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For quantum deformation of classical finite-dimensional Iie super—
algebras we give an explicit formula for the universal R-matrix. This
formula generalizes the analogous formulase for olassical quantum
groups obtained by ¥. Rosso, A.N. Kirillov and N. Reshetikhin, Ya.
Boibelman and S. Levendorskii. Our approach is based on careful analy-
Bis of rank two algebras, a ocombinatorial struoture of the root Bys-—
tems and algebraioc properties of g-exponential functions. We don't use
quantum Weyl group.

1. Introduction

V.G. Drinfeld [1] and M. Jimbo [2] introduced the notion of quantum
group that gives a number of examples for solutions of Yang-Baxter
(¥B) equation. Later, Drinfeld [3,4] defined the quasitriangular Hopf
algebrag with the universal solution of YB equation. Namely, quasi-
triangular Hopf algebra is a Hopf algebra 4 with an additional element
R ¢ A®94 such that

A(z) = RACDRY, ze4, (1.1)

(A®td)R = R'™PR?3,  (1deA)R = R'3R'Z. (1.2)
This element R satisfies the YB equation and is called "the universal
R-matrix". The method of oconstruction the quasitrianguiar Hopf al-
gebras is based on the gquantum double notion [3]. If 4 is any Hopf al-
gebra then the quantum double W(4) is a guasitriangular Hopf algebra
(~ A®4’ aB a veotor space) with the oanoniocal R-matrix

R=3 ec®e‘, (1.3)

where €, and e® are dual bases in 4 and 4’. For any quantum group

Uq(g) {the Drinfeld-Jdimbo deformation of Kao-Moody algebra g) there
existe an epimorphism to Uq(g) from quantum double of the ocorrespon-—
ding Borel subalgebra: W(Uq(b_,_)) -+ Uq(g). Thus any quantum group Uq(g)
is a quasitriangular Hopf algebra.
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The problem is to obtain an explicit expression for the universal
R-matrix direotly in terms of U _(g). General form of such an expres-—
sion was found by Drinfeld [3,4]). M.Rosso [5) obtained the explioit
factorized expression of the universal R-matrix for Uq( al(n)) by exa-
mining the identification of Uq(al(@)) with quantum double of Uq(b+).
This formula was generalized in [6,7] to quantum deformation of semi-
simple Lie algebras using g-Weyl group.

We deduce the analogous formula for quantum supergroups (g-deforma—
tion of finite-dimensional simple Lie superalgebras). Our proof is
different to that of [5-7]. We don't use quantum Weyl group. Our ap-
proach is based on oareful analysis of rank itwo algebras, a combinato—
rial structure of root systems and algebraic properties of g-exponen
tial funotiions.

2. The Cartan-Weyl basis for quantum supergroups

Let g(4,8) be a ocontragredient finite-dimensional superalgebra with
a symmetrizable Cartan matrix 4 (i.e., 4 = DA'®’, where A(B)=(a€3)) is
a symmetrio Cartan matrix,and D=Diag(d1,...,dn), d‘¢0) and with a par—
ity funotion 8: {(simple roots}-+{0,7}. We define the quantum supergroup
Uq(g(A,G)):Uq(g) as the Drinfeld-Jimbo deformation of U(g). The defi-
nition differs from that of [3,4] by replacing the Lie brackets [ , ]
with supercommutator [a,b] = ab - - (—1)6 (a)® (blpy and supercommutati-
vity of tensor product [8]. For the comultiplication we use the follo-

wing formulas:
~h
Aq(eu{ = 6%9 I+q
To define the COartan—-Weyl basis in Uq(g) we ochoose a normal order

Z: in the reduced system of positive roots E+ and define root vectors

on induotion as follows [8]: If T=0+f, a<Y<f and there are no other
positive roots a‘', B’ betwesen a and f such that T=a'+f’ then we set

h
¢ _ t
O I, Ajfe,)=e,0q +Ioe, . (2.1)

= . B ()8 () ,(0,3)
e, = {em.eﬁlt2 = 8,85 ~ {-1) q 8Py (2.2a)

= - g B (RIB(B) (A, f3)
e, = [e—ﬁ'e—ala i= e 58, -1) q @ _ 5 - (2.2b)
We have the following properties of the Cartan—Weyl generators.

Proposition 1. [8] (1) Por any v€Z, following relation ts valid

_ Py Ry
le,,e_ 1 =("~-q ")al(q), (2.3)

where a,(q) ia a function of q.
(ii) For any a,P € 2+, a<p, we have
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R, By K,
[ea,eﬁ]q = Z th"’t 9719”2'“9% . (2.4)
a(77..-2’n<f3

uhere ¥, R,7, = a+f.

&

3. The universal factorized R-matirix for quantum supergroups

We Bet
exp,(Z) := ) a/m) (3.1a)
n20
where
= PR = - n -

(n)t=01), 2, (n)q , (R)q = (1-¢7)/(1-q9). (3.1p)
For any 71€Z, we set also

T o 2 1

R := ez'pqy[ayrqw_rer] s (3.2)

L 2 _ = (1P I ()
where ey = eyQI, e_y = I@e_y, qr = (-1) q R
Theorem. For any quanium supergroup Uq(g) the universal R-matrizx
can be written in the following form

r=(n ﬁr] qzd”h‘@h’ , (3.3)
v€Z,
where the order in the product coinctdes with the chosen normal order
(8))71 19 the inverse to symmetric Cartan matriz.

in 3, d”=(a% 3
Proof. Let R=[]Ry and @: Uq(n+) - Uq(n_), (g=n_ohen ), be isomor-
4
phism defined by @(e, J=e_, for simple root vectors. We can prove the
t i
following lemma by direct ocomputations in rank two supergroups.
Lemma. For any rank two quantum supergroup we have:
s . » 1—1p . » e -1 _ = _ =1
(1) [AE (e ):(R,) 'R] = [Aq (eg)sH (Rg) "1 =0, (@=q ')y (3.4)
ty the normal order 3, 18 (0,7, s.++7,:B)s
(ii) the equation system

By (6a) X = X b5 (6 )y t=Treoesn (3.5)

has the unique solutlion in the apace (Iep) Uq(n+).

Here the comultiplication A; (Aa') is opposite to Aq (Aa).As a co-
rollary we prove that the factorized R-matrix satisfies the equation
(1.1) A’=RAR”! and does not depend on the normal ordering of the root
system. Note that the statements of the lemma are valid for any gquan-
tum supergroup and we may oonsider the reduced R-matrix

~ -3d, h,®h
R=RrRq Yt (3.6)
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as the unique solution of equations (3.5) in the speocies (I&p) Uq(n+).
The remaining properties (1.2) of R-matrix we are able to oheck direo-
tly for quantum supergroups of A-type using the following properiies
of g-exponential funoctions.

Proposition 2. Iet z and y are G-commuting variables,zy=Gyz, G=q |
then

oap, (T+y) = ©xp () exp,(y), (ezp, ()™= ezp_(-z) (3.7a,b)
Q

Proposition 3. (g-4nalog of H Adamar tdentity) Iet z ts any
element of A then

ezp,(z) Y (exp () "= 4d eap (z) (y) =

. — 1
= eap (ad z) (y) =y + [ﬂ; T~ ad} a:](y), (3.8)
- q

where
ad) z (y) =tz, yl, od z (y) = (ZiE,yll . .0

n+1 _ = _ Ak
odlt'z (y) = lmady 2 W) 0 (182) 5 = 22 - 2). (3.9)

Using g-analog of the H' Adamar formula we show that (1.1) is Just
an additive property of g-exponents for g-ocommuting variables. For
other iype of gquantum supergroups we prove the equality

~ ~ _h
’ = ¥ d
Aq(ey) £1y3“ ilyﬁh (1ee +e,0q ) {(3.10)
in induotion on the height of root 7e€¥, and then repeat Rosso’s quan-
tum double arguments [51,[{71.
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