains always in its neighbourhoodo I That is here: Small oscillations remain smallo This definition is in some 

I respect too strong because we may wish to call a motion stable even if it 
l .· . 
j runs ali-ay from zero but has a bounded amplitude within the allowed aperture 
' ' I of the vacuum chambero So our definition has to keep the middle and we 
P, 

~ shall call our system stable if 
b . • 11) it is stable in Liapunoff~s sense around y:O but also if 

i 2) it is not stable around y• 0 but has small bounded . amplitudes., We 

I W(jl shall distinguish these two cases as 11strong" and "weak" stability 
l I :respectively" 

: But ttezeis another pointo All that we oan say concerns terms up to 
I . . .. 
! a finite order and tnere always rel!l8.ins m uncertainty of how the situation 
! I fQlf the system will be after very long tirneso Suppose the case considered 
i 
j above, vbere ~Ll.)l'""' n2w2 ::f: p for all ~Pl n2 9= Oo 'lhe r.ew hamil toman 

I soovs a stabl~ motiono But in the transformation occur coefficients, 

j which indeed are periodic~ but whieh have very large ampli tudss of order 

l .n.~ P where ~w1* n2w2 :Jl. (see (24c)) and ..Q. a'pproaches more and more 
~ 

ll an. integer for suitable (high) ~ .<md n2o On the other hand, the functions 

f ~kln) become smaller and smaller for high orders if the coefficients of 
.)I m 

J the original hamiltonian decrease BOt too slowlyo It is difficult to 



(n) 
this and to df)Cide whsther the fjklm decrease var than the 

n_. .• p o 
A rou..gh estimate~ howenrer~ may arise from the following 

consideration: from ordinary perturbation theory~ using the n:tpresentatio:n 

o:!:' the solutfon by a series of trigonometric functions~ it is a well lmown 

fact that one can proceed iu two ways: in one way one solves the 

equations iteratively beginnlng with the linear pa.rt~ inserts the solution 

into the non·~linear terms and integi•ates the new inhomogeneous system and 

so ono Then one gets the "secular terms" which increase with t~ t 2ooo o 

The other one is~ to begin with undetermined effective frequencies which 

ax.a then determined in such a way that the secular terms vanisho It can 

be shown that both methods are equivalent for not to long times,, because 

the secular terms correspond. exactly to a Taylor expansion of tre tri­
gonometric functions with C'.hanged frequencies around the crlginal ones: 

sl:n [Cw +!Jw)~ t;;; s:.i.n wt0 cos.Owt + coswto sinL)wt 

s smnt, ~ -~ + ,,j + coswt ~o>t - <A;;£+ 000 

So one can. aloo renounce here on strict periodicity of S ~.n high. 

orders and imagine all terms rear to reoonan.ce to be integrated with the 
(n) im tia.1 condition ajk"' g O g:tiring 

:JLID 

ill. e 

{n) 
laad5 nc term of s ' becomes 

·~"C jklm 

o' 

000 and too 

If 9 in the original hamil ton.ian the ooefficienta decrease fast enough 

vi th increasing order (or tf the amp)..i tu.des are sufficiently ama.11) 
. ( ' 

~,..>; 1! 1 .. "l ..... .l ,Jl) . ·11 in 11 ;;> •u.e:.. oe a. very sin.~.~. numver allY. sjlP'' Yl.. rams. ama. .1.or 
< ·$-i.Jr! 

lo~1g 1;ime o Of couroo9 tmre is no :i:nc.reaae proportional i;o time for 



YCX-:f long time intervals but only at 't,;1'.\e beginningo Lat~n· on it 

increases more slowly and finally decreases again~ reaching a. maximum 

amplitude f~~m9-/(4·~p) as the periodic solutiono But by renouncement 

of strict periodicity of S in bigh orders we know that for t = 0 the 

c:cefficient:s s ~~}- of high order start with zero amplitude a."ld there-
JA..l!J.ll 

·fore no back-transformation is necessary - for a longw but not irifinite,, 

time, one can forget at all that there are high coefficients with small 

: denominatoreo (A more rigorous mathematical estimate of the influence 

of higher terms is givan by Moser (Mo) for the one-dimensional caseo) 

Our statements about stability are always the result of considerations 

on terms of finite (and in fact low) order~ We ahall indicate the ef'fects 

of higher terms in the following by speaking of "qUa.si,-stabili ty" rather 

than of stability" So we adopt from now on the terms "r.;trong quasi-

8tabili ty" and "weak quasi-stability" in the just davelopred .senseo 

LoClaasification of resonance-lines 

a w.e.y that in any product the sum of upper indices is always equal to no 



(a) 

(b) 

:1 

- ~; -
Tha equation for s;:{m ia then 

! and therefore the solution sjC~J contains one additive pa.rt the magnitude 
' .t:l,.l.m ( ) 
lot which is proportional to the absolute value of hj:im and another 

!additive part proportional to the abaolute value of p~kln1 ~ which in 
! .; m 
!turn contains lower h-coeffieients~ g-coetficients and s-coefficients mixedo 
l 

!The latter ones are again partly proportional to a h-coefficieat;. and 

. jeontain partly mixed, still lower, ooefficientso So one can reduce by re­

jcursion in this nth order equation, the right-hand side to -h~~m 
j+ t g~:im + (combination of lower h-coeffieients)o 

I I That means: 
ir--~~~~~~~~~~~~~~~~--~~~~~-

l 

l 
I 
I 

Only h (n) enters linearly into s ~kln) 9 All lower h-eoeffioients are 
jklm () Jm 

contained in s .kln only in a mixed form and the high.er ones do not 
J m (n) 

appear at all in s jklm. o 

From this followa: if in the hami.ltonian h(~111'11}T)4t) a term of order 

n is present, then it will show its strongest effect in the equation for 

a ;~m~ smaller effects in higher order a-coefficients and no effect in 

lower ones .. 

a resonance-line 



(a) 

(b) 

We can classify these lines by the following 

I i Let be k-j = n1 

I m=1 = n2 

Ir. Then ,_ w1 + n2w2 :;;:;; p (integer) is called a resonance-line 
i1 ... ii ·Of ~ order .M~ if J l\f +jn2i~ Mo 
~I j;• 

jll Furthermore~ if both ~ and n2 are different from zero~ we speak of a 
~ 

il·s~reoonance··line if.~ and n2 have equal signs~ of a 

I difference-:resonance-hne if ~ and n2 have different sign.so 

~ -·~~~~--~----~~~~~~~~~~~~-=~~~~~~~-\ 

I 
g 

~ From the definition (a) follows (proof below) 

Ir--~,. a parallel shifting there ore always ju:;-21! lines :f. 
11 the order I! present 

! f,l) In the Nth order equation (33b)these and only these orders of re~ 

I 1 ,, 
I 
i 

11') If w1 and w2 lie on a definite resonance-line 11.(uf"' n2w2'= :p of 

the order 111.1 + ln21; Nw then in the set of the Nth order equations 

there will be just twow for which resonance occurs,, These are for 
(N) · ~~A (N) 

sjwkiium•i c:.uJM skvjol"1m 9 where the four indices jak'Pm~ are* 

uniquely determined by ~ and n2 alone and two of them - one of 

the first pair (j9wk~) and one of the second pair g~me) -.will 

AU this is nearly trivial: 

For a~ 0 or M there are two possibilities :reapectively 9for 

a ~ JL ~ 2 o o oM"·l four possibilities at a time o So tog{:>ther 

2 .x 2 + 4 :x (Mm.l) ;;:;; 4 Mo But now each line ocicu:rs twice 

(as ~w:f<r n21JJ2 ;;;;;; p and as =~w1 ~ u2w2 :;;:: -p) and tl'-.e riuw.ber of lines 

:lLs 2Mo 



(a) 

! 
i 

I 
I 
I 

Assume the possibility of linaordera N-,L~ where at :f.irnt L may be any 

integero Thenw in the Nth order equation~ the possible sign combinations 

of 1\ and n2 (left-hand column) give the four possible fonns of the 

equation I ~J ~f>Jn21= N~L (oocond column from the left) 

ln1! n2! ~ +rn21~ N-L 

f~~,, + r,.,j+k-1~:;;;; N-L I " I + J-k-liill ~ 11-L 

'.. + ! ~· ~j+k+l~~m ~ N.,.L 

2.k+ 2m •;;;; 2N-L 
adding and 

\... t t. 2j+ 2m ~ 2N-L su1.1s rac 1ng 

N 2k+ 21 ~ 2N-L 
j+ko{l-·l<;fm ~ 

2j+21:;;.:; L 

2k+ 21 = L 
and 

2j+ 2m;;;:: 1 

I 

,, I - j~k+l .. ·m = N-L 
i 

gives 
2k+ 2m ~ L 

I At the extreme right=ba.nd side one sees that L i.s positive because 

I j,k9l~m. are and is an even nmber: L::;:,; 0~2~40000 This proves a)o 

I The resonance-line is of the order N; L must be zeroo Againw because 

j,k"l9 m are positive$ k.;:; 1 ~ 0 and j + m .g;; N = J°JJ +jn2 ' o This 

determines j :;;;;11\\and m n2~ o It is similar for any of the other 

caseao One also sees that the multiplication of both 11, and n2 with =l. 

simply causes a change of j with k and 1 with :m; bu.t the resonance= 

line remains the same by multiplication with =lo 

Finally we combine (33a)ami(34btl ~o {l>btainthe following statement~ 
·~~----------~~--------~----

!If in the original hamil t.ouian, terms of the order n?,. 3 are present~ 
i I any one of these can in principle excite resonance on lines of any order~ 

j but a. te:rm of order N will generally have the strongest effect for the 

! lines of the order ?lii':1r.,2B.H"'4o o o o 9. and SMaller effect on all the other 

luneso 
~ 

" ! It will be shmmw hosver~ :in the f'oflowing, that in nearly all cases 

II the lines of the order M~ .. 5 ( lnil 'rp~.2t~ 5) are not excited at all 

j {ioeo they are strongly quasi-stable) and that for the lower ones their 

I stability behaviour !'.:an be discussed expUci tly if the original ha:mil= J 
L~onian i~ given explicitly., __ 



(a) 

T'ne :foregoing if! quite general.).,y true if the coefficd.ents of too 
original hamil tonian decrease with increasing orderc If' they strongly 

decrease and all have absolu·te valu..es < one can even say more~ a 

coefficient of the order N in the ha.mil tonian will cause according to 

. (33.a)eind (;4b )resonances of the orde:e N"N~2~N=4 o o. "by e, force directly 

proportional to its absolute value~ higher ones only by a force proportional 

to the absolute value of p:rodlmts of coefficients in which the menti.oned 

j uth order ha.miltoniaL. c-oe:fficie:nt enters together '.dih other one:s,, These 

I products have 11 for st:ro.rigly decreasing coefficients of the haniil tom.an, 

;;;onsiderably smaller absolute values than the Nth ordar roe:fficient itself 

and may therefore be oogl~ctedo Then one 1'10uld say that the N order term 

o:f the ha.miltonian oa:u.se·s on]~Y the reoonal1ces N9 N~2~1 N1~·;)4o o u But now~<) generally9 . 
.i,n the hamiltonian also terms (!f the orden;;?J~2 0 N"'°4o o o a Will be present and I according to our presupposition they will increase :fa decreasing oroero 

! That mea.'1.s, the reoo:nance=li.ne of the order N-6~ for im:itance, may be 

II e.xcited by the terms of the orders .N~ N~2~N~-4 and N=6 of 'i;;he original 

, ha.mil toniano But because the coefficient of the order N~,6 in the 

1
1 harulton.ian is 1111.wh larger than the higher ones, its effect will co~•r 

th.at iO/f all the latter~ which only give sma.11 ror:recting contributions.o 

I In this sense one may come to the qualitative statement~ I r~f in - - original -l tonian h( nl.~~} n4 t) th> coof n~i::-:;:-t.,,.. of i 
n ~he ordel" n~ ~ ha.vs absolute valuesy ;i,,'U!aller than one? and de<~rea~e 1. 

11 :::~~::::n~n:::~: :e~al:f ~: ::::b:: ::. •h::~~=l~ I 
~ ~ 0xci te resonances J·ust of the order N (and practically only this one) I 
11 proportionally to the absolute value of the Nth order. C•oef~foients in I 
! i l d 
tt ! the hamil tonian o . 
I~-~ .. ~----·---------~- ---· --~-~~·=·~·· ---~~=-=~"~=--=JI 
I The above menti.oned scalec4ran.<Jforma:tion or course ('.an.not change 
~ l thi~ physical properties of the system .. ~ it m:rely liberates the system 

; ' · " ff t ·al , t:· f th · (n) f ' f ~ 01 0.;JI, .• aren l equa. ,o!,ons or , a s 11tlm · rom some oruer=o ~ 
n ~ ~ ! m-B:Z<,'1.li tude-ooha.viou:r with ras1x'>ct to the order n and shif'.i::s tre diff:icul 
i . 
~ to the quest:ionw .for whfoh r'emge of am.pl.Hudes of t.he ,-;oordi...'1e:tae (36a) 
:J ! rbnmi:ns true , 
'1 
lj 
[, 

' 



(b) 

(c) 

- 37 -

We have already considered the form of the new ha.mil tonian 

g(y 1y zl'-;Y 4 t) :f t G(z1 z1 z2z2 t) for the case that w1 and w2 de not lie on 

an.y resonance-line" Let ue now assume that they do: 

but that they do no-C lie at the same time on any other lineo 

(If the c~se, that w1 and w2 ],,ie on no resonance-line at all, is considered 

as unrealistic of the order cP 2 
9 then the present assumption is still 

unrealistic of the orderd'>because the line 11.w1+ n2w2 =: p will be crossed 

by infinitely many other lineso We rather mean that w1 and w2 lie on the 

line 1\w1 + n2w2 = p, not in the immediate neighbourhood. of a point, where 

an.other line crosses which is of an order comparable with or even lower 

than. N).~ 

According to{3¢bf3) ~ the lowest order equ'1tions, in which (a) 

causes a resonance~ are of the order N ~ 

j+k:+l+m ~ N 

and from(;4by )just two of these equations lead t..o resonancef because by 

~ and n2 a set of indices~ say j F 0k 0 9 P 1>m 0 is uniquely determined and by 

multiplying (a} with =l the line remains the same but j' changes wi 1,h k." 

and mu with l 0 o . According to (23a )me bas now two g~:im(t) to adjust to 

remove resonance: 

and 

for n1w'1! + nl')w2:: p and ~~~w1=n2w,..= ~p resp.'llctivelyp where the y 6s are constant., 
- ~ • '- - .1, · ' ~(N) (N) 

As it has 'to be (see Appendix 2wPo 73 ) t g 0 0k""ll 0 11 ;;:: = It.· 0 " & ~l v o We now know J . Jj, m -.1e ,J m ·. 
already how the naw bamil tonian looks up ·to terms of the order N~l from the 



case without resonance. To this form (27a) ~ which remains unchanged 

' up to the order N-1 one has now to add the terms coming' from 

and up to these terms the ::iaw hamil tonian beco:ioos now (we replace 

j 0k&1Qm 0 by j k 1 m) 

OOOQOOO 

f= N"" 
t~ is the smallest integer ~ 2) 

It is now easy to see what will be the general form of the higher 

terms: 

JL) The resonance-line remains the same, if H :i.s multipHed by an 

arbitrary factoro However1, only integer factors a will let 

al).~ rur,2 and ap integer also o The same resonance-line comes therefore 

into action again in all those higher equations, where j" ::;; aj5 

k'• = ak9 1~'= al and m11 :;;;: am 1rl. th a any integer a But then p11 ~ ap and 

that means simply that we shall have higher terms from this argument 

of' the form 

roid the corresponding complex conjugated onGso 



(a) 

... 39 -

f 2) Because ~ = k-j and n2 = m-1 ~ one can change the values of 

j k 1 m •itho~t changing n1 and n2 in the following way: 

1B-; IJl 4 f3 
1-7 m + 13 with all a positive integers 

( Because j 0k$1~m are pt' Si tive by definition and two of t.liem are 

zero in the Nth order equa.Uon, a and ~ must be positive.,) 

From this argument we see that any value of a and ~ leads again 

to a resonance and demands another g-coefficiento But p is not changed 

and we shall therefore have terms of, the form 

and the complex conjugatedQ 

From 1) alld 2) together follows that all higher terms containi.n.g the 

time explicitly must be of the form 

f ·~ a (· . - )a ( - .)fl -ipt j-k l..m o z1z1 o .z2z2 e z1z1z2z2 
J 

(and complex conjugated) 

multiplied with constant coefficiantso Here a= 1~2~3000 ag~::;;; 0~1~20000 

(all independently)o 

Fina.Uy there a:re still higher terms not containing the time o They 

are the same as in the non-resonance caseo If we denote 

the total hamiltonian will be a power series with constant ©}OOfficie:nts in 

these three variables : ri ~ r; and q= (t)o 



(b) 

(c) 

(d) 
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This is only formal - nothing is said on convergence" 

Finally, from(34b$y)~4f"'(t) must have one of the following formR: 

+ ipt -~ (t) :;;; a-
+ 

I 
N,, The third tra.nsfonnation into the normal-fonn 

We can now get rid of the whole time dependence of the ha.mil tom.an 

by a simple rotation of the coordinate system~ This third transformation 

can be performed not in a general form but is specified by the resonanc.~ 

j line on which w1 and w2 lie o 

I n1w1 + n2w2 >:;;;; p is given by 

I 

The generating function for 

so that 

z1 ~· ~41•.. exp [""i ..-!.__ tJ· ·'' n1+ n2 ' 

obviously 

p J -t 
I)+ u2 . 

z ;;;ow 
2 z2 



(a.) 

I· Thon 1J. term e.r 

I r ·' ··1 . j-;;J: l;;m ~ ... 
10xp 1·~~,pt, z. :.r, z2"'2 ,,~ •.~xp 

I:"" Jil 

Since ·=:l'J<-k·-JL +m ~;; n. 1 , 

) goes over into 

;; the two exponential functions are cancelled,, 

'.f'he oow hamil tonia:n becomes now 

In G the z ,1 s arc expressed by the 

l;;,"s very simply by replacfog z-->s 
-,w 

omitting the exp.:meniials,, ~t expressed in I; la 

Because * :is purely imaginary~ r is too 0 
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----------·-··----------

The ha.mil tonian r has two important properties 

l) it gives the equations of motion for the i;-coordinates 

(and complex conjugated) . 
p 

2) !t does r,ot contain the time explicitly and is therefore a constant 

of the motion or an invariant function under a transformation 

t-7" t + 6 (see 28 ) o This remains valid~ of course, also if one 
.~;, 

expresses everything again in the z 0 so 

One can now try to solve the equations of motion (which indeed do 

not contain time-dependent coefficients but are still cou.pled by non=li:near 

terms)o In special cases this may be of interest and ca.~ be done by 

numerical methodso 

This requests special initial conditions and will never lead to 

general statementse 

In the case without resonance (po 27 ) l'Te came to a quite general 

statement (2th) about stability~ which was based on the fact that r~ and 

r; were invariants under time changeQ It·is now our aim to find a similar 
2 2 

set of invariant functions of r1 and r 2 c. 

Po T'he two invariant functions 
~-----·~ 

d 2 d 2 
As in the non=resonance case we look for dt r1 and dt r 2 

Now all terms i:n. r are of one of the three forms (see p., 39) 



k;;; 0~1920000 

·- 0 1 2 independently 
µ;;= , ·9 0000 

or 

with 

a:;::;; 2,3~4""""~ 

m"; am (the same for all forms) 

Applying the operators 

we have 

for the three types of terms we find 



(a) 

{ Because each time a is the same number for all four indices and 

f h~cause the ii. and µ wti.ich can be d1ffe:rent for the 1"' and 'che 2·~ coordinate~ 
1 fall out~ the two square brackets contain exactly the ss111e sums (including 

the terms where j is oha.nged with k and l with m for complex conjugationo 

In the formula these terms are only om:l.tted for the sake of convenience) 0 Thia 

give a 

.1£::J. ::;;.: ~ and therefore by integration 
m--1 n2 

(exactlyg) 

F'or vanishing n, or n.., one form remains valido 
- <.': 

As far as our presupposition is fulfilledg that t..i1 and w2 lie on 

one resonance-1:lne~ but not on any other one (crossing it) 9 we have here an 

exact invaria.nto If there is a crossing with another line of the order 

N° e~ N, it will :rema.i..n still approximately invariant - at least up to the 

order N° o J..n a.11 the following we will not worry about that and idealize the 

siutation by assuming our p1oesupposition to be yalid9 T'ne behaviour near 

crossing points will perhaps ·be tres:i.ted in a later reporto 

Apart from {44a)we still have another lnvariant function, that is the 

hainilto:nian itoolf0 fa order to write it also in r 1 and r 2 (as far as it ia 

considered as an imrariant rather than as the hamil tor.ian) we in·~roduce 



(a) 

(b) 
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We need to express only this one yjklm because firstly the 

stability behaviour can be discussed from ternw up to the order of the 

considered :resonance alone and it secondly cannot be discussed~ if higher 

terms are included (ioeo if the amplitudes become so large 11 that higher 

terms become important)o This will become clear in what follmi!i!o With this 

we get for (4la) up to Nth . ...order terms: 

I ono-000 

wnereas ~a) is exactly invariant and very simply constructed~ 

nai ther one is true for(45a) )j if the dotted higher terms are neglectedo 

It is indeed very complieated1 because in any expHc:i t case one will have 

long calculations to do before getting the <eoefffoients 8:0;~ and r jklm 

But at lea.st we possess now two invariants and rill use them in the 

following to discuss atabilityo 

Qo Discussion of the two invariants 



(a) 

Here A and B can be calcul£tted from the lni tii:t:L amplitudaa alone 

whereas in C also the initial phases qi10 and q:i20 enter,, 

In the following we shall refer to these ir1va.riants as to the 

quadratic invaria.""lt and the (N+l) th_o:rder invariant reapectivelyo 

The latter notation indi~a.tes that this form is indeed invariant up 

to the order N+lo This is because l"Te have in the double~·sum tenns up to 

'> ! __ { N for N even 
60 2 - l;~+l for N odd 

and because the next higher terms9 which we have neglected~ are of the 

order N+2a (see po)8/39)o 

1) First we consider the quadratic invarianto 

If .:l_ is negative~ then A(or B) must be positive and n . 
2 

r; +12\ r; = A is an ellipse with the half a."res,g 
.! n2 

iT" ~· 

A ~p-· 

fof cou.rselt only positive values of r1 and r 2 are of sense) 

If ~ :1ls positive~ then A(or B) can be positive or negative (or zero) 
:n2 

e.~ld, A and B have different s;i.gilso The curves are now hyperbolas with 
n2 

slope of the asympto·te equal to ~ ari...d the half axea 



(a) 

(b) 

I 
I 
I 

a1 ;;:;: a2 ;;;:-~ 0 

! 

for A :::: B :;;;; o (pair oi',..,, _____ _.._~--~n~~ 
straight U:nes) 

It is immediately clear, that the elliptic case means strong 

quasi~stability ( po)2): neither r1 :nor r 2 can reach va.lues greater 

than the larger of the two half axes~ wh.i.ch are given by the initial 

amplitudes and which vanish for zero initial valueso In fact, the 

discussion of the (N+l) th=0rder invariant may restrict the range even 

more on a amall piece of the first quadrant of the ellipse,, (see figo 4d) 

The hyperbolic case does not allow any conclusion "" it must be discussed 

with the help of the (N+l)th=order invarianta Finally there remain the 

cases that one of the I\ or n2 is zero a Here also the {N+l)th ...order 

invariant is to be discussed, because the picture is as follows: 

t kl. 

--~-l. . ·~ iW 

I! ----- --1,,-1-~~~~-~ lt.1 
!i>;Q@ 

L--~--=· Jig.~- _J 
ll .I j If w1 and w2 lie on a 1.:lifference-res~nance-li:ne (~ and n2 of diffe!'PJnt .. 

For the following the elliptic case drops out by the statement: 

l ~ signs) then one has strong qua.si~stability and ·~he ma..ximum amplitudes 

l I a.re given by the initial values through ( 46a)o 
'j '"----- --~---------~-----~--=- -
! 



. (a) 

(b} 

= 48 -

In other words: the resonance-lines with positive slope are never 

excited, they a.re "suppressed resonance-linesno This is the non-linear 

analogon to the fact, that the lines w1 '4.1>2 :::: p are suppressed in the linear 

theory also . [See for instance GoLUders (1uj . 

2) The {N+l) th-order invariantso 

;.' 

In order to cover also the cases where ~ or n2 is equ :l to zero, 

we use the quadratic invariant to eliminate r 1 or r 2 respectively !rom the 

(N+l) th -order invari.anto In this way we get two forms: 

a) Inserting 

r·· 
2 ~ 2 )th . r 2 ;;: B + n; r1 into the {M+l order inva~ant: 

- !·~~~~~~ .......... 

~ . (2:>..) 2a n2. ··2·''·~' i. Di* O necessary 

ri("i"'l+ "2'"2-p) + '1. [ 2 . :!gall rl (B~ rli • 

N:2 a.~dl. 

or 

. 2 11.2. 
13) Inserting r 1 ::::; A + ;- r 2 we get the alternative form 

2 



(a) 

I 
I 
I 
I 
I 

1! We rtl9..Y use either of ·these forms to discuss the bi?)haviou:r of' I either r1 or r2 and havi!l€ found the possible amplitude variations of one 

I of these, tha range of the other one is then easily derived by means of 

I the quadratic: imrarianto (:t isp however, corrirenient to use (48a) if 

B)O and (48b) if A>09 because then the variables r 1 or r 2 respectively 

can mach zero and the picture is as in figsa 4 a!} b ,._, Othem se the 

shaded area in these figures would start at soue point r 4:0~ 

The first factor of r1
2 and r 2

2 :respectively in both. form.u.las is 
• be:iung 

n1wf''ll2w2~· p ::.:: Oo But we may treat this factor also as/alightly different 

from zerot thereby exploring a small neighbourhood of the resonanca-lineo 

Of course, even the slightest deviation from this rasona.nce~line would 

bring us on another lineo But as already pointed out .(p0 25 )~ this 

:neighbourhood, if small enoug;h, contai1w only l~ea of com:d.derably higher 

order (apart from those crossing the considered one with e fairly large 

angle)o We can negl.ect them, if the amplitudes are auf'ficfil.ently small ~ 

and we shall see, that we can neglect them not only because of the smallness 

of higher terms£> but also, because in practically all cases no 

of order higher than four is excited., (Ae will ~.-/3llpwn)o 

The discussion of (48a) and (48b) is as follows~ 

We denote 

. . . 2 ,.~.~ ..,~ 

'111.en we have in each formula at first a polynomial 1:,r + ~L. L'" ., 
with constant coefficients and secondly~ added to this~ a polynomial 

multiplied with a r::osi:nua which can assume any. v.s,lue between +1 and ~1 

(we do not know the phases&) We may then write 



Fi_g"!kt_" §UyAAlY g,uasi-stable at the 
origino Some large ampli tudea 
possible with the same constant 
C~ but they are not accessible 
start:ing from zeroo 

.E;;.g>Ac o ~!t at the originc Evan 
vanishing initial amplitudes 
Will grow up to considerable 
mrudmum valueso If this maximum 
amplitude~ however, is small 9 

one has weak quasi-stabilityo 

,., 49 bis = 

l,;i.g'!..41{.a .§.tFOngly guasi":§.tagl§.olibr zero 
initial amplitudes we w-ould. have 
here the same picture at the ori­
gin as in fign4ae :But this figo4b 
refers t.o starting with finite 
initial amplitude~ whfoh range of 
variation remains small,., Larger 
amplitudes also possible but not 
directly accessible from the 
small oneo 

I 
I ~ I 
!_ .. fi·~i4aL-----·-·-~-. --·· _J 
,~o4d,, J?.ifferen£? reJ2_,ruplce,, elliptic 

quadratic invarianto Discussion 
of (Ni'l)th~order invariant here 
shows that only a part of the 
ellipses first quadrant is accessible,, 
The whole quad.rant corresponds to the 



j The polynomial P 1 (r ).~c is bound to stay between the limi ta 
l . -

j •1- P2(r)o The latter region is shaded and ~nly such values for r are 

I possible~ for which P1 (r),,,c lies within this area,, This gives immediately 

I the range of r-valuesg which however my be v~ry large and start from 
I I 
, the origin (instabiHty, figo 4c)o There will be sometimes several allowed 

I regions separated by for bidden one so Fu.i.-thermore the allowed region may 

I cover all phases (namely if P1 (r)-c cro51ses the shaded area. Fig .. 4b) or 

jsome phases may be excluded (if P1(r)-c enters the shaded region a.~d 

! leaves it on the same side, Figo4a)o In the case of a difference-resonance 
I 

(elliptic form of the quadratic invariant) P2(r) has zero~s at :r= 0 and 

: r ='"~I A 
1 or\l,~113 1 (respectively for r2 or r1 ) if n., and ~.:p-o I ~I~ V n2I ,. .t 

In tr.ds case the picture looks like fig 4d and generally not the whole first 

j quadrant of the ellipse will be accessible" Therefore the difference~reaonancee 

j must not lead to a total energy exchange between both spatial directions a 

I Now it becomes a.loo clear what t'quasi=atability" means: the"constant" 

IC is in fact constant up to the (N+l)th=order only and begins to vary 

I proportion.ally to terms of the order N+2t which contain again phase=factors 

c~s( ooo)o Mo.re exactly~ the picture looks then like this (figo5) 
! 
l 

I 
i 
J 
! 
I 
I 

l 
! 
I 
! 
" ~ 

J 

f 
l 

i 
I 
i 
I 
j 

I 

;!\. ... // 

l T~~o~ H~2, 
l 
I" Figo5 - Effects of neglected higher order terms 

limiting the validity of predictions on 
I amplitude rangeso 
I 
l 

I 
I 
l 
! 
l 



One sees that near the originw these terms are of no importance 

hut will in fact devaluate the conclusions on the amplitude rangei;i for 

larger a.mplitudeso Taking the invariants literally~ would lead i.n figo5 

to a second finite 8.ID.pli tud.e-range A~ r 4B but consider:tng the presence 

of not calculated terms of higher order shows that the upper l:Lmi t B may 

lie far more outwards ·~ if not in tnfini ty o (One can~ of course P also 

calculate higher tennso But in that ease one will obtain further polynomials 

mhl tiplied with cos ( o., o ) with another argument and the shaded area has to 

be taken the largest possible for all possible values of the different 

cos-functionso This firstly is difficult to find out and secondly may lead 
• • 

to too unfavourable estimateso) Finally even near to r ~ o such tenns may 

become important after ex~remely long times because of the uncontrollable 

time=variation of the high transformation coefficients (see po30=;2) 

But after Moser 6s ( Mo ) work on the one-dimensional case one may believe 

without the whole estimating work, that the' conClusions drawn from our 
a 

"invariants" a.re valid for/fairly long ti.meo 

Ro More explicit form of the (N+l) th .. -O~er invari.antso 

lifumerical values for amplitude-ranges can be given only on the base 

of numerical values of the original ham:i.ltonia.n-coefficients. Nevertheless, 

it is possible to go into more detailg even for the general formula and to 

give at least one general resulto To obtain this, we write the[w [and 

the term combined with the cos (&=~cp1~n2qi2 ) in (48a) and (48b) more 

explicitly and order them with respact to increasing powers: 
2 4 6 ( ) r 0 :r. ~r 00090 After elementary calculation we obtain i:n (48a) ~ =f=02 



(~) 

(b) 

I 

52 e~ 

2 

+ r~ ~ig02+ "i.ig11 + ~ illm+ A( ••• )+ •• } r~ [ •• ~ + ""'° 

(in both formulas:~ smallest int~ger). ~ ) 

Here the first 'term on the rigpt-hand side is a ('onstant and will be 

put into c1 or c2 respectively o T4e next term is r2 with its 

coefficiento We observe that these coerficients (for r~ or r~ :respectively) 

vanish with vanishing B or A ras~ctiv,elyo But because 

A ,-;;:; r~o'"' .:J. r~0 and B ;::; M n2 A they vani\l,sh simultaneously first of a:tl 
. n2 n.JL ' 

f 0 d ndl. . .$.> 2 . 2 2 ~~.:i ~ o r t"'~ 
or r10 =: r 20 ;;:; . an seco y 

2 
l.J. r10 .~ ~.2 r 20 ;IU.[~-r 2.,- o "'n uase 

. caaes for A :;:; B :;;; 0 no term .-Jr is left in the L o In too terms 

""v r4 we have picked out those parts of t,he coefficients~ which do not 

contai.n B or A :raapectivelyo So for A ~. -13 ~ 0 a term r4 will always 

remain if not acc~dentally 

I ~u ,i, n g .A. ~~ n ~ 0 
H Q20 I 2 11 ' 0 02 -I.. ~ 

e.nd/or 

' ~ ' ' (If n.i 2:=r 0 ~botb vanish togetbar or both/are91=0J., · One sees easily that 
,i, i 

also r 6 ha.a terms independent of A or B in its coefficients and aU higher 

terms too@ 

Omitting the constant terms~ we write somewhat shorter9 only 

I exhibiting tba significant parameters in (48a) a.nd (51a) 
2 

,- r-) .- 2 ( \ " \ ) 4 ( . "k • ..._ 2 · • B( ~~J 
n1L,.~ rl" B n2L: ~ ,,l~-: + r1e1JLg20' n2Jl.~l.'r nl 1go2+ roe~! '"' •co 



(b) 

a:nd in (48b} and (52a) 

where the meaning of the notation is obvious from comparison with (5la),, 
(52a)o 

Now we have to write the terms multipl,~ed by cos (~nl<pf'"'n2cp2 ) 

a.loo more explicitlyo We get in (48a) 

and in (48b) 

0" !)o 0 0 0 

i:n..I 1n ~ . 
ti "ij ~i 

We observe that the lowest te:rm is r1~ - or r2 ~i respectively 

if A or B is:f:: O~ but for A or/and B equal to zero only rN remainso Not 

tl 'b nl n2 b ·i..~·1..,. , 4-~ al , . "'"' .. 
VBF:J correc y \ ecause 2 'or 2 may e .1.;;::;.u=~mv::rgr anu 'trA:i" sen.es 

becomas infinite) but expressing what is important he~3 9 we 



(a) 

(b) 

(c) 

a.ncl in ( 46h} 

2 

r~ ~+ A("i.L,/+ ":iL/l}- r~ ~igoi' "J_ig11 + ~ 1g20+ A(o "~ +.," "" a2~ 

The constants Ar- B have to be chosen accordingly to equ" (45b) 

and c1 w c2 so that (54a!)b) are fulfilled for the initial-values 

----------
l) Stability at the origino 

W~ assume r10~ r20~ Oo 

(11_+ o) for (54a) 

Then A.o;;;;B :;;:; C,, ~ c2 ;;;; 0 cu"'ld we obtain 
A, . 



(a) 

(b) 

2 1n1I 
. 2 4f, . ~ 1 ~ ~ I r 2'+ r 2 ['i'il'o2+ ":i lgll + -;;; i~ + ' o- " ~ ycos ( &'":! 'P;i""2~2) ~) • 

N 

Because we do not know the phases, the oos=function lies soD3where 

between ±1 " The picture is then generally of the. fom (:f'igo6) 

f
. 2 4 . I 

r e + r .,a + ".... = .± b r 

I 

J One aeea immediately that this forces r to stay at ~ro in the 

I following cases: 

I 
I 
I 

.. 'I.that )1.s: very near to the resonan.ce~line one has still strong 
' ·~ W•:' 

quaai=stabilityo 



a) ~=o ~ 1.)5 

N=4 
for any d::f=: OJ strong quasi-stability 

for Jbj { ldl 

On the other hand, if 

y) e ~ 0 and :N = ; one has no stability at tbd. odgino. But a.c.cording 

to po }9 the next term containing a cos-function with unknown phases 

in the argument is of the order N 4" 2 = 5 whereas the next term on 

the left ... hand side is er 4" So it now depends .~n the numerical values 

whether the motion is bounded w1 thin a small range or not,, The picture 

looks like this: (figo7) 

!'1&·1· I 
Week quasi-stabi­
lity {red) and 
instability(green 
tor N = ; on the 
resonanc&.-lineo 

F;~.~ 
!~.~~~~---~~~~~~~~~~~___, 

Surely the amplitudes will not grow to infinity but they may reach 

quite large values in the dotted case and quite small ones in the other 

oneo One sees that the essential quantity which decides whether stability 

or not is the cons~ant coefficient of the r 4 -termo This is 

i ["2&02+ '1. !rii + ~ 1£:!o J (or the ._ times ~) BIJd one finds, by comparing 

it with the frequency-shifts ( 29a) 9 that there the same coefficients play 

the determining parto This is the mathematical eqi.iivalent to the common 

physical argume,nt~ that no resonanc~ would build up if the frequency-shifts 

corresponding to increasing amplitudes are large enough to destroy the 

necessary phase conditionso 
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2) Stability near the origin 

Some of the conclusions remain valid a1so for small initial-values 

different from zero, so that ~Bl c1, c2 are small number~,, .,The picture 

is like this (figo8): 

-
The critera have to be changed somewhat; for instance, now not 

e is significant but ~ ~ B( o o o) or e + A( o o o) and one has to consider 

all the te:rms in the polynomial multiplied by cos(ooo)o For N:::: 3 one 

now has perhaps stability for & = 0 but no more for E + B(ooo) :::; Oo That 

is, the instability can, according to the initial-values, occur on a line 

parallel and close to the line ~wf~ n2w2= po In the r1~r2-plane, :the 

representing point thus runs away along one of. the eyperbolas (figo2) and 

to each hyperbola belongs another value of ~· (another "effective" resonance­

line) o Whether it is then golng to small or to large amplitudes depends on 

the numerical values of the coefficients and. this must be considered 

separately for each explicit caseo If we collect the results, we come to 
.. ·;, .. '.:.::•1: 

the foJ.lowing general statementso 
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To General results 

m) On and near to resonance-lines of the order N~\ 5 one has st:x'Qng 

quasi-stability if 

2 2 
. . ~- ~· 

11,ig20+ n2ig11+ ~ 1g0~-o (or/and) n2ig0i+ ~ig1f;.-;; ig20f:. Oo 

(This w-111 quite generally be fulfilled)o 

· ~) On and near. resona.n©e lines of the order N ;;.;; .. 4 one can have strong 

qua.si~atability, if the .just mentioned quantities are large enough 

to ove:rweigh the polynomial multiplied with the oos(&a"°l.<pi'•"'n2cp2)i but 

one can also have veai: quasi·~stabHity or even no stahilityo 

y) lliear resonance-lines of the .yrder .N ~ ; one will always find a line 

parallel to the :resonance-line on whl.ch one has no strong quasi­

stabilityo Whether weak quasi-stability or no stability at all~de:pt=mds 

on several numerical walueso 

6) All this concerns the .sum-resonances~ the difference-resonances being 

always sta.bleo 

~) All conclusions become imvalid near crossing points (but presumably 

only near crossings of lines of low order N< 5)o 

!,',' <.---)-E_s_t_i_ma_t~e-s_o_f_t_he--am-pl __ 1-· t_u_d_e_-_ranga __ s_are_·-~al_._w-ay-s·--a-v_ru.._· 1-· •_b_l_e_i_f_a~n--e_x_p_l_i_c_i_t.,.. 
__ problem is giveno _ 

Uo Graphical representation of resonance-lineso 

In figo9w figolOi figoll we plot in a w01 w2-plane the resonance= 
J1 

lines of second (linear theory)~ third and fourth order respectivelyo 

Dotted lines represent difference-lines which are proven to be suppressedo 

( 410 ) In figol2 are shown all ~'!!.B:-reoona:nce-lires together up to the . 

. order fou:ro The network of resonance lines is given for k~ w1 ~ 2 L. k + 1 

and it is then continued periodically over the whole planeo 

/ 
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w1 ~ 2 mean physically the numbers of Ml oscillations within one period 

of the hamil toniano For an example let us consider the ca:;!e that in a 

proton synchrotron the values :for \ and \ lie between 6 and 6 11 5c That is 

with respect to the full circumference, 2n0 of the machine., Thusg for the 

~al (disturbed) machine w1 ~ ~w w2 = ~11 and the pictures represent the 

square 6~w192 ~ 7,, 

Considering instead an ideal machine with S ;,:!UI;e~ti>ods of length 

L = ~ ,., have"';= f 1 ·.,2 =-f ; .(for S = 10 we obtain ~,6 
' w1912 k 0 ~ 65 and the pictures represent the square O ~ w1 ~ 2 -" 1 J o 

This picture shows t.!lat the fourth order difference-resonance would be 

dangerous, because it would be excited by the superperiod, which is a 

quite strong perturbationo l''ortunately, the difference-resonance is)always 
. J 

i 
suppressed and no sum-resonance crosses the area in which the machine is 

supposed to worko 

Finally for the _ideal machine without supe;n:ieriod! and wj:t~ 

M periods of length 1 : ~ we have w1 ~ ~ e· w2 ~~ ~or M ;;;; 50 we have 

0912'"- w1P2 ~ O.,l'~o The pictures again represent the SliflliU'8 O~w1 @ 2~1J o 
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The figure shows the lines (red) as predicted by the linear theory (not 
derived in this paper) together with the working, areas as provided for the 
CERN=proton synohrotrono The large shaded square corresponds fo a perturbed,. 1 

machine with period 21t and Q~values between 6 and 605; the smaller squal".e;~:> · 
(Oo6&; w1 2 ~ Oo65) is the same working area with respect to a machine pth. · -
10 superf;Sriods per revolution and th~ smallest square (Ool2 .1' w1 1 ~·Ool') 
represents the working area w:1. th respect to the structure ~ · . ~ ' pen,od 50• 

Full red lines are excitable, dotted red line is suppressed and $ill 
not be excitedo 



The figure shows the i±Li,rd-order reoonance-Hnes (red) 1 on w!Ltch. the 
solution is never strongly quasi-stable, but may reach appreciable 
amplitudes even if one starts from x: y = 0 0 T:r.e dotted lines" however~ 
are suppressed and the solutions a.re there strongly quasi-st!tble (see 4To) 
The squares denote the working areas (see text below figo9 )o 
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,, I 
·~!~-~~~~!ft-0-~~~~-+~~~~_,;;;~~~--:~--+~ 

The figure shows the fourth-order resonance-lines,. Qn,-t~ full red lines 
a solution may be either strongly quasi-stable or not 0 according to the 
critera given on po56 o . On the dotted lines the motion is always 'strongly 
quasi-stable. The squares denote the working areas (see text below figo9)o 



Figol2o Excitable resonance-lines of the orders N = 2s; 3~ 4 

In this figure all lines on which a resonance will surely be 
exci tad are given as full red lineso These are the sum-resonance-line a* 
l)bll1+ n2w2 ;;:;; p with f ~+ n2J= 2 or 3? the lines of the order 3 may be 

weakly quasi=stable and lead to only small built up1 but they can become 
dangerouso 

The green lines indicate the fourth-order sum-resonance-lines~ 
I\w1+ n2w2 = p 5 j~+ n21;;::: 4 , On these lirlf}s the motion will be strongly 

quasi-stable if some cri tera. (po % ) are fulfilled;, 

There are no higher order resonance-lines which would become dangerouso 

The squares denote the working areas (see text below figo9)o 



VQ Concluding remarks 

We have transformed the hamil tonian with. periodic coefficients into a 

( · normal form with constant coefficients by means of periodic canonical tra.nsformationso 

This method stems from GoBirkhoff (Bi), who treats .essentially our case 

!\w1+ ~w2 :J p (po 27 )o The idea to cancel large terms in the transformation, 

"''. "by··'a.Qjusting some g-coe:fficients .so that thay remove the resonances, was first used 

by JoMoser (Mo) and this here is therefore the two-dimensional extension of the one­

dimensional Birkhoff-Moser-methodo On the other hand, the two- (and more) dimensional 

case for constant coefficients was already treated in several papers by Korteweg (Ko) 

and Beth (Be) ~t about 19000 Only the difference-resonances, which are not so 

interesting in our case, we~ treated and the essential difference between 

111.l + 1n2144 and ln1J + J~J>4 was discovered. Of course, the case of constant 

coefficients in the original hami.ltonian is contained in our paper alsoo Either .the 

original hamil tonian is then already in the normal form and no transformation is 

necessary, or it is not and can still be simplified by a transformationo The 

equation~ for the coefficients s~~m are essentially the same but can all be solved. 

·by oonstantso For j = k and 1 :::: m the new coefficients of the. pamiltonian are equal 

to the old ones and only if 11.w1 + n2w2 = 0 , one has to adjust further g-coeffici.ents~ 

which in this case are also constant because p ::: Oo Obviotj.sly, for p = o, whfoh is 

the only ©ase of :resonance character for constant coefficients, only difference lines 

occiur for positive w1 and w2 and therefore Korteweg and Beth did not explore the 

sumlineso 

Although the case with constant coefficients shows a similar structure on the 

first glance as the case with periodic coefficients~ the difference is essential: 

Suppose a physical system with constant coefficients in cartesian coordinataso The 

hamil tonian can be separated uniquely into kinetic and potential er12rgy o The kine-tic 
. . 

energy is positively definite and the stability bebaviou."t' at the or.lgin depends only 

on the curvatures of the potential energy surface at this point {minimumt maximum, 

saddle point) and not on any rationality relation between the basic frequencies., So 

one sees that the"resonance11 in such cases is induced only by the. perturbation 

treatment and expresses the fact that there is a strong erergy exchange betwe~n both 

directions,. 'This is easy to see on m1r quadratic invariant ( 45b ) : For differenoe­

resonance it becomes an ellipse and both, r~ : y~ + f~ and r~= ;~ + y~ can altemativell 1 

. become zero, .. That is, the whole enez·gy is sometimes contained in one·-,dimensiona.1 

motion only (in the new coordinates lo That is not the case in sum-:resonance o Here the 



essential thing really is resonance with e;d;ernal time-functions, namely the 

periodic coefficients of the hamiltoniano 

Independently and at the same time as the present writer, PoS"tur:rock 

attaqk:ed the two-dimensional case with periodic coefficients by another method and 

obtained the same general results (private communication and (Stu 2))0 

One more word may be said concerning the discussion of the invariants~ In 

explicit cases, it may happen that the ha.miltonian in the normal form is such that it 
can be separated into two additive parts which can be interpreted (in the new 

coordinates) as "potential" and "kinetic" energy, the former being a functi,on of 

y1 an4 Y; and the latter of y2 and y4 only., If the "kinetic energy" is then 

positively definite, the stability can be discussed from the "potential-energy-surface" 

'l'hi.s then is a function of two variables only and one can draw the equipotential lines 

in the y1-y.,-plane and look .for saddle points over which the motion can run away. In 
:> ' . 

this case, however, one has to be very careful about the physical (or kinematical) 

meaning of the coordinates y1 and Y; for whi.ch one finds the "equipotential-lines" 

and limits of the rangeo They generally contain at least small contributions from the 

· · al t Our 2 2 0 2 d 2 2 02 . h t ' l i th" origin . momen ao r1 :: y1 + y,2 an r 2 = y} + y 4 are somew. a s1mp er n 1s 

respecto 

The question of the validity of calculated amplitude ranges is a very delicate 

one because it depends on to which order the transforination is carried out~ on the 

initial amplitudes and on the effect of the back-transformation~ In an explicit case 

one knows the coefficients of the higher terms in the original hamiltonian and one 

can then decide for which amplitudes neglected terms become really small a If then the 

calculated amplitude ranges lie within the limit, where neglected terms remain smallw 

one may trust the calculationo But ~.f the calculated ranges exceed this limit, the 

actual upper amplitude-limit may lie very far from the calculated oneo Similar argu­

ments apply to the question whether the back-transformation is necessary or note From 

experience in handling the one-dimensional case we know that calculating higher orders 

in the invariant or transforming back the results make the formulas inconvenient and 

sometimes nearly impossible to discuss them • Fortunately the numerical values 

characterizing non-linearities in the CERN synchrotron turned out to be so small, that 

generally it does not seem necessary mi ther 'to transform to high orders nor to trans­

form backo Comparisons between predictions from considerations of invariants and 

numerical solutions in the one-dimensional case, shoved agreeable l"esul ts9 so that 
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one can believe that amplitude ranges calculated by the methods presented here, 

will lead at least to very good estimates - even without back-transformationsb 

(See Schoch (Soho); also private communication by AoSchocho) 
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Xo APPEIIDIX l 

According to p..8 ve determine tle transforml.ng matrix At under 

he following conditions 

a) det At= l 

b) At+2n =At 

80 that 

The first is easily solved re:marldng that the sane equation 

holds for every column.vector of u1 separately and that therefore four 

basic solutions of tbe equation Ti ;..Jl.Tl make up u1 .. 

Thus 

COFMlt e~t 0 0 

-sim> t 00611.\t 0 0 

lu1= ut 
l 

with uo =l -
I 0 0 cosw2t sinw2t 

I 
' 

0 0 ... sinoo2t cosw2t 



Ca> 

(b) 
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Applying the same argument to the equation :for u2 ·,..re see that this 

does not work because of the ... sign and . the wrong order as compared with 

t = N~o But. let us suppose the t-equation as be.Ing ~~z~oThe Solution can 

be expressed by the tranafermatrix transforming from t = 0 to t,, 

Now ve have 

or 

., -1 ... 1 Tt ..:::: ~~Tt N so that u2 is identical with the reciprocal of the 

transfermatrix: 

. A,ai now serves . to fulfil the periodicity condition: 

0 

Tt+2<Jt is again a solution and can therefore differ from Tt but only by 

the ini tia.l =value: Tt 2 ~ Tt o B where B ~ T2 because T = la The same +'It .1t 0 

holds for Ut+2n :'UtU2~0 

Hence 

and 

or 

,, 
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This equation must be solved for A o It expresses the fact, that 
0 

I")..,. and u2 are similar and therefore have the same diagonal representationo 
,,,~ 1t 

s will determine the so far unknown values of ~ $!1d CA)2 o 

There exists now a special set of' four' solutions t (k) ( t) which 

are called Floquet solutions with the property that 

If w denote the matrix composed by the colunmvectors ~(k) vith X 
. 0 0 

T2 X ::;; X D2 with D2 = 
'ltO 0 1t 'It 

U t can be transformed for aey time into a diagonal matrix by a 

'.constant transformation R 

I . R-lutR ~ Dt ~ 
0 

That this is true and that R = ( 
o: f3 O OJ ia -ia o o . 
0 0 Y 6 wt th arbitrary 

o o ir ~~10 



{a) 

(b) 

Cc) 

(
1 l 
i ... 1 

R ~ p 0 0 

0 0 

0 0 
0 0 
l l 
i -i 

.., 71"" 

or 

X R-1u mc ... 1 = T2..,. and comparing with (69b ) we conclude 
0 211: 0 "' 

A :::: RX-l 
0 0 

.±i<\; 0 2rt 
The elements e of D21t are the eigenvalues of T21t and 

the values t1>1 am w2 are hereby determined., If, for instance. a real 

machine With construction errors is considered, its period is 2'n:. and 

w1 = \, w2= \ are the common Q-valueso For an ideal machine w1 and 

w2 denote the llllll'btrof betatron-iJacillations per stwcture p:lriOdo 

Finally A0 must have a unity determinant because det Ut_det Tt !!!! l 

and this can be achieved in an infinite riumber of' ways because each oolumn­

veetor of X as· well as of R is determined only in direction,. not in 
0 

.lengtho The most convenient way is probably to normalize each column.vector 

of X to unit..length {then det X ;9=1 because of lack of orthogonality) 
0 . 0 

and to normalize the oolummrectors of R to have equal length (as we 

already did) and finally to ~e the arbitrary cortstarit p to make 
·. ( -1) . det RX0 - :::: lo But then dat At= l for all the time<>'·: 

Inserting ( 7lb) into (69a ) gives 

""l -1 
At = UtRX T, o 0 ij; . 

If we denote the ma.tr:i.x composed by the Floquet ... solutions t(k)(t) as 

columnvectors by Xt, then 

Xt = TtXo and we can speak of Xt as "then :ro.oquet-solutio,no .. ; 
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{,.i 

(a) 

(b) 

Then we can w:ri te 

Finally we may.split the Floquet-solution into two factors: 

Xt 2 o D t 2 = TtoT2 X ~D~ D t= X~oD t because + 1t ""' ... 1t . 1' 0 ""'1t ..,, ,, ... 

T2 X = X D.,_ 
'Jt I) Q GA> 

This exp:resf:les the wellknown fact that the Floquet-solution c~ 

be written as a product of a ~periodic function Ft and anotbar one Dt 

which is generally non-periodic (in the 2-dimensional case) and which 
. ' -1 -1 ... 1 ( . 

we shall call the non-periodic parto If we insert Xt ::::: Dt Ft into a,) 

ve get a third representation of At ; 

( ) ~1 ( ) c j\ := RFt where R i"l giv.en by ?la and Ft is the periodic part of the 

Floquat-solution,, 

(d) 



Y,,lU?:PENDIX 2 

I , 

I We prove hero that the aystem(2la)haa real periodic solutionso Thia 

is not trivial because the periodic ooluti._ons are in all non-resone.nce I cases uniquely determined and it could turn outw tha.~ they are not all realo 

I We prove it by conclUdin,g from n to n+l,, 

i Assume the functions defined in{l8b) and (19b) 

all to be real o 

From this~ and the fact that the old ha.mil tonian is real, follows 

that 

( ) ( ) (n){ =· - . • ~ (n) j -k 1 -m is also 
f n YiYi';l4 t =:. F z1z1z2z2t) =. L fjklm z1 z1 z2 z2 

a real function~ Then 

shall also be real~ In the coefficients this reads: 

=(n) 
3 jkl:m 

is fulfilled 

shall be fulfilled for the solutions of (23a) 
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If there is no resonance, g;~ = 0 fulfils the condi tiono 

In the case of resonance (23d) gives 

so that on account of the f"'a properties and 

the factor i the condition for g is a.gain 

fulfilledo 

Therefore the function f;~ + 1 g~~m = q>~~m in the integrand 

of ( 24b) has ·the property 

'-·n (n) 
cp jklm ~ <pkjm.l 

and therefore from (24b) and (24c) 

(n) e -:!At 
s.'I,,.,, : 2-!A JA.1,m 1~.i~. 1· 

El -

In both formulas~ interchanging k with j and m with 1 will 

cause a change of sign of Ji and of the functions fj(ti and q> ~~ll) into m ..i .m 
(n) -(n) 

the complex conjugated oneso Therefore also 5kjml = s jklm 0 

(m)( ) .Finally, from the p:resupposi tion that all s y1 o o Qy4 t and 

~ g(m) (y1" o oY4 t) up to m ::;; n,~l are real~ follows througl:!. the equations 

~ . (n)( ) (n) 1_ .. , (2) (2) 
.i.or s y1 .. o oY 4 t and - g \J'l o o oy 4.,, are real tooo But a and g 

are real by CODStruction ~lSb) and (l9b >] Yltich comple1:es the , proof • 

.. 




