Journal of Physics: Conference Series

PAPER « OPEN ACCESS

Production Management System for AMS
Computing Centres

To cite this article: V Choutko et al 2017 J. Phys.: Conf. Ser. 898 092034

View the article online for updates and enhancements.

Related content

- Anisotropy of Magnetic Susceptibility

(AMS) analysis for sedimentation tracing
of Selorejo reservoir

S Zulaikah, R Azzahro, E S Mu'alimah et
al.

- Superconducting mini-cyclotron

K M Subotic

- Accelerator mass spectrometry (AMS) of

heavy elements (M>or approximately=40
K W Allen

This content was downloaded from IP address 131.169.5.251 on 20/03/2018 at 23:28

https://doi.org/10.1088/1742-6596/898/9/092034
http://iopscience.iop.org/article/10.1088/1755-1315/29/1/012021
http://iopscience.iop.org/article/10.1088/1755-1315/29/1/012021
http://iopscience.iop.org/article/10.1088/1755-1315/29/1/012021
http://iopscience.iop.org/article/10.1088/0954-3899/17/S/038
http://iopscience.iop.org/article/10.1088/0954-3899/17/S/036
http://iopscience.iop.org/article/10.1088/0954-3899/17/S/036

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 092034 doi:10.1088/1742-6596/898/9/092034

Production Management System for AMS
Computing Centres

V Choutko!, O Demakov!, A Egorov!, A Eline', B S Shan®* and R
Shi?

! Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
2 Beihang University, 37 Xueyuan Road, Haidian Qu, Beijing 100191, China

3 Southeast University, 2 Sipailou, Xuanwu Qu, Nanjing, Jiangsu 210018, China

E-mail: baosong.shan@cern.ch

Abstract. The Alpha Magnetic Spectrometer [1] (AMS) has collected over 95 billion cosmic
ray events since it was installed on the International Space Station (ISS) on May 19, 2011.
To cope with enormous flux of events, AMS uses 12 computing centers in Europe, Asia
and North America, which have different hardware and software configurations. The centers
are participating in data reconstruction, Monte-Carlo (MC) simulation [2] /Data and MC
production/ as well as in physics analysis.

Data production management system has been developed to facilitate data and MC
production tasks in AMS computing centers, including job acquiring, submitting, monitoring,
transferring, and accounting. It was designed to be modularized, light-weighted, and easy-to-be-
deployed. The system is based on Deterministic Finite Automaton [3] model, and implemented
by script languages, Python and Perl, and the built-in sqlite3 database on Linux operating
systems. Different batch management systems, file system storage, and transferring protocols
are supported. The details of the integration with Open Science Grid are presented as well.

1. Introduction

Table 1 lists 12 computing centers. The centers have various hardware/software configurations,
storage , and batch systems. For example, several batch systems, including LSF [4],
HTCondor [5], SGE [6], Slurm [7] and LoadLeveler [8] are used by different sites. To facilitate
the production management in the computing centers, a production management system has
been designed and implemented.

4 Corresponding author

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

http://creativecommons.org/licenses/by/3.0

CHEP
IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092034

IOP Publishing
doi:10.1088/1742-6596/898/9/092034

Table 1. AMS Computing Centers

Centre Location Logical cores Hardware type File systems Batch System
CERN Geneva, Switzerland 6000 X86-64 EOS+AFS LSF/HTCondor
+CVMFS
CNAF Bologna, Italy 1300 X86-64 CVMFS LSF
+GPFS
JUROPA Juelich, Germany 4000 X86_64 LUSTRE Moab/TORQUE
/JUAMS +GPFS Slurm
+CVMFS
MIT/OSG Boston, US Up to 6000 X86_64 CVMFS HTCondor
SEU Nanjing, China 2016 X86_64 GPFS LSF
NLAA Beijing, China 1024 [A64 CXFS -
ITHEP Beijing, China Up to 1500 X86_64 LUSTRE LSF/HTCondor
IN2P3 Lyon, France 500 X86-64 GE
Acad. Taipei, Taiwan 3000 X86_64 CephFS HTCondor
Sinica +EOS
+CVMFS
RWTH Aachen, Germany 1640 X86-64 LUSTRE LSF/HTCondor
+CVMFS
+AFS
+FhGFS
JURECA Juelich, Germany Up to 20000 X86-64 GPFS Slurm
JUQUEEN Juelich, Germany Test-only PowerPC GPFS LoadLeveler

The central production management at CERN uses the Oracle Parallel Database [9] (PDBR)
to store the production related information, and provides the job requesting and validating
service for the computing centers. The job requesting service is provided by the Common
Gateway Interface (CGI), querying the PDBR database about the availability of the production
jobs, generating the job scripts, writing the metadata of the jobs into the PDBR. database, and
finally sending the job mail to the specific email address with the tar ball of the production job
scripts attached. After the production jobs are finished at computing centers, the produced files,
including the “journal” files containing the metadata, are transferred back to CERN, and the
job validating service will check the consistency of the files, move the files to the final storage
destination, and write the metadata into the PDBR database.

The production management system for the computing centers takes care of all the
“intermediate” steps, from retrieving the job scripts from the job email, till transferring the
produced files back to CERN.

By this way, the production management system for the computing centers is designed to
run independently, which means it has a loose coupling (email as input, and produced files as
output) with the central AMS production managing at CERN.

The production management system for the computing centers features:

CHEP IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092034 doi:10.1088/1742-6596/898/9/092034

High-efficiency
— To keep batch queue as full as possible and ensure efficient usage of computing
resources;
— To handle different types of production jobs, data and simulation, long lasting and
flash jobs which may only run few minutes;
Light-weighted
— Not to require communication between processes;
— Not to require super user privilege to deploy and (re)configure;

Adaptable to different batch, storage and transferring systems
— To be able to adapt various batch systems, storage systems, transferring methods, etc.;

Customization

— To separate site specific configurations/codes from general functional logic codes.

2. Deterministic finite automaton model

The goal is to have the highest possible efficiency for the production, i.e., to minimize the idle
time of all working nodes. To achieve this, we design the system using the Deterministic Finite
Automaton model, which ensures the computing resources are always filled by production jobs.
The transition of the states is illustrated in Figure 1.

ret>0

Idle slots

Idle slots
Non-empty

(rrlpty pool

Figure 1. The production management system’s design based on the Deterministic finite
automaton model, “ret” is the return code of the corresponding function.

Depending on the status of the production farm and job pool, three states are defined as
followed.

e Idle slots and empty job pool
— There are free slots in the production farm and there is no job in production pool;
— In this state, the system will retrieve production jobs;
— If jobs are retrieved (i.e. return code ret is positive), the DFA will turn to the state
“Idle slots and non-empty job pool”;
— Otherwise, the system will continue with updating job status and resetting failed jobs,
then try to retrieve again;

e Idle slots and non-empty job pool

CHEP IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092034 doi:10.1088/1742-6596/898/9/092034

— There are free slots in the production farm and there are jobs in production pool;

— In this state, the system will repeat filling the free slots by submitting jobs;

— If slots are all filled (i.e. function Submit () returns -1), the DFA will turn to the state
“Fully loaded”;

— Otherwise, the DFA will turn back to the state “Idle slots and empty job pool”;

e Fully loaded

— All computing slots are filled in the production farm;

— In this state, the system will update the status of submitted jobs, and reset those failed
jobs;

— If after updating/validating there are idle slots (i.e. return code ret is positive), the
DFA will turn to the state “Idle slots and non-empty job pool”;

— Otherwise, the system will find those finished jobs to validate, and try
updating/resetting again.

Starting Full speed running Finishing

Y Y Y
Idle slots Idle slots Fully loaded/ldle Idle slots

and and non- slots and non- and non-
empty job empty job empty job pool empty job
pool pool pool

Figure 2. When starting a production campaign, the initial state of the DFA is “Idle slots
and empty job pool”, so the system begins with job retrieving. In the starting stage, the state
remains in “Idle slots and non-empty job pool”, and during the full speed running stage, the
DFA state switches between “Fully loaded” and “Idle slots and non-empty job pool”, until all
the jobs in pool are submitted. After there is no more job to be retrieved or submitted, the
production goes to the finishing stage, when the DFA state stays in “Idle slots and empty job
pool”, and the system repeats updating/resetting and validating.

Figure 2 shows how the three DFA states transfer during a production campaign. The main
loop of the production management daemon starts from GetState () to get the current state, and
goes through, and finally ends when Validate() finds nothing to be validated. By this design,
it ensures a quick startup by continuous retrieving and submitting, a stable full speed running
by updating/resetting and submitting, and also a fast finishing by frequent updating/resetting
and validating.

Based on this DFA model, the production management system achieves the high efficient
usage on resources. Figure 3 shows the queue status as a function of time when we reconstructed
our science data at JUROPA (now renamed to JUAMS) computing centre in 2012. As mentioned
in Table 1, there are 4000 physical cores with 2 way Hyper-Threading enabled which are shared
by the 16-threaded production jobs and some analysis jobs. The production management system
keeps a certain amount of jobs in the queuing status during the production period (except the
hardware maintenance).

CHEP IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092034 doi:10.1088/1742-6596/898/9/092034

700
#Submitted

#Running+Completed

600 l

500 , i I

400 - » 4

300 —

Number of Jobs

200 - —

100 —

0
Nov-18 Nov-19 Nov-20 Nov-21 Nov-22 Nov-23 Nov-24 Nov-25 Nov-26 Nov-27

Figure 3. The queue status of the data reconstruction in 2012.

3. Light-weight design

A light-weight design is important to ensure a quick deployment in a new computing site or
upgrading of an existing site. We use as much as commonly deployed tools and include all
supporting libraries/software in our distribution package.

3.1. Programming languages

The production management system is written in Perl [10] and Python [11]. Most functions of
the system are written in Perl, except that the transferring part is written in Python, because
it requires multi-threading feature to improve the efficiency.

8.2. Database

All the information related to production jobs is stored in a database so that the whole
production process can be tracked. SQLite3 [12] is selected as our database engine since it is
included in most Linux distributions, and various programming interfaces are provided, including
Perl and Python.

The database include 4 tables: DATAFILES to store the information of input raw files for data
production and output raw files for simulation production; JOBS to store the information of all
production jobs; NTUPLES to store the information of output ROOT [13] files for all production
jobs, and JOBRUNS to store all the running information (the starting time and finishing for
each production job, the finishing status, the execution site/host, the failing reason, etc.).

4. Customization

Different computing centers usually have different configurations on hardware, software, storage,
etc. To adapt the variations, we peel the configuration related functions off the codes, and
put them into a configuration file of environment variable definitions. This includes not only
traditional “configurations”, like the production home directory (AMSPROD_HOME), and the batch
pool size (AMSPROD_QUEUE_SIZE), but also some production actions. For example, for job

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 092034 doi:10.1088/1742-6596/898/9/092034

submission, we define an environment variable AMSPROD_CMD_SUBMIT, where we can define the
real command (template) of job submission. In this case we don’t have to redesign the code
when changing batch system from LSF to condor.

All the commands related to batch system and transferring tools have been defined in the
form of AMSPROD_CMD_, with “variables” which will be replaced during runtime, like the file path
to be transferred.

5. Diagnostics on resources

Open Science Grid [14] (OSG) provides facilitates access to distributed high throughput
computing for research in the United States, and we started to run production jobs on OSG
since February 2016.

As OSG has over 100 individual sites and a variety of resources, it is important to identify
specific failing/problematic nodes/sites and exclude them from job execution. This system
provides automatic diagnostics on log files: it records the statistics of each job execution in the
database, including the host and site, the status, etc. In case a job execution fails, it will analyze
the log file and record the failing reason(s) as well, and:

(i) Create a “blacklist” consisting of the recent “unreliable” sites;

(ii) Notify the administrator about the site-specific issues.

For example, in case all the jobs executed on site A in the past hour failed due to CVMFS
issue, site A will be put into the blacklist in OSG submission script and a notification mail be
be sent to the administrator.

6. Applications and performance
The described production system has been deployed in JUROPA /JUAMS Germany, CNAF Italy,
IN2P3 France, IHEP China, CERN, and MIT/OSG USA. These sites made major contributions

on AMS data production, and are also active in Monte-Carlo simulation.

1200
CERN ——
Taiwan
1000 - CNAF
JUROPA —=—
Total
2 800
©
[a}
()]
< 600)
. wl
© M
8 400 w#wwﬁﬁgﬁ
MW
200 .

17 18 19 20 21 22 23 24 25 26 27 28
Day (Feb. 2015)

Figure 4. The completion status of the science data reconstruction in 2015.

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 092034 doi:10.1088/1742-6596/898/9/092034

Figure 4 shows the completion status of the science data reconstruction in 2015. Totally 42
months’ data, 54 billion events, were reconstructed in 12 days, and the reconstruction speed
reached more than 100 data collection days per production day.

Figure 5 shows the completion status of the Helium Monte-Carlo simulation campaign at the
end of 2015 and the beginning of 2016. In around 3 months, more than 5536 years’ CPU time
was delivered, 2.24 trillion triggers were simulated, and 35.5 billion events were recorded, which
resulted in nearly 1 PB data.

2et+06

T T T
Total CPU days: 1991K
1.8e406 JURECA 48.0%
B CERN 18.3%
1.6e+06 |- I SEU 12.1%
I T:aivan 10.1%
1.4e+06 | [RWTH JARA 7.4%
B CNAF 3.8%
1.2e+06 - IHEP 1.0%
0
> MIT 0.5%
a le+06 |- s —
5 B RWTH_HPC 0.4% R
o
3]

800000 f -

600000 ‘/ -

400000 - — -

200000 o

0
11-14 11-28 12-12 12-26 01-09 01-23 02-06 02-20 03-05

Figure 5. The completion status of the Helium MC simulation in 2016.

7. Conclusion
The production management system for computing centers is designed using the deterministic
finite automaton which ensures the computing resources are always filled by production jobs. It
is implemented by script languages and Linux built-in database, which makes the deployment
and customization fast and easy.

The recent development of the system includes the integration of OSG resources, and
automatic diagnostics on OSG sites and hosts.

The system has been deployed in most of AMS computing centers and used for daily
production management.

References
[1] Ting S 2013 Nuclear Physics B-Proceedings Supplements 243 12-24
| Binder K 1987 Quantum Monte Carlo Methods 241
[3] Cohen D I and Chibnik M 1991 Introduction to Computer Theory 2nd edition (Wiley)
] Zhou S 1992 LSF: Load sharing in large heterogeneous distributed systems I Workshop on Cluster Computing
vol 136
[5] http://research.cs.wisc.edu/htcondor/htc.html
[6] Gentzsch W 2001 Sun Grid Engine: Towards creating a compute power grid Cluster Computing and the
Grid, 2001. Proceedings. First IEEE/ACM International Symposium on (IEEE) pp 35-36
[7] Yoo A B, Jette M A and Grondona M 2003 Slurm: Simple linux utility for resource management Workshop
on Job Scheduling Strategies for Parallel Processing (Springer) pp 44-60
[8] Prenneis Jr A 1996 Proceedings of Supercomputing Europe (SUPEUR) 176
[9] DeWitt D and Gray J 1992 Communications of the ACM 35 85-98
[10] Wall L et al. 1994 The perl programming language

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 092034 doi:10.1088/1742-6596/898/9/092034

[11] Van Rossum G et al. 2007 Python programming language. USENIX Annual Technical Conference vol 41

[12] Owens M and Allen G 2010 SQLite (Springer)

[13] Antcheva I, Ballintijn M, Bellenot B, Biskup M, Brun R, Buncic N, Canal P, Casadei D, Couet O, Fine V
et al. 2011 Computer Physics Communications 182 1384—1385

[14] Pordes R, Petravick D, Kramer B, Olson D, Livny M, Roy A, Avery P, Blackburn K, Wenaus T, Wiirthwein

F et al. 2007 The open science grid Journal of Physics: Conference Series vol 78 (IOP Publishing) p
012057

