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Abstract
We solve numerically exactly themany-body 1Dmodel of bosons interacting via short-range and
dipolar forces andmoving in the boxwith periodic boundary conditions.We show that the lowest
energy states withfixed totalmomentum can be smoothly transformed from the typical states of
collective character to states resembling single particle excitations. In particular, we identify the
celebrated roton state. The smooth transition is realized by simultaneous tuning short-range
interactions and adjusting a trap geometry.With ourmethods we study theweakly interacting regime
aswell as the regime beyond the range of validity of the Bogoliubov approximation.

1. Introduction

In the 30s of the last century unusual properties of theHelium-II were discovered. The subsequent results of
Allen andMisener [1], Kapitza [2]were simulating the development of theoreticalmodels [3–7]. The qualitative
theory of superfluidity is due to Landau [5–7]. He deduced from themeasurement of the specific heat [8] and the
second sound velocity [9] that the excitations in theHelium-IImust have a peculiar spectrum,with the local
minimum [7]. The excitation at the localminimumhas been called a ‘roton’. Later Feynman alone [10] andwith
Cohen [11] formulated the very first, yet semiquantitativemicroscopicmodel explaining the origin of this local
minimum. Finally, inHelium the rotonwas observed experimentally [12], but rather unsatisfactory agreement
between theory andmeasurement suggested that the exact nature of the rotonic excitationwas stillmissing. It
wasfinally understoodmany years later bymeans of subtle ansatzes for the roton’s wave function [13, 14]. The
existence and properties of the rotonwere also discussed in depth in studies of excitations of thin liquid-helium
films [15–17]. It should be emphasized that liquidHelium-II is a strongly correlated (with a small condensate
fraction) system,where roton’s characteristicmomentum scales as the interatomic distance. There are still active
studies of the roton state in this regime [18].

At the beginning of XXI century the roton-maxon spectrumwas predicted in completely different physical
system—dipolar gas of polarized ultracold atoms. The nature of the roton in ultracold gases is very different than
the one inHelium (see [19] for detailed discussion). Here it is induced by the interplay between the long-range
forces and a steep external potential in the polarization direction [20, 21].Without an external potential the
system is unstable, as the dipoles would first tend to the head to tail configuration and then theywill just fall on
each other due to the attractive part of the dipolar interaction. The systemmay be stabilized by the steep external
potential, which blocks themotion in the direction of the dipoles’ polarization. Roton emerges for parameters
close to collapse, for which dipoles are close to overcome the trapping forces. In this situation atoms cluster into
‘clumps’, regularly separated by a period corresponding to inverse of the rotonmomentum [22]. This happens
for relatively weak interactions, for which the system is in the Bose–Einstein condensate state. Therefore, one can
use themean field or Bogoliubov description and find the roton state as a Bogoliubov quasi particle [20–39]. The
dispersion curve of such systems is related to a specific k-dependence of an effective interaction potential rather
than to strong correlations. Possibility of changing the particles polarization aswell as almost free tuning of the
short-range interactions combinedwith the trap geometrymodifications enables unprecedented flexibility in
the study of the roton spectrum in dipolar gases [20–39] endingwith a recent experimental confirmation of the
phenomenon [40]. Usually the dipolar system is studiedwithin the Bogoliubov approximation, so that there is
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no access to the detailed structure of the low-lying excitations. Only a fewmany-body investigations were
performed for the roton state using different techniques [41–44]. A good attempt can bemade by a numerically
exact solution to amany-body problemwith a rotonic characteristic. Even if found for relatively small number
of particles,modern experiments with a precise control over only a few atoms in optical lattices or single traps
(see for instance [45–49]) allow to test its physical predictions.

In this workwe present numerically exact results for a quasi-1Dmodel, which admits the roton excitation. In
a number of recent papers low excitation of 1D interacting bosonswere already investigated (see for instance
[50–55] and references therein). The historically earliest example is the famous Lieb–Linigermodel [56, 57]
comprising ofN contact interacting bosonsmoving on the circle. Their seminal analytical solution predicts two
branches of elementary excitations, whichwas also observed experimentally [47]. The upper type-I excitation
branchwas immediately recognized as the Bogoliubov excitation spectrum [58]. The states of the lower type-II
excitation branch, were identified later with gray and dark solitons arising in themeanfield theory of ultracold
gases [59–62]. Little is known about the classification of the exactmany-body elementary excitations in the
dipolar gas. For (quasi)-1Dmodel with bosons interacting only by repulsive dipolar interactions the lowest
energy states resemble rather type-II excitations known from the Lieb–Linigermodel [53, 63] and for at least
weakly interacting regime the picturewith two branches of elementary excitations is also expected in this case
[64]. On the other hand, in the dipolar systems, well understood Bogoliubov spectrummay exhibit a local
minimum identified as a roton [20, 21].When the interatomic forces are of the attractive character on the short-
scale, whereas the long-range part of potential is repulsive, the interplay of these two interactionsmay lower the
energy of the rotonmode even to the ground state level. It opens a significant question: is it possible in a dipolar
analog of the Lieb–Linigermodel that the two branches cross, such that it is a type-I Bogoliubov excitation, in
particular the roton, whichwould appear in the lower branch?

It is a purpose of this work to show that by tuning short-range interactions and adjusting a ring geometry one
can continuously change [65] the character of the lowest energy state for a given totalmomentumof the system
froma type-II excitation to the rotonmode.We also analyze a numerically exact roton’s wave function in the
weakly interacting regime and its position andmomentumproperties.

2.Model

WeconsiderN dipolar bosons confined in both transverse directions ŷ and ẑ with a tight harmonic trap of a
frequencyω⊥.Multi particle wave function is approximately theGaussian in tight directions for all variables. It
requires the chemical potentialμmuch smaller than energy of the first excited state in the transverse direction,μ
= ÿω⊥. In the longitudinal direction x̂ the space is assumed to befinite, with the length L andwith the periodic
boundary conditions imposing quantization ofmomenta in that direction. All atoms are polarized along the ẑ
axis. The above system corresponds to atomsmoving on the circumference of a circle, having the dipole
moments perpendicular to the circle-plane. Hence, in analogywith nuclear physics [66, 67] and following
[59, 60]we call the lowest energy states of a given totalmomentumof the system, the yrast states. Our quasi-1D
system is governed byHamiltonian

å å= + + -
ˆ ˆ ˆ ˆ ˆ ( ) ˆ ˆ ( )† † †H

k

m
a a

L
a a V k a a

2

1

2
, 1

k
k k

k k k
k k k k k k

2 2

, ,
eff

1 2

1 2 1 2

with âk ( ˆ†ak ) anihilating (creating) a bosonwithmomentum k. The effective potential consists of the long-range
dipolar part and the short-range part, namelyVeff(k)=Vsr(k)+Vdd(k).

The quasi-1D dipolar potential reads = + ^
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parameter m p= ( )a m d 12dd 0
2 2 is a ‘dipole length’, where d is an atomic dipolemoment andμ0 is the vacuum

permeability. This effective quasi-1D potential comes from integration of the full 3D dipolar interaction over
both transverse variables. The singular part coming from this integration is incorporatedwith the short-range
interaction. The function fwhich appears in equation (1) is equal to =( ) ( )f u u ue Eiu , where Ei is the
exponential integral [68].

Stability of our calculations requires smoothing of a usual short-range interactionmodel used in the
ultracold physics, the delta function.We choose aGaussianmodel [69–77], namely = -( )V k V e k r

sr 0
1
2

2 2
with r

standing for the potential range and ∣ ∣V0 for its depth (V0�0 later in this work). This stepmakes ourmodel
more realistic, imitating the attractive van derWaals interaction. Note, that our short-range potential
interaction produces zero force at x=0, thus the growing kinetic energy of the narrowingwave packet prevents
the system from the collapse. This indicates that ourHamiltonian is bounded frombelow. For convenience we

set =
^

V a

ml0
2

2 with a�0mimicking an usual scattering length, which can by tuned in experiments by Feschbach

resonances. The relation betweenGaussianmodel parameters a, r and the real scattering length can be found in
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[78] and references therein. Belowwe use box units where L/2π, 2πÿ/L and p mL4 2 2 2 are the units of length,
momentum and energy, respectively.

Our effective potentialVeff(k) corresponds to calculating the interactions along the circumference positions
with the periodicity of the system accounted for. However, we checked that it would not be changed significantly
if a bit elegant butmore realistic geometric distance over the chordwas used (see appendix A).

We access themany-body eigenstates ofHamiltonian (1) by exact diagonalization using the Lanczos
algorithm [79]. Our calculations are performed in the Fock space spanned by the plane-wave basis with a
maximum total kinetic energy of the systemEmax=kmax

2 /2—with single-particlemomentum
kmax?1/r—sufficiently high to assure convergence. Herewe employ the fact that the totalmomentumof the
system = åˆ ˆ ˆ†K k a ak k k is conserved, =[ ˆ ˆ ]H K, 0, so its eigenvaluesK are good quantumnumbers, used here
togetherwith the total number of atomsN to label different eigenstates ñ∣N K i, , enumerated by iwith i=0
corresponding to an yrast state.We remind the Reader that forfinite systems on the ring it suffices to consider
the eigenstates only up toK/N=1/2 [57, 60]. This comes from the presence of the so called umklapp process

[57]. Any eigenstate with a totalmomentum ¢ = +·K p N K (where   Î -p K, N N

2 2
)may be

understood as the statewith a totalmomentumKwith a shifted center-of-massmomentum (seefigure 5 in
[60]). Note that such shifting does not change the internal structure of the state.

3. Results

In the following paragraphs of this workwe consider two different situations, namelywithweak interactions
where the depletion (given by P(K=0) infigures 1(d) and 2(d)) of a ground state is less than 5%and stronger
interactionswhere its value is around 20%.Note, that the latter case is still far from theHelium-II regime.We
present infigure 1 our analysis of yrast states for the first situation.We considerN=16 dysprosium atomswith
add=132 a0 and the potential range r=182 a0, where a0 is the Bohr radius. The value of r, in this case, equals
the characteristic length of the attractive part of van derWaals interactions for dysprosium atoms [80].We
initially set a andω⊥ corresponding to the usual situationwhere the yrast states rather resemble the lowest
excitation branch from the Lieb–Linigermodel [63, 64] and compare their energies (black squares infigure 1(a))
with the Bogoliubov spectrum (black dashed line) given by:

 = +
⎛
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Thenwe continuously change a andω⊥ (a similar effect would be observed if one changed the length of the box)
keepingVeff(0)=const..Wefinally endwith the profoundly different spectrum (red points infigure 1(a))with
the characteristic inflection point forK=2.Our result suggest that at least some of yrast statesmay change their
character from collective type-II excitations [63] to type-I ones.Moreover, we argue that the inflection point can
be identifiedwith the roton-like state.

To test our hypothesis about the change of the character of the yrast state forK=2we compare it together
with thefirst excited state with the particle number conserving Bogoliubov approximation [81] sketched here
briefly. The spectrum in the Bogoliubov approximation is explained by the concept of quasiparticles that, in our
case, has to be rewritten in terms of Fock states in particle basis.We use the following Ansatz [82] for the
Bogoliubov vacuum (K= 0):
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where ñ∣vac is the particle vacuum and  = ( )u v E E, 2k k k k k k with =E k 2k
2 . A single Bogoliubov

excitationwith a totalmomentumK is expressed by ñ µ + ñ-∣ ( ˆ ˆ ˆ ˆ )∣† †N K u a a v a a, 0B K K K K B0 0 . To trace a
continuous transformation of the yrast state from type-II to type-I excitationwe evaluate thefidelities
á ñ∣ ∣ ∣N K i N K, , , B

2, which is depicted infigure 1(b). For the initial values of the parameters a andω⊥ thefirst
excited state is a Bogoliubov excitation, whereas the yrast state remains a type-II excitation [63]—a fact observed
in the Lieb–Liniger result as well. Thenwe observe a gradual exchange of the states’ character aswemodify the
effective potential endingwith a complete role reversal of the twofirst states. Note, that the sumof thefidelities
(black dotted line infigure 1(b)) is almost equal to 1 at any stage of the transition. Itmeans that Bogoliubov
excitation, to a good approximation, remains in a plane spanned by the two lowest eigenstates.

To show the qualitative change of the yrast state forK=2we calculate the normalized normally ordered
second order correlation function (widely used in the quantumoptics)

áY Y Y Y ñ áY Y ñáY Y ñ( ) ≔ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† † † †g x x x x x0 0 0 02 (figure 1(c)), which can bemeasured in
experiments with ultracold atoms, see for instance [83–86].
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Weobserve a dramatic difference between two yrast states for border cases from figure 1(b) (marked as black
and red points). Namely that almost flat distribution typical for type-II excitation inweakly interacting regime is
replaced by a function exhibiting an enhanced regularmodulationwith the number ofmaxima given byKrot,
which is the rotonmomentum.Wehave the following interpretation of this behavior. The function g2(x) is
related to the probability offinding a particle at position x provided that thefirst onewasmeasured at x=0.We
expect that the second order correlation function should havemodulationwith periodicity depending on the
typical non-zero single particlemomenta in the system. The value of a single particlemomenta is a random
variable given by distribution, which is often not peaked at the totalmomentumof the system (as discussed in
details below). Therefore themodulation in g2 function, if there is any, does not have to correspond to the total

Figure 1.Results forweak interactions (a) energy of the yrast states for a=0 andω⊥≈2π×41 kHz (black squares) and
a≈−378 a0 andω⊥≈2π×365 kHz (red squares) forN=16 dysprosium atoms (add=132 a0 and r=182 a0) as a function of
the totalmomentum comparedwith the corresponding Bogoliubov excitation spectrum (dashed lines). (b) Fidelities between thefirst
two eigenstates and Bogoliubov excitation forK=2 as a function of a andω⊥ (N and add are constant and as in (a)). (c)The
normalized second order correlation function as a function of a distance for two states from (b)marked by color filled circles. (d)
Single-particlemomentumprobabilityP(k) for all states from (a) (five for each spectrum).
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momentumK. In this respect the Bogoliubov excitations, i.e. states ñ=
ˆ ∣

†
b vack K , are special, because a typical non-

zero single-particlemomentum is equal to the totalmomentumof the system. The fact that the g2 function of the
yrast state withK=2 has alsomodulationwith period 1/K ensure us that we deal with a Bogoliubov excitation
in the yrast states’ branch.

Note, that for a small number of particles we are able tofind stable solutions corresponding to realisticmean
field gas parameters (NVsr(0)=−23.98,NVdd(0)=26.98) only for the Bogoliubov spectrumwith the
inflection, not to the onewith the characteristic localminimum.Using themeanfield gas parameters (NVsr(0),

Figure 2.Results for stronger interactions (a) energy of the yrast states for a=0 andω⊥≈2π×35 kHz (black squares) and
a≈−2080 a0 andω⊥≈2π×190 kHz (red squares) forN=10 atoms (add=792 a0 and r=272 a0) as a function of the total
momentum comparedwith the corresponding Bogoliubov excitation spectrum (dashed lines). (b) Fidelities between thefirstfive
eigenstates and Bogoliubov excitation forK=3 as a function of a andω⊥ (N and add are constant and as in (a)). (c)The normalized
second order correlation function as a function of a distance for two states from (b)marked by colorfilled circles. Inset: comparison
between yrast statesK=2 (dashed blue line),K=3 (orange dotted line) andK=4 (red line) for the spectrumwith the local
minimum (d) single-particlemomentumprobabilityP(k) for all states from (a) (five for each spectrum).
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NVdd(0)) for which the Bogoliubov spectrumhas the localminimum impliesmuch stronger interactions for our
few-body system.Our result would approach Bogoliubov’s predictions in the limit of  ¥N (see appendix B).

Here, we turn to the strong interactions scenario withN=10, which is beyond the Bogoliubov
approximation. Infigure 2we summarize ourfindings, where the characteristic localminimum forK=3 is
present. In this case the spectrum is calculatedwith an accuracy of several percent only. Our previous
conclusions hold also for this situation.However, the role reversal of the lowest states ismore subtle because of
highermomentumof the roton. At the end of the transitionwe staywith the yrast state, which still has the
overlapwith Bogoliubov (50%). As in the previous case, the second order correlation function of our candidate
for roton exhibits the enhanced regularmodulationwith periodicity corresponding to 1/Krot, whereKrot=3 is
the position of theminimum in the spectrum (figure 2(a)) and the totalmomentumof the yrast state. In the inset
offigure 2(c)we show the second order correlations functions of the yrast states withK=2 orK=4, which
also have traces of themodulationswith a period 1/Krot.

The spectrum andmodulation of the second order correlation function indicate that we still have a roton-
like state, even though this regime is beyond the Bogoliubov approximation validity range.

Howdoes the calculated g2 function correspond to an experimental imaging of particles positions using a
CCDcamera?Having amany-bodywave function of a given eigenstate, in particular the roton state, we can
explore amultivariate probability distribution of particles positions in a followingway [62, 64]. Using
Metropolis algorithmwe drawN positions from themulti particle probability distribution
Y = á ñ

 ∣ ( )∣ ∣ ∣ ∣x x N K i, ,NK
i 2 2 where = ¼

 ( )x x x, , N1 is a position vector ofN particles and Y
( )xNK

i is themany-
body eigenstate in a position representation.We repeat this proceduremany times, collecting configurations

= ¼
  { } { }x x x, ,i

i
N
i

1 from each (ith) shot. In the experiment it corresponds tomeasuringNth order correlation
function. Due to the ring geometry it would be hard to average it as the center ofmass for each

{ }x i is randomly
placed in accordance with a rotationally uniformdistribution [64]. On the other hand, the distances between
particles in each configuration are translationally invariant andmay reveal any potentially hidden pair
correlations for a given eigenstate.Indeed, the probability distribution of the inter particle distances is directly
related to the g2(x) function.Howmany samples one needs to estimate it? Infigure 3we compare probability
distribution function histograms of distances between particles in each configuration

{ }x i ‘measured’
numerically for different number of configurations involved in average calculated for the roton state with the
meanfield gas parameters identical to the ones from figure 2(c) (Krot=3), but obtained forN=7 particles due
to the factorial growth of terms in the expression for themany-bodywave functionwithN. The distance between
ith and jth particle is defined as: = - - -(∣ ∣ ∣ ∣)d x x x xmin , 1ij i j i j with 0�dij�0.5. Aswe can see the
results converge rather fast as we increase number of configurations involved. The inset offigure 3 explains why
we observe only the localmaximum for x=1/3L in the histograms andnot for x=2/3L also. It is simply
because of our natural definition of distance between particles on a ring geometry.

Note that the presence, position, and depth of the rotonminimum for both cases considered in this work are
tunable by varying the number of atomsN, trapping frequencyω⊥ and the short-range coupling strength as it
was predicted for the roton state in themeanfield studies of ultracold dipolar gases [20].We choose

Figure 3.Probability density histograms of distances between particles forN=7 atoms, add=1131 a0, r=272 a0, a≈−2971 a0
andω⊥≈2π×190 kHz calculated for 102 (blue line), 103 (red line) and 104 (black line) configurations. Themean field gas
parameters are the same as for the roton state infigure 2(c). The distance betweenmaxima in the roton state (red histogram) equals
1/Krot (Krot=3 in this case). The particles’ positions were drawnwith theMetropolis algorithm. Inset: graphical interpretation of the
histograms for the roton state.
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Krot/N<1/2 tominimize the impact of the umklapp process [57], discussed earlier in this work, on the
eigenstates.

To fully comprehend the difference between the two types of low-energy excitations we study the probability
= á ñ( ) ˆ ˆ†P k a a

N k k
1 offinding a single-particlemovingwithmomentum k for yrast states with variousK. For both

weak and strong interactions the type-II yrast states (blackmarkers infigures 1(d) and 2(d)) for >K 1beside
k=0mainly consists of k=1 states, which ismore visible as we increaseK. It corresponds to a dominant role
of one of theDicke states (exactlyK atomswith k= 1 andN− Kwith k= 0) in theirmany-bodywave function
[63, 64], especially for weak interactions. On the other hand, in the rotonic cases (redmarkers infigures 1(d) and
2(d))we observe a localmaximumofP(k) for k=Krot for the yrast states withKrot, which clearly resembles
recently published result by Ferlaino’s group [40]. Itmeans that the yrast state forKrot has a single particle
excitation character rather than a collective one, so that within our, experimentally achievable, procedure one
can completely change the character of the low-energy excitations.

4.Discussion

Wefindwith our numerically exact treatment that all the properties of the roton state discussed earlier can be
understood by analyzing contributions of different Fock states to its wave function. In both cases of interactions
studied in this work, we find that the dominant contribution to the roton states comes from the so calledW state

¼ - ¼ ñ-∣ ( )N0 , 1 , 0 , 1 , ,0k k0 1 2max max
, as onewould expect for the Bogoliubov excitations [64]. The latter state is

important from the fundamental point of view, as representative of an entanglement class [87], and applied side
—it can be used to beat the standard quantum limit for themetrological tasks [88]. The statewas recently
produced via non-demolitionmeasurement [89]. According to our earlierfindings [64], which holds also for
purely dipolar repulsion [63], the low-lying excitations of weakly interacting bosons are highly-entangled states
dominated by theDicke state, a result of the bosonic statisticsmainly. However, the interplay between the short-
range and long-range interactions of the opposite sign can promote the excitationwith the dominantW state as a
low-lying excitation forK>1 in the system.

Aswe can see in the appendix B the features of themany-body problem solution depends on the value of the
meanfield gas parameters rather than the number of atoms itself as long as the depletion of the system is not big
(it is getting smaller and smaller as we increase a number of atoms). Thismakes our results for relatively small
number of particles, stronger interactions and tight trapping frequencies easier to verify experimentally. For
example if onewants to confirmour predictions for spectrum for the rotonwith themeanfield parameters as in
figure 2(a),Krot=3,N=600 and a ring of 5 μm length, it will require usage of dysprosium atomswith
add=132 a0 and w p» ´^ 2 1.9 kHz and tuning the short-range scattering lengthwith Feshbach resonances.

5. Conclusion

To summarize, we showed thatmanipulating physical parameters in ourmodel one can continuously alter the
character of a given yrast state from type-II excitation to the rotonmode.We emphasize the fact that the effect is
already present in relatively small systems enabling use of the simplest exact diagonalization of thewhole
Hamiltonian. All interesting properties of the roton-likemode both in themomentum and the position
representations come from the fact, that theW state plays the dominant role in the roton state in the planewave
basis. It is in the stark contrast to theweakly repulsive bosons, where the dominant role of theDicke states is
observed [63, 64].We show that the normalized second order correlation function, accessible in experiments,
displays characteristic enhanced regularmodulation for the roton state.Within ourmany-bodymodel we access
stronger regimes between theweakly interacting one and theHelium-II scenario, finding the rotonmode also in
this case. Our results open newquestions concerning quasi-1D systemswith both long-range and short-range
interactions. Is it possible to fully replace type-II branchwith type-I branch as low-lying excitations?Would
solitonic branch still exist in the spectrum? The thermodynamic properties of dipolar bosonswere investigated
only approximately, in theweakly interacting regime [90–92]. The results presented in this paper canmotivate
further research in this direction, but using fullmany-body approach accounting for the lower branch and the
transitions discussed here.

Acknowledgments

Weacknowledge fruitful discussionswith K Sacha, A Syrwid, A Sinatra andYCastin. This workwas supported
by the (Polish)National Science CenterGrants 2016/21/N/ST2/03432 (ROandWG), 2014/13/D/ST2/01883
(KP) and 2015/19/B/ST2/02820 (KR).

7

New J. Phys. 20 (2018) 123006 ROłdziejewski et al



AppendixA. The effective potential. Realistic versus periodic

In reality particles trapped in the ring-shaped potential would interact via interaction potential depending on the
shortest distance between them, the length of a chord. Aswe replace the ringwith a boxwith periodic boundary
condition,the effective potential used in themain text (in themomentum representation)Veff(k) is only
approximatemodel of the physical interaction.We explain the qualitative differences, between the physical
interaction potential and ourmodel infigure A1. Belowwe give details howourmodelVeff(k) arises, and
compare it with the real potential.We use the symbolU for the potentials in the position representation andV
for potentials in themomentum space.

Let us start frompurely theoretical situation, where atoms are confined in both transverse directions ŷ and ẑ
with a tight harmonic trap but in the longitudinal direction x̂ the space is infinite. Then one-dimensional
potential ( )U x1D takes the form:
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In real experiment, when space need to befinite, atoms are trapped in the ring shaped potential (aswewant to
avoid breaking translational invariance). Therefore they interact via potential depending on the length of the
chord (see left panel infigure A1):

p
p

= ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( )U x U

L x
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In this work, from technical reasons, wemodel such situation by a box of length Lwith periodic boundary
conditions.We introduce effective potential, which includes interactionwith all imaginary copies of system:

å= +
Î

( ) ( ) ( )U x U x nL . A.3
n Z

eff 1D

Therefore, the effective potential inmomentum representation is ò= -( ) ( )V k U x xe d
L kx

eff 0
i

eff (which satisfies
=( ) ( )( )V k U keff 1D aswell).

Infigure A2we compare both approaches. Aswe see both curves are almost indistinguishable in the regions
where the value of the effective potential ismeaningful. A very small difference in all cases from figure A2 is
observed only on the potential tail.

Appendix B. Convergence towards  ¥N limit

In the Bogoliubov approximation one operates with themeanfield gas parametersNVsr(0),NVdd(0) (in the box
units defined in themain text)with the assumption ofweak interactions and large number of atomsN.

Figure A1. Schemes to discuss the relations between the real potential (left panel) and our approximation (right panel). Physically, the
interactionUring between two atoms depends on the shortest distance between them, i.e. the length of a chord. From technical reasons
we approximate the ringwith a boxwith periodic boundary conditions. In consequences the atoms in ourmodel interact along the
short and long arcs connecting them. Aswe use in computation the Fourier transform there are small contributions to the interactions
energy coming from the copies of our system shifted by themultiple of the length of the circle L. The resulting potential is denoted as
Ueff. As discussed below, the differences between the real interaction potentialUring and ourmodelUeff are very small.
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Obviously, in themany-body approach, whereN isfinite, the energy of the pairwise interactions is significantly
higher. Then, one can ask howmany atoms (howweak interactions) one needs to convergewith themany-body
solution towards  ¥N limit. To answer it, we study energies of a series of yrast states (left panel offigure B1)
and their overlaps with the corresponding Bogoliubov excitations given by fidelities (right panel offigure B1)
defined in themain text.We obtain both the spectrum and the fidelities for different number of atomsN ranging
from7 to 16. The parameters for differentN are chosen to always produce the sameBogoliubov excitation
spectrumwith the inflection point as for red dashed line infigure 1(a) in themain text.We see that even for small
number of atomsN=16we obtain very good overlapwith the Bogoliubov approximation, especially for
K�2.However, our numerically exact solution includes all the possible correlations between atoms, hence it
cannot be fully reproduced by single Bogoliubov excitation.
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