
THE CONTROL SYSTEM FOR THE FERMILAB ACCELERATORS 

D. Bogert 
Fermi National Accelerator Laboratory* 

P.O. Box 500 
Batavia, Illinois, 60510, USA 

Summary 

The five cascading accelerators which together 
provide the protons and anti-protons for the Fermilab 
Tevatron fixed target and colliding beams experimental 
program are controlled using a flexible, yet operation­
ally unified, control system. The system, now func­
tional, has been developed in a somewhat evolutionary 
fashion over the last six years. Very little of the 
control system developed more than fifteen years ago 
for the original 500 GeV accelerator complex remains. 

The present system, which includes over 1000 
microprocessors, is characterized by a very extensive 
use of distributed parallel processing, as well as 
global access to readings and control points by users 
at twenty identical consoles. Significant design 
effort was expended to insure rapid parallel access to 
all data by any console user, whether machine operator 
or systems specialist. Generality of access to devices, 
uniformity in the presentation of data, simplicity of 
system utilization, and ease of programming modifica­
tion have all been guidelines during the development of 
the control system. A clock system synchronized to 
various important machine frequencies is used to 
schedule the operation of the accelerator. 

Accelerator controls is a dynamic field, and ex­
perience gained from the control and operation of the 
superconducting Tevatron collider continues to indicate 
new areas for the improvement of control of the Fermi­
lab accelerator complex, as well as being a 'laboratory' 
for assisting in the definition of requirements for the 
control systems of future accelerators. 

Introduction 

The Fermilab Accelerator Control system has been 
reported at several conferences and in several articles 
while it has been under development (1,2,3,4). These 
reports have tended to be organized around a tradition­
al demonstration of a controls architecture. In detail, 
that type of presentation is in fact useful, and it will 
not be ignored in this presentation. The installation 
and conversion work to complete a restructuring of the 
Fermilab control system has now been accomplished. 
This work, which began in the period 1979/80, has in­
cluded the following basic items: the addition of the 
superconducting accelerator, the addition of the anti¬ 
proton source, the reconstruction of the fixed target 
extraction system, and the replacement of the 8-GeV 
transport line. In addition to the above list of 
accelerator projects, the control system for the re­
maining existing pieces of the accelerator complex was 
replaced in varying degrees. The system now in place 
was not, however, completely designed and specified in 
advance. There are several reasons why this is so, and 
at least two are worthy of emphasis: 1) The project 
was quite large and probably exceeded the size of our 
staff to do such an all-inclusive detailed design study, 
and 2) Electronics and controls is a very rapidly de­
veloping technical field, and if one makes a very spe­
cific plan which then takes as long as six years to 
complete, and if one does not permit some degree of in­
novation in the work, then the completed project is 
very likely to be both outmoded and insufficient by the 
time of completion. Having admitted that a truly com­
prehensive plan of attack, with widely accepted inter­
mediate technical specifications, did in fact not exist, 

it is perhaps both instructive and an aide to under­
standing of the system as it is now in operation to 
make the assumption that such planning did exist and to 
investigate the Fermilab Control System from the point 
of view of a uniform overview and philosophy. That is 
going to be the conceptual map for this discussion. 

The most general description of the Fermilab 
Control System would concentrate on two important con­
cepts, and it is fair to state that these concepts were 
recognized as important in the very early states of the 
planning, but many of the details of the implementation 
of the concepts were very much the result of evolution 
and necessity. These concepts are called "Devices" and 
"Distributed Processing." They are both at the heart 
of the present system, and are, in our opinion, very 
important to the operation of the now existing acceler­
ator complex. Both of the phrases used in this presen­
tation, "Devices" and "Distributed Processing" are a 
shorthand for much more than the dictionary definition 
of the phrases. Originally, it was not possible to 
control the entire Fermilab accelerator complex from a 
single console; there were four independent control 
systems with somewhere between absolutely no intercom­
munication and an extremely limited and very slow mini­
mal intercommunication between them. To first order, 
the separation was complete, and an operator wishing to 
control an item on a system other than the one with 
which he was dealing at the moment was forced to phys­
ically move to a different console. The fact that 
there were four different, disjoint systems also did 
not tend to enforce uniformities of effort, and appli­
cations programs prepared for one system had little 
chance of being transported easily to another. 

The Concept of a "Device": 
Selective Acquisition; Uniformity; 

The concept of a "Device" is that it is possible to 
specify in the broadest possible terms a rather uniform 
entity, with sufficiently general properties and charac­
teristics that both servicing requests for information 
to be acquired from or delivered to it may be handled in 
a somewhat uniform fashion. In the most extreme case, 
all possible information to be transmitted to or de­
livered from the entire accelerator complex would be 
specified as a property of some type of "device." 

An additional feature of a "Device" would be that 
it should be possible to make multiple parallel accesses 
to the device without detailed attention to the behavior 
of the device at the originating requestor's level. At 
this point it is probably necessary to introduce a 
figure outlining the actual organization of the Fermilab 
Accelerator Control system, because it will be useful to 
refer to parts of the actual system, and system support 
features, in terms of the real, rather than a theoreti­
cal, system. Figure 1 is such an overview schematic. 
There are four distinct levels of equipment represented. 
The top row indicates twenty DEC PDP-11/34 or 11/73 
"Console" computers. The next level shows four DEC 
VAXes performing various "central" jobs. The level 
below indicates a row of "Front End" computers which are 
mostly DEC PDP-11/44's or 11/84's. The bottom area of 
the sketch illustrates the physical links and electron­
ics found in the various component parts of the acceler­
ator complex. A second useful schematic is found in 
Figure 2, which illustrates in expanded form the organi­
zation of distributed processing at a typical Tevatron 
service building. 

*Operated by Universities Research Association, Inc. 
under contract with the U.S. Department of Energy. 

198 



The twenty consoles are both physically and concep­
tually identical. They are located at widely separated 
locations about the site. (The physical hardware is all 
supported at some distance from the centrally clustered 
computers, and communications between the distributed 
hardware and the computers is via individual serial 
CAMAC links.) The system is structured so that a user 
may go to any console and request any "applications" 
program to execute readings, settings, etc. to any part 
of the accelerator complex. In principle, such a pro­

gram should operate "transparently" to the parallel ex­
ecution of any other program, or even of itself on 
another console. In practice, this extreme generality 
may not be achieved for two reasons; 1) It may be de­
sired for security reasons to limit certain changes in 
accelerator operating conditions to consoles in the 
Main Control Room, and 2) In some cases it may not be 
possible at a lower level to support an arbitrarily 
large number of requests for service at an arbitrarily 
high frequency. 

A device as defined for the Fermilab Control system 
may have an arbitrary combination of supported "proper­
ties." Some of the most general properties are read­
ings, settings, basic status, basic control, digital 
alarm, analog alarm, save/restore. It is not necessary 
that a device have any particular subset of these prop­
erties, and the details of the particular properties 

may vary widely. An example of a rather simple device 
might be a power supply which has a DAC connected to it 
to provide the control voltage, some basic ON/OFF and 
Reset controls, a status register, and an output volt­
age (or current read through a transducer) that is then 
monitored by an ADC as part of an MADC (multiplexed ADO 
facility. In this particular example there might actu­
ally be a single control card containing the DAC and 
status and control registers, while the analog readback 
might be from a physically distinct unit. 

All the appropriate addressing and accessing in­
formation needs to be provided at some level in the 
system to permit a general purpose request for service 
of a particular device property. It is in fact possi­
ble to conceive of a variety of methods for servicing 
particular device properties. It is illustrative to 
consider the reading property. The original Fermilab 
Control System contained, relatively speaking, few 
physical devices. If one summed over all readable 
variables, readable setting registers, etc., the number 
was of the order of 6000 such items,. spread over the 
four independent computer systems. It was possible, 
and efficient, to construct a data pool of all readable 
information which was constantly refreshed with the 
latest possible reading. It was possible to maintain a 
refresh rate of 15Hz. Any user program simply accessed 
a "mailbox' in memory which contained the given reading 

CONSOLES 

Fig. 1. The Fermilab accelerator controls computer network. 

199 



which would be no older than 1/15 second. As the tech­
nical requirements for the superconducting accelerator 
became evident, it was realized that the number of de­
vices and readings implicit in the system was going to 
increase dramatically. The comparable number of 6000 
has grown to over 100,000 and this does not reflect the 
fact that many of the readings themselves may be large 
vectors or arrays such that the distributed information 
may exceed several tens of megabytes. With technology 
available when the present system was envisioned, it was 
not possible to maintain a central data pool to be re­
freshed at a rate such as 15Hz, over a system containing 
data at this magnitude. Therefore, it was necessary to 
design a system based upon selectivity, which only 
gathered or distributed information on demand, and only 
for as long as it was required, following which the ad 
hoc data transmission paths would be torn down. 

The Motivation for Distributed Processing; Examples 

The above considerations combine with a few other 
primary facts to lead to the introduction of the second 
principal philosphic topic that is characteristic of our 
control system: distributed processing. If it is not 
possible to bring a very wide bandwidth of data to a 
central location for (possibly) very rapid and high fre­
quency processing, it is necessary to distribute the 

processing power to the locally resident data. This is 
only one of perhaps three primary concerns which are: 
1) The availability of large amounts of data for pro­
cessing at high frequency, 2) The availability of rela­
tively large amounts of CPU cycles, and 3) Local opera­
tion reliability and availability even in the absence 
of access to a central facility. 

At this time let us consider some examples of the 
systems which have been distributed in parallel about 
the Saver accelerator complex, and give some attention 
to the relative weights of the considerations outlined 
above. These systems may be located schematically in 
Figure 2. There are at least two systems which are 
unique to superconducting accelerator complexes which 
are good examples of such distributed parallel systems; 
the Quench Protection Monitors (QPMs) and the satellite 
refrigerators (FRIGs). Superconducting magnets may be 
quickly destroyed by the undetected growth of a "normal" 
region of conductor during a period when current is 
flowing in the superconductor. If a normality is not 
detected promptly, and additional current bypassed 
around a suspect magnet, while removing existing current 
in the coil to a "dump" and raising the temperature of 
the entire coil to "normal", then the Joule heating will 
melt the conductor within approximately two 60Hz line 
cycles. The necessary heating of the entire magnet is 
accomplished by discharging a capacitor bank into 

Fig. 2. The Tevatron controls system showing serial link, CAMAC crate, serial crate controller (TSCC), 
distributed microprocessors, local interaction (RLI), and clock. 

200 



special resistive "heater strips" built into the magnet 
inside the cryostat. Fermilab decided that the safest 
and most reliable means of achieving the desired pro­
tection was "active quench protection" which means that 
a processor is constantly monitoring the cryogenic 
element and watching for the development of a voltage 
drop across the superconducting element in question. 
It has been argued that it should be possible to per­
form this protection "passively", by which it is meant 
that some type of diode circuit could be used to de­
tect the growth of an abnormal voltage across an 
element, and upon detection, trigger the protective 
action. Fermilab did not choose this route because it 
was wished to schedule the protective activity in a 
controlled fashion (e.g. not fire the heater system un­
til beam was removed) and keep a buffer of magnet con­
ditions immediately prior to quench development and 
during the protective response activity. These buffers 
have been crucial to the understanding of magnet per­
formance during quenches, and it is Fermilab opinion 
that even in the absence of "active" protection trig­
gered by a computer the resultant "passive" system 
would want the information from them. There remains 
the question of insuring protection in the event that 
the processor stops or ceases to loop through its cal­
culation and protection code; Fermilab has addressed 
this point with the introduction of a "heartbeat" re­
quirement wherein if the processor does not execute a 
particular piece of code within a sufficiently narrow 
time window, the heaters will be fired and the magnets 
made normal. 

In principle, the above protection could be pro­
vided at a central location provided that the data 
could be brought there sufficiently quickly and that 
the central processor could execute the monitor code 
sufficiently rapidly. The problem is made much easier, 
however, by the decision to perform the protection 
function at 24 locations in parallel around the super­
conducting accelerator. The advantages are that a 
given processor need only perform 1/24th of the com­
parable CPU cycles, the processor need only sample 
1/24th of the data, and in the event of difficulty re­
sulting in a processor failure, only 1/24th of the ring 
is warmed up, making recovery much faster. 

A second example of a distributed system necessary 
for the Fermilab superconducting accelerator is the 
Satellite Refrigeration Control System (FRIG). The 
Fermilab refrigeration system is based upon one large 
Central Helium Liquifier Plant with at least eight dis­
tributed compressor stations and twenty-four satellite 
refrigeration plants distributed around the ring. 
Other refrigeration plant designs are possible which 
relay on far fewer distributed satellite refrigerators; 
it is possible at Fermilab, however, to maintain a 
1/24th arc sector at cryogenic temperatures (as long as 
one is not executing fast repetitive ramping) solely 
with the satellite refrigerator in a "stand along" en­
vironment. Since it was not possible to fit sufficient 
return header volume in the existing tunnel, and the 
magnets operate at one atmosphere, approximately 80% of 
the Helium inventory can potentially be lost within 20 
minutes of the onset of a site-wide power failure. 
Generally, such power failures have been of short dura­
tion, but the recovery of the central host facility for 
the control system can take times approximating twenty 
minutes (at best) to restore full human contact with 
the entire complex. The satellite refrigerator/com­
pressor distributed processors, however, have been de­
signed to operate with default parameters after an auto­
matic restart when power is restored. This can, and 
does, result in substantial savings of cryogens. The 
distributed FRIG processors do far more, however, than 
provide emergency support. They operate approximately 
fifteen closed loops and gather a local data pool of all 
digital and analog channels connected to the local re­
frigeration plant and the cold magnets. Most of this 
information is only used locally, being transmitted only 

on request upwards to the "host" system for applica­
tions pages currently executing or if requested by the 
central logging facility. 

In addition, the refrigerators can operate logical 
devices called "finite state machines" that can be used 
to program cooldown sequences, or quench recovery se­
quences, or cold operation, for example. 

Both Quench Protection and Refrigeration are ex­
amples of distributed parallel processing systems which 
are capable of very general communications between the 
host system and the individual subsystem. A "byte 
stream protocol" called "GAS" was written at Fermilab 
to support very general transfers of data, requests for 
data, and even the downloading of executable code seg­
ments. The protocol involves a seven byte header, 
which specifies in reasonably free form the following 
byte stream. This protocol has proven to be of rather 
general applicability and has been widely used at Fer­
milab for the more involved distributed parallel pro­
cessing systems. In detail, the byte stream is con­
structed in either processor, routed through CAMAC un­
der the control of the Front End computer, and buffered 
in FIFO's in the CAMAC 080 module shown in figure 2. 

Some distributed systems, however, are not essen­
tially "free form" in the data flow between the host 
and subsystem. In these systems, definite "mailboxes" 
are established in distributed shared memory, and any 
number inserted in such a mailbox will have a unique 
interpretation. An example of such a system is the 
Tevatron Dipole Correction Element Function Generator. 
The Tevatron has about 216 horizontal or vertical cor­
rection steering dipoles packaged in "Spool Pieces" 
around the ring. These must be programmed to achieve a 
closed orbit at injection, using information from a 
beam Position Monitor system to calculate correction 
angles, and then the correction currents must be scaled 
(in a non-linear fashion as it happens) as the beam is 
accelerated. The correction needs to be calculated at 
approximately 1kHz at each location to achieve the de­
sired accuracy. This is again an example wherein if 
the same calculation were to be attempted at a central 
location in real time, then both an extremely powerful 
CPU and quite a high communications band width, with 
excellent sychronization, would be mandatory. It is 
certainly easier, both conceptually and in practice, to 
distribute the job to 216 individual processors which 
are externally synchronized with the beam acceleration 
via the Tevatron clock system. 

Compromises with Reality; 
Comment on the Actual Elements of the Control System 

The discussion thus far was based upon the arti­
fact that one could imagine several general character­
istics of the Fermilab Control System and investigate 
the operation in a very general sense. At this point, 
it is necessary to consider the actual realization of 
the Fermilab Control System, and to comment on areas 
where an idealized representation or view of the opera­
tion disguises many hidden special considerations. 

In Figure 1 it may be observed that the lower 
level of the host computer system consists of approxi­
mately seven or eight "Front End" computers which in­
terface a uniform system of Digital Equipment Corpora­
tion computers to widely disparate technologies which 
actually in turn interface to the individual accelera­
tor components. One notes the existance of at least 
four or five communication technologies between Front 
Ends and the accelerator. These include CAMAC, Ether­
net, SDLC, some recently added IEEE 802.5 Token Ring 
support, and some remaining support based upon the 
original Lockheed MAC-16 computers and I/0 links emana­
ting from the MAC-16's. It is not too extreme to state 
that this mix is not ideal and definitely the result of 
evolution with limited technical support, thereby pre­
venting the complete replacement of older systems at 
all levels at times when newer systems are introduced. 

26 785 201 



Several of the technologies employed, but most no­
tably CAMAC (because of its wide use in the Fermilab 
system) are not ideal for byte-stream interprocessor 
communication. This is one example of an area that 
puts extreme demands on the CAMAC Front Ends, since 
byte stream transmissions must be structured and then 
"micro-managed" over the CAMAC link. A Block Transfer 
Return capability mitigates, but does not eliminate, 
the awkwardness. In addition, the Front Ends must all 
be prepared to handle multiple simultaneous requests 
for service from several console or central applica­
tions programs. Thus, even for relatively simple "dumb" 
CAMAC modules the Front End may have to execute some 
fairly involved management of a request for service; 
for example a CAMAC module might consist of a pointer 
set by one action and then service a channel offset by 
that pointer. Thus, the action consists of two sequen­
tial CAMAC commands. It is necessary that one not per­
mit one user to set a pointer and have a second user 
alter the pointer before the first user executes the 
second step of the service request. This implies that 
the Front End must manage all service requests in de­
tail, and not leave to the end user the task of, for 
instance, choosing a channel in the CAMAC module and 
setting the pointer. No resource in the accelerator 
system can be allocated on a fixed basis to a console 
user in this environment. 

The Fermilab Control System relies, exclusively, 
on the execution of compiled code at the "applications 
level" within the twenty console PDP-11's and within 
central applications processes as well. There is no in­
terpretive service (such as interpretive BASIC) offered 
at all. This is possible because three software ser­
vices are provided; the first is a central data base 
containing all the appropriate networking information 
and addressing, the second is the existence in each Con­
sole of a local Data Pool Manager which handles all net­
work requests for the acquisition of data, and the 
third is the extensive use of an application program 
called the Parameter Page with a Plotting facility. We 
will consider all of these facilities in some detail. 

The PDP-11 console computers operate under the RSX 
system. Thus, it is possible to execute several task 
images simultaneously at a console, and these tasks may 
in turn share software modules and resources. At 
present, the Console systems permit up to four applica­
tions task images to be executing at a single console, 
sharing (by allocation) the physical resources of the 
console. One of these tasks is designated a Primary 
Application or PA while all of the (up to three) others 
are Secondary Applications or SA's. Typically, an SA is 
started from a PA and then retains a limited set of re­
sources, such as a digital display scope. The SA will 
execute until another task requests the physical re­
source, at which time the SA is terminated. An exten­
sive set of software subroutines are maintained in a 
user accessible library so that most data acquisition 
and display activity at a console need not be rewritten 
for each newly created PA or SA. Let us consider how 
an end user at a console might fetch a simple reading in 
the Fermilab system; let us assume for the sake of dis­
cussion that this is a voltage read through an MADC 
unit somewhere in the Tevatron system. Also, let us 
assume that the user will employ the particular PA ser­
vice called the Parameter Page mentioned above. The 
user is then required to know only one piece of infor­
mation, the eight character name of the "Device" for 
which the voltage of interest is the "Reading Property." 
The user enters the name: for example T:HA15. The 
Parameter Page (as any other applications page would do) 
presents this name to a LOCAL Data Pool Manager program 
that is resident in the particular console PDP-11. An 
identical image of the DPM is running in each console. 
The function of the DPM is to collect data requests, 
actually obtain the requested data, and present the re­
sults to the PA and all SA's operating in the particular 
PDP-11. In order to process the request, the DPM must 

access the Central Data Base Manager program (DBM) 
which is resident in the Central (or Operational) VAX. 
This data base is the heart of the "Device" architec­
ture being described. The data base does not contain 
ANY current data; it is rather the repository of all 
the accessing (or addressing) information for all prop­
erties of all devices, as well as descriptors and alarm 
and status text. 

The physical connection between the Console PDP-11's, 
the Operational VAX, and all Front Ends is via 
DEC's Parallel Communication Link (PCL) hardware. 
There are three such shared links in the system and 
they are indicated in Figure 1. Each is a fixed time 
division multiplexing bus, and the Operational VAX 
serves as a "message switch" if one node attempts to 
access a node on another PCL system. A very specific 
networking protocol called ACNET has been written at 
Fermilab to support multipacketed message communica­
tions from one node to another over the PCL, including 
the possibility of "open-ended" multiple (or repetative) 
replies. The DPM creates a message packet which is 
transmitted to the Operational VAX and the DBM task. 
To decrease potential demands on the PCL bandwidth, the 
DPM will coalesce multiple requests for information in­
to single messages. Upon receipt by the DBM, the DBM 
uses the name (which is one of only three keys to the 
data base) to access the data base for the necessary 
information for addressing the Property requested (Read­
ing in our example). The DBM will create a reply packet 
which is sent back to the particular Console's DPM con­
taining the following general information: which Front 
End must be accessed, the Device "discriptive text" 
(about 24 characters), the word length of the reply 
data when received, the default frequency time descrip­
tor (e.g. 15 Hz, 1Hz, or perhaps what "clock event" the 
data are read at), and a "Sub-System Device Number" 
(SSDN) which will be used by the appropriate Front End 
to recognize the operation that it must perform, and 
containing sufficient addressing to permit it to know 
where to perform the operation. Finally, the DBM pro­
vides for the use of the Console a Process Data Block 
(or PDB) containing information regarding the nature of 
the "raw number" that will be returned from the Front 
End, what the "Common Transform" to convert the binary 
number to a raw unit (such as volts on an MADC) is, and 
finally the transformation, if any, to convert volts to 
an engineering quantity. If a transformation requires 
constants, these are also delivered. 

With the return of this information from the central 
data base, the DPM now creates a message packet for the 
appropriate Front End, DEC-T, in our example. The mes­
sage is delivered over the PCL to an ACNET task running 
in DEC-T. The request is queued in a servicing buffer, 
and if it is a request for multiple replies, it is left 
in place until torn down, which the requesting console 
DPM will indicate by refusing to accept any further 
reply messages. DEC-T in this case will determine from 
the SSDN encoded information that the service request 
is an MADC reading at a particular location, and set up 
the MADC controller to provide the reading. At the re­
quested frequency DEC-T will execute the reading, and 
deliver a response message packet over ACNET (again 
coalescing all similar frequency responses for the par­
ticular console into one message). When the DPM re­
ceives the message packet from its local ACNET driver, 
it will place the raw response into a "mailbox" in its 
local data pool, and indicate for the application pro­
gram (the Parameter Page in our example) the arrival of 
new information by incrementing an accompanying serial 
identifier. The appropriate calibrations may then be 
executed and the result displayed for the user. 

In outline, these are the necessary steps for data 
acquisition in the Fermilab system. Several other 
"properties" such as "Basic Status" are handled in an 
analogous fashion, although instead of calibration data 
the data base contains masks and text to explain par­
ticular bits of digital status words. "Settings" are 

202 



accomplished in a somewhat inverted fashion; wherein 
the applications services may accept information in en­
gineering units which may in turn be "anti-calibrated" 
into raw numbers for delivery to a particular Front End 
and module. An SSDN is used in an exactly analogous 
fashion to provide the Front End with a definition of 
the desired operation and its location. 

The example just cited is a particularly straight­
forward one. The situation can become rapidly more com­
plex (and even cumbersome) as the following discussion 
will illustrate. In the previous example, the actual 
acquisition of the "raw" number was effectively accom­
plished by the Front End. In the case of an "intelli­
gent" distributed parallel processor, such as a FRIG 
utilized for a Tevatron satellite refrigerator plant, 
there is an MADC unit directly controlled by the FRIG 
processor, which is constantly reading all channels 
from that private MADC at 1 Hz. In this case, the 
above example is modified in the following fashion. If 
a console applications page wishes to read a private 
FRIG MADC channel, which might have a name like 
T:A1SPWE, the local DPM will access the central data 
base via DBM and will again be delivered an SSDN and the 
other necessary information. In this case, however, the 
SSDN contains different information for the Front End, 
which might once again be DEC-T. The SSDN will contain 
system identification rather than absolute addressing 
information, as well as 'sub-channel' information that 
may be translated into a request for the precise MADC 
channel reading desired. In this case DEC-T will es­
tablish, using the GAS Protocol, a list of requests to 
be periodically serviced by the appropriate FRIG pro­
cessor, and will assign an appropriate list identifier. 
It is the job of the distributed FRIG processor to be 
prepared to return the read data to satisfy the list at 
the appropriate frequency, but the items o f the list are 
not respecified at each repetitive reading. DEC-T then 
creates a response message packet over ACNET and sends 
it toward the console requesting the data, until the 
console refuses to continue to accept it, at which time 
DEC-T then tears down the list request to the FRIG. At 
this point one may note an example of a type of incon­
sistency which arose from the fact that, as mentioned 
in the onset, the Control System was not designed and 
specified in advance. The GAS protocol used to communi­
cate between the CAMAC Front Ends and distributed pro­
cessors is in fact "more general" than the over-lying 
central data base can support. As an example, GAS is 
multidimensional, supporting arrays of devices indexed 
by device "types," device "aspects", and device "en­
tries". A type might be an MADC channel, a motor con­
troller, or even a closed loop. An aspect might be the 
set point of a closed loop, or its current reading. An 
entry might specify which one of "N" closed loops. It 
is possible to perform readings or settings using the 
GAS protocol by running the concatenated indexes in 
quite arbitrary fashion, and indeed it has often been 
found quite desirable to do so, especially when the im­
plicit distributed data blocks in the distributed pro­
cessors become quite large. Thus, there is a mismatch 
between some of the generality possible in GAS and the 
Device services supported in the Central Data Base, 
making it impossible to read arbitrarily a multi-dimen­
sional array using the Data Base Services. In these 
cases, the specification of the GAS "TAN" is made ex­
plicitly in an applications program, and delivered for 
service to the Front End, which in turn returns a raw 
array to the end user. In these cases, however, all 
data base services such as calibrations are forfeited, 
and must be explicitly provided by the coder of the 
applications program. 

It should be emphasized, however, that in spite 
of these limitations the GAS protocol has been widely 
used at Fermilab; specifically, it is used for communi­
cations to the following systems indicated on figure 1: 
Tevatron, Switchyard, and P-Bar Vacuum scanners; Teva­
tron, Switchyard and P-Bar Refrigeration; Tevatron, 

Main Ring, Switchyard, Booster, and P-Bar Beam Position 
Monitors (BPM's); Tevatron and Switchyard Quench Pro­
tection Monitors; Tevatron Power Supply Control; Teva­
tron Higher Order Function Generators; various GPIB 
(IEEE-488) devices interfaced using in-house designed 
systems; and sundry other special devices such as tune 
measurers and flying wire scanners. It should be noted 
well that these are complex devices serving a wide 
variety of purposes in several hundred locations. In 
spite of this extreme diversity, only ONE handler was 
necessary for all four of the CAMAC Front Ends, and a 
very few (less than a half dozen) GAS drivers to match 
differing computer configurations at the distributed 
micro-processor level were necessary. This situation 
should be contrasted with the over 75 specialized driv­
ers that have been constructed for other distributed 
processors which have not been designed to communicate 
using GAS but instead have been forced into communica­
tion via involved streams of CAMAC CNAF sequences. 

Before leaving the subject of the acquisition of 
data through the Front Ends, let us consider two more 
examples. These will be from the Main Ring and from 
the Linac. The conventional Main Ring Accelerator has 
not been significantly reinstrumented with the excep­
tion of the introduction of Tevatron style Beam Posi­
tion Monitors; conventional service has not changed in 
the service buildings. The Main Ring utilizes several 
Lockheed MAC-16's and two DEC PDP-11/55's which formerly 
were operated as Front Ends between the accelerator 
equipment and the Main Ring host, which was a Xerox 
XDS-530. This host supported a 15Hz data pool, which 
was fed directly by the MAC-16's. As part of the con­
version/integration project, the MAC-16's were not re­
placed for the Main Ring (although several were elim­
inated for the 8-GeV transport line, the switchyard, 
and one from the Booster). Therefore, the MAC-16's 
still collect the data from the conventional Main Ring 
modules exactly as they have for years past. A new 
interface was built, however, so that the data gathered 
by the MAC-16's for delivery to a 'higher' computer is 
now delivered to the Main Ring PDP-11 Front End called 
MR-DEC. Since the total size of the 15Hz vector so 
gathered is relatively small, it is possible for MR-DEC 
to keep a 15Hz data pool just as was done in the past. 
Thus, when an applications program requests a "Reading" 
from a device whose reading is supported through the 
Main Ring data pool in MR-DEC, the Console DPM delivers 
an ACNET message containing an SSDN to MR-DEC which 
uses the SSDN to point to a "mailbox" in its own memory 
containing the desired reading. A reply message is 
constructed (repetatively if so desired) and sent to 
the Console DPM as long as the Console DPM continues to 
accept the messages. In essence, the operation is 
exactly analogous to other front end procedures except 
that the data to be acquired are asynchronously and 
continuously delivered to a mailbox in MR-DEC. 

There are a few special cases where the present 
control system is a little less responsive than the old 
system, where application programs executed in the 
XDS-530. It was possible then, as it still is now, to 
execute certain MAC-16 I/0 commands directly at the re­
quest of the applications program. This might be used, 
for example, to gather some information which is not 
routinely provided in the MR data pool in MR-DEC. In 
the past it was relatively easy for the XDS-530 to re­
quest the MAC-16's to execute the I/0 commands in an 
ordered and synchronized fashion. In the multi-pro­
cessor host environment, with asynchronous messages de­
livered through ACNET drivers over the PCL links, it is 
harder to maintain definite synchronization, if desired, 
and certainly can be slower. 

Before 1983, the Linac was operated directly as a 
collection of I/0 devices of the Linac XDS-530 system. 
All the interfacing was purchased from the computer 
manufacturer and operated directly in response to com­
puter I/0 instructions. When consideration was given 
to the problem of retaining the 15Hz reading/setting 

203 



response times that the Linac systems personnel felt 
crucial to proper operation of the Linac, it was de­
termined that it was not possible to place an "inter­
face" between the existing Linac I/0 equipment and 
another computer manufacturer's I/0 architecture (e.g. 
DEC UNIBUS) without an unacceptable degradation of 
bandwidth. Therefore, it was necessary to reinstrument 
the Linac completely. This was done with a slightly 
different version of distributed parallel processing, 
utilizing Motorola 68000 series processors. One pro­
cessor was provided for each major Linac system, for a 
total of approximately fifteen. Each processor main­
tains its own complete data pool at 15Hz. The inter­
connection technology chosen was IBM SDLC on a fiber­
optic link. One of the stations serves as a "primary" 
station and all others are "secondaries", and the 
primary station supports both an SDLC interface and an 
Ethernet interface; the Linac Front End PDP-11 supports 
another Ethernet port on a UNIBUS card. When a Console 
DPM requests service from the Linac system, the Linac 
Front End creates a list of requested readings which is 
delivered to the Linac Primary. The Linac Primary in 
turn requests the appropriate secondary for the reading 
via a message over the SDLC system. The secondary 
finds the reading in its local data pool and provides 
the answer (repetatively if so requested) to the pri­
mary via the SDLC system. The primary creates a re­
sponse vector to be delivered over Ethernet to the 
Linac Front End, which in turn creates the ACNET reply 
message (repetitively if desired) to the Console DPM. 
Again, the analogy to other Front Ends and styles of 
data acquisition is quite good, although in detail 
given aspects of reading or setting services may be 
either faster or slower. It has been possible to main­
tain a 15Hz service between a human-controlled knob at 
a Console Applications level, a physical setting in the 
Linac, and within the same 15Hz cycle get a readback of 
the result of the setting. The closure of this "loop" 
is quite tightly time-constrained in the present system, 
however. The Linac has an additional feature of note; 
it is possible for any secondary to request and receive 
information from any other secondary, and to display 
such information locally to a user at a small local 
interaction station. 

Central Services 

There are some services which are provided cen­
trally rather than being executed when an operator re­
quests a particular application at a console. Some of 
the most generally used are the Logger facility, Cen­
tral File Sharing, Save-Compare-Restore, Alarm monitor­
ing and reporting (Aeoleus), the Central Data Base 
Editor (DABBEL), and the Applications program librarian. 

The Logger is an example of a Central Applications 
Program, one which executes on the Operational VAX. 
There is a local Data Pool Manager (DPM) on the VAX 
which operates exactly analogously to those resident in 
each Console PDP-11. The logger is a program which 
runs continuously. It gathers data at pre-selected 
time intervals from across the accelerator complex and 
saves the readings, with time stamps, in a "shareable" 
file. The Logger system may be controlled via what is 
known as "File Sharing" from a Console Applications 
program; the lists of data being collected may be ex­
amined and/or modified, and stored data may be accessed, 
evaluated, and displayed. 

"File Sharing" is a central service which allows 
programs from any node on the PCL network access to 
centrally stored files, both for reading and writing. 
The access is highly analogous to standard file access 
via Fortran on a single processor, but actual storage 
is on an Operational VAX disk. An arbitrary number of 
nodes may access a particular file simultaneously for 
reading, but only one node at a time may open a parti­
cular file for writing purposes. File sharing is the 
most commonly used means of sharing information across 

all nodes. In this regard File Sharing serves a pur­
pose frequently assigned to a data base in other con­
trol systems architectures. 

"Save-Compare-Restore" is a system whereby set­
tings of a predetermined listing of devices, kept in a 
File Sharing list, may be collected (using the "Save 
Property" in the Data Base) and the settings saved in a 
file, with a time stamp and descriptive heading. At a 
later time this "Save" file may be used either to re­
store the accelerator subset of devices to the identi­
cal condition as at the time of the "Save", or to com­
pare the then existing state of the accelerator with 
the condition at the time of the "Save". 

Alarm reports are also serviced by the Operational 
VAX, although the exception conditions are actually 
noted and reported as far "downward" into the accelera­
tor control system as possible, either in distributed 
processors or in the Front Ends. As the exception con­
dition report is passed up through the system, an 
"Error Message Code" (EMC) is constructed. The EMC may 
be thought of as an "inverse address" and is a unique 
"trail" of the exception report. The EMC's are also 
recorded in the Data Base and provide an alternate key 
(in addition to the Device Name) for entry to the Data 
Base. The VAX central alarm server (Aeoleus) receives 
the EMC and the exception condition value. It accesses 
the data base using the EMC to pick up the device de­
scriptor, appropriate masks, and error message texts. 
This information is then forwarded to all Consoles, 
where copies of an SA are running which post the alarms 
in windows on a screen specific for this purpose. The 
windowing may be established at each Console for the 
purpose of the operator, and may be different at each 
Console. 

The central data base which is accessed by the Data 
Base Manager (DBM) or Aeoleus, among others, must be 
capable of being edited for the addition or modification 
of devices. A program DABBEL exists to permit the en­
try, modification, and a formatted reporting of devices. 
DABBEL is biased toward making the "mass entry" of de­
vices via prepared structured files as easy as possible. 
A screen editor service for single device entry or modi­
fication with extensive assistance for a user less fa­
miliar with the structure of the data base is under de­
velopment. 

Applications programs for execution on the Consoles 
are created on the development VAX. An extensive li­
brary of useful subroutines for access to various ser­
vices described in this paper for the gathering of data 
is provided. In addition, an equally extensive library 
for the utilization of Console equipment (keyboard, 
trackball and knob, interrupt button, touch panel, mono­
chrome and color displays, etc.) is available. Also 
provided are block outlines of applications programs for 
the naive user. When a user has written and compiled 
his code, and an RSX command file for linking the code 
has been created, the code and command files are sub­
mitted to a facility called the "Applications Program 
Librarian". This librarian facility captures the code 
and command files, executes the assembly, linking, and 
loading, and inserts the code in the Program Index. The 
actual structure of all applications programs is that 
they are tasks called from a master index program. The 
code capture feature permits management to have access 
to a complete source listing of all executing code. 
Also, library routines may be modified and all affected 
programs may be found and automatically relinked and re­
loaded. There are more than 500 applications routines 
at present. Not all of the 500 applications programs 
are completely different; several are essentially clones 
of common services. The most obvious example is the 
Parameter Page which has been cloned for multiple pur­
poses several dozen times. Applications programs may be 
directly accessed from inside other applications pro­
grams, rather like subroutines. This permits a sequence 
of operations to be performed in an arbitrary fashion. 

204 



Clocks 

The accelerator is controlled in real time by a 
set of "events" (encoded markers) carried on a master 
clock. There are several clock-like signals which are 
distributed accelerator-wide. The most heavily used is 
called the "Tevatron clock" (TCLOCK). TCLOCK is a 10 
MHz signal with 10 bit encoded frames. The frames may 
start on any unused "tick": yielding a 100ns resolution. 
Some events are more sensibly timed with respect to 
beam revolution. Two additional clock services (TVBS 
and MRBS) are synchronized with the (varying) revolu­
tion frequencies of the Tevatron and Main Ring respec­
tively. These might be used, for example, to time in­
jection or extraction kickers. An additional accelera­
tor-wide service is MDAT (Machine Data) which broad­
casts frames containing the instantaneous excitation 
energy of the Tevatron and Main Rings, as well as the 
time derivatives of the excitation energy. These sig­
nals, usually distributed at 720 Hz, are used by func­
tion generators providing signals for correction ele­
ments and low level RF control, among others. Finally, 
machine abort signals are delivered around the acceler­
ator so that all systems might have access to informa­
tion concerning the occurance of abort requests. 

Recently Added Services; Services Under Development 

The Fermilab Accelerator Control system has con­
tinued to evolve as service requirements and technical 
capabilities have suggested. Four newer projects in 
varying stages of development are: (1) A Data Pool 
service for colliding-beam experimenters to recover 
accelerator data of interest, (2) Accelerator Opera­
tion Sequencing, (3) A byte-stream oriented link ser­
vice using IEEE 802.5 token ring technology, and (4) 
An improved controller for flying wire scanners. This 
list is not complete but is meant to be suggestive of 
the areas now under research and devleopment. 

During the next "colliding" running period for 
p-bar on proton experimentation there will be four ex­
periments taking data, including the large colliding 
detector known as CDF. All of these experiments have 
requested regular, repetitive access to those acceler­
ator data necessary, for instance, for luminosity de­
termination. Preferably, the individual experiments 
would like to specify their individual requirements in 
dynamically alterable lists. Upon reflection, it was 
realized that these requests had much in common with 
services one might define and implement for a new type 
of console service. This additional console service is 
termed "mini-console" service at Fermilab. The crucial 
feature of both the "experimenter's data" service and 
future "mini-console" service is believed, at present, 
to be the ability to provide data at frequencies typi­
cally no greater than 1 Hz. This has permitted a pre­
liminary specification of service based on a central 
data pool maintained in an additional central VAX as 
shown in Figure 1. The idea behind this proposal is 
that at the existing level of twenty consoles one be­
lieves that the message handling and structuring of 
service request in Front Ends (where essentially all 
requests for data are ultimately serviced) is becoming 
saturated. The hope is that by pooling "slow" requests 
in only one more pool in the new VAX, the demands on 
Front End services will not scale directly with the 
number of data return request vectors initiated by ex­
perimenters, or directly with the number of mini-con­
soles. 

The first implementation of this central pool ser­
vice (directed specifically at the colliding-beam ex­
perimenters) is nearing completion and will be utilized 
during the next running period late this fall. The 
additional VAX should be available on a similar time 
scale; prior to its delivery the service can be de­
veloped and supported (at a moderate level) in the ex­
isting Operational VAX. The experimenters will use 

DECNET and their experiment data acquisition VAXes to 
send the requested data specifications in a vector to 
the central pool manager, and the acquired data will be 
returned to the experimenter VAXes over DECNET. The 
intention is to provide the experimenters with a li­
brary of subroutines, with simple calling and argument 
structures. The experimenters will not be required to 
develop any deeper understanding of the data acquisi­
tion methodology. 

When the specifications of a general Application 
Program for the present system were developed over five 
years ago it was intended to be possible to "call" one 
application program from another, and conceivably to 
"return", just like a subroutine call. An 80 byte 
transfer vector was provided to facilitate this possi­
bility. The earliest use of this service was to make 
it possible to start a "SA" from a "PA". The complex 
sequence of events necessary to set up p-bar on proton 
collisions once adequate numbers of cooled p-bars are 
stored in the accumulator ring has encouraged expanded 
definitions of transfer vectors for communication from 
one application program to another. The approach taken 
has been to utilize the originally implemented 80 byte 
vector to point to arbitrarily larger files available 
through the File-Sharing service, thus allowing trans­
fers of large amounts of information between programs. 
The expanded capabilities now available have proven ad­
equate to support all services envisioned as necessary 
to date. 

The necessity to support intercommunicating dis­
tributed processors which will take data for emittance 
and intensity measurements throughout the cascaded ac­
celerator complex has coincided with the availability 
of commercial support for the IEEE 802.5 token ring 
network. A new UNIBUS based interface using the Texas 
Instruments TMS-380 chip set for interfacing to IEEE 
802.5 has been constructed. It is envisioned that it 
will be, relatively speaking, straight-forward to mod­
ify the existing "GAS handler" in the Front End to dis­
tribute and receive byte-streams over this link, per­
mitting communication using developed data base ser­
vices to the distriubted processors located on the 802.5 
ring, while permitting direct interchange, also using 
the GAS protocol, between processors without using any 
of the "host" system as a communication manager. 

As was shown in Figure 2, where CAMAC and Multibus 
distributed processors for the Tevatron at a typical 
service building location were indicated, there was 
originally no use of VME in the Fermilab Control system. 
The advent of the availability of 16 and 32 bit micro­
processors, and the increasing utilization of commer­
cially available VME modules, has suggested that it is 
important to be able to construct and interface sub­
systems using VME backplanes. One of the earliest ex­
amples of this technology at Fermilab is a new Flying 
Wire Scanner Controller. This controller interfaces to 
the central system via a processor resident in VME that 
uses the GAS protocol interfaced to the usual CAMAC-080 
FIFO buffer. The GAS processor uses shared memory to 
communicate with a Motrola 68020 processor which oper­
ates the flying wire and stores the data from the pas­
sage of the wire through the beam. Other similar VME 
based devices are being developed. 

Concluding Summary 

The Fermilab Control System continues to evolve as 
accelerator requirements suggest additions and technol­
ogy improvements permit. It is anticpated that over 
the next year the remaining services originally speci­
fied over five years ago will be completely implemented. 
Operational experience with the entire complex in the 
integrated control system environment will continue to 
suggest valuable improvements using existing equipment 
and communications technology. The installation of 
newer services, such as the central experimenter's pool 
services and the first processors mutually linked via 

205 



IEEE 802.5 links, will provide valuable experience 
which will be relevant for future controls system plan­
ning at Fermilab as well as being a practical labora­
tory for some of the ideas suggested as appropriate for 
the control of very large accelerator complexes such as 
a future SSC. 

References 

1. D. Bogert, L.J. Chapman, R.J. Ducar and S.L. Segler, 
IEEE Trans. Nucl. Sci. NS24,3 (June 1981) 2204. 

2. D. Bogert and S. Segler, in: Europhysics Conf. Com­
puting in Accelerator Design and Operations, eds. 
W. Burse and R. Zelazny (Springer, Berlin, 1983)338. 

3. H. Edwards, Ann. Rev. Nucl. Part. Sci. 35 (1985)605. 
4. D. Bogert, Nuclear Instruments and Methods in Phys­

ics Research A247(North Holland, Amsterdam, 1986) 
8-24. 


