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Abstract

We propose and illustrate a general numerical method to follow the probability
distribution in phase space as a function of time. It applies to any multiparticle
system governed by Liouville, Vlasov or Vlasov-Fokker-Planck dynamics. The
technique, based on discretization of the local Perron-Frobenius operator, is sim-
ple in concept, easy to implement, and numerically stable in examples studied to
date. We illustrate by treating longitudinal dynamics in electron storage rings
with realistic wake �eld. Applied to the SLC damping rings, the method gives
the observed current threshold for bunch lengthening, and several aspects of ob-
served behavior above threshold, including the presence of a bursting or sawtooth
mode. In contrast to previous particle-in-cell simulations, we have very low nu-
merical noise and the ability to follow the motion over several damping times.
The method has also been applied to the coherent beam-beam interaction. It
appears likely that this approach will be of interest for some of the central prob-
lems of this workshop, for instance matching of space-charge dominated beams
to a focusing channel, and coherent synchrotron radiation with self-consistent
charge/current density.
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1 Introduction

Coherent motion of particles in accelerator beams is described in probabilistic terms by
means of a distribution function f(z; t), where z is a point in phase space. It is often a
good approximation to represent the interparticle interaction through the �eld produced by
a smoothed charge-current distribution, neglecting the actual granularity of charge. In that
case we can follow Vlasov, reducing the dimension of phase space for an N -particle system
from 2dN to 2d, where a single particle moves with d degrees of freedom. In this view
f(z; t)dz is the probability of �nding a single particle (any one of the N) with phase point
z 2 R

2d in a volume element dz about z, and the charge-current vector for the collection of
all particles is

(�; J) = eN

Z
(1; v(z))f(z; t)dp ; (1)

where v(z) is the Cartesian velocity associated with phase point z = (q; p). Here q and
p are d-component vectors representing canonical coordinates and momenta, respectively.
Maxwell-Vlasov dynamics is de�ned by saying that the force on any particle due to other
particles is the Lorentz force e(E + v � B), where E and B are the �elds from Maxwell's
equations with charge-current (1). We call this the collective force.

Conservation of probability requires that

f(z0; t)dz0 = f(z; 0)dz ; (2)

where the trajectory starting at z at time 0 evolves to z0 at time t, and volume element
dz evolves to dz0. If the system is Hamiltonian its time evolution is volume-preserving,
dz0 = dz. Then (2) implies that f(z(t); t) is independent of t, where z(t) is a particle
trajectory. Putting df(z(t); t)=dt = 0 and applying Hamilton's equations we obtain Vlasov's
nonlinear integro-partial-di�erential equation for f :
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= 0 ; (3)

where the Hamiltonian H(z; t; f(�; t)) = He(z; t) + Hc(z; t; f(�; t)) contains a term He ac-
counting for external �elds and a term Hc accounting for the collective force. (When we
write f(�; t) as the argument of a function we mean that the function depends on f(�; t) for
all �; for instance, there may be an integral over � in the de�nition of the function). Since Hc

is a functional of f itself, this is a big generalization of the classical Hamiltonian function.
The independent variable t may not be literally the time; in accelerator models it might be
arc-length s on a reference trajectory, or the betatron phase, or distance along a curve in a
local coordinate system. We retrieve the Liouville equation for non-interacting particles in
the case Hc = 0.

If the system involves dissipation and 
uctuations, as in the case of electrons producing
synchrotron radiation, Eq.(3) must be augmented to include Fokker-Planck terms. In the
simplest description one makes a sort of \smooth approximation" in which the dissipation
and 
uctuations are distributed homogeneously in the independent variable. In that picture
the Fokker-Planck terms take the form presented in Chandrasekhar's classical exposition
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[1] or in books of Gardiner [2], Risken [3], and Soize [4]. The 
uctuations are described
as increments of a Wiener process; i.e., the momemtum receives random kicks that have
a Gaussian distribution, two kicks at di�erent t or for di�erent degrees of freedom being
statistically independent [5, 6]. The augmented Vlasov equation with this minimal model of
dissipation/
uctuation is
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f; (4)

where � is the damping rate, and D is the di�usion constant of the random process (assumed
to be the same in all degrees of freedom). We call this the Vlasov-Fokker- Planck (VFP)
equation, although in accelerator physics it is often called simply the Fokker-Planck equation.
We avoid the latter name, since in other disciplines it refers to the original equation without
the collective force.

For an accurate accelerator model one has to account for the fact that synchrotron
radiation is localized at various places in the accelerator, takes place not only in bending
magnets, is in
uenced by interplane (x-y) coupling, and so on. Also, synchrotron radiation
is not the only source of noise. Such re�nements have been treated by Jowett [7] and Ripken
et al. [8]. For the simple model of the present work we shall be content with the description
of Eq.(4).

Although Eq.(4) or its special case Eq.(3) would seem to provide a solid basis for a wide
class of problems in accelerator physics, the analysis of its solutions is still in a primitive
state. For many years the main application was in linear stability studies. Typically, one
linearized the equation about some distribution f0, and tried to see whether f1 = f�f0 would
stay bounded or blow up as a function of time. Usually f0 was supposed to be an equilibrium
distribution of the nonlinear equation or an approximation thereto, but there is only one case
that we know of in which an equilibrium was convincingly computed (numerically). That
is the case of longitudinal motion in a storage ring, allowing an arbitrary longitudinal wake
�eld, but with the essential assumption that the wake force is averaged over one turn, hence
independent of s. In this model the equilibrium solution of the VFP equation is a solution
of Ha��ssinski's [9] nonlinear integral equation. Under weak assumptions on the wake one can
prove that this equation has a unique solution at su�ciently small current [10]. The solution
is not di�cult to compute numerically [10, 11], even at very large current. More general
integral equations for equilibria have been studied in the mathematical literature [12] and
by the authors in connection with the beam-beam problem [13].

The study of Oide and Yokoya [14] was the �rst in which the Vlasov equation was
linearized about the Ha��ssinski solution. The linearization resulted in a linear integral equa-
tion in the frequency domain. Roots of its determinant in the upper-half frequency plane
should correspond to linear instability of the Ha��ssinski equilibrium. There are unresolved
mathematical and physical issues in this matter, however, since the integral equation is
not a standard Fredholm equation for which a �nite-dimensional approximation is assured.
Rather, it is an integral equation of the third kind, which has solutions in a space of gener-
alized functions [15], the van Kampen - Case singular solutions [16]. These can be treated
rigorously by a slight generalization of the methods of Ref.[15], in which the mathematical
problem is reduced to a Fredholm equation.
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Direct numerical integration of the VFP equation in the time domain could, in prin-
ciple, help to answer questions of existence and stability of equilibria, and even approach
richer phenomena in which an instability \saturates" through nonlinear e�ects. We know
of few previous attempts in this direction for accelerator problems, at least for the case
of high-energy, low-emittance beams [17]. Rather, time-domain simulations normally are
done by following an ensemble of macro-particles in con�guration space, approximating the
charge distribution by values on grid points to produce a source for the collective force.
This is usually called the particle-in-cell (PIC) method [18]. It has the advantage of lower
dimensionality, since it works in con�guration space rather than phase space. One could, in
principle, follow the granular distribution of macro-particles in phase space, even though it
is not needed for the computation. Bane and Oide [19] have applied the PIC method to the
same problem we treat in Sections 3 and 4, and have obtained results that anticipate ours
in some qualitative aspects.

Plasma physicists [20, 21, 22, 23, 24] have reported time domain integration of the non-
linear Vlasov equation, and have remarked that, compared to PIC simulation, the technique
o�ers lower noise and better load balancing in parallel computation [21, 22]. These authors
are usually not interested in long-time behavior with weak damping and 
uctuations, the
problem of interest for electron storage rings. Nevertheless, we may be able to exploit part
of the technique used successfully in plasma physics. Averaging methods have also been
proposed for approximate solution of the Vlasov equation in beam physics [25].

On �rst sight it would seem that the equation could be approached by the usual methods
for partial di�erential equations, for instance by using �nite di�erences to approximate the
q and p derivatives, thereby obtaining a large system of ordinary di�erential equations for
unknowns f(zi; t), the zi being nodes of a �nite grid. Here one makes a corresponding
discretization of integrals de�ning the collective force, by some numerical integration rule.
It was surprising to �nd that such a technique fails utterly, with or without implicit time
stepping, and not because of any e�ect of the nonlinear terms. Rather, it fails even for
the simple Liouville equation for an harmonic oscillator! The failure is immediate and
catastrophic: spurious oscillations appear on the tails of the distribution and quickly grow
without bound, all within a time less than the period of the harmonic motion. A spectral
method, based on expansion in Hermite polynomials, had similar bad behavior. To escape
from this disgraceful situation, we �rst looked for a method that would solve the harmonic
oscillator problem. Having found one, only small embellishments were required to solve the
full nonlinear VFP equation.

2 Approximating the Perron-Frobenius Operator

Our heuristic understanding of the failure of the �nite di�erence method is that it pays too
little attention to the primary conservation equation (2). This comes to light when we recall
that an explicit representation of the solution of the Liouville problem follows directly from
(2). If we fail to exploit that representation we are only making life di�cult. Suppose that
the single-particle motion under the Hamiltonian He alone is given by a map M , which may
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be nonlinear. We write
z0 =M(t2jt1)(z) ; (5)

implying that the trajectory passing through z at time t1 passes through z
0 at time t2. Then

(2) implies
f(M(tj0)(z); t) = f(z; 0) : (6)

Replacing z in this equation by M(tj0)�1(z) = M(0jt)(z) we see that

f(z; t) = f(M(0jt)(z); 0): (7)

For an arbitrary initial distribution f(z; 0) = f0(z) this formula solves the initial value
problem of the independent-particle Liouville equation for H = He.

The Perron-Frobenius (PF) operator M associated with a volume preserving map M is
de�ned by its action on an arbitrary function g(z) in the following way [26]:

Mg(z) = g(M�1(z)) : (8)

This is a linear operator since

M(g1 + g2)(z) = (g1 + g2)(M
�1(z)) =

g1(M
�1(z)) + g2(M

�1(z)) =Mg1(z) +Mg2(z) : (9)

Writing M(tj0) for the PF operator associated with M(tj0) we see that the solution of the
Liouville equation is just the PF operator applied to the initial distribution:

f(z; t) =M(tj0)f0(z) : (10)

One can hope to extend this idea to the nonlinear Vlasov case by supposing that the
collective force can be regarded as an external force over a su�ciently small time interval
�t. One then has a map M(t + �tjt)f(�;t), which depends on f evaluated at time t, and
which gives the evolution of f for a small time step as

f(z; t +�t) � f(M(tjt +�t)f(�;t)(z) ; t) =Mf(�;t)(t +�tjt)f(z; t) : (11)

We refer to the M of this equation as the local Perron- Frobenius operator, to emphasize
that its corresponding map M varies as f evolves in time. To avoid notational clutter, we
shall suppress the subscript f(�; t) in the sequel.

To apply (11) in a computation with successive time steps �t we need a suitable dis-
cretization, which is to say a �nite-dimensional representation of the z-dependence of the
unknown f . For instance, suppose we assume a truncated orthonormal expansion

f(z; t) �
mX

m=0

fm(t)�m(z) : (12)
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Then, re
ecting the linear nature of the PF operator, the time evolution expressed in (11)
is given as a linear transformation on the expansion coe�cients:

fm(t+�t) �
mX
n=0

�mnfn(t) ;

�mn =
Z
��m(z)�n(M(tjt+�)(z))dz : (13)

Here there are two levels of approximation, one from the assumption of a locally time-
independent collective force in (11) and the other from the truncation in (12). Provided
that we choose a volume preserving (e.g., symplectic) representation of M(t + �tjt) the
transformation (11) conserves probability, but there is a possible loss of probability conser-
vation from approximation (12). In fact, conservation of the the total probability

R
f(z; t)dz

provides a useful control on the accuracy of the computation.
Actually, we think that orthogonal expansion is probably an ine�cient method. Local

polynomial approximation of f(z; t) in z seems more promising, and that is the technique
we employ in the following.

If we adopt discretization of the local PF operator as the method to integrate the Vlasov
equation, we still must deal with the Fokker-Planck terms. It turns out that an exceedingly
simple method is e�ective for that. We invoke operator splitting, interleaving evolution by
(11) with evolution by the Fokker-Planck (FP) operator for a step �t. The latter is done by
an elementary method for PDE integration, as explained in the following section. We have
found in two examples (that of the following section and the beam-beam problem) that the
resulting scheme is numerically stable over long times, allowing simulations over intervals
equal to several damping times of typical storage rings. Moreover, we obtain excellent
conservation of probability and very smooth distributions.

3 Example: Longitudinal Motion with Wake Field

We consider longitudinal motion in an electron storage ring with an arbitrary wake potential.
We suppose that the synchrotron oscillations are in the linear region of the applied r.f. �eld.
Following Ref.[14] we use normalized, dimensionless phase space variables q; p as follows:

q =
z

�z
; p = �

E � E0

�E
; (14)

where z is the distance from the synchronous particle, E is the energy, and E0 the mean
energy. We take z = s� s0 to be positive for a particle in front of the synchronous particle.
The quantities �z = hz2i1=2 and �E = h(E � E0)

2i1=2 are the rms bunch length and rms
energy spread in the low-current equilibrium state without wake �eld. The electrons are
assumed to be ultrarelativistic. We incorporate the well-known relation [27]

�z =
�c

!sE0

�E ; (15)
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where � is the momentum compaction factor and !s = 2�fs is the synchrotron frequency.
Using (15) one sees that the usual equations of motion for synchrotron motion [27, 28] are
the same as Hamilton's equations for the Hamiltonian He(q; p) = (q2 + p2)=2; namely,

dq=d� = p ; dp=d� = �q ; � = !st : (16)

Here t is the laboratory time. The collective force is taken to be

F (q; f(�; �)) =
Z

1

�1

W (q � q0)
�Z

1

�1

f(q0; p; �)dp
�
dq0 : (17)

The wake potential W (q � q0) gives the longitudinal electric �eld (averaged over one turn)
on a test particle at q due to a point source at q0, expressed as a potential di�erence for one
turn. That is, apart from a sign, the �eld is W (q � q0)=C, where C is the circumference of
the reference orbit. The sign of W is a matter of convention; we suppose that a positive
value of W corresponds to energy gain. With this de�nition the complete Hamiltonian is
He +Hc where

Hc(q; f(�; �)) = �I

Z
1

q

F (q0; f(�; �))dq0 (18)

I =
Ne2

2��s�E
: (19)

The number of particles is N , e is the electron charge, and �s is the synchrotron tune,
2��s = !sT for revolution time T . The minus sign in (18) arises from the convention on W

and the minus sign in the de�nition (14) of p. The expression for the beam current parameter
I (not literally a current) is derived by translating the equation of motion dp=d� = �@H=@q

into dP=dt = F , where P = E=c and F are the physical momentum and force, respectively.
With the above de�nitions the VFP equation (4) for the present example takes the form

@f

@�
+ p

@f

@q
� (q + IF (q; f))

@f

@p
=

@

@p
(2�pf +D

@f

@p
) ; (20)

where � is the damping rate per radian of � and D is the di�usion constant. We �nd that
D = 2� by the following argument. Consider the unperturbed case with I = 0. To �nd
its equilibrium solution f0 make the Ansatz f0(q; p) = f0(q;�p), which has a physical basis
in the condition of detailed balance [2]. Then the right side of (20) is even in p while the
left side is odd, hence the two sides are separately zero. The general solution making the
left side zero is f0(q; p) = �(x) ; x = (q2 + p2)=2, for an arbitrary smooth function �. The
condition for the right side to be zero as well is

2��(x) +D�0(x) + p2(2��0(x) +D�00(x)) = 0 : (21)

Since this must hold for all x at any p, in particular at p = 0, we see that �(x) = const �
exp(�2�x=D), or

f0(q; p) =
1

2��2
exp[�

q2 + p2

2�2
] ; �2 =

D

2�
: (22)
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Thus, in the unperturbed equilibrium state, �q = �p = �, whereas the de�nitions (14)
demand that �q = �p = 1, hence D = 2�.

To �nd the equilibrium solution f(q; p) of the full problem (20) we again assume detailed
balance, and note that the left side is zero if f(q; p) = �(H(q; p; f)) for an arbitrary smooth
�. Again, the right side being zero leads to �(x) = const � exp(�x). Thus,

f(q; p) = (2�)�1=2 exp(�p2=2)�(q) ; (23)

where the charge density � satis�es Ha��ssinski's integral equation [9],

�(q) =
exp[�q2=2 + I

R
1

q F (q0; �)dq0]R
1

�1
dq exp[�q2=2 + I

R
1

q F (q0; �)dq0]
; (24)

with
F (q; �) =

Z
1

�1

W (q � q0)�(q0)dq0 : (25)

We have included the normalizing divisor in the de�nition of the integral equation, taking
a step that is natural from the viewpoint of functional analysis (and computation). In the
literature it is usual to impose normalization as a separate equation.

Equation (24) may be regarded as a nonlinear �xed-point problem � = A(�) in an
appropriate function space. For su�ciently small current I, the operator A is contractive,
and a straightforward argument based on the contraction mapping principle leads to the
following result:
Theorem : Suppose that the wake potential is bounded and continuous and satis�es the
mild growth condition,

w = sup
q

Z
1

q

du e�u
2=2

����
Z 0

q�u

W (v)dv
���� <1 ; (26)

and that the current parameter de�ned in (19) satis�es

I <
(2�)1=2

we(1 + e)
; (27)

where e is the base of the natural logarithm. Then (24) has a unique solution in the space
of continuous functions � such that

j�(q)j �
e�q

2

2w
: (28)

This solution satis�es �(q) � e�q
2

=((1+e)w), and it may be computed by functional iteration,
�(n+1) = A(�(n)), beginning with any � = �(0) satisfying (28).

Thus, at su�ciently small current there is a unique equilibrium solution of the VFP equa-
tion that satis�es the detailed balance condition. The proof will be reported elsewhere [10].
In the above statement we have assumed thatW (q) = 0 ; q > 0. One may relax this condition
and also allow W to have weak singularities [10].

8



It is remarkable that the equilibrium solution also provides an exact time dependent
solution of the nonlinear Vlasov equation, namely (20) with the right hand side put to
zero. With f(q; p) as de�ned in (23) and � a solution of Ha��ssinski's equation, the following
function solves the Vlasov equation:

g(q; p; �) = f(q � a sin �; p� a cos �) ; (29)

where a > 0 is arbitrary. That is, if the equilibrium solution is translated in phase space by
any vector a, and the vector is rotated in time at the synchrotron frequency, the result is
a solution of the time dependent Vlasov equation (but not of the full VFP equation). The
proof is by substitution and a change of variable in the wake potential integral. For similar
constructions for a di�erent class of Vlasov equations see Lewis and Symon [29].

An inkling of this solution appears in the paper of Oide[14], which refers to a \trivial"
dipole solution corresponding to motion of the center of mass of the bunch. However, the
formula given in Eq.(10) of that paper is rather puzzling and does not correctly embody the
physical idea. We are not inclined to call the result (29) trivial, on the contrary it seems
surprising, and it is not a dipole mode in the usual sense. Conventionally, a dipole mode
is the m = 1 angular Fourier component of a phase distribution that is rotating about the
origin at the synchrotron frequency [28]. In polar coordinates such a distribution has the
form G(J; �� �). The solution g, with the displacement vector rotating, is quite a di�erent
thing. Of course, if we integrate (29) over p we get �(q � a cos �), so the charge density is
just the equilibrium charge density oscillating as a rigid whole. It is tempting to call this
a dipole motion, but for comparison to linear stability studies it is important to remember
the distinction noted.

4 Solution of the VFP Equation for Longitudinal Dy-

namics

The wake potential W acounts for the electromagnetic environment of the beam comprised
of various metalic structures in the vacuum chamber: bellows, 
anges, transitions, kickers,
etc. Bane and Ng [30] have carried out a detailed simulation of the wake potential for the
SLC damping rings, using time domain electromagnetic codes. Since the ideal point source
that de�nes W is not accessible numerically, the calculation was done with a short Gaussian
bunch (�z = 1mm) as the source. Since 1mm is not extremely small compared to the actual
bunchlength (5mm at low current) some small-wavelength �elds that could a�ect the bunch
dynamics are not excited in the simulation. Also, some of the di�cult three dimensional
structures had to be treated crudely. The result for the present damping ring vacuum
chamber, which we use in our calculations, is shown in Figure 1. A comparison to results for
the original vacuum chamber, replaced in 1992-93, will be given elsewhere [31]. Causality
requires that the point source wake is zero in front of an ultrarelativistic bunch, whereas the
computed wake, call it �W , has appreciable values in a small region with q > 0. Some authors
arbitrarily truncate �W to make it zero for q > 0. We prefer to use �W as given, fearing that
the truncation could produce spurious oscillations (as in the Gibbs phenomenon). In this
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Figure 1: Wake potential W (q) in Volts/picoCoulomb, for new damping ring vacuum cham-
ber. W > 0 implies energy gain.

connection it is worthwhile to note the identityZ
1

�1

�W (q � q0)�(q0)dq0 =
Z

1

�1

W (q � q0)��(q0)dq0 ; (30)

where �� is a smoothed version of � obtained by convolution with the Gaussian source of
�W . Thus, for any distribution �, the error in the use of �W as given amounts to taking
out possible high frequency ripples in � (plus any errors in modeling �W with the assumed
Gaussian source).

We �rst solve the Ha��ssinski equation by a numerical method that does not require
W (q) = 0; q > 0 (in contrast to the popular method based on integrating an associated
di�erential equation). We simply approximate all integrals in (24) by a numerical integration
rule (Simpson's method is quite adequate), thereby getting a system of nonlinear algebraic
equations for the values �(qi), where fqig is a �nite uniform grid. These equations are solved
by the matrix Newton method, taking the Gaussian (2�)�1=2 exp(�q2i =2) as the �rst guess.
This works and converges rapidly up to fairly high current. For still higher current (far
beyond the experimental values) one gets a solution by starting the Newton iteration at a
linear extrapolation in current of the last good solution. From this success one infers that the
solution is at least locally unique up to extremely high currents (say 50 times the currents
experimentally achieved), since the Jacobian matrix of the system is always well-conditioned.

Figure 2 shows the Ha��ssinski solution at a current comparable to the experimental
value for the threshold of bunch lengthening. Figure 3 shows the corresponding distorted
potential well; i.e., the q�dependent part of the Hamiltonian. Streak camera measurements
by Podobedov [32] have shown similar charge distributions in the subthreshold regime. This
provides some con�rmation of the wake potential and the VFP theory, but the experimental
accuracy was not su�cient to distinguish the Bane-Ng wake potential from some simpler
models. The existence of a locally unique solution of the Ha��ssinski equation at some current
does not imply that the corresponding equilbrium is stable; a pendulum balanced at the top
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Figure 2: Calculated equilibrium charge
distribution for N = 1:64 � 1010, and cor-
responding unperturbed distribution (for
zero collective force).

Figure 3: Distorted potential well for N =
1:64 � 1010.

of its swing is also in a locally unique equilibrium state. To study stability, we now turn to a
direct time domain integration of the VFP equation, starting the integration at an accurate
equilibrium solution from the Ha��ssinski equation.

We represent the distribution function f(q; p; �) by polynomial interpolation of its values
on a grid, fij(�) = f(qi; pj; �). The task is to follow the fij as � advances. We invoke operator
splitting to treat the Vlasov and Fokker-Planck operators separately. First consider the e�ect
of the Vlasov part alone. Given the inverse map M�1 = M(�j� +��) for the single particle
motion over a small step ��, the propagation of the distribution is derived from

f(zij; � +��)) = f(M�1(zij); �) ; zij = (qi; pj) : (31)

The argument of f on the right side is not at a grid point, so the function must be
evaluated by interpolation. We have tentatively adopted a biquadratic local interpolation
(after �nding some de�ciencies of a bilinear interpolation). This is very easy to program and
e�ective enough, but investigation of more re�ned schemes, for instance B-spline interpola-
tion with higher smoothness, is on our agenda. To do the interpolation for any (i; j), we use
a uniform Cartesian grid and �rst �nd the cell (k; l) in which M�1(zij) lies. That is done
quickly by taking integer parts of the two components of M�1(zij)=�, where � = �q = �p
is the grid step. Then de�ne (x; y) = (M�1(zij) � zkl)=�, and use nine point biquadratic
interpolation to evaluate (31). The result is the approximation

4fij(� +��) =

x(x� 1)[y(y � 1)fk�1;l�1(�) + 2(1� y2)fk�1;l(�) + y(y + 1)fk�1;l+1(�)] +

2(1� x2)[y(y � 1)fk;l�1(�) + 2(1� y2)fk;l(�) + y(y + 1)fk;l+1(�)] +

x(x + 1)[y(y � 1)fk+1;l�1(�) + 2(1� y2)fk+1;l(�) + y(y + 1)fk+1;l+1(�)] :

(32)
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For a small step �� we take the map to be a composition of a rotation R through angle
�� and a kick K of p at �xed q due to the wake �eld: M(� +��j�) = K �R. Hence

M(�j� +��)(z) = R�1 �K�1(z)

=

 
cos�� � sin��
sin�� cos��

! 
q

p+ IF (q; f(�; �))��

!
: (33)

Since both K and R are symplectic, the resultingM is symplectic, hence volume preserving.
Note that in interleaving rotations and kicks we have invoked operator splitting a second
time. One can also view the algorithm as an Euler step in the interaction picture, regarding
the harmonic oscillator as the unperturbed problem. It is likely that a higher order symplectic
integrator will be more e�cient than (33). Also, preliminary tests indicate that it is ine�cient
to update the distribution after every step of the map (33), although we have done so in the
calculations reported here. Rather, one should take a few map steps between updates.

At each step the collective force (17) is evaluated by numerical integration, using the
same grid and integration rule that was used for the Ha��ssinski solution. We �rst compute
and store �(q0j), then do the integral against W (qi � q0j) for each i.

The essentials of this method of integrating the Vlasov equation were introduced to
plasma physics by Cheng and Knorr [20] in 1976. Their unperturbed problem was linear
streaming rather than harmonic motion, and their interpolation method was di�erent, but
the basic idea of discretizing the local Perron-Frobenius operator was exactly the same.
Recently Sonnendr�ucker et al. [21] have pursued the same technique, which they call a
semi-Lagrangian method, in a plasma problem using a B-spline interpolation. Nakamura
and Yabe [23] make the interesting observation that derivatives of the distribution can be
propagated as well by the inverse map, and use that fact to put extra smoothness into
a cubic interpolation scheme. They claim success in higher dimensional Vlasov plasma
problems, which is certainly encouraging. None of these authors emphasize or even mention
the importance of the symplectic condition, which we think to be important for faithful
long-term modeling of any Hamiltonian system, with or without collective force. Also, these
authors do not mention the connection to Perron-Frobenius theory . It is good to be aware
of the connection, since that theory is undergoing interesting development in the �eld of
mathematical dynamical systems [26, 33, 34, 35, 36] and numerical analysis [37].

To handle the Fokker-Planck (FP) term, we discretize it by divided di�erences, applying
a formula suggested by Zorzano and Mais [38] in their work on the linear FP equation. With
�p denoting the grid step, the approximation at z = (qi; pj) is

@

@p

�
pf +

@f

@p

�
�

1

�p
[Gi;j+1 �Gi;j]

Gij =
1

�p
[fi;j � fi;j�1] +

pj

2
[fi;j + fi;j�1] : (34)

To propagate f by the FP operator, we compute a simple Euler step of the discretized form,

1

��
[fij(� +��)� fij(�)] =

2�

�p
[Gi;j+1(�)�Gi;j(�)] : (35)
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Zorzano and Mais advocate a backward Euler method, which generally assures stability for a
larger step ��. Since our � is quite small (e.g., 0.001), and small � is equivalent to small ��,
the forward Euler method is found to be stable for our chosen ��. The latter is determined
by requirements of accuracy in the Vlasov step. We have tested the FP integration by
turning o� the collective force and comparing results to the analytic solution of the resulting
FP equation for the harmonic oscillator [1].

Thanks to the representation (34) of the second order di�erential operator as a simple
divided di�erence, the Euler step conserves total charge to high accuracy. That is, the
numerical integral of the right side of (34) imitates the analytic integral over p of the left
side, which is zero.

5 Numerical Results for Longitudinal Motion

We present results for the positron damping ring (SDR) of the SLC, and make comparisons
to Podobedov's measurements reported in sections 4.2 and 4.3.3 of his thesis [32]. For these
measurements (done with an r.f. voltage of 690 keV) the relevant machine parameters were

�E = 0:847 MeV ; �z = 5:58 mm ;

�s = fs=fr = 0:01075 ; fr = 8:5 MHz ;

� = 1=!s�d = 9:78 � 10�4 ; (�d = longitudinal damping time) : (36)

A complete list of machine parameters is on pp.54-55 of Podobedov. This list assumes an
r.f. voltage of 800 keV, so some of the parameters are a bit di�erent from those above. For
the wake potential measured in volts/picoCoulomb, we quote I in corresponding units,

I

N
=

e2

2��s�E
= 2:80 � 10�12 pC=V : (37)

We take a uniform Cartesian grid in phase space extending to 6� of the unperturbed
distribution; i.e., qi = 6i=n ; i = �n;�n + 1; � � � ; n and the same for pi. We choose
n = 200 for a 401 � 401 grid and take 1024 time steps per synchrotron period. There are
195 synchrotron periods in a damping time.

A run at any I begins with the Ha��ssinski equilibrium (23) for that I, computed to
machine precision with the same grid, using Simpson's rule to de�ne the integrals. We
�rst report runs for I in a neighborhood of the threshold for bunch lengthening, namely for
N = (1:55 ; 1:64 ; 1:74) � 1010. Figure 4 shows a plot of the dimensionless energy spread �p
for each case, over a long time interval (1:23�d, 240 synchrotron periods).

At 1:55 � 1010 the equilibrium is apparently stable; at all times the computed distribution
is indistinguishable on a plot from the original Ha��ssinski distribution. (On inspection of the
numbers one sees a small discrepancy; the �nal bunch length and energy spread are about
1% smaller than initial values. It looks as though the time domain algorithm approaches
its own equilibrium, slightly di�erent from that of the Ha��ssinski equation.) Near invariance
of the distribution for such a long time is already a gratifying success of the integration
algorithm. It is by no means guaranteed that even an extremely precise approximation
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Figure 4: Time evolution of the dimensionless energy spread �p, for bunch populations
N = (1:55 ; 1:64 ; 1:74) �1010. The initial value is �p = 1 for each, but to separate the curves
we have plotted �p(1:55) ; �p(1:64) + 0:1 ; �p(1:74) + 0:2. The time unit is one synchrotron
period. The black band arises by �ll-in from rapid oscillations, with frequency close to 2!s.

to the equilibrium will be maintained for a long time, since the time-stepping algorithm
immediately introduces new approximations. Also, in all the runs of Figure 4 and in all runs
discussed below (including some extending to four damping times with high current) the total
charge is conserved to about one part in 105 and the distribution is very small at the edges
of the grid (around 10�7 or smaller). We have used charge conservation and smallness at the
edges as criteria in choosing the grid. Another test of the integration scheme is to reproduce
the time dependent solution (29) of the Vlasov equation without Fokker-Planck terms. This
was done successfully over a relatively short time span (a few synchrotron periods). The
presence of the Fokker-Planck term seems to be essential for integrating stably to times
comparable to the damping time. This does not necessarily mean that the method will fail
in the case of proton beams, since there one deals with much lower peak current.

At 1:64 � 1010 some small oscillations in �p show up at the largest times, and at 1:74 � 1010

we see a quick build-up of large oscillations. We conclude that the equilibrium becomes
unstable at about N = 1:64 � 1010. This is close to Podobedov's threshold for an instability
signal; his Figure 46 gives about 1:7� :03 at 690 keV. Bane [39] has remarked that this close
agreement may be fortuitous, since the addition of a slight amount of \missing" inductive
wake �eld can, in his simulations [19], shift the threshold appreciably.

At currents just above threshold the simulation gives, after an initial long transient,
sinusoidal oscillations of �p or �q at constant amplitude, with a frequency a bit lower than
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2!s. For instance, at N = (1:74 ; 1:84) � 1010 this behavior sets in after about 2.5 damping
times. At higher current there is a transition, apparently somewhat gradual, to a mode in
which these oscillations have a slowly varying amplitude, a so-called \bursting" or \sawtooth"
mode. At large times the envelope repeats periodically with a period comparable to the
damping time. Figure 5 shows evolution of the bunch length for N = 2:03 �1010, which seems
to be near the computational bursting mode threshold. In this case an asymptotic periodicity
is suggested, but is not yet exact at 3.7 damping times (720 periods). In experiment the
transition to bursting seems to occur more precipitously, and at a higher current, around
2:6�1010; see Ref.[32], Figure 43. Figure 6 shows the simulation at 2:99�1010, the case that we
examine in more detail below. Here a clear periodic behavior is established by 2.5 damping
times. The noisy looking behavior around t = 70 is actually quite smooth when observed on
an expanded t scale.

Figure 5: Time evolution of the dimension-
less bunch length �q, for bunch population
N = 2:03 � 1010. The time unit is one syn-
chrotron period. The black band arises by
�ll-in from rapid oscillations, with frequency
close to 2!s.

Figure 6: Time evolution of the dimension-
less bunch length �q, for bunch population
N = 2:99 � 1010. The time unit is one syn-
chrotron period. A fairly clear periodic be-
havior sets in at about 2.5 damping times
(500 synchrotron periods).

In the bursting mode at high current, the simulated distribution has a complicated time
dependence, much di�erent from the usual heuristic picture of a simple rotation in phase
space of an almost rigid distribution. The charge distribution develops shoulders which
come and go, move from left to right, etc. A series of typical snapshots is shown in Figure 7.
Podobedov [32] has observed the charge distribution in detail with a streak camera. We
shall compare his results to calculations in a later paper, and also explore contour plots of
the phase space distribution.

Here we make a comparison to BPM data, which give an indirect picture of bunch
oscillations. We �rst have to consider the relation of the BPM signal to the bunch form.
Our discussion derives from the interesting treatment of Siemann [40]. His theory as it stands
does not apply to our case of strong wake �elds, but by abstracting some of his ideas we get
an analysis that does apply. Part of our formulation was also noticed by Bane and Oide [19].
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Figure 7: Typical snapshots of the charge distribution for bunch population N = 2:99 � 1010.
The interval between snapshots is 6 synchrotron periods.

For this discussion it is convenient to use the variables � = z=c and t = �=!s =time, in
place of q and �. We write � for the charge density, so that

�(�; t) =
c

�z
�(
c�

�z
; !st) : (38)

De�ning T = 2�=!r as the revolution time, we can represent the current at a reference point
O in the beam position monitor as

I(t) = eN
1X

n=�1

�(nT � t; nT ) ; (39)

where the synchronous particle arrives at O at time nT ; n = 0;�1; � � �. At a time t =
mT + �t just after the arrival time mT of the synchronous particle, only one term in the
sum contributes (if �z � C), and we have I(mT + �t) = eN�(��t;mT ). The required
value is actually eN�(��t;mT + �t), but we can safely assume that the bunch does not
deform during its transit time through the BPM, so that the two values are the same.

Since �(�; t) is a smooth and rapidly decaying function of � , we can represent it as a
Fourier integral,

�(�; t) =
Z

1

�1

ei!� �̂(!; t)d! : (40)

We compute �̂(!; t) from the VFP solution and �nd that it is periodic in t (at su�ciently
large t), to good accuracy. Just above the instability threshold the period is a little more than
twice the synchrotron frequency, whereas in the higher current bursting mode the period is
much longer, about 6/10 of the damping time. Figure 8 shows one period of Re�̂(n!r; t) in
the latter situation, for n = 1149, a revolution harmonic at 9.8 GHz. Oscillations with the
shorter period are superimposed on the long-period motion. In either case we can make a
Fourier decomposition of the periodic motion with an appropriate period Tl:

�̂(!; t) =
X
m

e2�imt=Tl �̂m(!) : (41)
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Figure 8: Re�̂(n!r; t) versus t for n = 1149. The time unit is 1/32 of the synchrotron period.

Since � is real it is necessary that

�̂�m(�!) = �̂m(!)
� : (42)

Substituting (41) and (40) in (39), and de�ning !l = 2�=Tl, we �nd

I(t) = eN

Z
d!e�i!t

X
m

�̂m(!)
X
n

e2�in(m!l+!)=!r : (43)

The sum on n represents a periodic � function. Recall that the Fourier inversion theorem
(or Poisson's sum formula) may be expressed as

1

b

X
n

e2�in�=b =
X
n

�(� � nb) : (44)

Applying this in (43) we get a formula expressing the frequency content of the BPM current,

I(t) = eN!r

Z
d!e�i!t

X
m

�̂m(!)
X
n

�(m!l + ! � n!r)

= eN!r

X
m;n

e�i(n!r�m!l)t �̂m(n!r �m!l) : (45)

The spectrum of the current consists of revolution harmonics n!r with sidebands n!r �

m!l ; m = 1; 2; � � �. Although one is accustomed to the sidebands having equal am-
plitudes in the linear case [40](or even in the case in which the nonlinearity is only an
amplitude-dependent tune), there is no reason to expect equal amplitudes in our case with
full nonlinearity and a time-dependent potential well.

Figure 9 shows a plot of j�̂m(n!r � m!l)j
2 versus m!l=!s at �xed n = 1149, for the

bursting mode at a bunch population N = 2:99 � 1010. The large amplitude of the revolution
harmonic (m = 0) is o�-scale and is not plotted. We see that there are quadrupole-like side-
bands at distances �1:8!s from the revolution harmonic, indeed with unequal amplitudes.
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Figure 9: A bargraph of the spectral \power
density", j�̂m(n!r + m!l)j

2, versus m!l=!s

for n = 1149. There are six large mode am-
plitudes, for m = �(175; 176) and m = �1.
The large amplitude of the revolution har-
monic m = 0 is o� scale and is not plotted.

Figure 10: An enlarged bargraph of the
upper sideband spectral density versus m,
showing large modes at m = 175 ; 176 and
small modes at 174 ; 177.

Each sideband actually contains two large neighboring modes, as seen in Figure 10. The
large modes are at m = �(175 ; 176) with frequencies

m!l = �( 1:8105 ; 1:8209 )!s : (46)

There are also large low-frequency modes at m = �1, and a few weak modes that have
little e�ect. The variation of the envelope in Figure 8, the \bursting" behavior, arises from
beating of 175 against 176 (and �175 against �176). The beat frequency is just !l, the
same as the frequency of the modes m = �1. Consequently, if we leave the latter out of the
Fourier series for �̂(n!r; t), the only e�ect is to subtract a sinusoid with the same wavelength
as the envelope (perhaps shifted in phase). As shown in Figure 11, that does not change the
qualitative picture.

The frequency of the rapid oscillations is the average of the two frequencies of (46),
or 1:8157!s. The spectral analysis of BPM data, shown in Figure 41 of Ref.[[32]] gives
(1:84� :02)!s. (Here we have guessed the experimental error from the contour plot of Figure
41). One's delight in the good agreement is tempered by the fact that experiment shows
a second spectral line, at 2:54!s, at a current only slightly higher, say 3:2 � 1010. We �nd
no such thing as we increase the current, nor do we see the observed disappearance of the
bursting mode at around 3:3 � 1010. Rather, our bursting mode with fast oscillations around
1:8!s persists up to 3:93 � 1010, the highest current of our simulations to date.

The BPM current is not measured directly, rather one measures the voltage at the end
of the cable leading to the BPM. If Z(!) is the impedance of the BPM and cable together,
the Fourier transform of the measured voltage is

V̂(!) = Z(!)Î(!) = Z(!)eN!r

X
m

�̂m(!)
X
n

�(m!l + ! � n!r) ; (47)
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Figure 11: Re�̂(n!r; t) versus t for n = 1149, with the modes m = �1 omitted from its
Fourier series. The unit of t is 1/32 of the synchrotron period.

hence
V(t) = eN!r

X
m;n

e�i(n!r�m!l)tZ(n!r �m!l)�̂m(n!r �m!l) : (48)

One can see an instability signal in V(t) by a frequency analyzer set to receive a sideband
of a relevant revolution harmonic. Podobedov and Siemann devised a demodulation method
that uses many revolution harmonics to achieve a better signal-to-noise ratio [41]. They
�rst apply a 10 GHz high-pass �lter (mostly to reduce the power level to a manageable
value) then put the signal through a square-law detector (diode) which squares it to good
accuracy. The signal is then ampli�ed (40db) and sent through a 5 MHz low-pass �lter,
and �nally to an oscilloscope (through \a.c. coupling", meaning that the d.c. component
is removed). If F1 represents the high-pass �lter, and F2 the low-pass �lter plus removal of
d.c., the oscilloscope signal is

S(t) = �(V2
F1
)F2 ; (49)

where � is a factor (assumed to be frequency-independent) to account for the change in
signal level in the diode and ampli�er.

For VF1 we have (48) with the sums restricted to jn!rj > 2�(10GHz) and jm!lj � 4!s,
there being no signi�cant components for larger m. We de�ne the corresponding domains as
jnj > n and jmj < m. It seems safe also to set Z(n!r�m!l) = Z(n!r) and �̂m(n!r�m!l) =
�̂m(n!r) since jm!l=n!rj < 4 � 10�5. Indeed, we have validated this approximation for �̂ in
our simulation. Separating the m = 0 terms and de�ning � = (eN!r)

2, we have
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VF1(t)
2 = VF1(t)V

�

F1
(t)

= �
X
jnj>n

Z(n!r)
�
�̂0(n!r)e

�in!rt +
X

0<jmj<m

�̂m(n!r)e
�i(n!r�m!l)t

�

�
X

jn0j>n

Z(n0!r)
�

�
�̂0(n

0!r)
�ein

0!rt +
X

0<jm0j<m

�̂m0(n0!r)
�ei(n

0!r�m
0!l)t

�
:

(50)

Of the various terms in the product (50), the d.c. terms are taken out by F2, as are all terms
with frequencies of the form (n0 � n)!r � (m0 �m)!l ; n 6= n0, since fr = 8:5MHz > 5MHz
and jm0 �mj!r is small compared to n!r. Thus, the oscilloscope signal is

S(t) = S1(t) + S2(t)� hS2i ; (51)

where

S1(t) = 2��Re
� X
jnj>n

jZ(n!r)j
2

X
0<jmj<m

�̂(n!r)
�

0�̂(n!r)me
im!lt

�
; (52)

S2(t) = ��
X
jnj>n

jZ(n!r)j
2

X
0<jmj;jm0j<m

�̂m(n!r)�̂m0(n!r)
�ei(m�m0)!lt ;

(53)

and hS2i is the d.c. component of S2.
Since our computation shows that �̂0(n!r) is large compared to �̂m(n!r) ; m 6= 0, the

term S1 is the dominant part of the signal. This term was of course emphasized in the
invention of the diode demodulation method [41], and it was called the \instability signal".
A contribution to S1 for a single n is proportional to the real part of �̂(n!r; t), the Fourier
transform of the bunch form with respect to � at that n.

It turns out, however, that S2 is not negligible, so that the pure instability signal will
not be seen in the oscilloscope trace. The contribution to S2 for a given n is proportional
to the square of the instability signal for that n. In the simulation, S2 is responsible for the
asymmetry between the upper and lower envelopes of the oscilloscope trace. An asymmetry
is also seen in the data but was not previously associated with S2. Figure 12 shows the
simulated oscilloscope trace in arbitrary units for N = 2:99 � 1010, including all revolution
harmonics nfr between 9.8 and 20 GHz (1149 � n � 2352), and assuming that the BPM
impedance jZ(n!r)j is independent of n. The 20 GHz cut-o� was chosen since there seems to
be signi�cant un�ltered BPM signal up to that frequency. Figure 13 shows the corresponding
experimental graph from Ref.[41], kindly provided by the authors. The period of the bursting
envelope is 0:607�d in the calculation and about 0:62�d as read from the experimental graph
for 3:1 � 1010.

Actually, the BPM impedance is not expected to be constant over such a large range of
frequencies; it may in fact show resonant peaks or high-frequency fall-o� that could change
the oscilloscope trace in comparison to Figure 12. Its absolute value can be measured
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Figure 12: Simulated oscilloscope trace for
N = 2:99 � 1010, in arbitrary units. The time
unit is one synchrotron period. The straight
line gives the mean value of the plotted data,
zero as it ought to be.
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Figure 13: Experimental oscilloscope traces
for various currents. The third curve from
the top is for N = 3:1 � 1010.

by doing a frequency analysis of the BPM signal, with no �lter over the required range
of revolution harmonics, at low current where the bunch form is well known. Once this
relatively easy measurement is performed, we can make a a more complete comparison of
theory to experiment.

6 Summary and Outlook

We have presented a method for stable long-term integration of the nonlinear Vlasov-Fokker-
Planck equation. Applied to the SLC positron damping ring, it yields several aspects of
observed bunch behavior for bunch population up to 3 �1010. The threshold of bunch length-
ening, the frequency of bunch oscillations, and the period of the bursting envelope are all in
good agreement with experiment. The computed threshold for the bursting mode appears
to be somewhat low, although we have not yet determined it exactly, and we do not know
how to judge experimental sensitivity to this mode. Observed phenomena for N � 3:2 � 1010

are not reproduced, in particular the disappearance of the bursting mode and appearance of
a spectral line at 2:5!s. Comparisons with streak camera measurements are yet to be made.

Many interesting questions remain to be explored, both in longitudinal bunch motion
and in wider applications of VFP equations. For longitudinal motion we should strive to
understand the results in intuitive terms, perhaps by abstracting a simpler model after a
detailed examination of the numerical data. The association of bursting with beats between
neighboring Fourier modes in the time dependence of the bunch form is intriguing, and should
be analyzed. We should also try to understand the e�ect of changes in the wake potential.
This would have the short range goal of resolving con
icts of theory and experiment, and the
long range goal of trying to prevent bursting behavior in practice. Long-period \relaxation"
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oscillations, some noticeably di�erent from the SLC bursting mode, have been seen at several
machines [42, 43, 44, 45]. Perhaps our method will help to sort out these varied phenomena.
There have been theoretical ideas [46, 47, 48, 49, 45, 50, 51] and simulations [52, 53, 19] on
the subject going back to 1981.

The computations were done with modest computing power, stringing together several
long runs on work stations to integrate for 2-4 damping times. A run of 120 synchrotron
periods (:61�d) takes 17 hours on an IBM RISC 6000 with 200 MHz clock. For greater con-
venience or for extension of the method to more degrees of freedom we need a substantial
speed-up. We are certain that there is ample opportunity for a big improvement in the algo-
rithm, still staying with the basic idea. The problem is well suited to parallel computation,
since the single-particle tracking and interpolations associated with di�erent grid points can
be done independently on di�erent processors.

In pursuit of other applications of the method, we have already applied it to the coherent
beam-beam interaction (\strong-strong" model) in one degree of freedom. Although this
involved two coupled VFP equations, the computation proved to be easier than the one
reported here, and resulted in discovery of an apparent equilibrium state. We then formulated
an integral equation for the equilibrium, generalizing the Ha��ssinski equation to a case in
which the Hamiltonian has explicit time dependence. Since the integral equation has a
unique solution at small current, we have settled the long standing question of existence of
an equilibrium for this model [13].

If one can successfully implement the method in two or three degrees of freedom, there
will be a much longer list of interesting applications. This would include single-pass problems
such as the matching of a space-charge dominated beam to a focusing channel in a linac.
For this an integral equation to express the matching condition might also be of interest.
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