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the red points represent the standard deviations of the same. The black
curves represent the fits in ¢pc -+ according to a straight line. It is useful
to note that the lack of events below 0pc -+ = 36° due to the fiducial cut
we place on positive particles due to the shadow of the IC. Naturally, pions
which pass through the IC and are detected by CLAS will have much less
energy due to ionization, and will not be useful candidates for this study.
For this study, we employ the same exact IC shadow cut to pions as we do
to protons.
The parameter e+ fit as a function of Op¢ -+ sector by sector according to
equation 153. . . . . . L oL

The parameter fr+ fit as a function of Op¢ .+ sector by sector according to
equation 1564. . . . . . Lo e

dpn+ as a function of ¢pp¢ -+, for different bins of Op¢ -+, before momentum
corrections to pions. . . . . . .. L. Lo L e

dpn+ as a function of ¢pc -+, for different bins of Opc -+, after momentum
corrections to pions. . . . . . ... Lo

0M as a function of ¢pc -+, for different bins of Op ¢ .+, before momentum
corrections to pions. . . . . . ... L Lo

dMp as a function of ¢p¢ -+, for different bins of Opc -+, after momentum
corrections to pions. . . . . . ... Lo

0My as a function of Opc r+, before momentum corrections to pions. The
black points represent the means in slices of pc .+ and the red points
correspond to one standard deviation. . . . . .. .. .. ...,
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Figure 4.73

Figure 4.74

Figure 4.75

Figure 4.76

Figure 4.77

Figure 4.78

Figure 4.79

dMp as a function of Opc .+, after momentum corrections to pions. The
black points represent the means in slices of Opc r+ and the red points
correspond to one standard deviation. Comparing with Figure 4.72, we
notice a small, but significant improvement in the mean and sigma.

For EC studies: we plot on the left column the invariant mass as a function
of pion energy; in the middle column the invariant mass as a function of
pion polar angle; and on the right column the invariant mass as a function
of missing energy of the e+ p+ v+ system. We plot on the top row results
before corrections; on the middle row results after R. de Masi corrections;
and on the bottom row results after P. Bosted corrections. . . . .. ...
For IC viewing: on the left, the invariant mass as a function of pion energy,
in the middle, the invariant mass as a function of pion polar angle, and on
the right, the invariant mass as a function of missing energy of the e+p—+~y+y
system. . ...
We plot on the top left the means for the mass spectra as a function of
pion energy; on the top right the means of the mass spectra as a function
of pion polar angle; on the lower right the sigmas for the mass spectra as a
function of pion energy; and on the bottom right the sigmas for the mass
spectra as a function of pion polar angle. Black points represent results
before corrections, red points represent results after R. de Masi corrections,
and green points represent results after P. Bosted corrections. We conclude
from this graph that the P. Bosted corrections are the best for el-dves2 both
in terms of the change in the mean value and the slightly tightened value of

For the variable px |, on top, the distributions for data in black, Monte
Carlo in red, and stretched Monte Carlo in green. The upper left panel
is for the IC and the upper right panel is for the EC. The cuts in black
correspond to the IC and EC cuts at 97% of the fit to equation 164. The
cut in red corresponds to the scaling of the black cut according to the stretch
factor. On the bottom left, the x? value for the comparison between data
and stretched Monte Carlo, as a function of “stretching”, on left for IC and
on right for EC. These plots correspond to events after cuts on all other
variables. . . ... L. Lo

For the variable x ., on top, the distributions for data in black, Monte
Carlo in red, and stretched Monte Carlo in green. The upper left panel
is for the IC and the upper right panel is for the EC. The cuts in black
correspond to the IC and EC cuts at 90% of the fit to equation 164. The
cut in red corresponds to the scaling of the black cut according to the stretch
factor. On the bottom left, the x? value for the comparison between data
and stretched Monte Carlo, as a function of “stretching”, on left for IC and
on right for EC. These plots correspond to events after cuts on all other
variables. . . . .. oL

For the variable E'x, on top, data, on bottom, Monte Carlo. On left is
IC, and on right is EC. On the left, the IC distribution is fit to a skewed
Gaussian for both data and Monte Carlo. On the right, the EC is fit to
a Gaussian for both data and Monte Carlo. The cuts are denoted by the
vertical black lines, whose values are written in Table 4.13. These plots
correspond to events after cuts on all other variables. . . . .. ... ...
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Figure 4.80

Figure 4.81

Figure 4.82

Figure 4.83

Figure 4.84

Figure 4.85
Figure 4.86
Figure 4.87
Figure 4.88

Figure 4.89

Figure 4.90

Exclusivity variables in data for IC. On the top row are the distributions
before all cuts. On the bottom are the distributions after all exclusivity cuts
except for the cut on the plotted variable. The only exception is ®, for which
all cuts have been applied. The first column represents px | . The second
column represents ¢ x. The third column represents Ex. The last column
represents . One can see in the missing energy, before cuts, a peak below
zero, which corresponds to the elastic channel with an accidental photon of
400 MeV. . . . e

Exclusivity variables in data for EC. On the top row are the distributions
before all cuts. On the bottom are the distributions after all exclusivity cuts
except for the cut on the plotted variable. The only exception is ®, for which
all cuts have been applied. The first column represents px ;. The second
column represents ¢, x. The third column represents Ex. The last column
represents ®. One can see in the missing energy, before cuts, a peak below
zero, which corresponds to the elastic channel with an accidental photon of
400 MeV. . . o o

Exclusivity variables in Monte Carlo for IC. On the top row are the distribu-
tions before all cuts. On the bottom are the distributions after all exclusivity
cuts except for the cut on the plotted variable. The only exception is @, for
which all cuts have been applied. The first column represents px . The
second column represents ¢, x. The third column represents Ex. The last
column represents ®.
Exclusivity variables in Monte Carlo for EC. On the top row are the dis-
tributions before all cuts. On the bottom are the distributions after all
exclusivity cuts except for the cut on the plotted variable. The only excep-
tion is @, for which all cuts have been applied. The first column represents
px,.. The second column represents ¢, x. The third column represents
FEx. The last column represents ®.
The bin volume correction ]\J,V%pe as a function of ® for the fifth bin in xpg
and 6., where 0.17 < x5 < 0.2 and 25.5° < 0, < 45°.
The average electron rate for each run.
The electron rate for each file as a function of run. . . . . . .. . ... ..

The y-axis projection of Figure 4.86. . . . . . . . . . .. ... ... ....

Each panel corresponds to a sector. In each sector is the vertex position of
all good electrons for that sector in the empty target run. Each distribution
has three peaks. On the far left is the target entry window. On the right
is the target exit window. These two are fit to Gaussians, whose means are
used to calculate the distance between the two peaks. This difference is the
target length. On the very far right, just on the edge of the histogram is the
peak corresponding to the foil placed in downstream from the target. This
foil insulated the target from heat. . . . . . . . .. ... ... ... ....

The abscissa corresponds to sector number, and the ordinate corresponds
to the measurement of the target length according to the method of using
vertex position. Each of the six measurements corresponds to the values
determined from Figure 4.88. The horizontal black line corresponds to the
mean value of all six points. The mean and standard deviation are listed in
the upper right label.
The charge asymmetry for el-dves2, as a function of run number. We see
that the asymmetry is never more than + 0.005, which is sufficiently small
for our purposes. . . . ...
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Figure 4.91

Figure 4.92

Figure 4.93

Figure 4.94

Figure 4.95

Figure 4.96

Figure 4.97

Figure 4.98

Figure 4.99

The left column represents the difference between the times as measured by
the EC and the SC as a function of run number. The units of the ordinate
are in nanoseconds. The right column represents the reconstructed velocity
of the photons as a function of run number. The top row represents these
values before EC timing calibrations. The bottom row represents these
values after EC timing calibrations. We note that there is a very good
improvement after the calibration. We make note that on the top row,
there are series of points which are all at a fixed value, such as 0.06 for the
sigma of the timing difference, and 1.0 and 1.05 for the mean and sigma of
the velocity of photons respectively. This exact assignment to these values
is a sign that the calibration routine had failed, and that these initial values
were entered. . . . ... L Lo Lo

MMEH)JFX versus IM,.. The upper-left panel corresponds to the 1IC-IC
case. The upper-right panel corresponds to the IC-EC case. The lower-left
panel corresponds to the EC-IC case. The lower-right panel corresponds
to the EC-EC case. In each of the four panels, a black ellipse is drawn
indicating the region where a 7° should be found. In the cases of the IC-IC
and EC-EC topologies, the pions can clearly be seen. In the cases of the
mixed topologies IC-EC and EC-IC, there are no pions visible. This is due
to the strict fiducial cuts placed on the IC and EC as well as the IC shadow
fiducial cuts placed on the EC. These fiducial cuts require the pion to have
a restrictively large angle between its two decay photons, causing there to
be no detectable pion signal. . . . . . .. ... Lo

Exclusivity variables in data for IC. On the top row are the distributions
before all cuts. On the bottom are the distributions after all exclusivity
cuts except for the cut on the plotted variable. The first column repre-
sents M Me2 4p- The second column represents M Me2 0 The third column
represents IM... The last column represents Ox ro. . . . . . . ... ...

Exclusivity variables in data for EC. On the top row are the distributions
before all cuts. On the bottom are the distributions after all exclusivity
cuts except for the cut on the plotted variable. The first column repre-
sents M Me2 4p The second column represents M Mf 0 The third column
represents I M. The last column represents Ox ro. . . . . . . ... ...

Exclusivity variables in Monte Carlo for IC. On the top row are the dis-
tributions before all cuts. On the bottom are the distributions after all
exclusivity cuts except for the cut on the plotted variable. The first column
represents M M62+p. The second column represents M Mimo. The third
column represents IM.,,. The last column represents 0x 0. . . . . . . ..

Exclusivity variables in Monte Carlo for EC. On the top row are the dis-
tributions before all cuts. On the bottom are the distributions after all
exclusivity cuts except for the cut on the plotted variable. The first column
represents M M3+p. The second column represents M M62+7r0. The third
column represents I M.. The last column represents 0x 0. . . . . . . ..

The neutral pion yields as a function of ® for the fifth bin in zz and 6.,
where 0.17 < x5 < 0.2 and 25.5° < 6, < 45°. The yield for two photons
detected in Monte Carlo is green. The yield for one photon detected in
Monte Carlo is red. The ratio of these yields is equivalent to the ratio of

their acceptances. . . . . . . . . . L L e
vy

The neutral pion subtraction ratio R = % as a function of @ for the
fifth bin in zg and 6., where 0.17 < zg < 0.2 and 25.5° < 6, < 45°. . . .
The Born terms for BH and DVCS. Form factors are represented by the
black blobs. GPDs are represented by the blue blobs. . . . . . .. .. ..
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Figure 4.100

Figure 4.101

Figure 4.102

Figure 4.103

Figure 4.104

Figure 4.105

Figure 4.106

Figure 4.107

Figure 5.1

Figure 5.2

Figure 5.3

All radiative corrections up to leading order. Form factors are represented
by the black blobs. GPDs are represented by the blue blobs. BH or DVCS
photons are represented by black photon lines, while real radiative photons
are represented by yellow photon lines. . . . . ... ... ... ......

An example of the post-radiation tail. On the left, for the IC, and on the
right for the EC. In both, you can see a radiative tail coming down on the
right hand side of the peak. This corresponds to energy lost from a photon
radiating from the outgoing electron leg. . . . . ... .. ... ... ...

The M M? 4, distribution in GeV? for the IC after all exclusivity cuts, show-
ing the three sigma limit in black, which is taken to be the approximate
cutoff, corresponding to a cutoff on the radiated photon energy. The black
curve represents the fit to a Gaussian with a second order polynomial back-
ground, which is represented by the red line. . . . . ... ... ... ...

The radiative corrections as a function of ® for the fifth bin in zz and 6.,
where 0.17 < zp < 0.2 and 25.5° <6, <45°. . . . .. ... . ... ....

The elastic cross section computed from el-dves2 by B. Guegan?? in black
points, and the cross section according to the Brash parameterization®
displayed as a red line. Each panel corresponds to a sector. This plot is a
reproduction of a plot appearing in the thesis manuscript of B. Guegan.??

The ratio of the elastic cross section computed from el-dves2 by B. Guegan?3
to the cross section according to the Brash parameterization.®® The red line
at 1 denoted where a perfect agreement would be. Each panel corresponds
to a sector. Each sector is fit to a constant, represented by a horizontal black
line, representing the normalization per sector. This plot is a reproduction
of a plot appearing in the thesis manuscript of B. Guegan.?® . . . . . ..

On the left, integrated over all sectors, the elastic cross section computed
from el-dves2 by B. Guegan??® in black points, and the cross section ac-
cording to the Brash parameterization® displayed as a red line. On the
right, the ratio of the CLAS cross section to the cross section extracted
from Brash.?® The red line at 1 denotes where a perfect agreement would
be. The ratio is fit to a constant, represented by a horizontal black line,
representing the overall normalization. This normalization, integrated over
all sectors, is the overall correction that is used in the DVCS cross section.
This plot is a reproduction of a plot appearing in the thesis manuscript of
B. Guegan.?® . . . ...

The abscissa corresponds to sector number, and the ordinate corresponds
to the measurement of the elastic renormalization according to the method
above. Each of the six measurements corresponds to the values determined
from Figure 4.105. The horizontal black line corresponds to the mean value
of all six points. The mean and standard deviation are listed in the upper
right label. . . . . . .

The unpolarized cross section as a function of ® for the fifth bin in xp and
0., where 0.17 < zp < 0.2 and 25.5° < 6, < 45°. Each panel corresponds
to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72,
1.10,2.00] in GeVZ. . ...

The polarized cross section as a function of ® for the fifth bin in x5 and 6.,
where 0.17 < zp < 0.2 and 25.5° < 6, < 45°. Each panel corresponds to
a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72,
1.10,2.00] in GeVZ . . . ..

The asymmetry as a function of ® for the fifth bin in zp and 6., where
0.17 < xp < 0.2 and 25.5° < 6. < 45°. Each panel corresponds to a bin in
—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]
N GeV2.
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Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 6.1

Figure A.1

Figure A.2

Figure A.3

Figure A.4

On top, the unpolarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the unpolarized cross section ratios. Both are for
the fifth bin in zp and 0., where 0.17 < zp < 0.2 and 25.5° < 6. < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is % Red is
el—dvcs2 Saylor

o i oo
The unpolarized cross section as a function of ® for the fifth bin in xp and

0., where 0.17 < zp < 0.2 and 25.5° < 6, < 45°. Each panel corresponds
to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72,
1.10, 2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.

Hre as a function of —t, for each of the 21 bins in xp and .. The red points
represent the extraction from this analysis, and the black points represent
the prediction from VGG. We notice that the agreement of the extraction
to predictions is not great. . . . . .. ... .. L oL
Him as a function of —t, for each of the 21 bins in x5 and .. The red points
represent the extraction from this analysis, and the black points represent
the prediction from VGG. We notice that the agreement is good for low
values of xp and 6., with worse agreement at higher values. . . . . . . . .
The charge density distribution of the proton as a function of impact pa-
rameter b. Each panel corresponds to a particular value of xz. The shape
of the distribution is Gaussian, centered around b=0.. . . . . .. .. ..
For bins 1 and 2, a three-dimensional view of the charge density distribution
of the proton as a function of impact parameter b, for two choices of zg: 0.12
and 0.155, and two choices of Q2: 1.135 GeV? and 1.305 GeV? respectively.
For bins 3 and 4, a three-dimensional view of the charge density distribu-
tion of the proton as a function of impact parameter b, for two choices of
zp: 0.155 and 0.185, and two choices of Q%: 1.471 GeV? and 1.490 GeV?
respectively. . . . ...
For bins 5 and 6, a three-dimensional view of the charge density distribu-
tion of the proton as a function of impact parameter b, for two choices of
zp: 0.185 and 0.215, and two choices of Q2: 1.710 GeV? and 1.684 GeV?
respectively. . . . ..o Lo L
For bins 7 and 9, a three-dimensional view of the charge density distribu-
tion of the proton as a function of impact parameter b, for two choices of
zp: 0.215 and 0.245, and two choices of Q?: 1.964 GeV? and 2.187 GeV?
respectively. . . . ... L
The kinematic coverage of Hall A, CLAS, HERMES, and the future coverage
of COMPASS and CLAS 12. This figure was taken from reference®!. . . .
The acceptance as a function of ¢ for the first bin in xp and 0., where
0.l <zxzp<0.14and 21° <O, <45°. . . . . . ... ... ... ... ..
On top, the acceptance as a function of ¢ for the second bin in zg and 6.,
where 0.14 < xp < 0.17 and 21° < 6. < 25.5°. On bottom, the acceptance
as a function of ¢ for the third bin in zp and 6., where 0.14 < xp < 0.17
and 25.5° < 0, <45°. . .. e e
On top, the acceptance as a function of ¢ for the fourth bin in g and 6.,
where 0.17 < xp < 0.2 and 21° < 6. < 25.5°. On bottom, the acceptance
as a function of ¢ for the fifth bin in x5 and 0., where 0.17 < zg < 0.2 and
25.5° < 0, <4B°.. . e
On top, the acceptance as a function of ¢ for the sixth bin in xp and 6.,
where 0.2 < xp < 0.23 and 21° < 6, < 27°. On bottom, the acceptance as
a function of ¢ for the seventh bin in xp and 6., where 0.2 < xp < 0.23 and
27° < B, < A5°. . . . e
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Figure A.5

Figure A.6

Figure A.7

Figure A.8

Figure A.9

Figure A.10

Figure A.11

Figure B.1

Figure B.2

Figure B.3

Figure B.4

Figure B.5

Figure B.6

On top, the acceptance as a function of ¢ for the eighth bin in zg and 6.,
where 0.23 < zg < 0.26 and 21° < 6, < 27°. On bottom, the acceptance as
a function of ¢ for the ninth bin in x5 and 0., where 0.23 < g < 0.26 and
27° <0, < AB°. . . e e

On top, the acceptance as a function of ¢ for the tenth bin in xp and 6.,
where 0.26 < xp < 0.29 and 21° < 6. < 27°. On bottom, the acceptance as
a function of ¢ for the eleventh bin in g and 6., where 0.26 < xp < 0.29
and 27° < 6, <45°. . .. e

On top, the acceptance as a function of ¢ for the twelfth bin in xp and 6.,
where 0.29 < xp < 0.32 and 21° < 6. < 28°. On bottom, the acceptance as
a function of ¢ for the thirteenth bin in g and 6., where 0.29 < xp < 0.32
and 28° < 0, < 45°. . . . L

On top, the acceptance as a function of ¢ for the fourteenth bin in xp and
0., where 0.32 < xp < 0.35 and 21° < 6, < 28°. On bottom, the acceptance
as a function of ¢ for the fifteenth bin in xp and 0., where 0.32 < x5 < 0.35
and 28° < 6, <45°. . ..

On top, the acceptance as a function of ¢ for the sixteenth bin in zg and 6.,
where 0.35 < zp < 0.38 and 21° < 6, < 28°. On bottom, the acceptance as
a function of ¢ for the seventeenth bin in x5 and ., where 0.35 < xp < 0.38
and 28° < 6, <4B°. . .. L e

On top, the acceptance as a function of ¢ for the eighteenth bin in g and 6.,
where 0.38 < xp < 0.42 and 21° < 6. < 28°. On bottom, the acceptance as
a function of ¢ for the nineteenth bin in xp and 6., where 0.38 < xp < 0.42
and 28° < 6, <45°. . ... e

On top, the acceptance as a function of ¢ for the twentieth bin in x5 and 6.,
where 0.42 < xp < 0.58 and 21° < 6. < 33°. On bottom, the acceptance as
a function of ¢ for the twenty-first bin in x5 and 0., where 0.42 < xp < 0.58
and 33° < 0, <45°. . ..

The bin volume correction N2 as a function of ® for the first bin in xp
and 6., where 0.1 < 2 < 0.14 and 21° < 6, < 45°. . . . . .. ... ...

On top, the bin volume correction ]\JZV%I); as a function of ® for the second
bin in xp and 0., where 0.14 < zp < 0.17 and 21° < 0, < 25.5°. On
bottom, the bin volume correction j\jfvlﬁ as a function of ® for the third
bin in 2 and 6,, where 0.14 < 25 < 0.17 and 25.5° < 0, < 45°. . . . . .

On top, the bin volume correction ]\J,\S[l‘:p‘;x as a function of ® for the fourth
bin in zg and 0., where 0.17 < zg < 0.2 and 21° < 6, < 25.5°. On bottom,
the bin volume correction NNE]‘)’: as a function of ® for the fifth bin in zp
and 6., where 0.17 < xp < 0.2 and 25.5° < 0, <45°. . ... ... ....

On top, the bin volume correction N]\:. bp‘: as a function of ® for the sixth bin
in zg and 0., where 0.2 < zg < 0.23 and 21° < 0, < 27°. On bottom, the
bin volume correction N]Z:per as a function of ® for the seventh bin in zg
and 6., where 0.2 < xp < 0.23 and 27° <6, <45°. . ... ... .. ...

On top, the bin volume correction NNEI); as a function of ® for the eighth
bin in xp and 0., where 0.23 < xp < 0.26 and 21° < 0, < 27°. On bottom,
the bin volume correction Iévﬁ as a function of ® for the ninth bin in zg
and 6., where 0.23 < xp < 0.26 and 27° <0, <45°. . . . ... ... ...

On top, the bin volume correction Aﬁﬁ as a function of ® for the tenth
bin in g and 0., where 0.26 < xp < 0.29 and 21° < 0, < 27°. On bottom,
the bin volume correction ]\],Vu% as a function of ® for the eleventh bin in

zp and 0,, where 0.26 < 5 < 0.29 and 27° < 0, < 45°. . . . . . . . ...
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Figure B.7

Figure B.8

Figure B.9

Figure B.10

Figure B.11

Figure C.1

Figure C.2

Figure C.3

Figure C.4

Figure C.5

Figure C.6

Figure C.7

On top, the bin volume correction A],V& as a function of ® for the twelfth

bin in zp and 6., where 0.29 < zp < 0 32 and 21° < 0, < 28°. On bottom,

the bin volume correction NN bin_ a5 a function of ® for the thirteenth bin in

rp and 6., where 0.29 < xBS‘ZeYOBZ and 28° < 0, <45°. . . .. ... ...
On top, the bin volume correction AJ,V bin_ ag a function of ® for the fourteenth
bin in 2 and 6,, where 0.32 < x5 < 0 35 and 21° < 0, < 28°. On bottom,
the bin volume correction ]\J,Vl‘j}‘)'; as a function of ® for the fifteenth bin in
rp and 6., where 0.32 < x5 < 0.35 and 28° <, <45°. . . ... ... ..

On top, the bin volume correction Aﬁv bin_ a5 a function of ® for the sixteenth
bin in g and 0., where 0.35 < x5 < 0 38 and 21° < 0, < 28°. On bottom,
the bin volume correction NNb"; as a function of ® for the seventeenth bin
in zg and 6., where 0.35 < xg < 0.38 and 28° < f, <45°. . .. ... ..

On top, the bin volume correction ]\],V bin_ as a function of ® for the eighteenth
bin in xp and ., where 0.38 < zp < O 42 and 21° < 6, < 28°. On bottom,
the bin volume correction AJ,V% as a function of ® for the nineteenth bin
in zg and 0., where 0.38 < x5 < 0.42 and 28° <, <45°. . .. ... ..

On top, the bin volume correction N]Z:p“e as a function of ® for the twentieth
bin in 2 and ., where 0.42 < 25 < 0.58 and 21° < 6, < 33°. On bottom,
the bin volume correction J\Jf\s[li)}; as a function of ® for the twenty-first bin
in zg and 0., where 0.42 < xp < 0.58 and 33° < 6, <45°. .. ... ...

NY
the neutral pion subtraction ratio R = =% as a function of ® for the
first bin in zp and 6., where 0.1 < x5 < 0.14 and 21° < 6, < 45°.

NY
On top, the neutral pion subtraction ratio R = =34+ as a function of ® for
the second bin in 2 and 6., where 0.14 < zp < 0.17 and 21° < 0, < 25.5°.

NY
On bottom, the neutral pion subtraction ratio R = {532+ as a function of ®
for the third bin in x5 and 0., where 0.14 < xp < 0.17 and 25.5° < 0, < 45°.
NY
On top, the neutral pion subtraction ratio R = =34~ as a function of ® for
the fourth bin in x5 and 6., where 0.17 < zp < 0.2 and 21° < 6, < 25.5°.
NY
On bottom, the neutral pion subtraction ratio R = %= as a function of ®
for the fifth bin in xzp and 0., where 0.17 < xp < 0.2 and 25.5° < 0, < 45°.
NY
On top, the neutral pion subtraction ratio R = =734 as a function of ® for
the sixth bin in g and 0., where 0.2 < zg < 0.23 and 21° < 0, < 27°. On
. . . NY .
bottom, the neutral pion subtraction ratio R = {3~ as a function of ¢
for the seventh bin in x5 and 6., where 0.2 < zp < 0.23 and 27° < 0, < 45°.
N’Y
On top, the neutral pion subtraction ratio R = s~ as a function of ® for
the eighth bin in xp and 6., where 0.23 < xp < 0.26 and 21° < 6. < 27°.
vy

N,
On bottom, the neutral pion subtraction ratio R = =% as a function of ®
for the ninth bin in zg and ., where 0.23 < g < 0.26 and 27° < 6, < 45°.

NY
On top, the neutral pion subtraction ratio R = =345 as a function of ® for
the tenth bin in x5 and 6., where 0.26 < x5 < 0.29 and 21° < 0, < 27°. On

NY
bottom, the neutral pion subtraction ratio R = =345 as a function of ® for
the eleventh bin in zp and 6., where 0.26 < x5 < 0.29 and 27° < 0, < 45°.
y

N
On top, the neutral pion subtraction ratio R = =34 as a function of ® for
the twelfth bin in zg and 0., where 0.29 < xp < 0.32 and 21° < ., < 28°.

NY
On bottom, the neutral pion subtraction ratio R = =% as a function
of @ for the thirteenth bin in zp and 6., where 0.29 < zp < 0.32 and
28° < B, < AB°. . . e
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Figure C.8

Figure C.9

Figure C.10

Figure C.11

Figure D.1

Figure D.2

Figure D.3

Figure D.4

Figure D.5

Figure D.6

Figure D.7

Figure D.8

. . . NY .
On top, the neutral pion subtraction ratio R = =355 as a function of ®

for the fourteenth bin in zg and 6., where 0.32 < zp < 0.35 and 21° <

6. < 28°. On bottom, the neutral pion subtraction ratio R = % as a
function of ® for the fifteenth bin in xp and 6., where 0.32 < x5 < 0.35
and 28° < 6, <45°. . ..

N7
On top, the neutral pion subtraction ratio R = =34 as a function of ® for
the sixteenth bin in zg and ., where 0.35 < zp < 0.38 and 21° < 6, < 28°.
y

N,
On bottom, the neutral pion subtraction ratio R = =% as a function
of @ for the seventeenth bin in zg and 6., where 0.35 < zp < 0.38 and
28° <0, < AB°. . . e e

N"/
On top, the neutral pion subtraction ratio R = =%~ as a function of ®

for the eighteenth bin in zp and 6., where 0.38 < xp < 0.42 and 21° <
vy

N
e < 28°. On bottom, the neutral pion subtraction ratio R = =%~ as a
function of ® for the nineteenth bin in zz and 6., where 0.38 < xp < 0.42
and 28° < 0. < 45°. . ..

N’Y
On top, the neutral pion subtraction ratio R = =734 as a function of ® for
the twentieth bin in g and 0., where 0.42 < g < 0.58 and 21° < 0, < 33°.
vy

On bottom, the neutral pion subtraction ratio R = % as a function
of @ for the twenty-first bin in xp and 6., where 0.42 < xp < 0.58 and
33° < B, <A5°. . . e

The radiative corrections as a function of ® for the first bin in zg and 6.,
where 0.1 < zp < 0.14 and 21° <0, <45°. . . . .. ... .. ... ....

On top, the radiative corrections as a function of ® for the second bin in
rp and 0., where 0.14 < zp < 0.17 and 21° < 0, < 25.5°. On bottom, the
radiative corrections as a function of ® for the third bin in x5 and 6., where
0.14 <z <0.17and 25.5° <@, <45° . . . . .. .. ... .. ......

On top, the radiative corrections as a function of ® for the fourth bin in
rp and 6., where 0.17 < zp < 0.2 and 21° < 0, < 25.5°. On bottom, the
radiative corrections as a function of ® for the fifth bin in g and 0., where
0.17<zp <0.2and 25.5° <6, <45°. . . .. ... ... ... ... ....

On top, the radiative corrections as a function of ® for the sixth bin in
rp and 0., where 0.2 < zg < 0.23 and 21° < 6, < 27°. On bottom, the
radiative corrections as a function of ® for the seventh bin in xp and 6.,
where 0.2 < xp < 0.23 and 27° <6, <45°. . . . . .. ... ... ... ..

On top, the radiative corrections as a function of ® for the eighth bin in
xp and 6., where 0.23 < zg < 0.26 and 21° < 6. < 27°. On bottom, the
radiative corrections as a function of ® for the ninth bin in g and 6., where
023 <z <0.26 and 27° < O, < 45°. . . . ... ...

On top, the radiative corrections as a function of ® for the tenth bin in
zp and 0., where 0.26 < xp < 0.29 and 21° < 0, < 27°. On bottom, the
radiative corrections as a function of ® for the eleventh bin in zg and 6.,
where 0.26 < xp < 0.29 and 27° < 0, <45°. . . .. ... .. ... .. ..

On top, the radiative corrections as a function of ® for the twelfth bin in
rp and 6., where 0.29 < zp < 0.32 and 21° < 6, < 28°. On bottom, the
radiative corrections as a function of ® for the thirteenth bin in x5 and 6.,
where 0.29 < zp < 0.32 and 28° <, <45°. . . . ... ... . ......

On top, the radiative corrections as a function of ® for the fourteenth bin
in zp and 6,, where 0.32 < xg < 0.35 and 21° < 0, < 28°. On bottom, the
radiative corrections as a function of ® for the fifteenth bin in zg and 6.,
where 0.32 < zp < 0.35 and 28° < 6, <45°. . .. ... ... ..
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Figure D.9

Figure D.10

Figure D.11

Figure E.1

Figure E.2

Figure E.3

Figure E.4

Figure E.b

Figure E.6

Figure E.7

On top, the radiative corrections as a function of ® for the sixteenth bin in
rp and 6., where 0.35 < zp < 0.38 and 21° < 6, < 28°. On bottom, the
radiative corrections as a function of ® for the seventeenth bin in xp and
0., where 0.35 < zp < 0.38 and 28° < 0, <45°. . .. .. .. ... ....

On top, the radiative corrections as a function of ® for the eighteenth bin
in g and 6., where 0.38 < g < 0.42 and 21° < 6, < 28°. On bottom, the
radiative corrections as a function of ® for the nineteenth bin in g and 6.,
where 0.38 < xp < 0.42 and 28° < 0, <45°. . .. .. ... .. ......

On top, the radiative corrections as a function of ® for the twentieth bin in
rp and 0., where 0.42 < xp < 0.58 and 21° < 6. < 33°. On bottom, the
radiative corrections as a function of ® for the twenty-first bin in zp and
0., where 0.42 < xp < 0.58 and 33° <6, <45°. . ... ... ... ....

On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the first bin
in zp and 6., where 0.1 < zp < 0.14 and 21° < 6. < 45°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is Si=gtes? Seulor. Req js clolvcs? Saylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the second
bin in g and ., where 0.14 < xp < 0.17 and 21° < . < 25.5°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is Sites2 Saulor. | R jg Slodues? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the third bin
in zg and 6., where 0.14 < xp < 0.17 and 25.5° < 0. < 45°. Each panel
corresponds to a bin in —t¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is GAtes2 Saulor. R jg Slodues? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the fourth
bin in zp and 0., where 0.17 < xp < 0.2 and 21° < 6, < 25.5°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is GAtes2 SaUlor. | Red jg Slodues? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the fifth bin
in xp and 6., where 0.17 < xp < 0.2 and 25.5° < 0, < 45°. Each panel
corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is GAles2 SaUlor.  Red js Slucs? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the sixth bin
in zg and 6., where 0.2 < zp < 0.23 and 21° < 0, < 27°. Each panel
corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is GAle2 Sasor. | Red js Sfuce? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the seventh
bin in zp and 6., where 0.2 < zp < 0.23 and 27° < 0, < 45°. Each panel
corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,

:, el—dves2 Saylor :. el—dves2 Saylor
0.39, 0.52, 0.72, 1.10, 2.00] Green is G- =00 Cuegan” Red is =374,
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Figure E.8

Figure E.9

Figure E.10

Figure E.11

Figure E.12

Figure E.13

Figure E.14

Figure E.15

Figure E.16

On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the eighth
bin in x5 and 6., where 0.23 < xp < 0.26 and 21° < 0, < 27°. Each panel
corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is SAle2 Aot Red js Sfuce? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the ninth bin
in xp and 0., where 0.23 < xp < 0.26 and 27° < 0. < 45°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is S=gtes? S0ulor. Red js “olvcs? Saylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the tenth bin
in zg and 6., where 0.26 < zg < 0.29 and 21° < 0. < 27°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is Si=gtes? Seulor. Req js clodvcs? Saylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the eleventh
bin in zp and ., where 0.26 < xp < 0.29 and 27° < 0. < 45°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is Jfues2 Saulor. | R jg Slodues? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the twelfth
bin in zp and 6., where 0.29 < xp < 0.32 and 21° < §. < 28°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is SAtes2 Saulor. R jg Sldues? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the thirteenth
bin in zg and 6., where 0.29 < zg < 0.32 and 28° < 6, < 45°. Each panel
corresponds to a bin in —t¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is GAtes2 SaUlor.  Red jg Slodues? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the fourteenth
bin in zg and 6., where 0.32 < zg < 0.35 and 21° < 6, < 28°. Each panel
corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is GAles2 Salor.  Red js Silucs? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the fifteenth
bin in zg and 6., where 0.32 < zg < 0.35 and 28° < 6. < 45°. Each panel
corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is Gle2 Aot Red js Suce? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the sixteenth
bin in xp and 6., where 0.35 < xp < 0.38 and 21° < 0, < 28°. Each panel
corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,

:. el—dves2 Saylor :. el—dves2 Saylor
0.39, 0.52, 0.72, 1.10, 2.00] Green is S o= =00 Cucgan Red is =374,
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Figure E.17

Figure E.18

Figure E.19

Figure E.20

Figure E.21

Figure E.22

Figure E.23

Figure E.24

On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S.
Jo. On bottom, the unpolarized cross section ratios. Both are for the
seventeenth bin in xp and 6., where 0.35 < xp < 0.38 and 28° < 6, < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is % Red is
el—dvcs2 Saylor

dvesl o * KR . IR
On top, the unpolarized cross section as a function of ®. Black represents

this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the eighteenth
bin in zp and ., where 0.38 < xp < 0.42 and 21° < . < 28°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is Siogres? Seulor. Req js clodvce? Saylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the nineteenth
bin in zp and 6., where 0.38 < xp < 0.42 and 28° < . < 45°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is GALes2 Saulor. | R jg Sldues? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the twentieth
bin in zg and 0., where 0.42 < zg < 0.58 and 21° < 6, < 33°. Each panel
corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is GAtes2 Saulor. R jg Slolues? Seylor,
On top, the unpolarized cross section as a function of ®. Black represents
this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo.
On bottom, the unpolarized cross section ratios. Both are for the twenty-
first bin in zp and 6., where 0.42 < zp < 0.58 and 33° < f, < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is %% Red is
el—dvcs2 Saylor

T ooy
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the first
bin in xp and 6., where 0.1 < zp < 0.14 and 21° < 6. < 45°. Each panel
corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is G—le2 Sasor. | Red js Spluce Seylor,
On top, the polarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
second bin in xp and 6., where 0.14 < xp < 0.17 and 21° < 6, < 25.5°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is % Red is
el—dvcs2 Saylor

dvesl ot e RN
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
third bin in g and 6., where 0.14 < g < 0.17 and 25.5° < 0, < 45°.
Each panel corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is S=fUesZSaUor  Red s

el—dvcs2 Saylor
Tl —duesl Jo ottt e e e e e
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Figure E.25

Figure E.26

Figure E.27

Figure E.28

Figure E.29

Figure E.30

Figure E.31

On top, the polarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
fourth bin in xp and 6., where 0.17 < zp < 0.2 and 21° < 6. < 25.5°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is % Red is
el—dvcs2 Saylor

—dvesl Jo * R I e
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the fifth
bin in zg and 6., where 0.17 < g < 0.2 and 25.5° < 0, < 45°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is Si=gtes? Seulor. Req js cllves? Saylor,
On top, the polarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the sixth
bin in g and 6., where 0.2 < zg < 0.23 and 21° < 6, < 27°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30,
0.39, 0.52, 0.72, 1.10, 2.00] Green is G=ALes2 Saulor. | R jg Sllues? Seylor,
On top, the polarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
seventh bin in zg and 6., where 0.2 < zp < 0.23 and 27° < 0, < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is % Red is
el—dves2 Saylor

P R oo e
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
eighth bin in xp and 6., where 0.23 < zp < 0.26 and 21° < 6, < 27°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is % Red is
el—dvcs2 Saylor

A
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
ninth bin in g and 6., where 0.23 < zp < 0.26 and 27° < 0, < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is %C% Red is
el—dvcs2 Saylor

dvesl o t R e
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
tenth bin in g and 6., where 0.26 < zg < 0.29 and 21° < 60, < 27°.
Each panel corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is S=fUes2SaUor  Red s

el—dvcs2 Saylor
Tl duesl Jo ottt e e e e e e e
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Figure E.32

Figure E.33

Figure E.34

Figure E.35

Figure E.36

Figure E.37

Figure E.38

On top, the polarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
eleventh bin in xp and 6., where 0.26 < xp < 0.29 and 27° < 0, < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is 2l=dves2 Saylor = Req jg

el—dvcs2 Guegan®
el—dvcs2 Saylor
m ..................................
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
twelfth bin in g and 6., where 0.29 < xp < 0.32 and 21° < 6, < 28°.
Each panel corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is <l=dves2 Saylor. = Req jg

el—dves2 Guegan®
el—dvcs2 Saylor
e e >~
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
thirteenth bin in zg and 6., where 0.29 < zp < 0.32 and 28° < 6, < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is l=dves2 Saylor = R jg

el—dves2 Guegan®
el—dves2 Saylor
e B e e
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
fourteenth bin in xp and 6., where 0.32 < zp < 0.35 and 21° < 0, < 28°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is 2l=dvesZ Saylor = Req jg

el—dvcs2 Guegan®

el—dvcs2 Saylor

m ..................................
On top, the polarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
fifteenth bin in zp and 6., where 0.32 < zg < 0.35 and 28° < ., < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,

0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is S=feFSaor - Red is

el—dvcs2 Saylor
“elodvea Jo ottt R R S
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
sixteenth bin in zg and 0., where 0.35 < zp < 0.38 and 21° < 6, < 28°.
Each panel corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is S=fUes2SaUor  Red is
el—dves2 Saylor

e B ey e
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
seventeenth bin in zp and 0., where 0.35 < xp < 0.38 and 28° < 6, < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is % Red is

el—dvcs2 Saylor
ol ducsl Jo  t t t ot ottt e e e e e oo oo
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Figure E.39

Figure E.40

Figure E.41

Figure E.42

Figure E.43

Figure E.44

Figure E.45

Figure E.46

On top, the polarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
eighteenth bin in xp and 6., where 0.38 < xp < 0.42 and 21° < 6, < 28°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is % Red is
el—dvcs2 Saylor

o i oo
On top, the polarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
nineteenth bin in zg and 6., where 0.38 < xp < 0.42 and 28° < 6, < 45°.
Each panel corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is %% Red is
el—dves2 Saylor

e B e s
On top, the polarized cross section differences as a function of ®. Black

represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
twentieth bin in xp and 6., where 0.42 < xp < 0.58 and 21° < 0, < 33°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
. el—dvcs2 Saylor :
023, 030, 039, 052, 072, 110, 200] Green 1S m Red 1S
el—dves2 Saylor
e B e e
On top, the polarized cross section differences as a function of ®. Black
represents this analysis. Green is el-dves2 by B. Guegan. Red is el-dvesl
by H.S. Jo. On bottom, the polarized difference ratios. Both are for the
twenty-first bin in zp and 6., where 0.42 < zp < 0.58 and 33° < 6, < 45°.
Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is S=F S Red is
el—dvcs2 Saylor
m ..................................
On top, the asymmetry as a function of ®. Black represents this analysis.

Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the first bin in zg and 0., where 0.1 <
rp < 0.14 and 21° < 6, < 45°. Each panel corresponds to a bin in —¢ whose

limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is

el—dvcs2 Saylor .. el—dves2 Saylor
—elfd'ucs2Guegan'Redls—elfdvcslflo L
On top, the asymmetry as a function of ®. Black represents this analysis.

Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the second bin in zp and 6., where
0.14 < xp < 0.17 and 21° < 6, < 25.5°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:, el—dves2 Saylor ., el—dves2 Saylor
Green is el—dvcs2 Guegan” Red is el—dvesl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the third bin in xp and 6., where
0.14 < zp < 0.17 and 25.5° < 0. < 45°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:, el—dves2 Saylor .. el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvcsl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the fourth bin in xp and 6., where
0.17 < xp < 0.2 and 21° < 0, < 25.5°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

.. el—dvcs2 Saylor ., el—dvcs2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvesl Jo
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Figure E.47

Figure E.48

Figure E.49

Figure E.50

Figure E.51

Figure E.52

Figure E.53

Figure E.54

Figure E.55

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the fifth bin in zp and 6., where 0.17 <
rp < 0.2 and 25.5° < 6, < 45°. Each panel corresponds to a bin in —¢

whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:. el—dves2 Saylor :. el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvecsl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the sixth bin in xp and 6., where
0.2 < xp < 0.23 and 21° < 6, < 27°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

-, el—dvcs2 Saylor :. el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvcsl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the seventh bin in zp and 6., where
0.2 < xp < 0.23 and 27° < 6, < 45°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

., el—dves2 Saylor ., el—dves2 Saylor
Green is — === = Cucgan” Redis == ot 7+ o oo e e e

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the eighth bin in xp and 6., where
0.23 < xp < 0.26 and 21° < 0, < 27°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:, el—dves2 Saylor ., el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvesl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the ninth bin in xp and 6., where
0.23 < zp < 0.26 and 27° < 0. < 45°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:, el—dves2 Saylor ., el—dves2 Saylor
Green is — === = Gucgan - Redis == ot ro + o v e e

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the tenth bin in xp and 6., where
0.26 < zp < 0.29 and 21° < 0, < 27°. Each panel corresponds to a bin in
—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:, el—dves2 Saylor :, el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvcsl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the eleventh bin in zp and 6., where
0.26 < zp < 0.29 and 27° < 0, < 45°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

., el—dves2 Saylor ., el—dves2 Saylor
Green is eT—dvcs2 Guegan” Red is T o doesl Jo e e

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the twelfth bin in xp and 6., where
0.29 < zp < 0.32 and 21° < 0, < 28°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:. el—dves2 Saylor ., el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvesl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the thirteenth bin in xp and 6., where
0.29 < zp < 0.32 and 28° < 0, < 45°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:. el—dves2 Saylor :. el—dves2 Saylor
Green is 7— =m0 on Guegan” Redis =it + v v v e e e e e e
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Figure E.56

Figure E.57

Figure E.58

Figure E.59

Figure E.60

Figure E.61

Figure E.62

Figure E.63

Figure F.1

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the fourteenth bin in zp and 6., where
0.32 < zp < 0.35 and 21° < 0, < 28°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:. el—dvces2 Saylor :. el—dves2 Saylor
Green is 7— 0o Guegan” Redis == 77—+« « oo oo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the fifteenth bin in zp and 6., where
0.32 < zp < 0.35 and 28° < 0, < 45°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

-, el—dvcs2 Saylor :. el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvcsl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the sixteenth bin in xp and 6., where
0.35 < xp < 0.38 and 21° < 0, < 28°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

. el—dves2 Saylor ., el—dves2 Saylor
Green is — === = Gucgan” Redis == ot 7+ o oo e e e

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the seventeenth bin in zz and 6., where
0.35 < xp < 0.38 and 28° < 0, < 45°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:, el—dves2 Saylor ., el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvesl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the eighteenth bin in xp and 0., where
0.38 < zp < 0.42 and 21° < 0. < 28°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:, el—dves2 Saylor ., el—dves2 Saylor
Green is — === = Gucgan - Redis == ot ro + o v e e

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the nineteenth bin in zg and 0., where
0.38 < zp < 0.42 and 28° < ., < 45°. Each panel corresponds to a bin in
—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

: el—dves2 Saylor :, el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvcsl Jo

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the twentieth bin in zp and 6., where
0.42 < zp < 0.58 and 21° < 0, < 33°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

., el—dves2 Saylor ., el—dves2 Saylor
Green is eT—dvcs2 Guegan” Red is T o doesl Jo e e

On top, the asymmetry as a function of ®. Black represents this analysis.
Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom,
the asymmetry ratios. Both are for the twenty-first bin in z g and 6., where
0.42 < zp < 0.58 and 33° < 0, < 45°. Each panel corresponds to a bin in

—t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

:. el—dvcs2 Saylor ., el—dves2 Saylor
Green is el—dvcs2 Guegan® Red is el—dvesl Jo

The unpolarized cross section as a function of ® for the first bin in zg and
0., where 0.1 < xp < 0.14 and 21° < 0, < 45°. Each panel corresponds to
a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72,
1.10, 2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.

XxXvii

294

295

296

297

298

299

300

301

302



Figure F.2

Figure F.3

Figure F.4

Figure F.5

Figure F.6

Figure F.7

Figure F.8

On top, the unpolarized cross section as a function of ® for the second
bin in xp and 0., where 0.14 < zp < 0.17 and 21° < 0, < 25.5°. On
bottom, the unpolarized cross section for the third bin in x5 and 6., where
0.14 < zp < 0.17 and 25.5° < 6, < 45°. Each panel corresponds to a bin
in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10,
2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.

On top, the unpolarized cross section as a function of ® for the fourth
bin in zp and 0., where 0.17 < zp < 0.2 and 21° < 6. < 25.5°. On
bottom, the unpolarized cross section for the fifth bin in x5 and 6., where
0.17 < xp < 0.2 and 25.5° < 0, < 45°. Each panel corresponds to a bin
in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10,
2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.

On top, the unpolarized cross section as a function of ® for the sixth bin
in xp and 6., where 0.2 < xp < 0.23 and 21° < 8. < 27°. On bottom, the
unpolarized cross section for the seventh bin in x5 and 0., where 0.2 < zg <
0.23 and 27° < 0, < 45°. Each panel corresponds to a bin in —¢ whose limits
are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For both, the
green curve corresponds to VGG, the light magenta corresponds to KM10,
and the dark magenta corresponds to KM10a. . . . .. .. ... ... ..
On top, the unpolarized cross section as a function of ¢ for the eighth
bin in zp and 6., where 0.23 < zg < 0.26 and 21° < 0, < 27°. On
bottom, the unpolarized cross section for the ninth bin in g and 6., where
0.23 < zp < 0.26 and 27° < 6. < 45°. Each panel corresponds to a bin
in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10,
2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.

On top, the unpolarized cross section as a function of ® for the tenth bin
in zp and 0., where 0.26 < xp < 0.29 and 21° < 0, < 27°. On bottom, the
unpolarized cross section for the eleventh bin in xp and 6., where 0.26 <
rp < 0.29 and 27° < 0. < 45°. Each panel corresponds to a bin in —¢
whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For
both, the green curve corresponds to VGG, the light magenta corresponds
to KM10, and the dark magenta corresponds to KM10a. . . . .. .. ..
On top, the unpolarized cross section as a function of ® for the twelfth bin
in g and 6., where 0.29 < zp < 0.32 and 21° < 6. < 28°. On bottom,
the unpolarized cross section for the thirteenth bin in xp and 6., where
0.29 < zp < 0.32 and 28° < 0. < 45°. Each panel corresponds to a bin
in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10,
2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.

On top, the unpolarized cross section as a function of ® for the fourteenth
bin in zg and 6., where 0.32 < zg < 0.35 and 21° < 0, < 28°. On
bottom, the unpolarized cross section for the fifteenth bin in zp and 6.,
where 0.32 < zp < 0.35 and 28° < 6. < 45°. Each panel corresponds to
a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72,
1.10, 2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.
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Figure F.9

Figure F.10

Figure F.11

On top, the unpolarized cross section as a function of ® for the sixteenth
bin in g and 0., where 0.35 < xp < 0.38 and 21° < #, < 28°. On bottom,
the unpolarized cross section for the seventeenth bin in zp and 6., where
0.35 < zp < 0.38 and 28° < 6. < 45°. Each panel corresponds to a bin
in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10,
2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.

On top, the unpolarized cross section as a function of ® for the eighteenth
bin in g and 0., where 0.38 < xp < 0.42 and 21° < 0, < 28°. On bottom,
the unpolarized cross section for the nineteenth bin in zp and 6., where
0.38 < zp < 0.42 and 28° < 6, < 45°. Each panel corresponds to a bin
in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10,
2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.

On top, the unpolarized cross section as a function of ® for the twentieth
bin in xp and ., where 0.42 < zp < 0.58 and 21° < 6, < 33°. On bottom,
the unpolarized cross section for the twenty-first bin in xp and 6., where
0.42 < zp < 0.58 and 33° < ., < 45°. Each panel corresponds to a bin
in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10,
2.00] For both, the green curve corresponds to VGG, the light magenta
corresponds to KM10, and the dark magenta corresponds to KM10a.
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ABSTRACT

This thesis focuses on the Deeply Virtual Compton Scattering (DVCS) reaction
e+p— e +p +~v(DVCS). The reaction is measured using the el-dves2 experiment
run at Jefferson Laboratory in Hall B using CLAS. The experiment took place from 22
October, 2008 to 23 January, 2009, and experiment run time of 90 days. This analysis
focuses on the determination of the DVCS cross section in bins of 2, Q?, t and ¢, and
makes a comparison with already existing and parallel analyses of DVCS. By factorizing
the cross section of the reaction into perturbative and non-perturbative parts, we may
relate the cross section of this reaction to Generalized Parton Distributions (GPDs) for
the proton, and in doing so, provide better insight as to the distributions of quarks and

gluons within it, including spacial distribution and contributions of angular momentum.
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1. INTRODUCTION

This thesis highlights various studies on Deeply Virtual Compton Scattering (DVCS) reaction. In
particular, we focus the measurement of its beam polarized cross sections, unpolarized cross sections,
and the asymmetries which are computed from the cross section measurements, and the various
methods that were implemented to obtain those quantities. The reaction involves an electron incident
on a proton, with a final state which consists of the scatted electron, the recoil proton, and an
additional photon. The reaction may be written as e +p — e’ +p' + v(DVCS). Tt is convenient to
write “DVCS” in parentheses after the 7, indicating that this is not an event whose outgoing photon

comes from either the incoming or outgoing electron.

A photon which is emitted from one of the electron legs is called a “radiative” event, or a
Bethe-Heitler (BH) event: e + p — €' 4+ p' + v(BH). Since these two events are experimentally
indistinguishable, only a measurement of all e +p — ¢’ + p’ + v events is possible, including both
DVCS and BH. Methods for understanding the role of each process and its contributions to the cross
section of e +p — €’ + p’ + v exist. We provide a detailed description of the community’s interest
in DVCS, outlining the concept of Generalized Parton Distributions (GPDs) and their connection
with the DVCS reaction. We explore their roles in helping us solve the so-called Spin Puzzle - the
problem of how angular momentum adds up in a nucleon, and their roles in describing the spatial

distributions of quarks and gluons that make up nucleons.

The data that is used in this analysis is from el-dves2, which was run at Jefferson Laboratory
using its Continuous Electron Beam Accelerator Facility (CEBAF). The experiment is carried out in
Hall B, one of four experimental halls, using the CEBAF Large Acceptance Spectrometer (CLAS).
It ran from 22 October, 2008 to 23 January, 2009 for a total of 90 days of run time. A feature of the
DVCS experiments is the use of the so-called “Inner Calorimeter” (IC) in addition to the standard
CLAS. This detector was developed in 2005 and is used to detect more forward going photons which
are characteristic of DVCS. In this experiment, an 85% longitudinally polarized beam of electrons
was accelerated to 6 GeV and was made to impinge on an unpolarized liquid hydrogen target held

at 20K.



2. MOTIVATION AND THEORY

2.1 Electron Scattering - A Historical Background

One of the aims of nuclear physics is to understand nuclear structure, and the laws of nature that give
rise to that structure. It is known through experiments carried out by Rutherford et al.' that nuclei
consist of nucleons: protons and neutrons. Furthermore, in 1968, experiments at Stanford Linear
Accelerator Center (SLAC)? showed that these nucleons themselves have some structure, which were
called partons. This was shown to be in agreement with the theoretical models of Gell-Mann and

Zweig, who named these constituent particles quarks.?

In discussing our modern understanding of nucleon structure, it is convenient to begin with
the simple problem of electron-muon scattering, seen in Figure 2.1. This problem is one of the most
easily solved by Quantum Electrodynamics (QED), and represents the scattering of two particles
which are believed to be point particles. That is to say, these particles are believed to have no
internal structure. To first order in perturbation theory, the matrix element may be calculated from

the electron and muon currents:

jglectron = _ea(k‘/)’y#u(k)ei(k,ik)zv (1)
Y won = —€u(p )y u(p)e!® P (2)

where e is the elementary electric charge, u and uw are the lepton spinors, v* are the so-called
gamma matrices, and k, k/, p and p’ are the four-momenta of the incoming electron, outgoing

electron, incoming muon, and outgoing muon, respectively.

The matrix element corresponding to the leading order Feynman diagram seen in Figure 2.1

is then:

. _Zg v 7 — i(k'—k)-x _Zg LV — v i(p'—p)-x
M= jglectron <q2 —:LZ'G) Jmuon = eu(k")v“u(k)e (k' —k) <(]2—i-l26> eu(p’)v u(p)e (p'=p) s (3)

where g,,,, is the metric tensor and ¢ is the four-momentum of the virtual photon.

Averaging over the spins of the particles and determining the phase space, we calculate the

cross section in the lab frame:




where « is the fine structure constant, E is the energy of the incident electron, E’ is the energy of
the outgoing electron, m,, is the mass of the muon, and 6 is the polar scattering angle in the lab

frame.

This treatment of scattering point particles transfers naturally to the scattering of particles
which have structure. We now look at two processes with which nucleon structure has been studied

exclusively: Electron-Nucleon Elastic Scattering, and Deep Inelastic Scattering (DIS).*°

Figure 2.1: A Feynman diagram of elastic e — p scattering.

2.1.1 Electron-Nucleon Elastic Scattering

In Electron-Nucleon Elastic Scattering, it is no longer possible to write the nucleon current as if
its vertex was a simple QED vertex. Since the vertex involves a more complicated interaction, we
express our ignorance of the complex nucleon structure by picturing the vertex as a blob in the
Feynman diagram as seen in Figure 2.2 and writing it as I'* mathematically, leaving the nucleon

current in the most general form as a Lorentz vector:

jrl‘fucleon = _eﬂ(p/)rlu‘u(p)el(pl_p)ﬁ’ (5)
where the most general form of I'* is:
K o
T = PP + 577 Fo(0”)io" au + ga(a®)y"vs + ha(a?)g" s, (6)

2M
where M is the mass of the proton, and y*, o = %[’y‘ﬂ ], Y5, and v5 = iv9y1y243 = 45 along
with the identity matrix, consist of the entire set of linearly independent 4 x 4 matrices. These
functions, Fy, Fy, ga, and hy are known respectively as the Dirac, Pauli, pseudo vector (or axial),

and pseudo scalar form factors. One may simplify this expression by realizing this reaction conserves



parity in the case of a photon exchange diagram, where there is no electroweak interaction, in which

case the 75 terms can be neglected:

K o
I = Fy ()" + sz(qz)W“ Qv (7)

Using the more generalized current, one may reconstruct the cross section in the lab frame:

do a? E' K2g? 0 q> 0
7 - - = F2 _ F2 27 F F 23,27 .
<d9>e+p+—>e+p+ 4F%sin' ¢ F << e 2) %y 2M2( 1+ KFy)"sin 2 )

Most experimentalists prefer recasting this formula in terms of:

2
Kq

Gg=Fh+ —F 9

E vttt (9)

and

GMEF1+/§F27 (10)

which are known as electric and magnetic Sachs form factors, respectively. This allows one to express

the lab frame cross section in a way that has no form factor interference terms:

do ) ( do ) E 1 ( o T o
ETe) =70 =7 \Ge+ *GM> ; (11)
(dQ e~ +pt—e—+pt dQ mott E1 +7 €
d _ a®cos® d — _ 1
where (di)mott T 4E2 sin“zg7 T= 4]’\3[‘12 ;and € = 1+2(1+47) tan2 &

If the nucleon had been a point particle, as the electron is believed to be, then this cross
section of electron-nucleon elastic scattering should have the same form as the elastic e — u scat-
tering. However, the presence of form factors indicates that there is some other structure involved.
Specifically, it is interesting because their Fourier transforms have been shown to correspond (non-
relativistically) to the charge and current distributions in the Breit frame, in which the nucleon is
moving with infinite momentum.® This is a suggestion that the form factors are in fact describing
a distribution of current and charge within the nucleon, and implies that the nucleon has structure

and is not a point particle.*



Figure 2.2: A Feynman diagram of elastic e — p scattering.

2.1.2 Deep Inelastic Scattering (DIS)

In the complimentary view of Deep Inelastic Scattering (DIS), it is no longer possible to use a
nucleon current. The scattering involves a nucleon which disintegrates into multiple particles, or
into an excited state, which thereafter decays into multiple particles, as seen in Figure 2.3. Therefore,
a more generalized approach must be made. We write the absolute square of the matrix element M

as

|./\/l|2 _ LZIthron(M/Qhadronic)pu’ (12)
q

where the leptonic part is the product of the lepton current, introduced in equation 1, with its

conjugate:
1 . .
Lglléctron(kv kl) - 5 Z ]eétlectmn(k7 k/)jgﬂ;ctron(kv k/) (13)
e spins
where L1 . is referred to as the lepton tensor, containing the electron current introduced in
equation 1.

The hadronic part, however, must be expressed more generally. The most general form it may

take is

Wy
M2

v W v 1%
a"q +ﬁ52(p“q +q"p¥). (14)

hadronic

w v, W,
wi (p,q) = =Wig" + 75p"p" +

Not all of these W terms are independent because the requirement that current be conserved

at the hadronic vertex implies that ¢,W#” = 0. The term W3, missing in this equation, is present



in a similar derivation involving neutrino-proton scattering.” This imposes relations between the W

terms leading to the final form:

w i Wo D-q v P4,
Wﬁadroniczwl(_g# + (]2 )+W(p#_ q2 qﬂ)(p B q2 q ) (15)

The cross section may finally be found by the relation

d20' 042 E’ 9 a2 E’ .
dE'dQ) - qu "= qu slectron(Whadronic)uu (16)

which leads to

d%o 402E" .50 0
5d0 =~ A <2W1(u, q%) sin® 3 + Wa(v, ¢%) cos? 2) (17)
where v= 4 = FE — F' 4

Figure 2.3: A Feynman diagram of inelastic e + p — e + X scattering.

2.1.3 Bjorken Scaling

Our interest now turns to a interesting feature of inelastic scattering which manifests at high —¢? =
Q.

In 1968, James Bjorken suggested that in the Deep Inelastic Region (DIS), Q% >> M%, the
structure function might exhibit a scaling feature. He suggested that if there were point particles in
the nucleon, at higher Q2, we should be able to resolve them as separate particles. This would result
in the cross section behaving like equation 4. As a result, in this limit we can justify representing

the structure functions W as probabilities to strike individual quarks:



Q2~>+oc}/i/%2constant MWl (V’ QQ) = fl (x) = zz: 812 Qi (Qx) ? (18)
hm Z/WQ(V, QQ) = fQ(ZE) = Z 6121‘(11(93) (19)

Q?—+o00,rv/Q?constant Z

We have defined z as the longitudinal momentum fraction of the average nucleon momentum
carried by the struck quark of flavor i. We have also defined ¢; as the probability density for quarks
as a function of this momentum fraction which we refer to as Parton Distribution Functions (PDF's).

Lastly, we have defined e; as the charge corresponding to a quark of flavor 7. In the Bjorken limit,

this longitudinal momentum fraction becomes equal to Bjorken x, x5 = % = %.

From equations 18 and 19, it is clear that only one structure function is necessary to describe
the system. The identity that is derived from these two equations is called the Callan-Gross relation,

and has been experimentally verified for spin % particles, implying that these constituent particles

are fermions:

2efi(x) = fa(x). (20)

We can decouple the distributions ¢;(x) in terms of their polarization with respect to the
nucleon. qj represents the density of quarks of flavor ¢ with spin aligned parallel to the nucleon,
and ¢; represents the density of quarks of flavor ¢ with spin aligned antiparallel to the nucleon.

Additionally we define:

¢ =q +q, (21)

Agi=gq —q;, (22)
where the former is referred to as the unpolarized PDFs and the latter as the polarized PDF's.

Writing the f’s in terms of PDF's casts the inelastic scattering cross-section into a form that is
similar to that of elastic electron-nucleon scattering. The fact that the cross section varies only with
the dimensionless scaling variable xp indicates that the photon illuminating a point-like fermion
within the nucleon. Data collected from HERA and H1 and ZEUS may be found in Figure 2.4,

showing DIS measurements for various choices of xp.
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Figure 2.4: Log-log F» measurements from H1+ZEUS, BCDMS, E665, NMC, and SLAC as a function of

Q?, and zp. This plot is courtesy of reference®, with data from? '3

The measurements are consistent with the Bjorken’s model, with some deviations. The devi-
ations which appear at higher Q2 can be explained by the increasing probability of gluon radiation
and the production of quark-antiquark pairs. The observation of this scaling was one of the firmest
indicators that there was substructure to the nucleon. From this formalism we have a way to de-
scribe the structure functions as a sum of probability densities which describe likelihood of each of

the quarks being hit and carrying a longitudinal momentum fraction z.*

A measurement of ¢;(z) allows us to determine the amount of longitudinal momentum carried
by the quarks. Taking the first moment in = of each of the PDFs for each flavor of quark, we can

determine the fraction of longitudinal momentum carried by them:



> [ derlae) + ) = 1. (23)

This fraction has been computed by the EMC collaboration and it has been shown that f =
0.465 £ 0.023, which implies that only half of the momentum in the longitudinal direction is carried
by the quarks.'#. This is a strong piece of evidence which points towards the existence of other
particles beyond the quarks. In fact, the rest of this momentum belongs to the gluons which make

up the rest of the nucleon.

2.1.4 Light Cone Coordinates

A convenient coordinate system for theorists is the “light cone” frame. For any four-vector a# =

(20, 21, 2%, 2%) in Minkowski space-time coordinates, one has also the equally valid basis:

" = 7 (24)
_ (2% —a?)

xT = 7 (25)

x!, (26)

a?, (27)

where the 2! and 22 are often written as a two-component vector called #, = (2!, 22). In this basis,
we write: a# = (zF, 2%, 27). Dot products of four-vectors are now: z-y = zTy~ + 2 yT — 7, -7,.

For further convenience, we define the set of normal four-vectors:

n’ =(1,0,0,1)/v2, (28)
n" =(1,0,0,—1)/v2, (29)

1

ni = —2(0,1,1,0). (30)
We also define Sudakov vectors:

Pt

pllL = ﬁ(la(lovl)a (31)
1
b _

p2 - \/§P+ (170705 1)’ (32)

where P is the “+” component of the average four-momentum of the incoming and outgoing

nucleon,



pH + p'*
==

pr (33)

These Sudakov vectors allow one to decompose any four-vector into their light cone compo-

nents.

a* =atpl +a"ph +adl (34)

This notation is appropriate because it is convenient to work in the infinite momentum frame,
where the average nucleon four momentum (which we shall call P = %”/), and outgoing real photon

R4

four momentum lie only in the “plus”-“minus” plane. In mathematical terms, we choose the frame in

which ¢; =0 and P, = 0, where the incoming and outgoing protons have infinite momenta.

2.2 Generalized Parton Distributions
2.2.1 Accessing GPDs - Deeply Virtual Compton Scattering

We introduce a new, more generalized parameterization of the structure of the nucleon, called Gen-
eralized Parton Distributions (GPDs). These GPDs can be accessed through several deeply virtual
exclusive reactions, comprising of Deeply Virtual Compton Scattering (DVCS) as seen in Figure 2.5
and Deeply Virtual Meson Production (DVMP) as seen in Figure 2.6. Each of these reactions con-
sists of a diagram which can be factorized into a perturbative (hard) part, and a non-perturbative

(soft) part which contains our new parameterization of quarks and gluons.

Figure 2.5: The handbag diagrams of DVCS;, including the uncrossed and crossed diagrams.

10
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Figure 2.6: The handbag diagram of DVMP, including quark GPDs on top and gluon GPDs on bottom.

This thesis focuses on DVCS on the proton and its relation to quark GPDs. DVCS on the
neutron is also not explored in this thesis, but is introduced for completeness since it gives us access
to different combinations GPDs than DVCS. Before formally introducing GPDs and their properties,
we will study the DVCS reaction. First, we compute the matrix element M for DVCS using Feynman

rules. In order to do that, we have to address the DVCS process in more detail.

About 15 years ago, X. Ji'®, D. Miiller'® and A. Radyushkin'” showed that in the Bjorken
limit, Q2 >> 1 GeV?, zp constant, the DVCS diagram can be factorized into two parts. This is best
illustrated by Figure 2.5, which is often referred to as the “handbag” diagram. The factorization
theorem states that we can treat the process in the leading order and leading twist' as if a single
quark in the nucleon was struck by the virtual photon, at some point later radiates a real photon,
and then rejoins the nucleon; or, in the crossed diagram, as if a quark in the nucleon emits a real
photon, then is struck by the virtual photon, after which it is absorbed back into the nucleon. In
this view, all of the other quarks are treated only as spectator quarks, with only the one quark
interacting with the top half of the diagram. The top half of the diagram, outside of the “blob” is
calculable in terms of QED, and is referred to as the hard part of the diagram. The lower half, which

consists of the blob is what we will refer to as the soft part of the diagram, which is not exactly

I Twist is defined as n = D — S of an operator, where D is the dimension and S is the spin. A diagram is suppressed

1
Qn—Z

according to its twist by a factor for each twist beyond the leading twist n = 2.

11



solvable with current methods. It is the factorization theorem which justifies our ability to consider
the Feynman diagram of DVCS in the manner seen in Figure 2.5 compared to the manner in Figure

2.7.

Figure 2.7: The unfactorized DVCS diagram.

Because of this factorization theorem, one may compute the amplitude corresponding to this
diagram according to Feynman rules. Before this is done, we are going to move into the infinite
momentum frame. In this frame, there are some significant simplifications to the variables in the

DVCS amplitude, as one may easily derive, presented in Table 2.1.

12



Table 2.1: A table of DVCS variables, their Sudakov decompositions, and their values in the Bjorken limit

where Q2 >> my, —t.

Kinematic Four-Vector | Sudkov Decomposition Reduction Under Bjorken Limit
pr o+ Mol 2

q" —26'p} + Lol —2¢'p) + ol

A —26p + EMPphy + A —2pY

¢ 2(6 — )P + (& — EMP)ps — A% | Leps

" pr— &F (1+&)p!

P P4 &F (1—&py

o aPr — & (x+ &)pY

o xPH + % (x —&)pY

‘We have used the abbreviation:

_ A2
M? =m?3 — R (35)

where A* = p# — p'*. We have abbreviated the two parameters £ and £ such that:

_ , Q2 _ A2
SRR TETIE o
and
P. 202
2 = qu + gj ke 11 (37)

where in the Bjorken limit, both £ and & tend to inB. These variables are referred to as the
“skewness” of the reaction. This skewness helps to define two regions for the loop variable x: ERBL
and DGLAP, as seen in Figure 2.8. The region where z < —¢ and =z > £ is called the DGLAP
region, corresponding to the QCD evolution equations in Q? for the PDFs we introduced earlier in
this section. This physically corresponds to a quark, or an antiquark, being emitting, and then later
reabsorbed into the nucleon. The region where —¢ < = < £ is called the ERBL region, corresponding
to the QCD evolution equations in Q2 for the Distribution Amplitudes, and physically corresponds

to a quark-antiquark pair being emitted or reabsorbed into the nucleon.
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Figure 2.8: The region where x < —¢ and = > £ is called the DGLAP region, corresponding to the QCD
evolution equations in Q2 for the PDFs we introduced earlier in this section. This physically corresponds
to a quark, or an antiquark, being emitting, and then later reabsorbed into the nucleon. The region where
—£ <z < £ is called the ERBL region, corresponding to the QCD evolution equations in Q? for the
Distribution Amplitudes, and physically corresponds to a quark-antiquark pair being emitted or reabsorbed

into the nucleon. Illustration is courtesy of the Diehl review article.'®

In this frame, we follow Feynman rules to determine the matrix element M, and parameterize

the blob which we have labeled “GPDs” in the most general form possible,

iM = —z‘Z(qu)zeieu{((n+)“(n‘)” + () (n7)" = gh")

1
/ daC 5 (Hq(wvf,t)ﬂ(p/)WU(p) + E(z, &, t)u(p')io ™ Bo U(p)> (38)
1 2 2mN
vt = ldcllffq ta(p' )yt E1 t)a(p’ At
se [ asag (B0 80007 50(0) + B €00 s —ulo))
where
1 1
Cl:[m—§+ie+x+§—ie]7 (39)
and

-1 1
Cz:[x—f—!—ie—’—x—k&—ie]' (40)

We have used four functions to parameterize the matrix element: H, F, H and E. These are
our GPDs, and contain the information about the quarks within the proton. We note that in M,
we are integrating over the loop variable z. Using the matrix element M, we can obtain the cross

section by the following relation:

__ 1 __zpy
o _ TGy (41)
dQ2dzpdtd® | 4 e ’
Q2
where y = £ EE ' , and the four cross section variables are Q?, the virtuality of the virtual photon, zg

the Bjorken variable, ¢, the momentum transfer to the proton, squared, and ®, the angle between

the leptonic and hadronic planes.
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Because we are only able to access these GPDs appearing in the DVCS cross section after
having integrated over z, we define a set of functions which describe the GPDs after they have been
x integrated. Note that we are also integrating over the GPDs, as well as the quark propagator

which contains an = dependence. We call these functions Compton Form Factors (CFFs).

H({,t):/_l daH(z,€,1) [x ; x+§1_i€] (42)
5(§,t)/11deqx§t L 51 x+§1_i6} (43)

H(E 1) = / dzH(z,€,t) [Hg_% x_;_ie] (44)
g(ﬁat)Z/_lldeq(x,&t) L+§1_ie+$_§1_iJ (45)

As we will see shortly, we have a motivation for decomposing the CFF's into real and imaginary
parts. If we assume that the GPDs are analytical on the z-axis from —1 to 1, we are able to

decompose them according to the identity:

! x, &t x{t .
/,dxm:tngze /d " +inF9(FE €, 1) (46)

where F'(x, £, t) represents any of the GPDs, and P represents the principal Cauchy value. From

this identity, one may obtain expressions for each of the imaginary and real parts of each CFF:

He(6.t) =P [ aolrite ) - (re.0) [ + ] (a7
i (&,1) = H(E€.0) — H(-&6.1) (49
l6) =P [ B 6 - Br ] [+ ] (49
Eim(6.1) = B(E6.1) ~ H(-€.6,1) (50
Hre(&,1) = P/Ol d [ﬁ(x,g,t) + ﬁ(—x,f,t)} L i ¢ xig} (51)
laa(€,1) = A(E€.1) + H(-£,6.) 52
e = [ B + B-nen)] [ g - ] (53)
il t) = E(E.6.0) + B(-6,6.1) 4

15



2.2.2 Properties of GPDs

Now that the connection between DVCS and GPDs are established, it is useful to enumerate some

of the more interesting and useful properties of GPDs. In particular, it can be shown that the Dirac,

Pauli, and axial form factors may be recovered by taking integrals in z.'8

[ 11 dzH(x, €, ) = F2(1) (55)
[ 11 dzE(z, €, ) = FI(t) (56)
[ e = g0 (57)
/_ 11 dzE(x,&,t) = h%(t) (58)

It is important to notice that the £ dependence of GPDs vanishes once integration is performed
over x. This is due to the polynomiality of property of GPDs. It can be shown that every moment

in z of the GPDs yields a polynomial in &.

It was shown by X. Ji'? that one could link the forward limit of the first moment of the GPDs

to the total angular momentum of the quarks:

Z/_ldxx(Hq(x,f,O) + (2, €,0)) = 271, (59)

X. Ji was also able to show that the spin of the nucleon could be decomposed in a gauge

invariant way into the sum of the quark and gluon angular momenta and written as:

1
5 =JI Y JT=T0 4 Y (514 L), (60)
q q

where the intrinsic angular momentum of the quarks can be expressed as:

5= / 15t = %/ da(q* (2) — g~ (x)). (61)

This view of angular momentum allows us to access the L4 component of the quark contribution

to the total spin of the nucleon once we have measured S? and the GPDs.

It can also be shown that in the forward limit (¢,§ — 0) the quark distribution functions are

recovered from the GPDs:
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H(x,0,0) = q(z), (62)

H{(x,0,0) = Aq(), (63)
where ¢(z) is the PDF introduced in equation 21 and Ag(x) is the PDF introduced in equa-

tion 22.18

We have now shown how GPDs reduce to PDFs and FFs. Therefore, the GPDs contain all
the information of those “daughter” functions, as well as additional information about the spin

contributions of quarks. This may be seen in the following property of the H GPD:

d2Ei —ib-A q A2
Q(xaoab):/ (271_)26 +H (‘I,O,*AL), (64)

where ¢ is now the probability density of the quarks as a function of x and b; which are the
longitudinal momentum fraction and impact parameter in the infinite momentum frame. The im-
pact parameter is the Fourier conjugate variable of A 1 (= t?), the perpendicular component of the

momentum transfer to the proton.

2.3 The Interference of DVCS and Bethe-Heitler

We are interested in measuring the cross section of DVCS in order to have access to GPDs. However,
an attempt to measure the cross section of the reaction e +p — ¢’ + p’ +~ will measure all reactions
with those incoming and outgoing particles. The two competing processes which dominate this
reaction are DVCS and Bethe-Heitler (BH). In DVCS the photon is radiated by a quark in the
nucleon, and in BH the photon is radiated by one of the electron legs. There are two possible
configurations for BH. The photon may be radiated from the incoming or the outgoing electron.

The Feynman diagrams corresponding to these two BH processes may be seen in Figure 2.9.

Figure 2.9: The two possible leading order BH diagrams.
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Since we measure all e + p — €’ + p’ + v events in our cross section in the lab, the matrix
element corresponding to such a measurement may be written as:
Mep’y = Mpvcs + Mgh.- (65)

It follows that the actual cross section measured in the lab, for any polarization will be:

0 X [Mepy > = [Mpves|? + [Mpu|* + Z, (66)

where + and - subscripts correspond to the polarization of the electron beam, and Z is the interference
term:
7 = MPHyvesMpu + MpvesMpy (67)

Each of these terms may be expanded in the variable ®, with each term corresponding to a

particular polarization of the virtual photon2°:

6 2
2 _ € BH BH _.
(Mbpves|” = 2212t(1 + 2)2P1 (D) Po (D) (TLZ_O% cos (n®) + sy Sln@)) ) (68)
d &
IMpu|* = 0P Z (cSVCS cos (n®) + sPVS sin (nq))) , (69)
n=0
eb 3
T - BH P BH (i (b
2y tP1(B)Ps(P) 7;) (e cos (n®) + 5,7 sin (n@)) (70)

where ¢ = 2””52M , and Py (®) and Pa(P) correspond to the electron propagator in the Bethe-Heitler

diagram. The coefficients for Bethe-Heitler can be expressed completely in terms of kinematical
variables and form factors, and can be found in their complete form in reference?’. The interference

terms are defined as:

sT = 8K \y(2 — y)Im(CET(F)), (71)

& = —8(2 - y)Re <(2y)2KQCI(]-") + i(1 —y)(1 —zp)(C* + ACI(]-')> (72)
-y Q? ’

cf = —8K(2 — 2y +y*)Re(CE(F)), (73)

where ) is the polarization of the electron beam, J and K are complicated functions of the kinematic

20

variables, which can be found in reference“”, and:

z _ B g ¢t
CHF) = FiH + 5= (F + Fy)H e

FE, (74)
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ACE(F) = -8 (F1+F2){2x3 (H+5)+72}. (75)

2—1’3 — B

We note that the only term in twist-two approximation depending on the beam helicity is
sT. Using this decomposition, we have a way to access the imaginary and real components of the
dominant CFF H by measuring the unpolarized cross sections and polarized cross section differences.
In the case of the unpolarized cross section, the amplitude squared of the DVCS matrix element
is quite small compared to the Bethe-Heitler contribution. In this case, the BH contribution often
dominates, but not so much that we cannot extract the real part of H. In the case of the polarized
cross section differences, the pure Bethe-Heitler and DVCS terms cancel out, and only an interference
term is present. Since Bethe-Heitler may be written in terms of QED and FFs, which have been
extensively studied in experiments, we have a way to understand the contributions due to both

Bethe-Heitler and the CFF's.

2.3.1 Properties of the BH Cross Section

One important feature of the BH cross section is its preference to radiate a photon in the direction
of the electron that radiated it. We take the case where the photon is radiated from the outgoing

electron leg. The propagator may be written as:

i(k+m)
(k’+q’)2 —m?2 +i6'

(76)

Neglecting the mass of the electron and recalling that &’ and ¢’ are the outgoing four momenta

for the electron and photon respectively, we can multiply out the four vectors:

ik

77
9 B (1 — cosy )’ (77)

where E, and E. are the energies of the photon and outgoing electron, and 6, . is the angle
between the photon and electron. The matrix element, and thus the cross section, blows up when
the angle between them approaches zero, in the approximation that the mass of the electron is zero.
In reality, since the mass of the electron is non-zero, there is no true singularity. Nonetheless, the
matrix element become very large as the photon is radiated nearly in the same direction as the
electron. A similar relation exists in the case that the photon is radiated from the incoming electron
leg. This spurious singularity in 6, . causes the DVCS cross section to become very large when
the cross section variable ® is close to 0° or 360°. This is due to the fact that when the photon
is radiated exactly in the direction of one of the electrons, by definition, the leptonic and hadronic

planes are the same plane. In other words, there is a correlation between ¢, . and ®.
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2.4 Available Data, Existing Publications and Parallel Analyses

There are several analyses that have already been performed on DVCS experiments. In particular
these analyses focused on obtaining beam spin asymmetries, and cross sections. A beam spin
asymmetry analysis was performed at CLAS for the data set el-dvesl of Hall B?!, a sister experiment
to el-dvcs2. el-dvesl consists of a 5.75 GeV electron beam on a hydrogen target, whereas el-dvcs2
consists of a 5.88 GeV electron beam on a hydrogen target with about ten times the statistics.
Another completed analysis extracted the DVCS cross section for E00-110 of Hall A of JLab at
Q% = 1.5,1.9 and 2.3 GeV??2. The CLAS collaboration has also undertaken parallel analyses for
el-dvcsl to determine the absolute cross sections. A similar analysis has been performed on el-dvcs2
by B. Guegan; a parallel analysis of the DVCS cross sections of el-dves2 is the aim of this thesis. A
comparison of the results of the aforementioned analyses with the results of this thesis will follow in
the final section of this thesis, with a particular focus on the parallel analysis by B. Guegan®®. The
benefit of repeating a measurement of DVCS with el-dves2 is the increase in the kinematical regime
and statistics as compared to el-dvcsl, by having 30 extra days of beamtime. The distinctions
between the various experiments will be more thoroughly explored in the concluding section of this

thesis.

2.5 Beyond Experiment - Models for GPDs

Although an in-depth tour of the different models of GPD parametrization is beyond the scope of
this thesis, for completeness, we introduce some basic concepts. A detailed review article by M.
Guidal et al.2* provides a more detailed description of the topic. We present here a brief exposition
on double distributions, a method for parameterizing GPDs, with a focus on the Vanderhaeghen-
Guichon-Guidal (VGG) model. There exist other methods which are omitted from this thesis, among
them being the Goloskokov-Kroll (GK) double distribution method?> 27, Kumericki-Miiller (KM)?®,

dual parameterization method??, and the Mellin-Barnes model?®:30,

2.5.1 Double Distributions

The concept of Double Distributions (DDs) in the context of GPDs were originally introduced by
A. Radyushkin®'32 and D. Miiller et al.'S. The basic idea of DDs is to parametrize the GPDs in
a way that decorrelates the average nucleon momentum P from the nucleon momentum transfer
A. This can be done by choosing two parameters o and S such that z = o + S€. In the infinite
momentum frame, this allows one to write the struck quark momentum as SP* — %(1 — a)At,

instead of (z 4+ &)PT. After this change of variables, A and P are no longer correlated. In essence,
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GPDs are a function of x, £ and ¢, and DDs are a reparameterization of GPDs as a function of «,

B and t. This can be written explicitly as:

1-18]
GPD(z,¢) = / i3 / dad(z — B — £a)DD(a, B). (78)

1+]8]
This form of parameterization is useful because the polynomiality property of the GPDs is

automatically satisfied because of the linear relationship between x and &.

A possible form for the DD is:

DD(ﬁ7O‘) = h(ﬁva)q(ﬁ)v (79)

r@2b+2)  [(1-18)%—a?]’
22411220+ 1) (1 —[B)2+t 7

h(B, ) =

where b is a free parameter which determines the level at which the DDs are dependent on £.

2.5.2 D-term

Equation 80 satisfies the polynomiality requirement of GPDs except that it omits the possibility of
a £"1 term. In order to remedy this deficiency in the ansatz, we introduce by hand the so-called
D-term. This solution was given by C. Weiss and M. Polyakov®?, and can be described as a series

involving Gegenbauer polynomials:

1 2\ &
(54 (1- ) Epmoctts (7).

;””il represents the odd Gegenbauer polynomials. This

which is convergent for

implies that this correction is only present in the ERBL region. The first three values of d have been

estimated by using the chiral soliton model:

dy = —4
ds = —1.2
ds = —0.4

2.5.3 VGG Model

The Vanderhaeghen-Guichon-Guidal (VGG) model consists of trying to determine the ¢-dependence
of the DD, inspired by Regge theory.?* 37 We study the H and E GPDs only for the moment, and

state that the DDs may be written as:
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DD%(a, B,t) = h(a, B)q(B)f~ =P, (82)
DDY(a, B,t) = h(a, B)q(B)(1 — B)ma g~ A=A, (83)

where o and 7, are determined by FF fits. We may finally write the parameterization as:

18] ) .
H(z,¢,1) / dﬁ/lm dad(e = 3 =€) DDl +0(¢ ~ ) D(5. 1) (84)
1-18] . »
E(x,€,t) = / dp / 1.y, 100t = = €)DDE ~ 06 ~ ) D (85)

We discuss this VGG model in more detail after the section which contains our measurement
of the e + p + v cross section. We interpret the comparison of the VGG model to experiment

there.
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3. EXPERIMENTAL METHODS

3.1 Thomas Jefferson National Accelerator Facility (TJNAF) / Jefferson Laboratory
(JLab)

The el-dves2 experiment took place at Jefferson Laboratory. The facility was founded in 1984 in
Newport News, VA, USA, and is home to CEBAF and CLAS.

Figure 3.1: An aerial view of JLab.*®

3.2 Continuous Electron Beam Accelerator Facility (CEBAF)

The CEBAF is an electron accelerator providing electron beams up to energies of 6 GeV. The
apparatus consists of two superconducting radio frequency linear accelerators with a length of 1400
m each, and two curved portions which redirect the electron beam from one linac to the other by use
of large electromagnets. The electron beam achieves 6 GeV after circulating the track five times, at
which point the beam is split, and delivered to one of three experimental halls: Hall A, Hall B, and
Hall C. There are several upgrades planned for CEBAF. The most notable are the 12GeV upgrade,
to be completed in 2015, which will allow a doubling of the beam energy, and the construction of

Hall D, a new experimental hall.
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Figure 3.2: A schematic of CEBAF.%°

3.3 CEBAF Large Acceptance Spectrometer (CLAS)

The CLAS detector® is used in most of the Hall B experiments in Jefferson lab. The spectrometer
is roughly spherical in shape and spans about 30 feet across. During the course of the el-dvcs2
experiment, the polarized electron beam was continuously fed into CLAS and impinged on the
liquid hydrogen target which was housed inside. The ensuing reactions resulted in various particle
production which was then detected by CLAS. It is called a “large acceptance spectrometer” because
has around a 27 angular coverage out of 4w. The CLAS detector is comprised of many separate
detectors. It is divided into six identical pieces which are referred to as sectors, which each consist of
a torus electromagnet, time-of-flight scintillator, electromagnetic calorimeters, Cherenkov counters,
and drift chambers. In the el-dvcs2 experiment there is an added electromagnetic calorimeter in
the forward region since the reaction of interest often generates forward going particles which are

outside of the usual CLAS acceptance.
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Figure 3.3: A sliced and labeled cartoon of CLAS.%°

3.3.1 Torus Electromagnets and Drift Chambers (DC)

The inner shell of the CLAS detector is made of six torus magnets, one in each sector, which create
a toroidal magnetic field. Each sector also contains three drift chambers (DCs), each placed at
different radii. These drift chambers measure the trajectory of the particles that pass through them.
Because of the magnetic field provided by the torus magnets, the charged particles will have curved
trajectories while the neutral particles will have straight ones. The drift chambers are filled with
90%-10% gas mixture of argon and CO,. Also inside the chambers are parallel wires which are
placed in a hexagonal lattice with a lattice constant on the order of centimeters, varying from region
to region. These wires are held at a specific potential. When a charged particle from an event passes
through the chamber, some of the gas particles are ionized. These ions drift towards the wires and
provide a signal and give a measure of the location of the particle.??4? The torus coils block out a
region of the detector, so there are “dead” regions in our detector except for the innermost drift

chambers which are before the coils.*°
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Figure 3.4: A cross section of CLAS on the x-y plane, and on the x-z plane.*°

3.3.2 Forward Electromagnetic Calorimeters (EC)

The electromagnetic calorimeters (ECs) in the forward direction are used to detect electrons and
neutral particles. Electrons and photons which pass into this detector are often stopped, and all
or most of their energy is deposited and measured. In particular, when electrons shower they are
nearly always completely stopped. The ECs consist of 39 triangular stacked layers each consisting
of a lead plate and a plane of 36 scintillator strips which run to photomultiplier tubes (PMTs). This
design of alternating lead and scintillator allows for a cascade effect. Each plane of scintillators has
it’s strips oriented in a direction 60° with respect to the previous plane’s strips, which we call ‘u’, ‘v’
and ‘w’ planes. This enables the location of the hit to be determined. Furthermore, the stack is split
into two portions which measure the energy deposited in each separately to aid in distinguishing
between electrons and hadrons. These two portions are referred to as “inner” and “outer” parts.
Electrons and photons deposit most of their energy in the inner portion by showering, and heavier
particles such as protons and pions will deposit an almost equal amount of energy in the inner and

outer parts of the EC because they are minimum ionizing particles. This detector covers a polar

angle range from 8° to 45°.4!
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Figure 3.5: A sector of the EC, showing the different layers and planes peeled away.*!

3.3.3 Large-Angle Electromagnetic Calorimeters (LAC)

The large-angle calorimeter (LAC) is designed similarly to the forward EC except that the polar angle
of acceptance runs from 45° to 75°. This detector only spans 120° azimuthally, which corresponds

to two sectors. This detector is not used in el-dvcs2.%2

3.3.4 Time of Flight Scintillators (TOF/SC)

The time of flight (TOF) detectors, or Scintillator Counters (SC), consist of long plastic scintilla-
tors with PMTs at each end. The location of a particle which passes through the scintillator can
be determined by the time difference between the light collection by each PMT at each end. The
detector also records the time at which the particle passes through it. Since the DC gives a recon-
structed track, which gives us the track length and momentum, the measure of the time of flight
from the vertex position to the TOF detector can be calculated. This allows the particle’s mass also
to be calculated. The TOF counters cover a polar angle range from 8° to 142° and is located at a
radius greater than that of the drift chambers and Cherenkov counters, but just less than that of

the ECs.%3
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Figure 3.6: A sector of the TOF.*?

3.3.5 Cherenkov Counters (CC)

The Cherenkov counters (CCs) detect charged particles which pass through it faster than light
would pass through it. In particular, it is designed to identify electrons from pions. This separation
between electrons and pions is possible up to a threshold energy of 2.2 GeV. The energy threshold
for the pions is determined by the amount of energy needed to be moving faster than the Cherenkov
velocity of the medium of the detector. The radiator gas used in the CCs is perfluorobutane CyFig
with an index of refraction of n=1.00153. Each sector has about six cubic meters of this gas. The
detector makes use of an arrangement of mirrors which reflect the Cherenkov light into PMTs, as
can be seen in Figure 3.8. The CCs have a polar acceptance of 8° to 45° and are placed before the

TOF counters but after the drift chambers.**

Elliptical Mirrors

Hyperbolic Photomultiplier Cones
Mirrors

Figure 3.7: A sector of the CC.**
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Figure 3.8: A single section of a sector of the CC, showing the configuration of the mirrors.**

3.3.6 Inner Calorimeter (IC)

The inner calorimeter is octagonally shaped with 424 PbW O, crystals of dimension 1.3 cm by 1.3
cm by 16 ¢cm and is placed about 60 cm downstream from the target, with its front face at CLAS
center. This detector is designed to accept photons from a polar angle of 4° to 15°. A photograph

of the calorimeter may be seen in Figure 3.9.4°
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Figure 3.9: A photograph of IC, courtesy of Hyon-Suk Jo.

3.3.7 Solenoid

Because of Moller scattering of electrons, there is a possibility of a lot of noise in the IC and first
region drift chambers. In order to combat this scattering, a solenoid was used in el-dvcs2 in order
to focus the scattered Mollers in the forward direction, usually at polar angle of less than 4°. In this

way, the noise from possible Moller scattering may be reduced.

DC region 1
Solenoid

Figure 3.10: The solenoid helps direct the Moller electrons in the forward direction in order to prevent
them for creating noise in the IC and DC region one. On left, simulation without the use of the solenoid,

and on right, with the use of the solenoid. Figure is from reference?’
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4. DATA ANALYSIS

4.1 DVCS Analysis
4.1.1 DVCS Cross Section - A Road Map

The calculation of the e +p — €’ + p’ + v cross section was done bin per bin, selecting the binning

in four kinematic variables. The cross section is written as:

d4aep~r _ (Netp+y = Netpno1y))
dQ2dtdz gd® Lint AAV Fraq ’

where Neij,1, is the yield of the experiment, Ney, 0.1 is the 70 subtraction which subtracts

(86)

out the contamination from e + p + 7° events, £ is the integrated luminosity, A is the acceptance,
AV is the bin volume, and F.qq.cor is the radiative correction. The cross section is a function of
four variables: Q? = —¢?, where ¢ is the four-momentum of the virtual photon exchanged between

the electron and the hadronic system; ¢ is the Mandelstam variable representing the momentum

transfer to the proton; xg = % is the Bjorken variable and & is the angle between the leptonic

and hadronic planes, as is most easily seen by Figure 4.1.

Figure 4.1: A diagram of DVCS, indicating the leptonic and hadronic planes, and the angle ¢ between

them.'®
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In order to measure the cross section, we must accomplish the following;:
1. Determine a choice of binning in the kinematic variables AV = AQ?AtAxzpA¢. (Section 4.1.2)
2. Determine the number of e + p — e + p + v events that occurred, Nejpt~. (Section 4.2)
3. Determine the acceptance A based on simulations. (Section 4.3.)
4. Determine the volumes of each of the bins. (Section 4.6)
5. Make an estimate of the rate of my contamination to the e+p — e+p++ channel. (Section 4.9)
6. Calculate the integrated luminosity, Lin. (Section 4.7)

7. Determine the effect of the radiative effect due to higher order terms, Fy.qd.cor.- (Section 4.10)

4.1.2 Kinematical Domain and Binning - Bin by Bin Analysis

In order to determine our choice of binning, we view the kinematics for both data and Monte Carlo
in Figure 4.2. It turns out that the kinematical coverage provided by the experiment is laid out in
an inconvenient shape with respect to the Q? variable by which we wanted to bin the cross section.

Q? is a natural choice, because it appears directly in the cross section.
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Figure 4.2: The kinematical domain for el-dves2, after all cuts. On the left, Q* versus zp. The black
lines correspond to the bin definitions found in Table 4.1. The red lines correspond to the upper and lower
cuts on 6., the yellow line corresponds to the cut on Q?, the green line corresponds to the cut on W, and
the blue line corresponds to the cut on p.. On the right, —t versus xp. The black lines correspond to the
bin definitions found in Table 4.1. The red line corresponds to the minimum ¢ value allowed by kinematics,

and the green line corresponds to the minimum xg allowed due to the cut on pe.

However, our binning must take two things into account. First, the bins must be selected in
such a way that there is a reasonable amount of statistics in each bin. Secondly, each bin must be
selected in a way which ensures that the bin is completely full. To further explain this second point,

let us consider the scattering angle of the electron. In Figure 4.2, the limit of being able to detect
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the electron only up to 6. = 45° corresponds to an upper limit on the value of Q2. This limit is a
function of zp and is represented by the upper red line. If a bin is chosen such that it straddles
this line, only a fraction of the bin can be expected to be filled. Therefore, the volume of such a bin
cannot be expected to represent the true volume which enters into the cross section. The true volume
of a bin is the portion of it which is filled by events. Therefore, to avoid the problem (for now) of
partially filled bins, we select a binning which covers only our available kinematics. This requires
that we exchange the variable Q? in favor of a more natural coordinate 6. which is the scattering
angle of the electron. Our choice of binning is laid out in Table 4.1. It is largely conventional, as it
is an adoption of the same binning being used by the el-dvcs analysis. Their reasons for adopting
this binning consider that the cross section is rapidly varying, and that it is desirable to have the
binning be as fine as statistics will allow without having error bars which are too large. In total,
there are 21 bins in 6, and xp, 9 bins in —¢, and 24 bins in ®. This gives us a total of 4,536 bins.
There are some additional constraints that we would like to add to our bin definitions. There are
some restrictions on our kinematics, which “cut” into the bins as we have defined them, according
to our four cross section variables. For this reason, we must define our bins according to the strictest

constraint. An exhaustive list of such cuts may be found on Table 4.1.
e The angular acceptance of electrons runs from 21° to 45°.

e We are interested in restricting our study to be above the resonance region (W > 2 GeV), and

in the highly virtual (Q% > 1 GeV?) region.
e We detect electrons reliably only down to .8 GeV.

e There are some values of —¢ which are kinematically forbidden. The minimum possible —t can

have is t,n, which may be found on Table 4.1.

e Because the cross section has a singularity at ., = 0, we choose to place a cut at 6, > 4.77°.
The choice of 4.77° allows us to avoid any low angle area which is not covered by the IC. This
allows us to avoid relying only on the event generator whose cross sections is varying rapidly

in this region.
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Table 4.1: The boundaries of each of the bins according to their four dimensions.

21 Bins in zp 0.1-0.14 | 0.14-0.17 | 0.14-0.17 | 0.17-0.2 0.17-0.2
and 6. (degrees) 21°-45° | 21°-25.5° | 25.5°-45° | 21°-25.5° 25.5°-45°
0.2-0.23 0.2-0.23 0.23-0.26 | 0.23-0.26 | 0.26-0.29 | 0.26-0.29 0.29-0.32
21°-27° 27°-45° 21°-27° 27°-45° 21°-27° 27°-45° 21°-28°
0.29-0.32 | 0.32-0.35 | 0.32-0.35 | 0.35-0.38 | 0.35-0.38 | 0.38-0.42 0.38-0.42
28°-45° 21°-28° 28°-45° 21°-28° 28°-45° 21°-28° 28°-45°

0.42-0.58 | 0.42-0.58
21°-33° 33°-45°

9 Bins in —t ( GeV?) | 0.09-0.13 | 0.13-0.18 | 0.18-0.23 | 0.23-0.3 0.3-0.39
0.39-0.52 | 0.52-0.72 0.72-1.1 1.1-2.
24 Bins in ® (degrees) every 15°, from 0° to 360°
Additional constraints 0. > 21° 0. < 45°
pe > 0.8 GeV W > 2 GeV Q%> 1 GeV?
0, > 4.77° E> oy = SL2G2R)0EC VITT) yhere ¢ = Hprn

4.2 Particle Identification

After CLAS and IC have measured and recorded data for the time allotted to the experiment, the
responses of the detectors, which correspond to the properties of each of the detected particles, are
stored. They are then analyzed with a program on an event by event basis. Variables which are
stored for each of the particles include momentum, charge, and position where the particle hit a

detector, among other things.

Because of resolution effects within CLAS, it is impossible to determine different types of
particles with absolute uncertainty. However, it is possible to separate the different types of particles
detected within some degree of uncertainty. This is done by demanding a certain set of criteria on
the variables of the particles that are detected. This is achieved by applying cuts on some of the
variables. These cuts must be done carefully, because wide cuts will tend to misidentify more
particles, and narrow cuts will tend to reject particles which are valid. The correct identification of
particles and of the DVCS event are the crux of this work. The criteria that were imposed on each

of the particles of interest are enumerated below.
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4.2.1 Electron Identification

The particles which satisfy the following criteria are assumed to be electrons for the purpose of this

analysis.

Charge:

The charge of the electron candidate must be restricted to be -1. Charge is determined in CLAS
by the direction of curvature, or equivalently the radius of curvature, of the particle trajectory, which

is determined by reconstruction based on tracks in the DC according to the formula

1 ¢B
K_R_’ymv (87)

where £ is curvature, R is radius of curvature, q is charge, v is velocity, m is mass, y is the Lorentz
factor, and B is the component of the magnetic field perpendicular to the trajectory of the parti-

cle.

In simpler terms, tracks corresponding to negatively charged particles must be in-bending

(towards the beam line). The electron must also have good time-based tracking (TBT).

Momentum:

The momentum of the electron candidate must be greater than 0.8 GeV. Given a value for
the charge, the momentum is determined by the curvature of the track, which is determined by DC

reconstruction.

Energy Deposited in Inner Stack of EC:

It is known that Minimum Ionizing Particles (MIPs) deposit a nearly constant amount of
energy into a medium through which it travels as a function of the distance it travels through it.
MIPs include protons, charged nuclei, atomic ions, pions and other mesons. Electrons and photons
in particular are excluded from this class of particles. A quantitative description of the amount of

energy loss per length travelled is given by the Bethe equation,

dE 4o nZ? 232
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where « is the fine structure constant, n is the electron density of the material that is being passed

through, Z is the atomic number of that material, and [ is the mean excitation potential.

Unlike the cascade effect which occurs when electrons and photons hit the EC, MIPs will
deposit a constant amount of energy per cm, irrespective of their momentum. The inner stack of the
EC has a thickness of 183 mm: 150 mm contributed by the BC412 scintillator, and 33 mm by the
lead sheet. The outer stack has a thickness of 292.8 mm: 240 mm contributed by the scintillator,
and 52.8 mm by the lead. Based on these values, the expected energy deposited inner and outer are

.03 and .05 GeV respectively.

As the MIP travels through the material, it slows down, and in doing so the rate of energy
loss increases. This effect can be seen by the dominating é term in the Bethe-Bloch equation. As
most of the MIPs make it through the inner stack of the EC, the energy deposited in that stack
tends to be constant as a function of distance traveled. However, many of the MIPs begin to slow
down significantly in the outer stack, contributing to more energy deposited there. This may be seen
clearly in Figure 4.3 as a vertical stripe centered around F;jn.r = 0.03 GeV, as expected. The cut
chosen for this analysis is to accept only particles with Ej,per > 0.06 GeV as electron candidates.

This may be seen in Figure 4.3.
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Figure 4.3: Energy deposited in outer stack of EC plotted against energy deposited in the inner stack of
EC. The red line represents the cut requiring Einner > 0.06 GeV.

Sampling Fraction of EC:

It is expected that electrons will deposit an energy in the EC proportional to their momentum.

Therefore a plot of the so-called sampling fraction versus momentum gives a good indication of
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which particles may be considered electron candidates. The sampling fraction is defined as

_ Etotal
p

where Fi,; is the total energy deposited in both inner and outer layers of the EC, and p is momen-

[s (89)

tum.

Particles with a total energy proportional to momentum appear as a straight horizontal line
on Figure 4.4. In theory, with a perfectly efficient detector, this would be a straight line. Given
resolution effects, the line becomes broadened into a distribution. Additionally, the resolution seems
to be momentum dependent, worsening at lower momentum. This feature is expected in CLAS.
Because of the varying width of this distribution, it is insufficient to take cuts at a constant value
of sampling fraction. Our cut must be dependent of momentum. The method used involves taking
slices of this plot in momentum, and projecting them onto the y-axis. The resultant histograms are

fitted to Gaussians whose means and standard deviations are used in the final cut.

The means for each momentum bin are fitted to:

11(p) = 0.336948 — 0.0321597p -+ 0.00433749p> — 0.000159799p°, (90)

and the standard deviations for each momentum bin are likewise fitted to:

0.0621754

The final cut requires that a particle have a sampling fraction which lies within the range

o (p) = 0.00635095 + (91)

(1 —2.50, u+ 2.50). This cut may be seen in Figure 4.4

f, sampling fraction
f, sampling fraction
o
®
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Figure 4.4: Sampling fraction f; as a function of momentum, before cut on left, after cut on right. The
main features of this plot are the electrons, mostly horizontal on each plot; and the negative pions whose
sampling fraction is decreasing with increasing momentum. The purpose of this cut is to separate these

pions from the electrons.
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Vertex Correction and Cut:

The liquid hydrogen target in el-dves2 is located at -57.5 cm with respect to CLAS center,
and is about 5 cm in length. The track reconstruction allows us to determine the location along the
beam line axis (z) where the electron candidate originated, up to a resolution of tens of microns.
There are numerous tracks which originate outside the target according to this reconstruction, and
these events should be rejected. It could happen that Moller scattered electrons from the beam line

could be the cause of many such events.

However, it turns out that the reconstructed values for the vertex positions are not completely
accurate. This may be seen in Figure 4.5. It is necessary to apply a correction to the vertex position
variable before placing any cuts or restrictions on it. In order to describe the vertex correction, it
is necessary to describe how the uncorrected values are obtained. The determination of the vertex
position is accomplished by a process called swimming, which makes use of the sector in which
the particle was detected, and the track determined by the DC. The first step is to determine the
“special plane” which corresponds with the sector which was hit. There are six sectors and three
special planes. The three special planes are: the x-z plane, and the two other orientations of this
plane rotated about the z-axis by 60°. Starting from the x-z plane, and going counter-clockwise,
the special planes will be labeled plane 1, 2 and 3. Each sector has a corresponding plane. Sector 3
and 5 correspond to plane 1, sector 4 and 6 correspond to plane 2, and sector 5 and 1 correspond
to plane 3. An important fact to note is that all three special planes intersect at the z-axis. This
reflects the assumption that the electron beam travels along the line £ = 0 cm,yo = 0 cm. The
uncorrected vertex for each track is determined by identifying the sector in which the particle was
detected, and the corresponding special plane. Next, the point at which the particle track crosses

this special plane is taken to be the uncorrected vertex position, (vz,0, vy,0,vz,0)-

However, since the beam position is generally not located at (zg,y0) = (0 c¢m,0 cm), the
assumptions made in determining the vertex position lead to values that are slightly inaccurate. To
resolve this discrepancy, one may determine a “corrected” value supposing the special planes intersect
at the real beam position. A study carried out by F.X. Girod determined the position of the beam
to be at £p = 0.074cm, yp = —0.064cm. It turns out that the corrected values v = (vx, vy, V,),
may be determined given: the uncorrected vertex position vg = (Vx’(),Vy’O,Vz’O), the momentum

p = (Px; Py, Pz), and the beam position x = (X, Yo, Zo)-
The corrected vertex position is

v = vg + Av, where A = %, and Sy = zgcos® + yosin® S, = vy 0cosP + vy psind
p

Sp = pycos® + py sin® and ® = (Sector Number — 1) x 2T
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After correction, the cut is taken to exclude particles which have trajectories that originated
too far from the target. The small bump just to the left of —54 cm corresponds to the insulating foil.
This must be cut out. The peak of this insulating foil was fitted to a Gaussian, and a cut was applied
at three standard deviations to ensure almost complete exclusion of those events. A cut is applied by
eye on the left hand side so as to approximate the strictness of the cut applied on the right hand side.
The cut applied in this analysis keeps only particles which satisfy —61.25 cm < v, < —54.5 cm. The
fact that the plot is not centered around the nominal value of 57.5 cm is notable. While it is easy to
obtain a good relative measurement in vertex position, it is difficult to get an accurate, absolute value
of longitudinal position in target given the nature of the vertex position reconstruction. Furthermore,

we are are more interested in the relative position of all events.

The distribution of uncorrected and corrected vertex positions may be found in Figure 4.5, as

well as the cut that was applied.
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Figure 4.5: Vertex position of electrons in z-direction for each sector. On the left, before corrections. On
the right, after corrections. The red lines represent the final cut. We note that the heights of each sector
differ, indicating that each sector has a different level of performance. The periodic behavior, producing

regular small spikes, is an artifact of ntuple22 variable compression.

Fiducial Cuts:

Each detector, both IC and in CLAS, have regions whose behaviors are understood to a greater
or lesser degree. In the center of detectors, the behavior tends to be less distorted and more easily
modeled by simulations. However, the edges of detectors are often more unpredictable in their
behavior, and are not well understood. For example, a particle which hits near the edge of a
calorimeter might create a shower which leaks out the side. This leaked shower will not be collected
by the PMT, and will result in a lower detected value for energy. Another example of strange

behavior at edges of detectors might involve the reconstruction method of the position of a particle

hit. Some detectors operate on a principle of averaging cell positions of a hit cluster while weighing
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over energies. This algorithm may result in a lower count of reconstructed hits near detector edges

when in fact the number of events might not actually be that low.

Since it is too difficult to accurately model these and other similar strange detector behaviors,
it is necessary to determine a fiducial region for each of the detectors, carving out the area where
the measured quantities are reliable, and in agreement with simulations. Section 4.3 will have a
significant section dedicated to the discussion of Monte Carlo simulations, and their comparison

with actual data.

CC Fiducial Cuts, Number of Photoelectrons Detected in CC:

There are several stages to determining the fiducial cuts for the Cherenkov detector. One cut
is geometrically based. Another cut is based on the number of photoelectrons (nphe) which are
detected by the PMTs in the CC, in order to remove 7 contamination. Another cut is concerned
with efficiency based on this nphe cut. Finally, a study is done to find if there are any dead PMTs
in the detector. Once these cuts are done, a map of efficiencies based on the Vlassov coordinates,

which we introduce below, must be retained for the cross section level of the analysis.

Cut Based on Number of Photoelectrons in CC: A histogram of the number of photoelectrons
detected in the CC PMTs can be seen in Figure 4.6. There are two structures that may be seen. On
the left, there is a somewhat Gaussian peak which corresponds to 7™ particles which were just over
the threshold energy, and J-electrons, which are scattered atomic electrons. This is superimposed
with another structure, which peaks at the right, but which goes all the way to zero. This second
structure has the general shape of a Poisson distribution, and corresponds to electrons in the CC.
It is necessary to remove the contamination due to the charged pions. Many studies were done to
determine if exclusivity cuts on the e+p — e+ p+-y channel would eliminate this peak. It turns out
that because these cuts are ultimately not sufficient to remove the peak, a cut must be done. We
opt to take a cut at 2.5 photoelectrons (which corresponds to 25 on the histogram). This ensures
nearly a complete removal of the positive pions. However, the cost of this cut is that we have thrown
away a significant number of electrons. An analysis must be done to make an estimation of good

events which were lost.
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Figure 4.6: The number of photoelectrons detected in the CC for electrons. The cut is shown by the

vertical line at 25, corresponding to 2.5 photoelectrons.

Geometrical Based Cut: The most convenient way to study the geometry of CC is to plot the
number of hits in so-called Vlassov coordinates. These coordinates are based on two reflections of
the light trajectory within the CC and are measured in angles from the CLAS center: 6, and ¢,. A
plot showing these coordinates, before the application of any cuts may be seen in Figure 4.7. The

cuts that are applied require the particle to have a 6. and ¢. which lie within the functions:

b = —68.975 + 36.996 In ,, — 1.6700,, + 0.01162 (92)

0. = 43.0 + 0.05|¢, | + 0.003|¢?| (93)

The result of this cut may be seen in Figure 4.8.

Efficiency based Cut: The cut at 2.5 photoelectrons which we have imposed in the previous step
of the analysis brings up the issue of efficiency. We assert that we can obtain a measure of efficiency
as a function of the Vlassov coordinates, by only knowing the average number of photoelectrons
detected in the same bin in Vlassov coordinates after the 2.5 photoelectron cut. We begin by
making the assumption that the number of photoelectrons due to electron events is well described
by a Poisson distribution. This will be reinforced by later analyzing the quality of our fits to this

histogram. We begin with the most general form of a Poisson distribution:
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ANe=A

(94)

where N is the number of photoelectrons detected in the CC, and X is the average number of

photoelectrons of the distribution, viz.:

(P(N;\)) = /000 ANP(N; \)N = \. (95)

The efficiency for a given bin in Vlassov coordinates is then:

55 dNP(N; )

"y NP o

€cc

Now, since A is not known, we must find a way to obtain it using only the average number of
photoelectrons in the cut distribution. We will call the average of the cut distribution A. This is

easily obtained by writing the average of the cut distribution explicitly:

B f;; dNP(N;\)N

AR = Jye dNP(N;X)

(97)

It turns out that there is no analytical solution for A as a function of A, A(A). This is not
problematic, because a numerical solution may be determined instead. We write A(A) anyways,

keeping in mind that the value of A is numerically obtained for a choice of A.

Finally, we may write the efficiency as a function of the average number of photoelectrons

detected after the 2.5 cut:

fooo dANP(N;\(A))

(98)

It is now possible to know the efficiency of the CC as a function of the variables 6, and ¢,.
This may be seen in Figure 4.10. The next step is to determine if any parts of the CC will be
cut out for having too low of an efficiency. This is reasonable because simulations do not take into
account the complex mirror geometry of the CC. In particular, the CC is bisected by a joining of
two elliptical mirrors. Because of the lack of perfect continuity at the joining line, there will be a
loss of efficiency in this region in the experiment, which is not realistically calculable. A removal of
this region by use of a table in 6, and ¢, is easily done, by removing any region with an efficiency

less than 80%. The results of this efficiency cut may be seen in Figure 4.9.

Cut on Dead PMTs: There is a PMT in sector 1 which is clearly dead. The top and middle

sections of Figure 4.9 shows a slight crescent shaped gap over the region the PMT is responsible for.
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A cut is made to carve out that region with the results seen in the bottom third of the same Figure.
Another way of identifying this dead PMT is by inspecting the individual PMT occupancies. Figure
4.11 shows the occupancies for each of the detectors as a function of run number. The first eighteen
bins from the bottom correspond to PMTs on the left hand side of the CC, the last eighteen
correspond to the right side, and the middle eighteen correspond to events which triggered both
sides of the CC. It is clear that the dead PMT seen before in sector one corresponds to the one here

with low occupancy, the only PMT with less than 30% efficiency.

Based on these two inspections, we can apply cuts to remove this region. The dead areas
plotted in Vlassov coordinates were cut out carefully by eye, and all events which triggered the

low-occupancy PMT are disregarded.
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Figure 4.7: CC plotted by sector, before fiducial cuts.
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which is removed from the analysis is number 47 in sector 1, which can be seen in the upper left panel.
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IC Shadow Fiducial Cut:

There is a significant part of IC which lies directly between the target and CLAS. This ob-
struction should prevent particles from reaching the parts of CLAS with are ”behind the shadow”
of the IC. However, because of secondary scattering and various other effects, there are many events
which are detected behind this shadow. These events cannot be trusted in this analysis and must
be removed. The method involves calculating the intersection of the particle trajectory on the plane
which contains the back face of the IC. This plane is the x-y plane at z = 16 cm, in CLAS coordinates.
This can be approximated by making use of the position of the particle when it passed through the
region 1 of DC, and assuming that the particle moved in a straight line in the region between the
IC and region 1 DC. This is reasonable since the torus magnet lies outside of the DC region 1, and
so magnetic field is approximately zero in that region. The electron candidate intersection on this
plane can be seen on the plot on the left in Figure 4.12. There is a pronounced shadow, as expected,
where the IC should be blocking the particles. We can see the octagonal shadow, as well as the
shape of the IC cradle structure on the bottom. The aim of this fiducial cut is to eliminate the
events which lie in this shadow. While a few methods have been developed for this cut, we have
opted to apply a cut “by eye”. The result of this cut can be seen on the plot on the right in Figure
4.12.
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Figure 4.12: On the left, the intersection position of the electron candidate track on the plane which
contains the back face of the IC. On the right, the same plot after fiducial cuts. One can see the octagonal

shadow, as well as the shape of the IC cradle structure on the bottom.
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DC Fiducial Cut:

Events too near the edges of region one DC must be cut. However, because of the curved
geometry, a view of the detector in any two combinations of CLAS coordinates will not give a
satisfactory representation, or “sharp” view, of the events over its surface. Therefore, a more natural
set of coordinates must be developed. This may be done by recognizing that each sector of the region
one DC has two distinct sections: a section which is flat, and a section which is curved. This may
be seen in Figure 4.13. In this Figure, z runs in the direction of the beam line, z runs in the
direction perpendicular to the beam line but contained in the plane bisecting the sector in question,
by which y is uniquely defined, coming out of the page. For the curved portion of the detector,
where z > 0 cm, the ideal choice of coordinates will preserve the y coordinate, but redefine a second
variable s which runs along the curved portion of the detector, always in a direction perpendicular
to y. The length along this direction is easily obtained by fitting the z-position of the detector
as a function of z-position. The fit yields parabolas, which are fitted separately for electrons and
protons. These functions f. ,(z) can be used to find the length along the detector by the relation:
Sep = foz, y/ 14 %dz. In the flat portion of the detector, where z < 0 cm, it is natural to use

the coordinates y and z. Therefore, for the flat portion, we define s = z.

Finally, we have:

z2<0:z
Se,p = S B
2> 0: 71+ BleaGly,

Using this unique set of coordinates, we may plot the region one DC, as seen in Figure 4.14,
and determine where the cuts are best made. A determination is made by eye, selecting events

which satisfy:

1
ly| < 35 (0-5 + 1+ eXpo.04s(so—se)>

whose effect may be seen in Figure 4.16. It is interesting to notice that the result of the IC shadow
fiducial cut for electrons, an intermediary plot between Figure 4.14 and Figure 4.16, significantly
cleans up the distribution in the forward region of the sectors. This intermediate plot is shown

in Figure 4.15.

One last consideration must be made concerning the region one DC. There are several deple-
tions and displacements which are vertically or semi-vertically situated in the aforementioned plots.
The cause of these aberrations have been a source of much speculation and debate. Because of the

poor possibility of reproducing these features accurately in simulations, these aberrations must be
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carefully carved out. The displacements and depletions are most easily seen in Figure 4.14, but
be still be discerned in Figure 4.15. The cuts which exclude events in these regions may be found
in Figure 4.16, corresponding to the two vertical cuts in sectors 2 and 4, and the slanted cuts in
sector 5 and 6. It is believed generally that the vertical displacements are due to an issue in the
axial wires in the region 1 DC and the slanted displacements are due to issues in some stereo wires.
A study of these plots in bins of momentum, whose plots are omitted from this thesis for brevity,
revealed that these displacements exhibit no momentum dependance, strengthening our belief that
the cause of the issue is from region 1 DC. The same exact displacements may also be found in the

proton candidates.

A mathematical description of the cuts placed on the variables s, and y may be expressed as

the following equations, where the enclosed events are rejected from the analysis:

5cm < s < 11.5 cm, sector 2

5.5 cm < s < 9 cm, sector 4

9% (s, —15.5) cm < y < 9% (s, — 22.5) cm, sector 5
9 (se —24) ecm < y < 9% (s, — 31) cm, sector 5

9% (s —16.5) cm < y < 9 * (s, — 22) c¢m, sector 6

+y
Region One Drift Chamber

Figure 4.13: A drawing of the region 1 DC configuration, not to scale.
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Figure 4.14: Track position in region 1 drift chamber for electrons, plotted in coordinates y and s., before

cuts.

I
s s

340 :40
a0 = aof
20 20F
10| 10
o L=
-10 -0
-20 201
-30 -30f

" N
9668060 40 200 20 40 60 80 {00 o680 60 40 20 0 20 40 60 80 100
s s

ts

Figure 4.15: Track position in region 1 drift chamber for electrons, plotted in coordinates y and s., after

IC shadow fiducial cut.
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Figure 4.16: Track position in region 1 drift chamber for electrons, plotted in coordinates y and s., after

1C shadow fiducial cut, and DC fiducial cut.

EC Fiducial Cut:

An event which is detected close to the edge of the EC might not be a trustworthy event. For
example, a shower resulting from an electron or photon impinging on the surface of the calorimeter
may leak out of the side, even before reaching the outer stack. This may result in an incorrectly
measured energy deposit or hit position. To avoid such difficulties, cuts are applied based on the

natural geometry of the EC.

The EC is divided into 39 layers, each consisting of a layer of scintillator and lead sheet which
alternate 120° every layer. The three orientations are called u, v, and w, and are the natural variables
on which our cut is made. u, v, and w may be obtained by a set of transformations on the ntuple22

MW

variables “ech_x,” “ech_y,” and “ech_z” which represent the rectilinear position of each of the hits

on EC with respect to CLAS center. This transformation involves rotations and translations based
on the position, and the angles which the EC stacks are tilted, with respect to the beam line. The

units of u, v and w are in centimeters.
The values chosen for the cuts in this analysis are:
u > 40 cm,
v < 363 cm,

w < 395 cm.
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These cuts correspond to the edges of the detector. Additionally, there are some strips in
the EC which underperformed during the experiment. Those must also be cut from the analysis.
Viewing u, v, and w separately for each sector allows for one to identify which strips are dead or
underperforming, and makes the removal a simple task. These dead strips are easily seen in Figure

4.17, in the lower right corner, which is the front view of the EC in the x,y coordinates.

3000

2500

2000

1500

1000 —

500~

0" 50™"0b 150" 200 250 300 350 400 450 Q56100 150 200 250 300 350 400 450 &6 10b 150 200 250 300 350 400 430
ech_u (cm) ech_v (em) och_w (cm)

400 -300 -200 100 0 100 200 300 400
ech_x (cm) ech_x (cm) <ch x (cn)

Figure 4.17: In the first row, from left to right, u, v, and w distributions for all sectors for electrons. The
vertical red lines represent the cuts on the three variables. The black distributions are before all cuts, and
the red distributions are after cuts on u, v, w, dead strips, and IC shadow cut. On the bottom row is the
front face of the EC, in z and y, from left to right: before cuts; after cuts on u, v, w, and dead strips; and

after cuts on u, v, w, dead strips, and IC shadow cut.

SC Fiducial Cut:

Because the surface area of the SC covers a larger space than the CC, a cut applied on CC
will account for the edge of the SC. As seen in Figure 4.18 and Figure 4.19, the cut on the CC was
sufficient to clean the edges of SC. However, the detector must still be inspected for dead paddles.
A plot of the occupancy of the SC paddles as a function of run number will give a good idea as to
the efficiency of the paddles. This may be seen in Figure 4.20. Each panel represents a sector. The
y-axis represents paddle number. Each occupancy is normalized to the average number of hits over
all sectors for that particular paddle number. In other words, for sector i, the value on the z-axis

corresponds to the quantity

Ni,unnormalized

3 .
Zi: 1 NLunnormalized

Nimormalized =

o1



From this Figure, one may see that paddle number two in sector six has too low an efficiency.

It turns out that this paddle is the only one which has an efficiency lower than 30%, and is the only

one we have chosen to cut out.

One should note that the SC plane is better viewed in its natural coordinates, instead of in z
and y shown below. However, since the cuts on CC preclude a need for a careful fiducial study, this

is postponed until our analysis of protons in the TOF panels.

~ p i
50 100 150 200 250 300 JSD 400 450 500 50 100 150 200 250 300 350 400 450 500 ° 50 100 150 200 250 300 350 400 450 500 ‘

113_x {cm) 113_x (om) 113_x (em)

50 100 150 200 250 300 350 400 450 500 b 50" 100 150 200 250 300 350 400 450 500
113_x (cm) 113_x (cm)

56100150200 250 300 350 400 430 300
113_x (em)

Figure 4.18: SC hit position for electrons, as determined by region 3 drift chambers before CC fiducial

cuts, plotted in coordinates y and z.
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Figure 4.19: SC hit position for electrons, as determined by region 3 drift chambers, plotted in coordinates

y and z, after CC fiducial cuts.
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Figure 4.20: Occupancy of SC paddles as a function of run number. Each panel represents a sector.
The y-axis represents paddle number. Each occupancy is normalized to the average number of hits over all

sectors for that particular paddle number. In other words, for sector i, the value on the z-axis corresponds
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4.2.2 Proton Identification

The following describes the criteria for a particle to be considered a proton, in addition to it being

in coincidence with an electron.

Charge:
The charge of the proton must be restricted to +1. The method for determining the charge is

the same as for the electrons: the curvature of the DC track must be out-bending (away from the

beam line), and have good time-based tracking (TBT).

Velocity:

The strongest constraint that is placed on proton candidates compares the velocities of the

proton by two different measurements:

ey
Brop = 2% (99)
tror’
Bpe = ———, (100)
p?+mg

where fi;.ck is the length of the track as determined by DC, tror is the time of flight, p is momentum

determined by the curvature of the DC track, and m,, is the mass of the proton. These two quantities
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should be equal, within a resolution effect, provided that the particle truly has a mass of m,. The

most convenient variable to look at is therefore the difference of these two velocities.

g rac.
AB = fror — fpc = ok — L (101)

tror . fp2 4 m2

Since many variables require a momentum dependent cut, we plot this variable as a function of

p- A visual inspection is enough to determine that the width of the peak at zero does not significantly
broaden at any region, therefore a straight cut may be taken. The cut chosen for this analysis is
|AB] < 0.05. A plot illustrating this cut may be found in Figure 4.21, along with the resultant plot

of B versus p corresponding to the same cut.
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Figure 4.21: On the left, a plot of AS as a function of momentum p. The red lines represent the restriction
that |[AB| < 0.05. On the right, 8 versus p of the particles selected by the cut applied on the left. Here, the

protons are selected based on the requirement that the two different measurements of 5 are in agreement.

Vertex Correction and Cut:

The vertex cut that is placed on the proton follows the same procedure outlined for the elec-
trons. First, a vertex correction must be applied, after which a vertex cut is applied such that the

selected particles must satisfy: —61.25 cm < v, < —54.5 cm.

The distribution of uncorrected and corrected vertex positions may be found in Figure 4.22,

as well as the cut that was applied.
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Figure 4.22: Vertex position of protons in z-direction. On the left, before corrections. On the right, after

corrections. The red lines represent the final cut.

After separate vertex cuts on the electrons and protons, it is prudent to enforce one last
requirement. Not only should all electrons and protons originate from the target. Each event
with an electron and proton should have both particles originating from roughly the same location
within the target. The most convenient way to verify this is by plotting the electron vertex position
against the proton vertex position in the z direction. Another informative plot is one which shows the
difference of these two values. It turns out that this distribution has a heavy momentum dependence,
so it is more enlightening to see this difference plotted as a function of p. This distribution may be
taken in slices of p, projected, and fitted to Gaussians. In this way, a momentum dependent cut may
be employed depending on the varying sigma of the cut. The sigmas of the fit were determined to
follow the relation o = 0.3526+ 21121 "and the final cut was taken at three times that value:

p—0.1579°

0.1121

z,electron — Z,proton < 3 - 3 0'3526 T =~
Vs cletron = U proron! < 307 = 3(0.8526 + g 77

). (102)

The difference of the electron and proton vertex positions as a function of momentum may
be seen in Figure 4.23 with cuts displayed in red. The distributions of vertex positions of electrons

versus protons before and after this cut may be seen in Figure 4.24 and Figure 4.25.
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Figure 4.23: On the x-axis, the difference of electron and proton vertex position in the z direction. On

the y-axis, momentum. The red lines correspond to the momentum dependent cuts at 3o.
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Figure 4.24: On the x-axis, vertex position in z direction for electrons. On the y-axis, vertex position in

z direction for protons, before the cut described in Figure 4.23.
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Figure 4.25: On the x-axis, vertex position in z direction for electrons. On the y-axis, vertex position in

z direction for protons, after the cut described in Figure 4.23.

IC Shadow Cut:

As discussed previously, the parts of CLAS which are blocked by the IC must have a fiducial
cut. The same general concept which was used for the electrons is used for the fiducial cuts for the
protons. The shape is slightly modified to accommodate the differing structures appearing in the

plot.

-5-%0 40 30 20 -10 0 10 20 30 40 50 -5-%0 40 -30 -20 -10 0 10 20 30 40 50
x16 (cm) x16 (cm)

Figure 4.26: On the left, the intersection position of the proton candidate track on the plane which

contains the back face of the IC. On the right, the same plot after fiducial cuts.
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DC Fiducial Cut:

The special coordinates used for looking at the protons in region 1 of the DC follows the
same procedure as for electrons. The parameters for the fits are slightly different, but the principle
is the same. This view may be seen in Figure 4.27. The resulting cut is similar to the one for

electrons:

1
ly| < 53 (—0.5 + )

1 + exp0-045(90—s,)

whose effect may be seen in Figure 4.29.

As discussed previously, there are several depletions and displacements which we have little
hope of reproducing in simulations. It is prudent to omit events in those regions from the analysis.
The displacements are found to be in the exact location as those for electrons, which reinforces our
belief that it is a flaw in the region 1 DC or in the processing of its data, and not some other detector

which is misbehaving. The effect of this cut may also be found in Figure 4.29.

The mathematical description of the cuts placed on the variables s, and y are the same as the

ones determined for the electrons, listed here again for convenience:

5 cm < s, < 11.5 cm, sector 2

5.5 cm < s, < 9 cm, sector 4

9% (sp —15.5) cm < y < 9% (s, — 22.5) cm, sector 5
9% (sp —24) em < y < 9 (s, — 31) cm, sector 5

9% (s, —16.5) cm < y < 9% (s, — 22) cm, sector 6
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Figure 4.27: Track position in region one drift chamber for protons, plotted in coordinates y and sp,

before cuts.
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Figure 4.28: Track position in region one drift chamber for protons, plotted in coordinates y and s,, after

IC shadow fiducial cut.
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Figure 4.29: Track position in region one drift chamber for protons, plotted in coordinates y and s,, after

1C shadow fiducial cut, and DC fiducial cut.

SC Fiducial Cut:

The geometry of the SC panels is not complicated as seen in Figure 4.30. However, there are
four flat panels, and a view in simple CLAS coordinates is not the best view by which one may
determine a fiducial cut. Since the analysis we are concerned with only has a significant number of
events in the first two panels, those are the only two which will concern us. Figure 4.30 illustrates
the geometry of the detector for one sector, for the first two panels only. In the Figure, z runs in
the direction of the beam line, x runs in the direction perpendicular to the beam line but contained
in the plane bisecting the sector in question, by which y is uniquely defined, coming out of the page.
Like the procedure described for region one DC, it is highly desirable to find a coordinate which is
natural to the detector. The most convenient way, similar to region one DC is to preserve the y-axis
while defining a new variable which we shall call ¢. ¢ is defined as the distance along the sets of
panels, perpendicular to the y-axis, relative to the intersection of panel 1 and 2. That is to say, the
point of intersection of SC plane one and plane two has a value of ¢t = 0. Everything in the direction
of panel one has a coordinate such that ¢ > 0. Everything in the direction of panels two and three
has a coordinate such that ¢ < 0. This parametrization allows for the simultaneous viewing of all
three panels in a single plot of ¢ as a function of y, as may be seen in Figure 4.31. Using this plot
we may determine where the cuts are best made. A determination is made by eye, selecting events

which satisfy the following for each panel separately:
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t > —200 cm
panel one : < t < 10 cm

ly| < 0.5(x + 340) cm

t> 25 cm
t < 260 cm
panel two :
y < 4+0.1(z + 1750) cm
y > —0.09(z + 1750) cm

both of whose effect may be seen in Figure 4.32.

A close inspection of Figure 4.32 reveals that there are several depletions present in each of
the sectors. Some of the aberrations are vertical strips. Others have more complicated geometry.
Of both categories, there are varying degrees of definiteness in the shapes. The vertical bands
correspond to TOF paddles which are either dead for part of the experiment, or are inefficient.
Because of the inefficiencies, the number of events in those regions cannot be trusted. Therefore,
each paddle corresponding to a depletion must be cut. It was determined that the most inefficient

paddles were:

sector 2, paddle 27
sector 2, paddle 34
sector 3, paddle 34
sector 4, paddle 31.

A cut which rejects events based on the paddle number variable was implemented, whose effect
may be seen in Figure 4.33. A curious feature of this plot is the lack of sharpness of this cut when
viewed in the coordinates t and y. The cause of this blurriness is the symptom of how the variables
for TOF position are reconstructed. The position of the hit in TOF is determined by extrapolating
the track position in region 3 DC. After this straight line extrapolation, the intersection this line and
of the panel plane which contains the fired paddle is taken. It is not necessary that this intersection
point be in agreement with the position of the paddle, although it is most often intersecting. Because
of the rare cases in which the two are not in agreement, there will be stray events which missed
by a cut which is only made based on paddle number. Therefore, a more careful cut will include
a geometrical cut on the coordinates of the paddle as well. This is represented by the following

equations:
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85 cm < t < 110 cm, sector 2

242 cm < t < 300 cm, sector 2
240 cm < t < 300 cm, sector 3
176 cm < t < 198 cm, sector 4.

whose effect may be seen in Figure 4.34.
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Figure 4.30: A drawing of the first two panels of the Time of Flight configuration, not to scale.
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Figure 4.31: SC hit position for electrons, as determined by region 3 drift chambers, plotted in coordinates

y and t, before cuts.
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Figure 4.32: SC hit position for electrons, as determined by region 3 drift chambers, plotted in coordinates

y and t, after a geometrical fiducial cut on panels one and two.
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Figure 4.33: SC hit position for electrons, as determined by region 3 drift chambers, plotted in coordinates

y and t, after a geometrical fiducial cut on panels one and two, and a cut on paddle number.
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Figure 4.34: SC hit position for electrons, as determined by region 3 drift chambers, plotted in coordinates
y and t, after a geometrical fiducial cut on panels one and two, a cut on paddle number, and a cut on the

coordinates of dead paddles.
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4.2.3 Photon Identification - EC

The following describes the criteria for a particle to be considered a photon, in addition to it being

in coincidence with an electron and a proton.

Charge:

The charge of the photon must be restricted to 0. Unlike charged particles, there are no tracks
in the DC associated with neutral particles. A neutrally charged particle must therefore not be

associated with any DC track, curved or otherwise.

Velocity:

The velocity of the photon is 8 = 1. However, because of resolution effects in CLAS, there is
some variance in the measured values. For this reason, a range of acceptable 8’s must be decided
upon. Before describing this determination, we must diverge for a moment to describe a peculiar
feature of the data reduction program: its requirement for a particle to be identified as a photon is:
B > 0.95. This is much too restrictive for this analysis. To complicate matters, any particle with
a 8 > 0.95 which becomes categorized as a neutron by this program also has it’s variables 5 and p
altered to reflect this. Both 8 and p variables are forced to exactly obey the relation 5 = \/ﬁ.
A plot of 5 as a function of p is shown in Figure 4.35.

The actual 8 and p must be restored. The real value of 3 for neutrals is determined by the

timing from EC and from the distance of the hit in the EC to the vertex position.

|||
rec — s 103
2 c(tec — tur) (10)

given

r=e—v, (104)

where tgc is the timing in EC from which is subtracted the reference time (trigger time) ti,; e is
the vector running from CLAS center to the hit in the EC; and v is the vector running from CLAS

center to the corrected vertex position of the electron which was detected in coincidence.

The reconstruction of p is accomplished by knowing the expected sampling fraction of EC
for showering particles. fs = % ~ 0.273. It is useful to note that this sampling fraction is not

uniform in momentum p. Simulations for photons show that there is an increase in the average value
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of sampling fraction as momentum increases, as well as a decrease in the standard deviation of the

distribution. A similar distribution may be seen for electron in both data and simulation.

With both 8 and p reconstructed, one may view the actual plot of 8 as a function of momentum.

A plot of the reconstructed values of 3 versus p is shown in Figure 4.35.
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Figure 4.35: On the left, the raw values of 8 as a function of p. Entries with values of 8 less than

45 5
p (GeV)

.95

have their momenta and velocities forced to agree as if they were neutrons. On the right, the reconstructed

values of 3 versus p, allowing for us to accept photons lower than 5 = .95.

From this restored graph of momentum versus 3, a determination of the velocity cut may

finally be explored. This is easily accomplished by looking at the velocity distribution of the photon

candidates. As expected, one sees a peak at S = 1, representing a distribution of photons, and a

tail trickling down from [ = 1 towards zero, representing the neutrons. A straightforward selection

involves fitting this distribution to a Gaussian with a polynomial background. The final cut is taken

only on the low (left-hand) side, at a value of 5 = 0.9, seen in Figure 4.36. The width of this cut

is conservatively loose, and made with the expectation that any neutrons which are accidentally

selected will be removed by exclusivity cuts.
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Figure 4.36: (s for photon candidates, with a cut accepting only particles with 5 > 0.9.

EC Energy Restriction:

The energy of the photon must be at least 0.35 GeV.

EC Fiducial Cut:

The values chosen for the cuts in this analysis are:

u > 40 cm, v < 363 cm, and w < 395 cm, which are equivalent to the cuts that were made
for the electrons. These cuts correspond to the edges of the detector. Additionally, there are some
strips in the EC which underperformed during the experiment. As done for the electrons, those
must also be cut from the analysis. The same strips are removed as for the electrons. The effects of

these cuts may be seen in Figure 4.37.
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Figure 4.37: In the first row, from left to right, u, v, and w distributions for all sectors for photons. The
vertical red lines represent the cuts on the three variables. The black distributions are before all cuts, and
the red distributions are after cuts on u, v, w, dead strips, and IC shadow cut. On the bottom row is the
front face of the EC, in z and y, from left to right: before cuts; after cuts on u, v, w, and dead strips; and

after cuts on u, v, w, dead strips, and IC shadow cut.
IC Shadow Cut:

As discussed in previously, the parts of CLAS which are blocked by the IC must have a
fiducial cut. The same general concept which was used for the electrons and protons is used for the

fiducial cuts for the photons. The shape is slightly modified to accommodate the differing structures
appearing in the plot.
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Figure 4.38: On the left, the intersection position of the photon candidate track on the plane which

contains the back face of the IC. On the right, the same plot after fiducial cuts.

4.2.4 Photon ~ Identification - IC

IC Fiducial Cut:

The fiducial cut for the photons detected in the IC accomplishes two things. Firstly, it removes
particles detected near the edges of the detector. Secondly it removes a single hot crystal near
x = —5.5 cm,y = —8 cm. An additional restriction is made on the polar angle of the photon during

the DVCS analysis, but is not included in the initial particle identification.
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Figure 4.39: The IC, on the left, before fiducial cuts, on the right, after fiducial cuts.
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IC Energy Restriction:

The energy of the photon must be at least 0.35 GeV.

4.2.5 Neutral Pion 7° Identification

The selection process for neutral pions is based on the 7° — v 4 ~ decay mode. This relies on the
photon selection described above in both IC and EC. A large portion of this analysis will be focused
on the removal of neutral pions whose decay photons may be accidentally selected as a DVCS or BH
photon via the channel e +p — e+ p+ 7 — e 4+ p + v + ~, where either one or both photons have
been detected. A detailed description of this selection will be delayed until Section 4.9.
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4.2.6

Summary of Cuts

Table 4.2: A table of cuts used in the identification of electrons.

Electron

Charge qg=-1
Momentum p > 0.8 GeV
Energy in Inner Stack of EC E; =0.06 GeV

Sampling Fraction of EC

w(p) — 2.50 < fs < pu(p) + 2.50, where:
1i(p) = 0.336948 — 0.0321597p
10.00433749p% — 0.000159799p°

= 0.0621754
o(p) = 0.00635095 + %0074

Electron Vertex Cut

—61.25 cm < V clectron < —54.5 cm

CC Fiducial Cut

For all sectors:
|| < —68.975 + 36.9961n 6, — 1.6706,, + 0.01162
0, < 43.0 + 0.05|¢,| + 0.003|42]
Excluding in sector 1 events where:
¢y >0, 0, > 25 and
0, < 27.5+ 0.027|¢,| + 0.002| ¢, |2
Excluding a single dead PMT in sector 1
Excluding ecc(0y, ) < 80% for each sector

IC Shadow Fiducial Cut

Geometry is complicated.

See Figure 4.12.

DC Fiducial Cut

[yl < 35 (<05 + o=y ) om
Excluding:
5cm < s, < 11.5 cm, sector 2
5.5 cm < s, < 9 cm, sector 4
9(se — 15.5) em < y < 9(s, — 22.5) cm, sector 5
9(se —24) cm < y < 9(sp, — 31) cm, sector 5

9(se — 16.5) cm < y < 9(s, — 22) cm, sector 6

EC Fiducial Cut

u > 40 cm,v < 363 cm,w < 395 cm
Removal of dead strips. Geometry is complicated.

See Figure 4.17.

SC Fiducial Cut

Geometrical cut accomplished by CC Fiducial Cut
Excluding: sector 6, paddle 2
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Table 4.3: A table of cuts used in the identification of protons.

Proton

Charge

q=-+1

Good Time Based Tracking

Velocity

|AB| = |Bror — Bpc| = %—m < 0.05

Proton Vertex Cut

—61.25 cm < V,, ,roton < —954.5 cm

Electron-Proton Vertex Cut

‘Vtz,electron - Vrz,proton‘ <3c=3 (0.3526 —+ pg()11125179>

IC Shadow Fiducial Cut

Geometry is complicated.

See Figure 4.26.

DC Fiducial Cut

ly| < 53 (—0.5 + —Hexpo_oﬁs(go,sp)) cm
Excluding:
5 cm < s, < 11.5 cm, sector 2
5.5 cm < 5, < 9 cm, sector 4
9(sp — 15.5) cm < y < 9(s, —22.5) cm, sector 5
9(sp —24) cm < y < 9(sp — 31) cm, sector 5

9(sp — 16.5) cm < y < 9(s, — 22) cm, sector 6

SC Fiducial Cut

t > —200 cm
panel one : { t < 10 cm
lyl < 0.5(z + 340) cm
t> 25 cm
panel two : t <260 em
y < +0.1(x + 1750) cm
y > —0.09(x 4+ 1750) cm
Excluding:
sector 2, paddle 27
sector 2, paddle 34
sector 3, paddle 34
sector 4, paddle 31.
85 cm <t < 110 cm, sector 2
242 cm < t < 300 cm, sector 2
240 cm < t < 300 cm, sector 3

176 cm < t < 198 cm, sector 4.
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Table 4.4: A table of cuts used in the identification of EC photons.

Photon - EC

EC Energy E, > 0.35 GeV

Charge q=0

Velocity 8>0.9

EC Fiducial Cut u > 40 cm, v < 363 cm, w < 395 cm

Removal of dead strips. Geometry is complicated.

See Figure 4.37.

IC Shadow Fiducial Cut Geometry is complicated.
See Figure 4.38.
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Table 4.5: A table of cuts used in the identification of IC photons.

Photon - IC
1C Energy E, > 0.35 GeV

IC Fiducial Cut | Geometry is complicated.
See Figure 4.39.
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4.3 Acceptance
4.3.1 Definition of the Acceptance of CLAS

The CLAS detector only detects a certain percentage of events which occur. A reason for this
reduction in events is due to the many gaps in the detector. In particular, the regions behind the
torus coils and at large 6 are not covered by detectors. The presence of various flaws within CLAS
also contributes to a reduction in events detected. There are also detectors with less than desirable
efficiencies, or detectors which are malfunctioning or switched off. Because CLAS will only detect
a certain fraction of the actual events, we must estimate the fraction of events which are missed by

the detector.

Let us define the acceptance A as the fraction of events, for any reaction, which are detected
by CLAS. That is to say, if the number of events detected by CLAS is Ngetected, Which we will refer
to as the yield, and the number of events which actually occurred is Nactual, which we will refer to

as the normalized yield, then the acceptance is defined by the relation:

A= Ndetected (105)

Nactual

The role of the number A in the cross section is to rescale the number of detected events to the
expected actual number of events. This formula is valid for any channel. For DVCS, the equation

would be:

A= Ne+p~>e"+p’+’Y ) (106)
Nactual
For other channels which we will study, such as e +p — €’ + p’ + 7¥ or elastic scattering, one

need only replace Ngetected With the number of events detected of the proper channel.

The quantity A cannot be measured exactly from the actual experiment. We can only deter-
mine the acceptance from simulations of the experiment, and from our knowledge of the detector’s
geometry and properties. The solution can be outlined in three steps. First, an ensemble of events
may be generated by simulation over a kinematical region which is similar to the actual experiment.
We will call this number: Ngenerated- Second, the response of CLAS to each of these generated events
may be simulated. That is to say, we can estimate the number of events which were measured by
CLAS according to the simulation. We will call this number: Nieconstructed- Lhis is determined
by taking the events from the event generator and running them through a program called GSIM
which uses GEANT3 to simulate the detector. Third, the ratio between these two is calculated. If

the simulation of the experiment is sufficiently close to reality, we can accept this ratio as being
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approximately equal to the real acceptance, supplying us with the following relation:

A= Ndetected _ Nreconstructed ) (107)

Nactual Ngenerated
Finally, this acceptance A is generally a function of the cross sections variables. Since this
analysis was performed bin per bin in the cross section variables, A must be determined on a bin by

bin basis.

4.3.2 DVCS Generator

First, an ensemble of events was generated according to a program written by F. X. Girod. This pro-
gram was written to take into account both virtual and radiative effects as described in reference.*®
Instead of producing only e+p — €’ +p’ 4+, the program produced e+p — €' +p' +v++"+7", where
~ represents the DVCS or BH photon; ' represents the radiated photon coming off of the incoming
electron leg, which we will call pre-radiation; and ~" represents the radiated photon coming off of

the outgoing electron leg, which we will call post-radiation. Approximately 40 million events were

generated.

4.3.3 GEANTS3 Simulations (GSIM)

Now that the simulated events have been generated, it’s important to know how the detector will
respond to such events, bin per bin. First, a realistic model of CLAS and the IC must be devel-
oped. The method for modeling the CLAS detector is to utilize a program called GSIM ((G)EANT
(SIM)ulation) which is based on the GEANTS library developed at CERN.*” Each of the pieces
of the detectors were inserted into the simulation, specifying the geometry, placement, size, and
material of each component. It is known, to various degrees, what the behavior of each material
is when different particles pass through them. For instance, an electron passing through lead will
scatter and produce bremsstrahlung photons, and for thick lead, can be completely stopped. Effects
of particles in these materials are simulated to the best of our knowledge, and the response of what
we believe our detectors would have read based on this simulation is given in Analog to Digital
Converter (ADC) and Time to Digital Converter (TDC) responses. Most of the detectors are un-
derstood well enough for our purposes. However, the EC is not perfectly simulated because of the
complex showering which occurs within it. To reduce the amount of computing time needed, any
electrons or photons below a certain energy threshold are neglected, leading to a slight imperfection
in the simulations. In addition, the geometry of the CC is too complicated to represent perfectly

in simulations. Therefore, the spectrum of the number of photoelectrons detected in the CC is not
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realistically reproduced in simulations. There are also resolution effects which are not taken into
account in simulations. In the cases of the SC and DC, the resolution in simulations is too fine in
comparison to data. Some of these differences may be taken into account with a program called

GSIM Post-Processing (GPP), whereas some effects may not be taken into account.

4.3.4 GSIM Post-Processing (GPP)

There are regions of the DC and SC which have a resolution after GSIM which is finer than the
resolution in data. These detectors also have areas which are less efficient than in experiment. In
order to reconcile this difference, we processed the GSIM output using a program called GPP, which
is able to simulate these efficiencies, and smear out the distributions of these detectors to more
accurately represent what appeared in our data. The program makes use of four parameters. Three
of the parameters, a, b, and ¢ are used to broaden the resolution of the DC, for each of the three
regions. The fourth parameter f is used to broaden the resolution of the SC.2? The set of parameters

which best reproduced the resolutions in data were:

a=12
b=1.25
c=13
f=2

The occupancies of the DC were also studied. Wires which had an efficiency of less than 1% in
experiment were removed from simulations. For those wires above 1% in efficiency in experiment,

the corresponding wires in simulation were modified to have the same efficiency.?%4®
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Figure 4.40: On each panel, the layer number in DC is plotted against the wire number in the DC. On the
top is data. In the center is MC before efficiency corrections. On the bottom is after efficiency corrections.
Deep red corresponds to 100% efficiency, while deep blue corresponds to low efficiency. Zero efficiency is
represented by white. We note that the inefficiencies seen in data, the top plot, are reproduced in the MC

after the corrections, on the bottom plot.?

4.3.5 Background Merging

During the experiment, there is a possibility of Méller scattering, or other accidental events, being

detected, such as beam-target interactions, secondary scattering, cosmic rays and other random hits.
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Because of these background events, the efficiency of the detectors is reduced in a very non trivial
way. It is known that this background is linearly related to the luminosity of the experiment.2349
However, this background is not taken into account in GSIM. Therefore, in order to take into account
the inefficiency due to this background, we have to make an estimation of the background in data.
This can be done by looking at the Faraday cup trigger, which records the state of CLAS at a
rate which is proportional to the luminosity of the experiment. Background events are then merged
with the generated events in proportion to the background rate which we measure from experiment.
Simulations of elastic scattering have been studied by B. Guegan while using this background merging

method, and it can be seen that the efficiency is reduced by about 6%.%3

Efforts to fully understand the background and its contribution to the reduced efficiency of
CLAS are ongoing.

4.3.6 Particle Identification

The raw TDC and ADC values of the experiment, or the simulation, are converted into physical
values, such as momentum, time-of-flight, and tracks. This is accomplished by the reconstruction
software RECSIS. Afterwards, the particle identification is performed for Monte Carlo. It is almost
identical to that of the experimental data, with one exception: the number of photoelectrons in the
CC for simulations is not accurately calculated. This is due to the fact that the exact geometry of
the CC is not very well known, causing the number of photoelectrons in simulation to be unreliable.

Therefore, no cut is applied on the number of photoelectrons in simulations.
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4.3.7 Comparison to Data

In order to rely on Monte Carlo for our acceptance, it is necessary to have a good agreement
between reconstructed events from Monte Carlo, and data. Since we want to estimate the acceptance
through Monte Carlo, our estimation is going to be dependent on our ability to accurately reproduce
the features of data in Monte Carlo. There are several ways we can check to make sure that
the comparison between the two is close enough. Firstly, we can make comparisons between our
kinematic variables, Q%, zg, t, and ®. In particular, we can look at Q? versus xp, seen in Figure
4.41, and —t versus xp, seen in Figure 4.42. We notice a good agreement. We may also look at our
event distributions as functions of our kinematic variables, in Figure 4.43. Finally, we can look at
the distributions of each of the particles, comparing their momenta and angles. In particular, for
each of the three outgoing particles, we plot the momentum versus the polar angle at the vertex
in Figure 4.44, and the azimuthal angle at the vertex versus the polar angle at the vertex in Figure
4.45. All of the distributions appear to be accurately reproduced in the Monte Carlo except for
the momentum versus polar angle of the photon. One notices that in Figure 4.44, there events are
focused around 4 GeV for the data in the IC and focused around 4.5 GeV for the Monte Carlo in
the IC.
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Figure 4.41: Q? versus zp for data on left, and Monte Carlo on right, showing a good agreement.
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Figure 4.42: —t versus xp for data on left, and Monte Carlo on right, showing a good agreement.
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Figure 4.43: A comparison of kinematic variables for data on left, and Monte Carlo on right. The top
row is Q?, the second row is z, the third row is —t, and the bottom row is ®. We see that the agreement

between data and simulation is very good with no extreme deviations visible.
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Figure 4.44: Momentum versus polar angle for each particle type, data on left, and Monte Carlo on right.
On the top row, p. versus 6., on the center row, p, versus 6,, and on the bottom row, p, versus 6,. We
notice that there is good agreement between data and simulations, except for energy of the photons in the
IC, corresponding to low 6, values. There is a concentration of photons at about 4 GeV in data and 4.5
GeV in Monte Carlo. In these plots, this is the only serious discrepancy in simulations, whose cause has yet

to be fully understood.
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Figure 4.45: Angular distributions for each particle type, data on left, and Monte Carlo on right. On the

top row, ¢. versus 6., on the center row, ¢, versus 6,, and on the bottom row, ¢, versus 6,. We see that

the distributions are well reproduced in the simulations when compared to data.
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4.3.8 Final Results for the Acceptance of CLAS

Using the formula

we are able to calculate the acceptance for each of the bins. Our acceptance is usually from 10 —15%
in most bins. Each bin also exhibits a periodic shape, with six regions of relatively higher acceptance.
This structure is related to the six sector construction of CLAS. An example of the acceptance is

presented in Figure 4.46, for the fifth bin in zg and 6.. A full list of acceptances may be found in

Appendix A.
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4.4 Momentum and Angle Corrections
4.4.1 Energy Loss Corrections

When heavy charged particles pass through matter, they experience a loss of energy due to ionizing
of atoms in this matter. This behavior is well understood, and is best described by the relativistic

Bethe equation®:

dE dra® nz? 232 9
) ]

where z is particle charge, and n and I are the electron density and mean excitation potential of

the target, respectively.

When electrons, positrons and photons pass through matter, they experience showering effects

due to bremsstrahlung, especially when it passes through heavy material such as lead.

We will now focus on the effect of this bremsstrahlung and ionization on electrons and protons
detected in CLAS. During our processes, electrons and protons travel through the hydrogen target
and the various detectors of CLAS. By the time the particle has reached the last detector of CLAS,
energy has been lost due to this ionization, altering the momentum and the angle measured. The
reconstruction of the DC track, which determines the momentum and angles will therefore output

values which are not the true values at the vertex.

It is therefore desirable to have an effectual method for estimating this energy loss and cor-
recting for it. Since it is impossible to know the amount of energy lost simply from the detector
output itself, we must rely on Monte Carlo for this analysis. In simulation, we have generated events
with kinematics - momentum and angles at vertex - for particles before entering CLAS. We will call

these:

Dgen; egen, ¢gen~ (110)

Afterwards, GSIM will simulate the response of CLAS to the particles. The values after

considering this detector response will be referred to as:

precagrem(ybrec- (111)

We then posit that the correction is simply the difference of these two sets of values, which we

shall define as:
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Ap = Pgen — Prec; (112)
A = Ogen, — brec, (113)
A¢ = qbgen - ¢rec~ (114)
We suspect that because the geometry of CLAS and the target which the particles encounter

will vary as a function of pye. and 6,c, these values must be functions of pcc and 6., therefore we

choose to write:

Ap = Ap(preca 91‘60)7 (115)
Af = Ae(prem arec)v (116)
A¢ = A¢(prcca 0rcc)~ (117)

Next, these functions are analyzed to determine their dependence on prec and 6,ec. Since they
are functions of two variables, a two-step method of determining dependence is convenient. We chose
to determine the momentum dependence first, then the angular dependence. For this analysis, there
are different binnings for electrons and protons in bins of . or 8, respectively, with the values for

electrons and protons respectively being:

0. : [20°,22.5°,25°,27.5°,30°, 32.5°, 35°, 37.5°, 40°, 42.5°, 45°], (118)

and

6, : [20°,25°,30°, 35°, 40°, 45°, 50°, 55°, 60°]. (119)

Our analysis, in bins of 6., are analyzed first as a function of pe.. For Af and A¢, the
deviations as a function of momentum are significantly smaller than the standard deviations of the
fits of the means, so we can abandon these two quantities without much concern. In other words, it
seems that any correction we apply would not improve our angular resolution or accuracy. However,
the deviations in momentum are significant, so these distributions must be fit. We elect to fit these
distributions to the following functions, now writing prec as p and 6. as 6 from this point forward

for the sake of simplicity:

Ape = Qe+ &a (120)
Pe
and
Apy = ap+ 2
pp = Oép + = (121)
Pp



Figure 4.47, Figure 4.48, Figure 4.49, Figure 4.50, Figure 4.51 and Figure 4.52 contain plots of
the six distributions for electrons and protons and their deviations in momentum and angles. These
distributions are fitted with Gaussians, with no background. Also displayed are the means of the
fits as black points, and one standard deviation as red points. The black curve running through the
black points represents the best fit according to equations 120 and 121. For ease of comparison, a

line is drawn at Ap = 0 or A8 = 0.
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Figure 4.47: Ap. for bins in 6. as measured from the vertex. The black points represent the means
of the Gaussian distributions in slices of momentum, and the red points represent one standard deviation
from the mean point. The black curve running through the black points represents the best fit according to

equation 120. The horizontal green line represents the line Ap. = 0.
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of the Gaussian distributions in slices of momentum, and the red points represent one standard deviation

from the mean point. The black curve running through the black points represents the best fit according

to equation 121. These curves are in accordance with what we would expect - with large deviations at low

angle. This affect at low momentum is due to the momentum dependence of equation 109. The horizontal

green line represents the line Ap, = 0.
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Figure 4.51: A6, for bins in 6,. The black points represent the means of the Gaussian distributions

in slices of momentum, and the red points represent one standard deviation from the mean point.

horizontal green line represents the line Af. = 0.
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Figure 4.52: A¢, for bins in 6,. The black points represent the means of the Gaussian distributions
in slices of momentum, and the red points represent one standard deviation from the mean point. The

horizontal green line represents the line A¢. = 0.

The next step is to determine the 6 dependence of these fit parameters «, 8 and . After
plotting the parameters as functions of 6, as seen in Figure 4.53 and Figure 4.54, it is determined
that the functions which best describe the distributions for these parameters are, for electron and

protons respectively:

ac(0e) = aca + =2, (122)
Be(le) = B, + % (123)
and
ap(bp) = ap1 + ap 20, + ap,3912w (124)
Bp(0p) = Bp,1 + Bp20p + Bp 365, (125)
Yo (0p) = Vp.1 + Vp,26p + 'yp,gﬁf,. (126)
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A fit of the means (black points) of Figure 4.53 and Figure 4.54 allow us to determine all of

H %/ ndf 262174
O Prob 2.87e-05
O pl (.75 £ 0.36
gpl 0.06644 £ 0.01857 +
H p2 0000765 + (0.000232
o T T T T bevrn bvv o b v bev s
25 30 35 40 45 50 55 O Lk
Bp{dc;:;mc.i]

%/ ndf 57.64/8
Prob 1.35¢-09
— p0 0.002286 £ 0.000271
[ pl -0.1047 £ 0.0074

Lol bvonn Lo b by o L
20 25 30 35 40 45
ee
of 0., with a polynomial fit.
E ¥/ ndl, 227414 R
= Proh 00001429
= po 0.005715 £ 0.000725
E pl -0.0001936 & 0.0000357
- p2 2.092¢-06 + 4,318e-07
= DI NS R BT P B B N
0 25 30 35 30 35 50 55 50 65
Bp{dcgmes]

Figure 4.54: «,, 5, and 7, as a function of 6,, with a polynomial fit.

these parameters. Finally, one may write Ap. and Ap,, with all of the determined parameters:
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a9 (a3 + Zf)
Ape(p&ee) = <6L1 + ) + —, (127)
O DPe
App(pp,bp) = (b1 + b2l + b365)

) —(b7+b89,,+b9912,).

(128)
+ (b4 + b59p + b6912) pp

Table 4.6: A table containing all of the parameters for equation 127 and 128, the ionization corrections

for electrons and protons respectively.

Proton Constants
b1 —0.00229356
by | 1.74653 x 1074
bz | —2.12096 x 1076

Electron Constants

a; | —8.13235 x 10~*

by 0.0057151
as 0.137491

bs | —1.9561 x 104
as 0.0022856

bg | 2.09208 x 10~°
ay —0.104723

br 0.749952

bg 0.066442

by | —7.65017 x 10~*

After applying this correction to pr.c, one may check its efficacy by plotting the corrected
momentum subtracted from pgen. In order for the quality of the correction function to be considered
good, this difference should be around zero, within the preferred tolerance. In our case, if the
deviations from zero are within the standard deviation of this difference distribution, we can be

satisfied with the quality of the correction. In mathematical terms, we may write:

Pcor = Prec T Ap(preca arec)a (129)

Apcor = Pgen — Pcor = Pgen — Prec — Ap(prem erec)v (130)

with the hopes that Apcor =~ 0.

It turns out that the corrections obtained have the desired effect. The correction to the protons
is significant, with the correction to the electrons being a little less appreciable due to their large 5.
The difference may be found in Figure 4.55 and Figure 4.56 for electrons and protons, respectively.
One notes that, while the correction renders the distribution fairly close to zero, there are still some
deviations from zero, especially at low momentum for protons. However, these deviations are within

the standard deviation of the distribution. We conclude that our electron and proton momenta
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have been sufficiently corrected. These correction functions, which we have derived from a study on
Monte Carlo may be applied to both data and Monte Carlo, with the assumption that our modeling

of CLAS is accurate enough to simulate the true amount of ionization energy loss.
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Figure 4.55: Apcor as a function of p for electrons.
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Figure 4.56: Apcor as a function of p for protons.

4.4.2 Empirical Kinematical Corrections for Charged Particles

In the previous study, we have concerned ourselves with corrections due to ionization loss. However
there are other corrections beyond ionization which must be taken into account. We will present
the problem by first analyzing our measured W distribution and our reconstructed beam energy
Ey distribution from data, after the application of the ionization loss corrections. In particular,
we are going to look at W and our beam energy, Ey, after selecting our elastic channel, and the
neutron mass, M,,, after looking at our positive pion electroproduction channel. This provides us a
good way to check our understanding of CLAS. If our charged particles are detected correctly, and
assigned the proper momenta and angles by our detector, we expect W to be around M, and for
Ey to be around 5.88 GeV, and for M, to be around its nominal PDG value. The beam energy
was determined by studying elastic scattering. And taking the average reconstructed beam energy

according to the equation:

M,
IR - M, (131)
tan(==5><) tan (0, calc)

Eo =

In particular, we are interested in learning how these distributions look as a function of fpc and
¢pc as measured in the region one coordinates. By analyzing Fy and W, we can make corrections

on electron kinematics. In a similar method, we can look at the reconstructed neutron mass M,, of
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the e +p — e +n + 71 channel to make similar corrections on the pion kinematics, with the intent

of using those same corrections on the proton.

The distributions for Fy and W are displayed in Figure 4.63, and the distributions for M,
are displayed in Figure 4.70, Figure 4.71, Figure 4.72 and Figure 4.73. For each of these three
“benchmarks” Fy, W and M,,, we notice two striking features. Firstly, the average values for Ej,
W and M, in each sector do not have the expected value, and each sector varies from the expected
value in a sector independent way. Secondly there is also significant deviation with respect to ¢pc
within each sector. There are several suspected reasons why these quantities vary so much from
their expected values. Among them include the possibility of the magnetic field map not being
well known, the possibility of misalignments of the DC, or even a possible lack of knowledge as
to the exact placement of the solenoid near the target. These problems in CLAS will cause the
measured momenta and angles of particles to be slightly incorrectly determined. These incorrect

values manifest themselves as shifts from the expected values, such as Ey, W or M,,.

We performed the study in the DC coordinates, based on our belief that the DC or the torus
is misaligned. In either case, this misalignment can be represented by lack of knowledge of the
magnetic field map. Therefore, a study done in the region where the field is the strongest will allow
us to analyze our discrepancies with the best resolution. The region where the field is strongest is
in region 2 of the DC. However, we do not have information on angles in region 2. Instead, we used
region 1 coordinates since they are the closest to region 2. Whatever the cause of these discrepancies
in the measured value of Ey, W or M,,, the appearance of these deviations gives us a motivation to
make a correction to these momenta and angles. Because the source of the problem is not perfectly
understood, one does not have the option of trying to simulate it. Therefore, we must resort to

making empirical corrections.?3:50

Before we begin with our method for correcting these variables, let us set out a list of assump-

tions, some of which we will justify right away, and some of which we will justify a posteriori.

Assumption #1: Any correction function for momenta and angles should approach minimal or

no correction at large polar angles 6§ > 35°.
Assumption #2: 6, is the most reliable of all of the elastic variables.

Assumption #3: Angular corrections are independent of particle type, as long as they are done

in the coordinates of the DC.

Assumption #4: Corrections to particle momentum rely on charge and momentum, not on
mass (particle type). In other words, particles of identical charges should have the same momentum

corrections.
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We justify Assumption #1 by claiming that if these discrepancies in W, Ey and My are truly
due to the lack of knowledge about the field map of the torus coils (or equally, the lack of knowledge
of the physical placement of the torus coils themselves) then particles with larger angles are, on
average, measured with more accuracy because on average the distance from the torus coils to the
particle track is larger. This leads us to the belief that the corrections must begin to vanish at larger

angles.

We justify Assumption #2 by noting that for elastic scattering, protons are found mostly at
larger angles, where on average the distance from the torus coils to the particle track is larger. Using
this fact in conjunction with Assumption #1, we are motivated to believe that on average, proton
measurements are more reliable. Our preference of 8, over p, arises from the fact that resolutions
in angle in CLAS are better than resolutions in momentum. This is due to the momentum being
measured dependent on the magnetic field map, and the angle being measured independent of the
magnetic field map. Finally, this leads us to believe that 6, is probably the most trustworthy of the

four variables: 6., 6,, p. and p,.

We justify Assumption #3 by claiming that discrepancies in polar angle at the vertex are
mostly due to lack of knowledge of the exact placements of the DC. If this is truly the case, then
the correction for polar angles should only rely on the coordinates of the DC, and not the charge of

the particle.

We justify Assumption #4 by recalling that 71 =K = %. If our lack of knowledge of the value
of momentum is due to our lack of knowledge of the magnetic field map, we see that it only depends
on the momentum and charge of the particle, and not directly on the mass. Therefore, particles

with identical charge will enjoy identical correction in momentum.

Electron Kinematic Corrections Using the Elastic Channel:

For the elastic channel, our empirical measurements consist of p., 0., p, and 8,. If we wish
to correct the values of W and Ej, we can easily accomplish this by making corrections to these
variables. In order to correct as many variables as possible, we must hold at least one of them
constant. We use Assumption #2 to justify selecting 6, as the variable to hold constant. We begin
by attempting to correct W. This can be accomplished by correcting the measured polar angle of
the electron. Given a proton polar angle in double-arm elastic scattering, one may calculate the

expected electron angle:

Mp
(EO + Mp) tan 0p '

Oc,calc = 2arctan (132)
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This, in general, will be different from the measured value f¢ meas. Our goal is to find a function
which brings us from measured polar angle to the corrected polar angle, using the calculated value

as our expected value. This function will rely on the angular coordinates of region 1 DC:

ee,corr - ge,meas + Aee(GDC,ea ¢DC,€) (133)

We determine this function by fitting the difference between the measured and expected values,

in bins of DC coordinates:

Af. = ee,calc - 06,mcas~ (134)

This quantity may be seen in Figure 4.57, with the bins in fpc . being

fpc,e : [36°,40°,42°,44°,46°,48°,50°, 53°,56°,60°, 64°,70°, 78°]. (135)

For each bin in pc e, and for each sector, we analyze Af to determine its mean and standard
deviations as a function of ¢pc .. We then determine the ¢pc, . dependance of our function by a fit

to a first order polynomial, also by sector:

Aee = ae(eDC,e) + be(eDC,e)¢DC,ea (136)

where the subscript ¢ represents a bin in fpc. These fits are represented by the black lines in Figure

4.57.
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Figure 4.57: Af. as a function of ¢pc,e, for different bins of Opc,.. The black points represent the means
of the fits of Gaussian peaks to slices in ¢pc,e, and the red points represent the standard deviations of the

same. The black curves represent the fits in ¢pc,. according to a straight line as seen in equation 136.

We notice that this figure is riddled with many holes in certain bins in fpc .. This is due to the
fiducial cuts that we have employed on our electrons and protons. Since we are dealing with elastic
scattering, and the angles of electrons and protons are one-to-one in correspondence, the holes which
we view in this plot will correspond to both cut electrons and cut protons. In order to extract the

¢pc,e dependance, we fit each parameter as a linear function of Opc e:

Qe = Qe,0 + ae,laDC,a (137)
be = be,O + be,laDC,ev (138)
whose fits may be seen in Figure 4.58 and Figure 4.59.

We have now determined all 24 parameters corresponding to our . corrections, with our final

correction function being:

Ab. = aco+ ae,10pc,e + (be,o + be,10DC,e)PDC, e (139)

where the parameters are defined by the following table, by sector.
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Table 4.7: The table of parameters corresponding to equation 139, the equation which gives the kinematic

corrections to the polar angle 6. for the electrons.

Qe,0 Qe,1 be,o be.1
sector 1 | -0.146862 0.0024158 0.00421872 | -0.000104959
sector 2 | -0.039861 | 0.000822674 | -0.00406926 | 0.000143319
sector 3 | -0.0429369 | 0.00108304 | -0.00599707 | 0.000122858
sector 4 | -0.154693 0.00409406 | -0.0054311 9.72998e-05
sector 5 | -0.186987 0.00398069 | -0.00322403 | 0.000114131
sector 6 | -0.0128776 | 0.00127507 | 0.00430845 | -0.000138372
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Figure 4.58: The parameter a. fit as a function of Opc,. sector by sector according to equation 137.
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Figure 4.59: The parameter b, fit as a function of Opc,. sector by sector according to equation 138.

Next, we focus our efforts on improving p.. Now that we have corrected 0., we will take it as
a trustworthy variable. Like what we have done for the polar angle of the electron, we will compare
the measured and calculated momentum for the electron. The calculated value of p. only relies on 6,
so single arm elastic scattering can be used to avoid losing the events which are lost to protons cut
by our DC fiducial region. Unlike the equation for electron angle, an electron momentum calculation

does not require the proton angle. We may then rely on the equation:

Eq

S E— (140)
1+ 280 gin &

DPe,calc =

Like the previous method, we compare the measured and calculated values of p., except this

time for single-arm scattering. In order to ensure that our correction function is approximately
independent of momentum, we chose to take the ratio of the momenta instead of the difference. We

define:

Ope = M (141)

Pe,meas

Using the same bins in fpc . as in the previous analysis, we use the same method to extract
the correction to p. as a function of Opc, and ¢pc.. Plotting dp. as seen in Figure 4.60 we fit each

bin in Opc, and each sector with the function:
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0pe =1+ ce(fpc,e) + de(fpC,e)PDC, e (142)

These fits are represented by the black curves on Figure 4.60.

Figure 4.60: dp. as a function of ¢pc,e, for different bins of Opc,.. The black points represent the means
of the fits of Gaussian peaks to slices in ¢pc,e, and the red points represent the standard deviations of the

same. The black curves represent the fits in ¢pc,. according to a straight line as seen in equation 142.

Next, the parameters of this fit are analyzed in order to determine their Opc . dependance.

The functions used for the fit are:

Ce = Ce0 + Ce,laDC,a (143)
de = de,O + de,lgDC,ea (144)

whose fits may be seen in Figure 4.61 and Figure 4.62. We note that some of these fits may not
look impressive. The x? value is quite large, and there are many outliers in the fit. We find that
this will be true for all of the following studies. We can justify this “loose” fit procedure in two
ways. First, we are interested in empirical corrections which capture leading order deviations from
expected values. In this sense, the fits may not be perfect, but at least provide a correction on
the order of magnitude which concerns us. Secondly, we can justify the corrections a posteriori by

viewing the effect they have on our variables W, Ey and My .
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We have now determined all 24 parameters corresponding to our p. corrections, with our final

correction function being:

6pe =1+ Ce,0 + Ce,leDC,e + (de,O + de,leDC,e)¢DC,ea

where the parameters are defined by the following table.

Table 4.8: The table of parameters corresponding to equation 145, the equation which gives the kinematic

corrections to the momentum, p., for the electrons.

(145)

Ce,0 Ce,1 deyo de
sector 1 | 0.00956388 | -0.000213876 | -0.00156489 | 3.53482e-05
sector 2 | 0.00163266 | -8.68628e-05 | -0.000609982 | 1.15357e-05
sector 3 | -0.00249147 | 3.59581e-05 0.00156991 -2.40948e-05
sector 4 | 0.00155519 | -6.81624e-05 | 0.000647287 | -1.03541e-05
sector 5 0.0079693 -0.00013362 | -0.000457369 | 7.85232¢-06
sector 6 | 0.000146967 | -9.52163e-06 | 0.000287862 | -6.71992e-07
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Figure 4.62: The parameter d. fit as a function of Opc,e sector by sector according to equation 144.

Now, the validity of these corrections to both angle and momentum must be verified. For the
angle corrections, we can do this by checking the effect of this correction of 8. on W. Figure 4.63
and Figure 4.64 show the W distribution for each sector, as a function of ¢pc . and as an average for
a sector as a whole respectively. We notice that the average values of W are improved as well as the
¢pc,e dependent slant seen in W before correction. For the momentum corrections, we must check
to see if they correct Ey as originally expected. Figure 4.63 and Figure 4.64 show the E, distribution
for each sector, as a function of ¢pc,. and as an average for a sector as a whole respectively. We
confirm that the average values of Ey are improved and that the ¢pc,. dependent slant seen in Ej

before correction is somewhat lessened.
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Figure 4.63: The left column represents W and the right column represents Fo. The top row is before
kinematic corrections on momentum and angle, and the bottom row is after both angle and momentum

corrections. We notice almost complete elimination of the slant in ¢pc,e.
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Figure 4.64: The left column represents W and the right column represents Fo. The top row is before
kinematic corrections on momentum and angle, and the bottom row is after both angle and momentum

corrections. We notice a shift in the average sector value in almost all sectors towards the expected values.
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Proton Kinematic Corrections Using the e +p — e + n + 7+ Channel:

Now that the corrections to the electron are completed, we may proceed by correcting the
proton quantities. Because of the one-to-one correspondence of electron polar angle to proton polar
angle in elastic scattering, proton acceptance is limited to larger angles. This is due to the corre-
sponding electrons at low angles being blocked by the IC. To avoid this restriction, we may look
at another channel which has a positive particle to analyze. We opt to use the 7 electroproduc-
tion channel for this purpose, making use of Assumption #4 to apply our corrections to the 7 on
the also positively charged proton. Because the electron angle and momentum are now supposedly

trustworthy, the only quantity which is not known is the pion momentum. Consider:

ph=q" +ph -y, (146)

where p}, is the outgoing neutron four-vector, ¢/ is the virtual photon four-vector, p4 is the incoming
proton four-vector, and pﬁ + is the outgoing pion four-vector. Then, by taking the four-product of

each side we have:

2
m
MP = M2 +m2 — Q> = 2[Fp+| | (My+w)y[1+ 5 ﬂ*|2 — V@2 +w?cosly 5 | |, (147)
ot "

where w is the energy of the virtual photon and 6, ;, ., is the angle between the virtual photon and the
pion. At this point, if the pion momentum is the only quantity left uncorrected, the reconstructed
mass of the neutron becomes a good way to measure the quality of the pion momentum. We have

only to write p,+ explicitly as a function of all the other known variables.

M?\/Q? + w2 cos by , — (M, + w)\/M4 +4m?2, (Q? + w?) cos? by, . —4m2, (M, + w)?

Prv = 2[(Q2 + w?)cos b, — (M, +w)?] ’
(148)

where we have made the convenient substitution:
M? =M. — M? —m2; +Q° (149)

After the analytical equation p,+(My) is obtained, we follow in the footsteps of the electron

corrections, and determine

o Pr+ cale

Spps = ——<2le (150)

Pr+ meas
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with the intent of finding a correction function for all positive particles which minimizes this dif-
ference. As for all our previous kinematical corrections, we prefer to look at dp,.+ as a function of
DC coordinates, as we stated in the previous section, and it will be done sector by sector. First, we
will fit dp,+ as a function of ¢p¢ in bins of Opc. For this analysis, we have chosen the bin limits to

be:

0.+ : [8°,28°,33°,36°,40°,42°, 45°,49°, 53°, 57°, 61°, 66°, 72°, 79°, 88°, 100°, 120°]. (151)

These bins are selected such that each one is filled with approximately the same number of
events. This difference, dp,+, may be seen in Figure 4.65. This difference is fitted to a straight line

for each sector and bin in fpc .+ as a function of ¢pc +:

5p7r+ =1+ Ert (HDC,W+) + f‘n’+ (HDC,WJF)(ZSDCJJr . (152)
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Figure 4.65: dp,+ as a function of ¢pc .+, for different bins of ¢ +. The black points represent the
means of the fits of Gaussian peaks to slices in ¢ .+, and the red points represent the standard deviations
of the same. The black curves represent the fits in ¢p .+ according to a straight line. It is useful to note
that the lack of events below pc .+ = 36° due to the fiducial cut we place on positive particles due to the
shadow of the IC. Naturally, pions which pass through the IC and are detected by CLAS will have much
less energy due to ionization, and will not be useful candidates for this study. For this study, we employ the

same exact IC shadow cut to pions as we do to protons.

Next, e,+ and fr+ are fitted as functions of fp¢ ,+ according to the equations

2
€Exrt = €Ext 0 + e'/rJr,laDCJrJr + ew*,ZQDCmJﬂ (153)

and
f7r+ = f7r+,0 + fﬂ'Jr,leDC,Tr+ + fTr*,QHJQDC;n—Jm (154)

whose fits may be seen in Figure 4.66 and Figure 4.67. The parameters according to this analysis

are then used in the final master correction function:

Opr+r =1+ €xt+,0+ 671—+,19DC,7r+ + eﬂ+729]2DC wt

. (155)
+ (frr*,O + f7T+,19DC77T+ + f77+729DC,7r+) ¢DC,7T+'

These parameters are conveniently provided below in table format:
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Table 4.9: The table of parameters corresponding to equation 155, the equation which gives the kinematic

corrections to the momentum for positive pions and protons.

ert.0 ext 1 Crt 2

sector 1 | -0.00695422 | 0.000300308 | -2.47145e-06

sector 2 | -0.00681235 | 0.00017175 | -9.82635e-07

sector 3 | -0.00380977 | -9.09995e-05 | 1.85863e-06

sector 4 | -0.00194689 | 0.000175169 | -1.62817e-06

sector 5 | -0.0141774 | 0.000464551 | -4.12438e-06

sector 6 | 0.0142706 | -0.000422821 | 2.76701e-06

fr+0 frt 1 fr+ 2

sector 1 | 0.00189944 | -6.45155e-05 | 3.45423e-07

sector 2 | 0.00147839 | -5.57523e-05 | 3.26713e-07

sector 3 | -0.00190681 | 4.75771e-05 | -3.81936e-07

sector 4 | -0.00101298 | 2.35001e-05 | -2.16256e-07

sector 5 | -0.00124745 | 3.84751e-05 | -2.87222e-07

sector 6 | 0.00050131 | -2.67503e-05 2.0248e-07
A
o B T it
= e I DR A== 2
- O =)

bf ooniE
0F

-.002f
b

Figure 4.66: The parameter e+ fit as a function of Op .+ sector by sector according to equation 153.
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Figure 4.67: The parameter f, + fit as a function of fp .+ sector by sector according to equation 154.

We finally may find the corrected momentum by the following relation:

Pr+ corr = Prt ,mcasapfrJr

7r+,calc

The histograms measuring the ratio may be seen, corrected ;

7T ,meas

and uncorrecte

(156)

d pﬂ+,calc
7+, corr ’

in Figure 4.68 and Figure 4.69. We note that the slanted feature of each sector is quite reliably

flattened out after the corrections.
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Figure 4.68: dp, .+ as a function of ¢p .+, for different bins of O .+, before momentum corrections to

pions.
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Figure 4.69: 0p,+ as a function of ¢p .+, for different bins of Op¢ .+, after momentum corrections to

pions.
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Finally, we may view the ratio of the missing mass variable My meas to the nominal mass value
Mp to double check the effect of the momentum correction we have just applied, where My meas

is calculated according to equation 147, for uncorrected and corrected momenta, as a function of

¢DC,7T+:

MN,meas

oMy =
N My

(157)

These distributions may be seen in Figure 4.70 and Figure 4.71, and they receive a similar
effect from the correction, moving from a slanted distribution to a flat one after the momentum
correction function is applied. It is also useful to look at the same distributions as a function of
Opc,x+, as seen in Figure 4.72 and Figure 4.73, before and after corrections. We note that in Figure
4.72 and Figure 4.73, we see several vertical shifts in local areas of Op¢ .+, especially at 60° — 70°
in sector 5, but in numerous other places. As we mentioned during our study of fiducial cuts, there
are numerous anomalies which occur in the DC. While these are removed for electrons and protons,
our 7T selection is little less delicate and as a result we see the familiar shift reappear. This is of
no concern to us, in any case - the correction function at those choices of angles will not affect the
analysis because protons in that region have already been rejected. Finally, according to our original

assumptions, these corrections may be used for all positive particles.

<28 o B <8_ <28 8 <6 . <28

Figure 4.70: §My as a function of ¢p¢ .+, for different bins of 6 .+, before momentum corrections to

pions.
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Figure 4.71: after momentum corrections to

pions.
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Figure 4.72: 0My as a function of 0p¢ .+, before momentum corrections to pions. The black points

represent the means in slices of fpc .+ and the red points correspond to one standard deviation.
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Figure 4.73: §Mny as a function of Opc .+, after momentum corrections to pions. The black points
represent the means in slices of 0 .+ and the red points correspond to one standard deviation. Comparing

with Figure 4.72, we notice a small, but significant improvement in the mean and sigma.

Conclusion on Momentum and Angle Corrections:

We conclude with reasonable assurance that the corrections applied for both ionization correc-
tions and kinematic corrections are done correctly based on our use of simulations and our use of Ej,
W and My as benchmarks. We note in passing that there are some remaining studies that could be
of interest, which remain unfinished. In particular, there is belief that a study of kinematical correc-
tions to the photons in both the IC and EC could be fruitful. These corrections may be necessary
due to our lack of knowledge concerning the exact hit coordinates on the respective detectors. At
the moment, these studies are beyond the scope of this thesis, but could be an interesting point of

refinement to the data.

4.4.3 Corrections to Photon Energies in Data

It is important to have a good measurement on the momenta of our photons, not only for our DVCS
analysis, but also for our 7° subtraction analysis. For that reason, we must develop a method for
judging the quality of the photon momenta we have measured. For this study, we shall focus on

corrections to the EC photons we have measured in our experiment. The method that we elect to
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use is the invariant mass of photons pairs from the 7% decay mode.?":52

We begin by looking at every event where at least two photons are detected. For such events,
we look at every photon pair combination, and measure their invariant mass. That is to say, if the
four-vectors of the two photons in a pair are p4 and pf, , we can find the invariant mass M (7172)

by the relation:

IM?(y172) = (P, +p4,)° (158)

By analyzing the spectrum of IM (vy172), we can judge the quality of our photon data. There
are several studies which have been done to improve photon data by correcting the photon momenta
such that the invariant mass peak moves closer to the nominal 7° mass. Studies have been done
by P. Bosted®! and R. de Masi®? in experiments egl-dves and el-dvcs, respectively, and each of
these studies have lead to individual corrections to photon energy. For the sake of efficiency, we will
make the attempt to recycle one of these studies, applying it to el-dves2, with the hopes that our
experiment will receive a similar correction. We safely justify reusing one of these studies in two
ways. First, these three experiments are very similar, and each use the EC, with a similar calibration,
that is, for each experiment, it is believed that the sampling fraction of the EC is around a value
of fs = 0.3. Secondly, we may apply the corrections, and then justify the correction a posteriori
if we see the pion mass peak has moved in the proper direction. This study will contrast these
two methods by P. Bosted and R. de Masi, and determine which, if either, is appropriate for our
purposes. The details leading to the exact determination of each correction may be found in the two
documents referenced above. We present the corrections as listed in those documents, and refer the

reader to those documents for a detailed explanation and justification of the methods.

The “uncorrected” method that is in standard use is to accept a nominal value of f; = .273 as
the standard value. That is to say, the total energy that is absorbed in the EC is only 27.3% of the

actual photon energy. Mathematically:

— Etotal
T213”

(159)

Next we address the R. de Masi method, which takes into account the possibility that this
sampling fraction may have a slight dependence on the total energy deposit. Mathematically speak-

ing:

Etotal

B, = ol
K fs(Etotal)

(160)

where
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0.0272506 _ 0.00147336
Etotal E2

total

fs = 0.273(1.01034 —

). (161)

Finally, we address the P. Bosted method, which takes into account the possibility of a global
offset to the energy deposited, and a sector dependence on the sampling fraction as opposed to a

energy deposit dependence. Mathematically:

E ota.
E, = 0.06GeV + 1.015—22L (162)

s,sector
where both energies are measured in GeV, and the sector dependent sampling fraction is determined

by the following table.

Table 4.10: The table of parameters corresponding to equation 162, the equation which gives the energy

correction to the energy of photons in the EC.

fs,sector

sector 1 | 0.307299
sector 2 | 0.30438
sector 3 | 0.310337
sector 4 | 0.312228
sector 5 | 0.297499
sector 6 | 0.3021

The effect of these calculations are most easily appreciated by looking not only at the invariant
mass peak, but how this invariant mass changes with respect to three different variables: the energy
of the pion, the polar angle of the pion, and the missing energy of the e + p + v + v system. The
invariant mass may be seen, plotted as a function of each of these variables separately, before and
after both corrections in Figure 4.74, for EC only. Since we have a motivation to make sure the IC
is calibrated correctly too, we present the same plots for IC only in Figure 4.75. We also note in
passing that the invariant mass as measured in the IC, while not corrected in this study, may benefit
from similar study in the future. The correction of IC energy is not competed. We list it here as
an attractive candidate for future refinements. Finally, for the EC photon pairs, we may look at
the means and sigmas of the invariant mass spectra by themselves, comparing the uncorrected and
corrected distributions directly in Figure 4.76 both as a function of pion energy and polar angle. We
conclude from these plots that the corrections to the mean value of the invariant mass in the EC

are best performed by the P. Bosted corrections.
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Figure 4.74: For EC studies: we plot on the left column the invariant mass as a function of pion energy;
in the middle column the invariant mass as a function of pion polar angle; and on the right column the
invariant mass as a function of missing energy of the e + p 4+ v + v system. We plot on the top row results

before corrections; on the middle row results after R. de Masi corrections; and on the bottom row results

after P. Bosted corrections.

2

5, tadieces)

Figure 4.75: For IC viewing: on the left, the invariant mass as a function of pion energy, in the middle,

the invariant mass as a function of pion polar angle, and on the right, the invariant mass as a function of

missing energy of the e 4+ p + v +  system.
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Figure 4.76: We plot on the top left the means for the mass spectra as a function of pion energy; on the
top right the means of the mass spectra as a function of pion polar angle; on the lower right the sigmas for
the mass spectra as a function of pion energy; and on the bottom right the sigmas for the mass spectra as
a function of pion polar angle. Black points represent results before corrections, red points represent results
after R. de Masi corrections, and green points represent results after P. Bosted corrections. We conclude
from this graph that the P. Bosted corrections are the best for el-dvcs2 both in terms of the change in the

mean value and the slightly tightened value of sigma.
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4.5 DVCS Event Selection

After particle identification for both data and Monte Carlo, a selection of the e + p — €’ + p’ + v
channel was carried out. For Monte Carlo, it is simple because only e + p — ¢’ + p’ 4+~ events have
been generated. However, in experiment, there is a mixture of many different channels. In order to
select DVCS, we began by accepting every event which has one electron, one proton, and at least

one photon.

4.5.1 Exclusivity Cuts

To ensure that the events from data are from the channel e+p — €’ +p’ +y, we impose conservation
laws. We begin by supposing that there was an additional particle X, such that the reaction is
e+p—e +p +v+ X. For example, if a non-zero value of this mass, momentum, and energy of
this “missing particle” are zero, we can be convinced that the event obeys the conservation laws for

our channel.

Since there are resolution effects, the conservation laws will not be met exactly, and each
variable will have a certain distribution around the expected value. To have guidance on where
one should place restrictions on these “missing” quantities, the Monte Carlo distributions may be
consulted. These distributions, being only e + p — €’ + p’ + 7 events, will be an indication as to
where the cuts should be placed. This section outlines the list of variables used in such exclusivity
cuts, and the methods for determining the cuts on these variables. We choose px, 1, Fx, 0x, and
® for our exclusivity variables, where each of these variables are: the perpendicular component of
missing momentum; the missing energy; the angle between “missing particle” X and the detected
photon; and the coplanarity angle. We have chosen these variables because they are not strongly

correlated to each other.

There are two challenges that we are met with when trying to examine where to place our
cuts on exclusive variables. Firstly, the general shapes of the distributions between Monte Carlo
and data are not quite equivalent. While the general shape between the two is similar, there is clear
indication that the Monte Carlo at some level is not perfectly reproducing the features in the data.
The second challenge is that the exact theoretical shape of each of the variables’ distributions is
not known, so it is difficult to apply fits. In this analysis, we choose to fit the distribution of the
data. We then find a “stretch” factor which correlates data to the uniformly stretched Monte Carlo
distributions by looking at the x? comparison between the two distributions after the stretching of
the Monte Carlo shape. This y? method involves a comparison test between two variables, with a
lower x?/ndf indicating a better match between the two histograms. This is useful because the data

and Monte Carlo are quite similar in shape, even though their relative widths may not be. A glance
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at Figure 4.77 shows, for example, the difference between missing perpendicular momentum for both
data and Monte Carlo. We see that the distribution is similar, but that the data is more stretched
out than the Monte Carlo. Also demonstrated in this figure is the deformation (“stretching”) of the
Monte Carlo histogram by a uniform linear scaling in order to reproduce the same shape as in data.
For each Monte Carlo distribution, one may find the appropriate “stretch factor” which takes our
Monte Carlo to our data. In Figure 4.77, the x?/ndf between stretched Monte Carlo and unscaled
data can be seen for various choices of stretch factor for px ;. We choose the choice of stretch factor
which minimizes the difference between the two distributions. In this way, we may feel free to pick a
cut for data, according to any criterion we wish, and compute what the corresponding Monte Carlo
cut should be, and “capture” the same number of events. Mathematically, given a cut in data, z4ata,

and a stretch factor fs.., one may compute the corresponding cut to data xyc such that:

Tdata = fsc.xMC' (163)

We used this method for both px  and 6x ., and the results are displayed in Figure 4.77
and Figure 4.78. Furthermore, since the distributions are different for photon detection in the IC
and the EC, the analysis is done separately for both. This method helps us to obtain corresponding
cuts even without having a good matching function to fit the distributions. The function that we

use to obtain the cut on data is:

=4 .tan x 2
Asin (gvo*)efo"’(55 Tr) , (164)
where A, k and o are fit parameters, x is either px | or fx ., and the stretch factors are:

Table 4.11: The “stretch” factors for px | and 0x ..

IC | EC

fse.-px,1 | 1.6 | 1.5
fse.-O0x | 1.2] 2.8
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Figure 4.77: For the variable px, 1, on top, the distributions for data in black, Monte Carlo in red, and
stretched Monte Carlo in green. The upper left panel is for the IC and the upper right panel is for the
EC. The cuts in black correspond to the IC and EC cuts at 97% of the fit to equation 164. The cut in red
corresponds to the scaling of the black cut according to the stretch factor. On the bottom left, the x? value
for the comparison between data and stretched Monte Carlo, as a function of “stretching”, on left for IC

and on right for EC. These plots correspond to events after cuts on all other variables.
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Figure 4.78: For the variable 0x -, on top, the distributions for data in black, Monte Carlo in red, and
stretched Monte Carlo in green. The upper left panel is for the IC and the upper right panel is for the
EC. The cuts in black correspond to the IC and EC cuts at 90% of the fit to equation 164. The cut in red
corresponds to the scaling of the black cut according to the stretch factor. On the bottom left, the x? value
for the comparison between data and stretched Monte Carlo, as a function of “stretching”, on left for IC

and on right for EC. These plots correspond to events after cuts on all other variables.
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In order to determine the cut which will be placed on data, the stretch factor is used to
determine where to place the corresponding cut in Monte Carlo. In order to determine the cut for
data, we will rely on the stretched Monte Carlo. We decide to take our cut at 97%, as calculated
numerically from the stretched Monte Carlo histogram. This will be the value that we use for our

cuts on data. The corresponding cuts can be obtained by scaling these values.

Table 4.12: A table of cuts corresponding to the variables px, 1 and 6x , for IC and EC, and data and
Monte Carlo.

IC EC
px,1 data cuts | .1104 GeV .254 GeV
sig. level 97% 97%
px,1. MC cuts | .069 GeV | .169333 GeV
sig. level 97% 97%
0x,, data cuts .894° 2.646°
sig. level 90% 90%
0x,, MC cuts .745° .945°
sig. level 90% 90%

The method concerning the missing energy of e+p — €’ +p’+~v+X is different. The distribution
resembles a offset-skewed Gaussian for the IC, and a Gaussian for EC. An skew Gaussian is defined

as:

f(x) = 26(x)®(ax), (165)

where ¢(z) is an ordinary Gaussian, and ®(az) is the cumulative distribution function of ¢(z),

where « is the skewness. A offset-skewed Gaussian is then given by:

f(@) = 2¢(x)®(a(z - B)), (166)

where « is skewness, and ( is the offset.

For the IC, we fit to a skewed Gaussian, and reject .2% of events on the left and 2.3% of the
events on the right, according to the function of the fit. For the EC, we fit to a standard Gaussian

and reject events outside of the 3o limit. These fits are presented in Figure 4.79.
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Figure 4.79: For the variable EFx, on top, data, on bottom, Monte Carlo. On left is IC, and on right is
EC. On the left, the IC distribution is fit to a skewed Gaussian for both data and Monte Carlo. On the
right, the EC is fit to a Gaussian for both data and Monte Carlo. The cuts are denoted by the vertical
black lines, whose values are written in Table 4.13. These plots correspond to events after cuts on all other

variables.

Table 4.13: A table of cuts corresponding to the variable Ex for IC and EC, and data and Monte Carlo.

IC EC
Ex data cuts —.259 GeV < Ex < 1.253 GeV —.596876 GeV < Ex < .907776 GeV
sig. level 97.5% rejecting .2% left and 2.3% right 99.7%
Ex MC cuts —.229 GeV < Ex. < 398 GeV —.478361 GeV < Ex < .577171 GeV
sig. level 97.5% rejecting .2% left and 2.3% right 99.7%

Lastly, we cut on the coplanarity angle ® at a value of £5°. This cut, as we see in Figure 4.80
to Figure 4.83 serves only to clean up pathological events, and does not contribute significantly to
the selection of events. A series of plots showing the exclusivity variables before and after cuts can
be found in Figure 4.80 to Figure 4.83, for both data and Monte Carlo, as well as for the IC and EC

separately.
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Figure 4.80: Exclusivity variables in data for IC. On the top row are the distributions before all cuts. On
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column represents 6., x. The third column represents Ex. The last column represents ®. One can see in the
missing energy, before cuts, a peak below zero, which corresponds to the elastic channel with an accidental

photon of 400 MeV.
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Figure 4.81: Exclusivity variables in data for EC. On the top row are the distributions before all cuts.
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4.6 Bin Volume Determination
4.6.1 A Monte Carlo Method for Determining Bin Volumes

One of the ingredients in the cross section calculation is the kinematic volume of each of the bins.
We previously wrote this quantity as: AV = AQ?AtAzgA®. Since we have determined the bins,
we may now proceed to calculate each of those volumes. However, there is one problem: the bins
that we have chosen are not completely rectilinear in the variables of the cross section. We have
opted to swap the variable ? in our choice of binning, in favor of f.. The volume may still be easily

calculated by determining the Jacobian:

/dV:/szdtdedéz/j(@e,t,zB,fb)dGedtdedfb (167)
1% % 1%

This can be done analytically for each bin. However, there are some cuts which are placed
on our kinematics which still run through some of our bins. One may see five of the following
cuts in Figure 4.2. The cut on 6, does not show up well on this plot because it only cuts out
part of the volume where ® is close to 0° or 360°, an effect that is independent of the Q? and zp
of the aforementioned figure. The ¢,,;, cut may be seen in Figure 4.2. These following cuts run
through each of the bins in different ways, and, when written as a function of our binning variables,
end up being very complicated, rendering an analytical solution for the volume too cumbersome to

compute.
1. 6. > 21°
2. 0. < 45°
3. W >2 GeV
4. Q%> 1 GeV?

5. pe > 0.8 GeV

6. 0, >4.77°
7. —t< tmin
2 _ 2_ 2 M,
where tyim = £ {Q(ieziii(;ai$F}> and € = 462#'

This cumbersome volume calculation involving Jacobians and extra cuts can be circumvented
by employing a Monte Carlo method of integration. To determine the volume of any one bin, we
need only to define a new and easily calculated volume Viuper Which completely contains the bin;

generate Ngyper several random points within the new volume Viyper, Where Ngyper is “large”; and
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determine the ratio of points which lie within the bin and cuts Npi, to the total number Ngyper. In
our case, we take Viyper t0 be the smallest bin possible which is rectilinear in x5, Q*, —t and ®, and

which contains the bin to be calculated. We may then write the equation for the volume as:

Nbin

)
Nsuper

AV = ‘/super (168)

with our criterion for “large” being Ngyper = 1,000,000. In any Monte Carlo calculation, what is
considered large enough for the number of trial events depends on the size of error bars desired. For

a binomial distribution as described above, the error is:

ANbin ( Nbin )
AV = ‘/su N T V‘u T Nbin 11— —— (169)
P Nsuper supe Nsuper

Nl)

in
super

We express our final results in terms of the volume correction in Figure 4.84, for the

fiftth bin in xp and 6,. A full list of comparisons for the volume corrections may be found in

Appendix B.
0.09 GeV? < -t < 0.13 GeV’ 0.13 GeV2 < -t < 0.18 GeV’ 0.18 GeV? < -t < 0.23 GeV’
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Figure 4.84: The bin volume correction NNb‘“ as a function of ® for the fifth bin in xp and 6., where
super

0.17 < zp < 0.2 and 25.5° < 0. < 45°.
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4.7 Good Run List and Integrated Luminosity

2 During the course of any experiment, the quality of data must be monitored. Data which are
incorrectly recorded, or acquired under incorrect conditions, for example, when detectors are mal-
functioning, should be rejected. During data acquisition for el-dvecs2, many runs of data were taken
solely for the purpose of calibration or trigger studies, or have a large portion of the detector behav-
ing in an unexpected way. Because of these considerations, a run-by-run analysis for data quality
is necessary in order to determine which data should be included in the final analysis of the cross

section.

There are several ways of determining the quality of data. For example, the occupancy plots
of detectors as a function of run number might reveal which PMTs and paddles were too inefficient
for certain runs. A systematic check of each detector will easily reveal which detectors function
correctly and incorrectly, and furthermore, which ones are problematic for a few runs, or the entire
experiment. Runs with severe problems may be removed from the analysis completely, while runs
with problems which last only for a brief period of the run may suffer a removal of only a subset of

its files.

el-dvcs2 consists of 629 runs summing to a total of 3 TB of data. Typically, each run is divided
among 100 files. Afterwards, the so-called “ntuple22 skim” is applied to each of the files. This
consists of doing a preliminary particle identification, selecting events only with basic requirements
for a good electron, and compressing some variables. After this process, each file is reduced to about
17 MB of space. The number of runs remaining is 595, and they are about 0.593 TB worth of data
in total. Any file which has corrupted data, or has incorrectly recorded Faraday cup readings is

rejected from the good run list. After this is done, a study of the electron rate is made.

4.7.1 Good Run List

Electron Rate:

The most significant effort in determining the good run list is the analysis of the electron rate.
The number of electrons detected should be proportional to the luminosity of the electron beam.
Therefore, a ratio of the number of electrons detected in CLAS, divided by the luminosity of the
beam should remain constant throughout the entire experiment. Any severe deviation from this

constant value is a sign that there is a detector failure somewhere, a high number of accidentals, or

2As a brief aside, the reason for the insertion of a good run list in this exact moment of the thesis is that it requires
some knowledge of particle ID. The same applies for calibration. Chronologically, calibration and a good run list must

be done before the final particle ID.
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some other malfunction. These files are rejected. This rate, as a function of run number may be
found in Figure 4.85. A similar plot, as a function of run number and sector, per file, may be found
in Figure 4.86. Each of these seven ratio distributions were projected onto the y-axis and fitted to
Gaussians. Each ratio plot was then cut, accepting only files with ratios which fill within a 3.50
limit of its mean value. These cuts are represented by the black lines. Figure 4.87 represents the

projections and fits of Figure 4.86.
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Figure 4.85: The average electron rate for each run.
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Figure 4.86: The electron rate for each file as a function of run.
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Figure 4.87: The y-axis projection of Figure 4.86.
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4.7.2 Integrated Luminosity

After we have determined which runs will be used in the analysis, this is the most convenient time
to compute the integrated luminosity Liy;. One must, of course, integrate the luminosity only over
the runs which are used in the experiment. In order to carry out the calculation we have to review
the structure of the target, and also the device which measures the amount of charge deposited by

the beam.

Hydrogen Target Properties:

The electron beam is made to impinge on a liquid hydrogen target with the following proper-
ties:

g G
cm?

e target density, p = 0.071
e target length, £ = 5.048 + 0.018cm
e target molar mass, My = 1.00794 -5+

There are two ways by which we measure the length of the target. According to measurements
taken in the lab at room temperature, the el-dves2 target length was 5.07+0.01 cm. The uncertainty
comes from multiple measurements at different transverse positions. By using the reconstruction of
the good electron vertex positions by use of DC information, we are able to measure a length of
the target in a second way. By taking an “empty” run, where the target is filled with hydrogen gas
instead of liquid hydrogen, we are able to resolve the entry and exit windows of the target. By fitting
the peaks of these windows, we are able to determine their mean values. The difference of these
values is our target length. In order to have an understanding of our systematics, we have applied
the process for each sector, according to the one into which the good electron flew. The actual mean
value for target length, £ = 5.048 + 0.018 cm, is then the mean of the six sector measurements, and
the systematics are determined by the total variance of each of the sectors from this mean value.
The fits to the peaks of the entry and exit windows may be seen in Figure 4.88. The target length
corresponding to each sector may be found plotted in Figure 4.89. The discrepancy between the two
methods could be accounted for by the thermal expansion properties of the target material, Kapton.
The lab measurement of 5.07 cm was carried out at room temperature. The vertex measurement of

5.048263 cm was carried out at 19 K.
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Figure 4.88: Each panel corresponds to a sector. In each sector is the vertex position of all good electrons
for that sector in the empty target run. Each distribution has three peaks. On the far left is the target
entry window. On the right is the target exit window. These two are fit to Gaussians, whose means are
used to calculate the distance between the two peaks. This difference is the target length. On the very far
right, just on the edge of the histogram is the peak corresponding to the foil placed in downstream from the

target. This foil insulated the target from heat.
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Faraday Cup:

The Faraday cup comprises of a lead cylinder weighing 4000kg positioned downstream from
the electron beam and the target. The Faraday cup serves the purpose of stopping the electron beam
and measuring the deposited charge by use of a capacitor. This capacitor becomes discharged when
it accumulates approximately m() of change. Every discharge is referred to as a “click”, and
is stored for each electron beam polarization. For the ntuple22 “compressed” formatting, the total

number of clicks is stored once for each file for each polarization.

This Faraday cup is continuously measuring the accumulated charge. However, there is some
dead-time during the experiment. When CLAS is recording an event, there is a busy signal which
temporarily causes us to be blind to other events occurring at that time. This dead-time, which is
purely an electronics affect, is completely taken into account by the measurement by the Faraday

cup, as it does not continue to measure the accumulated charge during dead-time.

In order to reconstruct the total charge deposited in the cup, one must determine the good run
list, or good file list, and sum the total number of clicks for both polarizations. Finally, the clicks

must be converted into Coulombs by the relation stated above. The result is then:

Qi = (F, + F,) x 9.264 x 107'2C, (170)

where Ff, + F_, is the total number of clicks with helicity “+” or “”.

Charge Asymmetry:

As we shall show in Section 5.1, the helicity of the beam of the experiment must be polarized
positively half of the time, and negatively half of the time in order for us to extract the polarized
cross section differences. In order to demonstrate that this is achieved, we may measure the beam

charge asymmetry:

q+ — q-
A, =+ 2= 171
T g+ g (71

where g+ and ¢g_ are the charges deposited in the Faraday cup for positive and negative beam
helicities. The measurement is presented in Figure 4.90 as a function of run number, where we see

that the asymmetry is never more than 4+ 0.005, which is sufficiently small for our purposes.
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Figure 4.90: The charge asymmetry for el-dvcs2, as a function of run number. We see that the asymmetry

is never more than + 0.005, which is sufficiently small for our purposes.

Final Calculation of the Integrated Luminosity:

The final calculation for the integrated luminosity uses the results obtained above:

pgNAQint
Ling = ——, 172
¢ MAe ( )
where N4 = 6.022 x 1023ﬁ is Avogadro’s number, and e = 1.602107 ' C is the elementary charge,

with the rest of the terms already having been introduced. For the selected good files of el-dvcs2,

the total number of clicks was:

Ff, + F, = 314911009416 clicks. (173)

int

The integrated luminosity is then calculated to be:

4.54395 x 10%°  4.54395 x 107

Lime = cm? nb

(174)

The systematic error of the integrated luminosity is currently calculated only from the standard

deviation of the measurement of the target length as measured sector by sector:
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o VEXL@i-n o0
I 2

— —0. 1
= ous = 0-33%, (175)

where p is the target length obtained above, averaged over all six sectors. This small systematic

error indicates that we have good certainty in the measurement of our target length.

139



4.8 Calibrations

A careful calibration of CLAS is done separately for each experiment and each detector. The data
acquired by CLAS and IC are stored as ADC and TDC values. Each physical variable of interest
must be reconstructed by a fit to an equation relating to these ADC and TDC values, and a set of
fit parameters. The equations to which these parameters are fit correspond to physically measurable
“benchmarks” or test values which have well known values. Since an exhaustive list of CLAS
calibrations are beyond the scope of this thesis, focus will be directed towards the timing calibration

of EC, as this work was the only calibration study that was done as part of this thesis.

4.8.1 EC Timing Calibration

One of the primary techniques for distinguishing photons from neutrons in CLAS is to make a cut on
velocity 5. Analyses typically separate neutral particles at around 8 = 0.8 — 0.9, taking everything
above to be a photon, and everything below to be a neutron. Since an accurate determination of g
for neutrals is based on a fine timing measurement of particles in the EC, a very careful calibration

of this detector is required in order to make a good separation between photons and neutrons.

The method®® of calibrating EC timing makes the assumption that SC timing is accurate,
therefore SC timing calibrations must precede EC timing calibrations. The calibration is achieved
by the following method: We define the expected time it takes for a particle to reach the EC

as:

L

texpected,i = z + Eza (176)

o

where L is the distance between the centroid of the hit in the EC and the vertex position, c is the
speed of light in vacuum, making the assumption that the particle travels almost completely through
vacuum, ¢; is the amount of time it takes for the shower in the signal to travel to the PMT in the
i-orientation - u, v or w, and v is the speed of propagation in the plastic scintillator, which is known

to be 18.1 cm/ns.

We also define the model time, which relates the time for a neutral particle to reach the EC

to the ADC values and TDC values:

tmodel,i = ao + a1 TDC; + a2 + azli + asl — Toertex, (177)

VADC;

where ag is a constant time which takes into account cable lengths and the zeroth-order term of

the light attenuation term exp —¢; /¢y, a1 TDC is the TDC constant which also accounts for the
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first-order term of the light attenuation term, \/:]%701 is the time-walk correction and ADC term,

and azl? + asl3 are the second and third order terms from light-attenuation. Tyertex Serves as the

reference time at the vertex.

The calibration program makes use of least-squares method of minimizing the errors of the

time difference, namely:

Ni |T - |2
2 expected,i model,i
Xj = Z N.

i=1 J

(178)
A final note is that this calibration program worked best with the use of photons since they
provided the best resolution. The photon selection used in the program is listed below:
e Neutral charge EC hit is detected within the fiducial region.

e No multiple hits in the same sector. This is to prevent difficulties arising in resolution between

same-sector hits.
e A minimum of 100 MeV in a hit in order to eliminate accidentals.
e A demand of a hit in the inner stack in order to eliminate neutrons.

The effect of the calibration is displayed in Figure 4.91, before and after EC calibration. The
fitness of the timing is judged by looking at the time difference between the EC and the SC. An
ideal situation would be complete agreement, with the difference being near zero. We can also look

at the velocity of photons, and ensure that their reconstructed velocities are ¢.??
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Figure 4.91: The left column represents the difference between the times as measured by the EC and the
SC as a function of run number. The units of the ordinate are in nanoseconds. The right column represents
the reconstructed velocity of the photons as a function of run number. The top row represents these values
before EC timing calibrations. The bottom row represents these values after EC timing calibrations. We
note that there is a very good improvement after the calibration. We make note that on the top row, there
are series of points which are all at a fixed value, such as 0.06 for the sigma of the timing difference, and
1.0 and 1.05 for the mean and sigma of the velocity of photons respectively. This exact assignment to these

values is a sign that the calibration routine had failed, and that these initial values were entered.
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4.9 Pion Subtraction
4.9.1 A Method for Estimating the Pion Contamination

In Section 4.5, we posited that the exclusivity cuts that were placed on our e + p + 7y events were
not quite sufficient to remove all of the 7° events. In particular, in Figure 4.80 and Figure 4.81, it
was clear that the peaks corresponding to e + p + 7 events and the 70 — v 4  decay events were
too close to be separated by considering that plot. Because of this 7° background, the DVCS cross

section will be overestimated. Therefore, an estimation of this 7° contamination was made.

With regards to the 70 decay, there are two cases that we consider. First, the 7° may decay
somewhat “symmetrically,” that is, the two photons are both detected, and have comparable ener-
gies. We will refer to this instance as 7 — v + . The second case is where the decay is sufficiently
“asymmetric” such that only one photon is detected, and the other is missed by the detector. More
specifically, the photon is not detected when its energy is below 150 MeV, this being the threshold
of our calorimeters. We will refer to this instance as 7 — 7 + (), with parentheses reminding
us that the photon was not detected because of this asymmetry in decay. In this asymmetric case,
the missed photon is so weak that the single photon which is detected may be mistaken as coming
from an e +p — e + p + 7y event when in fact it was truly ae+p —e+p+7° = e+p+v+(v)

event.

The actual number of 7° decays with one photon detected, N:O, cannot be measured directly
due to its merging with the e 4+ p 4 v events. However, the number of 7° decays with two photons

detected, N'J', can be measured.

In order to estimate the 7° background, we note that both N, and N7 can be used separately

to determine the 79 cross section:

daﬂ-o N;J

dUﬂ-O N;‘_Yo
ol (180)

where A7, and AYJ correspond to the acceptances of each, as determined by Monte Carlo. Recall
that this is just the ratio of the reconstructed events to generated events. Since both are related to

the ¥ cross section, one may write the following equation:

A"/
N;f) = N w0

e (181)

143



Since the acceptances of each are just the ratios of the number of reconstructed particles to
the particles generated, and only one generator is used in obtaining both acceptances, the equation

can be further reduced:

N;:O rec
Ny, = N (182)

Y ?
70 rec

where the subscript “rec” corresponds to the reconstructed number of events in the Monte Carlo.
From this relation, an estimation of the number of 7% events with one photon detected may very

easily be estimated.

4.9.2 Computing N from Data

To find the number of pion decays with two photons, we first have to determine our criteria for pion
identification. We begin by making the assumption that every 7° produced decays almost instantly,
at the electron vertex position. This is justified by the short lifetime of the 7%, 7 = 8.440.6 x 10~ '7s.
Since the two photon decay 7% — v+ is the dominant channel, we can then search for every photon
pair detected by CLAS. Since we have already identified our photons in Section 4.2, we proceed by

retaining every event which has at the very least two photons.

After selecting events with e +p — €/ +p’ + N x v, where N > 2, every photon pair is looped

N-1._  N(N—1)
=77

over. Therefore, if there are N photons, there will be > ;"7 i = possible combinations. The

photons selected will be denoted as ; and .. For ease of reference, we will define a four vector
Dr0 = Py, + Doy, indicating that the combination is a 79 candidate. In order to determine if they
are truly pions, we must impose some restrictions on certain quantities. First, for each of these

combinations, the following quantities are calculated:
e IM,, 4~,, the invariant mass of photon pair of e +p — €' +p' + 1 + 72,
. MM3,+p,+X, the missing mass of the e +p — €’ + p’ + X system,
o MMZ,, «, .0, the missing mass of the e +p — ¢’ + X + 7° system,

e 0.0 x which is the angle between the 70 in the e + p — ¢’ 4+ p’ + ¥ system and the X in the
e+p—e +p + X system.

These quantities are convenient, because we know which values to expect for a true e + p —

e/ +p' + 70 channel, viz.:
o IM, 4+, =0.135 GeV,

o MM2,, , x =0.0182 GeV?,
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o MM?

2
e+ X +~1+72 = 0.880 GeV 5

® 00 x =0 rad.

It turns out that the resolution for the IC and EC are different. As a consequence, the
distributions of these quantities will look different based on which detector each photon entered.

There are four different scenarios which we will consider:

IC-IC: Both photons were detected in the IC

e IC-EC: One photon was detected in the IC and one photon was detected in the EC, with the

photon in the IC being more energetic.

EC-IC: One photon was detected in the IC and one photon was detected in the EC, with the

photon in the EC being more energetic.

EC-EC: Both photons were detected in the EC

Only two of these “topologies” yield a significant number of events. As seen in Figure 4.92,
there is no signal in the mixed topologies. This is due to the opening angle of the pion decay in the
lab frame being, in general, too small for one photon to be detected in separate detectors. This is
due in turn to the fact that there were strict cuts placed on the IC shadow on the EC, and the IC
and EC fiducial cuts themselves. This creates a cut region in which no photons are detected between
the IC and EC. The chance of a pion decay resulting with photons detected on opposite sides of
this large cut is too low because of the restriction on the opening angle of the pion decay. We then
restrict ourselves to the IC-IC and EC-EC cases. Each of the four variables above were plotted for

the IC-IC and EC-EC cases. Each of the variables IM,, 4., , M M?> MM?

e'+p'+X> 4 Xty 4z A0

0.0 x were fit to Gaussians with linear backgrounds, and cut at three standard deviations (+30).
The results of these fits are displayed in Figure 4.93 and Figure 4.94, with the cuts themselves listed
in Table 4.14 and Table 4.15.

Table 4.14: A table of cuts in data corresponding to the case where both 7° photons are detected in the
IC.

IC - IC I 30

IM,, 4+, 0.13504 GeV | 0.02743 GeV
MMZ_ . 0.00413 GeV* | 0.17629 GeV?
MMZ2, x\ny | 0.146 GeV? 1.74 GeV?
050, x 0° 0.30849°
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fWoata-icic TR T DATA - IC EC

12 1.4
N (7y) (GeV®)

i DATA - EC IC

IME () (GeV?)

Figure 4.92: MMQHX versus I M,~. The upper-left panel corresponds to the IC-IC case. The upper-right
panel corresponds to the IC-EC case. The lower-left panel corresponds to the EC-IC case. The lower-right
panel corresponds to the EC-EC case. In each of the four panels, a black ellipse is drawn indicating the
region where a 7° should be found. In the cases of the IC-IC and EC-EC topologies, the pions can clearly be
seen. In the cases of the mixed topologies IC-EC and EC-IC, there are no pions visible. This is due to the
strict fiducial cuts placed on the IC and EC as well as the IC shadow fiducial cuts placed on the EC. These
fiducial cuts require the pion to have a restrictively large angle between its two decay photons, causing there

to be no detectable pion signal.

Table 4.15: A table of cuts in data corresponding to the case where both 7° photons are detected in the
EC.

EC - EC I 30
IMy, 1oy 0.13153 GeV | 0.04556 GeV
MMZ . 0.01781 GeV? | 0.15456 GeV?
MM?2, x iny | 0.002 GeV? | 1.866 GeV?
000, x 0° 0.59733°

After these cuts are applied, an estimate of the background under the peak is made. For
most of our cross section bins, there are not enough events to fit every distribution. Therefore,
an approximation is made, based on the observation that the background, integrated over all of

the bins is approximately linear. If the true signal in the plot of IM.,, is a Gaussian sitting on
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a linear background, and a cut is taken at 3o, accepting Ngignal + background €vents, the estimation
of the background is obtained by taking all events that lie between 30 and 60, and —3c and
—60, Npackground est.- 1he total number of events taken is then Ngjgnai = Nsignal + background —
Npackground est.- Lhis relation is useful because it allows for an estimation of the background without

having to fit the distribution of I M., in every cross section bin.
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~
70 rec
Yy
N 0

7wV, rec

from Monte Carlo

A'Y
4.9.3 Computing 3+ =
<0

We now turn our attention to the Monte Carlo simulation for the pion analysis. In the same vein as
the DVCS generator, we have a pion generator which simulates e +p — ¢/ +p’ + 7% events. Likewise,

this data is fed through GSIM, GPP, and cooked into root files.

Computing N;Zo,rec is a simple matter. The same code that is used for analyzing DVCS in
experimental data is used. Because we know that only pions are generated, the code which we
previously used for DVCS will now give us a measure of the number of 7° events in simulation
where only one photon was detected and which could be mistaken as DVCS or BH according to our

DVCS criteria.

Computing N:J rec 18 also straightforward. One must simply take the code which was used to
measure the number of 7° events in which two photons were detected in experimental data, with
different cuts appropriate to the distributions of exclusivity variables. In addition, the distributions
of the four variables which were listed in Section 4.9.2 have different distributions than that of data.
Therefore, a second analysis, following the same method as before, must be made, considering every
combination of detectors. The cuts are taken at the 3o level centered around the means of their
fits. The results of these fits may be seen in Figure 4.95 and Figure 4.96, with the cuts themselves
listed in Table 4.16 and Table 4.17. The estimation of the background is carried out in the same

manner as the previous section, taking the number of events between 30 and 6o in the 1M, as the

approximate number of background events.

Finally, the yields for one and two photons detected in Monte Carlo are presented in Figure

4.97 for bin 5. The ratio of these yields is equivalent to the ratio of the acceptances.

Table 4.16: A table of cuts in Monte Carlo corresponding to the case where both 7° photons are detected
in the IC.

IC - IC [ 30
IMy, 4o, 0.13611 GeV | .02407 GeV
MMZ,, x 0.02581 GeV* | 0.15077 GeV?
MM?2, x o iny | 0346 GeV? | 1.324 GeV?
050, x 0° 0.325867°
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Table 4.17: A table of cuts in Monte Carlo corresponding to the case where both 7° photons are detected

in the EC.

EC - EC I 30
IMy, 1y 0.13272 GeV | 0.03729 GeV
MMZ . 0.03154 GeV* | 0.13141 GeV?
MMZ2, x o iny | 0.074 GeV? | 1774 GeV?
000, x 0° 0.478367°
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Figure 4.97: The neutral pion yields as a function of ® for the fifth bin in zp and 6., where 0.17 < x5 < 0.2
and 25.5° < #. < 45°. The yield for two photons detected in Monte Carlo is green. The yield for one photon

detected in Monte Carlo is red. The ratio of these yields is equivalent to the ratio of their acceptances.

4.9.4 Final Results for the Estimated Pion Contamination N;ZO

In order to have an estimation of the number of e 4+ p + ¥ in which only one photon is detected,

the following equation is applied,

~y vy N;ryo rec
N7rU = NTFO ]V’Y’)’7 ’ (183)
70 rec

substituting the results of the previous two sections, where the number of two photon events are
measured, and where the acceptances are calculated. An example of the pion subtraction ratio is
presented in Figure 4.98, for the fifth bin in zg and 6.. A full list of pion subtraction ratios may be
found in Appendix C.
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Figure 4.98: The neutral pion subtraction ratio R = as a function of ® for the fifth bin in zp

and 0., where 0.17 < zp < 0.2 and 25.5° < 6, < 45°.
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4.10 Radiative Corrections

4.10.1 Obtaining the Born Cross Section

The leading order cross section for e +p — €’ +p’ ++, corresponding to the Feynman diagrams seen
in Figure 4.99, allows us to access GPDs through CFFs. These leading order Feynman diagrams
are referred to as the Born terms. The cross section corresponding to these terms is referred to
as the Born cross section. The leading order radiative corrections have a significant contribution
to the measured cross section. Next-to-leading order radiative corrections also have a noticeable,
but not necessarily crucial effect. These corrections are seen especially for higher order diagrams
on the electron side of the process, since those corrections are not suppressed by the mass of the
proton as in the proton side corrections. Consequently, we concern ourselves with radiative diagrams
on the electron side only. Leading order diagrams are drawn in Figure 4.100, consisting of twelve
involving the exchange of virtual photons, and eight involving the radiation of a soft photon for
both BH and DVCS, to leading order corrections. The next-to-leading order corrections are too
numerous to be drawn here. In taking all leading order and next-to-leading order contributions, it
is possible to calculate the ratio between the measured cross section, and the Born terms of BH
and DVCS. This has been worked out to leading order by M. Vanderhaeghen et al. in the soft
photon approximation?®, and without soft photon approximation up to next-to-leading order by I.

Akushevich et al.®. For this analysis, we take the corrections appearing in reference®.

Figure 4.99: The Born terms for BH and DVCS. Form factors are represented by the black blobs. GPDs

are represented by the blue blobs.
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Figure 4.100: All radiative corrections up to leading order. Form factors are represented by the black
blobs. GPDs are represented by the blue blobs. BH or DVCS photons are represented by black photon lines,

while real radiative photons are represented by yellow photon lines.

The virtual corrections (vacuum and vertex), and real corrections (radiation) affect our mea-
sured cross section in two distinct ways. The former interferes coherently, while the later interferes
incoherently with the Born terms. The virtual terms consist of diagrams in which there are no
extra radiated photons. As a result, there is no missing energy or momentum in the system, aside
from resolution effects. As for the real terms, the radiated photon is never detected, but in the
experiment is treated as if it was a genuine e + p + v event. Because of this, there will be missing

energy and momentum in the system. We distinguish between pre-radiation and post-radiation, the
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former being the case where a photon is emitted from the incoming electron leg, and the latter being
the case where a photon is emitted from the outgoing electron leg. In the case of post-radiation,
the only particle that is affected is the outgoing electron. It has slightly less energy, leading to a
greater missing energy, and a greater missing mass. This can be noticed in the missing energy and
missing mass spectra as a radiative tail. For example, the missing mass spectra for e+ p+y detected
is presented in Figure 4.101, before exclusivity cuts. As for the pre-radiation, the entire system is
affected. A photon radiated from the incoming electron leg results in an effective change in the beam
energy. This is because in the analysis we have assumed that every incoming electron has the same
energy - the beam energy. Because of this effective change in beam energy, all of our kinematics will

be slightly skewed for these cases.

x10
120 IC 14000 EC
1001 12000~
- 10000,
80— I
i 8000
60— -
i 6000
40— L
- 4000
20 2000
_H|“H| \l\‘H|\|H|\||\|\||||\||||\||||| n_Hl\Hl\HH‘Hl\‘Hl\lHl\lHl\ll||\||||\|||||
0.5-04-03-02-01 0 01 02 0.3 0.4 0.5 05-04-03-02-01 0 04102 03 0.4 0.5
MM, ,, (GeV?) MM, ., (GeV?)

Figure 4.101: An example of the post-radiation tail. On the left, for the IC, and on the right for the EC.
In both, you can see a radiative tail coming down on the right hand side of the peak. This corresponds to

energy lost from a photon radiating from the outgoing electron leg.

There is one caveat: because of our choices of exclusivity cuts, we are not accepting the entire
post-radiative tail. Therefore, when we take into account radiative effects, we should only take into
account the radiative events which have survived our cuts. The program that we use takes this into
account by introducing a “maximal photon energy” in the center of mass system, which we call AFE.
There is a cutoff to AE which corresponds to these cuts. However, the value is not a sharp cutoff.
The missing mass spectrum of e + p may be seen in Figure 4.102, after exclusivity cuts, where we

have taken our missing mass cutoff to be the three sigma limit of our distribution after all cuts.
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According to reference?®, this missing mass cutoff corresponds to a AFE cutoff of:

MM, 0.18864 GeV?
_ +p _ ©Y  —0.21716 GeV, (184)

AE 3 5

which is the “maximal photon energy” that we use for an input in our program.

%7/ ndf 1620/ 144
Prob 0
N 4.003¢+05 £ 1.180e+03
n -0.01384 % 0.00012
12000 — G 0.06288 £ 0.00016
L C, 1224 + 12,0
= <, 1202+ 12.1
- C, -1.194e+04 + 1.743¢+02
10000 —
8000}
6000—
4000
2000}
0 B | | | | ‘»—/ | | | N'\_L ] 1 L
-1 0.5 0 0.5 1
MM,

Figure 4.102: The MM?,, distribution in GeV? for the IC after all exclusivity cuts, showing the three
sigma limit in black, which is taken to be the approximate cutoff, corresponding to a cutoff on the radiated
photon energy. The black curve represents the fit to a Gaussian with a second order polynomial background,

which is represented by the red line.

4.10.2 Final Results for the Radiative Corrections

The corrections, on average, increase the value of the measured cross section by 15%. In general,
the correction is larger at ® = 180° and is smaller at large and small ®. We note that the quantity
we have obtained is F},q, and that the cross section is modified by being divided by this factor. This
means that a value of 1 means there is no correction, and a lower value of F,q means that the cross
section is increased. An example of the radiative correction is presented in Figure 4.103, for the fifth

bin in zp and .. A full list of radiative corrections may be found in Appendix D.
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Figure 4.103: The radiative corrections as a function of ® for the fifth bin in xp and 0., where 0.17 <

zp < 0.2 and 25.5° < 0, < 45°.
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4.11 Elastic Normalization
4.11.1 Elastic Cross Section

One of the challenges that a cross section analysis in CLAS faces is the overall normalization of
the final results. In order to judge our understanding of overall normalization, we have made a
measurement of the elastic cross section as a function of Q2, a quantity which has been carefully
measured in literature.?3:5° The measurement of the elastic cross section by CLAS was then compared

55

to the cross section according to the parameterization appearing in reference”®. The elastic cross

section may be written as:

do Ne+p
= 1
107 ~ Lo AAQ (185)

where Liy is the same integrated luminosity as that calculated for DVCS; A is the acceptance; Neyp

is the number of e + p — e + p events measured; and AQ? is the bin volume.

The measurement of the elastic cross section in CLAS as a function of sector is displayed
in Figure 4.104, compared to the cross section according to the Brash parameterization.®® It is
easier to compare the difference between the two by plotting the ratio, presented in Figure 4.105.
We notice that the overall normalization is different between the two, being lower by 5 — 15% in
CLAS. Similarly, the cross section integrated over all sectors is presented in Figure 4.106, comparing
the two cross sections, as well as their ratio. The average value for the overall normalization is
€ = .926. We take the overall normalization for the DVCS cross section to be the same as that for

the elastic cross section, integrated over all sectors:

do 1 /do
- = = . 186
< df2 > renormalized € ( dQ ) measured ( )
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Figure 4.104: The elastic cross section computed from el-dves2 by B. Guegan®® in black points, and the
cross section according to the Brash parameterization®® displayed as a red line. Each panel corresponds to

a sector. This plot is a reproduction of a plot appearing in the thesis manuscript of B. Guegan.?*
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Figure 4.105: The ratio of the elastic cross section computed from el-dves2 by B. Guegan?®® to the cross
section according to the Brash parameterization.’® The red line at 1 denoted where a perfect agreement
would be. Each panel corresponds to a sector. Each sector is fit to a constant, represented by a horizontal
black line, representing the normalization per sector. This plot is a reproduction of a plot appearing in the

thesis manuscript of B. Guegan.??
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Figure 4.106: On the left, integrated over all sectors, the elastic cross section computed from el-dvecs2
by B. Guegan®® in black points, and the cross section according to the Brash parameterization®® displayed
as a red line. On the right, the ratio of the CLAS cross section to the cross section extracted from Brash.®®
The red line at 1 denotes where a perfect agreement would be. The ratio is fit to a constant, represented
by a horizontal black line, representing the overall normalization. This normalization, integrated over all
sectors, is the overall correction that is used in the DVCS cross section. This plot is a reproduction of a plot

appearing in the thesis manuscript of B. Guegan.??

164



The systematic error of the elastic renormalization is currently calculated only from the stan-

dard deviation of the measurement of the target length as measured sector by sector:

&= Z(-j, (e — 1)
% _ \/671 :1 _0.037 — 1.0%, (187)

"~ 0.906

where p is the average over all six sectors measured separately.
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Figure 4.107: The abscissa corresponds to sector number, and the ordinate corresponds to the mea-
surement of the elastic renormalization according to the method above. Each of the six measurements
corresponds to the values determined from Figure 4.105. The horizontal black line corresponds to the mean

value of all six points. The mean and standard deviation are listed in the upper right label.
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4.12 Estimation of Errors
4.12.1 Statistical Errors

The cross section, as mentioned earlier, may be expressed as:

d40-epv _ (N€+p+’7 - Ne+p+7r0(1'y))
dQ?dtdxpd® Lint AAV Fraq ’

where N¢yp1, is the yield of the experiment, Neypr0(14) is the number of 7Y which subtracts out

(188)

the contamination from e + p + 7° events, £ is the integrated luminosity, A is the acceptance, AV

is the bin volume, and F}.q4.cor. is the radiative correction, calculated bin per bin.

In order to know the statistical error of the cross section, the errors of each of the components

was calculated, bin by bin.

First, since the yield for e+p+ events, Ne4p4~, is obtained as a measurement from a counting

experiment, its error is simply:

ANetpiy =/ Netpty- (189)

Next, the 70 contamination subtraction, Neqpiro(14) is defined as:

NY

To,rec

Ne+p+ﬂ'0(1'y) == NT’Z(;YNT’ (190)
To,rec

therefore, its error is calculated to be:

2 2
ANe+P+7TO(1’Y) _ (AN;\Y(?)z + (ANJo,rec) + (AN;‘YJWC> (191)
Ne+p+ﬂ0(1ﬂ/) ]\]-7’1‘7(’)y N;IYQ,TGC N;(’)y,rec ’
where the errors of N)7V, N7 .., and N7 are determined as counting experiments:

AN7Y = /AN?

signal

AN, oo = N (192)
ANZ e = /N reer

where ANgignai and ANpgckground are the error on the measurement of the signal of pions and the

+ AN?

ackground’

error on the measurement of the linear background under the pions, both in the case where two

photons are detected in data, where
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A]\/vsignal =V N@ignala

(193)
A]Vback:grounol =V Nbackground-
Next, the acceptance, A, is defined as:
N,
A = rec 194
T (194)

therefore, its error is calculated to be:

AA ANpee\> [ ANgen\”
() (3) 19

Lastly, the error for the e 4+ p + v cross section, Aoy is calculated to be:

% _ \/( ANeipiy )2 + ( AN@-HH-#O(M) )2 + (AA>2 (196)

Tepry Netpty = Netpino(1y) Netpty = Netptno(1y) A
While the above procedure is approximately correct, the calculation of these errors makes the
assumption that there is no covariance between the variables, that is to say we assume there are
no correlations. This is not strictly correct, however. For example, N, r0(14) and N7 are both
measured in experiment; N2V .. and N7 .. both come from the same 70 generator; and Ngen and
Niec come from the same DVCS generator. Because of this, there is a possibility for correlation
between these variables, with a non-zero covariance entering into the errors. This is a potential

candidate for further investigation.

4.12.2 Systematical Errors

While a complete study of the systematical errors was not completed, we list in Table 4.18, the few
results of the studies which were completed, and also list quantities for which a systemic error study
is planned in the near future. For those which are not yet completed, we can realistically estimate
the uncertainties to be similar to those found in the sister experiment el-dvcsl. While these are
estimated to be the main sources of systematic error, this list is not necessarily exhaustive. For the

moment, we take our systematic to be about 18 % as an estimate.
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Table 4.18: A table of the measured and predicted sources of systemically error. The first four quantities

are estimated from el-dvcsl. The last two systematic errors of € and Lin are calculated from el-dves2, and

have already been presented earlier in this thesis. For the moment, we take our systematic to be about 18

%.

pion subtraction Neip,170(1) 70 generator | ~ 10%, estimate from el-dvcsl

acceptance A, DVCS generator ~ 10%, estimate from el-dvesl
fiducial cuts, exclusivity cuts ~ 5%, estimate from el-dvcsl
radiative corrections Fr.q ~ 10%, estimate from el-dvcsl
elastic renormalization e, elastic generator | = 4% see Figure 4.107

integrated luminosity Ly (target length ¢) | =0.3% see Figure 4.89

There are several ways we can estimate the systematic errors of the cross section extractions.

We outline here a few of the planned studies, and how we plan to achieve them:

e For the pion subtraction, we have a choice of which of a few generators to use. We can attempt

to run our analysis with multiple generators, and see how the cross section changes, bin per
bin. In this case, we obtain a systematic error for the acceptances of the events where one or

two photons are detected, as the cross section should not depend on which generator we select.

The acceptance for DVCS will have an associated systematic error as described in the case of

the pion acceptances. There is a choice of generator, which will affect the systematics.

The fiducial cuts and exclusivity cuts could affect the systematics. The cross section should be
independent of the choice of exclusivity cuts and fiducial cuts. Therefore, if the cross section
is changing based on a variation of these cuts, we must assign a systematic error, bin per bin.
This is applicable for the case where two photons are detected, in data and Monte Carlo, and
also for DVCS in data and Monte Carlo. As for fiducial cuts, the strictness of our geometric
cuts on detectors could be varied. If the cross section also varies, we can obtain systematics

bin per bin.

There are a few programs which allow us to calculate the radiative corrections to our cross
section. If these programs are equally suitable for addressing the radiative corrections, the value
of the cross section should be independent of the choice of the program we select. Therefore,
if the cross section varies bin per bin based on our selection of which correction to choose, we

have a measure of the systematics associated with this correction.

The elastic normalization could be further studied using multiple generators in the manner

stated above for elastic and DVCS.
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5. FINAL RESULTS

5.1 DVCS Cross Section - Final Results

5.1.1 TUnpolarized Cross Section

Each element that was needed to extract the cross section has now been obtained. An example of
the unpolarized cross section is presented in Figure 5.1, for the fifth bin in zg and .. A full list of
unpolarized cross sections may be found in Appendix E. It is expected that the Bethe-Heitler process
dominates at low and high ®, and DVCS is more dominant in the central ® range. The unpolarized

cross section allows us access to CFFs; and may be written, up to twist-two approximation (leading

twist), as:
d*unpol _ d*opyes d*opn LT, (197)
dQ2dtdzpd®  dQ2dtdzgd® | dQ2dtdzpdd
where
T =+ f1(Q* t, x5, ®)Re(CE(F))
(198)
+ [fQ(Q27 t,rp, (I)) - f3(Q27 t,rp, (I)) COS(@)] RG(CI(.F) + ACI(]:))?
CT(F) = A+ P (Fi+ Bl — —_ ¢ (199)
=FR 5o, 0 2 0 2,
ACT(F) = ——"B (P + F) { 5 (4 E)+ ﬁ} : (200)
2 — rB 2 — rB

where F = {H, €, H,E } are the CFFs and F and F are the Dirac and Pauli form factors introduced
in Section 2., and the functions fi, fo and f3 are complicated expressions which depend on the
kinematics. A more complete decomposition of the cross section, up to twist-three may be found

in reference®®

, as well as the expansions of the pure BH and DVCS contributions. We note that in
our kinematics, there contribution from the pure DVCS term is quite small. Also, as xp and ¢ are

relatively small, the dominant CFF in this expression is Hge.
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5.1.2 Polarized Cross Section Difference

We can also extract the cross section differences. An example of the polarized cross section is
presented in Figure 5.2, for the fifth bin in zg and .. A full list of polarized cross sections may be

found in Appendix E. They are determined according to the following formula:

d40p01 o 1 d4(7+’0 . d40',’0
dQ?dtdrpd® 2 \dQ2dtdrpd®  dQ2dtdzpd® (201)

1 Nio N_p 1
B 2P Eint,+ Eint,— AAVFrad€7
where the subscripts a and b in N, correspond to the polarization of the beam and the target

“

respectively, being either “+” or “—” for the beam, and being “0”, unpolarized for the target. P
corresponds to the polarization of the el-dvcs2 experiment. This polarization varies from about
83-87%, and is taken to be at its average value of 85.3%. The experiment was deliberately carried
out such that the integrated luminosities of each polarization are approximately equal: Ly, ~

Lint,— = Liny/2. Finally, Ny o and N4 o correspond to the number of events measured after the pion

subtraction, viz.:

. +p+70(1
Nip= N:’OPJW - NJeﬁOp T ( "Y)7 202
_ netrt et+p+m0(17)

N_o=NT9" = N7 .
The cross section may be expressed in terms of form factors and CFFs. We choose to express

it up to twist-two:

4
inl:% = f4(Q? t, x5, ®) sin(®)Im(C*(F) + ACL(F)). (203)

We note that the pure BH and DVCS contributions have vanished in the polarized cross section.
This is due to BH not being sensitive to the polarization of the beam, and the fact that pure DVCS
is dependent on beam spin at the twist-three approximation, but not at twist-two. Again, due to the

relatively small values of zp and ¢, the polarized cross sections are mainly sensitive to Hipy,.
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Figure 5.2: The polarized cross section as a function of ® for the fifth bin in zp and 6., where 0.17 <
zp < 0.2 and 25.5° < 0. < 45°. Each panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18,
0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] in GeV?.

5.1.3 Beam Spin Asymmetry

The last observable that we can extract is the beam spin asymmetry. The asymmetry is defined
as the ratio of the unpolarized cross section to the polarized cross section, and is a useful quantity
because it allows for a cancellation of the overall normalization. This is a benefit because it cancels

out the acceptance, which is a very difficult quantity to know extremely well:

Ounpol 1 N+.O + N_ 0
Ay = /2% = — ( : 204
LU Opol P N+,0 - Nf,o ( )

Up to a twist-two approximation, the ® decomposition of the asymmetry may be written

as:

B asin(P)
B+ ycos(®) + §cos(2)’

where «, §, v and 0 are parameters which can be expressed in terms of the Pauli and Dirac form

AvLu (205)

factors, the CFFs, and kinematical variables. An example of the beam spin asymmetry is pre-

sented in Figure 5.3, for the fifth bin in zp and .. A full list of asymmetries may be found in
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Appendix E.
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5.2 Comparison with Parallel Analysis of el-dvcs2, and el-dvcsl

A comparison between the unpolarized cross section of this analysis with parallel analysis of el-dvcs2
by B. Guegan and an analysis of el-dvesl by H.S. Jo is presented in Figure 5.4, for the fifth bin in
xp and 6.. A full list of comparisons for the unpolarized cross sections, polarized cross sections, and
beam spin asymmetries may be found in Appendix E. For this specific bin, we present this analysis
in black, parallel el-dvcs2 analysis in green, and el-dvcsl analysis in red. We also present the ratio

of this analysis to these two other analyses, for a better comparison:

el — dves2 Saylor

el —dvesl Jo
el — dves2 Saylor

Ratioel—dvcsl =
(206)

Ratiog1— = .
el—dvcsl el — dves?2 Guegan

We find that the comparison yields fair agreement in all bins, with some deviations. The source
of these discrepancies is a topic of continued interest. At large ®, the IC dominates. At ® around
180°, the EC dominates. One can see that near & = 180° there is a discontinuity in the measured
cross section where the IC and EC data meet. The discrepancy between the IC and EC data is a

point of ongoing investigation.
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Figure 5.4: On top, the unpolarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the unpolarized cross
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5.3 Preliminary Interpretation of Final Results
5.3.1 Comparison with Existing Models

The focus of this section is centered around the interpretation and comparison of the measured cross
section in light of the VGG model. However, we will take the time to briefly compare the predictions
of a few other models with our measured cross sections, without going deeply into interpretation. To
that end, we give a brief overview of the various other models seen here. A more detailed description

of the differences between these models is found in reference?*.

Kumericki-Miiller (KM) 10 and 10a:

The KM model is based on the Mellin-Barnes Parameterization, which is based on a partial
wave expansion of the GPDs. In this model, each of the four GPDs, H, E, H, and E, are considered.
In KM10, the model uses data from Hall A and CLAS data at JLab, and HERMES to fit its
parameters. Whereas in KM10a, H is set to zero and fixes the pion pole. Additionally, data from
CLAS and HERMES are used, and Hall A is rejected, as its cross sections are quite difficult to
describe. A specific condition of KM is the restriction that ¢ be small, and Q? be high.?” For this
reason, one notices that for higher bins in ¢, and lower bins in Q?, there are no curves corresponding

to KM.

Comparison of the Unpolarized Cross Section with VGG, KM10 and KM10a:

An example of one of these models compared to the cross section of this analysis is presented
in Figure 5.5, for the fifth bin in zg and 6.. A full list of comparisons may be found in Appendix F.
VGG is plotted in green, KM10 is plotted in light magenta, and KM10a is plotted in dark magenta.
We note the differences between the models, which tend to agree with each other more for large and

small values of @, but much less around & = 180°.
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Figure 5.5: The unpolarized cross section as a function of ® for the fifth bin in xp and 6., where
0.17 < zp < 0.2 and 25.5° < 6. < 45°. Each panel corresponds to a bin in —¢ whose limits are: [0.09,
0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For both, the green curve corresponds to VGG, the light
magenta corresponds to KM10, and the dark magenta corresponds to KM10a.

5.3.2 VGG Extraction of Compton Form Factors

In order to extract the CFF which we are sensitive to in this experiment, Hi,,, we fit the polarized
and unpolarized cross section according to the VGG model. We also extract Hge, a quantity which
we are less sensitive to. The extractions of Hgre and Hiy, are presented in Figure 5.6 and Figure 5.7,
respectively. It is possible to extract the CFF Hiy, as a function of —t for a choice of zp by fitting

A—DBt

each of the distributions to the equation e . These fits are presented in Figure 5.7.

For the DVCS reaction, there are eight possible observables which give access to CFFs: the
unpolarized cross section oynpor, the polarized cross section oper, and the asymmetries Ac, Apu,
Aur, Avr, Aux, Auy, ArLx and Ary, where the two subscripts on the asymmetries refer to the
polarization of the beam and target respectively, and U means unpolarized, L. means longitudinally
polarized, and x, y means transversely polarized in the hadronic plane, or perpendicular to the

hadronic plane.

In principle, the method for extracting our eight CFFs, involves solving a complicated system

of equations using each of these observables, with the CFFs acting as free parameters. It is not a
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trivial problem because the equations are non-linear, and for our case, we only have two independent
observables measured. However, since our kinematics suppress many of the CFFs, we expect that
only Hge and Hyy, will have a significant contribution. Additionally, we can apply some realistic
constraints on the suppressed CFF's. In this way, our under constrained set of equations can still be

solved.

In order to fit these CFFs, we use a model independent method®®*?, in which we vary the

CFFs such that the following quantity is minimized:

n 2
2 (Uthe,z‘ - Uexp,i)
X = 2 ) (207)
2 (Ao

in which ¢ is the bin number; ¢ is taken to be either the unpolarized or polarized cross section;
the subscripts on o “the” and “pol” refer to either “theoretical” or “experimental” cross sections,
and Aoceyp,; is the error bar associated with the data point. For the moment, since the analysis of

systematic errors is incomplete, the extraction only takes into account statistical errors.
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Figure 5.6

and the black points represent the prediction from VGG. We notice that the

)

extraction from this analysis

agreement of the extraction to predictions is not great.
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extraction from this analysis, and the black points represent the prediction from VGG. We notice that the

agreement is good for low values of zp and 6., with worse agreement at higher values.
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5.3.3 Extraction of Proton Charge Density

As we discussed on the outset, one of the objectives of measuring the cross sections for DVCS was to
make the connection between GPDs and the proton charge density. Here, we outline the procedure

to extract the proton charge density, and present our extraction from our measurement.

The proton charge density, as discussed in Section 2., can be extracted from the imaginary

part of the GPD H (z,£,t), according to the following formula:

dQEJ- —ib-A L 179 N2
q(x,O,b):/ (271_)26 +HY(x,0,—A7), (208)

where the charge density is represented by a Fourier transform of the GPD H evaluated at the point
¢ = 0, exchanging the perpendicular component of the momentum transfer to the proton A, for
the impact parameter b. Because of the cylindrical symmetry of the system, the Fourier transform

reduces to a Hankel transform,

o(2,0,b) = % /0 el (VD H(x,0,1), (209)

where Jo(bA ) is the zeroth order Bessel function.

In the previous section, we were able to extract the CFF Hpy, at the point (x, © = &, t). As

mentioned in Section 2., equation 48, the imaginary component of H is defined as:

HIIII(€7 t) = H(§7 Ev t) - H(_fv 67 t)' (210)

The first term, where x = £ corresponds to the valence region, and the second term where
x = —& corresponds to the sea quark region. In JLab kinematics, the second term corresponding to
the sea quarks is approximately 20% of the contribution to Huy according to the VGG model.?* We
choose to make the approximation that the second term is zero, claiming that we are in the valence
region. Therefore, the CFF which we have extracted in the previous section is nearly equivalent to

the actual GPD at the point z = £.

Hlm(gat) ~ H(E,f,t) (211)

However, in order to obtain the charge density, we need to obtain the GPD at the point (¢, 0,

t) instead. This is accomplished by applying a model dependent “deskewing factor”, fe = ggggg

This deskewing factor can only be obtained through a model, and in this case has been obtained

through VGG. This allows us to express the GPD H as:
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H(z,0,t) = feHum = fee? Pt (212)

Substituting H (z,0,t) into our Hankel transform, and writing the zeroth order Bessel function

as an infinite sum, our charge density may be easily solved analytically:

[eS) 0 —b%t\m
q(z,0,b) = i/o dt Z l(ﬁ‘;ﬁz'] feeA=Bt

(213)
b2
e 1B

~ AnB

Figure 5.8, represents the charge density distributions as a function of impact parameter b for
each choice of zg. The distributions are Gaussian in shape, and centralized at the origin, with the
charge being even more focused around the origin at higher xzp. Figure 5.9 to Figure 5.12 represent
four three-dimensional views as a function of b for various choices of xg. This three-dimensional
view is quite novel, and the interpretation of these distributions is a point of intense focus. A study

to compare how models compare to this extraction is also under way.
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Figure 5.8: The charge density distribution of the proton as a function of impact parameter b. Each panel

corresponds to a particular value of xp. The shape of the distribution is Gaussian, centered around b = 0.
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Figure 5.9: For bins 1 and 2, a three-dimensional view of the charge density distribution of the proton as
a function of impact parameter b, for two choices of zz: 0.12 and 0.155, and two choices of Q%: 1.135 GeV?

and 1.305 GeV? respectively.
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Figure 5.10: For bins 3 and 4, a three-dimensional view of the charge density distribution of the proton
as a function of impact parameter b, for two choices of zp: 0.155 and 0.185, and two choices of @?: 1.471

GeV? and 1.490 GeV? respectively.
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Figure 5.11: For bins 5 and 6, a three-dimensional view of the charge density distribution of the proton

as a function of impact parameter b, for two choices of zp: 0.185 and 0.215, and two choices of Q%: 1.710

GeV? and 1.684 GeV? respectively.
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Figure 5.12: For bins 7 and 9, a three-dimensional view of the charge density distribution of the proton
as a function of impact parameter b, for two choices of z: 0.215 and 0.245, and two choices of Q?: 1.964

GeV? and 2.187 GeV? respectively.
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6. CONCLUSION

We have measured the polarized and unpolarized cross sections, as well as the beam spin asymmetries
of proton DVCS using the CLAS detector at 6 GeV at JLab for el-dvcs2. With this measurement,
we have accessed broad kinematics with many bins, ranging from 1 GeV? < Q2 < 5 GeV?, 0.1 <
zp < 0.6 and 0.1 GeV? < —t < 2 GeV?. With this measurement, we were able to extract, in a quasi
model-independent way, the Compton Form Factor H in the valence region, giving us access to the
GPD H for choices of zg and —t. We were able to extract the proton charge density by taking the
Fourier transform of H, giving us a tomographic view of the charge distribution within the proton
in terms of xp and impact parameter b, the conjugate variable of —t. Additionally, we were able
to compare our cross section results with the predictions of multiple theories, such as VGG, KM10

and KM10a

The DVCS program at CLAS at 6 GeV is part of a larger community interested in the explo-
ration of GPD physics, and the pursuit of a more unified picture of nucleon structure. In particular,
Hall A at JLab and HERMES at DESY in the last decade have carried out experiments seeking to
access GPDs through DVCS, as well as DVMP at JLab. While CLAS gives access to larger values
of g, HERMES was carried out at an energy of 27 GeV giving access to the low xp and high Q?
region. Experimental data on reactions related to GPDs are still in a somewhat early stage, but the
data collected so far seems to indicate that the handbag formalism and factorization approach are
validated. With the completion and closure of HERMES and CLAS 6 programs come COMPASS
with a 200 GeV muon beam and the upgraded CLAS 12. CLAS 12 seeks to expand our kinematic
coverage to higher Q% and xp, whereas COMPASS aims to take measurements in the very low zp
region. The kinematical coverage of these experiments is presented in Figure 6.1. Another candidate
for the exploration of GPDs is PANDA at FAIR, which has the ability to measure time-like virtual

Compton Scattering (p +p — v+ 7*)%.

A large number of these experiments are focused on hydrogen targets, which allows us to
access proton DVCS. While a few experiments have been carried out at JLab with nuclear targets
in Hall A with a deuterium target and in Hall B with CLAS with deuterium and helium targets in
order to access neutron DVCS (nDVCS), data is quite limited. One of the goals for the near future
at CLAS 12 is to give a better access to nDVCS, particularly with the construction of a neutron
detector. The measurement of the charge densities for nDVCS and DVCS is necessary in order to
have a flavor based separation of the charge distributions within the proton and neutron. This can
be accomplished using isospin decomposition. A measurement of nDVCS also gives us access to the
GPD FE, which along with H appears in Ji’s sum rule for the total angular momentum carried by

the quarks within the nucleon, allowing for us to access for the very first time the orbital angular
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momentum contribution of the quarks to the nucleon.
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Figure 6.1: The kinematic coverage of Hall A, CLAS, HERMES, and the future coverage of COMPASS

and CLAS 12. This figure was taken from reference®!.
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Figure A.1: The acceptance as a function of ¢ for the first bin in

21° < 0. < 45°.
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Figure A.4: On top, the acceptance as a function of ¢ for the sixth bin in g and 6., where 0.2 < zp < 0.23
and 21° < 6. < 27°. On bottom, the acceptance as a function of ¢ for the seventh bin in g and ., where

0.2 <z < 0.23 and 27° < 0. < 45°.

195



o035 o ,0:09 GeV? <-t<0.13 GeV’ 25| . .0.13 GeV? << 0.18 GeV’ 035 o ,0:18 GeV? <-t<0.23 GeV”
8035 0.23 < x, <0.26,21.0° <8 <27.0° 8935( 0.23 < x, <0.26,21.0° <8 <27.0° §05 0.23 <%, <0.26,21.05<¢ <27.0°
c L] = L] c
50.28 [ ga.zs i gg.zn i
8 8 g
20.21- <021 do21- N
0141 0.14—____'_ a 7__ 0.14 -+ _;_WI -+
orE e e 007k ‘ 0.07 ata
% 50 300, 360 % % 120 0 240 300, 360 % S 120 180 240 00, 360
0.23 GeV? < -t < 0,30 GeV? eV? < -t < 0,39 GeV’ 0.39 GeV? < - < 0,52 GeV?,
0.35 0.23<x,<0.26,21.0°<08 <27.0° 8035 023<x <0.26,21.0° <0 <27.0° g0.35 0.23<x,;<0.26,21.0°<9 <27.0°
g 3 H 3 2 <
B0.28] Zo.28] So.28]
20.21— + 10.21- . <0.21- -+
014+ ':"-:—7 : o 0.4 R -+ " ISV + Rt
0.07F - Sas i 007 ‘ N o 007 + . -
% 50 o (%0 % TS R P T 300, (550 % G120 T80 240 300, (360
0.52 GeV’ < -t < 0.72 GeV- 0.72 GeV> < -t < 1.10 GeV- 1.10 GeVZ < -t < 2.00 GeV’
40-35 0.23 < x, < 0.26, 210°<9 <27.0° 8035 0.23 < x, < 0.26, 210°<9 <27.0° 8035 0.23 <x;<0.26,21.0°<6 <27.0°
E < € L]
B0.28] Zp.28] So.28]
2021 + q0.21- ! <021
o1al o 018l -~ T gt [ ET + .":‘_
0.07 '___ -+ + 007" N oot -
% 50 120 180 240 300, 360 % B0 120 180 240 300, ,..360 9 80 120 180 240 300, 360
@ () (Y ()
035 0.09 GeV? < -t < 0.13 GeV’ . 0.13 GeV2 < -t < 0.18 Ge \4r2 035 0.18 GeV- < -t < 0.23 GeV?
877 0.23 <x, <0.26,27.0°<d <45.0° 80- 0.23 <x,<0.26,27.0°< 9 <45.0° 877 0.23 < x <026 270°<6 <450°
E ] = 1= [
E_G.ZS - a].ZB ~ gﬂ.ZB ~
] ] 8
20.21- <021 -~ o1 o+ Lot
014 N 0.4, .,, - '1:__ Rl o4l T, =
00Tk T e e norf T } 0071 N
ﬂ! 60 120 180 240 300, ,.360 u! 60 120 180 240 300, ,.360 n! 60 120 180 240 300, ..360
@ (°) @ () P ()
035 0.23 Ge v t < 0.30 GeV’ 0.30 Ge v t < 0.39 GeV’ 0.39 GeV’ < -t < 0.52 GeV?
§%-35) 0.23 <'x; <0.26, 70°<a <45.0° 90-%5| 0.23 <'x; <0.26, 70°<a <45.0° §0-35) 0.23 <x, <0.26,270° <6 <45.0°
E L] = L 1 L]
Bo.28] Z0.28] So.28]
8 - + H = -+ ] = +
021 + Lo <021, + o+ 4 Q21+ o L+
o4 MR I 014 - T+ T i 0.4 - -
0.07 —-+ i N N 0.07 N " 0.07-
u{ 60 120 180 240 300, ,..360 u( - 60 120 180 240 300, ,.,360 n( 60 120 180 240 300, -_350
@ (°) @ () ()
0.52 GeV” < -t < 0.72 GeV’ V2 <.t <1.10 GeV’ 1.10 GeV- < -t < 2.00 GeV-
035 0.23 <x, <0.26,27.0°<0 <45.0° 40-35) 0.23 <x, <0.26,27.0°<0 <45.0° 30351 0.23 <x_ <0.26,27.0°<6 <45.0°
E — € L] c -]
E.;_u.zs I— -g;u.zs — 3.;_0.25 F ‘
g . n + g + g |+ h
o2 T, -+ 21 = + <0.210- ) ‘
-+ -+ “+1 - - ot - T
014 + e - 0.14F i + 0.4l + 1
0.07- - 0.07- - - 0.07- +
B0 420 180 240 300, ..360 66 130 180" 240 300, 360 B0 130 T80 240 300, 360
% 6% k > 03 k o0

Figure A.5: On top, the acceptance as a function of ¢ for the eighth bin in zp and 6., where 0.23 <
rp < 0.26 and 21° < 6. < 27°. On bottom, the acceptance as a function of ¢ for the ninth bin in g and
0., where 0.23 < zp < 0.26 and 27° < 0. < 45°.
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Figure A.6: On top, the acceptance as a function of ¢ for the tenth bin in g and 6., where 0.26 < zp <
0.29 and 21° < 6. < 27°. On bottom, the acceptance as a function of ¢ for the eleventh bin in zp and 6.,
where 0.26 < zp < 0.29 and 27° < 0, < 45°.
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Figure A.7: On top, the acceptance as a function of ¢ for the twelfth bin in zp and 6., where 0.29 <
rp < 0.32 and 21° < 6. < 28°. On bottom, the acceptance as a function of ¢ for the thirteenth bin in xp
and 6., where 0.29 < zp < 0.32 and 28° < 6. < 45°.
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Figure A.8: On top, the acceptance as a function of ¢ for the fourteenth bin in xp and 6., where
0.32 < zp < 0.35 and 21° < 6. < 28°. On bottom, the acceptance as a function of ¢ for the fifteenth bin in
zp and 0., where 0.32 < zp < 0.35 and 28° < 0. < 45°.
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Figure A.9: On top, the acceptance as a function of ¢ for the sixteenth bin in zp and 6., where
0.35 < zp < 0.38 and 21° < #. < 28°. On bottom, the acceptance as a function of ¢ for the seventeenth bin
in zp and 6., where 0.35 < zp < 0.38 and 28° < #. < 45°.
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Figure A.10: On top, the acceptance as a function of ¢ for the eighteenth bin in zp and 6., where
0.38 < zp < 0.42 and 21° < f. < 28°. On bottom, the acceptance as a function of ¢ for the nineteenth bin
in zp and 6., where 0.38 < zp < 0.42 and 28° < #. < 45°.
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Figure A.11: On top, the acceptance as a function of ¢ for the twentieth bin in zp and 6., where
0.42 < zp < 0.58 and 21° < #. < 33°. On bottom, the acceptance as a function of ¢ for the twenty-first bin
in zp and 0., where 0.42 < x5 < 0.58 and 33° < #. < 45°.
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B. Complete Results for Bin Volume Corrections
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Figure B.1: The bin volume correction NN‘“‘“

as a function of ® for the first bin in zp and 6., where

super

0.1 < xp < 0.14 and 21° < 0. < 45°.
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Figure B.2: On top, the bin volume correction NN‘*‘“ as a function of ® for the second bin in xp and 6.,
super

where 0.14 < zp < 0.17 and 21° < 6. < 25.5°. On bottom, the bin volume correction NIZ“:;‘; as a function
of @ for the third bin in zp and 6., where 0.14 < xp < 0.17 and 25.5° < 6. < 45°.
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Figure B.3: On top, the bin volume correction NN““ as a function of ® for the fourth bin in g and 6.,
super

where 0.17 < zp < 0.2 and 21° < #. < 25.5°. On bottom, the bin volume correction N]Z::;r as a function of

® for the fifth bin in zp and 0., where 0.17 < zp < 0.2 and 25.5° < 0. < 45°.
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Figure B.4: On top, the bin volume correction NNb“‘ as a function of ® for the sixth bin in zp and 6.,
super

where 0.2 < zp < 0.23 and 21° < 6. < 27°. On bottom, the bin volume correction NI\:,L::,[; as a function of

® for the seventh bin in xp and 6., where 0.2 < zp < 0.23 and 27° < 6. < 45°.
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Figure B.5: On top, the bin volume correction NN““ as a function of ® for the eighth bin in g and 6.,
super

where 0.23 < xp < 0.26 and 21° < 6. < 27°. On bottom, the bin volume correction N]Z:;;r as a function of
® for the ninth bin in zp and ., where 0.23 < zp < 0.26 and 27° < 6. < 45°.
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Figure B.6: On top, the bin volume correction NNb‘“ as a function of ® for the tenth bin in zp and 6.,
super

where 0.26 < zp < 0.29 and 21° < 0, < 27°.

. . Ni. .
On bottom, the bin volume correction - as a function of
super

® for the eleventh bin in zp and 6., where 0.26 < xp < 0.29 and 27° < 0. < 45°.
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Figure B.7: On top, the bin volume correction NN

where 0.29 < zp < 0.32 and 21° < 0, < 28°.
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On bottom, the bin volume correction
Nsuper

® for the thirteenth bin in zp and 6., where 0.29 < g < 0.32 and 28° < 0. < 45°.
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Figure B.8: On top, the bin volume correction NNb‘“ as a function of ® for the fourteenth bin in zp and
super

O, where 0.32 < x5 < 0.35 and 21° < 6. < 28°. On bottom, the bin volume correction NIZ“:;‘; as a function
of @ for the fifteenth bin in g and 6., where 0.32 < zp < 0.35 and 28° < 0. < 45°.
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Figure B.9: On top, the bin volume correction NNb‘“ as a function of ® for the sixteenth bin in xp and
super

0., where 0.35 < zp < 0.38 and 21° < 6. < 28°. On bottom, the bin volume correction NIZ“:;‘; as a function

of @ for the seventeenth bin in zp and 6., where 0.35 < xp < 0.38 and 28° < . < 45°.
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and 0., where 0.38 < zp < 0.42 and 21° < 6. < 28°.

function of ® for the nineteenth bin in g and ., where 0.38 < zp < 0.42 and 28° < 6. < 45°.
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Figure B.10: On top, the bin volume correction NNb‘“
supe

On bottom, the bin volume correction NN

bin
super

as a function of ® for the eighteenth bin in zp

as a
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Figure B.11: On top, the bin volume correction NN“‘“ as a function of ® for the twentieth bin in xp and
uper

O, where 0.42 < zp < 0.58 and 21° < 6. < 33°. On bottom, the bin volume correction NIZ“:;‘; as a function

of ® for the twenty-first bin in g and 6., where 0.42 < xp < 0.58 and 33° < 0. < 45°.
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C. Complete Results for Pion Subtraction Ratio
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Figure C.1: the neutral pion subtraction ratio R = =534 as a function of ® for the first bin in zp and

0., where 0.1 < zp < 0.14 and 21° < 0. < 45°.

214



0.09 GeV” < -t < 0.13 GeV’ 0.13 GeV® < -t < 0.18 GeV’ 0.18 GeV* <
0.14 <x <0.17,21.0°<8 <25.5° 0.14<x,<0.17,21.0°<9 <25.5°

-
-
=

< 0.23 GeV’
0.14<x.<0.17,21.0°<8 <255°

=]
T

=]

=]

'y
T
B
T
=
T

X}
T
o
T

n° Subtggetiqn Rafio - R
(=]
=’ Subtggetioq Rafio - R
T
L)
T

=° §ubtgetion Ratio - R

JRET SN oo o P N T OT S SRS DTG DY S O S
60 120 180 240 30% ‘oiiio 60 120 180 240 3”%{ ?f

==l
=]
=)

=]

et [P h L
60 120 180 240 30% {uiiio

-
-
=

23 GeV’ < 1< 0. 30&39\0’2 0.30 GeV: < < 0. 39339\/2 0.39 GeV* < -t1<

0. 52 GeV
0.14 <x <0.17,21.0°<8 <25.5° 0.14<x,<0.17,21.0°<9 <25.5° 0.14<x,<017,2 8

0.
0°<9 <255°

o

o

oo

=
T

'Y
T

Y]
T

n° Subtggetiqq Rafio - R
(=]
T

x° Subtggctign Ragio - R
O
T T

=° §ubtgetign Ratio - R

N B
T T
+ T
+
_F+_
.

W+++W++++++++++‘H+ +++++

60 120 180 240 30Q, loFE ‘

++H+ 4y ++ T L -
EU 120 18 240 30% {ui‘fo

60 120 180 240 30Q,, {uiﬂ 0

5
=]
=]

=]

52 GeV’ < -t < 0.72 GeV’

0. 0.72 GeV* < -t < 1.10 GeV* 1.10 GeV* <
0.14 <x,<0.17,21.0°<8 <25.5° 6

1 t<2
0.14<x,<0.17,21.0°<9 <25.5° 0.14 < x, < 0.17, 21.0°<

-
-
=

[

P4
T
BRI

=
T

=
T

;ﬁ*f ,+++

L | L ]
60 120 180 240 30Q; {oi’ﬂ)

(Y]
T

(Y]
T

n° Subtggetiqn Rafio - R
(=]
T

=" Subtggctign Ragio - R
I )
T

=° ubtggetign Ratio - R

S
T T
et
4'7

+++++++ +H’+++ 4,

) ++|+ +
60 120 180 240 300, {oi’(

= Sy [t 8
60 120 180 240 30Q,; (oFE

=
=]
=
=]
=&

0.09 GeV* < -t < 0.13 GeV® 0.13 GeV’ < -t < 0.18 GeV* 0.18 GeV’ < t <
014<x,<017,255°<8 <450° 0.14<x, <017,255°<B <45.0°

-

0.23 GeV*
0.14 <x_ <0.17 ,2 5°<B <45.0°

-
=

[
oo

-]

=
T

=
T

=
T

° ubtggctiqn Ragio - R
&) =)
T T

" Subtggctiqn Ragio - R
B @
T T

«° ubtggetign Ratio - R
-
T

PRI SRSy o T n S et b
60 120 180 240 30% luiifo 60 120 180 240 30%[?60

&2
=]

&
==l

PO S o+
60 120 180 240 300 (o€

-
=

023 GeV <t < (:I.?;I)é;e\l'2 0.30 GeV* <

t < 0.39 GeV’
014<x,<017,255°<9 <45.0° 9

¥ g 39 GeV’ < -t < 0.52 GeV?
14<x,<0.17,255°<6 <45.0° 8 <

0. <0.
0.14 <x,<0.17,25.5°<8 <45.0°

-
o
-

=]
T

=]
T

=]

'y
T
B
T
=
T

X
T
hy
T

n° §ubtggctiqn Rafio - R
?
=° Subtggetion Ragio -R
T
L)
T

n° ubtggetign Rafio - R

At +++H+ +
60 120 180 240 30% [u?ﬁo

P + ++_,_44++
60 120 180 240 300Q, ‘oiiﬁo

5
=)
=)

0.52 GeV” < -t < 0.72 GeV’ 0.72 GeV* < -t < 1.10 GeV’ 110 GeV: <t <
0.14<x,<017,255°<89 0.14<x,<017,255°<0 <45.0°

-
-
=

< 2.00 GeV*
0.14 <x <0.17,255°<8 <45.0°

|

ey 1

60 120 18 24 300, {.,feo

o

-]

=]

'y
T
'’y
T

n° Subtggetiqn Rafio - R
——
=’ Subtggetign Rafio - R
T
=° §ubtgetign Ratio - R
-]
T

S
T T
—+
L
Hi
;
T
]

T
L,

* ++++ +++++++ v, ’ . + +

120 1&0 240 30%{ ii( Eb 120 240 30% I ?E

=
=]
i
t
c
=]

N
Figure C.2: On top, the neutral pion subtraction ratio R = =534 as a function of ® for the second bin
in zp and 0., where 0.14 < zp < 0.17 and 21° < #. < 25.5°. On bottom, the neutral pion subtraction ratio

~

R = % as a function of ® for the third bin in g and 6., where 0.14 < zp < 0.17 and 25.5° < 6. < 45°.
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Figure C.3: On top, the neutral pion subtraction ratio R = =534 as a function of ® for the fourth bin
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~
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Figure C.4: On top, the neutral pion subtraction ratio R = —-2— as a function of ® for the sixth bin
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On bottom, the neutral pion subtraction ratio

as a function of ® for the seventh bin in g and 6., where 0.2 < x5 < 0.23 and 27° < 6. < 45°.
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Figure C.5: On top, the neutral pion subtraction ratio R = =72~ as a function of ® for the eighth bin

in zp and 6., where 0.23 < zp < 0.26 and 21° < 0, < 27°.
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On bottom, the neutral pion subtraction ratio

as a function of ® for the ninth bin in zp and 6., where 0.23 < zp < 0.26 and 27° < 0. < 45°.
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Figure C.6: On top, the neutral pion subtraction ratio R = =%+ as a function of ® for the tenth
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Figure C.7: On top, the neutral pion subtraction ratio R = =%~ as a function of ® for the twelfth

bin in g and 6., where 0.29 < xp < 0.32 and 21° < 0. < 28°. On bottom, the neutral pion subtraction
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Figure C.8: On top, the neutral pion subtraction ratio R = =34 as a function of ® for the fourteenth

bin in g and 6., where 0.32 < zp < 0.35 and 21° < 0. < 28°.

. Na,
ratio R = NeFr+y

28° < 0. < 45°.

On bottom, the neutral pion subtraction

as a function of ® for the fifteenth bin in xp and 6., where 0.32 < zp < 0.35 and
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Figure C.9: On top, the neutral pion subtraction ratio R = =53 as a function of ® for the sixteenth

bin in g and 6., where 0.35 < zp < 0.38 and 21° < 0. < 28°.
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On bottom, the neutral pion subtraction

as a function of ® for the seventeenth bin in zp and 6., where 0.35 < xp < 0.38 and
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Figure C.10: On top, the neutral pion subtraction ratio R = ;%= as a function of ® for the eighteenth
bin in g and 6., where 0.38 < xp < 0.42 and 21° < 6. < 28°. On bottom, the neutral pion subtraction

NY
ratio R = =355 as a function of ® for the nineteenth bin in xp and 0., where 0.38 < zp < 0.42 and

28° < 0. < 45°.
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Figure C.11: On top, the neutral pion subtraction ratio R = 7%= as a function of ® for the twentieth

bin in g and 6., where 0.42 < xp < 0.58 and 21° < 6. < 33°. On bottom, the neutral pion subtraction
Yy

N
ratio R = o7~ as a function of ® for the twenty-first bin in zp and 0., where 0.42 < xp < 0.58 and

33° < 0. < 45°.
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D. Complete Results for Radiative Corrections
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Figure D.1: The radiative corrections as a function of ® for the first bin in x5 and 6., where 0.1 < x5 <

0.14 and 21° < 6. < 45°.
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Figure D.2: On top, the radiative corrections as a function of ® for the second bin in g and 6., where
0.14 < zp < 0.17 and 21° < #. < 25.5°. On bottom, the radiative corrections as a function of ® for the
third bin in g and 6., where 0.14 < zp < 0.17 and 25.5° < 0. < 45°.
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Figure D.4: On top, the radiative corrections as a function of ® for the sixth bin in zp and 6., where
0.2 < xp < 0.23 and 21° < 6. < 27°. On bottom, the radiative corrections as a function of ® for the seventh

bin in g and 6., where 0.2 < zp < 0.23 and 27° < 0. < 45°.
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Figure D.5: On top, the radiative corrections as a function of ¢ for the eighth bin in zp and 6., where
0.23 < zp < 0.26 and 21° < 6. < 27°. On bottom, the radiative corrections as a function of ® for the ninth
bin in g and 0., where 0.23 < zp < 0.26 and 27° < 0. < 45°.
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Figure D.6: On top, the radiative corrections as a function of ® for the tenth bin in zp and 6., where
0.26 < zp < 0.29 and 21° < 6. < 27°. On bottom, the radiative corrections as a function of ® for the
eleventh bin in zp and 6., where 0.26 < xp < 0.29 and 27° < 0. < 45°.
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Figure D.7: On top, the radiative corrections as a function of ® for the twelfth bin in xp and 6., where
0.29 < zp < 0.32 and 21° < 6. < 28°. On bottom, the radiative corrections as a function of ® for the
thirteenth bin in zp and 6., where 0.29 < x5 < 0.32 and 28° < 0. < 45°.
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Figure D.8: On top, the radiative corrections as a function of ® for the fourteenth bin in zp and 6.,

where 0.32 < 5 < 0.35 and 21° < 0. < 28°.

On bottom, the radiative corrections as a function of & for

the fifteenth bin in xp and 6., where 0.32 < zp < 0.35 and 28° < 6. < 45°.
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Figure D.9: On top, the radiative corrections as a function of ® for the sixteenth bin in xp and 6., where
0.35 < zp < 0.38 and 21° < 6. < 28°. On bottom, the radiative corrections as a function of ® for the
seventeenth bin in g and 6., where 0.35 < zp < 0.38 and 28° < 0. < 45°.
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Figure D.10: On top, the radiative corrections as a function of ® for the eighteenth bin in zp and 6.,
where 0.38 < zp < 0.42 and 21° < 6. < 28°. On bottom, the radiative corrections as a function of ® for

the nineteenth bin in g and 6., where 0.38 < zp < 0.42 and 28° < 0. < 45°.
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Figure D.11: On top, the radiative corrections as a function of ® for the twentieth bin in zp and 6.,
where 0.42 < zp < 0.58 and 21° < 6. < 33°. On bottom, the radiative corrections as a function of ® for

the twenty-first bin in g and 6., where 0.42 < xp < 0.58 and 33° < 0. < 45°.
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E. Comparison with Parallel Analysis of el-dvcs2, el-dvesl - Full List of Plots

Comparison of Unpolarized Cross Sections:

Figure E.1 to Figure E.21 each contain the unpolarized cross section, and unpolarized cross
section ratio as a function of @, for a given bin in zp and 6.. The comparison is between this
analysis; el-dvcs2 according to the parallel analysis by B. Guegan; and el-dvcsl according to the
analysis by H.S. Jo. There are two sets of error bars for data points in this analysis only. The smaller
error bar represents statistical errors only. The larger error bar represents the statistical error and
estimated systematic error added together in quadrature. The systematic errors for analyses by
B. Guegan and H.S. Jo are not yet available, therefore the errors associated with those points are
statistical only.
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Figure E.1: On top, the unpolarized cross section as a function of ®. Black represents this analysis.
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Figure E.8: On top, the unpolarized cross section as a function of ®. Black represents this analysis.
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Figure E.18: On top, the unpolarized cross section as a function of ®. Black represents this analysis.

Green is el-dves2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the unpolarized cross section

ratios. Both are for the eighteenth bin in zp and 0., where 0.38 < zp < 0.42 and 21° < 6. < 28°. Each
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Figure E.20: On top, the unpolarized cross section as a function of ®. Black represents this analysis.
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Figure E.21: On top, the unpolarized cross section as a function of ®. Black represents this analysis.
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Comparison of Polarized Cross Section Differences:

Figure E.22 to Figure E.42 each contain the polarized cross section, and polarized cross section
differences ratio as a function of ®, for a given bin in zg and .. The comparison is between this
analysis; el-dvcs2 according to the parallel analysis by B. Guegan; and el-dvcsl according to the
analysis by H.S. Jo.
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Figure E.23: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the second bin in 5 and 6., where 0.14 < zp < 0.17 and 21° < 0. < 25.5°. Each panel
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Figure E.24: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the third bin in zp and 6., where 0.14 < g < 0.17 and 25.5° < 0. < 45°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green
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Figure E.25: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the fourth bin in g and 6., where 0.17 < zp < 0.2 and 21° < 6. < 25.5°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green
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Figure E.26: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the fifth bin in zp and 0., where 0.17 < xp < 0.2 and 25.5° < 0. < 45°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green
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Figure E.27: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the sixth bin in zp and 6., where 0.2 < zp < 0.23 and 21° < 0. < 27°. Each panel
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Figure E.28: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
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Figure E.29: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the eighth bin in g and 6., where 0.23 < zp < 0.26 and 21° < 0. < 27°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green
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Figure E.30: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the ninth bin in g and 0., where 0.23 < zp < 0.26 and 27° < 0. < 45°. Each panel
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Figure E.32: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the eleventh bin in g and 0., where 0.26 < xp < 0.29 and 27° < 6. < 45°. Each panel
corresponds to a bin in —t whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green
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Figure E.35: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the fourteenth bin in zp and ., where 0.32 < zp < 0.35 and 21° < §. < 28°. Each

panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]
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Figure E.37: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
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panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]

el—dves2 Saylor

s, el—dvcs2 Saylor
el—dvecs2 Guegan* Red is

Green is el—dvesl Jo

274



g :_ 505; 205
e coat Jouf
° 25_ £ oy @ F %
3 02 1 Pl T | -
E: 5 bt T T it L] Lird]
£ E o e A i :
- 020 L0.02F T 1
u E HH
040 0.04F- T
E 3 is F 4
5E L L L L L 0.61 L L L L L 0065 L L | i L
U 60 120 180 240 300, o360 % &0 120 180 240 300y, (o360 %60 120 1m0 24 300, (o560
.04 -gom E f_go,uz ;
?-"3 Do2f Doaf
so il Bl iy,
01 ) | + N - ""%i I
5 5 0: “L“ %ﬂr w 1l B gl nbdrdL
u.u 0l o L %1 o E L e "f' +
-0.01 :— -001F
002 o I i3 {NT ol
-0.03 0025 h02E |
E H E
004 %0 120 180 24D 300y, (300 0.0% 5 120 180 230 10%?60 0.0% %0120 TR0 40 360¢ (b0
—0.03 001 002 -
a E E|
& o gﬂ“":— 180158
& 0065 Fooil "L 1
Boo1 004 = iH H_ “L Boost L.} {N l
N : Il o2 1 B THH
§ o MRlhnll g, for O ITTeE T R i
E § T T
£, Bk + TR, Bo02E i 1 »-1{:1':}. [ Tl ,% THH T
-0.01 »} 0.004F i e
E 0,001 e
002 00065 o+ :
= 0.008E bal LODLSE 1»--4 L
0.03 . . \ , , 001E . \ , . o0l L . , | .
V60 1200 180 240 300, op60 60 120 180 240 300g o360 60 120 180 240 3004 o360
ol e l.5g o .5 |
AR Bl4E E14F
x 1. x .28 x 125
3L Y LIE T LIE
8 - LN T
S 0. So9F 809
£ 0. RosE £osE
0. 07 07F I
0. 0.6E 0.6F
0. 1 Il 1 1 1 05: 1 L 1 1 1 0. E L 1 L L 1
o0 120 180 240 300 360 0 60 120 180 240 300 o360 60 120 180 240 300, 360
g L. o lSg o |5
AR Bl4E Bl4E
X L. | x 128 x 12F 4
FRE 4 TLIE T T - °LIE
go. SosE T SosE ¥
0. ‘ 1 1 07E 0.7E
0. 4 06E 1 ‘ o6k ||| T
0 1 L 1 1 1 0 5 E 1 L 1 11 1 0 E L L L 1
- B0 120 N0 240 300y, 360 B 60 120 T80 240300, o360 D60 120 TR0 20 30, o0
ol o l5g o .5
AR T E14F E14F
El. Eljj— 5132— T 1
x 1. T x 125 -+ x 1.2F
R TLIE T LIE
kS | BT B
. So9t So0F
£ 0. ‘L RosE £o8E
0. 07 07F 4
0. € 065 0.65
0 120 T80 240 300, e % w0 120 180 20 300 Lpe0 MUTel T T m0 3, o0

Figure E.38: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the seventeenth bin in zp and 6., where 0.35 < zp < 0.38 and 28° < 0. < 45°. Each

panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]
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Figure E.39: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
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Figure E.40: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the nineteenth bin in g and 6., where 0.38 < xp < 0.42 and 28° < #. < 45°. Each
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Figure E.41: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the twentieth bin in zp and 6., where 0.42 < zp < 0.58 and 21° < 0. < 33°. Each
panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]
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Figure E.42: On top, the polarized cross section differences as a function of ®. Black represents this
analysis. Green is el-dvcs2 by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the polarized difference
ratios. Both are for the twenty-first bin in 5 and 6., where 0.42 < zp < 0.58 and 33° < 6. < 45°. Each
panel corresponds to a bin in —¢ whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00]
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Comparison of Beam Spin Asymmetries:

Figure E.43 to Figure E.63 each contain the beam spin asymmetry, and beam spin asymmetry
ratio as a function of ®, for a given bin in xp and #.. The comparison is between this analysis;
el-dvcs2 according to the parallel analysis by B. Guegan; and el-dvcsl according to the analysis by
H.S. Jo.
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Figure E.49: On top, the asymmetry as a function of ®. Black represents this analysis. Green is el-dvcs2
by B. Guegan. Red is el-dvcsl by H.S. Jo. On bottom, the asymmetry ratios. Both are for the seventh
bin in zp and 6., where 0.2 < zp < 0.23 and 27° < 0. < 45°. Each panel corresponds to a bin in —t
whose limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] Green is
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Figure E.54: On top, the asymmetry as a function of ®. Black represents this analysis. Green is el-dvcs2
by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the asymmetry ratios. Both are for the twelfth
bin in zp and 6., where 0.29 < zp < 0.32 and 21° < 6. < 28°. Each panel corresponds to a bin in —t
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Figure E.55: On top, the asymmetry as a function of ®. Black represents this analysis. Green is el-dvcs2
by B. Guegan. Red is el-dvesl by H.S. Jo. On bottom, the asymmetry ratios. Both are for the thirteenth
bin in zp and 0., where 0.29 < zp < 0.32 and 28° < #. < 45°.
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Figure E.60: On top, the asymmetry as a function of ®. Black represents this analysis. Green is el-dvcs2
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Figure E.62: On top, the asymmetry
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F. Complete Results for GPD Models
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Figure F.2: On top, the unpolarized cross section as a function of ® for the second bin in zp and 6.,
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Figure F.3: On top, the unpolarized cross section as a function of ® for the fourth bin in xp and 6.,
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304



) ) T F
£ £ €
g 3 - c -+
] 2 ™ # £ N
gk &L N o & 1:—\ /
] ] E N 3 E i
g gL N\ A i 5 +
& gt - & gt -~ 57
32 S I e L S I b -
H 5 + S0'E +
L L 2k
2 60 120 180 240 300, u)361[) 2 0 60 120 180 240 300, “’360 2 0 60 120 180 240 300, u)361[)

@ @ @

=
+

+

=
T
+

<, W -

1 n 1 1 1
60 1200 180 240 300y, (5)36{)

=

*&_‘H;}*ﬂ

L 1 1 1 n
60 1200 180 240 3004 (5,360

=}

2
T

Jé’
Y

™
A
S
Unpolarized Cross Section (nb)
ras
¢
1
\\
Unpolarized Gross Section (nb)
L B
f
{

Unpolarized Cross Section (nb)
/Y
L

=
=3

) 3 F T E
sl il - t b i
; oY n > i T [
8 b X # A E N, + , a.l s PSS
o'k P g r h - é EN 4 ++ +/7
5] T + H Vo [ fr g [ +
3 3 Sk
g N T o7 g0 Jr t
2L 1 ER | £ '
g g r 07
E . ‘ ‘ ‘ ‘ E ‘ ‘ ‘ ‘ . e . ‘ ‘ ‘
B 120 T T4 300, 300 060 10 0 20300, 360 0 60 10 T80 20 300, 300
£ 3 O E
£ Sl 2E
= s El c :+ +
=] =] ! =) L
2 S g 2
8 8 [ 810
@ @ @ E
g, 2 i F L
g g ‘E ;\\_
3 3 i 0F e
5 ] 0 e
S g Lo s
S i ‘ i i ‘ S 0 60 120 T80 T0 300y 360 S ¢ e 10 T H0 30a, .36
0 60 1 80 20 30, 6 TSI o o BT Iy o}
20 + z 2F L
5 b S 1k 5 F N P
S0 2 'F 2 EN #
51(;, & & b 7
H 8 [ 20k - 4
g0 st g0E N v
L E e
% -~ ﬁn‘ E -‘-; 3 T :*1;+
8.0 = = 8 g0
£ e /_y/ 5 F 5 [ t+
2 SR g [ 2L
Bob | eemememt 7 F e L
BT TN A0 3, o6 0 0 6110 T8 B0 30, 6
5 5 F 5 F
g g E £ F
< hy £ g E - g e T P
2 L W 5 2 F S0k + &
o' 3 E
3 . J ‘;m‘ L=, e g P, f + f 4
] 4 4 s E % - e ; 4+
g ey - s ey ot §
S + S L[ 4 Pt 0t
307k ¥ (HF 307
3. TR i T i ‘
g t I T EI
g g0° 2.
S &0 120 180 240 300, 360 S 0 60 120 T80 0 300, L3060 L 0 %0 120 180 0 300, L360
% o W oy % o
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Figure F.5: On top, the unpolarized cross section as a function of ® for the eighth bin in xp and 6.,
where 0.23 < zp < 0.26 and 21° < #. < 27°. On bottom, the unpolarized cross section for the ninth bin
in zp and 6., where 0.23 < zp < 0.26 and 27° < 6. < 45°. Each panel corresponds to a bin in —¢ whose
limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For both, the green curve corresponds to
VGG, the light magenta corresponds to KM10, and the dark magenta corresponds to KM10a.

306



5 5 IF gl

£ 1L £ E £

: T S P eI 7|
£ Freer e - p e >
i ~ I 3 N o i . . . >
40'F + + g0k e gt N ; >

g g ! + g R

S ki t S HT T f? g e

Bl i : 1

£ E 1 E T

g L L L . ! g0° & L L . F0° L . L L !

2 60 120 180 240 300, D)]6() 2 0 60 120 180 240 3004)‘“’3&0 2 0 60 120 180 240 300, D)]6()

@ @

B IF B IF T

s B - s B - z

5 s o s f < N
gL - R £ H + >

S0k ".Lt_L-f- ) - Aok TR s 8 r f o

] e | Ifil,r+—+- $ f S "L_—f' ?0 E + &

g g - - £ S s

Sk 2 1 & N

8 Seb Sk

a3 a3 s F

g g g r

] . , , , . g . , , , , H . \ . , ,

Bl 60 120 180 240 300 o360 S 0 60 120 180 240 300y o360 S 0 60 120 180 240 3004 o360

Tk T F T F
= 1 ':’ . ':’ F- -+
S0F ‘ﬁo‘—— - e ; _ﬁ -
wﬁl(}'r &8 F T ++ 7 thE* - H +
w0 E w + -+- w
8 8,:L tL ++ #" g 4 T 2t
51k 307 T + S + 1
2 Fw - z - *
Bl tees e i ‘ i w +
5 -t e 3 E T
0% 07 ° F

60 120 180 240 300, o360 060 120 180 240 3005 o360 0 60 120 180 240 3005 360
z IF = 5
£ o= o £ =
Fll e E giF 7
2 e 2 2
2 oy e 2 3
Qo' + @ ]

" "
A P A 5
s
: T - + :
8 ] Ho'g
El E] + s
5 5 s
0 60 120 180 240 300y o360 0 60 120 180 240 300, o360

2z 2k z
R | sk N H *
| - = E -]

3 3 3 P
2 ps LS S
WL g o' s o
go - “ 2, \ / 3 ”'/

3 frenas e . e i , =
= = - = 5 l T

g ! 1. T b A
£ 2k £

L 1 1 1 1 E 1 1 1 | n £ 1 n 1 1 1
60 1200 180 240 qu, m]hﬂ 0 60 1200 180 240 300¢ ‘“’3&0 0 60 120 180 240 qu, m]hﬂ

oy El N il
+ o'E

@ @ L -‘-h'» f +‘-0- a E N ﬁ+ T

w ,, : w
g0k s o o7 Hfh—_f_*‘ 8 4 * Vs
S = -7 S F | + g0 , _+_
_g WL W*ﬂ—'r + o4 Sk | 32 T
4 T ook o' 1 *
- s K]
gF - S &t
= 60 120 180 240 ]()()q: '.u)lﬁﬂ S 0 60 120 180 240 ]004)‘“’360 S 0 60 120 180 240 ]()()q: '.u)lﬁﬂ

Figure F.6: On top, the unpolarized cross section as a function of ® for the tenth bin in zp and 6., where
0.26 < xp < 0.29 and 21° < 6. < 27°. On bottom, the unpolarized cross section for the eleventh bin in x5
and 6., where 0.26 < xp < 0.29 and 27° < 6. < 45°. Each panel corresponds to a bin in —t whose limits
are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For both, the green curve corresponds to VGG,
the light magenta corresponds to KM10, and the dark magenta corresponds to KM10a.
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Figure F.7: On top, the unpolarized cross section as a function of ® for the twelfth bin in zp and 6.,
where 0.29 < zp < 0.32 and 21° < 6. < 28°. On bottom, the unpolarized cross section for the thirteenth
bin in zp and 6., where 0.29 < xp < 0.32 and 28° < . < 45°. Each panel corresponds to a bin in —t whose
limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For both, the green curve corresponds to
VGG, the light magenta corresponds to KM10, and the dark magenta corresponds to KM10a.
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Figure F.8: On top, the unpolarized cross section as a function of ® for the fourteenth bin in zp and 6.,
where 0.32 < zp < 0.35 and 21° < 6. < 28°. On bottom, the unpolarized cross section for the fifteenth bin
in zp and 6., where 0.32 < zp < 0.35 and 28° < 6. < 45°. Each panel corresponds to a bin in —¢ whose
limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For both, the green curve corresponds to
VGG, the light magenta corresponds to KM10, and the dark magenta corresponds to KM10a.
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Figure F.9: On top, the unpolarized cross section as a function of ® for the sixteenth bin in xp and 6.,
where 0.35 < zp < 0.38 and 21° < #. < 28°. On bottom, the unpolarized cross section for the seventeenth
bin in zp and 6., where 0.35 < xp < 0.38 and 28° < . < 45°. Each panel corresponds to a bin in —t whose
limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For both, the green curve corresponds to

VGG, the light magenta corresponds to KM10, and the dark magenta corresponds to KM10a.
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Figure F.10: On top, the unpolarized cross section as a function of ® for the eighteenth bin in zp and 6.,
where 0.38 < g < 0.42 and 21° < 0. < 28°. On bottom, the unpolarized cross section for the nineteenth
bin in zp and 6., where 0.38 < xp < 0.42 and 28° < . < 45°. Each panel corresponds to a bin in —t whose
limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For both, the green curve corresponds to
VGG, the light magenta corresponds to KM10, and the dark magenta corresponds to KM10a.
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Figure F.11: On top, the unpolarized cross section as a function of ® for the twentieth bin in x5 and 6.,
where 0.42 < zp < 0.58 and 21° < 6. < 33°. On bottom, the unpolarized cross section for the twenty-first
bin in zp and 6., where 0.42 < xp < 0.58 and 33° < 0. < 45°. Each panel corresponds to a bin in —t whose
limits are: [0.09, 0.13, 0.18, 0.23, 0.30, 0.39, 0.52, 0.72, 1.10, 2.00] For both, the green curve corresponds to
VGG, the light magenta corresponds to KM10, and the dark magenta corresponds to KM10a.
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