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Abstract

We solve numerically exactly the many-body 1D model of bosons interacting via short-range and
dipolar forces and moving in the box with periodic boundary conditions. We show that the lowest
energy states with fixed total momentum can be smoothly transformed from the typical states of
collective character to states resembling single particle excitations. In particular, we identify the
celebrated roton state. The smooth transition is realized by simultaneous tuning short-range
interactions and adjusting a trap geometry. With our methods we study the weakly interacting regime
as well as the regime beyond the range of validity of the Bogoliubov approximation.

(OMOM

1. Introduction

In the 30s of the last century unusual properties of the Helium-II were discovered. The subsequent results of
Allen and Misener [ 1], Kapitza [2] were simulating the development of theoretical models [3—7]. The qualitative
theory of superfluidity is due to Landau [5-7]. He deduced from the measurement of the specific heat [8] and the
second sound velocity [9] that the excitations in the Helium-II must have a peculiar spectrum, with the local
minimum [7]. The excitation at the local minimum has been called a ‘roton’. Later Feynman alone [10] and with
Cohen [11] formulated the very first, yet semiquantitative microscopic model explaining the origin of this local
minimum. Finally, in Helium the roton was observed experimentally [ 12], but rather unsatisfactory agreement
between theory and measurement suggested that the exact nature of the rotonic excitation was still missing. It
was finally understood many years later by means of subtle ansatzes for the roton’s wave function [13, 14]. The
existence and properties of the roton were also discussed in depth in studies of excitations of thin liquid-helium
films [15-17]. It should be emphasized that liquid Helium-II is a strongly correlated (with a small condensate
fraction) system, where roton’s characteristic momentum scales as the interatomic distance. There are still active
studies of the roton state in this regime [18].

At the beginning of XXI century the roton-maxon spectrum was predicted in completely different physical
system—dipolar gas of polarized ultracold atoms. The nature of the roton in ultracold gases is very different than
the one in Helium (see [19] for detailed discussion). Here it is induced by the interplay between the long-range
forces and a steep external potential in the polarization direction [20, 21]. Without an external potential the
system is unstable, as the dipoles would first tend to the head to tail configuration and then they will just fall on
each other due to the attractive part of the dipolar interaction. The system may be stabilized by the steep external
potential, which blocks the motion in the direction of the dipoles’ polarization. Roton emerges for parameters
close to collapse, for which dipoles are close to overcome the trapping forces. In this situation atoms cluster into
‘clumps’, regularly separated by a period corresponding to inverse of the roton momentum [22]. This happens
for relatively weak interactions, for which the system is in the Bose—Einstein condensate state. Therefore, one can
use the mean field or Bogoliubov description and find the roton state as a Bogoliubov quasi particle [20-39]. The
dispersion curve of such systems is related to a specific k-dependence of an effective interaction potential rather
than to strong correlations. Possibility of changing the particles polarization as well as almost free tuning of the
short-range interactions combined with the trap geometry modifications enables unprecedented flexibility in
the study of the roton spectrum in dipolar gases [20-39] ending with a recent experimental confirmation of the
phenomenon [40]. Usually the dipolar system is studied within the Bogoliubov approximation, so that there is
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no access to the detailed structure of the low-lying excitations. Only a few many-body investigations were
performed for the roton state using different techniques [41-44]. A good attempt can be made by a numerically
exact solution to a many-body problem with a rotonic characteristic. Even if found for relatively small number
of particles, modern experiments with a precise control over only a few atoms in optical lattices or single traps
(see for instance [45—49]) allow to test its physical predictions.

In this work we present numerically exact results for a quasi- 1D model, which admits the roton excitation. In
anumber of recent papers low excitation of 1D interacting bosons were already investigated (see for instance
[50-55] and references therein). The historically earliest example is the famous Lieb—Liniger model [56, 57]
comprising of N contact interacting bosons moving on the circle. Their seminal analytical solution predicts two
branches of elementary excitations, which was also observed experimentally [47]. The upper type-I excitation
branch was immediately recognized as the Bogoliubov excitation spectrum [58]. The states of the lower type-I1
excitation branch, were identified later with gray and dark solitons arising in the mean field theory of ultracold
gases [59-62]. Little is known about the classification of the exact many-body elementary excitations in the
dipolar gas. For (quasi)-1D model with bosons interacting only by repulsive dipolar interactions the lowest
energy states resemble rather type-II excitations known from the Lieb-Liniger model [53, 63] and for at least
weakly interacting regime the picture with two branches of elementary excitations is also expected in this case
[64]. On the other hand, in the dipolar systems, well understood Bogoliubov spectrum may exhibit alocal
minimum identified as a roton [20, 21]. When the interatomic forces are of the attractive character on the short-
scale, whereas the long-range part of potential is repulsive, the interplay of these two interactions may lower the
energy of the roton mode even to the ground state level. It opens a significant question: is it possible in a dipolar
analog of the Lieb—Liniger model that the two branches cross, such that it is a type-I1 Bogoliubov excitation, in
particular the roton, which would appear in the lower branch?

Itis a purpose of this work to show that by tuning short-range interactions and adjusting a ring geometry one
can continuously change [65] the character of the lowest energy state for a given total momentum of the system
from a type-1I excitation to the roton mode. We also analyze a numerically exact roton’s wave function in the
weakly interacting regime and its position and momentum properties.

2.Model

We consider N dipolar bosons confined in both transverse directions # and Z with a tight harmonic trap of a
frequency w, . Multi particle wave function is approximately the Gaussian in tight directions for all variables. It
requires the chemical potential ;¢ much smaller than energy of the first excited state in the transverse direction, p
< hw . In the longitudinal direction x the space is assumed to be finite, with the length L and with the periodic
boundary conditions imposing quantization of momenta in that direction. All atoms are polarized along the Z
axis. The above system corresponds to atoms moving on the circumference of a circle, having the dipole
moments perpendicular to the circle-plane. Hence, in analogy with nuclear physics [66, 67] and following

[59, 60] we call the lowest energy states of a given total momentum of the system, the yrast states. Our quasi-1D
system is governed by Hamiltonian

fZ

Zk ATA

Z ak+kak —k Vete (K) Ak, A, (1)
k1 Ky, k

with d; (ﬁk+ ) anihilating (creating) a boson with momentum k. The effective potential consists of the long-range
dipolar part and the short-range part, namely Veg(k) = Vi (k) + Vga(k).

The quasi-1D dipolar potential reads Vyq (k) = 3 “"" 20+ f (I k)?/2)with ], = \//i/mw, . The

parameter agq = mp,d?/(127/?) is a ‘dipole length’, Where dis an atomic dipole moment and y4, is the vacuum
permeability. This effective quasi-1D potential comes from integration of the full 3D dipolar interaction over
both transverse variables. The singular part coming from this integration is incorporated with the short-range
interaction. The function fwhich appears in equation (1) isequal to f (4) = u e“Ei(u), where Eiis the
exponential integral [68].

Stability of our calculations requires smoothing of a usual short-range interaction model used in the
ultracold physics, the delta function. We choose a Gaussian model [69—77], namely V;; (k) = Vye™ 2kr with r
standing for the potential range and | Vy| for its depth (V, < 0 later in this work). This step makes our model
more realistic, imitating the attractive van der Waals interaction. Note, that our short-range potential
interaction produces zero force atx = 0, thus the growing kinetic energy of the narrowing wave packet prevents
the system from the collapse. This indicates that our Hamiltonian is bounded from below. For convenience we

set Vo = — =2 witha < 0 mimicking an usual scattering length, which can by tuned in experiments by Feschbach
mip

resonances. The relation between Gaussian model parameters a, r and the real scattering length can be found in
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[78] and references therein. Below we use box units where L/27, 27tfi/ L and 472/:%2/mI? are the units of length,
momentum and energy, respectively.

Our effective potential V. g(k) corresponds to calculating the interactions along the circumference positions
with the periodicity of the system accounted for. However, we checked that it would not be changed significantly
ifa bit elegant but more realistic geometric distance over the chord was used (see appendix A).

We access the many-body eigenstates of Hamiltonian (1) by exact diagonalization using the Lanczos
algorithm [79]. Our calculations are performed in the Fock space spanned by the plane-wave basis with a
maximum total kinetic energy of the system Eppox = kinay/2—with single-particle momentum
kmax>>1/r—sufficiently high to assure convergence. Here we employ the fact that the total momentum of the
system K= Yk ﬁ,j' dy is conserved, [I:I , R ] = 0, soits eigenvalues K are good quantum numbers, used here
together with the total number of atoms N to label different eigenstates [N, K, i) enumerated by iwithi = 0
corresponding to an yrast state. We remind the Reader that for finite systems on the ring it suffices to consider
the eigenstates only up to K/N = 1/2[57, 60]. This comes from the presence of the so called umklapp process
[57]. Any eigenstate with a total momentum K’ = p - N + K (where p € Z, —% <K< ?) may be
understood as the state with a total momentum K with a shifted center-of-mass momentum (see figure 5 in
[60]). Note that such shifting does not change the internal structure of the state.

3. Results

In the following paragraphs of this work we consider two different situations, namely with weak interactions
where the depletion (given by P(K = 0) in figures 1(d) and 2(d)) of a ground state is less than 5% and stronger
interactions where its value is around 20%. Note, that the latter case is still far from the Helium-II regime. We
present in figure 1 our analysis of yrast states for the first situation. We consider N = 16 dysprosium atoms with
aqqa = 132 agand the potential range r = 182 a,, where a, is the Bohr radius. The value of r, in this case, equals
the characteristic length of the attractive part of van der Waals interactions for dysprosium atoms [80]. We
initially set aand w corresponding to the usual situation where the yrast states rather resemble the lowest
excitation branch from the Lieb—Liniger model [63, 64] and compare their energies (black squares in figure 1(a))
with the Bogoliubov spectrum (black dashed line) given by:

k2 (k2
€ = \/?(? + ZNVeff(k))- ©))

Then we continuously change a and w (a similar effect would be observed if one changed the length of the box)
keeping V.4(0) = const.. We finally end with the profoundly different spectrum (red points in figure 1(a)) with
the characteristic inflection point for K = 2. Our result suggest that at least some of yrast states may change their
character from collective type-II excitations [63] to type-I ones. Moreover, we argue that the inflection point can
be identified with the roton-like state.

To test our hypothesis about the change of the character of the yrast state for K = 2 we compare it together
with the first excited state with the particle number conserving Bogoliubov approximation [81] sketched here
briefly. The spectrum in the Bogoliubov approximation is explained by the concept of quasiparticles that, in our
case, has to be rewritten in terms of Fock states in particle basis. We use the following Ansatz [82] for the
Bogoliubov vacuum (K = 0):

N/2

o0

~ Vi ad

|0)p o< ((ag)2 -2 —ka,jafk [vac), 3)
k>0 Uk

where [vac) is the particle vacuum and u, v = (\Jex/Ex £ JEx/ &) / 2 with E; = k?/2. A single Bogoliubov
excitation with a total momentum K is expressed by |N, K)z o (ux do ﬁf( + vk &J d_g)|0)p. Totracea
continuous transformation of the yrast state from type-1I to type-I excitation we evaluate the fidelities
[(N, K, iIN, K)p|?, whichis depicted in figure 1(b). For the initial values of the parameters aand w the first
excited state is a Bogoliubov excitation, whereas the yrast state remains a type-II excitation [63]—a fact observed
in the Lieb—Liniger result as well. Then we observe a gradual exchange of the states’ character as we modify the
effective potential ending with a complete role reversal of the two first states. Note, that the sum of the fidelities
(black dotted line in figure 1(b)) is almost equal to 1 at any stage of the transition. It means that Bogoliubov
excitation, to a good approximation, remains in a plane spanned by the two lowest eigenstates.

To show the qualitative change of the yrast state for K = 2 we calculate the normalized normally ordered
second order correlation function (widely used in the quantum optics)
& (x) = (T x)TTO)T(O0)P(x)) /(TT(x)T(x)) (PT(0)¥(0)) (figure 1(c)), which can be measured in
experiments with ultracold atoms, see for instance [83—86].
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Figure 1. Results for weak interactions (a) energy of the yrast states fora = O andw, =~ 27 x 41 kHz (black squares) and

a~ —378 agandw, ~ 27 x 365 kHz (red squares) for N = 16 dysprosium atoms (49 = 132 agand r = 182 a,) as a function of
the total momentum compared with the corresponding Bogoliubov excitation spectrum (dashed lines). (b) Fidelities between the first
two eigenstates and Bogoliubov excitation for K = 2 asa function of aand w; (Nand aqq are constantand asin (a)). (c) The
normalized second order correlation function as a function of a distance for two states from (b) marked by color filled circles. (d)
Single-particle momentum probability P(k) for all states from (a) (five for each spectrum).

We observe a dramatic difference between two yrast states for border cases from figure 1(b) (marked as black
and red points). Namely that almost flat distribution typical for type-1I excitation in weakly interacting regime is
replaced by a function exhibiting an enhanced regular modulation with the number of maxima given by K,
which is the roton momentum. We have the following interpretation of this behavior. The function g,(x) is
related to the probability of finding a particle at position x provided that the first one was measured atx = 0. We
expect that the second order correlation function should have modulation with periodicity depending on the
typical non-zero single particle momenta in the system. The value of a single particle momenta is a random
variable given by distribution, which is often not peaked at the total momentum of the system (as discussed in
details below). Therefore the modulation in g, function, if there is any, does not have to correspond to the total
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Figure 2. Results for stronger interactions (a) energy of the yrast states fora = O andw, =~ 27 x 35 kHz (black squares) and

a = —2080 agandw, ~ 27 x 190 kHz (red squares) for N = 10 atoms (a44 = 792 agand r = 272 a,) as a function of the total
momentum compared with the corresponding Bogoliubov excitation spectrum (dashed lines). (b) Fidelities between the first five
eigenstates and Bogoliubov excitation for K = 3 asa function of aand w, (Nand a4q4 are constant and as in (a)). (c) The normalized
second order correlation function as a function of a distance for two states from (b) marked by color filled circles. Inset: comparison
between yrast states K = 2 (dashed blueline), K = 3 (orange dotted line) and K = 4 (red line) for the spectrum with the local
minimum (d) single-particle momentum probability P(k) for all states from (a) (five for each spectrum).

momentum K. In this respect the Bogoliubov excitations, i.e. states bA,j: xlvac), are special, because a typical non-
zero single-particle momentum is equal to the total momentum of the system. The fact that the g, function of the
yrast state with K = 2 has also modulation with period 1/K ensure us that we deal with a Bogoliubov excitation
in the yrast states’ branch.

Note, that for a small number of particles we are able to find stable solutions corresponding to realistic mean
field gas parameters (NV,(0) = —23.98, NV44(0) = 26.98) only for the Bogoliubov spectrum with the
inflection, not to the one with the characteristic local minimum. Using the mean field gas parameters (NV,(0),
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Figure 3. Probability density histograms of distances between particles for N = 7 atoms, agq = 1131 ag, r = 272 ag,a =~ —2971 a,
andw, ~ 27 x 190 kHz calculated for 107 (blue line), 10° (red line) and 10* (black line) configurations. The mean field gas
parameters are the same as for the roton state in figure 2(c). The distance between maxima in the roton state (red histogram) equals
1/Kior (Kior = 3in this case). The particles’ positions were drawn with the Metropolis algorithm. Inset: graphical interpretation of the
histograms for the roton state.

NV44(0)) for which the Bogoliubov spectrum has the local minimum implies much stronger interactions for our
few-body system. Our result would approach Bogoliubov’s predictions in the limit of N — oo (see appendix B).

Here, we turn to the strong interactions scenario with N = 10, which is beyond the Bogoliubov
approximation. In figure 2 we summarize our findings, where the characteristic local minimum for K = 3is
present. In this case the spectrum is calculated with an accuracy of several percent only. Our previous
conclusions hold also for this situation. However, the role reversal of the lowest states is more subtle because of
higher momentum of the roton. At the end of the transition we stay with the yrast state, which still has the
overlap with Bogoliubov (50%). As in the previous case, the second order correlation function of our candidate
for roton exhibits the enhanced regular modulation with periodicity corresponding to 1/K., where Ko, = 3 s
the position of the minimum in the spectrum (figure 2(a)) and the total momentum of the yrast state. In the inset
of figure 2(c) we show the second order correlations functions of the yrast states with K = 2 or K = 4, which
also have traces of the modulations with a period 1/K.

The spectrum and modulation of the second order correlation function indicate that we still have a roton-
like state, even though this regime is beyond the Bogoliubov approximation validity range.

How does the calculated g, function correspond to an experimental imaging of particles positions using a
CCD camera? Having a many-body wave function of a given eigenstate, in particular the roton state, we can
explore a multivariate probability distribution of particles positions in a following way [62, 64]. Using
Metropolis algorithm we draw N positions from the multi particle probability distribution

Wi @) = |(XIN, K, i) 2 where X = (xi, ..., xy) is a position vector of N particles and W (¥) is the many-
body eigenstate in a position representation. We repeat this procedure many times, collecting configurations
{x} = {x], ..., X} from each (ith) shot. In the experiment it corresponds to measuring Nth order correlation

function. Due to the ring geometry it would be hard to average it as the center of mass for each {X}; is randomly
placed in accordance with a rotationally uniform distribution [64]. On the other hand, the distances between
particles in each configuration are translationally invariant and may reveal any potentially hidden pair
correlations for a given eigenstate.Indeed, the probability distribution of the inter particle distances is directly
related to the g,(x) function. How many samples one needs to estimate it? In figure 3 we compare probability
distribution function histograms of distances between particles in each configuration {X}; ‘measured’
numerically for different number of configurations involved in average calculated for the roton state with the
mean field gas parameters identical to the ones from figure 2(c) (K, = 3), but obtained for N = 7 particles due
to the factorial growth of terms in the expression for the many-body wave function with N. The distance between
ithand jth particle is defined as: dj; = min(|x; — xj[, 1 — [x; — x;|) with 0 < dj; < 0.5. As we can see the
results converge rather fast as we increase number of configurations involved. The inset of figure 3 explains why
we observe only the local maximum for x = 1/3L in the histograms and not for x = 2/3L also. Itis simply
because of our natural definition of distance between particles on a ring geometry.

Note that the presence, position, and depth of the roton minimum for both cases considered in this work are
tunable by varying the number of atoms N, trapping frequency w, and the short-range coupling strength as it
was predicted for the roton state in the mean field studies of ultracold dipolar gases [20]. We choose
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K.ot/N < 1/2 to minimize the impact of the umklapp process [57], discussed earlier in this work, on the
eigenstates.

To fully comprehend the difference between the two types of low-energy excitations we study the probability
P(k) = % (a] &) of finding a single-particle moving with momentum k for yrast states with various K. For both
weak and strong interactions the type-II yrast states (black markers in figures 1(d) and 2(d)) for K > 1beside
k = 0 mainly consists of k = 1 states, which is more visible as we increase K. It corresponds to a dominant role
of one of the Dicke states (exactly K atoms with k = 1 and N — Kwith k = 0) in their many-body wave function
[63, 64], especially for weak interactions. On the other hand, in the rotonic cases (red markers in figures 1(d) and
2(d)) we observe alocal maximum of P(k) for k = K, for the yrast states with K., which clearly resembles
recently published result by Ferlaino’s group [40]. It means that the yrast state for K, has a single particle
excitation character rather than a collective one, so that within our, experimentally achievable, procedure one
can completely change the character of the low-energy excitations.

4. Discussion

We find with our numerically exact treatment that all the properties of the roton state discussed earlier can be
understood by analyzing contributions of different Fock states to its wave function. In both cases of interactions
studied in this work, we find that the dominant contribution to the roton states comes from the so called W state
[0_k,.> ---(N — 1)g, O, L, ...,0x ), as one would expect for the Bogoliubov excitations [64]. The latter state is
important from the fundamental point of view, as representative of an entanglement class [87], and applied side
—it can be used to beat the standard quantum limit for the metrological tasks [88]. The state was recently
produced via non-demolition measurement [89]. According to our earlier findings [64], which holds also for
purely dipolar repulsion [63], the low-lying excitations of weakly interacting bosons are highly-entangled states
dominated by the Dicke state, a result of the bosonic statistics mainly. However, the interplay between the short-
range and long-range interactions of the opposite sign can promote the excitation with the dominant W state asa
low-lying excitation for K > 1 in the system.

Aswe can see in the appendix B the features of the many-body problem solution depends on the value of the
mean field gas parameters rather than the number of atoms itself as long as the depletion of the system is not big
(itis getting smaller and smaller as we increase a number of atoms). This makes our results for relatively small
number of particles, stronger interactions and tight trapping frequencies easier to verify experimentally. For
example if one wants to confirm our predictions for spectrum for the roton with the mean field parameters as in
figure 2(a), Kio¢ = 3, N = 600 and aring of 5 um length, it will require usage of dysprosium atoms with
agqa = 132apand w; ~ 27 x 1.9 kHz and tuning the short-range scattering length with Feshbach resonances.

5. Conclusion

To summarize, we showed that manipulating physical parameters in our model one can continuously alter the
character of a given yrast state from type-II excitation to the roton mode. We emphasize the fact that the effect is
already present in relatively small systems enabling use of the simplest exact diagonalization of the whole
Hamiltonian. All interesting properties of the roton-like mode both in the momentum and the position
representations come from the fact, that the W state plays the dominant role in the roton state in the plane wave
basis. Itis in the stark contrast to the weakly repulsive bosons, where the dominant role of the Dicke states is
observed [63, 64]. We show that the normalized second order correlation function, accessible in experiments,
displays characteristic enhanced regular modulation for the roton state. Within our many-body model we access
stronger regimes between the weakly interacting one and the Helium-II scenario, finding the roton mode also in
this case. Our results open new questions concerning quasi- 1D systems with both long-range and short-range
interactions. Is it possible to fully replace type-1I branch with type-I branch as low-lying excitations? Would
solitonic branch still exist in the spectrum? The thermodynamic properties of dipolar bosons were investigated
only approximately, in the weakly interacting regime [90-92]. The results presented in this paper can motivate
further research in this direction, but using full many-body approach accounting for the lower branch and the
transitions discussed here.
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Figure A1l. Schemes to discuss the relations between the real potential (left panel) and our approximation (right panel). Physically, the
interaction U,i,g between two atoms depends on the shortest distance between them, i.e. the length of a chord. From technical reasons
we approximate the ring with a box with periodic boundary conditions. In consequences the atoms in our model interact along the
short and long arcs connecting them. As we use in computation the Fourier transform there are small contributions to the interactions
energy coming from the copies of our system shifted by the multiple of the length of the circle L. The resulting potential is denoted as
Usf As discussed below, the differences between the real interaction potential Ui, and our model Uegrare very small.

Appendix A. The effective potential. Realistic versus periodic

In reality particles trapped in the ring-shaped potential would interact via interaction potential depending on the
shortest distance between them, the length of a chord. As we replace the ring with a box with periodic boundary
condition,the effective potential used in the main text (in the momentum representation) Vg(k) is only
approximate model of the physical interaction. We explain the qualitative differences, between the physical
interaction potential and our model in figure A1. Below we give details how our model Vg(k) arises, and
compare it with the real potential. We use the symbol U for the potentials in the position representation and V'
for potentials in the momentum space.

Let us start from purely theoretical situation, where atoms are confined in both transverse directions y and 2
with a tight harmonic trap but in the longitudinal direction X the space is infinite. Then one-dimensional
potential Up (x) takes the form:

7% g(x/1) n ffagq h(x/1)

Uip(x) = h
ip (%) ey i’ i where
1 2
g(Q) - mei%)
h(q) = %(—ZIqI + V27 (1 + qz)eqzzErfc(%)). (A.1)

In real experiment, when space need to be finite, atoms are trapped in the ring shaped potential (as we want to
avoid breaking translational invariance). Therefore they interact via potential depending on the length of the
chord (see left panel in figure A1):

™

Uring () = U1D(£Sin(—))- (A2)
m L

In this work, from technical reasons, we model such situation by a box of length L with periodic boundary
conditions. We introduce effective potential, which includes interaction with all imaginary copies of system:

Uett (x) = ) Uip(x + nL). (A3)

nezZ
Therefore, the effective potential in momentum representation is Vyg (k) = fo - e R Ug (x) dx (which satisfies
Veir (k) = F(Urp) (k) as well).
In figure A2 we compare both approaches. As we see both curves are almost indistinguishable in the regions

where the value of the effective potential is meaningful. A very small difference in all cases from figure A2 is
observed only on the potential tail.

Appendix B. Convergence towards N — oo limit

In the Bogoliubov approximation one operates with the mean field gas parameters NV;,(0), NV44(0) (in the box
units defined in the main text) with the assumption of weak interactions and large number of atoms N.

8
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Figure A2. Comparison between the effective potential U.g(x) calculated with periodicity accounted for (black line) and Uying(x) with
the distance over the chord (red dashed line). (a) Parameters as for the black squares from figure 1(a). (b) Parameters as for the red
squares from figure 1(a). (c) Parameters as for the black squares from figure 2(a). (d) Parameters as for the black squares from

figure 2(a). Insets: magnification of the region, where the difference between two methods are the most significant.
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Figure B1. Upper panel: energy of the yrast states as a function of the total momentum compared with the corresponding Bogoliubov
excitation spectrum (orange dashed line) for different number of atoms, from top to bottom N = 16 (green), 13 (red), 10 (blue), 7
(black). Mean field gas parameters for all the results are the following (in the box units defined in the main text): NV,(0) = —23.98,
NV44(0) = 26.98. For N = 16t corresponds to parameters from figure 1 (red squares spectrum). Bottom panel: fidelities between the
yrast states and Bogoliubov excitations for the yrast states from the upper panel. Color coding and parameters as in the upper panel
(from top to bottom: N = 16, 13, 10, 7).

Obviously, in the many-body approach, where N is finite, the energy of the pairwise interactions is significantly
higher. Then, one can ask how many atoms (how weak interactions) one needs to converge with the many-body
solution towards N — oo limit. To answer it, we study energies of a series of yrast states (left panel of figure B1)
and their overlaps with the corresponding Bogoliubov excitations given by fidelities (right panel of figure B1)
defined in the main text. We obtain both the spectrum and the fidelities for different number of atoms N ranging
from 7 to 16. The parameters for different N are chosen to always produce the same Bogoliubov excitation
spectrum with the inflection point as for red dashed line in figure 1(a) in the main text. We see that even for small
number of atoms N = 16 we obtain very good overlap with the Bogoliubov approximation, especially for

K < 2.However, our numerically exact solution includes all the possible correlations between atoms, hence it
cannot be fully reproduced by single Bogoliubov excitation.
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