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I. Introduction 
The autoresonant accelerator principle 

offers a conceptually simple and compact 
method for the generation of energetic pulsed 
ion beams in the multi-ampere current range. 
This accelerator scheme utilizes the lower 
branch of the Doppler shifted cyclotron mode 
of a relativistic electron beam propagating 
along a guide magnetic field inside a cylin-
drically symmetric conducting guide to serve 
as a traveling wave for the acceleration of 
ions loaded into the potential troughs of such 
a wave. This accelerator scheme thus combines 
the basic concepts of traveling wave and 
collective acceleration,2,3 in that while a 
traveling wave is used for the acceleration 
process, this wave is a collective eigenmode 
of the electron beam-magnetic guide field-
cylindrical guide system rather than a vacuum 
wave guide mode as in conventional traveling 
wave accelerators. 

Due to the collective nature of the medi­
um of propagation much higher effective accel­
erating fields can be sustained than in a 
conventional accelerator, allowing a substan­
tial economy of machine size. Two further 
characteristics of the lower branch of the 
Doppler-shifted cyclotron mode make it well 
suited for use as the traveling wave for the 
acceleration process: 

1) Of the 8 eigenmodes of the electron 
beam system, this mode is the only one with 
a phase velocity variable from zero to (asym­
ptotically) the velocity of the electron beam. 
Hence, proton energies upwards of 10 GeV (and 
larger energies for heavier ions) would be 
achievable using present day electron beam 
devices which typically operate in the 5-10 
MeV energy range.4 

Furthermore, the phase velocity can be 
varied simply by spatially varying the mag­
netic field along the length of the accelera­
tor, the phase velocity of the wave varying 
inversely with the strength of the magnetic 
guide field. Thus control of the phase veloc­
ity is relatively easy to achieve. 

2) Conventional traveling wave accelera­
tors employing vacuum wave guide modes must 
supply large amounts of RF power to the wave 
to compensate for losses since such waves are 
positive energy waves and hence their electric 
field energy is degraded by dissipative pro­
cesses, such as the acceleration process or 
cavity losses. However, the cyclotron wave 
used in the Autoresonant Accelerator is a 
negative energy wave. Hence in the accelera­
tion process where energy is delivered to the 
ions, rather than being degraded, the electric 
field energy of the wave actually grows. The 
reason this can occur is that the wave is not 
propagating in a passive medium, but rather 
an active medium with a large free energy 
source; namely the relativistic electron beam. 

The process of acceleration automatically ex­
tracts energy from the electron beam to both 
accelerate the ions and to increase the elec­
tric field energy of the wave. Hence the need 
for large RF sources to maintain the wave is 
removed. Furthermore, present day pulsed 
relativistic electron beam devices output 
pulsed power typically in the range of 1012 

watts over a pulse time of typically 10 - 7 s, 
with the larger machines achieving power 
levels well over 1013 watts.5 Thus, if the 
autoresonant accelerator achieves only a few 
percent efficiency of conversion of electron 
beam energy to ion energy, one could antici­
pate pulsed ion currents in the tens of ampere 
range or larger. 

In the following sections, a technical 
discussion of the accelerator proper and its 
operating parameter constraints, methods of 
generation of the desired eigenmode, and prob­
lem areas remaining to be investigated are 
presented. In Section II, the equilibrium and 
stability requirements for the electron beam 
configuration are presented. Section III con­
tains a discussion of the eigenmodes, with the 
basic operating principles of the accelerator 
discussed in Section IV. In Section V a meth­
od for generation of the wave is presented. 
Section VI contains an example of the perfor­
mance one might optimistically expect from 
such an accelerator. Problem areas one might 
anticipate in the efficient operation of such 
an accelerator are also briefly discussed. 

II. Electron Beam Propagation Requirements 
We consider a cold relativistic electron 

beam of current Ie and relativistic factor γ  
propagating interior to an azimuthally symme­
tric conducting vacuum wave guide along a 
guide magnetic field. = B , where comprise the usual cylindrical coordinate unit 
vector triad. Let the electron beam radius be 
given by a and the radius of the conducting 
guide given by b≥a, where we shall consider 
b a. We further specialize to the case γ>>1. 

It is well known, both from theoret­
ical investigation6,7 and experimental veri­
fication,8 that such an electron beam may be 
propagated provided that the equilibrium and 
stability conditions of such a beam are satis­
fied. 

In equilibrium, the beam propagates along 
the z axis with a velocity ve while undergoing 
an azimuthal rotation with velocity Vθ. For 
such an equilibrium to exist, it is necessary 
that the × restoring force, including the 
self magnetic field, be larger than either the 
destabilizing forces due to the self radial 
electric field or the centrifugal force asso­
ciated with the azimuthal rotation. The fol­
lowing conditions can be shown to be sufficient 
for such an equilibrium to exist:9 
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ω P
2 < γΩc/a 

or 
I e < 5Baγ ( l a ) 

2ωP
2 < γ2Ω2 

or 
I e < . 6B 2 a 2 γ ( l b ) 

Here ω P
2 ≡ 4 π n o e 2 / (γm) is the usual relativis-

tic plasma frequency, where no is the beam density as measured in the laboratory frame; 
m, the electron mass, and e, the magnitude 
of the electron charge. The quantity 
Ω ≡ eB/(γmc) is the usual relativistic elec­
tron gyrofrequency. 

The equilibrium equations have also been 
stated in terms of the total electron current 
Ie, beam radius a, and guide magnetic field strength B, where Ie is measured in kiloamperes; a, in centimeters; and B, in 
kilogauss. 

Furthermore, if we consider the anode of 
the electron beam diode as electrically convected 
to the walls of the conducting guide 
so that it resides at the same potential as 
the conducting guide, then the electron beam 
must have sufficient energy to overcome its 
own self potential as it propagates away from 
the anode plane. This leads to the usual Lawson 
criterion 

ω P
2 a 2 < 4 c 2 o r I e < 17γ ( l c ) 

Such an electron beam equilibrium has 
furthermore been investigated for stability 
both for the special case of electrostatic 
perturbations10 and the more general case of 
electromagnetic perturbations.11 A sufficient 
condition for stability is given by: 

ωP
2 < γ Ω c / b o r I e < 5 B a 2 γ / b (2) 

which reduces effectiely to Eq. (la) for bs:a. 
III. Electron Beam System Eigenmodes 
The linearized fluid equations governing 

the electron beam coupled with Maxwell's equa­
tions and boundary conditions at r=a appro­
priate to a conducting wall boundary (Ez(a)= Eg (a)=Br(a)=o) allow a determination of the linear eigenmodes of the system. Expanding 
the ζ component of the electric field in an 
appropriate Fourier-Bessel series: 

E z = Εn J 0(kr) exp(-iωt+ikzz) 
and expressing the and components in a 
similar suitable fashion, one obtains an eig­
envector equation of the usual form: 

= 0 
with the dispersion relation given by: 

ε ( ω , k ) ≡ = 
ω 

{ Ω 2 ( ω 2 - k 2 c 2 ) ε ( ω , k ) ≡ = Δω 2 (Ω 2 -Δω 2 ) { Ω 2 ( ω 2 - k 2 c 2 ) 

Δω2(ω2-k2c2) -ωp
2/γ2(ω2-kz

2C2) 
-Δω2(Δω2-ωP

2/γ2)(ω2-k2c2-ωP
2)2} (3) 

Here the quantity Δω ≡ ω-kzve and k 2≡k z
2+k 2. 

The boundary conditions require that 
J 0(ka) = 0 (4) 

We now wish to determine the zeroes of ε(ω,k) 
and the appropriate sign of the wave energy of 
various modes. 
A. Definition of Wave Energy 

The energy density and energy density 
flux of a vacuum electromagnetic wave is given 
by the usual formulas 

(Ε2+Β2)/8π (5) 
and 

c ( ) (6) 
4π ( ) (6) 

respectively. However, for waves propagating 
in an active medium, such as in the electron 
beam background here considered, energy re­
sides not only in the bare electric and magne­
tic fields, but also in the "sloshing" motion 
of the particles comprising the background 
medium, i.e., the relativistic electrons, as 
they move under the influence of the electric 
and magnetic field. 

The wave energy of such a system is de­
fined as the change in total energy of the 
electric and magnetic fields plus particles 
from the state where the wave is absent to the 
state where the wave is present. If this 
change is positive, then the wave is defined 
as a positive energy wave; if negative, then 
a negative energy wave. In coordinate systems 
in which the active medium is at rest, the 
introduction of a wave always causes an in­
crease in the sloshing energy of the particles 
and hence is a positive energy wave in that 
reference frame. However, in reference frames 
where the medium is not at rest, the intro­
duction of a wave, in addition to increasing 
the sloshing energy of the particles, may also 
tend to slow the velocity of the beam. If 
this second effect is strong enough, then the 
introduction (or growth) of such a wave actu­
ally results in less energy in the system than 
before. Such waves are called negative energy 
waves. The introduction of any dissipative 
effect into such a system will then result in 
the growth of this wave, rather than its damp­
ing as in the case of a positive energy wave. 

In terms of the Fourier components of the 
electric field, the wave energy and wave en­
ergy flux can be found in the following simple 
manner:12,13,14 

U = wave e n e r g y = G U = wave e n e r g y = ω 

and = wave energy flux = - G 
where G ≡ Ek2 ε ( ω , k ) where G ≡ 

8π ω [ c o f a c t o r s of Tii 

The quantities U and obey the usual energy 
conservation law 

tU + = R (7) 
where R is the energy density loss rate due to 
dissipative effects. 

The above definitions reduce to the usual 
case Eqs. (5) and (6) for vacuum electromag­
netic waves. 
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Β. Character of the Eigenmodes 
The 8 eigenmodes of Eq. (3) may be iden­

tified as follows: 
1) Four electromagnetic modes of the 

general form 
ω2 = k2c2 + [correction terms due to the 

presence of the electron beam] 
(8) 

where the effect of the electron beam is to 
remove the degeneracy in the forward traveling 
and backward traveling electromagnetic modes. 
The phase velocity of these waves is always 
greater than c for this wave guide configura­
tion, and hence they cannot serve as traveling 
waves for acceleration for this configuration. 
These are furthermore all positive energy 
modes, which might be expected since they are 
nothing more than slightly modified vacuum 
electromagnetic modes. 

2) Two Doppler-shifted plasma modes, with 
a dispersion relation appropriate for a strong 
magnetic field limit. For such a case the 
magnetic field effectively prevents transverse 
oscillation (except near the cyclotron fre­
quency) and hence the mode involves longitu­
dinal electron mass effects: 

ω = kzve ± (ωp/γe)(kz/k) (9) 

The phase velocity of the upper branch (posi­
tive sign) is always greater than ve , the 
electron flow velocity. Furthermore, it is a 
positive energy mode. The lower branch (nega­
tive sign) which is a negative energy mode, 
unfortunately has a phase velocity range 
bounded by c(l-1/γ)< vφ≤Ve c, so that it is 
not useful as a traveling wave. 

3) The final two modes are the Doppler 
shifted cyclotron modes. The dispersion rela­
tion for this mode is to good approximation 
given by 

ω kzve + Ώ 
k2c2 

ω kzve + Ώ k2c2 + ω P
2 (10) 

The upper branch suffers from the same defi­
ciencies as the upper branch of the plasma 
mode. However, the lower branch (negative 
sign) has the proper features of being both a 
negative energy wave and having a phase veloc­
ity variable from 0 ≤vφ<ve. Of the 8 eigen­
modes, this wave alone is suitable for use as 
the wave of a traveling wave accelerator for 
the electron beam configuration considered. 

IV. Principle of Acceleration 
We now consider the acceleration process 

proper. Let the electron beam be traveling 
from left to right, with the low phase veloc­
ity cyclotron wave with the ions trapped in 
the troughs of the wave entering the system 
at the left also. Furthermore, let the mag­
netic field be slowly decreased spatially 
from its initial value B1 at the left hand 
boundary to a final value B1. The electron 
beam, because it tends to be tied to the mag­
netic field lines, will expand in a flux pre­
serving manner, i.e., "a" will scale as B-1/2. 

The walls of the conducting guide are thus 
also considered to be expanded spatially in a 
similar manner, b a α B-1/2. 

Because only a spatial change is being 
made in the magnetic field, the frequency of 
the mode stays fixed at its initial frequency 
ωo, while the wave vector changes in order to 
continue to satisfy the dispersion relation: 

ωο kzVe- (11) 
and the boundary condition k.a = 2.4, the 
first zero of Jo. Thus the phase velocity is 
given by: 

νφ = 
ωο = ve ω0 Λ 

Ζ νφ = 
kz 

= ve ω0 + Ω 
Λ 
Ζ (12) 

and, therefore, the phase velocity of the wave 
increases down the accelerator. By tailoring 
the magnetic field appropriately so that there 
is no sudden acceleration which would cause 
the ions to be spilled from the potential well 
in which they are trapped, the ions may be 
brought up to a velocity comparable to ve. 

Equations (11) and (12) govern the adi-
abatic change in wave number and phase veloc­
ity of the wave. In order to calculate the 
change in the electric field amplitude, Eq. 
(7) must be used. For the temporally inde­
pendent system considered here we obtain 

ε 

[ Ek 
ω = R = -· [ 8π ω cofactors of Tii = R = -· 

[ 1/2 Minivφ3] (13) 
where the acceleration of the ions provide 
the dissipation. Here Mi, ni are the mass and 
density of the accelerated ions, respectively. 
Integrating Eq. (14) over the volume of the 
accelerator, we obtain the following equation 
governing the change of the electric field 
strength down the accelerator: 

πa2{ Ek
2 
c 

ωo(ωo-kzve) k2 + 1 Μ n i v φ
3 = πa2{ 4π c ωP2k2 

+ 
2 Μ n i v φ

3 = 
constant (14) 

In the foregoing analysis the response 
of the electrons was considered within the 
linear approximation. We therefore require 
that the perturbed velocity and position of 
the electrons remain small compared to the 
equilibrium values. Such consideration gives 
rise to the following constraints: 

eφ<<γmc
2 (15) 

and 
Ie>1.68γ [eφ/(γmc2)] (16) 

where φ is the electric potential of the wave. 
Furthermore, total energy flux must of course 
be conserved; which places a kinematical upper 
bound on the ion energy: 

Ieγm>>IiMi(γi-l) (17) 
where γi is the final ion relativistic gamma 
factor. 
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Equations (11), (14)-(17), along with the 
equilibrium and stability constraints, Eqs. 
(1) and (2), delineate the parameter range of 
operation of the accelerator. 
V. Generation of the Cyclotron Eigenmode 

It is evident that rather large amounts 
of power must be invested in the traveling 
wave to effect the acceleration of ions in 
the relatively short distances the extremely 
high electric fields would indicate possible. 
The pulsed electron beam source provides a 
convenient source of energy for growing the 
desired eigenmode at the desired amplitude 
and phase velocity through use of the nega­
tive energy character of the wave, without 
having to rely on large amounts of external 
RF power and attendant coupling problems. 

The introduction of a resistive liner 
within a section of the guide introduces a 
dissipation within the system and hence 
renders all negative energy modes unstable. 
Analysis indicates that such a scheme can 
indeed be employed to grow the desired eigen­
mode. 

In particular, it was found that a 
resistive liner must be constructed to be 
highly conducting in the direction, but  
with a predetermined conductivity σ in the , 

directions. The high conductivity in the direction is required to stabilize the non 
axisymmetric m=l kink instability which, for 
a scalar conductivity, has a higher growth 
rate than the purely axisymmetric mode. Such 
a liner could be constructed, for example, by 
using metallic rings of high conductivity al­
ternated with rings of material with the 
appropriate resistivity. Another possibility 
for partially quenching the growth of the m=l 
mode has been offered by M. Rosenbluth, who 
suggests that the resistive liner be sur­
rounded by a highly conducting material, with 
the liner chosen thinner than the skin depth 
of the cyclotron wave. Such aconfiguration 
would partially short out the electric 
field component associated with the m=l mode, 
thereby lowering its growth rate below that 
for the axisymmetric mode. 

Here we only consider the growth of the 
axisymmetric mode. For a low phase velocity, 
the electric field is given roughly as the 
gradient of a potential 
Ε = - ψ, ψ = Φ(r) exp (ikzz-iωt) (18) 

Interior to the beam (r<a) we have φ(r) α• 
J o(kr), while in the interior of the re­

sistive liner (r>a) Ko(kzr) is the appropri­
ate form for Φ(r). 
Using the appropriate matching conditions 
across the beam-liner interface, one arrives 
at the following dispersion relation for k : 

kz2/k  
aJo(k a ) 

= - ( 1 + ί 
4πσ 

) 
a K 0 ( k z a ) 

kz2/k  J o ( k a) 
= - ( 1 + ί ω ) K o ( k z a ) 

(19) 

where the frequency ω is governed by the 
cyclotron dispersion relation 

ω kzve- 
k2c2 

(20) ω kzve- k 2 c 2 + ω ρ
2 (20) 

Equations (19) and (20) can be solved 
approximately in the limit that 4π σ/Ω<< 1 by 
expanding Jo(k a) about its first zero to 
obtain the following estimate for the growth 
rate Γ of the wave : 

Γ 2Ω Ie 
k z a 4 π σ ( k z v e - ) 

(21) Γ 2Ω 
4ν ( 6 + k z

2 a 2 ) 2 16π 2 σ 2 + ( k z v e - ) 2 (21) 

which is stronelv Deaked about kzve.-Ω. By 
c h o o s i n g Ωa = 1.4 t h i s g rowth r a t e can be c h o o s i n g 

ve 
= 1.4 t h i s g rowth r a t e can be 

maximized to yield: 
Γ max  

Ie c 
Γ max  

1288 a at Ba ·√6 γ (22) 
The phase velocity of the most unstable wave 
is given by: 

vΦ c 
4πσ 

vΦ c Ω (23) 
Thus by an appropriate choice of 4πσ/Ω, the 
phase velocity of the wave may be chosen as 
required. Furthermore, the amplitude of the 
wave may also be selected by an appropriate 
choice of the length of the liner. Finally, 
we note that such a resistive liner also 
renders the negative energy plasma wave un­
stable. However its growth rate can be shown 
to be substantially smaller and hence the in­
clusion of an appropriately tailored resistive 
liner interior to the conducting guide allows 
a cyclotron mode with the proper phase veloc­
ity and amplitude to be generated. 

VI. Operating Parameters and Problem Areas 
As an example to illustrate the operating 

parameters for the autoresonant accelerator, 
we consider a 12 MV, 100 kamp electron beam 
with an initial beam radius of 1 centimeter. 
Then with a magnetic field decreasing from 
200 kG to 2.5 kG, acceleration of upwards of 
500 amperes of ions to the 1 GeV energy level 
can be achieved in an accelerator length of 
less than 5 meters. Of course, the electron 
beam and magnetic field requirements are 
fairly severe for this case; however, these 
numbers are meant only to be exemplary of the 
performance one might expect from an autoreso­
nant accelerator. 

There are of course numerous problem 
areas that remain to be completely investiga­
ted. Of particular concern are 1) nonlinear 
instabilities associated with the electron 
response to the cyclotron eigenmode for large 
values of electric field strength, and 2) 
trapped particle instabilities between the 
electrons and the ions trapped in the potential 
troughs of the accelerating electric field. 
The so-called decay instability has been 
briefly examined for the cyclotron mode and 
appears not to be a case of concern. Further­
more, because the electrons are used in a one 
pass fashion, one might anticipate that most 
instabilities would be convective in nature 
and possibly convect out of the system before 
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growing to an amplitude large enough to be 
disruptive. However, the complete answer to 
such questions of stability and performance 
will have to await further analysis, computer 
simulation, and experimental determination. 

This work was supported by ARALCO, Austin, 
Texas. 
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