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“La science, mon garçon, est faite d’erreurs, mais d’erreurs qu’il est

bon de commettre, car elles mènent peu à peu à la vérité.”

Jules Verne, Voyage au centre de la terre





Abstract

The Higgs mechanism as a way to give masses to fundamental particles in a gauge-

invariant way was introduced nearly 50 years ago. Ever since, high energy experiments

conducted at particle accelerators have looked for evidence of the Higgs boson, until

its discovery was finally confirmed by two experiments at the Large Hadron Collider in

Geneva in July 2012.

The dominant production mode for Higgs bosons at hadron colliders is the gluon

fusion process which accounts for about 90% of the overall rate in the Standard Model

of particle physics. At the same time, the gluon fusion cross section is sensitive to

possible physics beyond the Standard Model because it is a loop-induced process. Hints

for new physics may thus be visible in small deviations of the Higgs production rate

from the Standard Model prediction.

The main focus of this thesis is therefore the best possible description of gluon fusion

process in the Standard Model of particle physics as well as in generic extensions of it.

This goal is achieved in the computer program iHixs which incorporates all contributions

to gluon fusion through next-to-next-to-leading order in Quantum Chromodynamics and

next-to-leading order in the electroweak theory for an arbitrary number of heavy quarks

and coupling strengths different from the ones predicted by the Standard Model of

particle physics. iHixs furthermore allows to properly estimate the various theoretical

uncertainties associated with parton distribution functions, the treatment of the Higgs

width and the sensitivity to renormalisation and factorisation scales. To properly account

for enhanced bottom quark couplings, the next-to-next-to-leading order result for direct

bottom quark fusion in Quantum Chromodynamics is included, too.

Using iHixs, we give a phenomenological profile of the Higgs boson, investigating the

numerical importance of various contributions and check the validity of some approxi-

mations that are usually employed in experimental searches.

Based on the observation that the theoretical uncertainty of the next-to-next-to-

leading order gluon fusion cross section is still fairly large, we furthermore calculate

a part of the cross section at another order higher in the strong coupling, which allows

us to estimate the uncertainty of the next order due to renormalisation and factorisation
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scales. We find that for some reasonable assumptions, the remaining uncertainty will be

below 5%.

Further contents of the thesis consist of the description of the development of the

computer code Chaplin which allows for the numerical evaluation of a special class of

functions, the so-called harmonic polylogarithms for any complex argument up to weight

four in the index vector. The availability of this code simplified the implementation of

various features of the code iHixs significantly and was developed for this reason. It

will be useful in many other applications in high-energy physics, though.

Finally, we briefly present the computation of the fully differential Higgs production

cross section through bottom quark fusion, focusing on the method of bare parton dis-

tribution functions to cancel infrared divergences associated with initial-state radiation,

and provide selected results for a handful of differential observables.
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Zusammenfassung

Der Higgs-Mechanismus, welcher es ermöglicht Elementarteilchen eine Masse zu geben

ohne dabei die Eichsymmetrie der zugrundeliegenden Theorie zu verletzen, wurde vor

fast 50 Jahren gefunden. Seither wurde an verschiedenen Hochenergie-Experimenten

an Teilchenbeschleunigern nach Spuren des Higgs-Bosons gesucht, bis seine Entdeckung

schliesslich im Juli 2012 von zwei Experimenten am LHC-Beschleuniger in Genf bestätigt

wurde.

An Hadron-Beschleunigern wie dem LHC ist der dominierende Produktionsmecha-

nismus für Higgs-Bosonen die Verschmelzung zweier Gluonen zu einem Higgs-Boson,

genannt Gluon-Fusion. Er trägt ungefähr 90% zur gesamten Higgs-Produktion im Stan-

dardmodell der Teilchenphysik bei. Ausserdem ist der Gluon-Fusion-Prozess wegen sein-

er Schleifen-Natur empfindlich auf Physik jenseits des Standardmodells. Hinweise auf

neue physikalische Phänomene könnten deswegen in einer kleinen Abweichung der Higgs-

Produktions-Rate vom der Standardmodell-Vorhersage zu finden sein.

Aufgrund dieser Motivation liegt das Hauptaugenmerk dieser Arbeit auf der best-

möglichen Beschreibung des Gluon-Fusion-Prozesses im Standardmodell der Teilchen-

physik und seiner allgemeinen Erweiterungen. Dies wird erreicht in Form eines Comput-

erprogramms namens iHixs, welches alle Beiträge zum Gluon-Fusion-Prozess in nächst-

zu-nächst-zu-führender störungstheoretischer Ordnung in der Quanten-Chromodynamik

und nächst-zu-führender Ordnung in der elektroschwachen Theorie vereint. Der Produk-

tionsquerschnitt kann für eine beliebige Anzahl schwerer Quarks berechnet werden, deren

Kopplung zum Higgs-Boson von den Standardmodell-Kopplungen abweichen können.

iHixs kann ausserdem die theoretische Unsicherheit aufgrund von Partonverteilungs-

funktionen, der verschiedenen Möglichkeiten den Higgs-Propagator zu beschreiben und

der Abhängigkeit von den nichtphysikalischen Renormierungs- und Faktorisierungs-Skalen

berechnen. Um eine vollständige Beschreibung im Falle von verstärkter Kopplung des

Bottom-Quarks zum Higgs-Boson zu erreichen wurde ausserdem auch der Prozess der

direkten Bottom-Quark-Verschmelzung in nächst-zu-nächst-zu-führender Ordnung der

Quanten-Chromodynamik implementiert.

Mithilfe von iHixs wird dann ein phänomenologisches Profil des Higgs-Bosons erstellt.
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Dabei untersuchen wir den numerischen Einfluss verschiedener Beiträge zum gesamten

Wirkungsquerschnitt und überprüfen Vereinfachungen, welche in Experimenten gewöhn-

lich angewandt werden.

Da die theoretische Unsicherheit des Higgs-Produktions-Wirkungsquerschnitts auch

in nächst-zu-nächst-zu-führender Ordnung noch ziemlich gross ist, berechnen wir ausser-

dem einen Teil der nächst-höheren Ordnung in Quanten-Chromodynamik. Dies ermöglicht

es uns, die Skalenabhängigkeit der nächst-höheren Ordnung abzuschätzen. Unter gewis-

sen Annahmen bezüglich der fehlenden Beiträge finden wir eine verbleibende Unsicher-

heit von weniger als 5%.

Des Weiteren beschreiben wir die Entwicklung des Computerprogramms Chaplin,

welches eine spezielle Klasse von mathematischen Funktionen, die sogenannten har-

monischen Polylogarithmen, numerisch auszuwerten vermag. Insbesondere kann Chap-

lin die Polylogarithmen für ein beliebiges komplexes Argument auswerten, wobei Index-

Vektoren bis zu einem Gewicht von vier unterstützt sind. Die Verfügbarkeit dieses Codes

vereinfachte die Implementierung vieler Bereiche von iHixs massiv, und er kann in vielen

anderen Rechnungen in der theoretischen Teilchenphysik weiterverwendet werden.

Schliesslich geben wir noch einen kurzen Einblick in eine weitere Rechnung, welche den

vollständig differenziellen Higgs-Produktionsquerschnitt durch Bottom-Quark-Fusion beschreibt.

Dabei konzentrieren wir uns auf die Methode der nackten Partonverteilungsfunktionen

um Infrarot-Divergenzen aus Strahlungskorrekturen des Anfangszustandes aufzuheben,

und präsentieren einige Resultate für differenzielle Observablen.
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1. Introduction

The achievements of humankind are manifold. Among them, science, the systematical

acquisition and organisation of knowledge, stands out as one of the biggest accomplish-

ments. Since the beginning of civilisation, the quest to observe and consequently explain

nature in all its manifestations, as well as passing the acquired knowledge on to further

generations has been undertaken by scientists with great success. Science has since

branched out into further areas which are not directly related to nature such as sociol-

ogy or the more abstract study of mathematics and logic, and also philosophy.

Physics is the science of the fundamental constituents of matter and their dynamics.

More than in any other natural science, the principle of reductionism which describes

an object as the sum of its constituents and their interactions, has been enormously

successful, leading to the notion of only few fundamental particles and forces to govern

all phenomena observed in nature.

A notable example for reductionism at work is the famous gold-foil experiment by

Rutherford conducted in 1909, where it was observed that alpha-particles fired at gold

atoms can scatter at very large angles. This led Rutherford to the conclusion that the

positive charge of an atom is accumulated in a very small nucleus and shortly thereafter

to the proposal of protons and neutrons as building blocks of any atom. The particle

content to describe matter thus shrank from many dozens, a fundamental atom for each

known element, to just the three constituents protons, neutrons and electrons.

The experiment of Rutherford is notable for another reason. It marks the beginning

of experimental particle physics using particle collider experiments. At atomic and sub-

atomic length scales, forces can not be measured directly. Instead, measuring scattering

angles and energies of particles emerging from a collision must be interpreted to infer

the underlying force of the interaction. Ever since Rutherford, experimental progress in

sub-atomic physics has come from scattering experiments almost exclusively.

When later in the 20th century such collider experiments started to discover a wealth of

new, apparently fundamental particles called hadrons, reductionism again proved to be

fruitful in the form of the proposal by Gell-Mann and Zweig that protons, neutrons and

all the newly found particles were in fact built from the same building blocks themselves,
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called quarks. Today, we believe that all matter consists of quarks and leptons (the

electron and its heavier copies) which are the fundamental constituents of nature.

On the theoretical side, a similar condensation of concepts was successfully achieved.

Neglecting the gravitational force for the moment, any interaction among quarks and

leptons is described by just two theories, Quantum Chromodynamics (QCD) and elec-

troweak theory which is the unification of Quantum electrodynamics (QED) and the

weak nuclear interaction. Starting with the first attempts of Dirac to formulate the revo-

lutionary concepts of Quantum mechanics in a way consistent with the special relativity

of Einstein and culminating with the reductionistic realisation of Salam and Weinberg

that the electromagnetic and weak forces actually originate from the same fundamental

theory, the pair of QCD and the electroweak theory, which is usually called the Standard

model (SM) of particle physics, emerged as a very elegant and predictive theory that has

been tested to unprecedented precision during the last fifty years in experiments around

the world and remains yet to be falsified.

Yet, while one after the other prediction was confirmed by high-energy collider ex-

periments, one crucial feature of the Standard model could not be found for more than

forty years, where we are of course talking about the famous Higgs boson, the physical

manifestation of the Higgs mechanism which breaks electroweak symmetry and gives

the electromagnetic and the weak force their different phenomenology. In order for the

Standard model to be theoretically consistent, there has to be at least one Higgs boson,

whose mass nevertheless is not constrained by any theoretical considerations.

The Higgs boson was first looked for in earnest at the electron-positron collider LEP

at CERN during the 1980s and 1990s. While the LEP experiment in general was a huge

success, no traces of the Higgs boson could be found and only a lower limit on its mass

could be set. With the knowledge we have today, it is actually conceivable that LEP

was tantalisingly close to the Higgs discovery, as its final centre-of-mass energy was just

a few Giga-electronvolts (GeV) shy of the energy needed to produce a 125 GeV Higgs

boson.

Since accelerating electrons becomes increasingly difficult at high energies due to radia-

tive energy losses, the next generation of experiments chose to collide hadrons, protons

to be specific, which allow for much higher collision energies due to their large mass.

This led to the construction of the proton-antiproton collider TeVatron at Fermilab at

the beginning of the 1990s and the Large hadron collider (LHC) at CERN from 2002 to

2008, and ultimately to the discovery of the Higgs boson at a mass of about 125 GeV as

announced on July 4, 2012.

For both the experimental and theoretical particle physics community, the transition
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(a) (b) (c) (d)

Figure 1.1.: Higgs production mechanisms at hadron colliders. (a) Gluon fusion, (b)
Vector boson fusion, (c) Higgs strahlung, (d) Associated production.

from lepton to hadron colliders had challenging implications, as hadrons are compos-

ite objects and generate much messier collider signatures. Computations for hadron

colliders are more complicated than their electron-positron counterparts because the col-

liding protons can not be described in perturbative quantum field theory alone but also

need non-perturbative input, and since the initial particles are charged under the strong

interaction, QCD processes dominate the physics in these machines.

Most importantly, the strong interaction, as its name hints, has a relatively large cou-

pling constant, which means that perturbation theory in the strong coupling converges

much slower than in electroweak processes. Calculating higher-order corrections in per-

turbative QCD to every process of interest is therefore mandatory to provide reliable

predictions for the physics at hadron colliders. The production cross section for SM

processes which are already established can be tuned to data in kinematically well un-

derstood regions once a collider is up and running, and usually next-to-leading order

(NLO) corrections in QCD suffice to describe these processes.

This was obviously not true for the Higgs production rate prior to discovery, which in

turn means that we need to understand Higgs production processes at the highest preci-

sions which are computationally accessible. There are multiple ways to produce a Higgs

boson at a hadron collider, the most important of which are depicted in the language of

Feynman diagrams in figure 1.1. The by far most prolific production mechanism is the

gluon fusion process, which accounts for more than half of the total Higgs production

rate at the LHC over the whole mass range from 90 GeV to 1 TeV, and for about 90%

of the rate for the physical case of the Higgs mass being at 125 GeV.

It was thus clear that the best possible understanding of Higgs production through

gluon fusion is absolutely crucial for the discovery of the Higgs and the consequent

determination of its properties. This thesis is devoted to this task of providing the best

estimate for the gluon fusion production cross section at the LHC, taking into account

all relevant contributions. And since any number in science is only meaningful when

it comes with an uncertainty, the proper estimation of all theoretical uncertainties for
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gluon fusion was an equally important goal.

The thesis is organised as follows. In chapter 2, we briefly introduce the Standard

model of particle physics and some more specific theoretical techniques that will be used

throughout the thesis. In chapter 3, we collect all available fixed-order contributions

in perturbative quantum field theory to the gluon fusion process and describe the com-

puter code iHixs that combines these results into numerical predictions for the Higgs

production rate at hadron colliders. In chapter 4 we briefly meander to the description

of a crucial ingredient to the iHixs program, the library Chaplin which numerically

evaluates a special class of functions, the so-called harmonic polylogarithms (HPLs) for

any complex argument. In chapter 5 we draw a phenomenological profile of the Higgs

boson using iHixs, investigating the impacts of various contributions to gluon fusion on

the inclusive cross section. In chapter 6, we provide parts of the next-to-next-to-next-to-

leading order (N3LO) QCD corrections to gluon fusion, going into a bit more calculatory

details. The obtained N3LO pieces are subsequently used to estimate the uncertainty of

the full N3LO corrections. Finally, in chapter 7, we shortly present another computation

which we performed, the fully differential Higgs production through bottom quark fusion

through NNLO QCD. Conclusions are always given per chapter, and we wrap up the

thesis with a short outlook in chapter 8.

It is simply stunning how much our knowledge of the world has progressed during

the last century, and one can argue that we live in a golden age of particle physics

now that the Higgs boson has been discovered and for the first time ever, we have a

theoretically consistent1 model explaining all high-energy physics phenomena. However,

it would be nothing short of arrogant to think that we have come close to the final truth

regarding our understanding of the fundamental forces of nature. History tells us that

every model will eventually be falsified, and perhaps even be considered a mistake by

future generations. But this is really and ultimately the way science works, which is why

we have chosen the quote [1] on the first page which we translate to English here:

“Science, my lad, is made up of mistakes, but they are mistakes which it is

useful to make, because they lead little by little to the truth.”

This is true for science as a whole, but even more so for everyday scientific research, as

the author had to find out. Still, the urge to understand nature keeps us making these

mistakes, and there are few feelings as rewarding as the brief burst of enlightenment

when a handful of these mistakes line up to a tiny grain of truth.

1Albeit arguably fine-tuned
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2. Theory

In this chapter we will introduce the most important theoretical concepts used in this

thesis. It is by no means complete, and we kindly refer the reader to the various excellent

books which cover the prerequisites like field theory and quantisation of non-abelian

gauge theories [2–6], electroweak symmetry breaking [6, 7] or perturbative calculations

and particle-physics phenomenology [8–11]. To the physics-inclined reader with no prior

knowledge of quantum field theory, we recommend the very accessible book by Zee [12].

We will start with a short section on the Standard model of particle physics and

the Higgs mechanism, without going into any detail except for the theory of the strong

interaction, which is covered in the second section. The remaining sections of the chapter

cover some concepts in perturbative Quantum Chromodynamics (QCD) that will be used

in the latter chapters of this thesis.

2.1. The Standard Model of particle physics

The Standard Model of particle physics (SM) unites the description of the electromag-

netic, the weak and the strong nuclear interaction using the language of local gauge-field

theory.

The particles that constitute matter are described by fermionic fields, and are divided

into leptons and quarks. Leptons are only charged under the electromagnetic and the

weak force, while quarks are also charged under the strong force and thus take part in all

interactions the SM describes. There are three so-called generations (or families) in both

the lepton and the quark sector, where each generation consists of an SU(2) doublet,

(

e−

νe

) (

µ−

νµ

) (

τ−

ντ

)

,

(

u

d

) (

c

s

) (

t

b

)

. (2.1)

The charged leptons are called the electron, the muon and the tau, each of which is

accompanied by a corresponding neutrino. The quarks are called down, up, strange,

charm, bottom and top quark. The charged leptons have an electric charge of −1 nor-

malised to the elementary electric charge, while the neutrinos are electrically neutral,
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2. Theory

which means that they only interact via the weak force. Quarks of the “up” kind (u, c,

t) have an electric charge of +2/3, while the “down” type quarks (d, s, b) carry −1/3 of

the elementary electric charge. Notice that the origin of both the number of generations

and the fractional charges of the quarks remain a mystery up to the present day, they

are not predicted by the SM.

The three interactions are transmitted by bosonic fields, as it is common in quantum

field theory. The electromagnetic force is transmitted by the massless photons and

couples to all electrically charged particles. It can be described by the Abelian gauge-

theory which belongs to the symmetry group U(1). The weak interaction couples to all

known matter particles via the massive W± and Z0 bosons, where the force transmitted

by the former is sometimes called charged-current interaction, and the one by the latter is

referred to as the neutral current interaction. The emission of a W boson turns a charged

lepton into a neutrino and an up-type quark into a down-type quark, respectively, and

vice versa. The corresponding symmetry group is SU(2).

These two interactions, electromagnetism and the weak nuclear force, actually origi-

nate from the same gauge symmetry called electroweak symmetry, which is described

by the symmetry group SU(2)× U(1). In the unified electroweak theory, there are four

gauge bosons, called W1, W2, W3 and B, all of which need to be massless due to gauge

symmetry.

The full electroweak symmetry then is broken spontaneously down to the U(1) symme-

try that we observe in nature. Spontaneous symmetry breaking [13,14] always generates

massless scalars, so-called Nambu-Goldstone bosons. In the case of electroweak symme-

try breaking, there are four Nambu-Goldstone bosons in two SU(2) doublets. Three of

these are absorbed by the gauge bosons, giving them their masses. The W1 and W2

combine into the charged W± and a superposition of W3 and B becomes the massive

Z0. The remaining combination of W3 and B stays massless (protected by the unbroken

U(1) symmetry), becoming the photon.

Thus, there remains one Nambu-Goldstone scalar, which in turn becomes massive

because it has a non-zero vacuum expectation value (VEV). This particle is the Higgs

boson. It interacts with the massive vector bosons W±, Z0 through the gauged covariant

derivative. Furthermore, the Higgs boson can be used to give masses to all matter fields

via interaction terms, as gauge-symmetry also forbids explicit mass terms for Dirac-

fermions at the Lagrangian level. These couplings are called Yukawa couplings. The

phenomenological consequence of this mechanism is that the Higgs boson couples to

fermions with a strength proportional to their mass, i.e. the heavier a particle is, the

stronger it interacts with the Higgs field.
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The application of the theory of spontaneous symmetry breaking which originated in

condensed-matter physics to field theory is called the Higgs mechanism, or sometimes,

in order to do justice to all scientists involved in its conceiving,

Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism [15–20]. However, since Higgs

arguably was the first person to predict the existence of a massive scalar, the boson is

always called Higgs boson.

The application of spontaneous symmetry breaking to the electroweak theory of Glashow

[21] was performed by Salam and Weinberg independently in 1967 [22, 23]. After the

discovery of the Z boson at CERN which their theory had predicted, the three were

jointly awarded the 1979 Nobel prize in physics.

The SM is considered one of the biggest triumphs of modern physics, having emerged

as a collaborative effort by a large number of physicists after many years of work. The de-

velopment of the SM was by no means linear or undisputed, and only after experimental

confirmation of some key features like the bottom quark or the massive W and Z bosons,

it became the state of the art to describe elementary particles. The formulation of the

SM has essentially stayed the same since the mid-seventies of the last century, and has

proven to be very resilient. All quantitative tests involving interactions of elementary

particles can be explained by the SM, at least within the uncertainties of the respective

experiment.

Also the production and decay rates of the recently discovered [24,25] Higgs boson at a

mass of 125 GeV, for decades the last missing piece of the SM “jigsaw”, are in agreement

with the respective predictions by the SM until now, within the statistical uncertainties

associated to the various measurements (see e.g. [26]).

Still, there are some questions left open by the SM such as the inclusion of neutrino

masses, the nature of dark matter or the inclusion of gravity in the gauge field formalism.

Traditionally, also the so-called hierarchy problem which concerns the huge difference in

terms of coupling strength between gravity and the electroweak theory has been regarded

as a flaw of the SM, but has witnessed a bit of waning interest as of lately. Various

extensions of the SM, so-called Beyond the Standard Model (BSM) theories have been

worked out in the last 30 years, the most prominent of which are Supersymmetry and

various extra-dimensional models. We will not describe any of these BSM scenarios in

detail, but briefly touch on the phenomenological impacts of some generic BSM theories

on Higgs observables in section 5.5.
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2.2. Lagrangian density of the strong interaction

We proceed by giving a slightly more thorough introduction to the theory of the strong

interaction, QCD, based on refs. [2, 8]. As mentioned previously, out of the matter

constituents, only quarks interact through it. The force-carrying bosons are called gluons

and are massless. The underlying symmetry group is SU(3), where 3 is the number of

different “colour” charges. Sometimes, we will keep the number of colours arbitrary, i.e.

present the features of the theory for the SU(Nc) case. Similarly, the number of flavours

which to our current knowledge is equal to 6 will be denoted by NF . Repeated indices

are always implicitly summed over, unless stated otherwise, and we always work in the

units where ~ = c = 1.

We proceed by giving the Lagrangian density governing the quark spinor-fields ψi and

the gluon gauge-field Aaµ. The full Lagrangian is given by

L = LQCD + Lgauge + Lghost , (2.2)

with

LQCD = −1

4
GaµνG

a,µν +
NF∑

i=1

ψ̄i
(
i /D −mi

)
ψi , (2.3)

where the covariant derivative is given by

/D = Dµγ
µ =

(

∂µ − igsAaµT a
)

γµ , (2.4)

and the gluonic field-strength tensor reads

Gaµν = ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcν . (2.5)

The two auxiliary parts of the Lagrangian,

Lgauge =







− 1
2ξ

(

∂µAaµ

)2
(covariant)

− 1
2ξ

(

nµAaµ

)2
(axial)

, Lghost = ca
(

δab∂2 + gsf
abcAcµ∂

µ
)

cb , (2.6)

are needed in order to be able to perform the quantisation of non-Abelian gauge-theories.

The fields ca are called Fadeev-Popov ghosts and have their own Feynman rules. To

respect unitarity of the theory, all diagrams involving ghosts have to be added to the

QCD diagrams for a given process, in general. However, choosing a certain gauge, the

so-called axial gauge, ghost fields are not present, and thus we will not comment further

on them.
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2.2. Lagrangian density of the strong interaction

The Dirac matrices γµ obey the anticommutation relation

{γµ, γν} = 2gµν , (2.7)

and the generators of the colour algebra in the fundamental representation, which are

matrices in the space of spinors, obey the commutation rules

[

T a, T b
]

= ifabcT c . (2.8)

The fully antisymmetric structure constants fabc furnish a representation of SU(Nc)

themselves, in the adjoint representation, by defining (T aA)bc = fabc. The dimensions of

the fundamental and adjoint representation are Nc and N2
c − 1, respectively. We thus

observe that in the QCD case of Nc = 3, there are three quarks of each flavour and

32 − 1 = 8 gluons, since the latter live in the adjoint representation as can be seen from

their kinetic term (2.5).

The normalisation of the fundamental generators is commonly chosen as

Tr
(

T aT b
)

= TF δ
ab , with TF =

1

2
, (2.9)

which fixes the quadratic Casimir factors for fundamental and adjoint representation,

T aT a = CF1Nc×Nc , T aAT
a
A = CA1(N2

c −1)×(N2
c −1) , (2.10)

to

CF =
N2
c − 1

2Nc

Nc=3
=

4

3
, CA = Nc

Nc=3
= 3 . (2.11)

A local SU(Nc) transformation acts on the quark and gluon fields as

ψi → Uψi , ψ̄i → ψ̄iU
† ,

AaµT
a → U

(

AaµT
a +

i

gs
∂µ

)

U † (2.12)

with the transformation U is given by

U = exp (iθa(x)T a) , (2.13)

where θa(x) is an arbitrary vector depending on the spacetime coordinate x. Since the

generators T a are hermitian, U is unitary and it is easily seen that the Lagrangian (2.3)

is indeed invariant under local SU(Nc) transformations.
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When we calculate collider observables in QCD, we do perturbation theory in the

strong coupling, i.e. we expand the desired observable in the coupling constant gs,

provided it is small enough such that perturbation theory is applicable (see section

2.3.2). Since the quantity which enters an observable is always a matrix element (i.e. a

sum of Feynman diagrams) squared, the variable we expand in is

αs ≡
g2
s

4π
, (2.14)

which we will henceforth call “the strong coupling”.

We conclude the section by giving the Feynman rules for QCD. The gluon propagator

in the axial gauge reads

a, µ b, ν
p→

=
−iδab
p2 + i0

(

gµν −
nµpν + nνpµ

n · p +
(n2 − ξp2)pµpν

(n · p)2

)

, (2.15)

where the auxiliary vector n may be chosen differently for each gluon. The quark prop-

agator for a quark with mass m is given by

i j
p→

=
iδij(/p+m)

p2 −m2 + i0
. (2.16)

The gauge-vertex is given by

i j

a, µ

= igs T
a
jiγ

µ . (2.17)

Finally, the triple and quadruple gluon self-coupling vertices are given by

a, µ, p b, ν, q

c, α, r

= −gsfabc [(p− q)αgµν + (q − r)µgνα + (r − p)νgαµ] , (2.18)

where the momenta p, q and r are all taken to be incoming, and

a, µ b, ν

c, α d, β

= −ig2
s







f eacf ebd(gµνgαβ − gµβgνα)

+ f eadf ebc(gµνgαβ − gµαgνβ)

+ f eabf ecd(gµαgνβ − gµβgνα)






. (2.19)
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Notice the infinitesimal imaginary part +i0 we have added to the propagator denomina-

tors, which is required to yield the correct causality properties. We will never write it

explicitly again, but it will always be assumed.

2.3. Perturbative QCD calculations

In the previous section, we have presented the Feynman rules for the strong interaction.

The notion of Feynman rules relies on the fact that a field theory is well described

by a perturbative expansion in a small parameter, namely the coupling constant of the

interactions of the theory. It is not a priori clear that this is indeed the case for the strong

interaction, as its name already suggests strong interactions among the participating

particles.

To see that indeed, for the applications considered in the latter chapters of this thesis,

perturbation theory is a viable way of calculating observables, we need to introduce the

concepts of regularisation and renormalisation.

2.3.1. Regularisation

In calculations in quantum field theory, one soon runs into divergent expressions. The

primary textbook example are Feynman diagrams containing loops with less or equal

than four powers of the loop momentum in the denominator, e.g.

∫
d4k

(2π)4

1

k2 −m2
, (2.20)

where by simple power counting, we find that for |k| → ∞, the denominator is of

O(|k|2), while the integration measure d4k goes like O(|k|3). We thus end up with a

divergent integral. This type of divergence, called ultraviolet (UV) divergence because

it appears when the momentum of the loop particle becomes much larger than its mass,

has historically troubled the people working in the development of quantum field theory.

It is resolved by the procedure of renormalisation, which will talk about in the next

section.

There is a second kind of divergence, associated with massless particles such as photons

or gluons. We can again consider a loop integral as an example,

∫
d4k

(2π)4

1

k2 (k − p1)2 (k − p2)2 , (2.21)

which corresponds to a 3-point function with inflowing momenta p1 and p2 − p1 and a
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massless particle in the loop. If both momenta are light-like, p2
1 = p2

2 = 0, the integrand

becomes
1

k2 (k2 − 2kp1) (k2 − 2kp2)

k2≪kpi−→ 1

k2 (2kp1) (2kp2)
, (2.22)

where we have taken the limit of the loop momentum becoming soft. It is apparent that

the denominator vanishes when either |k| → 0 (the soft limit) or when k points along p1

or p2, which is called the collinear limit. These divergences are therefore called infrared

(IR) divergences. While UV divergences only appear in loop integrals, we encounter IR

divergences in phase-space integrations of tree-level diagrams when an external massless

particle becomes soft or collinear to another particle.

In fact, it was proven half a decade ago by Kinoshita [27], Lee and Nauenberg [28]

that the SM is IR-finite for observables that are inclusive enough. This means that

infrared divergences cancel out among different contributions to a physical observable,

i.e. when we compute higher order corrections in perturbation theory, IR divergences

from so-called virtual corrections (loop diagrams) cancel out with IR divergences from

real emission corrections (diagrams with the additional emission of a massless particle).

Nevertheless, in intermediate expressions we need to deal with IR singularities and thus

need a way to regularise them.

There are numerous ways of regularising UV and IR divergences. For example, to

avoid UV singularities, one can introduce a cut-off scale Λ as the upper boundary for

the value of the loop momentum [2]. Another traditionally widely-used method is Pauli-

Villars regularisation [29], where auxiliary fields with a large mass are introduced to

the theory, whose propagators exactly cancel the singular behaviour of the SM particles.

Our method of choice to regularise divergences is dimensional regularisation [30], which

has become standard practice since its invention. It holds the advantage of preserving all

symmetries of the theory in question, in particular gauge symmetry and the associated

Ward-identities. The second advantage is that it regularises both UV and IR divergences

at the same time1.

The idea is as simple as powerful. We allow the spacetime dimension D which is equal

to four, to be any complex number. This analytic continuation is parametrised by the

replacement D = 4 − 2ǫ, such that we recover the physical case in the limit ǫ → 0.

Divergences then manifest themselves as poles in ǫ. Note that there are different pre-

scriptions on how to treat the degrees of freedom of external particles within dimensional

regularisation schemes, the most common being conventional dimensional regularisation

1Formally, the sign of the dimensional regulator ǫ actually has to be negative to regularise IR divergences
and positive for UV divergences. Since IR poles cancel out eventually, this distinction if of academic
nature only.
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(CDR) and dimensional reduction regularisation (DRED)2. Throughout this thesis, we

choose CDR, where external gluon fields have D − 2 polarisations and external quarks

fields have 2.

As an example, we consider the initial integral from eq. (2.20) in dimensional regulari-

sation, without going into detail about how we perform theD-dimensional integration [2],

µ4−D
∫

dDk

(2π)D
1

k2 −m2
=−

iΓ
(

1− D
2

)

mD−2µ4−D

(4π)
D
2

=
im2

(4π)2

[

1

ǫ
+ 1− γE − log

(

m2

µ2

)

+ log(4π) +O(ǫ)

]

, (2.23)

where we have expanded the result in ǫ in the second step, using the expansion of the

Gamma-function,

Γ(1 + ǫ) = 1− γEǫ+O(ǫ2) , (2.24)

as well as its defining property

Γ(1 + z) = zΓ(z) ⇒ Γ(−1 + ǫ) =
Γ(1 + ǫ)

ǫ(−1 + ǫ)
. (2.25)

So indeed, we find the divergence to be contained in the pole 1/ǫ.

The auxiliary scale µ was introduced rather ad-hoc in the above example to keep the

mass-dimension of the integral equal to the four-dimensional case. Indeed, since the

action

S =

∫

dDx L , (2.26)

is a dimensionless quantity, we can deduce the mass-dimension of the fermionic and

bosonic fields in our Lagrangian from the kinetic terms, and find

[ψi] =
D − 1

2
,
[

Aaµ

]

=
D

2
− 1 . (2.27)

This in turn fixes the mass-dimension of the gauge-coupling g to

[g] = 2− D

2
= ǫ . (2.28)

Since we ultimately want to expand in the coupling g and keep it dimensionless for this

2see for example [31] for a comparison
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purpose, we are thus forced to introduce the auxiliary scale µ via

g 7→ gµǫ . (2.29)

The scale µ, often called the ’tHooft mass, plays a significant role in renormalisation, as

we will see now.

2.3.2. Renormalisation

The solution to the issue of UV divergences is the realisation that the fields, masses and

coupling constants in the Lagrangian do not correspond to physical observables. The

parameters in the Lagrangian have no knowledge of the self-interaction of the theory

such as loop corrections to an interaction vertex or a particle propagator. But these

self-interactions are inevitably linked to physical, measurable parameters3. Thus, they

are usually dubbed “bare” parameters and are denoted with a 0-superscript,

L = L
(

A0a
µ , ψ

0
i , g

0,m0
i

)

. (2.30)

To find the physical parameters in the Lagrangian, one has to split it up in a smart way.

All bare parameters are divided into a corresponding physical parameter and a counter-

term. The counter-terms are chosen in such a way that when performing perturbation

theory with the split-up Lagrangian, the UV divergences (that will still be there, since

the same diagrams as when using the bare parameters will be produced) are exactly

cancelled by the counter-terms. The renormalisation procedure only works if the theory

under consideration is renormalisable, which is determined by the Feynman rules of the

theory. The SM is a renormalisable theory.

In QCD, the renormalisation programme results in replacing

ψ0
i = Z

1/2
ψ ψi, ψ̄0

i = Z
1/2
ψ ψ̄i,

A0a = Z
1/2
A Aa, c0 = Z1/2

c c, (2.31)

m0
i = Zmmi, g0

s = Zggsµ
ǫ, ξ0 = Zξξ,

where the Zi = 1 + δZi are called renormalisation constants and contain the counter-

terms δZi. Notice that not all renormalisation constants are independent, as they are

related by identities obtained from gauge invariance. In the calculations of this thesis,

we will only need Zg and Zm, which we will provide at the end of the section.

3Sloppily put, since in Quantum mechanics “anything that can happen will happen”, any measurement
of a parameter of a theory includes the whole infinite tower of perturbative corrections that affect it.
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2.3. Perturbative QCD calculations

While it is clear that all singularities have to be cancelled by the renormalisation

constants, one is free to absorb more pieces of the divergent integrals into them. The

different choices of how to do this are called different renormalisation schemes. The

most common choices are the Minimal subtraction (MS) scheme, the modified Minimal

subtraction (MS) scheme and the on-shell (OS) scheme. We go back to the regularised

result for the divergent integral (2.23) to illustrate the former two,

µ4−D
∫

dDk

(2π)D
1

k2 −m2
=

im2

(4π)2

[

1

ǫ
+ 1− γE − log

(

m2

µ2

)

+ log(4π) +O(ǫ)

]

. (2.32)

In the MS scheme, the counter-terms are chosen to absorb only the 1/ǫ pole, while in

the MS scheme, the whole expression

1

ǫ
+ log(4π) − γE , (2.33)

will be cancelled since the logarithm and the Euler-Mascheroni constant are universal

factors that always appear in divergent loop integrals. In the “MS-philosophy”, these

(finite) terms do not represent a genuine perturbative contribution to a physical observ-

able. The OS scheme on the other hand defines the counterterm such that the pole of the

renormalised propagator is located at the renormalised mass, and is usually only used

in perturbative QCD when dealing with massive quarks which have a mass comparable

to the typical scales of a high-energy process. We refer to [32] for further reading on

renormalisation schemes.

In this thesis, we will use the MS scheme in the renormalisation of the strong cou-

pling throughout. The subtraction of the combination in eq. (2.33) can be achieved by

replacing

µ2 7→ µ̄2 =
eγE

4π
µ2 . (2.34)

In the MS scheme, the renormalised parameters become dependent on the scale µ, i.e.

the values of the “constants” of the theory change when they are measured at a differ-

ent energy scale, which is given by experimental constraints or selection criteria. The

dependence can be derived from the relation between bare and renormalised parameters

and is termed Renormalisation group equation (RGE). We consider the strong coupling

αs, whose renormalisation constant is given by Zα = Z2
g ,

0 =
∂α0

s

∂ log(µ2)
= µ2∂α

0
s

∂µ2
= µ2 ∂

∂µ2

(

µ2ǫ
(
eγE

4π

)ǫ

Zααs

)
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2. Theory

=µ2
(

ǫ(µ2)ǫ−1
(
eγE

4π

)ǫ

Zααs + µ2ǫ
(
eγE

4π

)ǫ (

Zα +
∂Zα
∂αs

αs

)
∂αs
∂µ2

)

, (2.35)

which yields
∂αs

∂ log(µ2)
=

−ǫαs
1 + αs

Zα

∂Zα

∂αs

≡ αs β(D)(αs) , (2.36)

where we have defined the D-dimensional Beta-function on the RHS. The Beta-function

governs the dependence of the coupling αs on the renormalisation scale µ. In calculations,

the four-dimensional Beta-function β(αs) is used, which is just the limit of β(D)(αs) as

D → 4. As is easily checked, the perturbative expansion of β(αs) starts at the first

order,

β(αs) = −4π
∞∑

n=0

βna
n+1
s , where as ≡

αs
π
. (2.37)

and first three expansion coefficients in the SU(Nc)-case read [33,34]

β0 =
11

12
CA −

1

3
TFNF , (2.38)

β1 =
17

24
C2
A −

1

4
CFTFNF −

5

12
CATFNF , (2.39)

β2 =
2857

3456
C3
A +

1

32
C2
FTFNF −

205

576
CFCATFNF −

1415

1728
C2
ATFNF

+
11

144
CFT

2
FN

2
F +

43

288
CAT

2
FN

2
F , (2.40)

which for QCD becomes

β0 =
11

4
− NF

6
, β1 =

51

8
− 19

24
NF , β2 =

2857

128
− 5033

1152
NF +

475

3456
N2
F . (2.41)

Truncating eq. (2.36) at O(a2
s) and solving for as(µ) yields

as(µ
2) =

as(µ0)

1 + as(µ0)β0 log
(
µ2

µ2
0

) . (2.42)

Since for NF < 17, β0 is larger than zero, the denominator in the equation above is

larger than 1 for µ > µ0, which means that the coupling αs becomes smaller the higher

the scale µ is chosen. This feature persists when higher orders of the Beta-function are

added. Notice that the electromagnetic coupling αQED exhibits the opposite behaviour,

for example. This behaviour of the strong coupling is called asymptotic freedom. It was

first realised by Gross, Wilczek [35] and Politzer [36], who were jointly awarded the 2004
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Three-loop running of the strong coupling, αs(mZ) = 0.1184(7)

Figure 2.1.: The strong coupling αs as a function of the energy scale Q.

Nobel prize in physics for their discovery. Asymptotic freedom has been confirmed by

a wealth of experimental measurements of the strong coupling covering a vast range of

energy scales [37], which follow exactly the running of the strong coupling depicted in

figure 2.1 where we took the current world average [38],

αs(mZ) = 0.1184 ± 0.0007 , (2.43)

and evolved the coupling using the RGE eq. (2.36). The width of the red curve indicates

the uncertainty associated with the initial value at the Z-mass.

Asymptotic freedom, paired with the fact that the value for the strong coupling at

µ = mZ ≈ 91 GeV as given in eq. (2.43) is rather small, means that for the energy scales

typically probed in the processes described in this thesis, which lie in the ballpark of the

Higgs mass of 125 GeV, fixed-order perturbation theory is expected to converge quickly

and yield a good approximation to the actual physical observables.

We close this section by giving the expressions for the renormalisation constants of

the strong coupling and the quark mass, as we will need it in later chapters.

The renormalisation replacement for the strong coupling in the MS scheme reads

α0
s = αs(µ)µ2ǫ

(
eγE

4π

)ǫ

Zα , (2.44)

and the renormalisation constant is, through three-loop order,

Zα = 1− as(µ)
β0

ǫ
+ a2

s(µ)

(

β2
0

ǫ2
− β1

2ǫ

)

+ a3
s(µ)

(

−β
3
0

ǫ3
+

7β0β1

6ǫ
− β2

3ǫ

)

+O(a4
s) . (2.45)
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The renormalisation constant for the quark mass will only be needed to on-loop order.

We will compare results in the MS and the OS scheme, which is why we provide both

renormalisation constants.

ZMS
m = 1 + as

γ0

ǫ
+O(a2

s) = 1 + as
1

ǫ
+O(a2

s) , (2.46)

where γ0 is the first expansion coefficient of the so-called anomalous dimension which

governs the scale dependence of the MS mass via the RGE

∂m

∂ log(µ2)
= γ(as)m =

(

−asγ0 − a2
sγ1 − a3

sγ2 +O(a4
s)
)

m. (2.47)

The first three expansion coefficients of the anomalous dimension of the MS quark mass

are given by

γ0 = 1 , γ1 =
101

24
− 5NF

6
, γ2 =

1249

64
−
(

277

216
+

5ζ3

6

)

NF −
35

1296
N2
F . (2.48)

Finally, the one-loop renormalisation constant for the OS quark mass M , which does

not depend on a scale, is given by

ZOS
m = 1 + as

1

ǫ

(

µ2

M2

)ǫ(

1 + ǫ2
π2

12

)

1− 2ǫ/3

1− 2ǫ
. (2.49)

2.3.3. Partonic cross sections and the D-dimensional phase-space

With the whole collection of Feynman rules for the SM at hand4, we can in principle

compute the matrix element of any process involving elementary particles.

In processes relevant for the LHC, we always consider processes of the type

1, 2→ 3, . . . , n + 2, where particles 1 and 2 are partons (i.e. quarks or gluons) inside the

colliding protons, and 3, . . . , n + 2 are any n final-state SM particles, such as a Higgs

boson and additionally radiated partons. We denote the matrix element obtained from

adding all Feynman diagrams which contribute to the process by M2→n({pi}, {mi}),
where the sets {pi}i=1,...,n and {mi}i=1,...,n denote all initial- and final-state momenta

and masses, respectively (though m1 and m2 are always taken to be zero, i.e. the initial

states are approximated to be massless). The corresponding squared matrix element

with summation over final-state spins and colours and averaging over initial-state spins

and colours is written as |M2→n({pi}, {mi})|2.

The differential partonic cross section for the process under consideration is then given

4For a comprehensive list, see for example the appendix of [3].
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2.3. Perturbative QCD calculations

by [2]

dσ({pi}, {mi}) =
1

2s
dΦn ({pi}, {mi}) |M2→n({pi}, {mi})|2 , (2.50)

where s = (p1 + p2)2 and dΦn denotes the n-particle phase-space measure,

dΦn ({pi}, {mi}) =

(
n+2∏

i=3

dDpi
(2π)D−1

δ+(p2
i −m2

i )

)

δ(D)

(

p1 + p2 −
n+2∑

i=3

pi

)

(2π)D , (2.51)

with

δ+(p2
i −m2

i ) = δ(p2
i −m2

i )θ(p
0
i ) , (2.52)

to select positive-energy states only. “Differential” in this context means that we retain

full knowledge of the momenta of all final-state particles. The inclusive partonic cross

section is then simply given by the integral over all final-state momenta, i.e. all infor-

mation about the final-state kinematics is lost, except the collective four-momentum of

the centre-of-mass which is equal to p12 = p1 + p2,

σ(p12, {mi}) =
1

2s

∫

dΦn ({pi}, {mi}) |M2→n({pi}, {mi})|2 . (2.53)

As discussed in section 2.3.1 and indicated above, the final-state momenta need to be

treated in D dimensions in general, as we have to regularise IR divergences associated

with with soft and/or collinear massless final-state particles using dimensional regulari-

sation.

The squared matrix element |M|2 is usually parametrised in terms of the Lorentz

invariants si1...im, for which we adopt the convention

si1...im = (pi1...im)2 , (2.54)

where

pi1...im = τi1pi1 + . . .+ τimpim , with τi =

{

+1 if i = 1, 2 ,

−1 if i > 2 .
(2.55)

In this thesis, we will mostly be concerned with the production of one massive particle

(a Higgs boson) accompanied by zero, one or two massless partons. The D-dimensional

phase-space measures for these cases are provided in appendix A.
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2.3.4. Hadronic cross section and mass factorisation

At hadron colliders such as the Fermilab TeVatron or the CERN LHC, the initial-state

particles entering scattering processes are not elementary particles but protons or anti-

protons. Protons are hadrons, composite objects which consist of quarks and gluons,

held together firmly by the strong force and have a mass of approximately 1 GeV. Con-

sidering figure 2.1 again, we see that at these low energy scales, we run into the flip-side

of asymptotic freedom, i.e. the coupling strength rises strongly as we approach lower

energies. The proton is therefore a highly non-perturbative object and cannot be de-

scribed by perturbative QCD. There is progress in describing hadrons in the framework

of lattice QCD, see for example [39] for a review.

This looks like a problem for us since we want to apply perturbation theory to describe

processes at the LHC. The solution to this is the parton model and collinear factorisa-

tion, developed at the end of the 1960s to describe Deep inelastic scattering (DIS), the

scattering of an electron and a proton. For hard scattering processes, i.e. interactions in-

volving a momentum transfer Q2 ≫ m2
p, the proton can be described as a superposition

of free quarks and gluons, each of them carrying some fraction x of the momentum of the

proton. The probability to find a gluon or a quark of a given flavour i with momentum

fraction x inside a proton is given by the parton distribution function (PDF) fi(x).

The crucial point is that all soft, non-perturbative physics is contained in the PDF,

which is a universal object. Its values can be extracted in relatively clean experimental

conditions such as DIS, and then be used in any process involving colliding protons.

Intuitively, one may think of this property, called factorisation, on the level of different

wavelengths, or timescales, associated with different energy scales in quantum mechanics.

To the soft processes happening inside the proton, a highly energetic, hard scattering is

“invisible”, since it happens on much shorter timescales. It has to be noted, though, that

factorisation has only been proven to be valid for DIS and the Drell-Yann process [40].

In other hadronic processes with two initial protons, it is merely an approximation which

has been experimentally proven to be excellent, though. A graphical representation of

factorisation is given in figure 2.2 which depicts DIS. The full process is split up in the

emission of a parton i from the proton P (lower, round blob) which is universal, i.e.

independent of the subsequent hard scattering of i with the photon (upper, square blob),

which in turn is independent of origin of i (i.e. independent of the hadron P ), and finally

the contributions from all partons have to be added by summing over i.

When we split up a process in this way, we introduce new singularities, though. The

initial states for the hard scattering amplitude are now quarks and gluons, which can

themselves emit massless partons that may become soft and/or collinear to external
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σ ...

P

γ

→
i

fi

σi ...

P

γ

Figure 2.2.: A graphical representation of factorisation for the DIS process.

momenta. As we have seen before, this generates IR singularities. These singularities

will not cancel against any other hard contribution, though, as was the case for the

usual final-state IR singularities which cancel among real and virtual corrections. But

they cancel when the soft piece containing the PDF is added, since it contains the same

singularities. They are the price we pay for turning the partons inside the proton into

quasi-asymptotic particles. Therefore, we need another renormalisation, rendering the

bare PDF and the hard partonic cross section finite. This renormalisation is usually

called mass factorisation or collinear factorisation, because it is associated with the

IR structure of the theory rather than the UV limit. Here, again, there are different

possible ways of absorbing finite pieces of the soft emissions into the PDF, i.e. different

factorisation schemes. We always use the MS scheme.

As in the usual UV-renormalisation, collinear factorisation introduces an artificial

scale into the objects involved. This scale is called factorisation scale, µf . After factori-

sation, both the PDF and the hard scattering cross section depend on µf . The equation

governing the scale-dependence of the PDF, i.e. the equivalent of the RGE, is called

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation, or DGLAP equation, which owes

its long name to the fact that Gribov and Lipatov [41], Dokshitzer [42] and Altarelli and

Parisi [43] all discovered it independently in the 1970s. It reads

∂fi(µf , x)

∂ log(µf )
= (Pij ⊗ fj(µf )) (x) ≡

∫ 1

0
dydz Pij(y)fj(µf , z) δ(zy − x) , (2.56)

where ⊗ denotes the convolution operation which is defined on the RHS. Summation

over the index j which runs over all quarks, antiquarks and the gluon is implicit. The

Pij(x) are the Altarelli-Parisi splitting kernels. They parametrise the probability that

a parton j splits into a parton i and a third parton (whose index is not given since it

is implicitly clear from the QCD Feynman rules), with i carrying the fraction x of the

momentum of j (and thus the third, unlabelled parton carries the momentum fraction
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1− x). The splitting kernels are purely perturbative objects

Pij(x) =
∞∑

n=0

an+1
s P

(n)
ij (x) , (2.57)

and can be calculated using usual Feynman-diagrammatic techniques. The leading-order,

one-loop kernels were calculated by Altarelli and Parisi in 1977 [43]. We provide the full

list of MS-splitting kernels used in the calculations of this thesis in appendix B.

The importance of the DGLAP eq. (2.56) can hardly be overstated, since it allows us

to relate PDFs at vastly different scales by purely perturbative means. The dependence

of the PDFs on x can not be predicted by perturbative QCD, as we have argued. But

using eq. (2.56), we can measure the distributions in x at some specific energy scale, e.g.

DIS at moderate centre-of-mass energies which allow for clean experimental signatures,

and then evolve the distributions to the energy scales appropriate for the physical process

under consideration. Were it not for the DGLAP equation, we would have to measure

the structure of the proton at every energy scale anew. The factorisation scale µf and

the renormalisation scale µr are usually considered independent and are often varied

separately for estimates of the scale-dependence of a fixed-order perturbative result.

This scale dependence is used as an estimate for the remaining theoretical uncertainty,

although the prescriptions how to vary the scales are often chosen ad-hoc and may change

the quoted uncertainties significantly. For computational details on how to separate the

factorisation and renormalisation scales, see section 6.3.2.

We still have to give a formula for the hadronic cross section, as well as for the process

of mass factorisation. The (inclusive) hadronic cross section for a proton-proton collision

is given by

σ(P1, P2, µf , µr) =

∫ 1

0
dx1dx2 fi(µf , x1) fj(µf , x2)σij(p12, µ, µf ) , (2.58)

where again, summation over the parton indices i and j is implicit. σij is the renormalised

and mass-factorised partonic cross section with incoming momenta pi = xiPi, where P1

and P2 are the proton momenta. In a usual collider experiment, we have ~P1 = −~P2

and due to rotational symmetry, the hadronic cross section only depends on the scalar

variable S = (P1 + P2)2, the total centre-of-mass energy squared, which at the LHC

currently corresponds to (8 TeV)2, and additional external scales such as the masses

of final-state particles. In the specific case of Higgs production, where we have just

the Higgs mass as an external scale, the total hadronic cross section can be written as
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(suppressing the scale-dependence for the time being)

σ(τ) =

∫ 1

0
dx1dx2 fi(x1) fj(x2)σij

(

z =
τ

x1x2

)

Θ(x1x2 − τ) , (2.59)

where we have defined the two dimensionless variables

τ ≡ m2
H

S
and z =

m2
H

s
=

m2
H

x1x2S
=

τ

x1x2
, (2.60)

with s = p2
12 the partonic centre-of-mass energy. The Theta-function in eq. (2.59) reflects

the fact that s has to be at least m2
H . This kinematic constraint is usually absorbed into

σij , but we chose to write it explicitly for the following manipulation,

σ(τ) =

∫ 1

0
dx1dx2dz fi(x1) fj(x2)σij(z) δ

(

z − τ

x1x2

)

=

∫ 1

0
dx1dx2dz fi(x1) fj(x2)σij(z)x1x2δ (x1x2z − τ)

=τ

∫ 1

0
dx1dx2dz fi(x1) fj(x2)

σij(z)

z
δ (x1x2z − τ)

=τ

(

fi ⊗ fj ⊗
σij(z)

z

)

(τ) , (2.61)

i.e. we are able to write the total hadronic cross section as a triple convolution. This

form makes it straightforward to derive the mass factorisation formula for the partonic

cross section.

The relation between bare and factorised PDFs is given by

fi(µf , x) =
(

Γij(µf )⊗ f0
j

)

(x) , (2.62)

where Γij is the collinear counterterm kernel, the equivalent of the renormalisation con-

stant in the UV-renormalisation case. It is a function of the splitting kernels and reads,

through three-loop order,

Γij(µ, x) = δijδ(1 − x)− as(µ)
P

(0)
ij (x)

ǫ

+ a2
s(µ)

{

− 1

2ǫ
P

(1)
ij (x) +

1

2ǫ2

[(

P
(0)
ik ⊗ P

(0)
kj

)

(x) + β0P
(0)
ij (x)

]
}

+ a3
s(µ)

{

− 1

6ǫ3

[ (

P
(0)
ik ⊗ P

(0)
kl ⊗ P

(0)
lj

)

(x) + 3β0

(

P
(0)
ik ⊗ P

(0)
kj

)

(x)
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+ 2β2
0P

(0)
ij (x)

]

+
1

12ǫ2

[

3
(

P
(0)
ik ⊗ P

(1)
kj

)

(x) + 3
(

P
(1)
ik ⊗ P

(0)
kj

)

(x)

+ 4β1P
(0)
ij (x) + 4β0P

(1)
ij (x)

]

− 1

3ǫ
P

(2)
ij (x)

}

+O(a4
s) . (2.63)

We have argued before that initial-state collinear divergences are an artifact of the fac-

torisation of a full hadronic cross section into a soft PDF and a hard partonic cross

section. In other words, we obtain the identical, finite hadronic cross section if we either

use bare PDFs and a non-mass-factorised partonic cross section, or the finite mass-

factorised equivalents. In the former case, all ingredients going into the convolution in

eq. (2.61) are divergent, but the poles cancel completely. If we denote by σ̂ the partonic

cross section before mass-factorisation, this equivalence reads

σ(τ) =τ

(

f0
i ⊗ f0

j ⊗
σ̂ij(z)

z

)

(τ)

=τ

(

fi ⊗ fj ⊗
σij(z)

z

)

(τ) . (2.64)

If we now use eq. (2.62) to replace finite PDFs with bare ones, we find (using the fact

that a multiple convolution is completely symmetric in its arguments)

σ(τ) =τ

(

f0
i ⊗ f0

j ⊗
σ̂ij(z)

z

)

(τ)

=τ

(

Γik ⊗ fk ⊗ Γjl ⊗ fl ⊗
σij(z)

z

)

(τ)

=τ

(

f0
i ⊗ f0

j ⊗ Γki ⊗ Γlj ⊗
σkl(z)

z

)

(τ) (2.65)

which leads to the desired relation between the partonic cross section before and after

mass factorisation,
σ̂ij(x)

x
=

(

Γki ⊗ Γlj ⊗
σkl(z)

z

)

(x) . (2.66)

Since we eventually always want to calculate hadronic cross sections and like the convo-

lution expression eq. (2.61), we will henceforth absorb the factor of 1/z into the partonic

cross section σij, i.e. eq. (2.50) will include a factor of 1/z on the RHS. Thus, the

hadronic cross section and the mass factorisation equation simply read

σ(τ) = τ (fi ⊗ fj ⊗ σij) (τ) , and σ̂ij(x) = (Γki ⊗ Γlj ⊗ σkl) (x) . (2.67)
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hadroproduction at NNLO

As mentioned in the introduction the gluon fusion process is by far the most prolific

Higgs production process at the LHC. There are final-state configurations which are

dominated by other production processes, for example the final state with three charged

leptons which selects the associated production process [44]. These configurations are

chosen specifically for this reason, i.e. to probe sub-leading production channels and

isolate a different coupling of the Higgs boson.

Yet, to this date, all Higgs signals observed at the LHC with enough statistical signif-

icance to claim a discovery are based on the gluon fusion channel, it is in this sense the

only established production mechanism for a Higgs boson.

We proceed by giving a short chronological account of the calculations contributing

to the gluon fusion cross section.

In 1975, Ellis, Gaillard and Nanopoulos published their seminal paper “A phenomeno-

logical profile of the Higgs boson” [45], where in a heroic effort, all production and

decay processes for the Higgs boson were calculated. However, the authors missed out

on the loop-induced coupling of the Higgs to gluons. Wilczek pointed out this flaw in

1977 [46], but he only considered the coupling to be important in decays of the Higgs.

Finally, Georgi, Glashow, Machacek and Nanopoulos understood the importance of the

gluon coupling as a production mechanism and computed the leading-order (LO) cross

section [47].

The beginning of the 1990s witnessed the computation of the next-to-leading order

(NLO) QCD corrections [48,49] in the five-flavour heavy-quark effective theory (HQET)

which we will introduce in section 3.4. About five years later, the NLO QCD corrections

in the full theory were completed [50], which allowed to validate the good approxima-

tion yielded by the HQET. While the original publication [50] contained some integral

expressions that could only be evaluated numerically, later publications simplified the

NLO QCD result to a form with no integrations left, using the language of harmonic

polylogarithms [51–53].
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3. Inclusive Higgs boson hadroproduction at NNLO

At the beginning of the new millennium, the next-to-next-to-leading order (NNLO)

QCD corrections in HQET were computed, first in an expansion around the threshold

limit [54,55] and subsequently in the full kinematics [56,57].

The following years saw the completion of NLO electroweak corrections [58] in the

full theory, mixed QCD-electroweak corrections [59] in the HQET, as well as power-

corrections in 1/mt to the infinite-top-mass approximation of the HQET [60,61].

Furthermore, beyond fixed-order perturbation theory, resummation results have been

calculated to next-to-next-to-leading logarithmic (NNLL) accuracy for soft gluon resum-

mation [62] and in the soft-collinear-effective theory framework [63].

The aim of this chapter is to give a quick, yet comprehensive overview of all available

fixed-order contributions and how to combine them in a consistent way. This combina-

tion was performed in the computer program iHixs [64] which we will present at the

end of the chapter. Please note that few of the contents of this chapter represent original

work of the author, but the key challenge was rather the gathering and combining of

previously calculated work.

Wherever possible, we will consider a Higgs boson with interactions that are more

general than in the SM, described by the Feynman rules

= Yq

SM

, = λEWK

SM

.

(3.1)

The H-q-q̄ vertex is the product of an arbitrary, flavour-dependent factor Yq and the

analogous Feynman rule in the Standard Model. The Standard Model Feynman rules

for the H-W -W and H-Z-Z vertices are rescaled by a global factor λewk. We did not

find it necessary to introduce a separate rescaling factor for the W and Z boson vertices,

as the ratio of the coefficients of the corresponding operators is fixed by the custodial

symmetry and very tightly constrained by electroweak precision tests [65].

Furthermore, the number of quark flavours is kept arbitrary whenever possible, al-

lowing to calculate predictions for Higgs production in theories with additional heavy

flavours.

3.1. Notation and leading order result

The leading order diagram for the process gg → H is displayed in figure 3.1, where

the fermion in the loop represents any quark. In the SM the coupling of the Higgs to
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3.1. Notation and leading order result

g

g

H

Figure 3.1.: Leading order diagram for the gluon fusion process.

fermions is proportional to the mass of the respective fermion,

= −imf

v
Hψ̄fψf , (3.2)

which means that the bulk of the cross section in the SM is generated by the top quark

running in the loop, since it has by far the largest mass of all quarks.

We expand the gluon fusion cross section as

σij(z, µf , µr) =
Gfπ

288
√

2

∞∑

p=0

as(µr)
2+p η

(p)
ij (z, µf , µr) , (3.3)

and introduce the two dimensionless variables τq and xq,

τq ≡
4mq(mq − iΓq)

m2
H

, xq =

√
1− τq − 1

√
1− τq + 1

. (3.4)

Observe that we allow for a non-zero width Γq for the quarks, implemented through the

complex mass scheme [66–68] which accounts for width-effects in a gauge-invariant way.

For Γq = 0, the variable τq becomes real. The corresponding behaviour of xq is depicted

in figure 3.2. xq is real and negative if τq is smaller than 1, and becomes exactly −1 on

threshold (2mq = mh). For values below threshold (i.e. when the Higgs is lighter than

twice the quark mass), xq becomes complex and runs along the unit circle. The limit

of an infinitely heavy quark or, equivalently, a massless Higgs corresponds to the limit

xq → 1. When the width Γq is taken to be non-zero, the curve describing xq moves

inside the unit circle, and the behaviour around the threshold τq = 1 is smoothened out.

The LO cross section is found to be

η(0)
gg (z) =

∣
∣
∣
∣
∣

∑

q

Yqτq
3

2
A(τq)

∣
∣
∣
∣
∣

2

δ(1 − z) , (3.5)
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3. Inclusive Higgs boson hadroproduction at NNLO

Im(xq)

Re(xq)

1−1

0 < τq < 1

1 < τq < 2 2 < τq <∞

Figure 3.2.: Behaviour of the complex variable xq.

where the amplitude A(τq) reads

A(τq) = 1− 1

2

(1 + xq)
2

(1− xq)2
H0,0(xq) . (3.6)

The sum in eq. (3.5) runs over all NF quark flavours, and Yq is the scaling factor of the

Yukawa coupling w.r.t the SM value which we introduced at the end of the previous

section.

The function H0,0(x) is the first harmonic polylogarithm (HPL) that we encounter.

This class of functions appears naturally in perturbative QCD calculations. The special

case appearing here can be written in terms of the classical (complex) logarithm,

H0,0(x) =
1

2
log2(x) . (3.7)

For the general definition of HPLs and more information on their properties, we refer to

chapter 4.

Note that the quantity τq
3
2A(τq) has the simple limits

lim
τq→∞

τq
3

2
A(τq) = 1 lim

τq→0
τq

3

2
A(τq) = 0 . (3.8)

We observe that the LO cross section η
(0)
gg is proportional to δ(1 − z), due to the 2 → 1

phase-space. There are no other particles besides the Higgs to carry away momentum,

thus the partonic centre-of-mass energy
√
ŝ must be equal to mH , which corresponds to

z = 1. While this will be the case for all higher-order virtual corrections as well, the

contributions from real-emission diagrams have a non-trivial dependence on z.

In particular, there are terms proportional to (1− z)−1+kǫ for some integer k, which

diverge in the limit z → 1 when ǫ is taken to zero. To extract the singularities associated
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3.2. NLO QCD corrections

with these terms, one applies the following trick, called plus-expansion,

∫ 1

0
dxx−1+kǫf(x) = f(0)

∫ 1

0
dxx−1+kǫ +

∫ 1

0
dxx−1+kǫ(f(x)− f(0)

)

=
f(0)

kǫ
+

∞∑

n=0

(
kǫ

n!

)n ∫ 1

0
dx logn(x)

(
f(x)− f(0)

x

)

, (3.9)

where the function f(x) is assumed to be smooth and finite at x = 1. The denominator

in the integral thus vanishes at x = 1 and renders the singularity integrable. The trick

can be written independently of the regular function f in the sense of distributions,

x−1+kǫ =
δ(1 − z)
kǫ

+
∞∑

n=0

(
kǫ

n!

)n [ logn(x)

x

]

+
=
δ(1 − z)
kǫ

+
∞∑

n=0

(
kǫ

n!

)n

Dn(x) , (3.10)

where we have provided both common notations for the plus-distribution which is defined

via its action on a regular test function f ,

∫ 1

0
dxDn(x)f(x) =

∫ 1

0
dx

logn(x)

x
[f(x)− f(0)] . (3.11)

In our case, x = z̄ ≡ 1 − z. In this way, all IR divergences can be extracted from

real-emission diagrams and cancel when added to the virtual corrections, according to

the KLN theorem mentioned in section 2.3.1. Thus, the general cross section at higher

orders will be a superposition of three types of contributions, delta-, plus- and regular

contributions,

η
(p)
ij (z, µf , µr) = η

(p)
ij;δ(µf , µr) δ(1 − z) + η

(p)
ij;+(z, µf , µr) + η

(p)
ij;R(z, µf , µr) , (3.12)

with

η
(p)
ij;+(z, µr, µf ) =

∞∑

n=0

η
(p),n
ij;+ (µf , µr)Dn(1− z) , (3.13)

and η
(p)
ij;R contains all terms which do not diverge as z → 1.

3.2. NLO QCD corrections

At the next order in QCD, there are on the one hand two-loop diagrams for the gg → H

process and the one-loop diagrams for the process gg → Hg, and on the other hand, new

partonic channels open up via the processes qg → Hq and qq̄ → Hg. We show a sample

diagram for every process in figure 3.3.
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3. Inclusive Higgs boson hadroproduction at NNLO

(a) gg → H (b) gg → Hg (c) qg → Hq (d) qq̄ → Hg

Figure 3.3.: Sample diagrams for the processes contributing to the NLO QCD corrections
to the gluon fusion process.

We proceed by giving the results for the separate partonic channels. Wherever the

expressions are deemed too long to be provided in the main text, we refer to appendices

or publicly available references on the Internet.

3.2.1. gg → H (g)

The δ-part of the NLO correction to the gluon gluon sub-process can be written as

η
(1)
gg;δ = |B|2

[

2β0 log

(

µ2
r

µ2
f

)

+ π2

]

+ 2Re

[

B
∑

q

Vq(τq)
∗

]

, (3.14)

where

B ≡
∑

q

Yqτq
3

2
A(τq) , (3.15)

is the LO coefficient, and

Vq(τq) = Yq
3

8
M

(1)
f,fin(τq) = −Yq

3

2
G2l
i , (3.16)

with the limit

lim
τq→∞

Vq(τq) =
11

4
. (3.17)

The amplitude M
(1)
f,fin(τq) can be found in eq. (7.4) of ref. [53] and G(2l)

1/2
1 can be found in

eqs. (26-30) of ref. [52]. The former expressions are only valid when the variable xq is

on the unit circle for quark masses higher than half of the Higgs mass, i.e. when we set

the quark width to zero, because it is parametrised in the variable θ, where x = exp(iθ).

The latter formula, on the other hand, is given in terms of HPLs with general complex

argument xq. Thus, we chose to use the latter formula in our implementation in iHixs.

1To be precise, the virtual amplitude Vq as we denote it above corresponds only to the first line of eq.
(27) in ref. [52], i.e. without dividing the bracketed expression with the Born amplitude and without
adding the hermitian conjugate.
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3.2. NLO QCD corrections

This necessitated the ability to numerically evaluate any HPL up to weight 4 for complex

arguments, which in turn led to the development of the library Chaplin, which we

describe in chapter 4. The authors of [52] actually provide the two-loop amplitude G2l
i

for the two cases of the heavy quark renormalised in the MS or the on-shell scheme.

The difference between the two schemes can be quantified as

G(2l),OS
1/2 (x)− G(2l),MS

1/2 (x) ∝
(

4

3
+ log

(

µ2
r

m2
t

))

F (2l,b)
1/2 (x) , (3.18)

where F (2l,b)
1/2 is the derivative of the Born amplitude w.r.t the quark mass. The scale-

dependent logarithm is present in the MS amplitude and missing in the OS one. The

origin of this specific difference is found in the two renormalisation constants we have

provided in eqs. (2.46) and (2.49), respectively. While they obviously have to cancel the

same poles, the finite O(ǫ0) parts of the constants differ by

ZOS
m − ZMS

m = as

[

4

3
+ log

(

µ2

m2
t

)

+O(ǫ)

]

, (3.19)

which is easily obtained by expanding the OS renormalisation constant in ǫ.

We have implemented both schemes in iHixs2 and will probe the sensitivity to the

choice in chapter 5.5.

The plus-distribution part is

η
(1)
gg;+ = |B|2

[

−6 log

(

µ2
f

m2
H

)

D0(1− z) + 12D1(1− z)
]

, (3.20)

and the regular part of the NLO gluon-gluon-correction is

η
(1)
gg;R =|B|2

{

2

[

p(r)
gg (z) log

(

(1− z)2

z

)

− 3 log

(
z

1− z

)]

− 2 log

(

µ2
f

m2
H

)

p(r)
gg (z)

}

+

∫ 1

0
dλ

3

z(1− z)λ(1− λ)

{

z4

2

4∑

j=1

∣
∣
∣
∣
∣

∑

q

AjqgggH(τq, λ)

∣
∣
∣
∣
∣

2

− (1− z + z2)2|B|2
}

,

(3.21)

2This choice was actually not included in the original iHixs program, but was added from the latest
version 1.3.3 on.
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3. Inclusive Higgs boson hadroproduction at NNLO

with p
(r)
gg (z) the regular part of the gluon splitting kernel (see appendix B)

p(r)
gg (z) = 3

(
1

z
+ z(1− z)− 2

)

. (3.22)

The form factors AjqgggH(τq) can be found in the Appendix B.2. of [64]. Notice that in

the second line, the sum of the terms in the curly bracket vanishes fast enough in both

limits λ → 0 and λ → 1, and thus the apparently divergent integral over λ is actually

finite.

3.2.2. qq̄ → Hg

The qq̄ initial state starts contributing to the total cross section at order a3
s in QCD.

There are no soft (δ- or plus-) terms, which is obvious from the fact that there are

no corresponding 2 → 1 diagrams in the soft limit where the radiated parton is not

observed,

η
(1)
qq̄;δ = η

(1)
qq̄;+ = 0 . (3.23)

The regular contributions read

η
(1)
qq̄;R =

32

27

(1− z)3

z

∣
∣
∣
∣
∣

∑

q

YqτqAqq̄gH(z)

∣
∣
∣
∣
∣

2

, (3.24)

with Aqq̄gH(z) given in eq. (B.5) of [64].

3.2.3. qg → Hq

The gluon-quark initial state also contributes at order a3
s. Analogous to the qq̄-channel,

there are no soft terms,

η
(1)
qg;δ = η

(1)
qg;+ = 0 , (3.25)

and

η
(1)
qg;R =

{

|B|2
[

CF
2
z − pgq(z) log

(
z

(1− z)2

)

− pgq(z) log

(

µ2
f

m2
H

)]

+

∫ 1

0
dλ

1

(1 − λ)+





∣
∣
∣
∣
∣

∑

q

YqτqAqq̄gH (yλ)

∣
∣
∣
∣
∣

2
1 + (1− z)2λ

z





}

(3.26)

with

yλ =
−z

(1− z)(1− λ)
, (3.27)
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3.3. Electroweak contributions

(a) (b)

Figure 3.4.: Two-loop electroweak contributions to Higgs production in gluon fusion.

and the LO splitting-kernel for a gluon splitting into a qq̄-pair (see appendix B),

pgq(z) = P (0)
gq (z) =

2

3

1 + (1− z)2

z
. (3.28)

3.3. Electroweak contributions

Two-loop electroweak contributions to the process gg → H may either arise as genuine

O(α) corrections to the LO diagram from figure 3.1, as depicted in figure 3.4 (a), or

via diagrams fusing two vector bosons into a Higgs boson via the respective coupling,

depicted in figure 3.4 (b). Neglecting the difference of the Higgs couplings in the two

processes, both of them are of the same perturbative order, O(α2
sα) when interfered with

the Born diagram.

A first computation considered only a gauge-invariant subset of diagrams of the type

depicted in fig. 3.4 (b) where the quark propagating in the loop is considered massless [69].

The result for the amplitude is given in terms of a set of polylogarithms which the authors

call generalised harmonic polylogarithms (GPLs). These functions can be remapped into

harmonic polylogarithms with more complicated (complex) arguments [70].

In ref. [71], the two-loop contributions of type (a) and (b) involving top quarks were

found in the limit mH ≪ 2mW , using the background-field method. Finally, the full

result for the two-loop electroweak contributions was computed in references [58, 72]

for the full mass-range of the Higgs boson. The authors deal with singularities arising

at thresholds such as mH = 2mW or mH = 2mt by using the complex mass scheme.

There are no analytic results provided, but the authors of ref. [72] were so kind as to

provide us with a grid file containing the numerical impact of the electroweak corrections,

parametrised in the variable

δEWK =
σborn

EWK+QCD

σborn
QCD

∣
∣
∣
∣
∣
top only

− 1 =

∣
∣
∣
∣
∣
1 +
Mggh,EWK
3
2τqA (τtop)

∣
∣
∣
∣
∣

2

− 1 , (3.29)
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3. Inclusive Higgs boson hadroproduction at NNLO

which parametrises the increase or decrease, respectively, of the O(α2
sα) cross section

over the LO QCD O(α2
s) one.

The inclusion of the virtual electroweak contributions in the partonic cross section

(3.3) can be realised in different ways, depending on the factorisation scheme chosen3.

In ref. [72], two factorisation schemes are presented:

1. Complete factorisation:

σ(0)Gij → σ(0)(1 + δEWK)Gij . (3.30)

2. Partial factorisation:

σ(0)Gij → σ(0)
[

Gij + a2
sδEWKG

(0)
ij

]

, (3.31)

where we have intermediately adopted the notation of ref. [72],

σij = σ(0)Gij , with Gij =
∞∑

n=0

an+2
s G

(0)
ij , s.t. G(0)

gg = δ(1 − z) , (3.32)

which means that

σ(0) =
Gfπ

288
√

2

∣
∣
∣
∣
∣

∑

q

τq
3

2
A(τq)

∣
∣
∣
∣
∣

2

. (3.33)

The complete factorisation scheme results in an overall rescaling of the result, i.e. one

believes that the electroweak contributions will be of the same size at all higher orders

in QCD. When opting for the partial factorisation scheme, they are simply treated

as a perturbative correction in α. The partial factorisation scheme results in a smaller

numerical effect, since QCD corrections in gluon fusion are large. In the case of iHixs we

chose a different way of including the leading electroweak corrections contained in δEWK,

for which we first have to introduce the framework of effective theories. Please see section

3.4.3 for details.

In addition to the two-loop electroweak contributions, there are also diagrams involv-

ing electroweak vector bosons that contribute to the real-radiation processes qg → Hq

and qq̄ → Hg, depicted in figure 3.5. When interfered with the corresponding pure QCD

diagrams of fig. 3.3, these contributions are of O(α2
sα), too.

These contributions were calculated and studied in references [73] and [74], where the

latter also included massive bottom quark effects. We repeated the calculation during

3The use of the word factorisation here is not related to collinear/mass factorisation.
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3.3. Electroweak contributions

(a) (b)

Figure 3.5.: One-loop electroweak contributions to the processes qg → Hq and qq̄ → Hg.

the construction of iHixs, using the generalised Feynman rules (3.1). The contributions

to the cross section read4

η
(0)EWK
qq̄;R =λEWK

8

3

1− z
z

∑

q

∑

X∈{Wi,Zi,H}

Re

{

τqAqqgH(z)cX,q·

[

F∗
1,X,q(s13, s23, s12)

s2
13

s12
+ F∗

2,X,q(s13, s23, s12)
s2

23

s12

]}

(3.34)

where Aqq̄gH(z) given in appendix B of ref. [64]. The sum over X runs over all W and

Z-like bosons in the model, as well as over the Higgs boson (replace the wiggled line by

a dashed line in figure 3.5), while the sum over q runs over all heavy quarks as before.

The coupling cX,q contains Kronecker delta symbols which select specific initial state

quarks, depending on X, as explained below.

• Z loops: For the initial state quarks q ∈ {u, d, c, s, b} we have the following cou-

plings

λZ =2

cZ,q =(δqu + δqc)(v
2
Z,u + a2

Zu
) + (δqd + δqs + δqb)(v

2
Z,d + a2

Zd
)

vZ,u =
gW
cW

(
1

2
− 4

3
s2
W ) , aZ,u =

gW
2cW

vZ,d =
gW
cW

(−1

2
+

2

3
s2
W ) , aZ,d =

gW
2cW

, (3.35)

where cW = cos θW and sW = sin θW denote the cosine and sine of the weak mixing

angle, also known as Weinberg angle and gW = 4π
√
α is the weak coupling.

The form factor is identical for all initial state quarks and yields

FZq

1 =−m2
zAewk (s13, s23, s12, Q,mz)

4The (0) superscript is chosen because these contributions are of O(a2
s), like the LO QCD process.
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3. Inclusive Higgs boson hadroproduction at NNLO

FZq

2 =−m2
zAewk (s23, s13, s12, Q,mz) (3.36)

with Aewk(s, t, u,mh,mz) given in appendix B of [64].

• W loops: The couplings are given by

λW = 2, cW,q = (v2
W,q + a2

W,q), vW,q =
gW√

2
, aW,q =

gW√
2
, (3.37)

FW1 =−m2
wAewk

(

s13, s23, s12, Q
2,mw

)∑

L

δqL −m2
wA

mt

ewk (s13, s23, s12) δqb

FW2 =−m2
wAewk

(

s23, s13, s12, Q
2,mw

)∑

L

δqL −m2
wA

mt

ewk (s23, s13, s12) δqb

(3.38)

where L sums over all light quark states u, d, c, s. Note that here we have summed

over the internal light quark flavors. This yields a CKM coefficient of

∑

j=1,2

|Vij |2 ≈ 1 for i = 1, 2 (3.39)

Measurements show this to be true to about 1 in 10000, so it is a good enough

approximation to make.

For q = b, we have to take the internal quark to be a top. The couplings are

unchanged if we use that |V33|2 ≈ 1, which is also a good approximation to make.

The form factor Amt

ewk (s, t, u) is given in appendix B of [64].

• Higgs in the loop: In the standard model this gives a non negligible contribution

for q = b, other quarks may be considered as well if their Yukawas are enhanced.

The couplings are given by

λH = 3, cH,q = δqb(v
2
H,q + a2

H,q), vH,q =
mqYq
v

, aH,q = 0, (3.40)

and the form factors which are also found in appendix B of [64], are

FH1 =−m2
hAH (s13, s23, s12)

FH2 =−m2
hAH (s23, s13, s12) . (3.41)
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3.4. Heavy quark effective theory and NNLO QCD corrections

→ ⊗

Figure 3.6.: Graphical representation of the heavy-quark effective theory. The loop with
the heavy quark running inside is absorbed into an effective vertex.

3.4. Heavy quark effective theory and NNLO QCD

corrections

As we have seen from the previous two sections, the gluon fusion process starts at the

one-loop level since there is no direct coupling of the massless gluon to the Higgs boson.

The NLO corrections presented in the previous section were already quite involved, as

they require the calculation of two-loop integrals with different mass-scales.

But in the process of computing the NLO QCD corrections, it had been realised

that for Higgs masses which are relatively light compared to the masses of the fermions

which couple the Higgs to gluons, the limit of infinitely heavy quark masses yields a

good approximation to the full result at LO [48,75].

This approximation yields significant simplifications for higher-order computations

when formulated in the language of an effective field theory. An effective field theory

is a low-energy approximation of a larger theory, valid up to a certain scale Λ. Fields

which are heavier than Λ decouple (they are too heavy to be produced and propagate)

from the theory in this low-energy limit and can be “integrated out” from loop diagrams.

All effects of the heavy states are then contained in the couplings of the effective theory.

In the case of SM Higgs production in gluon fusion, the top quark is the only heavy

state which is integrated out into the effective coupling of the Higgs boson to two gluons

which is called a Wilson coefficient and is usually denoted by C1. The calculation of the

SM Wilson coefficient has been carried out to five-loop accuracy [75–78], which would

be enough to calculate the gluon fusion process to N4LO accuracy.

BSM scenarios usually feature more heavy coloured particles, which can equally be

absorbed into the Wilson coefficient. The effective theory language thus provides an ideal

tool to deal with new physics models, since the only part that changes w.r.t the SM is

the coupling C1, but the rest of the partonic cross sections stays the same. The Wilson

coefficient C1 has been calculated to three-loop accuracy in the minimal supersymmetric

Standard Model (MSSM) [79] as well as in models involving additional heavy quarks with

SM-like couplings [80] or arbitrary couplings [81]. We have implemented the latter in
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3. Inclusive Higgs boson hadroproduction at NNLO

iHixs, and will present it below for completeness.

Going into the details of deriving the effective theory formulation and calculating the

Wilson coefficient C1 would be beyond the scope of this thesis. We refer to the review [82]

for technical details and just write out the effective Lagrangian below. Note that the

relation of theory parameters such as the strong coupling αs or the masses of lighter

particles in the full and the effective theory are not trivial, and one has to pay attention

which of the two expressions are expanded in.

We split the full original Lagrangian into a part containing all nl light flavours and

the part containing the nh heavy quark fields,

L = Lnl

QCD +
nh∑

i=1

ψ̄i
(
i /D −mi

)
ψi − Yi

mi

v
Hψ̄iψi , (3.42)

where Yi again parametrises the rescaling of the Yukawa coupling for the heavy quark

field ψi from its SM value.

After integrating out the heavy quarks, the effective Lagrangian reads

Leff = Lnl,eff
QCD −

1

4v
C1 HG

a,µνGaµν , (3.43)

where Gaµν denotes the gluonic field-strength tensor and Lnl,eff
QCD has the exact same form

as Lnl

QCD but in terms of the parameters of the nl-flavour low-energy theory.

The Lagrangian above is given in terms of bare fields and couplings, where we have

suppressed the “0”-superscripts. The Wilson coefficient C1 has to renormalised as well,

C0
1 = Z1(µ)C1(µ) , (3.44)

with

Z1(µ) =
1

1− β(µ)/ǫ
= 1− as

β0

ǫ
+ a2

s

(

β2
0

ǫ2
− β1

ǫ

)

+ a3
s

(

−β
3
0

ǫ3
+

2β0β1

ǫ2
− β2

ǫ

)

, (3.45)

where the βi are the expansion coefficients of the Beta-function in the nl-flavour theory.

From here on, we will abandon the variable nl again in favour of the variable NF , i.e. as

before, NF will denote the number of active flavours. Whether we are in the full or in

the effective theory is always clear from context.

The full three-loop result for the renormalised Wilson coefficient in the case of many

38



3.4. Heavy quark effective theory and NNLO QCD corrections

heavy quarks with arbitrary Yukawa coupling rescalings reads [81]

C1(µ) =− 1

3
as(µ)Υ0 −

11

12
a2
s(µ)Υ0 −

1

3
a3
s(µ)

{

−NF

(
67

96
Υ0 +

2

3
Υ1

)

+Υ0

(
1877

192
− 77

576
nh +

113

96
L1 +

3

8
L2

)

−Υ1

(
19

8
+

113

96
nh +

3

4
L1

)

+
3

8
nhΥ2

+
∑

1≤i<nh
i<j≤nh

[

(Yi − Yj)
(

57

128

(
m2
i

m2
j

−
m2
j

m2
i

)

+

(
57

128

m2
i

m2
j

+
57

128

m2
j

m2
i

+
43

32

)

log

(

mi

mj

)

+
57

256

m6
i +m6

j

m2
im

2
j

(

m2
i −m2

j

) log2

(

mi

mj

)



− log2

(

mi

mj

)(

73

256
(Yi + Yj) +

23

128

Yim
2
i − Yjm2

j

m2
i −m2

j

+
3

512

(

m2
i −m2

j

) 19m4
i + 24m2

im
2
j + 19m4

j

m3
im

3
j

(

Yj log
(mj −mi

mj +mi

)

− Yi log
(mi −mj

mi +mj

))
)

− 3

1024

19m6
i + 5m4

im
2
j − 5m2

im
4
j − 19m6

j

m3
im

3
j

·
(

8YiLi3
(mj

mi

)

− 8YjLi3
(mi

mj

)

− YiLi3
(m2

j

m2
i

)

+ YjLi3
(m2

i

m2
j

)

− 2 log
(mi

mj

)(

YiLi2
(m2

j

m2
i

)

+ YjLi2
(m2

i

m2
j

)

− 4YiLi2
(mj
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)

− 4YjLi2
(mi

mj

))
)]}

,

(3.46)

where we have defined

L1 =
nh∑

i=1

log

(
mi

µ

)

, L2 =
nh∑

i=1

log2
(
mi

µ

)

,

Υ0 =
nh∑

i=1

Yi , Υ1 =
nh∑

i=1

Yi log

(
mi

µ

)

, Υ2 =
nh∑

i=1

Yi log2
(
mi

µ

)

, (3.47)

and Li2 is the dilogarithm function (see chapter 4). If all Yi = 1 we recover the Wilson

coefficient for nh heavy quarks with Standard Model-like Yukawa interactions of [80],

C1 = −as
3

{

nh + as
11

4
nh − a2

s

[

−1877

192
nh +

77

576
n2
h +

19

8
L1 +NF

(
67

96
nh +

2

3
L1

)]}

,

(3.48)

and for nh = 1, we find the SM result [76–78] where we also give the four-loop contribu-
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3. Inclusive Higgs boson hadroproduction at NNLO

tions,

C1 =− as
3

{

1 + as
11

4
+ a2

s

[
2777

288
− 19

8
Lt +NF

(

−67

96
− 2

3
Lt

)]

(3.49)

+ a3
s

[(

− 6865

31104
− 77

864
Lt −

2

9
L2
t

)

N2
F (3.50)

+

(
23

8
L2
t −

55

27
Lt +

40291

20736
− 110779

13824
ζ3

)

NF (3.51)

− 2892659

41472
+

897943

9216
ζ3 +

209

16
L2
t −

1733

144
Lt

]

+O(a4
s)

}

, (3.52)

with Lt = log(mt/µ).

The cross section for Higgs production in the effective theory is then given by

σeff
ij (z, µf , µr) =

GFπ

32
√

2
|C1(µr)|2

∞∑

n=0

ans (µr)∆
(n)
ij (z, µf , µr) , (3.53)

with the LO cross section now simply

∆
(0)
ij (z, µf , µr) = δigδjgδ(1 − z) , (3.54)

and the NLO corrections [48,56]

∆(1)
gg (z, µf , µr) =

(

π2 + 2β0(Lr − Lf )
)

δ(1 − z)− 6LfD0(1− z) + 12D1(1− z)

+ 6

(

z2 − z + 2− 1

z

)

Lf −
11

2

(1− z)3

z

− 6

1− z

(

z3 − 2z2 + 3z − 2 +
1

z

)

log(z)

− 12

(

z2 − z + 2− 1

z

)

log(1− z) , (3.55)

∆(1)
qg (z, µf , µr) =

2

3

(

2− z − 2

z

)

(Lf + log(z)− 2 log(1− z)) + 2− x

3
− 1

x
, (3.56)

∆
(1)
qq̄ (z, µf , µr) =

32

27

(1− z)3

z
, (3.57)

where

Lf = log

(

µ2
f

m2
H

)

, Lr = log

(

µ2
r

m2
H

)

. (3.58)

It can be verified straightforwardly that the effective cross section above indeed is the

40



3.4. Heavy quark effective theory and NNLO QCD corrections

limit of the exact NLO QCD result given in section 3.2. This is seen most easily in the

coefficient of δ(1 − z). Taking τq → ∞ in eq. (3.14) using eq. (3.17), we recover the

a3
s-coefficient of the effective cross section (3.53),

GFπ

32
√

2

(∣
∣
∣C

(0)
1

∣
∣
∣

2 (

π2 + 2β0(Lr − Lf )
)

+ 2Re
(

C
(0)
1 C

(1)∗
1

))

=
GFπΥ2

0

288
√

2

(

π2 + 2β0(Lr − Lf ) +
11

2

)

. (3.59)

In the effective theory formulation, the NNLO QCD corrections were computed in

ref. [56]. Due to double-real-radiation corrections, there are two additional channels

opening up at this order, the qq initial state with two identical quarks, and the qQ

channel where Q denotes a quark of different flavour than q (i.e. q 6= Q 6= q̄). The

regular parts of the results consist of HPLs of up to weight 4 with the real argument z.

The analytic formulae of the NNLO results can be found in chapter IV of [56], but one

has to pay attention that the η
(n)
ij provided there differ from our ∆

(n)
ij by a factor of 1/z

and also include the expansion of the Wilson coefficient C1. For the analytic expressions

in our conventions, we refer to the ancillary file sigma.mpl of the arXiv submission [83].

3.4.1. Mixed QCD-electroweak corrections

To obtain a quantitative idea about which factorisation scheme for the electroweak cor-

rections (see section 3.3) is closest to reality, the authors of ref. [59] computed the mixed

QCD-electroweak contributions to the gluon fusion process, i.e. diagrams of O(α3
sα).

A sample diagram would be any of the two diagrams in figure 3.4 with an additional

gluon loop. A calculation in the full theory is unfeasible for the time being, therefore

the authors of ref. [59] resorted to an effective theory where the W boson is integrated

out. Formally, this theory is only valid in the (unphysical) region mH < mW , but there

is reason to believe that the K-factor (i.e. the ratio of NLO and LO result) is well-

approximated to much higher masses, since this was observed in the case of the effective

theory with the top quark integrated out.

In this framework, we denote the Wilson coefficient C1 as

C1 = −as
3

{

1 + κEWK

[

1 + asC1w + a2
sC2w

]

+ asC1q + a2
sC2q

}

, (3.60)

where

κEWK =
3α

16πs2
W

{

2

c2
W

[
5

4
− 7

3
s2
W +

22

9
s4
W

]

+ 4

}

, (3.61)
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3. Inclusive Higgs boson hadroproduction at NNLO

is the limit of the two-loop light-fermion contributions from [69] for mW →∞, and sW

and cW denote the sine and cosine of the weak mixing angle, respectively. C1q and C2q

denote the expansion coefficients of the pure QCD Wilson coefficient from the previous

section. For the complete factorisation scheme to hold, we would need C1w = C1q and

C2w = C2q.

The result the authors of ref. [59] find is

C1w =
7

6
, as opposed to C1q =

11

4
, (3.62)

in the SM. So, clearly, complete factorisation overestimates the impact of the electroweak

corrections, at least at this order in QCD. The four-loop5 contribution C2w was not com-

puted, but shown to have no big numerical impact when varied from -30 to 30. However,

adapting the pattern of successive corrections found in the pure QCD corrections to the

known first two orders of the electroweak corrections yields an estimate of C2w ∼ 10,

which is what we have implemented in iHixs.

3.4.2. Combining exact and effective corrections

One should of course only resort to an effective theory formulation when the correspond-

ing calculation in the full theory is not available, such as the NNLO QCD and mixed

QCD-electroweak corrections in the present case. For all other contributions to the cross

section, the full results should be used. When merging the exact and effective pieces of

the cross section, we have to avoid double-counting, though.

We match the effective theory and full theory perturbative expansions as follows. Let

us assume that we can compute the contributions to the cross section exactly through

some perturbative order for only some of the heavy particles which contribute to Higgs

production amplitudes:

σpartial = σ
(0)
partial + asσ

(1)
partial + a2

sσ
(2)
partial + . . . (3.63)

and the corresponding effective theory formulation for these contributions reads

σpartial,eff =
∣
∣
∣C

partial
0 + Cpartial

1 as + Cpartial
2 a2

s + . . .
∣
∣
∣

2 [

η0 + asη1 + a2
sη2 + . . .

]

, (3.64)

5Beware of the notation again, which labels the expansion coefficients according to their order in the
strong coupling only. However, the additional electroweak coupling means that Ciw is one loop-order
higher than Ciq .
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3.4. Heavy quark effective theory and NNLO QCD corrections

We then write the cross-section as

σ =
∞∑

n=0

ans

[

σ
(n)
partialΘ(n ≤ N) + δσeff

]

(3.65)

where N is the last perturbative order that the partial contributions are known in the

full theory and

δσ
(0)
eff =

{

|C0|2 −Θ(0 ≤ N)
∣
∣
∣C

partial
0

∣
∣
∣

2
}

η0, (3.66)

δσ
(1)
eff =

{

|C0|2 −Θ(1 ≤ N)
∣
∣
∣C

partial
0

∣
∣
∣

2
}

η1

+
{

2Re (C0C
∗
1 )−Θ(1 ≤ N)2Re

(

Cpartial
0 Cpartial∗

1

)}

η0, (3.67)

δσ
(2)
eff =

{

|C0|2 −Θ(2 ≤ N)
∣
∣
∣C

partial
0

∣
∣
∣

2
}

η2

+
{

2Re (C0C
∗
1 )−Θ(2 ≤ N)2Re

(

Cpartial
0 Cpartial∗

1

)}

η1

+

({

|C1|2 −Θ(2 ≤ N)
∣
∣
∣C

partial
1

∣
∣
∣

2
}

+
{

2Re (C0C
∗
2 )−Θ(2 ≤ N)2Re

(

Cpartial
0 Cpartial∗

2

)})

η0. (3.68)

In our process of gluon fusion including many heavy quarks and electroweak corrections,

using the Feynman rules of eq. (3.1), this means that

C0 =κQCD · 1 + κEWK · 1 (3.69)

C1 =κQCD ·
11

4
+ κEWK ·

7

6
(3.70)

C2 =κQCD · C2q + κEWK · C2w . (3.71)

where we have factorised the quantity

κQCD =
∑

q∈heavy

Yq = Υ0 , (3.72)

from the Wilson coefficient (3.46).

The QCD-corrections are known up to NLO, i.e. N = 1, which means we need to

subtract the quantities

Cpartial
0 =κQCD · 1 (3.73)

Cpartial
1 =κQCD ·

11

4
. (3.74)
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The second-order merging prescription (3.68) is not needed.

3.4.3. Improving the effective theory approach

When comparing the LO and NLO QCD results for gluon fusion in both the full and

the effective theory, it was observed that the effective theory works much better for

the K-factor (the ratio σNLO/σLO) rather than the absolute cross section. This can be

understood by the observation that at NLO, all real and virtual amplitudes in the soft

or collinear limit have the same dependence on the masses of the heavy quarks as at

leading order. It seems that the factorisation of the cross section in the infrared limit

closely resembles the factorisation of the cross section in the limit of infinitely heavy

massive particles. Finite quark-mass effects are important for hard radiation terms, but

these are expected to have a typical perturbative expansion where an αs suppression

occurs from one order to the other.

We can thus improve on the effective theory approximation by making the replacement

κQCD →
∑

q ∈ heavy

Yq
3

2
τqA(τq) , (3.75)

and

κEWK → λEWKMggh,EWK

(

m2
H ,M

2
W ,M

2
Z , . . .

)

, (3.76)

where Mggh,EWK is the full two-loop electroweak amplitude for gg → H from [58, 72]

which we discussed in section 3.3. In other words, we rescale the Wilson coefficients of

the effective theory with their respective exact leading-order amplitude.

As previously mentioned, we were given a data file containing values for the quantity

δEWK as defined in eq. (3.29). Thus, we can achieve the rescaling from eq. (3.76) by

substituting6

κEWK → λEWK
3

2
τqA (τtop)×

√

1 + δEWK − 1. (3.77)

Notice that we make a small error here as we rescale the entirety of electroweak contribu-

tions with the rescaling factor λEWK, as the virtual diagrams including massive quarks

as depicted in figure 3.4 (a) are not proportional to this coupling. The error, however is

small, especially for light Higgs masses where the electroweak corrections are dominated

by the light quark loops of figure 3.4 (b).

6Solving eq. (3.29) for Mggh,EWK
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Figure 3.7.: Branching ratios of the most important Higgs decay channels as a function
of the Higgs mass. Figure from ref. [89], obtained with the program Hdecay.

3.5. Higgs propagator treatment

The better part of the work contained in this thesis was done during the dark ages before

July 4th 2012, i.e. before the mass of the Higgs boson was known to be approximately

125 GeV. When the TeVatron [84] and later the LHC [85,86] started ruling out SM Higgs

bosons over a wide range of intermediate masses, the prospect of a heavy Higgs with a

mass above 400 GeV started looking more and more likely.

Thus, a fair amount of effort was dedicated to studies of Higgs width effects during the

development of iHixs, which stirred some discussions in the community on the Higgs

width treatment and led to a number of publications at the beginning of 2012 (e.g. [87]

or chapter 15 of the report [88]). Since the discovery of the Higgs, excitement has cooled

down, yet the discussion is still interesting in the light of a potential second, heavier

Higgs which is a feature of virtually any BSM model.

Also, the effects of performing an actual integration over a Breit-Wigner-like line shape

instead of just taking the Higgs to be on-shell are enhanced when one is interested in

a certain final state the Higgs decays into. Especially for light Higgs masses, the decay

branching ratios depend strongly on the mass due to the crossing of kinematic thresholds,

as can be seen in figure 3.7 which was taken from ref. [89]. Thus, when the branching

ratio is obtained at a non-zero virtuality of the Higgs, its value may differ significantly

from the the one at the nominal Higgs mass.

In iHixs we compute the partonic cross section for resonant production and subse-
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3. Inclusive Higgs boson hadroproduction at NNLO

quent decay of a Higgs boson into a final-state {Hfinal} in the s-channel approximation,

by performing an integration over the invariant mass of the Higgs decay products,

σij→{Hfinal}+X(ŝ) =

∫ Q2
b

Q2
a

dQ2QΓH(Q)

π

σij→H(ŝ, Q2)BrH→{Hfinal}(Q)

∆H (Q,mH)
, (3.78)

i.e. as mentioned above, both the production cross section σij→H and the decay branch-

ing ratio BrH→{Hfinal} are evaluated using the Higgs virtuality Q instead of the Higgs

mass mH . The respective branching ratios for a given Higgs mass were obtained with

the program Hdecay [89] and stored in a data file. The boundaries of integration, Q2
a

and Q2
b are usually defined by the experimental setup and kinematics. They may in

principle be approximated by Qa = 0 and Qb = ∞ for most cases, since the line shape

we integrate over will always be peaked at Q = mH and fall off reasonably fast when

going off resonance.

The total inclusive cross-section corresponds to summing over all Higgs boson final

states,
∑

final

BrH→{Hfinal}(Q) = 1. (3.79)

The function ∆H arises from s-channel Higgs propagator diagrams and it diverges at

leading order in perturbation theory for Q → mH . A Dyson-resummation of dominant

Feynman diagrams in this limit at all orders in perturbation theory is necessary in order

to obtain a sensible finite result.

We have implemented four different schemes for the treatment of the propagator ∆H

in iHixs:

• Zero width approximation (ZWA):

1

∆H (Q,mH)
→ π

mHΓH(mH)
δ
(

Q2 −m2
H

)

(3.80)

In this scheme which has traditionally been used in every study on Higgs pro-

duction and decay, there is no actual integration, i.e. the production and decay

probabilities are evaluated at the nominal Higgs mass mH . It should be an ade-

quate treatment for a light Higgs boson where the width of the Higgs boson is very

small in comparison to its mass.

• Naive Breit-Wigner (BW):

1

∆H (Q,mH)
=

1

(Q2 −m2
H)2 +m2

HΓ2
H(mH)

(3.81)
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This corresponds to resumming leading width contributions for Q ∼ mH . The

scheme is also called fixed-width scheme since the Higgs width is always evaluated

at mH .

• Breit-Wigner with running width:

1

∆H (Q,mH)
=

1

(Q2 −m2
H)2 +Q2Γ2

H(Q)
(3.82)

This scheme is similar to the naive Breit-Wigner scheme, except for the fact that

the width-part of the propagator is evaluated at the virtuality Q.

• Seymour scheme:

1

∆H(Q,mH)
=

m4
H/Q

4

(Q2 −m2
H)2 + Γ2

H(m2
H) Q

4

m2
H

(3.83)

This scheme is a prescription to account for signal-background interference effects

at the high energy limit and finite width resummation simultaneously. It is derived

in ref. [90] for the process pp→ H → V V (V = W orZ), whose signal-background

interference with continuum vector boson pair production is found in an effective

theory using the Goldstone equivalence theorem. The author of [90] finds that the

bulk of the signal-background interference effects can be absorbed into a modifica-

tion of the Higgs propagator,

i

Q2 −m2
H

→
i
m2

H

Q2

Q2 −m2
H + iΓH(m2

H) Q
2

mH

, (3.84)

which results in the ∆H given above. This scheme is designed to interpolate

smoothly between two limits which are well described either by resummation or by

fixed-order perturbation theory: the resonant region Q ∼ mH and the high energy

limit Q≫ mH .

The validity of the Seymour scheme was investigated at the differential level in ref. [91],

where the signal-background interference in the process gg → H → WW was fully

calculated at leading order in QCD. In figure 8 of [91], the comparison is shown. The

authors find that indeed, the approximation (3.84) captures a significant amount of

the signal-background interference, but generally fails to properly describe differential

distributions. Interestingly, while one generally thinks of signal-background interference

effects to be only relevant if the width of a particle becomes comparable to its mass, the
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(a) LO (b) NLO virtual (c) NLO real

Figure 3.8.: Sample diagrams for the bottom quark fusion process.

authors of the reference above, as well as those of other publications [92, 93] find that

in the case of gg → H → WW interfered with the direct gg → WW process, signal-

background interference effects can be as large as 10% at the inclusive level even for a

120 GeV Higgs with a very small width. A careful choice of selection cuts in differential

variables can suppress this phenomenon below the per cent level, though.

We have to admit that neither of the options on the treatment of the Higgs line

shape we have given above are on completely solid theoretical grounds and in general

violate gauge-invariance, as has been pointed out for example in references [68,94]. An

apparently consistent recipe is “complex pole scheme” presented in ref. [68] and compared

to other schemes in ref. [87]. The proposal is to replace the squared Higgs mass anywhere

it appears with the complex pole sH which is the solution of the equation

sH −M2
H + ΣHH(sH) , (3.85)

where MH is the renormalised Higgs mass and ΣHH the Dyson-resummed self-energy of

the Higgs

It was not clear to us how to consistently apply this scheme, though, since the Higgs

mass enters all invariants parametrising the phase-space integral, which is a manifestly

real object. When the light Higgs hypothesis emerged as the reality, we abandoned

further investigations of the Higgs line shape.

3.6. Bottom quark fusion

Although we have argued that gluon fusion is the dominant process for Higgs production

at hadron colliders, we also decided to consider the direct annihilation of two bottom

quarks into a Higgs boson, as depicted in figure 3.8 (a).

The reason for the inclusion lies in the large enhancement of the bottom quark fusion

cross section when the Yukawa coupling modifier Yb is chosen to be large, which is a

common feature of a wealth of BSM models, the most prominent of which is the minimal
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supersymmetric Standard model (MSSM) with large tan β [95].

The bb̄→ H process as we are describing it above only exists in the five-flavour scheme

(5FS), also called variable-flavour scheme (VFS), where the bottom quark is considered

a part of the proton. Contrarily, in the four-flavour or fixed-flavour scheme (4FS or

FFS), the bottom quark is considered too heavy to be found in the proton and can only

be produced perturbatively, by gluon splittings. In the 4FS the inclusive cross section

develops large logarithms ∼ log(mb/mH) due to the collinear production of b-quarks

which is regulated by the bottom mass. In the 5FS these logarithms are re-summed

to all orders by the DGLAP evolution inside the bottom PDFs, for all scales up to

the factorisation scale adopted in the calculation. The leading-order process for Higgs

production through bottom quark fusion in the 4FS is gg → bb̄H, i.e. two gluons split

into a pair of bb̄-pairs, half of which fuse into a Higgs.

Bottom quark annihilation has been the subject of much theoretical discussion in the

last decade due to this scheme dependence in treating the initial state bottom quarks.

Bottom quarks lie in an intermediate mass range between the non-perturbative regime

of the proton mass and the typical scale of a hard scattering event at the LHC. The im-

proved convergence of the perturbative expansion is an advantage of the 5FS approach,

but at the same time it makes the 5FS prediction very sensitive to the choice of factorisa-

tion scale. It has been realized that if the factorisation scale is set to low values ∼ mH/4,

both the 5FS and the 4FS predictions for the inclusive cross sections agree with each

other within their respective uncertainties [96–98], and there is an open discussion as to

how one would combine information from both approaches [99,100]. Ref. [100] arrives at

the conclusion that the 5FS framework is better suited for inclusive calculations, which

is why for our purposes in iHixs, we simply use the 5FS NNLO QCD result which was

published in ref. [101].

The only modifications we had to apply to the analytic formulae found in appendix A

of [101] were the multiplication of the partonic cross sections with the Yukawa coupling

rescaling Y 2
b , as well as a reconstruction of the exact dependence on renormalisation and

factorisation scale, because the partonic cross sections were only provided for

µr = µf = mH . This was achieved with the method we describe in appendix C.

3.7. Description of the program iHixs

To conclude the chapter, we give a description of the program iHixs which we wrote

to yield numerical results for the processes we described in the previous sections. It is

written in the Fortran language (except for a C++ wrapper to read in the parameters for
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a given run) which, despite its penchant to compile even in the presence of horrendous

programming errors and complete lack of readability is still immensely popular in the

high-energy physics community.

The core of the program consists of a Monte-Carlo integration routine which performs

the integration over the variables x1 and z (c.f. eq. (2.59). x2 is derived from these

two), as well as the Breit-Wigner integration over Q (c.f. eq. (3.78)) unless we employ

the zero-width approximation, and the variable λ which appears in the regular pieces of

the NLO QCD corrections of section 3.2. The integration is carried out by the Vegas

algorithm implemented in the Cuba-library [102].

Further libraries that are used include the package OneLOop [103, 104] for the evalua-

tion of one-loop scalar integrals with complex masses, the Lhapdf-library [105] which

provides a universal interface to incorporate different PDF sets, and the library Chap-

lin to evaluate HPLs of up to weight 4 numerically for arbitrary complex arguments

(see chapter 4).

The code may be downloaded from the website

http://www.phys.ethz.ch/~pheno/ihixs . (3.86)

Installation instructions are found in the README file.

3.7.1. Usage

The various features of iHixs are controlled by an input runcard, a text file that is edited

by the user. To run with a given runcard as input type in the installation directory:

./ihixs -i runcard_name -o output_filename

When no runcard is given, the program runs on the default card (called ‘runcard’)

in the installation directory. When no output filename is given, the program writes the

output into runcard_name.out.

The output consists of the total cross sections per perturbative order in QCD, together

with the corresponding Monte-Carlo uncertainties and the PDF errors. Those are set

to zero if no PDF uncertainty is requested in the runcard. The input runcard is also

appended.

3.7.2. Setting options and variables

In the runcard anything after a hash symbol,‘#’, is considered as a comment and is

ignored. The following options are available:
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• pdf_provider : Sets the PDF grid used. The user can choose between the

MSTW08 [106], ABKM09 [107], GJR09 [108], ABM11 [109], NNPDF21 [110],

CT10 [111] and NNPDF23 [112] sets. Within the MSTW PDFs there is also

the option to switch confidence level from 68% to 90% and to use the MSTW

grids with the strong coupling constant varied by one standard deviation from the

best fit value. The exact filenames of the available grids are stated in the default

runcard.

• effective_theory_flag : Set to 0 for the exact LO and NLO QCD effects and

HQET approximation for NNLO. Set to 1 for the improved HQET approximation

through LO, NLO, NNLO.

• no_error_flag: Set to 0 to calculate with PDF uncertainty, set to 1 to calculate

without PDF uncertainty.

• collider: Set to ‘LHC’ or ‘TEVATRON’

• Etot: The total centre-of-mass collider energy. This option is ignored if the collider

chosen above is TeVatron and the energy is set to 1.96 TeV.

• mhiggs: The nominal mass of the Higgs boson.

• higgs_width_scheme : Set to 0 for the default finite width scheme, to 1 for the

Seymour scheme and to 2 for the running-width scheme. For a description of these

schemes see section 3.5.

• higgs_width_grid: The path of the file with the grid for the width of the Higgs,

and the branching ratios to γγ, WW , ZZ and bb̄ as a function of mH . If no path is

set the default grid is used, HdecayGrid.dat, constructed with Hdecay v.3.532

[89]with arguments that can be read in the header of the file. If the user supplies

a grid file of his own, operating requirements are that the maximum number of

grid points cannot exceed 16200, that the first three lines of the file are reserved

for comments (so they are not read) and that the format of each line is respected,

i.e. that the data is given in the order mH , ΓH , BRγγ , BRWW , BRZZ , BRbb̄.

• min_mh : Sets a minimum in the invariant mass of the Higgs boson. This allows

the user to study the total cross section in the presence of kinematical cuts.

• max_mh : Sets a maximum in the invariant mass of the Higgs boson.
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• bin_flag : Set to 1 to produce files with the bin-integrated Higgs invariant mass.

Set to 0 not to produce it. The data files produced contain the cross section per

bin, with the bin size set to 1 GeV, from 30 to 2000 GeV at LO, NLO and NNLO.

The files are named ‘masshisto$mH.$order’, so e.g. for mH = 200 GeV the NLO

file will be ‘masshisto200.1 ’.

• muf/mhiggs : The ratio of the factorisation scale and the Higgs mass.

• mur/mhiggs : The ratio of the renormalisation scale and the Higgs mass.

• DecayMode: Set to no_width for the zero width approximation total cross section,

to ‘total’ for finite width total cross section, or to the decay modes ‘gamma gamma’,

‘ZZ’, ‘WW’, ‘b b-bar’.

• ProductionMode: Set to ‘gg’ for gluon fusion or to ‘bb’ for bottom quark fusion.

• K_ewk: This is a global rescaling factor for all electroweak corrections. Set to 0.0

to switch them off.

• K_ewk_real: Set to 0.0 to switch the electroweak corrections to H + j off.

• K_ewk_real_b: Set to 0.0 to switch the electroweak corrections to H + j that

include diagrams with massive quarks or Higgs boson in the loop, off.

• m_top: The mass of the top quark.

• Gamma_top: The width of the top quark.

• Y_top : Rescaling factor for the SM Yukawa coupling of the top quark. Note that

this can be set to an arbitrarily small positive value, but not to 0.0 exactly.

• scheme_top: Set to 0 to use the MS scheme for the top mass renormalisation and

to 1 for the on-shell scheme. In the case of the MS scheme, the mass input from

above is interpreted as mt(mt), i.e. the MS top mass at its own scale and run to

mt(µr) from there.

• m_bot: The mass of the bottom quark.

• Gamma_bot: The width of the bottom quark.

• Y_bot: Rescaling factor for the SM Yukawa coupling of the bottom quark.
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• scheme_bottom: Set to 0 to use the MS scheme for the bottom mass renormali-

sation and to 1 for the on-shell scheme. In the MS case, the mass interpreted as

mt(10 GeV).

• heavy quark: Optional extra quarks in the model. The argument of this option

should be formatted as mQ : ΓQ : YQ : sQ where YQ is the rescaling factor from

a SM-like Yukawa coupling mQ/v and sQ parametrises the scheme-choice like for

the top quark. For example, adding an extra 300GeV quark with width 1.2GeV,

a Yukawa coupling that is 5.7
mQ

v and renormalisation in the on-shell scheme, the

user should type:

‘heavy quark = 300.0 : 1.2 : 5.7 : 1’

• m_Z: The mass of the Z boson.

• Gamma_Z: The width of the Z boson

• m_W: The mass of the W boson

• Gamma_W: The width of the W boson

• epsrel: Sets the relative Monte-Carlo integration error.

• epsabs: Sets the absolute Monte-Carlo integration error.

• nstart : Sets the number of points per Vegas iteration.

• nincrease: Sets the number of points by which the number of points per iteration

increases

• mineval: Sets the minimum number of points before ending the Monte-Carlo

integration

• maxeval: Sets the maximum number of points after which the integration ends.

• adapt to central only: Set to 0 to force Vegas to adapt to all integrand. Set

to 1 to adapt to the central integrand only. This is useful when running with

PDF errors. Then each member of the PDF grid is treated as a separate integral.

Adapting to the central only assumes that the peak structures of all integrals is

similar which is a good approximation, and saves some CPU time.

• vegas_verbose: Set to 0 for silent Vegas output. Set to 2 to have information

about each iteration printed in the standard output (the console).
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Further information and a version history of the program can be found on the web-

site (3.86).

3.8. Conclusions

We have introduced the processes of gluon fusion and bottom quark fusion, with an

emphasis on the former one. The framework we are working in are the generalised

Feynman rules of eq. (3.1) which allow each quark to have a Yukawa coupling different

from the SM strength, and also the coupling of the Higgs to vector bosons can be rescaled.

The perturbative expansion of the inclusive cross section starts at the one-loop level,

where heavy quarks propagating in a loop create the coupling of the gluons to the Higgs.

The LO amplitude (3.6) is given by a simple squared logarithm in the variable xq which

is in general complex.

The NLO QCD corrections consist of two-loop virtual corrections to the LO diagrams

and real-radiation contributions for which two new partonic channels open up, the qg and

the qq̄ channel. All contributions to the NLO cross section are known analytically, the

most complicated pieces being the weight-four harmonic polylogarithms of the virtual

corrections, which have the complex xq as an argument.

Electroweak corrections to gluon fusion arise in three ways. There are two kinds of

contributions at the two-loop level, through light quark loops and subsequent fusion of

two electroweak gauge bosons into a Higgs boson, or via the massive quark diagrams

of figure 3.4. Furthermore, there are electroweak contributions to the real-radiation

processes qg → Hq and qq̄ → Hg. Out of the three types of contributions, we only

lack an analytical expression for the virtual massive quark contributions. Since virtual

corrections are independent of parton luminosities, we can still implement the full virtual

electroweak corrections through a data-file containing the enhancement factor δEWK as

defined in eq. (3.29), which was kindly provided to us by the authors of ref. [72].

Beyond the NLO QCD and electroweak corrections, one has to resort to effective

theory approximations. In the case of QCD corrections, this amounts to integrating out

the heavy quark degrees of freedom. We have implemented the Wilson coefficient for

the effective coupling of gluons to the Higgs boson for an arbitrary number of heavy

quarks with couplings different from their SM values as given in eq. (3.46), and the

corresponding partonic cross sections in the effective theory.

In the framework of effective theories, also the mixed QCD-electroweak corrections

can be approximated, at least the contributions coming from light quark loops. The

heavy degrees of freedom integrated out are the electroweak gauge bosons. The four-loop
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mixed QCD-electroweak corrections are unknown, but have been found to be numerically

insignificant.

In sections 3.4.2 and 3.4.3 we explain how we combine the exact and effective theory

cross sections to avoid double-counting, and define our improved effective theory approx-

imation, which essentially consists of rescaling the Wilson coefficients with the exact LO

amplitude for the respective process.

The different schemes to treat off-shell effects of the Higgs are given in section 3.5. All

except the zero-width approximation include an integration over some Breit-Wigner-like

distribution, the form of which depends on the scheme chosen. The Seymour-scheme

in particular differs from the other approaches inasmuch as it seeks to emulate signal-

background interference effects in the gg → H → V V process.

The bottom quark fusion process is presented rather briefly in section 3.6, as we have

straightforwardly implemented the NNLO QCD cross sections, with the appropriate

rescaling factors due to our generalised Feynman rules.

Finally, the iHixs program is described in some detail in section 3.7 to showcase its

various features.
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Chaplin library

When computing higher-order corrections in perturbative QCD, one invariably encoun-

ters a class of functions called polylogarithms, which can be thought of as a generalisation

of the ordinary logarithm. The simplest and most important example is the dilogarithm

function Li2, which appeared in mathematical works of the 17th century [113], already.

The first proper studies on it are often accredited to Leonhard Euler who investigated

the function in the 1760s, although apparently his work is predated by the one of Lan-

den [113]. The British mathematician William Spence [114] then conducted comprehen-

sive studies on the dilogarithm at the beginning of the 19th century, deriving important

identities for argument transformations and extended the class of functions under con-

sideration to the classical polylogarithms Lin. Thus, the dilogarithm is often referred to

as “Spence’s function”.

Nielsen [115] further extended the set of polylogarithms, allowing for two integer in-

dices. Starting at the end of the previous century, various two-loop computations neces-

sitated a further generalisation, leading to the notions of harmonic polylogarithms [116],

two-dimensional harmonic polylogarithms [117,118], cyclotomic harmonic polylogarithms

[119] or the previously mentioned generalised harmonic polylogarithms found in the elec-

troweak corrections to gluon fusion [69]. All these classes of functions are subsets of the

multiple polylogarithms introduced by Goncharov during the 1990s [120–122].

For all processes considered in this thesis, the subset of harmonic polylogarithms

proved sufficient to parametrise all results. As mentioned in sections 3.1 and 3.2, the

argument of the HPLs may be a complex number, though. When writing a Monte-Carlo

integration code such as iHixs, we thus need to be able to evaluate HPLs numerically for

any complex argument. Furthermore, since the same numerical code should also be useful

in Monte-Carlo codes that generate differential distributions, where 1) the integrand

usually has to be evaluated many millions of times and 2) there are big cancellations

among various contributions at the numerical level, the numerical implementation should

also be fast and precise.
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While there are existing numerical implementations of HPLs, none of them fulfilled all

the criteria above. The Fortran code hplog [123] is fast and precise but restricted to real

arguments. The Mathematica package HPL [124, 125] allows for complex arguments

but is hard to interface with a computer program dynamically, and also not fast enough

for repeated evaluations. Finally, the C++ library GiNaC contains an implementation

of general multiple polylogarithms for any complex argument [126], but its speed is not

sufficient for many repeated evaluations, either.

This led to the development of the Chaplin (the obvious acronym for “Complex

Harmonic PolyLogarithms In fortraN”) library, a code which allows to evaluate HPLs

up to weight four (we will define the weight of a polylogarithm in a moment) for arbitrary

complex arguments.

We will first define the class of harmonic polylogarithms and point out some of their

properties, show how we can reduce a general HPL to a superposition of basis func-

tions and then provide algorithms to evaluate the basis functions for arbitrary complex

argument. The library Chaplin is presented at the end of the chapter.

4.1. Definition and properties

We start by defining the classical polylogarithms,

Lin(x) =

∫ x

0
dt

Lin−1(t)

t
, with Li1(x) = − log(1− x) . (4.1)

The extension to harmonic polylogarithms is performed by allowing for the three different

denominator functions (also called “weight” functions)

f−1(t) =
1

1 + t
, f0(t) =

1

t
, f1(t) =

1

1− t , (4.2)

and defining recursively

H(a1, . . . , an;x) =

∫ x

0
dt fa1(t) H(a2, . . . , an; t) , for ai ∈ {−1, 0, 1} , (4.3)

with the initial condition H( ; t) = 1. For the special case of all ai being equal to zero

where the integral (4.2) is divergent, we simply define

H(~0n;x) ≡ logn(x)

n!
, where ~ak = (a, . . . , a

︸ ︷︷ ︸

n times

) . (4.4)
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The definition (4.2) directly fixes the derivative of a HPL,

d

dx
H(a1, . . . , an;x) = fa1(x)H(a2, . . . , an;x) . (4.5)

The length of the index vector ~a = (a1, . . . , an), i.e. the number of indices n is called

the weight of the polylog. We will often use the more compact notation

H(a1, . . . , an;x) = Ha1,...,an(x) , (4.6)

and also the so-called “m”-notation, where the number of indices equal to zero to the

left of a non-zero index plus one is multiplied to that non-zero index, and the 0-indices

are subsequently omitted. To illustrate this slightly convoluted statement, we give an

example,

H(0, 0
︸︷︷︸

3−1

,−1, 0
︸︷︷︸

2−1

, 1;x) = H−3,2(x) . (4.7)

In this notation, the weight of the polylogarithm is given by the sum of the absolute

values of all indices. The relation of HPLs to Nielsen polylogs [115] which are defined as

Sn,p(x) =
(−1)n+p−1

(n− 1)!p!

∫ 1

0
dt

logn−1(t) logp(1− xt)
t

, (4.8)

is given by

Sn,p(x) = H(~0n,~1p;x) . (4.9)

While it is in general not possible to obtain a closed form in terms of elementary functions

for a given HPL of higher weight, there are the special cases similar to eq. (4.4),

H(±~1n;x) = (∓1)n
logn(1∓ x)

n!
, and H(~0n−1, 1;x) = Lin(x) . (4.10)

There are 3k different HPLs for a given weight k. There is a wealth of relations among

HPLs which allows one to define a certain set of basis functions for each weight and reduce

all HPLs of the corresponding weight to a linear combination of these basis functions.

Actually, we will see that up to weight three, the only basis function we need are the

ordinary logarithm and the classical polylogs, with a certain set of arguments. Starting

from weight four, this is no longer possible and genuine new functions will appear.
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4.1.1. Shuffle algebra

From the definition in eq. (4.2), it is clear that unless (a1, . . . , an) = ~0n,

H(a1, . . . , an; 0) = 0 . (4.11)

Similarly to the divergence of H(~0n;x) at x = 0, HPLs with a leftmost index equal to ±1

diverge at x = ±1 unless all other indices are equal to zero. These divergences can be

made apparent by exploiting the shuffle-algebra structure that HPLs satisfy. The shuffle

product of two vectors ~n and ~m is defined as the sum of all permutations of the elements

of ~n and ~m where the order of elements coming from the same vector is not changed.

Again, we illuminate this statement with an example,

(a, b, c) ∆ (d, e) =(a, b, c, d, e) + (a, b, d, c, e) + (a, d, b, c, e)

+(d, a, b, c, e) + (a, b, d, e, c) + (a, d, b, e, c)

+(d, a, b, e, c) + (a, d, e, b, c) + (d, a, e, b, c)

+(d, e, a, b, c) (4.12)

The shuffle algebra of HPLs relates the product of two HPLs of equal argument to the

sum of all HPLs with indices in the shuffle product of the original two index vectors,

H(~a;x) H(~b;x) =
∑

~c∈~a∆~b

H(~c;x) . (4.13)

The shuffle algebra structure is actually a property of any function defined via iterated

integrals, and can easily be proven by iteratively dividing up the integration region
∫ x

0 dt1dt2 into a lower and an upper triangle,

t1

t2

=

t1

t2

+

t1

t2

which means, denoting (a2, . . . , an) = ~̂a and (b2, . . . , bn) = ~̂b

H(~a;x) H(~b;x) =

∫ x

0
dt1dt2 fa1(t1)fb1(t2)H(~̂a; t1)H(~̂b; t2)

=

∫ x

0
dt

[

fa1(t)H(~̂a; t)H(~b; t) + fb1(t)H(~a; t)H(~̂b; t)

]

. (4.14)
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Repeating the same step for the
∫ t

0 du1du2 integration and all further nested integrations,

we see that we can pull out all weight functions and mix their order freely, except for

the ones coming from the same index vector.

If we now consider, for example, the HPL H(1, 0, 1;x), we can use the shuffle algebra

to pull out the logarithmic divergence at x = 1,

H(1, 0, 1;x) = H(1;x)H(0, 1;x) − 2H(0, 1, 1;x) = − log(1 − x)Li2(x)− 2H2,1(x) , (4.15)

where the second term on the RHS is finite at x = 1.

4.1.2. Representation as nested sums and values at ±1

While we usually define a HPL via nested integrals, there exists a second definition of

HPLs as nested sums [121], valid for |x| < 1,

H(0, . . . , 0
︸ ︷︷ ︸

mk−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

mk−1−1

, ak−1 . . . , 0, . . . , 0
︸ ︷︷ ︸

m1−1

, a1;x)

= (−1)k+pLim1,...,mk
(
a2

a1
,
a3

a2
, . . . ,

ak−1

ak−2
,

1

ak−1
, x) , (4.16)

where p is the number of +1 indices among the ai and

Lim1,...,mk
(x1, . . . , xk) =

∞∑

nk=1

xnk

k

nmk

k

nk−1
∑

nk−1=1

· · ·
n2−1∑

n1=1

xn1
1

nm1
1

. (4.17)

HPLs with their rightmost index equal to zero have to be rewritten as a sum of other

HPLs using the shuffle algebra. Having the leftmost non-zero index equal to +1 and not

-1 can be achieved via the identity

H(a1, . . . , an;x) = (−1)pH(−a1, . . . ,−an;−x) , (4.18)

which is easily obtained from the integral definition (4.2) by mapping t → −t. The

exponent p is the number of non-zero indices among the ai.

As the notation already suggests, we recover the classical polylogarithms for the case

k = 1, and their sum-representation just reads

Lin(x) =
∞∑

k=1

xk

kn
, (4.19)

which immediately gives us the relation between classical polylogarithms at x = 1 and
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the Riemann zeta values,

Lin(1) = ζn for n ≥ 2 . (4.20)

In general the value of a HPL at x = ±1 is thus given by alternating multiple zeta values,

ζ(m1, . . . ,mn;σ1, . . . , σn) =
∑

k1>k2>...>kn>0

σk1
1 σk2

2 · · · σkn
n

km1
1 km2

2 · · · kmn
n

, (4.21)

where σi = ±1, which up to weight four can be written as combinations of ordinary zeta

values, factors of log(2) and the constant Li4(1/2) in the non-divergent cases.

4.1.3. Analytic continuation

The integral definition (4.2) is valid for any complex number x unless we are sitting on

a divergence. To keep the functions single-valued, one needs to introduce branch cuts.

At weight one, we analytically continue the HPLs according to the usual prescription for

the principal branch of the complex logarithm, i.e. we place the branch cut on the real

axis,

H−1(x+ iǫ) = log(|1 + x|) + iπ for x ∈ R, x < −1 ,

H0(x+ iǫ) = log(|x|) + iπ for x ∈ R, x < 0 ,

H1(x+ iǫ) = − log(|1− x|) + iπ for x ∈ R, x > 1 . (4.22)

These prescriptions then define the analytic continuation for any higher-weight HPL. A

general HPL with mixed indices has branch cuts for −∞ < x < 0 and 1 < x < ∞ on

the real axis, i.e. all HPLs are real-valued on the interval (0, 1).

4.2. The strategy for numerical evaluation

There are many more functional identities among HPLs than just the shuffle relations

or eq. (4.18), for example the well-known “mirror” relation

Li2(1− x) = −Li2(x) + ζ2 − log(1− x) log(x) , (4.23)

or the inversion relation

Li2

(
1

x

)

= −Li2(x)− ζ2 −H0,0(−x) . (4.24)
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The derivation of such identities involving different arguments is quite tricky using the

integral definition of the HPLs, especially when going to higher weights. Yet, we exactly

want to exploit all possible identities to reduce an arbitrary HPL up to weight four to

a superposition of a certain set of basis functions. The task of numerical evaluation of

the HPLs then becomes the numerical evaluation of the basis functions.

In recent years, a very efficient way of obtaining all identities among polylogarithms has

been developed. It goes under the name of symbol calculus [127–130]. Symbol calculus

enables us to perform a two-step programme to find an efficient way to numerically

evaluate HPLs for arbitrary arguments.

In the first step, we use it to identify a certain set of basis functions which span the

space of all HPLs up to weight four, and find the expressions for all HPLs in terms of

these basis functions. In the second step, we derive inversion mappings of the type (4.24)

for all basis functions, i.e. we can map any argument outside the unit disc into it.

Finally, inside the unit disc, we know that we can expand polylogarithms and thus

also our basis functions in a series, for example via eq. (4.17), to be able to perform an

evaluation. Actually, the series employed will depend on the location of the argument z

in the unit disc to ensure the best possible convergence.

We will lay out these three steps (reduction to basis functions, inversion relations for

basis functions, series expansion of basis functions inside the unit disc) in the following

sections. The first two steps have been derived and published in a dedicated publica-

tion [129] with more emphasis on the technicalities associated with symbol calculus. We

will therefore be rather brief on these topics.

4.2.1. Reduction to basis functions and inversion mappings

At the heart of the symbol calculus is the so-called symbol map, a linear map that

associates to a HPL of weight n a tensor of rank n. As an example, the tensor associated

to the classical polylogarithm Lin(z) = H(~0n−1, 1; z) reads,

S(Lin(z)) = −(1− z)⊗ z ⊗ . . .⊗ z
︸ ︷︷ ︸

(n−1) times

. (4.25)

Furthermore, the symbol maps products that appear inside the tensor product to a sum

of tensors,

. . .⊗ (X · Y )⊗ . . . = . . .⊗X ⊗ . . . + . . . ⊗ Y ⊗ . . . . (4.26)

It is conjectured that all the functional identities among (multiple) polylogarithms are

mapped under the symbol map S to algebraic relations among the tensors. Hence, the
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symbol calculus provides an effective way to resolve all the functional equations among

a certain class of polylogarithms.

In Ref. [129], the symbol map was used to obtain a set of basis functions through

which all HPLs up to weight four can be expressed. The basis functions obtained read,

• for weight one,

B(1)
1 (z) = ln z, B(2)

1 (z) = ln(1− z), B(3)
1 (z) = ln(1 + z) , (4.27)

• for weight two,

B(1)
2 (z) = Li2(z), B(2)

2 (z) = Li2(−z), B(3)
2 (z) = Li2

(
1− z

2

)

, (4.28)

• for weight three,

B(1)
3 (z) = Li3(z), B(2)

3 (z) = Li3(−z), B(3)
3 (z) = Li3(1− z),

B(4)
3 (z) = Li3

(
1

1 + z

)

, B(5)
3 (z) = Li3

(
1 + z

2

)

, B(6)
3 (z) = Li3

(
1− z

2

)

,

B(7)
3 (z) = Li3

(
1− z
1 + z

)

, B(8)
3 (z) = Li3

(
2z

z − 1

)

, (4.29)

• for weight four,

B(1)
4 (z) = Li4(z), B(2)

4 (z) = Li4(−z), B(3)
4 (z) = Li4(1− z),

B(4)
4 (z) = Li4

(
1

1 + z

)

, B(5)
4 (z) = Li4

(
z

z − 1

)

, B(6)
4 (z) = Li4

(
z

z + 1

)

,

B(7)
4 (z) = Li4

(
1 + z

2

)

, B(8)
4 (z) = Li4

(
1− z

2

)

, B(9)
4 (z) = Li4

(
1− z
1 + z

)

,

B(10)
4 (z) = Li4

(
z − 1

z + 1

)

, B(11)
4 (z) = Li4

(
2z

z + 1

)

, B(12)
4 (z) = Li4

(
2z

z − 1

)

,

B(13)
4 (z) = Li4

(

1− z2
)

, B(14)
4 (z) = Li4

(

z2

z2 − 1

)

, B(15)
4 (z) = Li4

(
4z

(z + 1)2

)

.

(4.30)

All harmonic polylogarithms up to weight three can be expressed through the basis

functions in eqs. (4.27 - 4.30). Starting from weight four, we need to extend the set of
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functions by adjoining three new elements to the basis,

B(16)
4 (z) = Li2,2(−1, z), B(17)

4 (z) = Li2,2

(
1

2
,

2z

z + 1

)

,

B(18)
4 (z) = Li2,2

(
1

2
,

2z

z − 1

)

,

(4.31)

where Li2,2 denotes a two-variable multiple polylogarithm that cannot be expressed

through classical polylogarithms only,

Li2,2(z1, z2) =
∞∑

n1=1

n1−1∑

n2=1

zn1
1

n2
1

zn2
2

n2
2

. (4.32)

For practical purposes we find it more convenient to use a different set of multiple

polylogarithms as basis functions than the one used in Ref. [129]. More specifically, we

perform a change of basis and replace the functions B(i)
4 (z), for i = 16, 17, 18, by the

functions B̃(i)
4 (z), which are directly expressed as HPLs,

B̃(16)
4 (z) = H(0, 1, 0,−1; z) = B(16)

4 (−z) ,

B̃(17)
4 (z) = H(0, 1, 1,−1; z) ,

B̃(18)
4 (z) = H(0, 1, 1,−1;−z) .

(4.33)

The mapping from (B(17)
4 ,B(18)

4 ) to (B̃(17)
4 , B̃(18)

4 ) is given in appendix D. The set of the

32 functions B(j)
i (z) defines a basis through which all HPLs up to weight four can be

expressed. As a consequence, any numerical code to evaluate this set of basis functions

will automatically be able to evaluate all 120 HPLs up to weight four. Furthermore,

as the basis functions only involve the two genuine harmonic polylogarithms H2,−2(z)

and H2,1,−1(z) besides the ordinary logarithms and the classical polylogarithms Li2(z),

Li3(z) and Li4(z), it is enough to have numerical routines for these six functions. In this

way we can reduce the problem of evaluating the 120 HPLs up to weight four to only a

handful of non-trivial numerical routines.

For the expressions of all HPLs through weight four in terms of the basis functions

B(j)
i , we refer to appendix D. Notice that only a minimal set of reduction formulae is

given to save space, as all other reductions can be obtained via the shuffle algebra (4.13).

The basis functions as they are defined in eqs. (4.27) through (4.30) are actually only

correct in their entirety for z ∈ [0, 1]. All basis functions need to recreate the analytic

properties of HPLs as defined in the previous subsection for any complex argument. For

most of the basis functions, the definition stays the same, but we need to make two
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4. Harmonic polylogarithms and the Chaplin library

adjustments to the definitions to ensure that they exhibit the same cuts as a HPL.

First, the definition of B(13)
4 (z) valid on the whole complex plane reads [129],

B(13)
4 (z) =

{

Li4(1− z2) , if Re(z) > 0 or (Re(z) = 0 and Im(z) ≥ 0) ,

Li4(1− z2)− iπ
3 σ(z) ln3(1− z2) , otherwise ,

(4.34)

where

σ(z) = sign(Im(z)) . (4.35)

Second, we note that there is a subtlety in the basis function B(15)
4 (z) when going from

the interior to the exterior of the unit disc because B(15)
4 (z) has a branch cut along the

unit circle in the complex z-plane. In Ref. [129] it was shown that if we want B(15)
4 (z)

to be continuous and real for z ∈ [0, 1], we need to choose the following prescription for

|z| = 1,

B(15)
4 (z) = Li4

(
4z

(1 + z)2
+ iσ(z)ε

)

. (4.36)

The inversion relations for the basis functions are derived in appendices E and F of

ref. [129]. We give the results for weights one and two, but refer to said appendices for

the lengthy result for higher weights.

For weight 1, the inversion relations read

B(1)
1 (x) = −B(1)

1

(
1

x

)

,

B(2)
1 (x) = −B(1)

1

(
1

x

)

+ B(2)
1

(
1

x

)

− iπσ(x) ,

B(3)
1 (x) = B(3)

1

(
1

x

)

− B(1)
1

(
1

x

)

,

(4.37)

and for weight two, they are

B(1)
2 (x) =− iπσ(x)B(1)

1

(
1

x

)

− 1

2
B(1)

1

(
1

x

)2

− B(1)
2

(
1

x

)

+
π2

3
,

B(2)
2 (x) =− 1

2
B(1)

1

(
1

x

)2

− B(2)
2

(
1

x

)

− π2

6
,

B(3)
2 (x) =− log(2)B(1)

1

(
1

x

)

− 1

2
B(1)

1

(
1

x

)2

+ B(2)
1

(
1

x

)

B(1)
1

(
1

x

)

+ B(1)
2

(
1

x

)

− B(2)
2

(
1

x

)

+ B(3)
2

(
1

x

)

− π2

4
, (4.38)

Notice how the inversion relation for a given basis function B(j)
i in general involves

all other basis functions of the same weight i, as well as combinations of lower-weight
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basis functions and/or constants. The weight of each summand is always equal to i,

though, as the product of a weight-n and a weight-m function is of weight n + m,

as can be seen in eq. (4.13). The constants π, ζn, log(2) etc. also have a certain

weight, as they can be written as polylogarithms evaluated at special points such as

x = ±1 or x = 1/2. Since π and log(a) for an algebraic number 0 6= a 6= 1 are of

transcendentality one, and it is conjectured that ζ2n+1 is of transcendentality 2n+1, the

weight of a polylogarithmic expression is often called transcendental weight or degree

of transcendentality1. In general, objects appearing in perturbative QCD such as loop

integrals do not have a uniform weight, contrarily to what is found in more symmetric

theories such as N = 4 super-Yang-Mills theory [131].

4.2.2. Numerical evaluation of the basis functions

Having found the basis functions and their inversion mappings, we now need to find

a way to evaluate them for arguments within the unit disc of the complex plane. As

already mentioned, we would like to find a series expansion for all the basis functions

which we then want to truncate after a certain number of summands, assuming that

convergence is fast enough.

Let us focus on the easiest case, the dilogarithm Li2, for the moment. We already

know a series expansion for it due to the relation of polylogarithms to nested sums,

Li2(x) =
∞∑

k=1

xk

k2
. (4.39)

This expansion only converges reasonably fast only if |x| ≪ 1, though. A faster-

converging expansion for small values of x is given by the “Bernoulli” expansion which

has been known for a long time [132,133]. In this series, the dilogarithm is expanded in

the variable log(1− x),

Li2(x) =
∞∑

k=0

Bk
(k + 1)!

(− log(1− x))k+1 , (4.40)

where Bk denotes the kth Bernoulli number, which is defined via the generating series

z

ez − 1
=

∞∑

n=0

Bn
zn

n!
. (4.41)

1Or even just “transcendentality”, although mathematicians may find this an abuse of nomenclature
since it is not even proven that ζ3 is a transcendental number.
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Note that B2n+1 = 0, ∀n ∈ N. The Bernoulli numbers are related to zeta values via the

formula

ζ0 = B1 = −1

2
and ζ−n = −Bn+1

n+ 1
for n ≥ 1 . (4.42)

The Bernoulli expansion converges for Re(x) < 1/2, which can be achieved using the

identity (4.23). Still, for arguments far from the origin, the convergence is not very fast

anymore, and we rather resort to an alternative expansion in the variable log(x) which

was derived in ref. [134],

Li2(x) = − log(x) log (− log(x)) +
∞∑

k=0

ζ
(2)
k

k!
logk(x) , (4.43)

where ζ
(n)
k denote the shifted zeta values defined as

ζ(k)
n =

{

ζk−n, if k − n 6= 1 ,

Hk−1, if k − n = 1 ,
, with Hm =

m∑

n=1

1

n
, (4.44)

i.e. Hm denotes the m-th harmonic number. This expansion converges fast for |x| ∼ 1.

The derivations of both expansion can be found in ref. [135].

We have therefore found series expansions for the dilogarithm for any region of the

unit disc. If the variable x is close to the origin, i.e. |x| ≤ rmin, we use the Bernoulli

expansion to expand in log(1−x), and if x lies on the annulus rmin < |x| < 1 we expand

in log(x). The optimal value of the boundary value rmin was determined empirically to

be rmin = 0.3.

The strategy for the other basis functions Li3, Li4, H2,−2 and H2,1,−1 is identical, i.e.

we want to find two expansions, one in log(1−x) and the other in log(x) for each of them.

In chapter 4 of ref. [135], these expansions are all derived, but require the introduction

of quite a lot of notation, which is spared the reader here.

In the case of the expansions in log(x) for H2,−2 and H2,1,−1, we have to distinguish

between the cases Re(x) ≷ 0. For H2,−2, we map one case to the other using the identity

H(0, 1, 0,−1;x) = −H(0,−1, 0, 1;−x) = H(0, 1, 0,−1;−x) + (other terms) , (4.45)

where “(other terms)” consists of classical polylogarithms and logarithms only.

Finally, for H2,1,−1 and the case Re(x) < 0, we employ a second expansion in the

variable log(−x).
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Figure 4.1.: The different regions of the complex plane in the Chaplin library.

4.3. The Chaplin library

The results from the previous section, i.e. the reduction of the 120 HPLs through weight

4 to basis functions, the inversion relations for all basis functions and their respective

series expansions in log(1 − x) and log(x), respectively, were all implemented in the

Fortran code Chaplin.

The whole code is written in double-precision variables, i.e. the maximal accuracy

we can achieve is 16 relative digits. Checking against arbitrary-precision codes like the

GiNaC implementation for HPLs [126] or the Mathematica package HPL [124,125], we

were able to verify that the evaluation of any HPL up to weight four is correct to at least

13 relative digits for any complex argument. The lost digits are due to finite-precision

rounding errors in the reduction to basis functions.

In order to preserve this precision also near the points x = 0,±1 where some basis

functions develop spurious singularities (i.e. even though the HPL of interest is finite

in these points, some basis functions in its reduction are separately divergent) and big

numerical cancellation flawing the final precision would occur, we implemented dedicated

Taylor expansion for every HPL around these points, essentially by just using the nested

sum relation eq. (4.16). For x = 0, eq. (4.16) is directly applicable, for x = ±1 the HPL

had to be expressed as a superposition of HPLs with argument x∓1 via symbol calculus,

each of which was then expressed through its series representation.
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The strategy for the numerical evaluation is summarised in figure 4.1:

• Region I: inside an annulus 0.025 < |x| ≤ 0.3, the basis functions are evaluated by

using the expansions in log(1− x).

• Region II: inside an annulus 0.3 ≤ |x| ≤ 1, the basis functions are evaluated by

using the expansions in log(x).

• Region III: points outside the unit disc, |x| > 1, are mapped back to the interior

of the unit disc via inversion relations.

• Regions IV, V & VI: For points closer than |x−x0| = 0.025 to x0 ∈ {0,±1}, Taylor

expansions to evaluate the individual HPLs without proceeding to a decomposition

into basis functions are used.

If the user attempts to call a HPL at a divergent point, for example H(0; 0), an exception

is thrown and the evaluation is aborted. For more information about Chaplin such as

installation or usage guidelines, we kindly refer to the original publication [135] and the

website

http://projects.hepforge.org/chaplin/ (4.46)

4.4. Conclusions

After a historical introduction, we have defined the class of harmonic polylogarithms via

a recursive integration over the three weight functions given in eq. (4.2). It is straight-

forward to understand that these functions will naturally arise in perturbative QFT, as

phase-space integrations of particle propagators will produce exactly this kind of iterated

integrals.

A feature of functions that can be defined as nested integrations in general is the

shuffle algebra which we present in section 4.1.1. This structure provides us with a large

number of identities among HPLs and is useful to extract logarithmic singularities from

the functions.

Alternatively, HPLs can be represented as nested sums for arguments within the unit

disc. While in physical calculations, this form is less common, it provides a easy way of

obtaining the values for HPLs when their argument is at ±1 in the non-divergent cases.

These values are found to be alternating multiple zeta values.

In section 4.2, we explain how the library Chaplin works. A general HPL is reduced

to a set of basis functions which we need 32 of to cover all HPLs up to weight four, using

the full set of identities among them which is found using Symbol calculus. The basis
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functions are found to consist of only six different functions, most of which are classical

polylogarithms with various arguments. In a second step, the argument of the basis

functions is mapped inside the unit disc of the complex plane if necessary, via inversion

relations.

Finally, for the six remaining functions, there are two different series expansions, in

the variables log(x) and log(1 − x), respectively. They converge fast enough in their

respective regimes depicted in fig. 4.1 such that a truncation of the series after at most

50 terms ensures the best possible precision achievable with a fixed-precision code. To

avoid numerical instabilities, the points x ∈ {0,±1} are treated with dedicated Taylor

expansions for every HPL individually. This three-step programme allows for the fast

and reliable evaluation of any HPL up to weight four for arbitrary complex arguments.

Since its creation, the library Chaplin has been used in various numerical codes [64,

83,136–138] with great success.
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Having established, in the form of the program iHixs, a tool to describe Higgs production

in gluon fusion with the best possible precision available at fixed order in perturbation

theory, we proceed by giving a phenomenological profile of the Higgs boson at hadron

colliders.

As the better part of the work contained in this thesis has been completed before the

Higgs mass was determined, we will present some observables with variable Higgs mass,

especially in cases where clearly different behaviour emerges when mH 6= 125 GeV.

Unless mentioned otherwise, all results in this chapter were obtained for a Higgs mass

of 125 GeV. The default PDF set we have used is the MSTW08 set, for the perturbative

order under consideration. The value for the strong coupling at the Z-mass is always

chosen accordingly to the PDF set in use, which for the MSTW08 set means αs(mZ) =

0.139 (LO set), αs(mZ) = 0.120 (NLO set) and αs(mZ) = 0.117 (NNLO set). From the

scale mZ , the coupling was run to the scale µr using the respective order of eq. (2.36).

The heavy quark masses were in general treated using the MS scheme and set to

mt(mt) = 163.7 GeV and mb(10 GeV) = 3.63 GeV, and run to the scale µr using the

corresponding order of eq. (2.47). The Higgs width was, except for the dedicated study

on the Higgs propagator, treated in the zero-width approximation, as the difference to

other schemes is below the per cent level for mH = 125 GeV, but the program runs much

faster (one dimension less in the Monte-Carlo integration).

Electroweak effects were always included except in the section investigating their nu-

merical impact. The same holds for the exact NLO QCD corrections, which were pre-

ferred over the HQET NLO cross section in all plots unless stated otherwise.

5.1. Perturbative convergence and scale uncertainty

In figure 5.1, we show the three lowest orders of the gluon fusion cross section as a

function of the Higgs mass, for values between 100 and 400 GeV, as it used to be

practice before the TeVatron and LHC first started excluding certain mass ranges and

finally found the Higgs signal at a mass of 125 GeV. We still decided to show this plot
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Figure 5.1.: The first three orders of the gluon fusion cross section as a function of the
Higgs mass for the 8 (left) and 13 (right) TeV LHC. The bands represent
the scale-uncertainty.

to give the reader an idea of the dependence of the production rate on the Higgs mass.

Obviously, the cross section decreases as the hypothetical Higgs mass becomes larger,

which is due to luminosity suppression (i.e. it becomes increasingly harder to find two

gluons that are energetic enough to produce a Higgs boson). The exception to this

behaviour is the region around 350 GeV where there is an intermediate enhancement

due to the tt̄-threshold.

The increase in cross section when going from 8 to 13 TeV centre-of-mass energy is a

tad more than a factor of two for light Higgs masses such as 125 GeV and would have

been even more significant for a heavier Higgs boson. Again, this increase is purely

luminosity-related. The left panel of figure 5.2 shows the gluon fusion cross section for

mH = 125 GeV as a function of the centre-of-mass energy of a hypothetical future pp-

collider. While the slope of the curve flattens out a bit towards the high-energy end,

for the intermediate region from 10 to 50 TeV we find that doubling the centre-of-mass

energy enhances the production cross section by about a factor of three.

The perturbative convergence of the cross section is obviously quite slow, as the NLO

curve is about 70% higher than the LO curve, and the NNLO corrections add another

20% on top of that. The prescription of estimating the uncertainty due to missing

higher-order terms by varying the unphysical scales µr and µf by a factor of two up and

down around the central scale choice underestimates the uncertainty of the LO cross

section, as the LO and NLO bands do not overlap. The situation becomes better when

comparing the NLO and NNLO bands, which clearly overlap. Still, the NNLO central

value is just within the NLO uncertainty band.
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Figure 5.2.: Left: The gluon fusion cross section as a function of the centre-of-mass
energy of the pp-collider. Right: Scale uncertainty of the first three orders
of the gluon fusion cross section with µr and µf varied simultaneously.
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Figure 5.3.: Separate dependence on µr (left) and µf (right) of the gluon fusion cross
section for the 8 TeV LHC.

Let us investigate the scale dependence a bit further. In the right panel figure 5.2, we

show the three lowest orders of the gluon fusion cross section at the 8 TeV LHC and a

Higgs mass of 125 GeV as a function of the renormalisation scale µr and the factorisation

scale µf which are set equal and varied in the interval [mH/16, 4mH ]. We observe that

the LO and NLO curves are monotonously decreasing with increasing scale and exhibit

a steep slope, i.e. a strong dependence on the scales. The NNLO curve is significantly

flatter and sports a more complex behaviour, with a maximum at µ ∼ mH/10.

The choice of scale for the gluon fusion cross section has been an issue of debate. While

traditionally, it was always chosen equal to the Higgs mass, there have been arguments

based on differential calculations that the natural scale appearing in observables such

as the average transverse momentum of the Higgs is actually lower [139]. Thus, there
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Energy [TeV] σLO [pb] σNLO [pb] σNNLO [pb]

8 10.11 +26.8 %
−20.1 % 17.40 +21.9 %

−15.9 % 20.43 +7.6 %
−8.5 %

13 24.11 +21.7 ,%
−17.4 % 39.52+19.9 %

−14.4 % 46.59 +7.7 %
−7.9 %

40 142.8 +12.0 ,%
−11.4 % 204.9+15.2 %

−11.2 % 243.4 +7.9 %
−6.7 %

100 514.7 +5.7 ,%
−6.9 % 652.7+11.3 %

−8.7 % 775.2 +8.1 %
−6.0 %

Table 5.1.: Values for the three orders of the cross section and their scale uncertainties
for pp-colliders at different centre-of-mass energies.

has been a paradigm shift in the last couple of years to use mH/2 as the preferred scale.

Looking at figure 5.2, we note that at lower scales, the perturbative convergence seems

to be faster, i.e. the NNLO curve is closer to the NLO one. This might suggest that

indeed, the correct1 scale choice is rather mH/2. We have adopted this choice for all

plots in this chapter. To find the uncertainty associated with the scale dependence, we

vary the scales by a factor of two up and down around the central scale µ0 = mH/2,

i.e. in the interval [mH/4,mH ]. The bands in figure 5.1 have been obtained with this

prescription.

Figure 5.3 shows the separate dependence of the cross section on µr (left panel) and

µf (right panel), with the other scale set to mH/2 in both cases. We observe that the

dependence on µf is actually insignificant and below the per cent level for the NNLO

cross section, with µr accounting for almost all of the variation in fig. 5.2. It has to

be noted, though, that the dependence of a single initial-state channel such as the gg

channel or the qg channel on the factorisation scale can be significantly larger. In the

sum of all channels, this dependence is almost fully cancelled, resulting in the flat curves

of fig. 5.3. The relative scale dependence of the cross sections is almost identical at 8

and 13 TeV, which is why we did not include the plots of figures 5.2 and 5.3 for the 13

TeV case.

We conclude the section by giving the central value and the scale uncertainty for the

physical case of mH = 125 GeV for the LHC centre-of-mass energies 8 and 13 TeV, as well

as for some hypothetical higher-energy pp-colliders whose construction is currently being

discussed, in table 5.1. The massive decrease in uncertainty for the LO and to a lesser

extent the NLO cross section is due to a strong sensitivity to the scale which the LO and

1“Correct” in the sense that by choosing the scale accordingly, the bulk of the (inclusive) higher-order
corrections is included.
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NLO PDFs acquire when invoked for such high energies. The scale dependence of the

PDF is opposite to the one of the strong coupling, which is why the two differences nearly

cancel out in the 100 TeV case. For the current LHC energies, the scale dependence of

the PDFs is much milder. This is most likely an artefact of the LO and NLO PDFs and

the resulting scale dependence is artificially small. The NNLO cross section exhibits a

much more robust behaviour when changing the centre-of-mass energy.

5.2. PDF comparisons

Apart from the scale dependence studied in the previous section, the second main source

of theoretical uncertainty for the gluon fusion cross section are the parton distribution

functions. To estimate PDF uncertainties, the collaborations distribute a whole collec-

tion of PDFs (up to 100 for the NNPDF collaboration), each of which uses a different

parametrisation. To obtain the PDF uncertainty, one has to evaluate the cross section

of interest using each of these member sets and combine the obtained results using a

provider-dependent prescription. The dominant gluon distributions are less constrained

by direct measurements of DIS observables because the gluon does not interact with the

electron directly, contrarily to the quarks inside the proton. Thus, gluon PDFs are only

influenced by these types of experiments via sum-rules which constrain the whole set of

PDFs for all partons. Global PDF fits which include jet data from hadron colliders can

constrain the gluon density further, decreasing its uncertainty.

On top of the uncertainty of the gluon density itself, there is the additional uncertainty

associated with the value of the strong coupling each PDF collaboration chooses to use.

There are two paradigms for this choice. Either, the strong coupling2 αs is chosen as

an input parameter to the PDF fit and fixed to a certain value, or it is treated as a

free variable like all other variables that are fitted to the dataset. In the PDFs we are

considering in this section, the former philosophy is adopted by the CT10 and NNPDF2.3

collaborations, while the latter is performed by the MSTW08, ABM11 and JR09 groups.

Actually, the CT10 and NNPDF2.3 sets are available for a whole range of αs(mZ) values

ranging from 0.114 to 0.124, but each collaboration also chooses a preferred value.

In figure 5.4, we have plotted the NNLO gluon fusion cross section at the 8 TeV LHC

using five different PDF sets. Notice that in the case of the MSTW08 set, we provide

the result both using the usual 68%CL fit, as well as the 90%CL one. The errorbars on

the points represent the PDF error obtained using the respective prescription for every

2Notice that by “strong coupling” and αs, we always mean αs(mZ) in this context, i.e. the input value
at the Z-mass which the coupling then is run from.
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Figure 5.4.: Comparison of the NNLO cross section for different PDF providers at 8 TeV.
See text for explanations about the various points.

collaboration, which is the antisymmetric Hessian technique for the MSTW08 and CT10

fits, the symmetric Hessian approach for the JR09 set and the Monte-Carlo approach

for the NNPDF2.3 and ABM11 fits3.

In the case of the ABM11 and JR09 sets, the uncertainty obtained this way is already

the combined PDF+αs uncertainty, as every member set used in the determination of

the uncertainty uses a different value of the strong coupling. For remaining three sets,

we provide three different types of errorbars. The leftmost entry with the empty box for

a point is the PDF uncertainty only, for a fixed value of αs. The two other entries are

the combined PDF+αs uncertainties obtained in two different ways. In the case of the

filled box point, the “envelope” prescription was used, i.e. the for each value of αs (the

higher and lower one w.r.t the central choice), the PDF-only uncertainty was calculated,

and the combined uncertainty then is given by the two “outermost” points one obtains,

hence the name of the prescription. The errorbars for the rightmost entry with the

empty circular point is calculated by combining the uncertainty obtained by varying αs

and the PDF-only uncertainty in quadrature. The former prescription, which will always

result in a larger combined uncertainty, is advised by the MSTW collaboration, while

the latter is suggested by the CT and NNPDF groups. Figure 5.5 shows the same plot

3see for example ref. [106] for details on the Hessian approach, and ref. [112] for the Monte-Carlo
approach.
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Figure 5.5.: Comparison of the NNLO cross section for different PDF providers at 13
TeV. See text for explanations about the various points.

for the 13 TeV LHC.

The first feature we notice are the vast differences among the various PDF collabo-

rations. While the MSTW08 and CT10 fits agree very well, the NNPDF collaboration

predicts a cross section which is a bit more than 6% higher. The ABM11 and JR09 fits,

on the other hand, suggest cross sections which lie below the MSTW08 and CT10 central

values by 8% and 11%, respectively. At 13 TeV centre-of-mass energy, the ABM11 point

moves slightly upwards to 6.5% less than the MSTW08 value, while all other points

hardly move from their relative places. The better part of these discrepancies may be

stemming from the choice of αs(mZ) of the respective collaboration which is provided

below each PDF name. The higher the chosen value, the larger the prediction for the

cross section. Yet, there are non-negligible residual effects which seem to have their ori-

gin in the actual PDF parametrisations, as for example the MSTW08 and CT10 points

are very close to each other even though their choices for the strong coupling are as

far apart as CT10 and NNPDF2.3, which clearly are in tension with one another. The

movement of the ABM11 point as we increase the energy must have a different origin,

as well.

Regarding the errorbars, we notice that in general, even the combined PDF+αs uncer-

tainties are apparently underestimating the actual uncertainties, as most central values

lie beyond the reach of the errorbars of other PDFs. Only the much wider errorband of
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PDF provider σNNLO

∣
∣
∣
8 TeV

[pb] σNNLO

∣
∣
∣
13 TeV

[pb]

MSTW08 68%CL 20.43 +4.0 %
−3.0 % 46.59 +3.8 %

−2.9 %

MSTW08 90%CL 20.43 +7.8 %
−7.5 % 46.59 +7.5 %

−7.2 %

CT10 20.34 +5.0 %
−5.3 % 46.33 +5.0 %

−5.6 %

NNPDF2.3 21.70 +4.3 %
−3.9 % 49.33 +4.1 %

−3.7 %

ABM11 18.79 +2.3 %
−2.3 % 43.53 +2.1 %

−2.1 %

JR09 18.20 +3.5 %
−3.5 % 41.03 +3.9 %

−3.9 %

Table 5.2.: NNLO gluon fusion predictions using different PDF sets and their associated
uncertainties for the LHC at 8 and 13 TeV.

the MSTW08 90%CL set engulfs all other predictions (with the exception of the JR09

point, and barely the 8 TeV ABM11 value). The choice of how to combine the PDF

and αs uncertainty does not result in very different uncertainties. In the CT10 case, the

envelope method could not be performed because the PDF sets with αs(mZ) 6= 0.118

consist of one member set only, i.e. they do not allow for a separate PDF-only error

calculation.

The conclusion of figures 5.4 and 5.5 is that we should not use just one single PDF set

and trust its predictions and associated uncertainties, even if one disregards the ABM11

and JR09 sets due to their choices for the strong coupling which are many standard

deviations below the current world average, and also because they fit to a very selective

set of data. The prescription made by the PDF4LHC working group [140] to resolve

this issue is to just take the envelope of all predictions and their respective uncertainties

and the corresponding midpoint as the best prediction, which is a very conservative

approach. A recent publication [141] suggests to rather combine predictions statistically,

since the envelope prescription is an ad-hoc way of combining different values and tends

to overestimate the uncertainty.

We hope that the inclusion of LHC data and further progress in PDF fitting resolves

these tensions and that the various predictions converge further towards one another in

the future. In table 5.2 we provide the values for the NNLO gluon fusion cross section

for all PDF sets under consideration in this section, for both the 8 and 13 TeV LHC,

together with their respective PDF+αs uncertainty. The combined uncertainty was
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Figure 5.6.: Numerical impact of the electroweak corrections as a function of the Higgs
mass. Solid line: virtual corrections only, dashed line: virtual plus real
corrections.

evaluated according to the respective prescription by the PDF provider.

5.3. Electroweak contributions

To gauge the numerical impact of electroweak corrections discussed in section 3.3, we

evaluate the NNLO gluon fusion cross section once using QCD contributions only and

once with the electroweak contributions added. Furthermore, we separately switch on

and off the electroweak contributions to the real-radiation processes qg → Hq and qq̄ →
Hg, to study the relative importance of the different electroweak corrections.

Figure 5.6 shows the quantities

∆virt
EWK =

σQCD+EWK-virtual

σQCD
× 100 % , and ∆full

EWK =
σQCD+EWK-full

σQCD
× 100 % , (5.1)

as a function of the Higgs mass. We chose to vary the Higgs mass to illustrate the strong

dependence of the electroweak contributions on it. The corrections are positive and

as big as ∼ 6% for Higgs masses below the WW -threshold, and then change sign and

remain at the ∼ 3%-level for masses above 200 GeV, with another threshold-enhancement

at the tt̄-resonance. Furthermore, we can observe that the real-radiation contributions

are numerically insignificant over the whole range of Higgs masses under consideration.

Their (negative) impact is at most at the per mille level. Due to this domination of
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5. Phenomenology of Higgs production

virtual effects, the situation is exactly the same at 13 TeV centre-of-mass energy, which

is why we do not provide the plot for this energy.

For the physical case of mH = 125 GeV, we see that the effect of the electroweak

corrections is an enhancement of the cross section prediction of about 5%, which is

of the order of the residual scale uncertainty found in section 5.1 and thus certainly

not negligible. Interestingly, when considering figure 23 of ref. [58] where the full virtual

electroweak corrections are compared to the contributions coming from light quark-loops

only, one observes that for a Higgs mass of about 125 GeV, the two lines intersect, i.e. the

numerical impact of the diagrams containing massive quarks vanishes. This coincidental

fact means that we could obtain a very good estimate for the electroweak corrections to

gluon fusion by just implementing the analytic formulae for the light quark contributions

from ref. [69].

5.4. Higgs propagator treatment

Next, we consider the effects of the various schemes we implemented in iHixs to treat

the Higgs width. The numerical impact of the four different schemes zero-width approxi-

mation (ZWA), naive Breit-Wigner (BW), Running width Breit-Wigner (RUN) and the

Seymour-scheme (SEY) is summarised in figure 5.7. Again, we scan over a wide range of

Higgs masses since the differences among the schemes only become important for higher

Higgs masses. The total width of the Higgs boson for each mass was obtained with the

code Hdecay [89].

We observe that below the tt̄-threshold, the BW- and RUN-schemes start deviating

upwards w.r.t the ZWA. The enhancement is about 0.6% at mH = 125 GeV, hits 5%

at about 300 GeV and peaks at about 7% at the tt̄-threshold. Except for a slightly

less pronounced enhancement at the tt̄-threshold, the RUN-scheme and the BW-scheme

exhibit very similar behaviour, and only in the very high-mass regime above 650 GeV

they start to deviate from one another. The SEY-scheme, on the other hand, stays very

close to the ZWA below the tt̄-threshold, then predicts a lower cross section (closer to the

two Breit-Wigner schemes) up to mH ∼ 500 GeV, only to then blow up in a spectacular

way until the enhancement over the ZWA is at the level of a factor of three at mH = 800

GeV.

These vast differences are not all that surprising, as the Higgs width grows enormously

as more and more decay channels become available for higher masses. While the total

width of the SM Higgs boson is as small as about 3×10−5 times the mass at 125 GeV, it

becomes 1 % at about 218 GeV, 10 % at 440 GeV and reaches almost 40 % at mH = 800
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Figure 5.7.: Numerical impact of the four different schemes for the treatment of the Higgs
propagator as a function of the Higgs mass, for the 8 TeV LHC. Top panel:
absolute cross section, bottom panel: relative differences.

GeV, where the notion of a particle may even be inappropriate to describe such a broad

resonance. So width effects are actually expected to be important for high Higgs masses.

Furthermore, it makes sense that the cross section in the Seymour-scheme becomes larger

than in the other schemes, as it is designed to take the signal-background interference

effects into account which are no longer suppressed for a broad resonance.

In addition to the total cross section, iHixs also provides histograms for the invariant

mass distribution of the final-state Higgs boson which may be off-shell if a scheme other

than the ZWA is used. In figure 5.8 we show this distribution for the default (BW) and

the Seymour scheme, normalised with the total cross section. As expected, in the case

of mH = 200 GeV, the bulk of the cross section is in the central bin at the nominal

Higgs mass, as the width is still fairly narrow in this scenario. The higher the mass, the

wider the distributions become, which again is to be expected. What is less obvious,

though, are the differences in shape between the two schemes in consideration. Starting

already at mH = 600 GeV and very much so for mH = 800 GeV, the bigger part of the

signal is at invariant masses well below the nominal Higgs mass. There could have been
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Figure 5.8.: The normalised invariant mass distribution of the Higgs boson with mH =
200, 400, 600, 800 GeV, in the default and the Seymour scheme.

profound implications for experimental searches if one were to believe that the Seymour

scheme described the heavy Higgs best, like the danger of finding a completely wrong

value for the Higgs mass in the WW and ZZ channels. In our original publication [64],

we investigated these issues a bit further by studying which portion of the cross section

is missed out when applying cuts on the invariant mass. We kindly refer the interested

reader to ref. [64] for these considerations.

However, since we now know that the Higgs mass is about 125 GeV, most of the

investigations of this section are obsolete, at least in the SM. In BSM models with more

than one Higgs boson, the case of a heavy and broad Higgs resonance may become an

issue again. For the time being, though, we have refrained from further investigations

on this topic and have employed the zero-width approximation in all other studies in

this chapter.
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Figure 5.9.: The relative difference of the exact and effective NLO cross sections as de-
fined in eq. (5.2), in the MS and OS renormalisation schemes.

5.5. Heavy quark effects

In what follows we will study the sensitivity of the gluon fusion cross section on various

parameters which all have to do with heavy quarks. We start by studying the impact

of treating the two heaviest quarks of the SM, the top and the bottom quark, in an

exact way, comparing it to the effective theory approach and investigating whether the

choice of renormalisation scheme and non-zero quark width effects play a significant role.

Towards the end of the chapter we will venture into more exotic territories beyond the

SM which affect either the amount of heavy quarks or their coupling to the Higgs boson.

5.5.1. Effective vs. exact NLO top-only

In section 3.4 we have claimed that the HQET with the top quark integrated out (rescaled

to the exact LO cross section) is an excellent approximation even well beyond the nominal

range of validity mH ≪ mt, and used this fact to justify the use of the effective theory

approach at NNLO. Here, we want to assess how well this approximation really is at

NLO. Figure 5.9 shows the relative differences

δt =
σexact

NLO − σ
HQET
NLO

σHQET
NLO

× 100% , (5.2)
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where we consider the top quark only, and plot the curves for for the two different renor-

malisation schemes for the top mass, the MS (solid lines) and the on-shell (OS) (dashed

lines) scheme. For the MS scheme, we furthermore plot the three curves corresponding

to the three different scale choices µ ∈ {mH/4,mH/2,mH}. The input mass in the OS

case was taken to be Mt = 173.5 GeV [38].

As one can observe, the rescaled effective theory indeed does a very good job in

approximating the full result for light Higgs masses, as until a Higgs mass of about 200

GeV, the difference between the two curves is below the per cent level in both schemes

and all scale choices. In the OS scheme, the approximation is especially good and the

per cent difference is only reached at a Higgs mass close to 330 GeV.

The biggest differences obviously occur at the tt̄-threshold. First, note that the loca-

tion of the threshold depends strongly on the scale choice in the MS scheme, as the top

mass is run from its input value

mt (mt) = 163.7 GeV , (5.3)

to the renormalisation scale µr. At the location of the threshold in the OS scheme, which

is at a Higgs mass of mH = 347 GeV, the MS mass for the three scale choices is,

mt(µr) =







172.3 GeV , µr = mH

4

163.0 GeV , µr = mH

2

155.0 GeV , µr = mH

. (5.4)

There is further difference among the curves apart from the different locations of the

threshold, which is of course shared by the effective cross section entering each curve and

uses the same mass. This difference is due to the finite part of the OS renormalisation

constant which leads to the difference in the virtual two-loop amplitude as given in

eq. (3.18),

G(2l),OS
1/2 (x)− G(2l),MS

1/2 (x) ∝
(

4

3
+ log

(

µ2
r

m2
t

))

F (2l,b)
1/2 (x) , (5.5)

In figure 5.10 we have plotted the two-loop amplitude G(2l) in the OS scheme, where

the solid black line denotes its real part and the dashed black line the imaginary part.

Along the x-axis we vary the variable

1

τq
=
m2
H

4m2
t

, (5.6)

from zero (corresponding to the light Higgs or equivalently the heavy top limit) to two
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Figure 5.10.: The real (solid) and imaginary (dashed) part of the two-loop amplitude
G(2l) in the OS scheme and the scheme dependent piece F (2l,b).

(where the Higgs is much heavier than the top quark). The tt̄-threshold is found at one.

In this scheme choice, the amplitude is a peaked but smooth function of τq.

The red lines represent the scheme dependent part of the amplitude, F (2l,b), which is

the derivative of the Born amplitude w.r.t. the top mass. Again, the solid line denotes

the real and the dashed line the imaginary part. We observe that the function peaks

sharply at threshold, while it vanishes in the heavy top limit. Thus, the scale dependent

scheme-conversion factor given in eq. (5.5) is given a big weight at threshold (and to a

lesser extent above), while the schemes converge in the heavy top limit. This is exactly

what happens in figure 5.9. Notice that in the case of the lower-edge scheme choice

µ = mH/4, the logarithm

log

(

µ2
r

m2
t

)

= log

((
347

4× 172.3

)2
)

≈ −1.37 , as opposed to
4

3
≈ 1.33 , (5.7)

i.e. the two terms almost cancel each other out. This is why the MS curve for this scale

choice mimics the OS curve so closely.

In figure 5.11 we plot the exact and effective NLO cross section in absolute numbers for

Higgs masses around threshold, to see what the actual numerical impact of the scheme

and scale choice is. The left panel shows the exact (solid) and effective (dashed) NLO

cross section in the MS scheme, the right panel displays the same quantities in the OS

scheme. In the OS case, the relative difference between exact and effective theory are

the same for all three scale choices, and the scale uncertainty which enters through the

PDF and αs is much larger than the error of the effective approximation. In the MS case,
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Figure 5.11.: The exact and effective NLO cross sections for Higgs masses around the
tt̄-threshold for three different scale choices. Left panel: MS scheme, right
panel: OS scheme.

the various curves indeed vary wildly around the respective thresholds, especially the

red curve that represents the scale choice µr = mH . Curiously, the overall combined

uncertainty due to scales and effective approximation somehow conspires to a smaller

value than in the OS case, i.e. for all points on the left plot the envelope of all curves

is at most as wide as in the right plot. This observation, whether it is accidental or

not, alleviates the worries that figure 5.9 has given us, which suggested that we have to

account for a huge theoretical uncertainty due to the scheme choice.

Finally, figure 5.12 shows the exact NLO cross section in the OS and MS scheme across

the whole range of Higgs masses from 110 GeV to 600 GeV, for the three usual scale

choices. We observe that the scale uncertainty in the MS scheme captures the combined

scheme and scale uncertainty over the whole mass range, except for the region around

threshold. For this reason, we have chosen the MS scheme as our default scheme, as it

looks to be the more conservative estimate.

In most plots in this chapter, and most importantly in the physical case of a 125 GeV

Higgs, the scheme choice luckily is completely negligible.

5.5.2. SM bottom quark contributions

We proceed by investigating the numerical importance of retaining bottom quark effects

in the SM Higgs production cross section estimates, which are summarised in figure 5.13.

Even though iHixs also allows for the bottom mass to be treated in either renormalisa-

tion scheme, we have only considered the MS scheme in this case, since to us it seems

the appropriate scheme to treat a quark which is much lighter than the scales considered.

However, we have checked the impact of treating the bottom mass in the OS scheme
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fusion.
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and found that it is negligible. This can be understood by the fact that the function

F (2l,b) as depicted in figure 5.10 also vanishes on the far right of the threshold, albeit

more slowly than on the left. The scheme dependent part of the amplitude is therefore

given very little weight in the bottom case, as µr ≫ mb in all of our applications.

Again, we scan over the Higgs mass range, in the same interval as in the previous

section. The quantity plotted is

δtb =
σexact

t+b − σexact
t-only

σexact
t-only

× 100% , (5.8)

which measures the relative difference of the NNLO cross section with and without

bottom quarks. The dashed lines represent this quantity for the three common scale

choices, when just considering gluon fusion. We observe that the effect is a negative

contribution, arising from the negative sign of the top-bottom interference diagrams

(the squared bottom contribution is suppressed by another power of the bottom Yukawa

and thus of negligible numerical significance). At the physical value of mH = 125 GeV,

the effect is a decrease in the gluon fusion cross section of about 3.8%. For Higgs masses

above 300 GeV, the bottom effects drop below the per cent level and become insignificant.

But when we include the bottom quark in the gluon fusion process, we have to con-

sequently also add the cross section from direct bottom quark fusion to the prediction

since, as we have argued, the final state is indistinguishable in both cases when em-

ploying the five-flavour scheme. The cross section prediction when adding the NNLO

bottom fusion contributions is given by the solid curves, which remove some of the gap

between the top-only and the top+bottom gluon fusion curve, rendering the net effect

at mH = 125 GeV a decrease of about 2.8%. At higher Higgs masses the direct bottom

fusion contributions grow very small.

Conclusively, we can state that the inclusion of exact bottom mass effects is more or

less negligible, even in the (physical) case of a light Higgs boson, as the net effect on the

cross section is well below the scale and PDF uncertainties we have established in the

previous sections. Nevertheless, we advise to include them and have done so in all other

plots in this chapter4.

5.5.3. Top width effects

The inclusion of non-zero width effects for the top quark through the complex-mass

scheme as in eq. (3.4) is another feature of iHixs. As mentioned in section 3.1, the

4We have actually only included the bottom effects in gluon fusion in the other plots, as the bottom
fusion contributions are even more suppressed but require a separate run of iHixs every time.
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Figure 5.14.: Top width effects. Left panel: same plot as in fig. 5.9, but with a Γt =
2 GeV. Right panel: Relative difference of the NNLO cross section with
Γt = 0 and Γt = 2 GeV.

consequence is the departure of the complex variable xt from the unit circle (below the

tt̄-threshold) or the real axis (above), which poses no problem for us since we are able to

evaluate the polylogarithmic expressions which depend on xt for any complex argument

using Chaplin.

We compare the numerical impact of the top width in figure 5.14. In the left panel, we

plot again the same quantity as in figure 5.9, i.e. the relative difference between exact

and effective theory as a function of the Higgs mass. Only this time, we have used a

top width of Γt = 2 GeV which is equal to the current best measurement [38]. We see

that the main feature of the curves, i.e. the strong scheme and scale dependence around

threshold, persists. The width does smoothen out the choppy behaviour a bit, though.

The right panel shows the relative difference of the NNLO cross section with and without

the top width, again using Γt = 2 GeV, parametrised as usual as

δnw =
σNNLO(Γt = 2 GeV)− σNNLO(Γt = 0)

σNNLO(Γt = 0)
× 100% . (5.9)

We observe that the width effects are clearly most important at the tt̄-threshold and to

some extent above it, with a maximum impact of about −2.6% in the strongest case. The

scheme and scale dependence is negligible. For light Higgs masses, the effect vanishes

completely, which is directly explained with the decreased sensitivity of the variable xq

on the imaginary part of τq (see eq. (3.4)) in this region.

91



5. Phenomenology of Higgs production

 4

 5

 6

 7

 8

 9

 10

 150  200  250  300  350  400  450  500  550  600

σ S
M

4/
σ S

M

mH [GeV]

Figure 5.15.: Ratio of the NNLO QCD gluon fusion cross section in the SM4 and and
the SM as a function of the Higgs mass.

5.5.4. Standard model with a fourth generation

As we have pointed out throughout chapter 3, iHixs allows for an arbitrary number

of heavy quarks to propagate in the Higgs-producing loops in all implemented QCD

contributions. It is thus straightforward to study the Higgs production cross section in

the scenario of a Standard Model with a fourth family of fermions (SM4), which from a

field-theoretical point of view is just as likely as the three-generation case, as the number

of generations is not predicted by the gauge theory.

The SM4 model became fashionable in 2010, when the TeVatron and later the LHC

started to become sensitive to Higgs observables. Since the amount of heavy quarks in

the SM4 scenario is three times the amount of the SM, the gluon fusion cross section and

thus essentially the total Higgs production rate is enhanced by a factor of 3× 3 = 9 in a

rough approximation, which allowed the experiments to set much tighter limits on the

Higgs mass in the SM4 scenario. We will determine below how much the enhancement

really is, using the exact NLO QCD results and the Wilson coefficient for arbitrarily

many heavy quarks introduced in sections 3.2 and 3.4, respectively.

In our original publication on the Higgs production cross section in the SM4 sce-

nario [142], we considered heavy quark masses between 300 and 450 GeV, which were

not excluded by direct searches at the time. The most recent limits nowadays5 exclude

these masses, and we instead set the masses of the fourth generation quarks in depen-

5The latest ATLAS exclusions we were able to find exclude any heavy quark below 350 GeV [143] and
top-like heavy quarks below 400 GeV [144], while CMS quotes the much higher limits of up to 675
GeV [145–147] which assume a certain decay chain, though.
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dence of the Higgs mass to

md4 = 600 GeV , mu4 = md4 +

(

50 + 10× log

(
mH

115 GeV

))

GeV . (5.10)

This setup has also been used in the most recent experimental exclusion study for an

SM4 Higgs boson [148], which actually used iHixs to predict the gluon fusion cross

section. The peculiar dependence of the fourth-generation down-type mass on the u4-

and the Higgs mass is chosen to evade constraints from electroweak precision parameters,

as suggested by ref. [149].

Figure 5.15 shows the NNLO QCD cross section in this scenario, divided by the cross

section using only the three known SM generations, at the 8 TeV LHC. One observes that,

indeed, for very light Higgs masses the SM4 rate is enhanced by a factor of about nine.

The ratio quickly drops lower, though, down to about 4.5 just below the tt̄-threshold,

before it slowly starts rising again. Simply approximating the SM4 cross section by

multiplying the SM one with a factor of nine is thus a very crude approximation and

would result in overly optimistic exclusion limits. But even with the correct enhancement

factors provided by iHixs, reference [148] excludes the Higgs boson in the SM4 scenario

given by eq. (5.10) in the mass range of 110 - 600 GeV at the 99% confidence level6.

We would also like to point out ref. [150] where the leading electroweak corrections

of the SM4 were computed. For the scenario (5.10) the authors find an increase of the

cross section of about 11% for very light Higgs masses, which drops to about 4% at

the tt̄-threshold. For higher Higgs masses, the correction changes sign and reaches -12%

at mH = 600 GeV. The qualitative behaviour of the ratio depicted in fig. 5.15 does not

change significantly, except for a flattening of the high-mass tail due to the large negative

corrections (see fig. 2 of ref. [150]).

5.5.5. Enhanced bottom Yukawa coupling

To illustrate the capability of iHixs to compute the Higgs production cross sections if

gluon fusion and bottom quark fusion for Yukawa couplings different from the SM ones,

we consider the scenario where the bottom quark Yukawa coupling is larger than in the

SM, i.e. the rescaling factor introduced in chapter 3 is much bigger than 1, Yb ≫ 1. At

the same time, the top quark Yukawa coupling is kept at its SM value, Yt = 1.

Such a flavour-dependent enhancement is actually a common feature of many BSM

6The exclusion relies heavily on the assumption that the fourth generation neutrino is not light enough
for the Higgs to decay into. Otherwise, there would be a large invisible width and the exclusion limits
would be significantly weaker.

93



5. Phenomenology of Higgs production

bY
1 2 3 4 5 6 7 8 910 20 30 40 50 100

 [p
b]

σ

-110

1

10

210

310

gg
bb
gg+bb

bY
1 2 3 4 5 6 7 8 910 20 30 40 50 100

 [%
]

σ/σ ∆

-30

-20

-10

0

10

20

30

40
gg
bb
gg+bb

Figure 5.16.: Higgs production cross section for mH = 125 GeV at the 8 TeV LHC as a
function of a variable bottom Yukawa coupling. Left panel: absolute cross
sections, right panel: Scale uncertainties

scenarios, especially all models involving a non-minimal Higgs sector with a second Higgs

doublet such as the two-Higgs-doublet model [151] (2HDM) or supersymmetric models.

Actually, the Minimal supersymmetric Standard model (MSSM) with a large value for

the parameter tan β which features this enhancement property was one of the main

motivations [101] to compute bottom quark fusion at higher orders in QCD, once it was

realised that the MSSM could only evade Higgs mass bounds by a large value for tan β.

In this scenario, the bottom quark contributions to Higgs production become more

important, of course, as they are no longer suppressed by a factor of mt/mb ∼ 40. The

left panel of Figure 5.16 shows the gluon fusion and the bottom quark fusion Higgs

production cross section as well as their sum for a Higgs mass of 125 GeV at the 8

TeV LHC for bottom Yukawa couplings varied all the way to the extreme scenario of

100 times its SM value. The bands are determined by the scale-uncertainty found by

varying renormalisation and factorisation scale with a factor of two around the central

scale. The scale-uncertainty of the sum is found by adding the individual uncertainties

linearly. Although it is not very well visible, the gluon fusion curve actually decreases

until Yb ∼ 10, as the negative top-bottom interference effects become more important

with increasing values of Yb. Only for Yukawa couplings strengths well above 20 times

the SM one, the squared bottom quark diagrams start to dominate the cross section and

increase the rate by about of 12 at Yb = 100.

The bottom fusion cross section, on the other hand, exhibits a more straightforward

behaviour, as it simply scales as Y 2
b . The cross section becomes as large as the gluon

fusion one at Yb ∼ 9 and completely dominates the total Higgs production rate (depicted

by the red curve) for large values of Yb.
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The right panel of figure 5.16 shows the same quantities, but normalised to the cross

section for central scale choice. This allows us to study the uncertainty due to scale

variation of the individual cross sections in dependence of Yb. The plot points out a

feature of the gluon fusion cross section which may not be obvious at first sight, namely

the sudden growth of the scale uncertainty for high values of Yb. This growth is explained

by the fact that in gluon fusion, we can only account for bottom quark effects through

NLO QCD, as the NNLO corrections are only known in the HQET approximation.

In other words, we fall back to NLO accuracy for strongly enhanced bottom Yukawa

couplings, because the dominant contributions in this scenario are only known to NLO

QCD.

Such effects have to be taken into account when extrapolating SM predictions to BSM

scenarios. In the present case, though, the increased uncertainty in the gluon fusion

cross section only starts playing a role when the bottom quark fusion cross section is

already dominating the total Higgs production rate. The scale-uncertainty of the total

cross section given by the red curve in figure 5.16 thus remains below 10% throughout

the plot.

While all fits of the Higgs couplings to data so far assume a uniform scaling of all

fermionic couplings7 and thus constraints on the H-b-b̄ coupling are not available yet,

the scenario outlined above seems to be ruled out at least for the Higgs particle observed

at a mass of 125 GeV as all observed final states are consistent with the SM hypothesis

and a strong enhancement of the bottom Yukawa coupling would suppress the branching

ratios of all final states except the bottom pair decay channel8.

5.6. Conclusions

The overall assessment after what we have found in this chapter is that we understand

inclusive Higgs production reasonably well. The QCD corrections are found to be large,

both in the NLO and NNLO case. The main source of uncertainty is the dependence on

the renormalisation scale µr due to the truncation of the perturbative expansion. When

we choose our central scale at values smaller than mH , such as mH/2 in our case, we

find that the perturbative convergence of the inclusive cross section accelerates, i.e. the

NNLO cross section and its scale uncertainty are almost entirely engulfed by the NLO

7See for example ref. [152] or [26] for such fits.
8Bottom quark effects in loop-induced decays such as the diphoton final state can also be large, but to a

first approximation the H → γγ amplitude behaves like the gluon fusion production cross section for
variable Yukawa couplings, i.e. the enhancement is of much smaller nature than the enhancement in
the direct bottom pair decay. The diphoton branching ratio would thus also be strongly suppressed.
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band. The dependence of the cross section on the factorisation scale µf is very mild.

The scale uncertainty of the NNLO cross section using our central scale and varying it

by a factor of two up and down is about ±8%.

The second main source of uncertainty comes from parton distribution functions. The

uncertainties one obtains when using the prescriptions provided by the individual PDF

providers to estimate the combined PDF+αs uncertainty are below the 5% level for

all five providers we have considered. Their respective central values differ by larger

amounts, though, i.e. there seems to be an underestimation of the PDF uncertainty.

The better part of the discrepancy among the various PDFs can be attributed to the

different values for αs(mZ) they prescribe, some of which are many standard deviations

from the current world average. When discarding the PDF sets that do not rely on

a global fit including hadronic data, we rather find a PDF uncertainty of about ±8%,

which is of the same size as the scale uncertainty.

Electroweak contributions are sizable and have a variable impact depending on the

Higgs mass, both in size and sign. For the physical 125 GeV Higgs, the corrections

amount to an increase of the cross section of about 5%.

The numerical impact of the Higgs propagator treatment increases with its mass, as

the total width of the Higgs grows very rapidly as a function of the Higgs mass. Below

the tt̄ threshold, the deviations among the four schemes we consider remain in the region

of a few per cent, whereas above, especially the Seymour scheme which is supposed to

mimic signal-background interference predicts a much larger cross section. In addition

to the difference for the total inclusive cross section, we found a vastly different invariant

mass distribution when comparing the Seymour and the naive Breit-Wigner scheme at

high Higgs masses. Since neither of all the schemes to treat the Higgs propagator rely

on completely solid grounds, theoretically, and because the effect is negligible for light

Higgs masses, we have therefore decided to keep using the zero-width approximation.

The effective theory approximation, rescaled with the exact LO, does an excellent job

of estimating the full cross section at NLO. Indeed, the relative difference stays below

the five per cent level all the way up to a Higgs mass of about 450 GeV, except for the

region around the tt̄-threshold. For the 125 GeV Higgs, the difference is even smaller

than one per cent.

The exact NLO QCD corrections exhibit a strong dependence regarding the choice of

renormalisation scheme for the top mass around the tt̄ threshold. A logarithm log(µ2
r/m

2
t )

whose value obviously depends crucially on the choice of the renormalisation scale is

given a big impact on threshold by a sharply peaked function which multiplies it in

the two-loop amplitude. The scale uncertainty in the MS scheme does not grow bigger
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at threshold, though, but rather narrows down as scheme and scale effects cancel each

other out. Across the rest of the Higgs mass range, the MS scheme seems to be the more

conservative choice. At light Higgs masses, the scheme dependence is negligible.

The inclusion of bottom quarks lower the NNLO gluon fusion cross section by about

4%, due to the negative top-bottom interference. When the cross section of Higgs pro-

duction through bottom quark fusion is added, the net effect is a decrease of 2.8%, i.e.

much less than the remaining uncertainties due to scales and PDFs. The impact of both

bottom quark effects diminishes further for higher Higgs masses. Top width effects ex-

hibit the opposite behaviour, i.e. they are completely negligible for light Higgs masses,

but reach the level of a few per cent once the tt̄-threshold is crossed.

When considering the inclusive cross section for Higgs production in the Standard

Model with four fermion generations, we observe that simply multiplying the SM cross

section with a factor of nine is a bad approximation except for very light Higgs bosons.

The enhancement is only five-fold anymore towards the high end of the mass interval we

have considered. However, the SM4 scenario has been discarded by the LHC experiments

at a very high level of confidence.

The final section of the chapter dealt with the generic BSM scenario of an enhanced

coupling of bottom quarks to the Higgs and its implications on the Higgs production rate.

We find that for enhancements larger than a factor of nine, the total Higgs production

cross section is dominated by the direct bottom quark fusion which scales like Y 2
b . The

gluon fusion cross section intermediately even decreases significantly due to strong top-

bottom interference. A surprising feature is seen when studying the scale uncertainty

of the respective cross sections in this scenario, which blows up by a factor of three for

gluon fusion. This can readily be explained by the fact that we describe bottom quarks

only to NLO accuracy, since the NNLO QCD corrections are only known in the effective

theory approach. However, bottom Yukawa enhancements of this size are also highly

incompatible with the Higgs production and decay rates observed until now.

We conclude that inclusive Higgs production in gluon and bottom quark fusion is

described very well by the available contributions, all of which are assembled in iHixs.

Effects which are understood less well like the Higgs propagator treatment or the scheme

dependence of the top mass do not play a role for the Higgs mass that has been observed.

Nevertheless, the two main sources of uncertainty, which are the sensitivity to renormal-

isation and factorisation scale and the PDFs, still account for a large theory error of the

best estimate we can deliver. The latter uncertainty may become lower in the future

with improved parton distributions. The former can only be decreased by going to higher

orders in perturbation theory, which is what we will investigate in the next chapter.
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gluon fusion

As the remaining uncertainty on the gluon fusion cross section remains sizable even for

the best predictions established in the previous chapters, the need to go even higher in

perturbation theory becomes apparent. The future programme of the LHC experiments

includes a precise measurement of all couplings of the Higgs boson to SM particles as well

as its self-couplings. As statistical uncertainties have already shrunk to sizes comparable

to the theoretical uncertainty, a complete N3LO QCD description of the gluon fusion

cross section in HQET seems mandatory.

Let us write out the formula governing the finite partonic cross section, to get an

idea of the ingredients needed for the full N3LO corrections. We denote the finite cross

section by σij and the bare (i.e. before renormalisation and mass factorisation) cross

section by σ̂ij. Combining equations (2.44), (3.44) and (2.67), we find

σ
(3)
ij = σ̂

(3)
ij µ̄

6ǫ +
(

Z(1)
α + 2Z

(1)
1

)

σ̂
(2)
ij µ̄

4ǫ +

(

Z(2)
α + 2Z

(2)
1 +

(

Z
(1)
1

)2
)

σ̂
(1)
ij µ̄

2ǫ

+
(

Z(3)
α + 2Z

(3)
1 + 2Z

(1)
1 Z

(2)
1

)

σ̂
(0)
ij

− Γ
(1)
ik ⊗ σ

(2)
kj − Γ

(1)
jk ⊗ σ

(2)
ik − Γ

(2)
ik ⊗ σ

(1)
kj − Γ

(2)
jk ⊗ σ

(1)
ik

− Γ
(1)
ik ⊗ Γ

(1)
jl ⊗ σ

(1)
kl − Γ

(3)
ik ⊗ σ

(0)
kj − Γ

(3)
jk ⊗ σ

(0)
ik

−
(

Γ
(2)
ik ⊗ Γ

(1)
jl + Γ

(1)
ik ⊗ Γ

(2)
jl

)

⊗ σ(0)
kl (6.1)

The very first term on the RHS contains the “pure” N3LO contributions, i.e. diagrams

with three loops (triple-virtual or VVV), two loops and the emission of an additional

parton (real-double-virtual or RVV), one loop and the emission of two additional partons

(double-real-virtual or RRV) and the diagrams describing the emission of three additional

partons (triple-real or RRR). We will not consider any of these pure N3LO contributions

in this work. Some of them have already been computed, though. The triple-virtual

diagrams are nothing else than the three-loop correction to the gluon form-factor. Its

poles have been computed already some time ago [153], and for four years, the result up
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to O(ǫ0) has been available [154–156].

Furthermore, this year a computation of all master integrals needed for the triple-real

corrections has been completed in the kinematic limit where the Higgs boson is created

almost at rest (i.e. the threshold limit) [157]. The remaining real-double-virtual and

double-real-virtual pieces are currently being computed in the same limit, such that soon,

a full description of the bare N3LO cross section will be available in the threshold limit.

All other terms on the RHS of eq. (6.1) do not require the calculation of any new

Feynman diagrams, as they only depend on lower order partonic cross sections and the

renormalisation constants Zα and Z1, as well as on the collinear factorisation kernels

Γij.

Still, they do not come for free, as due to the explicit ǫ-poles in Zα, Z1 and Γij, higher

orders in ǫ than previously needed are “pulled down” from the lower-order partonic cross

sections to contribute to the finite part of σ
(3)
ij . This requires the calculation of master

integrals to higher orders in ǫ, which is a non-trivial feat at NNLO. Furthermore, the

convolutions of collinear factorisation kernels and partonic cross sections are challenging

to compute, as well.

The calculation of the whole RHS of eq. (6.1) except for the pure N3LO pieces is the

content of this chapter. We notice that, besides the fact that these terms are needed in

any case for the full N3LO cross section, their poles provide an excellent check during

the computation of the pure N3LO contributions since these poles are required to cancel

exactly among all terms on the RHS (σ
(3)
ij is a finite quantity).

We will first consider the calculation of the higher orders in ǫ of the lower-order

partonic cross sections in section 6.1, then turn to the computation of all convolutions

of collinear factorisation kernels and partonic cross sections in section 6.2. Finally, in

section 6.3, some numerical results involving the newly found terms will be presented.

6.1. Higher terms in ǫ of lower-order cross sections

In this section, we will report on the computation of the higher-order terms in the ǫ-

expansion of lower-order gluon fusion cross sections. Note that most of these results

have been published in [158].

6.1.1. Leading and next-to-leading order

The leading order cross section is multiplied with at most cubic poles in ǫ in the expres-

sion (6.1). Thus, knowledge of its expansion up to O(ǫ3) is required. The ǫ-expansion

of the LO cross section σ̂
(0)
gg is straightforward, as the matrix element squared does not
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have any dependence on the dimensional regularisation parameter. The only dependence

of the cross section on it comes from averaging over the polarisations of the incoming

gluons. In dimensional regularisation, there are D−2 gluon polarisations, such that this

averaging factor becomes (one factor of D − 2 cancels out with a D − 2 coming from

summing over the gluon polarisation vectors)

1

D − 2
=

1

4− 2ǫ− 2
=

1

2(1− ǫ) =
1

2

(

1 + ǫ+ ǫ2 + ǫ3 + . . .
)

. (6.2)

So all ǫ-orders of the LO partonic cross section are the same,

σ̂(0)
gg (z) = σ(0)

gg (z) = σ0 δ(1 − z)
(

1 + ǫ+ ǫ2 + ǫ3 + . . .
)

, (6.3)

where σ0 is the term in front of the sum in eq. (3.53), rescaled with the exact LO

amplitude squared. The NLO cross section, which is needed up to O(ǫ2) does not sport

such a trivial expansion. There are two master integrals appearing in the matrix elements

after reduction. The massless bubble,

p
= Bub(s) =

∫
dDk

iπD/2

1

k2(k + p)2
, where p2 = s = m2

H , (6.4)

which contributes to the virtual corrections in the process gg → H, as well as the cut

bubble integral with one internal mass,

p
= cBub(s) =

∫
dDk

iπD/2
δ
(

k2 −m2
H

)

δ (k + p)2 =

∫

dΦ2 , where p2 = s ,

(6.5)

which appears in the real emission contributions gg → gH, qg → qH, qq̄ → gH. The

cut bubble, as denoted in the equation above is actually a phase-space integral, not a

loop integral. Using the technique of reverse unitarity, the two notions can be linked,

and methods to solve loop integrals can be applied to phase-space integrals. We will

introduce reverse unitarity in the following section.

It is straightforward to obtain expressions for these master integrals at all orders

in ǫ. We will quickly work through the calculation of the massless bubble. Feynman

parametrisation [2] yields

Bub(s) =

∫
dDk

iπD/2

∫ 1

0
dy
[

k2y + (k + p)2(1− y)
]−2

=

∫
dDk

iπD/2

∫ 1

0
dy
[

(k + (1− y)p)2 + sy(1− y)
]−2
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=

∫
dDk

iπD/2

∫ 1

0
dy
[

k2 + sy(1− y)
]−2

, (6.6)

where we have shifted to loop momentum k → k− (1− y)p in the last step. We can now

integrate out the loop momentum, using the formula [2]

∫
dDk

iπD/2

1

(k2 −∆)2 =
(−1)nΓ

(

n− d
2

)

Γ(n)
∆

d
2

−n , (6.7)

and find

Bub(s) =
Γ(ǫ)

(−s)ǫ
∫ 1

0
dy [y(1− y)]−ǫ . (6.8)

The remaining integral over y yields a Beta function,

∫ 1

0
dy y−ǫ(1− y)−ǫ = B(1− ǫ, 1− ǫ) =

Γ(1− ǫ)2

Γ(2− 2ǫ)
, (6.9)

such that the whole massless bubble becomes

Bub(s) =
Γ(ǫ)Γ(1− ǫ)2

Γ(2− 2ǫ)(−s)ǫ . (6.10)

For the cut bubble with one internal mass, we directly evaluate the phase-space integral,

using the parametrisation for the d-dimensional phase-space of a massive and a massless

particle given in eq. (A.5),

cBub(s) =

∫

dΦ2 =
s−ǫ(1− z)1−2ǫ

23−2ǫπ1−ǫΓ(1− ǫ)

∫ 1

0
dy13 [y13(1− y13)]−ǫ

=
s−ǫ(1− z)1−2ǫ

23−2ǫπ1−ǫ

Γ(1− ǫ)
Γ(2− 2ǫ)

, (6.11)

where we have again absorbed the integral into a Beta function, and z = m2
H/s.

The squared matrix elements depend on the master integrals linearly, with coefficients

which in general are rational functions in ǫ and z. Except for the averaging over gluon

polarisations, there is no other dependence on ǫ. Thus, with the all-order solutions for the

master integrals at hand, it is trivial to obtain the partonic cross sections σ̂
(1)
gg , σ̂

(1)
qg , σ̂

(1)
qq̄

up to any order in ǫ, particularly up to O(ǫ2) which is required for the N3LO cross

section.

Notice that for the expansions of the finite NLO cross sections σ
(1)
gg , σ

(1)
qg , σ

(1)
qq̄ , we also

need the convolutions of collinear factorisation kernel and LO cross section to higher

orders in ǫ (to O(ǫ3) actually, since these convolutions come with an explicit ǫ−1). These
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convolutions are trivial to obtain, though, since all ǫ-orders of the LO cross section are

simply the delta-function δ(1− x), and a convolution with a delta-function is trivial, as

we will see in section 6.2.

6.1.2. Integration-by-parts identities

Before we proceed to the computation of the NNLO cross section, we have to introduce

a bit of technology. We start with a brief introduction of integration-by-parts (IBP)

identities which relate different scalar loop-diagrams within a topology. We do not

elaborate on how to turn the general tensor integrals that appear in loop diagrams into

scalar integrals, see e.g. chapter 3 of ref. [159] for further information. Also, note that

a scalar integral containing scalar products of loop momenta and external momenta in

the numerator can always be rewritten as a combination of scalar integrals with trivial

numerators by enhancing the denominator with a suitable auxiliary propagator.

A general scalar two-loop diagram with n propagators can be written as

∫
dDk

2πD
dDl

2πD
1

Dν1
1 D

ν2
2 · · ·Dνn

n
, (6.12)

where the denominator factors Di denote the (massive or massless) propagators. For

example, consider the following two-loop diagram which appears in the real-virtual and

double-real contributions to gluon fusion,

p2

p1

p1

p2← k ← l
=

∫
dDk

2πD
dDl

2πD
1

D1D2D3D4D5D6D7
, (6.13)

with

D1 = k2 −m2
H , D2 = (k + p1)2 , D3 = (k + p12)2 , D4 = (l + p12)2 ,

D5 = (l + p2)2 , D6 = l2 , D7 = (k − l)2 , p12 ≡ p1 + p2 . (6.14)

The thick line denotes the massive propagator D1, while thin lines are massless.

A collection of propagators {Di} defines a so-called topology, and a general integral

within a given topology I is then specified uniquely by the propagator powers {νi},

I(ν1, ν2, . . . , νn) ≡
∫

dDk

2πD
dDl

2πD
1

Dν1
1 D

ν2
2 · · ·Dνn

n
. (6.15)

Note that the exponents {νi} can also be zero, or even negative (corresponding to nu-
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merator factors).

The IBP identities rely on the fact that, in dimensional regularisation,

∫
dDk

2πD
∂

∂kµ
f(k) = 0 , (6.16)

which is basically Gauss’ theorem. We can then generate a whole set of identities for a

given two-loop topology by considering all combinations

∫
dDk

2πD
dDl

2πD
∂

∂pµ

vµ

Dν1
1 D

ν2
2 · · ·Dνn

n
= 0 , (6.17)

where pµ ∈ {kµ, lµ} and vµ denotes any four-vector appearing in the integral, i.e. any

internal or external momentum. In the example above, vµ ∈ {kµ, lµ, pµ1 , p
µ
2}. The scalar

product that are generated in the numerator can always be replaced by a sum of propa-

gators or external invariants. Let us consider an example using the topology defined in

(6.14),

0 =

∫
dDk

2πD
dDl

2πD
∂

∂kµ

pµ1
Dν1

1 D
ν2
2 D

ν3
3 D

ν4
4 D

ν5
5 D

ν6
6 D

ν7
7

=

∫
dDk

2πD
dDl

2πD

(−2)
(
ν1kp1

D1
+ ν2kp1

D2
+ ν3(kp1+p1p2)

D3
+ ν7(kp1−lp1)

D7

)

Dν1
1 D

ν2
2 D

ν3
3 D

ν4
4 D

ν5
5 D

ν6
6 D

ν7
7

. (6.18)

Using (with p2
1 = p2

2 = 0 and (p1 + p2)2 = s),

2kp1 = D2 −D1 −m2
H , 2p1p2 = s , 2lp1 = D4 −D5 − s , (6.19)

we find the IBP identity

0 =(ν1 − ν2)I(ν1, ν2, ν3, ν4, ν5, ν6, ν7)− ν1I(ν1 + 1, ν2 − 1, ν3, ν4 − 1, ν5, ν6, ν7 + 1)

+m2
Hν1I(ν1 + 1, ν2, ν3, ν4, ν5, ν6, ν7) + ν2I(ν1 − 1, ν2 + 1, ν3, ν4, ν5, ν6, ν7)

+m2
Hν2I(ν1, ν2 + 1, ν3, ν4, ν5, ν6, ν7)− ν3I(ν1, ν2 − 1, ν3 + 1, ν4, ν5, ν6, ν7)

+ ν3I(ν1 − 1, ν2, ν3 + 1, ν4, ν5, ν6, ν7) + (m2
H − s)ν3I(ν1, ν2, ν3 + 1, ν4, ν5, ν6, ν7)

− ν7I(ν1, ν2 − 1, ν3, ν4, ν5, ν6, ν7 + 1) + ν7I(ν1 + 1, ν2, ν3, ν4, ν5, ν6, ν7 + 1)

+ ν7I(ν1, ν2, ν3, ν4 − 1, ν5, ν6, ν7 + 1)− ν7I(ν1, ν2, ν3, ν4, ν5 − 1, ν6, ν7 + 1)

+ (m2
H − s)ν7I(ν1, ν2, ν3, ν4, ν5, ν6, ν7 + 1) . (6.20)

On top of the IBP identities, there are additional identities among loop integrals based
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on Lorentz-invariance [160] (LI). In fact, there are enough identities to reduce all loop

integrals of a given topology to a small number of master integrals, which are the only

ones that actually need to be computed. Furthermore, Laporta [161] devised an algo-

rithm that, given a topology and all IBP/LI identities, automatically identifies a set of

master integrals. The Laporta algorithm makes use of a measure for the complexity of a

loop integral, and always solves the identities to reduce complicated integrals to simpler

ones. Nevertheless, the choice of master integrals one uses is not unique and may be

chosen to fit other constraints, as we will see when introducing the method of differential

equations.

There are by now many publicly available computer codes that perform the task of

reducing a topology to its master integrals, for any number of loops and propagators (in

principle), such as the Maple code AIR [162], the Mathematica code FIRE [163] or

the C++ implementation Reduze [164,165].

6.1.3. The method of reverse unitarity

Next, we describe the method of reverse unitarity which is a very useful technique to

treat contributions coming from real emission diagrams on the same footing as loop

diagrams.

Traditionally, unitarity methods have been used to facilitate the calculation of loop

diagrams by relating them to tree-level diagrams integrated over their respective final

states’ phase-space. Cutkosky’s rules [166] provide a prescription of how to turn a

multiloop integral into a phase-space integral, by “cutting” internal propagators of the

diagram, which corresponds to putting the virtual particle on-shell, i.e. replacing a

propagator
1

k2 −m2 + iε
→ −2πiδ(k2 −m2) . (6.21)

Unitarity ideas re-appeared in the 1980s and 1990s [167,168] and were applied with great

success to NLO QCD corrections for processes with many legs in the later 2000s [169,

170], such as W + 5 jets production [171] earlier this year. The main advantage of

these purely numerical approach is the automated and efficient generation of tree-level

amplitudes [172,173], which are then “fused” into the one-loop amplitude.

Reverse unitarity [56, 157, 158, 174–178], on the other hand, uses Cutkosky’s rules in

the other direction, and comes in handy when analytic calculations of inclusive quantities

are performed.

Let us consider a general phase-space integral for the process q1+q2 → qH+q3+. . .+qN .

We will take H to be the only massive particle among the N − 1 final-state particles,
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with all other momenta light-like,

q2
H = M2 , q2

i = 0 , i ∈ {1, . . . , N} . (6.22)

This of course anticipates the application to real radiation contributions in Higgs pro-

duction. But let us stress that the method of reverse unitarity also works for processes

with more masses involved.

The integral in question is the integration of the squared matrix element |M|2 over

the (N − 1)-particle final-state phase-space,

I =

∫

dΦN−1(qH , q3, . . . , qN ;M2; s;D)|M|2({qj}, q1, q2;D) , (6.23)

where the phase-space measure reads

dΦN−1(qH , q3, . . . , qN ;M2; s;D) =

(2π)Dδ(D)(q12 − qH − q3...N )
dDqH

(2π)D−1
δ+(q2

H −M2)
N∏

j=3

dDqj
(2π)D−1

δ+q
2
j . (6.24)

After using the D-dimensional delta-function to integrate out the Higgs momentum, we

are left with the integral

I = 2π

∫ N∏

j=3

dDqj
(2π)D−1

δ+(q2
j ) δ+

(

[q3...N − q12]2 −M2
)

|M|2({qj}, q1, q2;D) . (6.25)

Now, we can rewrite the integral via the replacement of the final-state particles’ on-shell

constraints with a cut propagator,

δ+(p2 −m2) →
(

1

p2 −m2

)

c

≡ 1

2πi

(
1

p2 −m2 + iε
− 1

p2 −m2 − iε

)

. (6.26)

Doing so, we arrive at

I = 2π

∫ N∏

j=3

dDqj
(2π)D−1

(

1

q2
j

)

c

(

1

[q3...N − q12]2 −M2

)

c

|M|2({qj}, q1, q2;D) , (6.27)

which indeed describes (N +L− 2)-loop Feynman integral with N − 1 cut propagators,

if the squared matrix element |M|2 contains additional L loop integrations. For pure

real-emission contributions, |M|2 is a tree-level diagram and L = 0.

A cut propagator behaves like a normal propagator under differentiation w.r.t its
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momentum,
∂

∂pµ

[(
1

p2 −m2

)

c

]ν

= −2νpµ
[(

1

p2 −m2

)

c

]ν+1

. (6.28)

Thus, the IBP-identities among loop diagrams with cut propagators are the same as the

ones for the normal loop diagrams, and one may use the Laporta-algorithm to reduce

the system of cut loop diagrams to a number of master integrals. The algorithm may

be sped up by noting that integrals where one of the cut propagators is missing or has

a positive power cannot contribute to a phase-space integral since there would be a

final-state particle missing (i.e. the replacement in eq. (6.26) could not be undone when

re-interpreting the cut loop integral as a phase-space integral). These integrals can thus

immediately be set to zero,

[(
1

p2

)

c

]ν

= 0 for ν = 0,−1,−2, . . . . (6.29)

The clear advantage is the algorithmic fashion one obtains to solve the system of all real

emission diagrams of a given number of final-state particles. If it were not for reverse

unitarity, one would have to treat each phase-space integral on its own, by parametrising

the final state momenta, or rather all invariants appearing in propagators, in a suitable

parametrisation for the (N − 1)-particle phase-space.

In addition, there are benefits when one actually has to find the expressions for the

master integrals, because the method of differential equations can be applied to the cut

loop integrals. This method to solve integrals efficiently will be presented in the next

section.

6.1.4. The method of differential equations

Using the reverse unitarity method presented in the previous section, we are basically

ready to compute all contributions to the NNLO partonic cross section through O(ǫ) in

the same way, namely as two-loop four-point integrals with three, two or just one cut

propagators, which depend on a small set of master integrals.

The calculation of these master integrals is a delicate task, though. While the result for

the one-loop massless bubble example in section 6.1.1 was fairly easy to obtain, solving

a two-loop integral with up to seven propagators via Feynman parametrisation becomes

very cumbersome.

A simpler technique to compute a system of multiloop integrals is the method of

differential equations [160, 179, 180]. The idea is to differentiate each integral w.r.t. an

external kinematic invariant (either a particles mass or a non-vanishing Lorentz-invariant
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made up from momenta of external particles). In our case, this invariant will be the Higgs

mass m2. The differentiated integrals will be Feynman integrals of the same topology,

since no scalar products are generated when differentiating w.r.t. the mass m2. Once

again, we can then use the IBP identities to express the differentiated integrals in the

basis of master integrals, and obtain a closed system of (generally coupled) differential

equations.

Formally, if we denote the set of master integrals as a vector MI(s,m2) depending

on our two external scales, the system of differential equations can be written in matrix

form,
∂

∂m2
MI(s,m2) = A(s,m2) · MI(s,m2) . (6.30)

The coefficient matrix A is a rational function in s,m2 and the spacetime dimension D.

Its entries are determined by the differentiation w.r.t. m2 and the IBP identities used

in reducing the differentiated integral to master integrals.

Actually, since every master integral has a fixed mass dimension, we may factorise

an appropriate factor of s from every one of them, rendering the remaining function

depending on the dimensionless variable z ≡ m2/s, only. Thus, the system of differential

equations consists of ordinary differential equations, which is significantly simpler to solve

than a system of partial differential equations,

d

dz
MI(z) = A(z) · MI(z) . (6.31)

Notice that this only holds true for the case of exactly two mass scales which the master

integrals depend on.

Ideally, one would like to have the matrix A diagonal, such that there are no coupled

differential equations. This may lead to a new choice of master integrals, and it has

recently even been conjectured that there is always a basis of master integrals that

trivialises the system of differential equations [181]. But even in the case of coupled

equations, there is often a decoupling occurring when one expands each differential

equation in ǫ.

For example, in our case of interest, the NNLO gluon-fusion master integrals, there

are coupled differential equations in the double-real master integrals, one of which reads

d

dz
X1 =

(1− z − ǫ(1− 2z))

z(1 − z) X1(z)− 3(1− ǫ)
(1− z) X11a(z)

d

dz
X11a =− 3(1− ǫ)

(1− z) X11a(z) +
ǫ

(1− z)X1(z) , (6.32)
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where we refer to the next section for the definition of the master integrals. We further-

more know from the boundary condition at the soft limit of the master integrals that

both of them start at the zeroth order in ǫ, i.e. we can insert the ansatz

X1(z) =
∞∑

k=0

X
(k)
1 (z) ǫk , X11a(z) =

∞∑

k=0

X
(k)
11a(z) ǫ

k (6.33)

into equation (6.32) and consider the O(ǫ0) coefficient,

d

dz
X

(0)
1 =

1

z
X

(0)
1 (z)− 3

(1− z)X
(0)
11a(z)

d

dz
X

(0)
11a =− 3

(1− z)X
(0)
11a(z) . (6.34)

The second equation has indeed decoupled, and we find that X
(0)
11a(z) ∝ (1− z)3 immedi-

ately. This result can subsequently be inserted into the first equation, and the solution

for X
(0)
1 (z) can be found. At every higher order in ǫ, the equation for X11a will only

depend on the lower orders of X1 and X11a which will have been determined by then.

The system has become triangular, order by order in ǫ. This holds true for all differential

equations we encounter for the NNLO gluon-fusion master integrals when we choose the

basis of master integrals appropriately.

For the solution of inhomogeneous ordinary differential equations, we employ the usual

textbook method of the variation of the constant [182]. Specifically, if ω(z) is a homoge-

neous solution of the inhomogeneous equation

d

dz
y(z) = A(z)y(z) +B(z) , (6.35)

then the solution of the inhomogeneous equation is given by

y(z) = αω(z) + ω(z)

∫

dz′B(z′)

ω(z′)
, (6.36)

where α ∈ R is an integration constant. The zeroes of the homogeneous solution become

poles in the integral in eq. (6.36). They are determined by the poles in the coefficient

function A(z), as one can see in the above example where the homogeneous solution for

X
(0)
11a(z) is proportional to a power of (1−z) because the coefficient function in eq. (6.34)

is proportional to (1− z)−1.

Thus, by examining the structures appearing in the homogeneous parts of the system

of differential equations, we can anticipate the different poles we will encounter in the
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integrals we have to solve. In our case, we find that there are just three types of pole

structures, namely poles in z = 0 and/or z = ±1. Repeated integrals over integrands

with poles in {0,±1} are just the definition of HPLs, so we can already anticipate that

all our results will be expressible in HPLs only.

As usual for a first-order differential equation, there is also the need for a boundary

condition to fix integration constants. We therefore need to know the expression for each

master integral for a specific value of z. Since 0 < z < 1, there are two obvious candidates,

z = 0 and z = 1. The point z = 0 corresponds to the limit where the produced

Higgs boson is massless. This limit, though, may not be smooth, as massless particles

potentially are associated with more singularities that arise in the matrix element.

Thus, we choose the opposite limit, z = 1 for our boundary conditions. This corre-

sponds to the soft limit (or threshold limit), where the Higgs boson is created at rest, and

all extra radiation is infinitely soft, i.e. the momenta of additionally radiated partons

vanish.

We define the soft limit of a general master integral X(z, ǫ) multiplicatively, i.e. it is

the unique function

XS(z, ǫ) =
∑

n∈Z×

Xn(ǫ) (1− z)α+nǫ , α ∈ Z≥−1 , (6.37)

such that

lim
z→1

X(z, ǫ)

XS(z, ǫ)
= 1 . (6.38)

In the first equation, Z× denotes integers excluding zero and α is the integrals leading

power in the Laurent-expansion in (1 − z) (i.e. for integrals that have a divergence at

the soft limit, α will be −1. Lower powers of α do not occur, the divergences are at most

simple poles).

The difference between the full master integral and its soft limit then defines the hard

part XH , i.e.

X(z, ǫ) = XS(z, ǫ) + XH(z, ǫ) . (6.39)

Notice that the soft limit of the master integrals deserves special attention independent

of its role as a boundary condition for differential equations. When we fabricate the

partonic cross section from the master integrals, and expand in ǫ, we need to isolate

divergences that cancel among the different parts of the finite cross section, such as real

and virtual contributions. Specifically, there are divergences in the soft limit which we
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isolate by using the plus-expansion

(1− z)−1+nǫ =
δ(1 − z)
nǫ

+
∞∑

k=0

(nǫ)k

k!
Dk(1− z) . (6.40)

The first term in this expansion sets z to 1, and comes with an extra pole in ǫ. Thus, we

need to know the soft limit of our cross section and therefore also of the master integrals

to one order higher in ǫ than the hard parts. A dedicated study of the soft limit of

all master integrals is thus inevitable, and the fact that we may use it as a boundary

condition for the differential equations essentially comes for free.

6.1.5. NNLO master integrals to O(ǫ)

Having acquired the necessary technology, we are now ready to tackle the computation

of the NNLO partonic cross sections for gluon fusion through O(ǫ), which boils down to

the computation of the 29 master integrals that remain after reduction. Note that we

will not comment on the reduction itself, which has been carried out in ref. [56] using the

Laporta algorithm [161]. We divide up the discussion into three subsections, separately

covering the double-real, real-virtual and double-virtual master integrals.

6.1.6. Double-real master integrals

In [56], a basis of 18 master integrals was found for all integrals appearing in the produc-

tion of one massive and two massless particles. We proceed by first listing all integrals

in terms of diagrams and fixing our conventions, proceed to derive their soft limits and

then comment on the full result obtained via the method of differential equations.

Definitions and conventions

We give the 18 master integrals in graphic form as two-loop diagrams with three cut

propagators, as well as their definition in terms of the integral over the three-particle

phase-space. Thick lines denote the massive particle, and short-dashed lines represent

numerator factors. The long-dashed line represents the reverse unitarity cut. In the

definition, the overall mass-dimension is factorised, such that the remaining objects Xi

are a function of the dimensionless variable z, as discussed in section 6.1.4.

p2

p1

p2

p1
=

∫

dΦ3 = s1−2ǫ P(ǫ) X1(z, ǫ) , (6.41)
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p2

p1

p1

p2

=

∫
dΦ3

s234s134
= s−1−2ǫP(ǫ) X2(z, ǫ) , (6.42)

p2

p1

p2

p1

=

∫
dΦ3

s14s23
= s−1−2ǫ P(ǫ) X3(z, ǫ) , (6.43)

p2

p1

p1

p2

=

∫
dΦ3

s234s23s13s134
= s−3−2ǫ P(ǫ) X4(z, ǫ) , (6.44)

p2

p1

p1

p2

=

∫
dΦ3

s234s24s13s134
= s−3−2ǫ P(ǫ) X5(z, ǫ) , (6.45)

p2

p1

p1

p2

=

∫
dΦ3

s13s23s14s24
= s−3−2ǫP(ǫ) X6(z, ǫ) , (6.46)

p2

p1

p2

p1
=

∫
dΦ3

s123s124
= s−1−2ǫP(ǫ) X7(z, ǫ) , (6.47)

p2

p1

p1

p2

=

∫
dΦ3

s123s124s14s13
= s−3−2ǫ P(ǫ) X8(z, ǫ) , (6.48)
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p2

p1

p2

p1

=

∫
dΦ3

s14s23
= s−1−2ǫ P(ǫ) X9(z, ǫ) , (6.49)

p2

p1

p2

p1

=

∫
dΦ3

s123s124s14s23
= s−3−2ǫ P(ǫ) X10(z, ǫ) , (6.50)

p2

p1

p2

p1
=

∫

dΦ3s34 = s2−2ǫ P(ǫ) X11(z, ǫ) , (6.51)

p2

p1

p2

p1

=

∫
dΦ3s23

s234s123
= s−2ǫ P(ǫ) X12(z, ǫ) , (6.52)

p2

p1

p1

p2

=

∫
dΦ3

s234s123
= s−1−2ǫ P(ǫ) X13(z, ǫ) , (6.53)

p2

p1

p1

p2

=

∫
dΦ3

s13s124
= s−1−2ǫ P(ǫ) X14(z, ǫ) , (6.54)

p2

p1

p1

p2

=

∫
dΦ3

s13s124s134
= s−2−2ǫP(ǫ) X15(z, ǫ) , (6.55)
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p2

p1

p2

p1

=

∫
dΦ3

s14s23s234s124
= s−3−2ǫ P(ǫ) X16(z, ǫ) , (6.56)

p2

p1

p1

p2

=

∫
dΦ3

s34s13s234s123
= s−3−2ǫ P(ǫ) X17(z, ǫ) , (6.57)

p2

p1

p2

p1

=

∫
dΦ3

s34s13s24
= s−2−2ǫ P(ǫ) X18(z, ǫ) . (6.58)

The common normalisation factor P(ǫ) is given by

P(ǫ) =
1

2

1

(4π)
3−2ǫ

Γ(1− ǫ)2

Γ(2− 2ǫ)2
. (6.59)

The system of differential equations for the basis above is triangular order by order in

ǫ, as discussed in section 6.1.4 except for the two integrals X1 and X11. In order to

decouple them, we rotate the basis, i.e. we define the linear combination

X11a(z, ǫ) =
1

2
[(1 + z)X1(z, ǫ)−X11(z, ǫ)] , (6.60)

and replace X11 with X11a.

Soft Limit

For the calculation of the full result for each master integral, we will use reverse unitarity

to relate the phase-space integrals to loop diagrams and apply the method of differential

equations to them. The calculation of the soft limits, on the other hand, is performed

rather straightforwardly. We insert a suitable phase-space parametrisation for the three-

particle phase-space that factorises the propagators that appear in the integrals when

the soft limit is considered, such that the remaining integrals can easily be solved.
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We start with the simplest case X1, which is just the empty phase-space integral, i.e.

we have to calculate the soft phase-space volume. We use the “Energies and angles”

parametrisation of the 3-particle phase-space measure as given in eq. (A.7),

∫

dΦ3 =
(2π)−3+2ǫ

16Γ(1 − 2ǫ)

∫ 1

0

4∏

i=1

dxi

(

sz̄3κ4x1x̄1

2− κ

)
(

s2z̄4κ4x2
1x̄

2
1x3x̄3x4x̄4 sin2(πx2)

)−ǫ
,

(6.61)

where z̄ = 1− z and x̄i = 1 − xi. In the soft limit z → 1, the measure simplifies due to

the limit κ→ 1 and we obtain the soft measure dΦS
3 ,

∫

dΦS
3 =

(2π)−3+2ǫ

16Γ(1− 2ǫ)

∫ 1

0

4∏

i=1

dxi
(

sz̄3x1x̄1

)(

s2z̄4x2
1x̄

2
1x3x̄3x4x̄4 sin2(πx2)

)−ǫ
. (6.62)

Carrying out the integrations over x1, x3 and x4 is now straightforward, as we can

directly absorb them into a Beta-function,

∫ 1

0
dt tx−1 (1 − t)y−1 = B(x, y) =

Γ(x)Γ(y)

Γ(x+ y)
. (6.63)

Thus,
∫

dΦS
3 =

(2π)−3+2ǫs1−2ǫz̄3−4ǫ

16Γ(1 − 2ǫ)

Γ(1− ǫ)4

Γ(4− 4ǫ)

∫ 1

0
dx2 sin−2ǫ(πx2) . (6.64)

The remaining integral over x2 may be solved with the substitution u = sin2(πx2), which

enables us to find yet another Beta-function,

∫ 1

0
dx2 sin−2ǫ(πx2) =

1

π

∫ 1

0
duu− 1

2
−ǫū− 1

2 =
B
(

1
2 ,

1
2 − ǫ

)

π
=

Γ
(

1
2 − ǫ

)

√
πΓ(1− ǫ) , (6.65)

where we have evaluated Γ(1/2) =
√
π. Finally, we use the Gamma-functions “duplica-

tion formula” [182]

Γ(z)Γ

(

z +
1

2

)

= 21−2z√πΓ(2z) , (6.66)

to replace

Γ

(
1

2
− ǫ
)

= 21+2ǫ√πΓ(−2ǫ)

Γ(−ǫ) = 22ǫ√πΓ(1− 2ǫ)

Γ(1− ǫ) . (6.67)

Thus, we finally find
∫

dΦS
3 =

1

2

s1−2ǫz̄3−4ǫ

(4π)3−2ǫ

Γ(1− ǫ)2

Γ(4− 4ǫ)
, (6.68)
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which means that

XS
1 (z, ǫ) = (1− z)3−4ǫΓ(2− 2ǫ)2

Γ(4− 4ǫ)
. (6.69)

For most of the other soft integrals, it is convenient to use the following parametrisation

for the 2→ 3 phase space,

∫

dΦ3 =
(2π)−3+2ǫ

16Γ(1 − 2ǫ)

∫ 1

0
dx2

(
4∏

i=1

dyi

)

δ

(
4∑

i=1

yi − 1

)

×
(

sz̄3κ4

2− κ

)(

s2z̄4κ4 sin2(πx2)
4∏

i=1

yi

)−ǫ

, (6.70)

which may be derived from the “Energies and angles” parametrisation via the following

transformation

y1 = x1x3, y2 = x1x̄3, y3 = x̄1x4, y4 = x̄1x̄4 . (6.71)

In this parametrisation the propagators of the massless partons we encounter in the

master integrals read [183]

s13 =− sz̄κy1, s23 = −sz̄κy2,

s14 =− sz̄κy3, s24 = −sz̄κy4, (6.72)

s34 =sz̄κ2ξ ,

where

ξ = z̄ (y1y4 + y2y3 + 2 cos(x2π)
√
y1y4y2y) , (6.73)

and

κ =
1−
√

1− 4ξ

2ξ
. (6.74)

There are also three-parton invariants appearing in the propagators, namely

s134 = s13 + s14 + s34 , s234 = s23 + s24 + s34 ,

s123 = s12 + s23 + s13 , s124 = s12 + s24 + s14 .
(6.75)

If we now consider the soft limit z → 1, these three-parton invariants simplify signif-

icantly, as we only have to keep the terms with the lowest power of z̄ in their sum-

definition. In other words, since s12 ∝ z̄0, s34 ∝ z̄2 and all other invariants sij ∝ z̄1, we
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find that in the soft limit,

lim
z→1

s123 = lim
z→1

s124 = s12 , lim
z→1

κ = 1 ,

lim
z→1

s134 = s13 + s14 , lim
z→1

s234 = s23 + s24 .
(6.76)

If we now perform the change of variables

y1 = t1t3, y2 = t̄1t4, y3 = t1t̄3, y4 = t̄1t̄4 , (6.77)

with the Jacobian |J | = t1t̄1, it is easy to see from eqs. (6.72) and (6.77) that in the

soft limit all the invariants, except for s34, take a fully factorized form. In particular the

terms s13+s14 and s23+s24 effectively reduce to t1 and t̄1 respectively. This construction

therefore allows one to derive all the soft limits of almost all master integrals, with the

exception of X17 and X18, in terms of simple Beta-functions.

As an example, we calculate XS
13. In the soft limit the denominator s234s123 becomes

sS234s
S
123 = s12(s23 + s24) = −s2

12z̄(y2 + y4) = −s2z̄t̄1 , (6.78)

and thus,

s−1−2ǫP(ǫ)XS
13(z, ǫ) =

∫
dΦS

3

s234s123
= − s−1−2ǫz̄2−4ǫ

(2π)3−2ǫ16Γ(1 − 2ǫ)

×
∫ 1

0
dx2dt1dt3dt4 t1

(

t21t̄
2
1t3t̄3t4t̄4 sin2(πx2)

)−ǫ

=− 1

2

s−1−2ǫz̄2−4ǫ

(4π)3−2ǫ

Γ(1− 2ǫ)Γ(1 − ǫ)2

Γ(3− 4ǫ)Γ(2 − 2ǫ)
, (6.79)

which, after rewriting (Γ(z + 1) = zΓ(z))

Γ(1− 2ǫ)

Γ(3− 4ǫ)Γ(2 − 2ǫ)
=

3− 4ǫ

1− 2ǫ

1

Γ(4− 4ǫ)
, (6.80)

leads to

XS
13(z, ǫ) = − (3− 4ǫ)

z̄(1− 2ǫ)
X1(z, ǫ) . (6.81)

For the soft limit of the master integral X17, we choose the “hierarchical” phase-space
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parametrisation from eq. (A.10),

∫

dΦ3 =
(2π)−3+2ǫ

16Γ(1 − 2ǫ)

∫ 1

0

4∏

i=1

dxi

(

sz̄3x1x̄1

z + x1z̄

)(

s2z̄4x2
1x̄

2
1x2x̄2x3x̄3 sin2(πx4)

z + x1z̄

)−ǫ

.

(6.82)

After exchanging p1 and p2 which we are free to do, the propagator invariants in the

denominator of X17 are

s34 =
sz̄x1x̄1x2

z + x1z̄
, s23 = −sz̄x̄1x3 , s134 = −sz̄x1 , (6.83)

and s123 which simplifies to s in the soft limit. The recurring denominator z + x1z̄

becomes just 1 in the soft limit and we obtain the fully factorised expression

∫
dΦS

3

s34s23s134s123
=

s−3−2ǫz̄−1−4ǫ

(2π)3−2ǫ16Γ(1 − 2ǫ)

∫ 1

0

4∏

i=1

dxi

× x−1−2ǫ
1 x̄−1−2ǫ

1 x−1−ǫ
2 x̄−ǫ

2 x−1−ǫ
3 x̄−ǫ

3 sin−2ǫ(πx4)

=
s−3−2ǫz̄−1−4ǫ

2(4π)3−2ǫΓ(1− 2ǫ)
B(−2ǫ,−2ǫ)B(−ǫ, 1− ǫ)2 Γ(1− 2ǫ)

Γ(1− ǫ)2

=
s−3−2ǫz̄−1−4ǫ

2(4π)3−2ǫ

Γ(−2ǫ)2Γ(−ǫ)2

Γ(−4ǫ)Γ(1 − 2ǫ)2
. (6.84)

If we again use the defining property of the Gamma-function extensively to rewrite

Γ(−2ǫ)2Γ(−ǫ)2

Γ(−4ǫ)Γ(1 − 2ǫ)2
= −(1− 4ǫ)(2− 4ǫ)(3 − 4ǫ)

ǫ3
Γ(1− ǫ)2

Γ(4− 4ǫ)
, (6.85)

we finally find

XS
17(z, ǫ) = −2(1− 4ǫ)(1 − 2ǫ)(3 − 4ǫ)

z̄4ǫ3
XS

1 (z, ǫ) . (6.86)

Unfortunately, we are not aware of any parametrisation which allows one to factorise

all denominators of X18 simultaneously. We proceed by expressing the integral in terms

of energies and angles, i.e., by writing pi = Ei(1, ~ni), where ~ni is a unit vector in the

direction of the spatial component of pi. The integral over the energies of p3 and p4

yields a Beta-function, and we arrive at

P(ǫ)XS
18 = 4(4π)−5+4ǫB(−2ǫ,−2ǫ)

(1− z)1+4ǫ

∫
dΩ

(d−1)
3 dΩ

(d−1)
4

(1 + cos θ13)(1 − cos θ14)(1− cos θ34)
, (6.87)

where dΩ
(d−1)
i is differential volume element of the (d− 1) dimensional solid angle of pi
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and the angles are defined as cos θij = ~ni.~nj . We then use the result [167]

Ω11 =

∫
dΩ

(d−1)
4

(1− cos θ14)(1 − cos θ34)

=Ω(d−3)
∫ π

0

dθ13(sin θ13)d−3dφ34(sin φ34)d−4

(1− cos θ14)(1− cos θ14 cos θ13 − cosφ34 sin θ14 sin θ13)
(6.88)

=− 1

4
(4π)1−ǫ Γ(−ǫ)

ǫΓ(−2ǫ)
2F1

(

1, 1; 1 − ǫ; 1 + cos θ13

2

)

,

where 2F1 is the hypergeometric function which can be defined via its integral represen-

tation

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a . (6.89)

The integral then becomes

P(ǫ)XS
18 = − (4π)−4+3ǫ

(1− z)1+4ǫ

Γ(−ǫ)Γ(−2ǫ)

ǫΓ(−4ǫ)
Ω(d−2)

×
∫ π

0

dθ13(sin θ13)d−3

1 + cos θ13
2F1

(

1, 1; 1 − ǫ; 1 + cos θ13

2

)

.

(6.90)

Changing variables to y = 1+cos θ13
2 , eq. (6.90) may be written as

P(ǫ)XS
18 =

(4π)−3+2ǫ

(1− z)1+4ǫ

Γ(−2ǫ)

ǫ2Γ(−4ǫ)

∫ 1

0
dyy−1−ǫ(1− y)−ǫ

2F1 (1, 1; 1 − ǫ; y)

=
1

2

(4π)−3+2ǫ

(1− z)1+4ǫ

Γ(−ǫ)2

ǫ2Γ(−4ǫ)
3F2 (1, 1,−ǫ; 1 − ǫ, 1− 2ǫ; 1) , (6.91)

where we used the recursive definition of the pFq function [182],

p+1Fq+1(a1, . . . , ap, c; b1, . . . , bq, d; z) =

Γ(d)

Γ(c)Γ(d− c)

∫ 1

0
dt tc−1(1− t)d−c−1

pFq(a1, . . . , ap; b1, . . . , bq; tz) . (6.92)

Hence we have arrived at expressions valid to all orders in ǫ for the soft limits of all

the double-real master integrals. We observe that in all cases, except for XS
18, the results

are proportional to the soft limit of the phase space volume,

XS
1 (z, ǫ) = (1− z)3−4ǫΓ(2− 2ǫ)2

Γ(4− 4ǫ)
, (6.93)
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the constant of proportionality being a rational function of z and ǫ. We therefore define

XS
i (z, ǫ) = Si(z, ǫ) XS

1 (z, ǫ) . (6.94)

In this normalisation the results for the soft limits of the master integrals read

S1(z, ǫ) = S7(z, ǫ) = S11a(z, ǫ) = 1 , (6.95)

S2(z, ǫ) =
2(3 − 4ǫ)

(1− 2ǫ) (1− z)2 , (6.96)

S3(z, ǫ) = S8(z, ǫ) = S9(z, ǫ) = S10(z, ǫ) = 2
(1− 2ǫ)(3 − 4ǫ)

ǫ2(1− z)2 , (6.97)

S4(z, ǫ) = S5(z, ǫ) = −2
(1− 2ǫ) (3− 4ǫ) (1− 4ǫ)

ǫ3(1 − z)4 , (6.98)

S6(z, ǫ) = −8
(1− 2ǫ) (3− 4ǫ) (1− 4ǫ)

ǫ3(1− z)4 , (6.99)

S12(z, ǫ) =
1

2
, (6.100)

S13(z, ǫ) = − 3− 4ǫ

(1− 2ǫ) (1 − z) , (6.101)

S14(z, ǫ) =
3− 4ǫ

ǫ (1 − z) , (6.102)

S15(z, ǫ) =
(1− 2ǫ)(3− 4ǫ)

ǫ2(1− z)2 , (6.103)

S16(z, ǫ) =
(1− 2ǫ) (3− 4ǫ) (1− 4ǫ)

ǫ3(1− z)3 , (6.104)

S17(z, ǫ) = −2
(1− 2ǫ) (3− 4ǫ) (1− 4ǫ)

ǫ3(1− z)4 , (6.105)
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S18(z, ǫ) = − 4
(1− 2ǫ)(3 − 4ǫ)(1− 4ǫ)

ǫ3(1− z)4 3F2 (1, 1,−ǫ; 1 − ǫ, 1− 2ǫ; 1)

=
1

(1− z)4

[

− 18

ǫ3
+

132

ǫ2
+

1

ǫ
(12ζ2 − 288) − 88ζ2 + 60ζ3 + 192

+

(
372

5
ζ2

2 + 192ζ2 − 440ζ3

)

ǫ

+

(

−2728

5
ζ2

2 + 24ζ3ζ2 − 128ζ2 + 444ζ5 + 960ζ3

)

ǫ2

+O(ǫ3)

]

.

(6.106)

In [158], there is a semi-numerical proof that the generalised hypergeometric function

3F2 (1, 1,−ǫ; 1 − ǫ, 1− 2ǫ; 1) can not be reduced to a product of Gamma-functions, thus

proving that the soft master integral XS
18 can not be reduced to XS

1 times a rational

factor. By now, this fact is understood better due to the work on triple-real master

integrals published in ref. [157].

The authors of ref. [157] realised that the technique of IBP-identities can be extended

to the notion of soft integrals, i.e. the expansion coefficients in z̄ of a given phase-space

integral. Via the Laporta algorithm, soft master integrals for each order in z̄ can then be

identified. When applying this method to all topologies in the double-real corrections to

Higgs production in gluon fusion, the authors find that there are exactly two soft master

integrals for the lowest order in z̄, XS
1 and XS

18, which is in accordance with the result

above. Furthermore, for 2 ≤ i ≤ 17, the IBP relation among the soft integrals XS
i and

XS
1 are just the Si factors above, which we have derived by shifting the arguments of

Gamma-functions.

In [157], the method of soft master integrals is applied to the triple-real corrections

to Higgs production in gluon fusion, and a basis of ten soft master integrals is identified.

Also, the ǫ-expansion up to orders sufficient for N3LO computations of all soft master

integrals is calculated by choosing a suitable soft phase-space parametrisation and disen-

tangling integration variables by introducing Mellin-Barnes integrals, whose ǫ-expansion

is calculable.

Full results

Having the soft limit of all master integrals at our disposal, we can now tackle the

problem of solving the 18 differential equations. We first list the equations, suppressing
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the dependence of the Xi on z and ǫ,

d

dz
X1 =

((1− ǫ)(1 − z) + ǫz) X1

(1− z) z − 3
(1− ǫ) X11a

(1− z) z (6.107)

d

dz
X2 =− X2 (1− 3 z) ǫ

(1− z) z − 3
(z + 1) (1− ǫ) X11a

z2 (1− z)3

+

(
(1− ǫ)(1 − z)2 + 2ǫz

)
X1

z2 (1− z)3 (6.108)

d

dz
X3 =− 2

ǫX3

z
− 3

(1− ǫ) (1− 2 ǫ) (2− ǫ z − 7 ǫ) X11a

(1− z)3 ǫ2z

+
(1− 2 ǫ)

(
ǫ z2 − 7 ǫ z − z2 − 2 ǫ+ 3 z

)
X1

ǫ (1− z)3 z
(6.109)

d

dz
X4 =

(1 + 2 ǫ) X4

1− z + 6
(1− ǫ) (1− 2 ǫ) (ǫ z + 7 ǫ− 2) X11a

zǫ2 (1− z)5

+ 2
(1− 2 ǫ)

(

ǫ z2 − 7 ǫ z − z2 − 2 ǫ+ 3 z
)

X1

ǫ z (1− z)5 + 2
(1− 2 ǫ) X2

z (1− z)2 (6.110)

d

dz
X5 =− (1− 2 z) (1 + 2 ǫ) X5

(1− z) z − 3
(1− 2 ǫ) (z + 1) (1− ǫ) (ǫ z − 9 ǫ+ 2) X11a

z2ǫ2 (1− z)5

− (1− 2 ǫ)
(
ǫ z3 − 4 ǫ z2 − z3 + 19 ǫ z + 4 z2 − 9 z + 2

)
X1

ǫ z2 (1− z)5

− 2
(1− 2 ǫ) X2

z (1− z)2 − 2
X3 ǫ

z2 (1− z) (6.111)

d

dz
X6 =

(1 + 2 ǫ) X6

1− z + 6
(1− 2 ǫ) (1− ǫ)

(
ǫ z2 + 22 ǫ z + 9 ǫ− 6 z − 2

)
X11a

zǫ2 (1− z)5

+ 2
(1− 2 ǫ)

(
ǫ z3 − 10 ǫ z2 − z3 − 23 ǫ z + 2 z2 + 9 z − 2

)
X1

ǫ z (1− z)5

− 4
X3 ǫ

(1− z) z (6.112)
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d

dz
X7 =− X7 ǫ (1 + 2 z)

(1 + z) z
− 6

(1− ǫ) X11a

z2 (1− z)

− 2

(
ǫ z2 − 4 ǫ z − z2 + ǫ+ 2 z − 1

)
X1

z2 (1 + z) (1− z) (6.113)

d

dz
X8 =− (1 + 2 ǫ) X8

1 + z
+ 2

(1− 2 ǫ) X7

z (1 + z)
+ 8

X3 ǫ

z (1 + z)

+ 12
(1− 2 ǫ) (1− ǫ)

(

2 ǫ z2 + 7 ǫ z − ǫ− 2 z
)

X11a

(1− z)3 ǫ2z2 (z + 1)

+ 4
(1− 2 ǫ)

(
(1− ǫ)(1 − 3z + 6z2 − 2z3)− 6ǫz2

)
X1

z2ǫ (1− z)3 (1 + z)
(6.114)

d

dz
X9 =− 2

ǫX9

z
+ 3

(1− ǫ) (1− 2 ǫ) (ǫ z + 7 ǫ− 2) X11a

(1− z)3 ǫ2z

+
(1− 2 ǫ)

(
ǫ z2 − 7 ǫ z − z2 − 2 ǫ+ 3 z

)
X1

ǫ (1− z)3 z
(6.115)

d

dz
X10 =− (1 + 2 ǫ) X10

z
− 2

(1− 2 ǫ) X7

(1 + z) z
− 4

ǫX3

z2

− 2
(1− 2 ǫ)

(
3 ǫ z3 − 14 ǫ z2 − 3 z3 + 29 ǫ z + 10 z2 − 2 ǫ− 15 z + 4

)
X1

z2ǫ (1− z)3 (1 + z)

− 6
(1− 2 ǫ) (1− ǫ) (3 ǫ z − 11 ǫ+ 2) X11a

z2 (1− z)3 ǫ2
(6.116)

d

dz
X11a =− 3

(1− ǫ) X11a

1− z +
ǫX1

1− z (6.117)

d

dz
X12 =− (z(1 − 3ǫ) + ǫ) X12

(1− z) z − 3
(1− ǫ) X11a

z2 (1− z) +
X1 (1− ǫ) (1 + z)

z2 (1− z) (6.118)

d

dz
X13 =− 2

ǫX13

z
+ 6

(1− ǫ) X11a

z2 (1− z)2 +
X12 (1− 2 ǫ)

(1− z) z

− 2
((1− ǫ)(1− z) + ǫz) X1

z2 (1− z)2 (6.119)
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d

dz
X14 =− 2

ǫX14

z
− 3

(1 + z) (1− ǫ) (1− 2 ǫ) X11a

(1− z)2 ǫ z2

+
(1− 2 ǫ)

(

(1− ǫ)(1 − z)2 + 2ǫz
)

X1

(1− z)2 ǫ z2
(6.120)

d

dz
X15 =− (1 + 4 ǫ) X15

1 + z
+ 3

(
2 ǫ2z2 − 18 ǫ2z − ǫ z2 + 11 ǫ z + 2 ǫ− 2 z

)
(1− ǫ) X11a

(1− z)3 ǫ2z2 (1 + z)

+

(
2ǫ2z3 + 2ǫ2z2 − 3ǫz3 + 12ǫ2z + 5ǫz2 + z3 − 16ǫz − 3z2 + 2ǫ+ 6z − 2

)
X1

z2ǫ (1− z)3 (1 + z)

+ 2
(1− 2 ǫ) X12

z (1− z) (1 + z)
+ 2

ǫX14

z (1 + z)
(6.121)

d

dz
X16 =− (1 + 2 ǫ) X16

z
− 4

(1− 2 ǫ) X12

z (1 + z) (1− z)2 + 2
ǫX14

z2 (1 + z)
− (1 + 4 ǫ) X15

z (1 + z)

+ 3
(

2 ǫ2z3 + 56 ǫ2z2 − ǫ z3 + 10 ǫ2z − 36 ǫ z2 − 4 ǫ2 − 13 ǫ z + 6 z2 + 2 ǫ+ 2 z
)

× (1− ǫ) X11a

(1 + z) z3 (1− z)4 ǫ2

+
(

2 ǫ2z4 − 32 ǫ2z3 − 3 ǫ z4 − 42 ǫ2z2 + 16 ǫ z3 + z4 + 12 ǫ2z + 47 ǫ z2−

− 4 ǫ2 − 18 ǫ z − 15 z2 + 6 ǫ+ 8 z − 2
)

× X1

ǫ (1 + z) z3 (1− z)4 (6.122)

d

dz
X17 =

(1 + 2 ǫ) X17

1− z − 6
(1− ǫ)

(
2 ǫ2z2 + 16 ǫ2z − ǫ z2 − 2 ǫ2 − 11 ǫ z + 2 z

)
X11a

z2ǫ2 (1− z)5

− 2

(
2 ǫ2z3 − 18 ǫ2z2 − 3 ǫ z3 + 2 ǫ2z + 15 ǫ z2 + z3 − 2 ǫ2 − 2 ǫ z − 3 z2 + 2 ǫ

)
X1

ǫ z2 (1− z)5

+ 2
X12 (1− 2 ǫ)

z (1− z)3 (6.123)

d

dz
X18 =

(1 + 4 ǫ) X18

1− z + 3
(1− ǫ) (1− 2 ǫ) (ǫ z + 7 ǫ− 2) X11a

ǫ2 (1− z)4 z

+
(1− 2 ǫ)

(
ǫ z2 − 7 ǫ z − z2 − 2 ǫ+ 3 z

)
X1

ǫ (1− z)4 z
− 2

ǫX3

(1− z) z (6.124)

Solving the equations above order by order in ǫ is straightforwardly achieved using

the method of variation of constants, as presented in section 6.1.4. We note that the

124



6.1. Higher terms in ǫ of lower-order cross sections

inhomogeneities occurring most are proportional to X1 and X11a. Once they have been

found, many differential equations decouple. But in any case, the equations are triangular

order by order in ǫ, as can be verified by expanding each equation in ǫ, where the leading

ǫ-order of each Xi can be obtained from the soft limits in the previous subsection.

For illustrative purposes, we calculate the lowest ǫ-order of X11a and X1. As already

seen in section 6.1.4, we obtain

X
(0)
11a(z) = α (1− z)3 , (6.125)

for the lowest order of X11a. There is no inhomogeneity to integrate over, so this is the

full solution at this order. We fix the integration constant by requiring equality with the

leading order of the soft limit,

XS
11a(z, ǫ) = (1− z)3−4ǫΓ(2− 2ǫ)2

Γ(4− 4ǫ)
=

(1− z)3

6
+O(ǫ) , (6.126)

fixing α to 1/6. This also means that X
H,(0)
11a = 0. We proceed to the calculation of the

lowest order of X1. The equation reads

d

dz
X

(0)
1 =

1

z
X

(0)
1 −

3

z(1− z)X
(0)
11a =

1

z
X

(0)
1 −

(1− z)2

2z
. (6.127)

The general homogeneous solution is easily found to be X
hom,(0)
1 = α z. According to

eq. (6.36), the solution to the full equation thus is

X
(0)
1 (z, ǫ) = αz − z

2

∫

dz′ (1− z′)2

z′2
= αz − z2

2
+

1

2
+ z log(z) . (6.128)

After expanding

log(z) = −
∞∑

k=1

(1− z)k
k

, (6.129)

we equate this to X
S,(0)
1 = (1− z)3/6 and find α = 0, i.e.

X
(0)
1 (z) = z log(z)− z

2

2
+

1

2
⇒ X

H,(0)
1 (z) = z log(z) +

1

6
(1− z)

(

2 + 5z − z2
)

. (6.130)

The integrals in this example have been easy to solve. In general, we encounter polylog-

arithmic integrals of the type

∫

dx
xnH(a1, . . . , ak;x)

xd1(1− x)d2(1 + x)d3
, n, di ≥ 0 , ai ∈ {−1, 0, 1} (6.131)
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6. QCD Contributions beyond NNLO to gluon fusion

The first step is always to use partial fractioning, such that we only have do deal with

one type of denominator at a time. Also, numerator powers of the integration variable

x can be expanded in terms of the remaining denominator (e.g. x = −(1 − x) − 1 if

the denominator in question is (1 − x)n−1), such that we have to deal only with either

a denominator or a numerator factor. Subsequently, we integrate by parts repeatedly,

taking the derivative of the HPL (which is trivial to obtain, see eq. (4.5)) and integrating

the rational part of the integrand. If the integration by parts produces a mixed denom-

inator, another partial fractioning has to be performed. These steps are repeated until

either of the two termination conditions apply:

• The HPL has been lowered all the way to weight 0 and is thus just one of the three

functions

f1(x) =
1

1− x , f0(x) =
1

x
, f−1(x) =

1

1 + x
, (6.132)

in which case the whole integrand becomes a rational function and is easily solved.

• The denominators power becomes 1, at which point the recursive definition of the

HPLs eq. (4.2) may be applied.

To clarify, we give a simple example,

∫

dx
H(0, 1;x)

(1− x)2
=

H(0, 1;x)

1− x −
∫

dx
H(1;x)

x(1− x)

=
H(0, 1;x)

1− x −
∫

dx
H(1;x)

x
−
∫

dx
H(1;x)

1− x
=

H(0, 1;x)

1− x −H(0, 1;x) −H(1, 1;x) , (6.133)

where in the second step, a partial fractioning of the denominator was performed.

The important point here is that the integrals appearing in the inhomogeneous parts

of the differential equations are straightforwardly and algorithmically solvable. We can

thus easily cope with the large number of integrals we need to solve by implementing

the algorithm outlined above in a computer-algebra-system (CAS) such as Maple or

Mathematica. In the present case, we used the in-house Mathematica package

PolyLogTools [184] for this task.

The full results for all hard parts of the master integrals are too lengthy to be presented

here, but they are all given in appendix A.3. of ref. [158] and also in machine-readable

form in the ancillary files of the same publication.
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6.1. Higher terms in ǫ of lower-order cross sections

6.1.7. Real-virtual master integrals

For the real-virtual master integrals, we follow the same steps as in the previous section

for the double-real masters.

Definitions and conventions

In [56], six master integrals for the real-virtual contributions to an inclusive 2 → 1

partonic cross section were identified.

We define the common prefactor

Q(ǫ) =
1

2

(4π)ǫ

4π

Γ(1 + ǫ)Γ(1− ǫ)
Γ(2− 2ǫ)

, (6.134)

as well as the one-loop integrals

Bub(p2) =

∫
dDk

iπD/2

1

k2(k + p)2
,

Tri(s23, s123) =

∫
dDk

iπD/2

1

k2(k + p1)2(k + p123)2
, (6.135)

Box(s12, s23, s123) =

∫
dDk

iπD/2

1

k2(k + p1)2(k + p12)2(k + p123)2
.

The master integrals can then be defined as the following integrals over the two-particle

phase-space,

p2

p1

p2

p1

=

∫

dΦ2Bub(s13) = s−2ǫQ(ǫ)Y1(z, ǫ), (6.136)

p2

p1

p2

p1
=

∫

dΦ2Bub(m2
X) = s−2ǫQ(ǫ)Y2(z, ǫ), (6.137)

p2

p1

p2

p1
=

∫

dΦ2Bub(s12) = s−2ǫQ(ǫ)Y5(z, ǫ), (6.138)
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p2

p1

p2

p1

=

∫

dΦ2Tri(s13,m
2
X) = s−1−2ǫQ(ǫ)Y3(z, ǫ), (6.139)

p2

p1

p1

p2

=

∫

dΦ2
Box(s13, s12,m

2
X)

s23
= s−3−2ǫQ(ǫ)Y4(z, ǫ), (6.140)

p2

p1

p2

p1

=

∫

dΦ2Box(s13, s23,m
2
X) = s−2−2ǫQ(ǫ)Y6(z, ǫ). (6.141)

Soft limit

The computation of the soft limits of the real-virtual master integrals is done in a sim-

ilar fashion to the double-real case. The phase-space integration simplifies significantly

since there are just two instead of three final-state particles, and we can again use the

parametrisation
∫

dΦ2 =
(4π)−1+ǫs−ǫz̄1−2ǫ

2Γ(1 − ǫ)

∫ 1

0
dx1 (x1x̄1)−ǫ , (6.142)

with the invariants s13 and s23 given by

s13 = −sz̄x1 , s23 = −sz̄x̄1 . (6.143)

On the other hand, there are the massless one-loop integrals inside the phase-space

integration which complicate the calculation. There are results for the Bubble, the

Triangle and the Box valid to all orders in ǫ,

Bub(s) =
Γ(1 + ǫ)Γ(1− ǫ)2

ǫΓ(2− 2ǫ)
(−s)−ǫ , (6.144)

which we have derived in section 6.1.1,

Tri(s, t) = −2
Γ(1 + ǫ)Γ(1− ǫ)2

ǫ2Γ(1− 2ǫ)

(−s)−ǫ − (−t)−ǫ

s− t , (6.145)
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6.1. Higher terms in ǫ of lower-order cross sections

and [136,183]

Box(s, t,m2) =
2Γ(1 + ǫ)Γ(1− ǫ)2

ǫΓ(1− 2ǫ)

1

st

[

− (−m2)−ǫ
2F1

(

1,−ǫ, 1 − ǫ;−um
2

st

)

+(−t)−ǫ
2F1

(

1,−ǫ; 1 − ǫ;−u
s

)

+ (−s)−ǫ
2F1

(

1,−ǫ, 1 − ǫ;−u
s

)]

,

(6.146)

where u ≡ m2 − s − t. In the case of the bubble and triangle insertions, the integrands

directly factorise and we are able to carry out the integral over x1, producing yet another

Beta-function. For Y4 and Y6, the argument of the hypergeometric function has to

vanish in the soft limit, i.e. we need it to be proportional to z̄. If that is not the case,

the argument has to be remapped using one of the identities [138]

2F1(a, b; c; z) = (1− z)−b
2F1

(

c− a, b; c; z

z − 1

)

, (6.147)

or

2F1(a, b; c; z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a

2F1

(

a, a− c+ 1; a− b+ 1;
1

z

)

+
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)(−z)−b
2F1

(

b, b− c+ 1; b− a+ 1;
1

z

)

. (6.148)

The hypergeometric function is just 1 for vanishing argument, and the integration over

the soft phase-space becomes trivial.

We thus find the following soft limits for the six real-virtual master integrals,

YS
1 (z, ǫ) = (1− z)1−3ǫΓ(1− ǫ)Γ(1− 2ǫ)

ǫΓ(2− 3ǫ)
, (6.149)

YS
2 (z, ǫ) = (1− z)1−2ǫ cos(πǫ)

Γ(1− ǫ)2

ǫΓ(2− 2ǫ)
, (6.150)

YS
5 (z, ǫ) = YS

2 (z, ǫ) , (6.151)

YS
3 (z, ǫ) = 0 , (6.152)
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6. QCD Contributions beyond NNLO to gluon fusion

YS
4 (z, ǫ) = −3(1− z)−1−3ǫΓ(2− 2ǫ)Γ(1 − ǫ)

ǫ3 Γ(1− 3ǫ)
, (6.153)

YS
6 (z, ǫ) = −2(1− z)−1−4ǫ cos(πǫ)

Γ(1− 2ǫ)Γ(2− 2ǫ)Γ(1− ǫ)Γ(1 + ǫ)

ǫ3 Γ(1− 4ǫ)
. (6.154)

Note that only the real part of the master integrals is shown, as the imaginary part

never enters the computation of a physical observable. The factors of cos(πǫ) come from

taking the real part of the term (−1)ǫ.

Full results

The full results for the real-virtual master integrals are derived in the exact same way

as the double-real ones, by solving the differential equations order by order in ǫ.

We again list all equations,

d

dz
Y1 = −(1− 3ǫ)

1− z Y1 , (6.155)

d

dz
Y2 = −(z + ǫ− 3ǫz)

z(1− z) Y2 , (6.156)

d

dz
Y3 = −2ǫ

z
Y3 − 2

(1− 3ǫ)(1 − 2ǫ)

ǫ z(1 − z)2
Y1 −

(1− 2ǫ)2

ǫ z(1− z)Y2 , (6.157)

d

dz
Y4 =

(1 + 2ǫ)

1− z Y4 −
(1− 3ǫ)(1 − 2ǫ)(1 + 2z)

ǫ z(1− z)3
Y1

− 2
(1− 2ǫ)2

ǫ z(1− z)2
Y2 + 2

ǫ

z(1− z)Y3 , (6.158)

d

dz
Y5 = −(1− 2ǫ)

1− z Y5 , (6.159)

d

dz
Y6 =

(1 + 4ǫ)

1− z Y6 − 2
(1− 3ǫ)(1 − 2ǫ)

ǫ z(1 − z)2
Y1 + 4

ǫ

z(1− z)Y3 . (6.160)

The integrations over inhomogeneities produces the same types of terms, and we again

end up with results given by HPLs. Again, we refer to appendix A.2. or the ancillary

files of ref. [158] for the full analytic results of the master integrals.

Thanks to the relatively simple structure of the phase-space and the known all-order

results for all massless one-loop integrals, we were able to numerically verify the new,
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6.1. Higher terms in ǫ of lower-order cross sections

higher-order in ǫ, results that had not been published in [56]. The strategy was as

follows:

1. Substitute known expressions for the one-loop master integrals which are valid to

all-orders in ǫ.

2. Apply analytic continuation formulae (eqs. (6.147) and (6.148)) to the hypergeo-

metric functions which express the box integrals, if required. The criterion is that

in the limits x1 → 0 and x1 → 1, the hypergeometric function is well-defined and

finite, i.e. all divergences associated with the limits above have to be extracted via

remappings.

3. Expand the hypergeometric function in terms of polylogarithmic functions, using

the Mathematica package HypExp [185,186].

4. Expand the real emission singularities (these are factorised here) in terms of delta-

and plus-distributions.

5. Evaluate the coefficients numerically.

Using this approach, we were able to verify all terms in the ǫ-expansion of the real-virtual

master integrals.

6.1.8. Double-virtual master integrals

The double-virtual master integrals which contribute to the two-loop corrections to the

Born process gg → H have a trivial dependence on phase-space, since dΦ1 ∝ δ(1 − z).
The task is equivalent to calculating the two-loop corrections to the QCD form factor,

which is another way of denoting the ggH-vertex in an effective theory. Parts of the

two-loop QCD form factor have been calculated many years ago [187,188], and as of the

year 2000, the full O(ǫ0) result had been found [189]. Since 2005, the result is known to

all orders in ǫ [190]. The most difficult master integral (the crossed triangle) was found

to be a sum of generalised hypergeometric functions with unit argument, which can be

expanded to any desired order in ǫ using HypExp [185,186].

For completeness, we list the results obtained from [190] in our diagrammatic notation

and normalisation. Note that we again only provide the real part of the master integrals.

p2

p1

p2

p1

= δ(1 − z) Γ(1 + ǫ)2 Γ(1− ǫ)4

ǫ2 Γ(2− 2ǫ)2
, (6.161)
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p2

p1
= δ(1− z) cos(2πǫ)

Γ(1 + ǫ)2 Γ(1− ǫ)4

ǫ2 Γ(2− 2ǫ)2
. (6.162)

p2

p1
= −δ(1− z) cos(2πǫ)

Γ(1− ǫ)3Γ(1 + 2ǫ)

2(1 − 2ǫ) ǫΓ(3− 3ǫ)
, (6.163)

p2

p1

= δ(1 − z) cos(2πǫ)
Γ(1− 2ǫ)Γ(1− ǫ)2Γ(1 + ǫ)Γ(1 + 2ǫ)

2(1 − 2ǫ)ǫ2Γ(2− 3ǫ)
, (6.164)

p2

p1

= δ(1− z) cos(2πǫ) Γ(1 + ǫ)2

{

1

ǫ4
− 7

ǫ2
ζ2 −

27

ǫ
ζ3 −

57

5
ζ2

2 (6.165)

+
[

102ζ2ζ3 − 117ζ5

]

ǫ+O(ǫ2)

}

,

6.2. Convolutions of collinear factorisation kernels and

lower-order cross sections

With the prerequisites at hand, we can now turn to the task of computing all terms save

the first of the RHS of eq. (6.1).

The renormalisation terms in the first two lines are trivial to obtain, once the bare

cross sections are known to sufficiently high order, as they involve only multiplications.
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6.2. Convolutions of collinear factorisation kernels and lower-order cross sections

We do not comment on them further.

The terms originating in mass factorisation, on the other hand, require some effort,

since they consist of (multiple) convolutions of splitting kernels and cross sections. Both

these objects consist of three types of terms, delta-, plus- and regular terms,

σ
(n,m)
ij (x) =a

(n,m)
ij δ(1 − x) +

∑

k

b
(n,m),k
ij Dk(1− x) + c

(n,m)
ij (x) , (6.166)

P
(n)
ij (x) =A

(n)
ij δ(1 − x) +

∑

k

B
(n),k
ij Dk(1− x) + C

(n)
ij (x) , (6.167)

where we have expanded the partonic cross section in ǫ,

σij(z) = C2
1σ0

∞∑

n,m=0

σ
(n,m)
ij (z)ans ǫ

m , (6.168)

i.e. the σ(n,0) correspond to the ∆(n) as defined in eq. (3.53). The regular pieces c
(n,m)
ij (x)

and C
(n)
ij (x) consist of HPLs times polynomials in x and/or factors of 1/x and 1/(1−x),

respectively. The convolution operation is linear,

(f ⊗ (αg1 + βg2)) (z) =

∫ 1

0
dxdy f(x)(αg1(y) + βg2(y))δ(xy − z)

=α

∫ 1

0
dxdy f(x)g1(y)δ(xy − z) + β

∫ 1

0
dxdy f(x)g2(y)δ(xy − z)

=α (f ⊗ g1) (z) + β (f ⊗ g2) (z) , (6.169)

symmetric,

(f ⊗ g) (z) =

∫ 1

0
dxdy f(x)g(y)δ(xy − z) = (g ⊗ f) (z) , (6.170)

and associative,

(f ⊗ (g ⊗ h)) (z) =

∫ 1

0
dxdy f(x) (g ⊗ h) (y)δ(xy − z)

=

∫ 1

0
dxdy dv dw f(x)g(v)h(w)δ(xy − z)δ(vw − y)

=

∫ 1

0
dxdv dw f(x)g(v)h(w)δ(xvw − z)

=

∫ 1

0
dxdy dv dw f(x)g(v)h(w)δ(yw − z)δ(xv − y)

=

∫ 1

0
dw dy (f ⊗ g) (y)h(w)δ(yw − z)

= ((f ⊗ g)⊗ h) (z) . (6.171)
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Furthermore, the convolution of two expressions consisting of delta-, plus- and regular

polylogarithmic terms will itself have the same structure, i.e. we generate no new classes

of functions with the convolution operation. Therefore, we only need to consider the

case of a single convolution involving two convolutants, as the multiple convolutions can

iteratively be reduced to a single one. In practice, when we have to deal with terms like

P
(0)
ik ⊗ P

(0)
kl ⊗ P

(0)
lm ⊗ σ

(0)
mj , (6.172)

we first calculate the triple convolution of the LO kernels among themselves, before we

finally convolute with the partonic cross section. This is the preferred order for two

reasons. First, the kernels do not have an ǫ-expansion, i.e. we do not have to keep track

of different ǫ-orders in the intermediate expression. And second, the same double and

triple convolutions of splitting kernels appear with different partonic cross sections. So

computing (and storing) them first is a more efficient procedure.

Using the symmetry of the convolution and taking into account that certain channels

only open up at NLO or NNLO, we find that we require 80 different convolutions for

the N3LO cross section. Let us now examine the different combinations of convolutants

we can encounter.

6.2.1. Convolutions involving delta-terms

Whenever one of the convolutants is a delta-function, the convolution trivialises,

(δ(1 − x)⊗ f(y)) (z) =

∫ 1

0
dxdy δ(1 − x)f(y)δ(xy − z) = f(z) , (6.173)

regardless whether f is a regular function, a plus-distribution or a delta-function itself.

This immediately solves all 30 convolutions involving the LO cross section

σ
(0,m)
ij (z) = δigδjg δ(1 − z) , m = 0, 1, 2, 3 , (6.174)

although we may still have to compute intermediate double or triple convolutions as

mentioned above.
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6.2.2. Convolutions of two plus-distributions

Convolutions where both convolutants are plus-distributions,

(Dn(1− x)⊗Dm(1− y)) (z) =

∫ 1

0
dx dy

[
log(1− x)n

1− x

]

+

[
log(1− y)m

1− y

]

+

δ(xy − z)
(6.175)

are a more delicate endeavour. We can not simply use the delta-function to get rid of

one integration variable, as we do when there are regular functions involved, since a

plus-distribution with a rational argument is no object we can make sense of. Let us

instead consider the following convolution integral,

Iab(z) =

∫ 1

0
dx dy (1− x)−1+aǫ(1− y)−1+bǫδ(xy − z) . (6.176)

We use the delta-function to get rid of x and then remap the integral onto the unit

interval:

Iab(z) =

∫ 1

z
dy

1

y

(

1− z

y

)−1+aǫ

(1− y)−1+bǫ =

∫ 1

z
dy y−aǫ(y − z)−1+aǫ(1− y)−1+bǫ

=

∫ 1

0
dλ (1 − z)[z + (1− z)λ]−aǫ[λ(1 − z)]−1+aǫ[(1 − z)(1− λ)]−1+bǫ

= (1− z)−1+(a+b)ǫ
∫ 1

0
dλ [z + (1− z)λ]−aǫλ−1+aǫ(1− λ)−1+bǫ

= (1− z)−1+(a+b)ǫ
∫ 1

0
dλ [(1 − λ) + zλ]−aǫλ−1+bǫ(1− λ)−1+aǫ

= (1− z)−1+(a+b)ǫ B(aǫ, bǫ) 2F1(aǫ, bǫ, (a+ b)ǫ; 1 − z) . (6.177)

In the second to last step, we mapped λ 7→ 1−λ and in the last step, the Euler definition

of the hypergeometric function was used,

B(b, c− b) 2F1(a, b, c; z) =

∫ 1

0
dxxb−1(1− x)c−b−1 (1− zx)

︸ ︷︷ ︸

(1−x)+(1−z)x

−a . (6.178)

On the other hand, we may also directly expand the integrands in Iab in terms of a

delta-function and a tower of plus-distributions,

Iab(z) =

∫ 1

0
dx dy




δ(1 − x)

aǫ
+
∑

n≥0

(aǫ)n

n!
Dn(1− x)



×
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×



δ(1 − y)

bǫ
+
∑

m≥0

(bǫ)m

m!
Dm(1− y)



 δ(xy − z)

=
δ(1 − z)
abǫ2

+
1

aǫ

∑

n≥0

(bǫ)n

n!
Dn(1− z) 1

bǫ

∑

n≥0

(aǫ)n

n!
Dn(1− z)+

+
∑

n,m≥0

(aǫ)n (bǫ)m

n!m!
(Dn(1− x)⊗Dm(1− y)) (z) . (6.179)

When we now expand the first term of eq 6.177 in the same way,

(1− z)−1+(a+b)ǫ =
δ(1 − z)
(a+ b)ǫ

+
∑

n≥0

((a+ b)ǫ)n

n!
Dn(1− z) , (6.180)

and expand the Beta-function and the 2F1 (using HypExp [185,186]) in ǫ as well, we can

equate the two sides order by order in ǫ.

The double and single poles cancel and for O(ǫ0) we find the equation

(D0(1− x)⊗D0(1− y)) (z) = −π
2

6
δ(1 − z) + 2D1(1− z)− log(z)

1− z . (6.181)

Higher orders in ǫ of the equation contain more than one plus-plus-convolutions, but

they can be isolated by extracting the corresponding coefficient of a and b. To find

the expression for the convolution (Dn(1− x)⊗Dm(1− y)) (z), one has to take the

O(ǫn+manbm) coefficient of the equation, or equivalently the O(ǫn+mambn) coefficient

since the expressions are symmetric in a and b.

In this way, any plus-plus convolution appearing in the mass factorisation for the

N3LO gluon fusion cross section can be obtained, without actually solving any integrals.

We list all convolutions we need, for completeness.

(D0 ⊗D0) (z) =− π2

6
δ(1 − z) + 2D1(1− z)− log(z)

1− z (6.182)

(D0 ⊗D1) (z) =ζ3 δ(1− z)−
π2

6
D0(1− z) +

3

2
D2(1− z)− log(z) log(1− z)

1− z (6.183)

(D0 ⊗D2) (z) =
π4

45
δ(1 − z) +

4

3
D3(1− z)− π2

3
D1(1− z) + 2ζ3D0(1− z)

− log(z) log2(1− z)
1− z (6.184)
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(D1 ⊗D1) (z) =− π4

360
δ(1 − z) +D3(1− z)− π2

3
D1(1− z) + 2ζ3D0(1− z)

− log(z) log2(1− z)
1− z − log(z)Li2(z)

1− z + 2
Li3(z)− ζ3

1− z (6.185)

(D0 ⊗D3) (z) =6ζ5 δ(1 − z) +
5

4
D4(1− z)− π2

2
D2(1− z)

+ 6ζ3D1(1− z)− π4

15
D0(1− z)− log(z) log3(1− z)

1− z (6.186)

(D1 ⊗D2) (z) =

(

4ζ5 −
π2ζ3

3

)

δ(1 − z) +
5

6
D4(1− z)− π2

2
D2(1− z)

+ 6ζ3D1(1− z)− π4

36
D0(1− z) +

Li22(1− z)
1− z

+ 4
log(1− z)(Li3(z)− ζ3)

1− z +
log(z)

1− z
[

2 log(z) log2(1− z)

− log3(1− z)− π2

3
log(1− z) + 2 log(1− z)Li2(1− z)

+ 2Li3(1− z)− 2ζ3

]

(6.187)

(D0 ⊗D4) (z) =− 8π6

315
δ(1 − z) +

6

5
D5(1− z)− 2π2

3
D3(1− z)

+ 12ζ3D2(1− z)− 4π4

15
D1(1− z) + 24ζ5D0(1− z)

− log(z) log4(1− z)
1− z (6.188)

(D1 ⊗D3) (z) =

(

3ζ2
3 −

π6

210

)

δ(1 − z) +
3

4
D5(1− z)− 2π2

3
D3(1− z)

+ 12ζ3D2(1− z)− 3π4

20
D1(1− z)

(

18ζ5 − π2ζ3

)

D0(1− z)

+
1

1− z

[

3 log3(1− z) log2(z) + log(z)

(

π4

15
− π2 log2(1− z)

2

− log4(1− z) + 3 log2(1− z)Li2(1− z) + 6 log(1− z)Li3(1− z)

− 6Li4(1− z)− 6ζ3 log(1− z)
)

+ 12 H3,2(1− z)

137



6. QCD Contributions beyond NNLO to gluon fusion

+ 24 H4,1(1− z) + 6 log2(1 − z)(Li3(z)− ζ3)

+ 3 log(1− z)Li22(1− z)− 6Li2(1− z)Li3(1− z)
]

(6.189)

6.2.3. Regular convolutions

The remaining two combinations are regular-regular and plus-regular, which we will

treat on the same footing. We write the convolution as a single integration, using the

delta-function to get rid of the other one,

(
f ⊗ g

)
(z) =

∫ 1

0
dxdy f(x)g(y)δ(xy − z) =

∫ 1

z
dx f(x)g

(
z

x

)
1

x
, (6.190)

(
Dn ⊗ f

)
(z) =

∫ 1

0
dxdyDn(1− x)f(y)δ(xy − z) =

∫ 1

z
dxDn(1− x)

f
(
z
x

)

x

=
logn+1(1− z)

n+ 1
f(z) +

∫ 1

z
dx

logn(1− x)

1− x

(

f
(
z
x

)

x
− f(z)

)

, (6.191)

where we have picked up a boundary term when evaluating the plus-distribution in an

interval different from (0, 1).

Even though we know, from the denominator-structures appearing in the integrals,

that our final result can only consist of HPLs (times polynomials in z and factors of
1
z or 1

1−z ), we have to step into the realm of multiple polylogarithms (MPLs) in inter-

mediate steps of the calculation. MPLs are defined analogously to HPLs, but allow for

any complex number in the index vector instead of only {−1, 0, 1} in the HPL case.

Recursively,

G(x1, x2, . . . , xn; z) =

∫ z

0
dt
G(x2, . . . , xn; t)

t− x1
, {xi} ∈ C and G( ; z) = 1 . (6.192)

Specifically, a MPL may be a function of multiple variables that appear anywhere in the

index vector (x1, . . . , xn). The relation to HPLs reads

H(a1, . . . , an;x) = (−1)kG(a1, . . . , an;x) , {ai} ∈ {−1, 0, 1} , (6.193)

where k is the number of +1 indices in (a1, . . . , an). This sign difference is due to the

fact that HPLs use 1
1−t as the weight function when adding a +1 to the index vector.

For more detailed information on multiple polylogarithms, see references [121,122,130]

and references therein. Note that the order of the MPLs indices is often reversed. We
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follow the convention of [130].

The subsequent steps to solve the integrals are as follows:

1. We first remap the integral by x 7→ 1−x, such that the integration region becomes

(0, 1 − z).

2. HPLs with argument 1− x and z
1−x have to be written as a combination of MPLs

with the integration variable x as their argument, or no x-dependence at all. For

example,

H

(

1;
z

1− x

)

=− log

(

1− z

1− x

)

= − log

(
1− x− z

1− x

)

= log(1− x)− log

(

(1− z)
(

1− x

1− z

))

=G(1;x) −G(1; z) −G(1 − z;x) , (6.194)

where we’ve used that G(a; b) = log
(

1− b
a

)

for a 6= 0. For MPLs of higher

weights, one can find these translations by using the recursive definition of MPLs

and changing variables in the integration. This becomes very tedious, though, so it

proved to be more practical to use the symbol calculus formalism we have described

in chapter 4.

We generated the symbol for a MPL expression using an in-house Mathemat-

ica package [184]. Matching the symbol to MPLs with x as the argument is

straightforward, and the equality of the two expressions was additionally ensured

numerically for some random test values of x and z, using Ginsh, the interactive

front end of the computer algebra system GiNaC [126].

3. Once all MPLs are of the form G(. . . , x), we get rid of products of MPLs via the

shuffle algebra,

G(~x1;x)G(~x2;x) =
∑

~x12∈~x1∆~x2

G(~x12;x) , (6.195)

where we remind the reader that ~x1 ∆ ~x2 denotes all permutations of the entries

of the index vectors that leave the order of the individual vectors invariant.

4. We are left with integrals of a single MPL with argument x times factors of xk (k ≥
−1) or 1

1−x , which can all immediately be solved via the MPLs recursive definition

and integration by parts. The easiest cases are the ones with a denominator, where
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the recursive definition of the MPLs can directly be applied,

∫ 1−z

0
dx

G(x1, . . . , xn;x)

x
=G(0, x1, . . . , xn; 1− z) , (6.196)

∫ 1−z

0
dx

G(x1, . . . , xn;x)

1− x =−G(1, x1, . . . , xn; 1− z) . (6.197)

For the integrals with positive powers of x, one has to integrate by parts recursively.

For example,

∫ 1−z

0
dxxG(0, 1;x) =

[

x2

2
G(0, 1;x)

]1−z

0

−
∫ 1−z

0
dx

x2

2

G(1;x)

x

=

[

x2

2
G(0, 1;x) − x2

4
G(1;x)

]1−z

0

+

∫ 1−z

0
dx

x2

4(x− 1)

=

[

x2

2
G(0, 1;x) − x2

4
G(1;x)

]1−z

0

+
1

4

∫ 1−z

0
dx

(

1 + x+
1

x− 1

)

=

[

x2

2
G(0, 1;x) − x2

4
G(1;x) +

x

4
+
x2

8
+
G(1;x)

4

]1−z

0

=
(1− z)2

2

(

G(0, 1; 1 − z)− G(1; 1 − z)
2

+
1

4

)

+
1− z

4

+
G(1; 1 − z)

4
, (6.198)

where in the third step we performed a partial fractioning of the rational integrand.

This procedure can be automated straightforwardly in Mathematica, since the

derivative of a MPL is easy to obtain.

5. At this stage, all integrations have been performed. The result still contains MPLs

where the variable z appears multiple times in the index vector. Since we know that

these expressions can be written as combinations of HPLs, we can, for each power

of z and each degree of transcendentality n, take the most general combination of

HPLs as an ansatz,

∑

a1...an

Ca1,...,anH(a1, . . . , an; z) + (lower-weight comb.) , {ai} ∈ {−1, 0, 1} ,

(6.199)

and find the coefficients by equating the symbol, or, more generally, all iterations

of the coproduct [130] of the two expressions. Lower-weight combinations denote
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terms like

π2H(a1, . . . , an−2; z) or log(2)H(a1, . . . , an−1; z) , (6.200)

which have the same degree of transcendentality as a weight-n HPL. The coproduct

fixes all these terms unambiguously.

6. The final numerical check on the result consists of the comparison of the origi-

nal integral using the numerical integration of Mathematica(with the package

HPL [124, 125] to evaluate the HPLs numerically) and our final expression, using

Ginsh, the interactive front end of the computer algebra system GiNaC [126], for

a random value of z.

For more details on the method used to calculate the convolutions (called symbolic

integration), we refer the reader to appendix D of [157].

The results we find are very lengthy, too lengthy even to be put into an appendix. We

simply give one of the shortest results as an illustration,

(

P (0)
qg ⊗ σ

(2)
qQ

)

(x) =

((
8

81x
− 5x

27

)

π2 +
136

27
− 943

243x
− 353x

54
+

32x2

243

)

H0(x)

+

(

1156

81
− 1742

243x
− 586x

81
+

32x2

243

)

H1(x)

+

((
2x

27
− 4

27

)

π2 +
34

9
+

16x2

27
− 124

81x
− 7x

3

)

H0,0(x)

+

(

52

9
− 248

81x
− 4x+

64x2

81

)

H2(x) +

(

10 − 124

27x
− 6x+

16x2

27

)

H1,0(x)

+

(

40

3
− 496

81x
− 8x+

64x2

81

)

H1,1(x) +

(

−8

9
− 16

27x
+

2x

3

)

H0,0,0(x)

+

(
16x

9
− 32

27x

)

H3(x) +

(

2x− 16

9x

)

H2,0(x) +

(
8x

3
− 64

27x

)

H2,1(x)

+

(
8

9
− 4x

9

)

H0,0,0,0(x) +

(
16

9
− 8x

9

)

H4(x) +

(
8

3
− 4x

3

)

H3,0(x)

+

(
32

9
− 16x

9

)

H3,1(x) +

(
8

135
− 4x

135

)

π4

+

(

−11

27
+

62

243x
+
x

3
− 8x2

81

)

π2 − 4x

9
ζ3 +

214x2

729
− 3203x

972

+
2711

243
− 23779

2916x
+O(ǫ) , (6.201)

where we have set µf = mh and have only displayed the ǫ0-component which contributes

to the 1/ǫ pole at N3LO, but not the much longer ǫ-component which contributes to the
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finite N3LO piece.

The full set of convolutions can be found in machine-readable form (both Maple and

Mathematica) in the ancillary files accompanying the arXiv publication of [83].

6.2.4. Soft expansion of the convolutions

While the full N3LO corrections to the gluon fusion cross section may still be out of

reach for the time being, a description in the soft limit could be feasible already in the

close future. This was the succession at NNLO, as well, where the expansion of the cross

section up to O((1 − z)16) [54, 55] was published before the full computation [56, 57].

The numerical agreement between the two computations proved to be excellent, so,

anticipating the same behaviour at N3LO, the soft expansion of the N3LO corrections

would be a very important result to obtain. The first pure N3LO piece of the third order

soft expansion, the soft triple-real emission contribution, has been published in [157].

In the limit z → 1, the partonic cross section (and all convolutions contributing to it)

can be cast in the following form (suppressing partonic indices)

σ(n,m)(z) = a(n,m)δ(1 − z) +
2n−1∑

k=0

b(n,m),kDk(1− z) +
2n−1∑

k=0

∞∑

l=0

c
(n,m)
kl log(1− z)k (1− z)l .

(6.202)

We thus need to expand the regular part as a polynomial in (1 − z), times log(1 − z)
terms. We proceed as follows:

1. We define z′ ≡ 1 − z. Thus, our expressions now consist of HPLs with argument

1− z′ times powers of z′. The desired limit is z′ → 0.

2. We want to rewrite the HPLs with argument 1 − z′ as MPLs with argument z′,

which results in changing the array of indices from {−1, 0, 1} to {0, 1, 2}, as can

be easily seen by taking the integral definition eq. (6.192) for x1 ∈ {−1, 0, 1} and

changing variables t 7→ 1− t. The rewriting is achieved with the same techniques

as in the previous section, i.e. we take the symbol of our HPLs and match it to

MPLs with argument z′.

3. The expansion of any MPL in its argument is straightforward, since the connection

between polylogarithms and multiple nested sums provided in section 4.1.2,

Lim1,...,mk
(x1, . . . , xk) =

∞∑

nk=1

xnk

k

nmk

k

nk−1
∑

nk−1=1

· · ·
n2−1∑

n1=1

xn1
1

nm1
1

(6.203)
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also holds for multiple polylogarithms. The translation from MPLs to nested sums

is given by

G
(

0, . . . , 0
︸ ︷︷ ︸

mk−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

mk−1−1

, ak−1, . . . , 0, . . . , 0
︸ ︷︷ ︸

m1−1

, a1;xk
)

= (−1)k Lim1,...,mk

(
a2

a1
,
a3

a2
, . . . ,

ak−1

ak−2
,

1

ak−1
, xk

)

. (6.204)

The specific form of the MPL on the left-hand side of the equation above can be

obtained via the scaling property, G(x1, . . . , xn; z) = G(λx1, . . . , λxn, λz), where

λ 6= 0 6= xn. MPLs with a rightmost index of 0 must be rewritten using the shuffle

product, e.g.

G(a, 0;x) = G(0;x)G(a;x) −G(0, a;x) = log(x)G(a;x) −G(0, a;x) , (6.205)

until all rightmost zeroes have been turned into explicit logarithms. The remaining

MPLs can then be safely translated to nested sums.

The crucial point is that the variable xk only appears in the outermost sum in

eq. (6.203), while the inner nested sums only depend on the xi<k, which in our

case are the indices ai ∈ {0, 1, 2}. We thus easily obtain the desired expansion

when we just truncate the sum over nk in eq. (6.203) at the highest power of z′ we

are interested in.

4. The validity of the soft expansions of the convolutions was checked numerically for

some small values of z′.

We again refer to the ancillary files accompanying the arXiv publication of [83], where all

soft expansions of the convolutions up to O
(
(1− z)12

)
can be found in machine-readable

form.

6.3. Numerical results

The results of the previous enable us to perform two calculations. First, we are able to

predict the poles of the N3LO cross section. Once the bare cross section σ̂
(3)
ij is added,

all these poles should cancel at the analytical level. To test our prediction for the N3LO

poles, we performed a numerical check, where we obtained the mass-factorisation poles

in a different way, namely by creating bare PDFs. We will describe this procedure in

the next section.
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The second calculation we are able to do is determining all scale-dependent pieces

of the N3LO gluon fusion cross section since they are all proportional to the computed

convolutions. This enables us, with some reasonable assumptions about the missing

finite contributions, to estimate the scale-uncertainty of the N3LO hadronic gluon fusion

cross section. We will present these estimates in section 6.3.2.

6.3.1. Poles of the N3LO gluon fusion cross section

To test our prediction for the cubic, quadratic and single poles of the bare N3LO partonic

cross sections, we implemented two different numerical implementations to calculate

them.

First, we took the analytic results for the convolutions from the previous section

and combined them according to eqs. (6.1) and (2.63). The expressions for each pole

in ǫ and each initial-state channel were translated into C++ code and convoluted with

the parton distribution functions according to eq. (2.67). Notice that in the ǫ-orders

contributing to the finite N3LO corrections, we encounter HPLs of weight 5. But in the

pole coefficient functions, the maximal weight is 4 and thus, we were able to evaluate

them using Chaplin.

The second implementation only took the bare lower-order cross sections σ̂
(n)
ij (n ≤ 2)

as an input, without any renormalisation or mass factorisation terms. Obtaining the

renormalisation terms of eq. (6.1) from this is trivial, of course, simply by multiplying

with the appropriate expansion coefficient of the Beta-function. To obtain the mass

factorisation terms directly from the bare cross sections, we have to invert the relation

between σ̂ and σ in eq. (2.67), i.e. we look for the correct kernel Γ−1
ij ≡ ∆ij such that

σij(x) = (∆ki ⊗∆lj ⊗ σ̂kl) (x) . (6.206)

Equivalently, we can say that this kernel ∆ij extracts the bare PDF from the renor-

malised one,

f0
i (x) = (∆ij ⊗ fj) (x) , (6.207)

which is the inverse of eq. (2.62).

The perturbative expansion of ∆ij is easy to obtain via its defining condition of being

the inverse of Γij ,

(Γik ⊗∆kj) (x)
!
= δijδ(1 − x) , (6.208)
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and we find,

∆ij(µ, x) = δijδ(1 − x) + as(µ)
P

(0)
ij (x)

ǫ

+ a2
s(µ)

{

1

2ǫ
P

(1)
ij (x) +

1

2ǫ2

[(

P
(0)
ik ⊗ P

(0)
kj

)

(x)− β0P
(0)
ij (x)

]
}

+ a3
s(µ)

{

1

6ǫ3

[ (

P
(0)
ik ⊗ P

(0)
kl ⊗ P

(0)
lj

)

(x)− 3β0

(

P
(0)
ik ⊗ P

(0)
kj

)

(x)

+ 2β2
0P

(0)
ij (x)

]

+
1

12ǫ2

[

3
(

P
(0)
ik ⊗ P

(1)
kj

)

(x) + 3
(

P
(1)
ik ⊗ P

(0)
kj

)

(x)

− 4β1P
(0)
ij (x)− 4β0P

(1)
ij (x)

]

+
1

3ǫ
P

(2)
ij (x)

}

+O(a4
s) . (6.209)

The hadronic cross section was then evaluated in the spirit of eq. (2.64), as a convolution

of the bare PDFs and bare partonic cross section. The bare PDF was obtained numeri-

cally according to eq. (6.207), where we simply added two dimensions of integration to

the Monte-Carlo integration routine,

∫

dx1 dz 7→
∫

dx1 dz dy1 dy2 , (6.210)

where the yi parametrise the convolutions to extract the bare PDF f0
i from fi. Notice

that this numerical approach to obtain the poles from mass factorisation from bare PDFs

also works at the differential level. We will comment on this in the next chapter.

The two different ways of obtaining the poles of the N3LO fully agreed within the

error associated with the Monte-Carlo integrations. Even if the numbers themselves

are meaningless, we give them here for completeness. They are multiplied with the

appropriate factors of αs, but not rescaled with the exact LO cross section,

η
(3)
ij (τ) ≡




σ

(0)
gg,mt=∞

σ
(0)
gg,exact





(

fi ⊗ fj ⊗ σ̂(3)
ij

)

(τ) , (6.211)

without summation over i, j.

We find, using the MSTW08 NNLO PDF set,

η(3)
gg =

0.408(4)

ǫ3
+

10.75(6)

ǫ2
+

66.0(5)

ǫ
+O(ǫ0) ,

η(3)
qg =− 0.4695(5)

ǫ3
− 5.857(2)

ǫ2
− 25.68(2)

ǫ
+O(ǫ0) ,
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η
(3)
qq̄ =

0.00806(5)

ǫ3
+

0.0649(8)

ǫ2
+

0.2020(2)

ǫ
+O(ǫ0) ,

η(3)
qq =

0.01240(2)

ǫ3
+

0.0704(1)

ǫ2
+

0.2621(5)

ǫ
+O(ǫ0) ,

η
(3)
qQ =

0.04928(8)

ǫ3
+

0.3121(4)

ǫ2
+

1.146(1)

ǫ
+O(ǫ0) . (6.212)

Notice that this check could be performed with dummy PDFs instead of the actual

parton distribution functions, since the poles of the bare cross section are no physical

result anyways. The important point is find the same numbers for the two different

implementations, as a check on the analytic prediction for the poles. We still opted to

use real PDF sets, since the computer code for these had already been at hand. Also,

the order of magnitude of the poles we found was compared to the established lower

orders, and the pattern was found to be similar, providing another loose check on the

results.

6.3.2. Scale dependence of the N3LO gluon fusion cross section

To understand that all scale-dependent pieces of the N3LO cross section are proportional

to convolutions of splitting kernels and lower-order cross sections, we again consider

eq. (6.1). The bare cross sections σ̂
(n)
ij all come with a factor of µ2nǫ/snǫ, where the

µ2ǫ-powers stem from the renormalisation replacement eq. (2.44) and the sǫ-powers can

be factorised from the cross section, and essentially originate in the phase-spaces and

loop integrations carried out1. Now, when we expand these terms in ǫ,

(

µ2

s

)n

= 1 + nǫ log

(

µ2

s

)

+
nǫ2

2
log2

(

µ2

s

)

+O(ǫ3) , (6.213)

we see that the poles of the bare cross section are multiplied with powers of the logarithm

log(µ2/s), which generates contributions to the finite O(ǫ0) part. But since these poles

are required to cancel exactly against the poles of the collinear counterterms which are

proportional to our convolutions, we find that indeed, all scale-dependent parts of the

cross section can be obtained from lower-order information.

Usually, the scale at which eq. (6.1) is put together and the poles are cancelled is chosen

to be µf . To set the scale at which as is evaluated different from µf , we can introduce

the second scale µr and separate the two scales using the scale translation formula for

the strong coupling constant which we derive from the RGE for αs in appendix C. The

1For example, one can see that the phase-space measures given in appendix A scale like Φn ∝ s(n−1)ǫ,
and the 1-loop integrals in section 6.1.7 all are proportional to some mass scale to the power of 2ǫ.
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scale translation formula relates the coupling at µf to the coupling at µr and reads, to

third order,

as(µf ) =as(µr) + a2
s(µr)β0L+ a3

s(µr)
[

β1L+ β2
0L

2
]

+

+ a4
s(µr)

[

β2L+
5

2
β1β0L

2 + β3
0L

3
]

+O(a5
s) , (6.214)

with L ≡ log(µ2
r/µ

2
f ).

The explicit logarithm L essentially counters the running of the coupling constant up

to the order considered, such that the effect of varying the unphysical scale is weakened

for higher orders in perturbation theory, i.e. the perturbative series is converging to its

all-order value, as can be seen by taking the total derivative of the partonic cross section

w.r.t µr,
dσij

dlog(µ2
r)

=
∂σij

∂ log(µ2
r)

+
∂σij
∂a(µr)

∂a(µr)

∂ log(µ2
r)

︸ ︷︷ ︸

β(µr)

= O(a5) , (6.215)

and the same holds true for the log(µ2
f/s) terms, which counter the DGLAP evolution

of the PDFs.

We have therefore extended our numerical code iHixs to N3LO order in HQET,

implementing all the known contributions up to now. Besides the log(µ2
f/m

2
H)- and

log(µ2
r/µ

2
f )-terms, this also includes the pure N3LO ’plus’-terms which were determined

in [191] using mass factorisation arguments2. The Wilson coefficient C1 is implemented

to four-loop order according to eq. (3.49), and as is run using three-loop running (i.e.

including β3) although the numerical difference w.r.t 2-loop running is negligible. In

principle N3LO parton distribution functions should be used, but there are no such fits

available. The numerical difference to NNLO PDFs is expected to be small, though.

Simply adding all scale-dependent parts but nothing else does not result in a reasonable

estimate of the N3LO cross section and its overall scale-dependence, though. As we

mentioned above, the explicit logarithms log(µ2
f/m

2
H) and log(µ2

r/µ
2
f ) are meant to cancel

against the same logarithms absorbed into the running PDF and coupling constant,

respectively. With the pure N3LO pieces multiplying these implicit logarithms missing,

terms like

σ(3)
gg (µ) ∋ 4β0 log

(

µ2

m2
H

)

σ(2)
gg (mH) , (6.216)

2Basically, the authors used the knowledge of all poles from purely virtual contributions to infer the
poles from real-radiation diagrams by demanding pole cancellation. This fixes the coefficients of all
plus-distributions unambiguously.
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which becomes large and negative for µ ≪ mH “overcompensate” and produce an un-

naturally strong scale-dependence. For this reason, we chose to introduce artificial pure

N3LO contributions, by simply multiplying the corresponding NNLO contributions with

a “scaling factor” K,

a
(3,0)
ij = K a

(2,0)
ij , fi ⊗ fj ⊗ c(3,0)

ij = K
(

fi ⊗ fj ⊗ c(2,0)
ij

)

. (6.217)

There is no a priori reason why the scaling factor for the delta and the regular terms

should be the same. However, it turns out that the numerical impact of the delta coef-

ficient a
(3,0)
ij is negligible (for scaling coefficients that do not break the pattern observed

from lower orders by orders of magnitudes), in contrast with the coefficient of the regular

part, so we adopt here a common scaling factor to keep the parametrisation simple. For

the same reason we use the same K scaling coefficient for all initial state channels.

A loose argument about the size of K can be derived if one assumes a good perturbative

behaviour at µr = µf = mH where all other terms of order a5
s vanish. Since as(mH) ∼

1/30 one expects K not to be much larger than 30. For comparison, the corresponding

rescaling factors between NNLO and NLO are

fg ⊗ fg ⊗ c(2,0)
gg

fg ⊗ fg ⊗ c(1,0)
gg

∼ 30 ,
a

(2,0)
gg

a
(1,0)
gg

∼ 1.5 , (6.218)

for mH = 125 GeV and µf = µr = mH .

In what follows we study the inclusive cross section as a function of the scales, in

the HQET approach rescaled with the exact leading order cross section. For the parton

distributions, the MSTW08 NNLO set was used with its associated value for αs(mZ).

Furthermore, to cross-check our results, a second implementation was programmed in

C++, where the convolutions of splitting kernels and partonic cross sections were per-

formed numerically, analogously to the extraction of the bare PDFs described in the

previous section. For both codes, the numerical evaluation of HPLs was performed us-

ing the library Chaplin [135]. The results from the two implementations fully agreed.

In figure 6.1, the different orders of the hadronic gluon fusion cross section for the

8 TeV LHC and a Higgs mass of 125 GeV, along with several N3LO approximants for

various numerical values of K are plotted as a function of the renormalisation scale µr,

while the factorisation scale is fixed to µf = mH . Note that the convolutions of splitting

kernels and partonic cross sections do not enter in this plot, since they are proportional

to log(µ2
f/m

2
h). The µr scale variation for LHC with 14 TeV centre-of-mass energy is

shown in fig. 6.3. The µf scale dependence, shown in figure 6.5 for 8 TeV centre-of-mass
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Figure 6.1.: Scale variation of the different orders of the gluon fusion cross section at
8 TeV. µf is fixed to mH and only µr is varied. The scaling coefficient
K is varied from 0 to 40 to estimate the impact of the unknown N3LO
contributions.
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Figure 6.2.: Scale variation of the different orders of the gluon fusion cross section at
8 TeV. µf and µr are varied simultaneously. The scaling coefficient K is
varied from 0 to 40.
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Figure 6.3.: Scale variation of the different orders of the gluon fusion cross section at 14
TeV. µf is fixed to mH and only µr is varied. The scaling coefficient K is
varied from 0 to 40.

energy, is, as expected, extremely mild, in accordance with what is observed at NNLO.

Figures 6.2 and 6.4 display the overall scale dependence with both scales set to be equal

and varied simultaneously, as is practice when estimating the theoretical uncertainty. We

note that the curves for the approximate N3LO cross section with various Ks spread

widely in the low scale region, i.e. for µ < 30 GeV. This is not unreasonable, though,

as in this regime, the unknown N3LO contributions that are neglected become much

more important due to the running of αs. Indeed, at the lowest renormalisation scale

considered, µ = mH/16 ≈ 7 GeV, the coupling becomes as big as αs ≈ 0.2, i.e. we are

barely in the perturbative regime.

It can hardly be overemphasised that the above prescription does not represent a

proper calculation of the N3LO matrix elements, but just a way of parametrising their

unknown numerical importance. Once the height of the N3LO curve at (µr, µf ) = (1, 1)

is set, the shape of the full curve only depends on lower order cross sections (which we

know exactly), the running of as and the parton distribution functions, respectively.

The unknown, numerically important coefficient functions c
(3,0)
gg (z) contain logarithmic

contributions that are singular at threshold, log(1−z), contributions that are regular and

contributions that are singular at the opposite, high energy limit log(z). The leading and
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Figure 6.4.: Scale variation of the different orders of the gluon fusion cross section at
14 TeV. µf and µr are varied simultaneously. The scaling coefficient K is
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Figure 6.5.: Scale variation of the different orders of the gluon fusion cross section at 8
TeV. In (a) µr is varied along the x-axis, while the bars represent variation
of µf around the central value mH/2. In (b) µr is fixed to mH and only µf
is varied. The scaling coefficient K is varied from 0 to 40.
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Figure 6.6.: Scale variation of the different orders of the gluon fusion cross section at 8
TeV. µf is fixed to mH and only µr is varied. K is varied from 0 to 30. Only
the gg channel is plotted, and compared to the results obtained with the
program gghiggs [192].

several, but not all, subleading threshold contributions are associated with multiple soft

emissions and can be recovered by resummation techniques. The authors of [191] have

used the expressions for b
(3,0),k
ij that they have derived to perform a soft approximation

in Mellin space, resulting in a N3LO approximant with a scale uncertainty of ≈ 4%.

Recently, the authors of [192] estimate c
(3,0)
gg (z) by interpolating in Mellin space, between

the soft approximation (that captures threshold logarithms) and the BFKL limit (that

captures high energy log(z) terms). This approach matches the NNLO cross section

neatly, and results in an approximant for the N3LO with a scale uncertainty of 7%

if the scale is varied in the interval [mH/2, 2mH ] (or smaller, if the interval chosen is

[mH/4,mH ]).

When comparing our results for the µr-dependence of the N3LO cross section for

the gluon-gluon initial state with the numbers obtained with the numerical program

gghiggs [192], we find agreement between the two curves when setting K to 25, as is

displayed in figure 6.6.

While it is plausible that the leading logarithmic contributions, being threshold en-

hanced, capture the bulk of the cross section, it is unclear whether the unknown sub-

leading contributions, as well as the non-logarithmic terms, are really negligible. Their
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6.3. Numerical results

Order Cross section [pb] σ/σNNLO σ/σLO

LO 10.31 +29.1%
−21.3% 0.51 1.00

NLO 17.41 +22.6%
−16.4% 0.86 1.69

NNLO 20.27 +8.8%
−9.4% 1.00 1.97

N3LO (K=0) 18.53 +1.2%
−8.9% 0.91 1.80

N3LO (K=5) 19.23 +0.3%
−5.9% 0.95 1.87

N3LO (K=10) 19.92 +0.0%
−3.1% 0.98 1.93

N3LO (K=15) 20.62 +0.4%
−3.1% 1.02 2.00

N3LO (K=20) 21.31 +2.0%
−4.3% 1.05 2.07

N3LO (K=30) 22.70 +6.5%
−6.5% 1.12 2.20

N3LO (K=40) 24.09 +10.4%
−8.4% 1.19 2.34

Table 6.1.: Cross sections and scale uncertainties for the 8 TeV LHC. The central scale
choice is µr = µf = mH/2, and uncertainties are found by varying the two
scales simultaneously by a factor of two.

importance certainly rises for the LHC at 14 TeV, as the luminosity function suppresses

the region away from threshold less, resulting in more phase space for real-radiation.

One might, therefore, want to be conservative about their magnitude, and hence on the

size of the scale uncertainty to be anticipated before the full N3LO result is available.

Table 6.1 shows the estimates for various values of the rescaling factor K, covering the

range from relatively mild to extremely strong N3LO corrections, resulting in scale un-

certainties varying from 2% to as large as 8% or more. The scale uncertainties cited here

are evaluated by varying the scales in the interval [mH/4,mH ].

As previously mentioned in section 5.1, the choice of the central scale around which

the variation is performed has been an issue of debate, since the two most common

choices µ = mH and µ = mH/2 result in slightly different scale uncertainty estimates

but also in different central values for the cross section. As we have mentioned, improved

perturbative convergence and differential information such as as the average transverse

momentum of the Higgs boson led us to choose µ = mH/2 as a central scale. An

alternative indication comes from the considerations of [193], where it is argued, looking

at examples from jet physics, that a reasonable indication would be the position of the

saddle point in a contour plot of the cross section as a function of µr and µf . In figs. 6.7

and 6.8 we show such contour plots for Higgs production at LO, NLO, NNLO and N3LO
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Figure 6.7.: 2-D contour plots of the LO, NLO and NNLO cross section at the 8 TeV
LHC. The value on the contours is the cross section in picobarns. The x-axis
is log2(µf ), the y-axis log2(µr). Our preferred central scale choice is located
at (-1,-1).

(for three values of the parameter K). In the cases where a saddle point exists, its

position points indeed to lower scale choices, and in the cases without a saddle point

the plateau region is also located in lower scales. Given the extremely mild factorisation

scale dependence, the saddle point or plateau region is largely determined by the µr

plateau in all previous figures.

6.4. Conclusions

The motivation to calculate the N3LO QCD corrections to the gluon fusion cross section

in heavy quark effective theory comes from the fact that the scale uncertainty of the

NNLO cross section is still fairly large. Since the full N3LO calculation is a huge task,

we focused all parts which can be obtained from lower-order cross sections.

This first required the calculation of the LO, NLO and NNLO partonic cross sections

to one order higher in the dimensional regulator ǫ, which is only non-trivial in the NNLO

case, where 29 master integrals have to be computed to the next order in ǫ. The notion

of master integrals to treat all types of NNLO corrections (double virtual, real-virtual

and double-real) relies on the techniques of IBP identities and reverse unitarity which

are presented in sections 6.1.2 and 6.1.3, respectively.

In the actual computation of the master integrals we use the method of differential

equations from section 6.1.4 which can be implemented straightforwardly to solve for

the master integrals algorithmically. The main difficulty was the computation of the

soft limit as a boundary condition for every master integral, for which we give some
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Figure 6.8.: 2-D contour plots of the approximated N3LO cross section at the 8 TeV LHC.
The value on the contours is the cross section in picobarns. The x-axis is
log2(µf ), the y-axis log2(µr). Our preferred central scale choice is located
at (-1,-1).

calculatory details. The soft limits for all master integrals are found to all orders in ǫ,

while the full results are expanded up to the required order and in general consist of

harmonic polylogarithms of up to weight four.

In section 6.2 we perform the convolutions of splitting kernels and partonic cross sec-

tions which appear in the collinear subtraction terms at N3LO, of which there are 80

different ones. Both functions taking part in the convolution in general consist of delta-,

plus- and regular terms. While plus-plus convolutions and any convolution involving a

delta-function are straightforward, the remaining regular convolution need actual inte-

grations to be performed. These integrals are again solved algorithmically, employing

properties of HPLs and Symbol calculus. The results for the convolutions agree with

previously published results obtained with a different method.

We also compute the convolutions as expansions around the threshold limit z = 1,

anticipating the completion of the full N3LO cross section in this limit first.

Finally in section 6.3, we use the results of the previous sections to numerically pre-

dict the poles of the N3LO cross section remaining after renormalisation and mass-

factorisation and to estimate the scale uncertainty of the N3LO result.

While we are able to fully determine all explicitly scale-dependent terms of the N3LO

partonic cross section, determining the final scale uncertainty of the N3LO gluon fusion

is not possible because of the implicit scale-dependence hidden in the running of the

strong coupling αs(µ). To find some numerical estimates, we approximate the missing

pure N3LO corrections with a scaling factor K times the NNLO corrections, which at

the inclusive level is an entirely legitimate thing to do. The range of scaling factors
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considered is chosen very broad, yet for all values, the resulting scale uncertainty is

found to be smaller than 8% for the prescription we use.

Comparing our results with other approximations for the N3LO corrections which are

based on expansions of threshold-resummed cross sections, we find agreement for values

of K in the range of 20 to 25. We still choose to remain agnostic about the size of the

N3LO corrections until the proper fixed-order computation is available. Our estimates

suggest that this venture will be worth the effort.
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7. Differential Higgs production in

bottom quark fusion

In section 6.3.1 we introduced a way retrieving the bare parton distribution functions

from the renormalised PDFs that various collaborations provide. While for that partic-

ular case, it only served as a numerical check on the analytic result, we employed the

very same technique in an actual physical application, namely in the development of a

computer code for Higgs production in bottom quark fusion at the fully differential level,

the result of which were published in [138].

As we have already discussed in chapter 5, the inclusive rate of Higgs boson production

through the bottom quark fusion process in the SM is more or less negligible, amounting

to about 5% of the inclusive rate of the gluon fusion process. Furthermore, compared to

other subleading production channels like associated production or vector boson fusion,

bottom fusion exhibits the exact same final state as gluon fusion, a Higgs and nothing

else1, so it is not distinguishable from the latter by demanding the presence of certain

additional final-state particles.

However, the importance of the bottom fusion process may be enhanced in the presence

of final-state cuts, or in distinct regions of a distribution of kinematic observables. These

hypotheses can only be tested when the fully differential cross section is computed,

i.e. the production cross section of a Higgs boson (and potential additional radiation)

with full knowledge of the final-state momenta. Precise knowledge of where (i.e. in

which differential distribution) to look for a bb̄ → H signal would then also allow to

constrain the H-b-b Yukawa coupling, which in turn may constrain BSM models where

an enhancement of this coupling is a common feature.

Further motivation to perform the differential bottom fusion computation came from

a more technical point of view. Since the LO process is very simple due to its tree-level

and 2 → 1 nature, it is a nice “laboratory” for new techniques in NNLO calculations.

The publication [138] was the first hadronic production process where the technique

of non-linear mappings [183, 194] to deal with overlapping singularities in double-real-

1This is not true if we treat bottom fusion in the four-flavour scheme as we have discussed in section
3.6. But then the total cross section is again smaller.
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radiation corrections was applied, after a first successful application in the related decay

process H → bb̄ [136].

7.1. Differential Calculations

Since, up to this point, all observables we dealt with in this thesis were inclusive cross

sections, we give a brief introduction into differential calculations, pointing out the

differences and challenges compared to the inclusive case.

Differential computations by definition retain full knowledge of all four-momenta of

the final-state particles, as opposed to inclusive calculations where these momenta are

integrated over. Fully differential partonic cross sections are therefore functions of all

phase-space variables, i.e. in the case of NNLO corrections to a 2 → 1 process which

contains up to three final-state particles, the differential cross section is a function of

the four variables xi , i ∈ {1, 2, 3, 4} on top of the variable z as defined e.g. in the

parametrisation of eq. (A.7).

One of the main merits of differential calculations is the possibility to arrive at theo-

retical predictions for cross sections in the presence of final-state phase-space cuts, like

those used in experimental analyses. The second advantage over the inclusive cross sec-

tion is the possibility to define a wealth of different observables by marginalising over

a certain set of variables while remaining differential in the others. This allows one to

characterise the process in much more detail, and possibly find an optimal observable in

which signal and background behave differently.

One may ask why we even bother to calculate inclusive cross sections, since exper-

iments by construction always feature selection cuts because the detectors can never

hermetically cover the collision points which results in angular cuts, and the detectors

have sensitivity thresholds in e.g. the calorimeters which corresponds to a cut on the

energy of final-state particles). But inclusive calculations are in general easier to perform

at higher orders in perturbation theory. Thus, an approximation to a differential cross

section at a higher order is usually obtained by taking the highest known differential

result rescaled with the inclusive K-factor. This practice is widely used in experimental

searches, but of course relies on the assumption that the shapes of differential distribu-

tions do not change strongly from one order to the other in perturbation theory.

The dependence on arbitrary phase-space constraints (cuts) can be contained in the

so-called jet function, or measurement function, J ({p}f ), where {p}f denotes the set of

final-state momenta in the laboratory frame. Using this notion, we can cast the fully
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differential partonic cross section schematically as

σij[J ] =
∑

f

∫

dΦf σij→f ({p}f ) J ({p}f ) , (7.1)

where the sum is over all final states f .

The role of the jet function J is two-fold. On the one hand, it applies arbitrary

final-state phase-space cuts while ensuring infrared safety. This means it is basically a

combination of Heaviside theta-functions, i.e. it is either equal to 0 or 1, depending on

whether the set {p}f passes the selection cuts. The infrared safety property demands

that the jet function does not separate IR-divergent contributions which are supposed

to cancel each other by letting only parts of them pass. In other words, the jet function

has to be 1 in all soft and collinear regions of the final-state phase-space.

The second task of the jet function is keeping track of the bin-integrated cross section

for any given differential observable (with or without applying phase-space cuts). This

is achieved at the level of Monte-Carlo integration by passing to J not only the set

of final-state momenta but also the weight of the given event. The jet function thus

represents the observable under consideration.

The effect of the presence of the jet function on the partonic cross section (7.1) is

profound: it no longer depends on just the single variable z = m2
H/ŝ, but rather on all

phase-space variables of the final state. Whereas in the inclusive case, we were able to

fully integrate out all variables that parametrise the final-state phase-space into some

Beta- or hypergeometric functions, all the integrations over phase-space variables have

to be performed numerically in the differential case, because the jet function cuts out

some regions of phase-space.

Actually, since the 2→ 1 phase-space is just proportional to δ(1 − z), the statements

above do not apply to bottom quark fusion with LO kinematics, as there is no difference

between the inclusive and differential cross section at this level. Starting from the real

corrections at NLO, where the 2→ 2 phase-space depends on the additional variable y

(see eq. (A.5)), and especially in the double-real corrections where the 2→ 3 phase-space

depends on four additional variables (eq. (A.7)), the differential partonic cross section

depends on multiple variables, though.

There exist several approaches on how to perform differential NLO and NNLO com-

putations, which we will not give a comprehensive review about. Roughly, one can

divide the approaches into two families. The first family regulates divergences by sub-

tracting a counterterm which mimics the behaviour of the full amplitude in a singular

limit from the real emission contributions. The same subtraction term integrated over
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the additional parton is added to the virtual piece, where it cancels ǫ-poles analytically.

Examples of this approach are the Catani-Seymour dipole subtraction [195] which is the

most popular choice for NLO computations, or the Antenna-subtraction method [196]

for NNLO computations, which has only recently been completed for applications to

hadron collider processes. Notice that it took a long time to adapt this approach to

NNLO calculations, due to the manifold ways particles can become soft and collinear to

one another, and the problem of overlapping divergences.

The second family regulates singularities in real emission contributions by choosing

an appropriate phase-space parametrisation which factorises the singular variable, say

x, from the rest of the respective term in the amplitude and extracting the singularity

using the plus-expansion

x−1+nǫ =
δ(x)

nǫ
+

∞∑

k=0

(nǫ)k

k!
Dk(x) . (7.2)

Again, this technique is rather straightforward to apply at NLO, where the factorisation

of singular variables is easily achieved. At NNLO, where singularity structure are much

more involved due to the wealth of phase-space variables, one has to resort to techniques

like sector decomposition [197], where the phase-space integral containing an overlapping

singularity is split into two separate integrals with factorised singularities, or the younger

technique of non-linear mappings [194] which manages to factorise singular variables with,

as the name suggests, non-linear mappings of the integration variables2. It is the latter

approach which was used in the present case of bottom quark fusion at NNLO QCD.

The plus-distributions generated by the expansion (7.2) also act on the jet-function,

or rather on the variable x the jet-function depends on (through the parametrisation

of the final-state momenta). The real emission contributions thus contain terms that,

schematically, look like

1

ǫ
σ [J ]

∣
∣
∣
x=0

+
∞∑

k=0

(nǫ)k

k!

∫ 1

0
dx

logk(x)

x

[

σ [J ]− σ [J ]
∣
∣
∣
x=0

]

. (7.3)

The cancellation of poles is performed numerically in this approach. For each order

in ǫ, one has to bin the contributions in the distribution of interest, and find that all

distributions for the poles in ǫ vanish when real and virtual contributions are added

together. When the pole-cancellation for a given observable has been observed once, the

computation of the poles can be omitted thereafter.

2Although some divisions of integrals like in sector decomposition still have to be carried out to deal
with line singularities.
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Care has to be taken in the choice of the bin-size for the observable under consideration.

The first and the second term in the square bracket in eq. (7.3) are evaluated at different

x-values, and thus different kinematics. They may thus be put in different bins of a

differential distribution, which is perfectly reasonable. But when the bin-size is taken

to be too small, large contributions that arise from approaching the divergence at x = 0

and are inclusively regulated by the vanishing term in the square bracket are still put

in different bins, destabilising the numerical integration. When the bin-size is chosen

appropriately, the numerical regularisation using (in general nested) plus-prescriptions

is very well-behaved. One just has to make sure that quantities which are supposed to

cancel actually do end up in the same bin of the differential distribution one is considering,

following the slogan “Thou shalt not separate what the plus has joined”.

When we consider the hadronic cross section in differential computations, it is not

desirable anymore to analytically carry out the convolutions of collinear splitting kernels

and bare cross sections like we did in section 6.2. While it would technically still be

possible to perform the convolution over z while keeping all other final-state integration

variables resolved, this would create integrands of unevaluable size and complexity, since

the variable z is hidden in every Lorentz-invariant sij.

The logical way out is to evaluate the differential hadronic cross section in the spirit

of eq. (2.64), i.e. integrating the product of bare PDFs and bare cross section instead of

their mass-factorised counterparts,

σ [J ] =

∫ 1

0
dx1dx2 θ(x1x2 − τ)f0

i (x1)f0
j (x2) σ̂ij [J ] . (7.4)

7.1.1. Bare parton distribution functions

We thus have to obtain the bare PDF, i.e. the parton distribution function with un-

cancelled soft and collinear divergences which manifest themselves as poles in ǫ. The

extraction of the bare PDFs from the finite ones the PDF collaborations provide us with

was performed according to eq. (6.207), which we repeat for convenience,

f0
i (x) = (∆ij ⊗ fj) (x) , (7.5)

where ∆ij is given in eq. (6.209). It consists of Altarelli-Parisi splitting kernels, or more

generally of products thereof, and has explicit poles in ǫ. The bare PDF f0 is therefore

given by an expansion both in as and in ǫ. As we have seen before, the splitting kernels

generally consist of delta-, plus- and regular parts, which means that the convolution
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(7.5) has the general form

(f ⊗∆)(x) =

∫ 1

x

dy

y
f

(
x

y

){

aδ(1 − x) +
∑

n

bnDn + C(x)

}

. (7.6)

with

(Dm ⊗ f) (x) =
log(1− x)m+1

m+ 1
f(x) +

∫ 1

x
dy log(1− y)m

1
yf
(
x
y

)

− f(x)

1− y . (7.7)

As the finite PDF fi is a purely numerical function, the integrals above have to be carried

out numerically, too. In the case of the poles of the N3LO gluon fusion cross section in

section 6.3.1, we simply added two more dimensions to the Monte-Carlo integration of

the inclusive cross section.

For the differential bottom fusion calculation, we were more reluctant to add more

dimensions to the integration routine, since it is already of rather high dimensionality

due to the full resolution of the final-state momenta. Instead, we opted for the option

of pre-computing the integral (7.6) for 3000 fixed values of x and storing the values in a

grid. During the actual Monte-Carlo run, no convolution integral has to be calculated

anymore, just a quadratic interpolation using the closest stored points to give a value

for the bare PDF at the requested x-value. The precision of this interpolation procedure

is well (at least two orders of magnitude) below the usual Monte-Carlo error associated

with differential observables.

While there are differences among gluons and the different quark flavours, all parton

distribution functions share the feature that they slope sharply downward as a function

of x, i.e. their value at small x is far larger than the one for x close to 1, as can be seen

in figure 7.1.

For this reason, we parametrise both the distribution of the interpolation grid and the

integration variable y in eq. (7.6) quadratically,

y = x+ (1− x)z2 , (7.8)

with z uniformly distributed in (0, 1). Thus, the steeply sloping small-x region is covered

by more points than the flatter x ∼ 1 region.

Since we are dealing with a one-dimensional integral consisting of well-behaved func-

tions, we find that the easiest option to carry out the integral (7.6) for each of the

3000 x-grid points is a simple deterministic algorithm which is significantly faster than

a Monte-Carlo algorithm. We use the trapezoidal rule after dividing the unit interval
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Figure 7.1.: Parton distributions for some selected partons, evaluated at a scale typical
for the processes described in this thesis.

containing z into about 50’000 equispaced intervals.

In the most complicated case needed for NNLO bottom fusion, the O(a2
s/ǫ)-piece of

the bare (anti)bottom PDF, the pre-computation of the x-grid takes about 90 seconds.

O(as/ǫ)-grids take about 10 seconds to finish.

Having obtained the bare PDF order by order in the dimensional regulator ǫ, we

can substitute them directly into eq. (7.4). The singularities appearing as poles in the

ǫ-expansion, cancel the initial state collinear singularities of the partonic cross section.

This cancellation can be observed bin by bin in e.g. the rapidity distribution of the

Higgs boson, or any other differential observable. One can achieve this cancellation in

each initial state channel separately, at the cost of separating the convolution integrals

depending on the initial state parton in the convolution, i.e. by not performing the

implicit j-summation in eq. (7.5).

7.2. Results

When adding all perturbative corrections and integrating the resulting (renormalised

but not mass factorised) cross section over the bare PDFs, we indeed find cancellation

of poles in every differential distribution we considered, well within the Monte-Carlo

precision. Notice that while at NLO, the only distribution where pole-cancellation is

spread across all bins is the Higgs rapidity, this is no longer true in the NNLO case, where

the cancellation between real-virtual and double-real takes place at arbitrary kinematics
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Figure 7.2.: The Higgs rapidity distribution. The bands describe the uncertainty due to
the factorisation scale

for the Higgs.

We proceed by presenting a handful of plots of differential bottom fusion observables

we obtained with our computer codes, for the LHC at 8 TeV centre-of-mass energy. We

fix the mass of the Higgs boson to 125 GeV and use the MSTW08 (the 68%CL set) PDFs

for all results. The value of αs at mZ that we use is the best-fit value of the PDF set

at the corresponding order. We use µr = mH as the central renormalisation scale. The

value of αs used is run from mZ to µr through NNLO in QCD. The mass of the bottom

quarks is set to zero in all matrix elements, consistently with the 5FS choice, except for

the bottom Yukawa coupling. The Yukawa coupling, treated in the MS scheme, is run

to µr from the Yukawa coupling at µ∗ = 10 GeV, using mb(µ
∗) = 3.63 GeV.

We do not vary µr in what follows, since the µr scale dependence of the total cross

section has been found to be very mild. We have also checked that the µr-dependence

of differential distributions is very small.

Previous studies have shown that the inclusive cross section is very sensitive to the

choice of factorisation scale. Arguments related to the validity of the 5FS approximation

with respect to the collinearity of final state b-quarks, as well as to the matching to

the 4FS calculation or to the need for a smoother perturbative expansion, point to

factorisation scales that are much lower than the Higgs boson mass. We adopt the
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Figure 7.3.: The transverse momentum distribution of the Higgs.

choice µf = mH/4 as a central scale and vary it in the range [mH/8,mH/2] to estimate

the related uncertainty.

All Monte-Carlo integrations were performed with the Cuba [102] implementation of

the Vegas algorithm.

The rapidity distribution of the Higgs boson is shown in fig. 7.2. As expected, the

perturbative expansion is converging smoothly for this choice of central µf and the

NNLO uncertainty band is entirely engulfed by the NLO one.

The transverse momentum distribution for the Higgs boson is shown in fig. 7.3. This

observable starts at NLO in QCD and the fixed-order prediction fails, as usual, to de-

scribe the very low pT spectrum due to the related large logarithms. At the large pT

range we see that the NNLO calculation leads to a harder spectrum than the NLO one

and the NLO scale uncertainty fails to capture this feature. This implies that care should

be taken when relying on NLO predictions for observables that are highly exclusive in

the transverse momentum of the Higgs boson.

Furthermore, while for the Higgs-rapidity distribution the approximation of rescaling

the NLO distribution with the inclusive K-factor would yield a good approximation, the

same can not be said of the distribution of the transverse momentum of the Higgs since

the slope of the NNLO result is clearly flatter than the NLO slope. The reason for this

is the fact that, as mentioned, the transverse momentum only starts to be non-zero at
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Figure 7.4.: Double-differential distribution in rapidity and transverse momentum of the
Higgs boson.

NLO order, where it is essentially described by the LO cross section for the process

bb̄ → H + jet. Therefore, the NNLO curve is actually only the first order correction in

QCD and we can not expect the shapes to be equal, as it is not the case among the

LO and NLO curves of the rapidity distribution. This is a common phenomenon for

any differential observable which starts to be non-zero at the NLO order, and we stress

that only the full NNLO differential calculation provides a reasonable estimate for such

observables.

The double-differential distribution in both the rapidity and the transverse momentum

of the Higgs is shown in fig. 7.4, both in a three-dimensional Lego plot and in a density

plot. We see that the bulk of the events are produced centrally (with |y| < 2.5) and at

relatively low pT ( 35− 50GeV).

Finally, we show the cross section for zero, one and two jets, which always add up to

the full cross section since we describe at most two emissions at NNLO QCD. We use

the anti-kT algorithm [198] for jet clustering3 with a cone in the y − φ plane of radius

R = 0.4. We show in fig. 7.5 the jet rates as a function of the jet pmaxT used to define

them. Here we do not distinguish between b-jets and light jets. We find the jet rates for

pmaxT = 20 GeV to be in agreement with those published in [199].

For more results which also include the more exclusive process of bb̄→ H → γγ with

the typical diphoton selection cuts of the LHC experiments applied, we kindly refer to

the original publication [138].

3At this order in perturbation theory, the anti-kT , the kT and the Cambridge-Aachen algorithms are
actually completely equivalent.
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Figure 7.5.: The 0-, 1- and 2-jet rate as a function of the pT used in the jet definition.

7.3. Conclusions

We have given a short introduction to differential computations, as opposed to the in-

clusive observables treated in the rest of the thesis. Differential computations retain full

knowledge of final-state particle kinematics, which allows to apply selection cuts on the

simulated events like in real experimental analyses. They furthermore allow for a much

broader spectrum of observables to be defined, using all kinematic and quantum number

information of the final state.

In section 7.1.1 we present our method to cancel initial-state collinear divergences in

the computation of differential Higgs production in bottom quark fusion. The convolu-

tions with the collinear counterterm, which in the inclusive application in chapter 6 were

analytically carried out on the partonic cross sections, are now numerically performed

on the parton distribution functions. We actually extract the bare PDF from the mass-

factorised one. The poles obtained from integrating the bare PDFs over the renormalised

partonic cross sections cancel out among all contributions, at the differential level (i.e.

bin by bin in any differential observable we choose to calculate). Since we extract the

bare PDFs prior to the actual Monte-Carlo run and store the obtained value in a grid

used for interpolation, the method comes at zero additional cost during the phase-space

Monte-Carlo integration.
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In section 7.2 finally, we give selected results obtained with our differential code. The

Higgs rapidity exhibits a nice perturbative convergence, while the Higgs transverse mo-

mentum curve at NNLO is not covered by the NLO band at high transverse momenta.

The cross section values for such high-pT events are tiny, though. Furthermore, we give

the jet rates as a function of the jet definition pT , which agree with the rates published

in the literature.
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We live in exciting times. The Higgs boson has been discovered at LHC which confirms

a conjecture which was put forward nearly 50 years ago. Where does particle physics

move on from here, and how are the results of this thesis possibly used in the future?

The better part of the contents of this thesis focus on the inclusive Higgs production

cross section in the gluon fusion process. The efforts put into the best possible description

of this process by a large number of great physicists have paid off, as the production

rate observed at the LHC so far is in agreement with the SM prediction which is, as we

have said many times, mainly given by gluon fusion.

The light Higgs mass which is observed at the LHC renders the framework of heavy

quark effective theory a very good approximation. Furthermore, it also spares us dealing

with the strong scheme-dependence we found when treating heavy quark with masses

close to mH/2. The extension of the inclusive cross section to the next order in per-

turbative QCD which we have computed parts of and estimated the scale uncertainty

in chapter 6 will certainly need to be completed in the years to come, if the theoretical

uncertainty is supposed rival the experimental one, especially given the lack of any hints

for new physics up to now. First steps towards N3LO have already been taken, as we

have mentioned, and we believe that the inclusive N3LO cross section in the thresh-

old limit will be available in the near future. To perform the computation in the full

kinematics, some progress might need to be made in the way we have carried out such

calculations up to now, considering the large number of master integrals (of the order of

300). Especially the case-by-case determination of the soft limits will become a major

obstacle. Nevertheless we have strong faith in the theory community to find a solution

for these calculatory challenges.

Since at the inclusive level, the step from one order to the next does not introduce

special complications except for generally much longer expressions containing more dif-

ficult functions, the program iHixs can easily be modified to eventually include the

N3LO cross sections and possibly other newly-computed fixed-order contributions. It

will remain a useful tool to study the impact of various contributions to Higgs produc-

tion. Some features like the treatment of the Higgs-propagator may not appear necessary
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anymore due to the lightness of the Higgs mass, but could eventually become relevant

again in case a second, heavy resonance is found by the LHC.

The library Chaplin has been used in numerical codes that need to evaluate harmonic

polylogarithms with great success. Eventually, it will have to be extended to include

HPLs of weight five, since we encounter these functions for example in the N3LO QCD

corrections to gluon fusion. The strategy of reduction to a set of basis functions and

evaluation of the basis functions on the unit disc should be applicable without great

complications, as the actual number of new functions that need to be series-expanded

is not expected to be too large1. The reductions of individual HPLs to basis functions

are expected to become very lengthy, though, such that an efficient structure avoiding

unnecessary multiple calls to the same routine is imperative.

Since no significant enhancement of the bottom Yukawa coupling over its SM value has

been observed at the LHC so far, the differential bottom quark fusion cross section will

probably not play a major phenomenological role in the future. However, the techniques

for differential NNLO computations that were applied successfully in said process can

be applied to other processes, such as a new differential gluon fusion code which is under

construction [200]. This holds especially true for the method of bare PDFs, as it is

completely universal and does not rely on the partonic process under consideration at

all.

Considering particle physics as a whole, there are mixed feelings of excitement and

concern throughout the community. While the discovery of the Higgs can certainly be

considered a great success, the preliminary agreement of its rates with the SM predictions

and the complete lack of other signals of new particles have fuelled the fear of a “Higgs

and nothing else” scenario. We think that it is certainly too early to be pessimistic. The

measurement of the Higgs properties including all its couplings is an important task for

the immediate future and holds new challenges for both experimental and theoretical

collaborations. Furthermore, hints for BSM physics may as well come from a different

frontier than the high-energy one, in particular from neutrino physics and/or dark matter

searches.

To quote Nobel prize laureate David Gross from a lecture he recently gave in Zurich:

“The best is yet to come”.

1there are 48 basis functions needed at weight five, 16 of which are given by classical polylogarithms of
various arguments. The same arguments will also occur in the new functions needed to parametrise
the remaining 32 basis functions, such that the whole basis could in principle be covered by two new
functions that need to be series-expanded in addition to the classical pentalogarithm Li5.
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A. D-dimensional phase-spaces for Higgs

production

Here, we provide the phase-space parametrisations for the production of a single massive

particle in addition with zero, one and two massless particles, that are used in real-

radiation corrections to Higgs production throughout chapter 6. We provide the phase-

space measures for these configurations here, without derivation which can be found

in [183,194]. The phase-spaces depend on the mass m of the massive final-state particle

and s = s12, the squared centre-of-mass energy. To have only one dimensionful quantity,

we define the (dimensionless) variable

z ≡ m2

s
. (A.1)

We remind the reader again about our definition of the Lorentz invariants si1...im ,

si1...im = (pi1...im)2 , (A.2)

where

pi1...im = τi1pi1 + . . .+ τimpim , with τi =

{

+1 if i = 1, 2 ,

−1 if i > 2 .
(A.3)

The single-particle phase-space dΦ1 is trivial,

dΦ1(s, z) = 2πs−1δ(1− z) , (A.4)

i.e. the centre-of-mass energy
√
s has to correspond to the mass m.

The phase-space for the production of one massive and one massless particle is given

by

dΦ2(s, z) =
s−ǫ(1− z)1−2ǫ

23−2ǫπ1−ǫΓ(1− ǫ)dy [y(1− y)]−ǫ , (A.5)

where y ∈ [0, 1] parametrises the angle between particles 1 and 3 (the massless final-state
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particle). The invariants s13 and s23 are given by

s13 = −s(1− z)y , s23 = −s(1− z)(1− y) . (A.6)

Finally, we give two different parametrisations for the 2 → 3 phase-space dΦ3, where

the massless final-state particles are labelled 3 and 4. First, the “Energies and angles”

parametrisation, which as its name suggests is essentially obtained by parametrising all

final-state momenta in their energies and the angles between them,

dΦ3 =
(2π)−3+2ǫ

16Γ(1 − 2ǫ)

4∏

i=1

dxi

(

sz̄3κ4x1x̄1

2− κ

)
(

s2z̄4κ4x2
1x̄

2
1x3x̄3x4x̄4 sin2(πx2)

)−ǫ
, (A.7)

where all variables xi ∈ [0, 1], we have defined the shorthand notation x̄i ≡ 1 − xi,

z̄ ≡ 1− z and

κ =
1−√1− 4z̄x1x̄1x̃34

2z̄x1x̄1x̃34
, with x̃34 = x3x̄4 + x4x̄3 − 2 cos(πx2)

√
x3x̄3x4x̄4 . (A.8)

In this parametrisation the Lorentz invariants are given by

s13 = −sz̄κx1x3 , s23 = −sz̄κx1x̄3 ,

s14 = −sz̄κx̄1x4 , s24 = −sz̄κx̄1x̄4 ,

s34 = sz̄2κ2x1x̄1x̃34 , s134 = sz̄κ [z̄κx1x̄1x̃34 − x1x3 − x̄1x4] ,

s234 = sz̄κ [z̄κx1x̄1x̃34 − x1x̄3 − x̄1x̄4] . (A.9)

Obviously, this parametrisation is useful mostly when none of the invariants s34, s134, s234

are present in the phase-space integral, as all other invariants are fairly simple and

denominators including products of them fully factorise.

The second parametrisation is the “Hierarchical parametrisation”, where the deriva-

tion makes use of the factorisation property of phase-spaces, i.e. the fact that the three-

particle phase-space can be written as a (massive) two-particle phase-space where one

of the final-state particles splits into two massless particles1. The phase-space measure

reads

dΦ3 =
(2π)−3+2ǫ

16Γ(1 − 2ǫ)

4∏

i=1

dxi

(

sz̄3x1x̄1

z + x1z̄

)(

s2z̄4x2
1x̄

2
1x2x̄2x3x̄3 sin2(πx4)

z + x1z̄

)−ǫ

, (A.10)

1See chapter 5 of [183]
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where, again, all integration variables xi ∈ [0, 1]. The invariants si1...im read

s23 = −sz̄x̄1x3 , s134 = −sz̄x1 , s24 = −sz̄x̄1x̄3 ,

s234 = −sz̄x1

[
z + 11x̄2z̄

z + x1z̄

]

, s34 =
sz̄2x1x̄1x2

z + x1z̄
,

s13 = −sz̄x1

[

x3x̄2 +
x2x̄3

z + x1z̄
− 2 cos(πx4)

√

x2x̄2x3x̄3

z + x1z̄

]

,

s14 = −sz̄x1

[

x̄3x̄2 +
x2x3

z + x1z̄
+ 2 cos(πx4)

√

x2x̄2x3x̄3

z + x1z̄

]

. (A.11)

Clearly, this parametrisation is somewhat complementary to the “Energies and angles”

parametrisation, as it yields a simpler expressions for s34, s134 and s234, while s13 and

s14 become much more complicated and do not allow for straightforward factorisation

of integration variables.
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B. Splitting Kernels

Here, we list the Altarelli-Parisi splitting kernels used throughout the thesis, especially

in section 6.2. We remind the reader that Pij(x) quantifies the amplitude for a parton

j to split into a parton i and a third, implicit, parton, with i carrying the momentum

fraction x of the initial parton j.

The kernels are expanded in the strong coupling,

Pij(x) =
∞∑

n=0

an+1
s P

(n)
ij (x) . (B.1)

Please notice that there exist other conventions in the literature, such as labelling the

kernels with the order of as they come with (i.e. the lowest-order kernels are denoted

by P
(1)
ij instead of P

(0)
ij ). Also, the expansion parameter as is sometimes defined to be

αs/(2π) or αs/(4π), which introduces factors of 2 and 4, respectively, in the splitting

kernels to compensate.

Since we retrieved all the kernels from [201,202], where notation and conventions are

oriented towards PDF evolution rather than mass factorisation, we will give the relation

between our kernels P
(n)
ij and the expressions that are given in [201,202] which we shall

denote as P(n)
ij , as well as the explicit formulae for our kernels.

At the leading order, there are four kernels,

P (0)
gg (x) =β0 δ(1− x) + 3

(

D0(1− x) + x(1− x)− 2 +
1

x

)

. (B.2)

P (0)
gq (x) =

2

3

1 + (1− x)2

x
. (B.3)

P (0)
qg (x) =

1

4

(

x2 + (1− x)2
)

. (B.4)

P (0)
qq (x) =δ(1− x) +

2

3
(2D0(1− x)− 1− x) , (B.5)

where the relation to the Pij is given by

P (0)
gg =

1

4
P(0)
gg , P (0)

gq =
1

4
P(0)
gq P (0)

qg =
1

4

1

2NF
P(0)
qg , P (0)

qq =
1

4
P(0)
ns . (B.6)
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B. Splitting Kernels

The factors of 4 originate from the different prescription for as mentioned above. The

additional factor of 1/(2NF ) in Pqg stems from the fact that Pqg gives the amplitude

for a gluon emitting any kind of quark, while our kernel parametrises the emission of a

quark of a given flavour qi.

At the two-loop order, there are six kernels, as there are now non-vanishing amplitudes

for a quark emitting an antiquark of the same flavour, P
(1)
qq̄ , or a quark of a different

flavour, P
(1)
qQ (with Q 6= q and Q 6= q̄). The expressions are already a bit lengthier,

P (1)
gg (x) =δ (1− x)

(

6− 2/3NF +
27

4
ζ (3)

)

+

(
67

4
− 5/6NF − 3/4π2

)

D0(1− x)

+

(

NF

(

−3/2− 13

6
x

)

− 75

4
+

33

4
x− 33x2

)

H (0;x)

+ 9
(

2 + x−1 + x+ x2 − (1 + x)−1
)

H (−1, 0;x)

+ 9
(

−2 + (1− x)−1 + x−1 + x− x2
)

H (0, 1;x)

+ 9
(

−2 + (1− x)−1 + x−1 + x− x2
)

H (1, 0;x)

+

(

−2NF

3
(1 + x) + 9 (2− 2x)−1 + 18x− 9x2 + 9 (2 + 2x)−1

)

H (0, 0;x)

+NF

(

−1/4− 61

36
x−1 − 1/4x +

109

36
x2
)

− 25

8
+ 3π2 − 109

8
x+ 3/2π2x2 − 3

π2

4 + 4x
, (B.7)

P (1)
gq (x) =

(

14/3 − 14/3x−1 − 31

9
x+NF

(

−4/9 + 4/9x−1 + 2/9x
))

H (1;x)

+

(
28

9
+

22

9
x

)

H (0, 0;x) +
(

−4 + 4x−1 + 2x
)

H (0, 1;x)

+

(

−20

9
+

20

9
x−1 +

10

9
x

)

H (1, 1;x) +
(

4 + 4x−1 + 2x
)

H (−1, 0;x)

+
(

−4 + 4x−1 + 2x
)

H (1, 0;x) +

(

−100

9
− 31

9
x− 8/3x2

)

H (0;x)

+ 1 + 2/3π2 + x−1 +
23

9
x+

44

9
x2 +NF

(
20

27
− 20

27
x−1 − 16

27
x

)

, (B.8)

P (1)
qg (x) =

(

5/8 + 8/3x +
37

6
x2
)

H (0;x) +
(

5/6x− 5/6x2
)

H (1;x)

+
(

−3/4− 3/2x − 3/2x2
)

H (−1, 0;x) +

(

− 7

12
− 11

6
x+ 2/3x2

)

H (0, 0;x)

+
(

1/3− 2/3x + 2/3x2
)

H (0, 1;x) +
(

1/3 − 2/3x + 2/3x2
)

H (1, 0;x)
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+

(

− 5

12
+ 5/6x − 5/6x2

)

H (1, 1;x)

+
5

12
− 1/18π2 + 5/6x−1 +

167

24
x− 5

36
π2x− 89

12
x2 − 1/9π2x2 , (B.9)

P (1)
qq (x) =δ (1− x)

(
7

8
+

7

18
π2 +NF

(

−1/36 − 1/27π2
)

− 1/3 ζ (3)

)

+

(
67

9
− 10

27
NF − 1/3π2

)

D0(1− x)

+

(
NF

9

(

1− 2 (1− x)−1 + x
)

− 2/3 + 7 (3− 3x)−1 − 8

9
x+ 4/9x2

)

H (0;x)

+
8

9

(

−1 + 2 (1− x)−1 − x
)

H (0, 1;x)

+
8

9

(

−1 + 2 (1− x)−1 − x
)

H (1, 0;x)

+

(

−16

9
+ 2 (1− x)−1 − 16

9
x

)

H (0, 0;x)

+
7

18
+ 1/6π2 +

10

27
x−1 − 43

6
x+ 1/6π2x− 28

27
x2

+NF

(

−1/27 +
11

27
x

)

, (B.10)

P
(1)
qq̄ (x) =

(

1/18 +
13

18
x+ 4/9x2

)

H (0;x) +
2

9

(

−1 + x+ 2 (1 + x)−1
)

H (−1, 0;x)

+
2

9

(

−1− 2x− (1 + x)−1
)

H (0, 0;x)

− 5/9− 1

54
π2 +

10

27
x−1 +

11

9
x+

1

54
π2x− 28

27
x2 +

π2

27 + 27x
, (B.11)

P
(1)
qQ (x) =

(

1/6 + 5/6x + 4/9x2
)

H (0;x) − 1

3
(1 + x) H (0, 0;x)

− 1/3 +
10

27
x−1 + x− 28

27
x2 . (B.12)

The relations to the Pij are given by

P (1)
gg =

(
1

4

)2

P(1)
gg , P (1)

gq =

(
1

4

)2

P(1)
gq P (1)

qg =

(
1

4

)2 1

2NF
P(1)
qg ,

P (1)
qq =

(
1

4

)2 [1

2

(

P(1)+
ns + P(1)−

ns

)

+
1

2NF
P(1)
ps

]

,

P
(1)
qq̄ =

(
1

4

)2 [1

2

(

P(1)+
ns − P(1)−

ns

)

+
1

2NF
P(1)
ps

]

,
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B. Splitting Kernels

P
(1)
qQ =

(
1

4

)2 1

2NF
P(1)
ps . (B.13)

At the three-loop order, the expressions for the kernels become very long. We only

require the two kernels P
(2)
gg and P

(2)
gq , whose relation to the expressions is simply

P (2)
gg =

(
1

4

)3

P(2)
gg , P (2)

gq =

(
1

4

)3

P(2)
gq , (B.14)

i.e. no combination of different kernels as in the quark-case is required. Thus, we simply

refer to eqs. (4.14) and (4.15) of [201] for these two kernels. The only subtlety one has to

pay attention to is the implicit way that the plus-distribution appears. In the notation

of [201], it is understood that any term proportional to (1 − x)−1 that diverges (i.e. is

not regulated by a log(x) or a combination of terms going to zero as x → 1 has to be

treated as a plus-distribution.

The kernels in our conventions and notation can be found in machine-readable form

(both Maple and Mathematica) in the ancillary files of the arXiv publication of

ref. [83].
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C. Re-installing scale dependence and

separating scales

In chapter 6 we outlined how to obtain all scale-dependent pieces of an nth-order QCD

cross section by adding together all lower-order bare cross sections and the appropriate

collinear counter-terms, and subsequently expanding the whole expression in ǫ, which

generates the scale-dependent logarithms by expansion of terms like µkǫ.

There is also a way to obtain all these logarithms from the finite (i.e. renormalised

and mass-factorised) cross section, which is what we had to do to re-install the full scale-

dependence of the NNLO QCD bb̄ → H cross section in the context of iHixs because

the publication [101] only provides the finite partonic cross sections at the scale µf =

µr = mH for which all explicit logarithms vanish.

In this situation one can employ the formulae for scale translations of coupling con-

stants and parton distribution functions. They express a scale-dependent quantity living

at a scale µ0 as a combination of quantities that live at a different scale µ1, times loga-

rithms of the ratio of the two scales.

To be specific, the third-order expansion of as(µ0) in terms of as(µ1) reads

as(µ0) =as(µ1) + a2
s(µ1)β0L+ a3

s(µ1)
[

β1L+ β2
0L

2
]

+

+ a4
s(µ1)

[

β2L+
5

2
β1β0L

2 + β3
0L

3
]

+O(a5
s) , (C.1)

with L ≡ log(µ2
1/µ

2
0). This result is obtained from the renormalisation group equation

(RGE) for as,

∂as(µ)

∂ log(µ2)
= β(µ) as(µ) with β(µ) = −

∑

n=0

βna
n+1
s (µ) , (C.2)

in the following way. Integrating eq. (C.2) from µ0 to µ1 yields

as(µ1) = as(µ0) +

∫ log(µ2
1)

log(µ2
0)

d log(µ2)β(µ)as(µ) . (C.3)
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C. Re-installing scale dependence and separating scales

The as(µ) in the integral can now be replaced by the equation itself, i.e.

as(µ1) = as(µ0) +

∫ log(µ2
1)

log(µ2
0)

d log(µ2
2)β(µ2)

[

as(µ0) +

∫ log(µ2
2)

log(µ2
0)

d log(µ2)β(µ)as(µ)

]

.

(C.4)

Repeating these steps for all as(µ) inside the integrals until the desired order in as is

reached and subsequently evaluating the integrals to obtain the logarithms of µ2
1/µ

2
0 then

yields eq. (C.1).

Analogously, we may integrate the RGE for the parton distribution function fi, the

DGLAP equation,

∂fi(µ)

∂ log(µ2)
= Pij(µ)⊗ fj(µ) with Pij(µ) =

∑

n=0

P
(n)
ij an+1

s (µ) . (C.5)

to obtain

fi(µ1) = fi(µ0) +

∫ log(µ2
1)

log(µ2
0)

d log(µ2)Pij(µ)⊗ fj(µ) , (C.6)

and iterate (replacing fj(µ) with the equation itself and the as(µ) in Pij(µ) with eq. (C.1))

to arrive at the scale translation formula for the pdf,

fi(µ0) =fi(µ1)− as(µ1)LP
(0)
ij ⊗ fj(µ1)

+ a2
s(µ1)

[

−LP (1)
ij ⊗ fj(µ1) +

L2

2

(

P
(0)
ik ⊗ P

(0)
kj − β0P

(0)
ij

)

⊗ fj(µ1)

]

+ a3
s(µ1)

[

− LP (2)
ij ⊗ fj(µ1)

+
L2

2

(

P
(1)
ik ⊗ P

(0)
kj + P

(0)
ik ⊗ P

(1)
kj − β1P

(0)
ij − 2β0P

(1)
ij

)

⊗ fj(µ1)

+
L3

6

(

−P (0)
ik ⊗ P

(0)
kl ⊗ P

(0)
lj + 3β0P

(0)
ik ⊗ P

(0)
kj − 2β2

0P
(0)
ij

)

⊗ fj(µ1)

]

. (C.7)

Now, if one starts from the hadronic cross section at a given scale µ0 (e.g.
√
s),

σ(µ0) = fi(µ0)⊗ σij(µ0)⊗ fj(µ0) , (C.8)

the factorisation scale can be changed by replacing fi(µ0) and fj(µ0) with their expan-

sions at µf , according to eq. (C.7), as well as replacing all as(µ0) in the expansion of

σ̂ij(µ0) according to eq. (C.1). Since the convolution is associative and commutative,

the splitting kernels can be convoluted with the partonic cross section. This produces
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exactly the same convolutions and logarithms as the convolution of collinear subtraction

terms and lower-order cross sections when cancelling IR poles.

To finally separate the scales µf and µr, one simply repeats the scale translation for the

parameters one would like to live at the renormalisation scale, i.e. one replaces as(µf )

(and possibly other parameters like masses) with its expansion in as(µr) by applying

eq. (C.1) again.
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D. Reduction of HPLs to Basis functions

In this appendix, we provide the reduction of all HPLs up to weight four to the basis

functions defined in chapter 4, which consists only of the ordinary logarithm, the clas-

sical polylogs Li2, Li3 and Li4 with various arguments, as well as the two “pure” HPLs

H(0, 1, 0,−1, x) and H(0, 1, 1,−1,±x).

To save some space, we only provide a minimal set of reduction mappings. The

reduction of a HPL which is not explicitly given can be obtained via shuffle-relations

(eq. (4.13)). For example, the reduction for H(1, 0;x) is not provided, but can be obtained

by combining the reductions of the functions on the RHS of the shuffle-relation

H(1, 0;x) = H(1;x)H(0;x) −H(0, 1;x) , (D.1)

which are all provided in the next section.

Please note that these identities have been derived and published by the authors of

ref. [129] and are only repeated here for reasons of completeness.

D.1. Weight one and two

For weight one, the reduction is given by the definition of the HPLs,

H(−1;x) = log(1 + x) , H(0;x) = log(x) , H(1;x) = − log(1− x) . (D.2)

At weight two, we encounter the first non-trivial reductions,

H(−1, 1;x) = log 2 log(1− x)− log(1− x) log(1 + x)− 1

2
log2 2− Li2

(
1− x

2

)

+
π2

12
,

H(0,−1;x) =− Li2(−x) ,

H(0, 1;x) =Li2(x) . (D.3)
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D. Reduction of HPLs to Basis functions

D.2. Weight three

The reductions for weight three read

H(−1, 1,−1;x) =− Li2

(
1− x

2

)

log(1 + x)− 3

2
log2 2 log(1 + x)

+ log 2 log2(1 + x)− log(1− x) log2(1 + x) + log 2 log(1− x) log(1 + x)

+
1

4
π2 log(1 + x) +

1

3
log3 2− 1

6
π2 log 2− 2Li3

(
1 + x

2

)

+
7ζ3

4
,

H(−1, 1, 1;x) =Li2

(
1− x

2

)

log(1− x)− 1

2
log 2 log2(1− x) +

1

2
log2(1− x) log(1 + x)

+
1

6
log3 2− 1

12
π2 log 2− Li3

(
1− x

2

)

+
7ζ3

8
,

H(0,−1,−1;x) =− Li2(−x) log(1 + x) +
1

6
log3(1 + x)− 1

2
log x log2(1 + x)

− π2

6
log(1 + x)− Li3

(
1

1 + x

)

+ ζ3 ,

H(0,−1, 1;x) =Li2(−x) log(1− x)− 1

6
log3(1− x)− 1

2
log2 2 log(1− x)

+
1

2
log 2 log2(1− x) +

1

2
log2(1− x) log x− π2

12
log(1− x) +

1

6
log3 2

− π2

12
log 2− Li3

(
1− x

2

)

+ Li3(1− x)− Li3(−x) + Li3(x)

+ Li3

(
2x

x− 1

)

− 1

8
ζ3 ,

H(0, 0,−1;x) =− Li3(−x) ,

H(0, 0, 1;x) =Li3(x) ,

H(0, 1,−1;x) =Li2(x) log(1 + x) +
1

6
log3(1− x)− 1

2
log2 2 log(1 + x)

− 1

2
log 2 log2(1− x)− 1

2
log(1− x) log2(1 + x)− 1

2
log2(1− x) log x

+ log 2 log(1− x) log(1 + x) +
π2

6
log(1− x) + log(1− x) log x log(1 + x)

+
π2

12
log(1 + x) +

1

6
log3 2− π2

12
log 2 + Li3(−x)− Li3(x)− Li3

(
2x

x− 1

)

+ Li3

(
1

1 + x

)

− Li3

(
1− x
1 + x

)

− Li3

(
1 + x

2

)

+
7

8
ζ3 ,

H(0, 1, 1;x) =− Li2(x) log(1− x)− 1

2
log x log2(1− x) +

π2

6
log(1− x)

− Li3(1− x) + ζ3 . (D.4)
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D.3. Weight four

D.3. Weight four

For weight four, finally, some reductions become quite lengthy,

H(−1, 1,−1,−1;x) =− 1

2
Li2

(
1− x

2

)

log2(1 + x)− 2Li3

(
1 + x

2

)

log(1 + x)

− 7

8
ζ3 log(1 + x)− 1

6
log3 2 log(1 + x) +

1

2
log 2 log3(1 + x)

− 1

2
log(1− x) log3(1 + x)− 1

2
log2 2 log2(1 + x)

+
1

2
log 2 log(1− x) log2(1 + x) +

π2

12
log2(1 + x) +

π2

12
log 2 log(1 + x)

+ 3Li4

(
1 + x

2

)

− 3Li4

(
1

2

)

,

H(−1, 1,−1, 1;x) =
1

2
Li2

(
1− x

2

)

log2 2− Li2

(
1− x

2

)

log 2 log(1− x)

+ Li2

(
1− x

2

)

log(1− x) log(1 + x) + 2Li3

(
1 + x

2

)

log(1− x)

− 2ζ3 log(1− x) +
1

4
ζ3 log(1 + x) +

1

12
log4(1 + x)

+
1

3
log3 2 log(1 + x)− 1

3
log(1− x) log3(1 + x) + log2 2 log2(1− x)

− 1

2
log2 2 log2(1 + x) +

3

2
log2 2 log(1− x) log(1 + x)

− 2 log 2 log2(1− x) log(1 + x) + log2(1− x) log2(1 + x)

+
5

12
π2 log 2 log(1− x)− π2

6
log 2 log(1 + x)

+
1

8
log4 2− π2

24
log2 2 +

1

2
Li2

(
1− x

2

)2

− π2

12
Li2

(
1− x

2

)

+ 2Li4

(
x− 1

x+ 1

)

− 2Li4

(
1 + x

2

)

+
11

480
π4 − 7

6
log3 2 log(1− x)

+
π2

6
log2(1 + x)− 5

12
π2 log(1− x) log(1 + x) + 2Li4

(
1− x

2

)

,

H(0,−1,−1,−1;x) =− 1

2
Li2(−x) log2(1 + x)− Li3

(
1

1 + x

)

log(1 + x) +
1

8
log4(1 + x)

− 1

3
log x log3(1 + x)− π2

12
log2(1 + x)− Li4

(
1

1 + x

)

+
π4

90
,

H(0,−1,−1, 1;x) =Li2,2(−1, x) + Li2,2

(
1

2
,

2x

x+ 1

)

+
1

2
Li2

(
1− x

2

)

log2(1 + x)

− 1

2
Li2(−x) log2(1 + x) +

1

2
Li2(x) log2(1 + x) +

1

2
Li2(−x) log2 2

+ Li2(−x) log(1− x) log(1 + x)− 2Li3(x) log(1 + x)
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− 2Li3

(
2x

x− 1

)

log(1 + x)− 2Li3

(
1− x
1 + x

)

log(1 + x)

− Li2(−x) log 2 log(1− x) + Li3

(
1

1 + x

)

log(1− x)− 5

4
ζ3 log(1 + x)

− 7

8
ζ3 log(1− x) +

5

8
log4(1 + x)− 3

2
log 2 log3(1 + x)

− 2

3
log(1− x) log3(1 + x)− log x log3(1 + x)− 1

2
log3 2 log(1 + x)

+
1

3
log3(1− x) log(1 + x) + log2 2 log2(1 + x)

+ 2 log(1− x) log x log2(1 + x)− 5

12
π2 log2(1 + x)

− log 2 log2(1− x) log(1 + x)− log2(1− x) log x log(1 + x)

+
π2

4
log 2 log(1 + x) +

5

12
π2 log(1− x) log(1 + x)− 1

4
Li4

(

1− x2
)

− 1

2
Li2(−x)2 + Li2

(
1− x

2

)

Li2(−x)− π2

12
Li2(−x) + Li4(1− x)

+ Li4(−x) + Li4(x) +
1

2
Li4

(
4x

(x+ 1)2

)

− 1

2
Li4

(
1− x
1 + x

)

+ 2Li4

(
x

x+ 1

)

− 2Li4

(
2x

x+ 1

)

+ 3Li4

(
1 + x

2

)

− 3Li4

(
1

2

)

+
π4

480
+

3

2
log 2 log(1− x) log2(1 + x) +

1

2
Li4

(
x− 1

x+ 1

)

,

H(0,−1, 1,−1;x) =− Li2,2(−1, x)− Li2,2

(
1

2
,

2x

x+ 1

)

− 1

2
Li2

(
1− x

2

)

log2(1 + x)

+
1

2
Li2(−x) log2(1 + x)− 1

2
Li2(x) log2(1 + x)− 1

2
Li2(−x) log2 2

− Li3

(
1− x

2

)

log(1 + x) + Li3(1− x) log(1 + x)

+ 3Li3(x) log(1 + x) + 3Li3

(
2x

x− 1

)

log(1 + x)

+ 2Li3

(
1− x
1 + x

)

log(1 + x) + Li2(−x) log 2 log(1− x)

− 19

24
log4(1 + x) + 2 log 2 log3(1 + x) +

1

2
log(1− x) log3(1 + x)

+
7

6
log x log3(1 + x) +

7

6
log3 2 log(1 + x)− 1

2
log3(1− x) log(1 + x)

− 7

4
log2 2 log2(1 + x)− 3

2
log 2 log(1− x) log2(1 + x)

− 2 log(1− x) log x log2(1 + x) +
17

24
π2 log2(1 + x)

+
3

2
log 2 log2(1− x) log(1 + x)− 1

2
log2 2 log(1− x) log(1 + x)
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+
3

2
log2(1− x) log x log(1 + x)− 7

12
π2 log 2 log(1 + x)

− 5

12
π2 log(1− x) log(1 + x) +

1

2
Li2(−x)2 − Li2

(
1− x

2

)

Li2(−x)

+
π2

12
Li2(−x)− 1

2
Li4(−x)− 3

2
Li4(x)− 3

4
Li4

(
4x

(x+ 1)2

)

− Li4

(
1

1 + x

)

− 2Li4

(
x

x+ 1

)

+ 3Li4

(
2x

x+ 1

)

− 6Li4

(
1 + x

2

)

+ 6Li4

(
1

2

)

+
π4

90
− Li3(−x) log(1 + x) +

17

8
ζ3 log(1 + x) ,

H(0,−1, 1, 1;x) =− 1

2
Li2(−x) log2(1− x) + Li3

(
1− x

2

)

log(1− x)

+ Li3(−x) log(1− x)− Li3(x) log(1− x)− Li3

(
2x

x− 1

)

log(1− x)

+
7

4
ζ3 log(1− x) +

19

96
log4(1− x) +

23

96
log4(1 + x)

− 7

12
log x log3(1− x)− 1

24
log(1 + x) log3(1− x)

− 1

3
log 2 log3(1 + x)− 1

4
log x log3(1 + x)− 1

3
log3 2 log(1 + x)

+
1

4
log2 2 log2(1− x)− 1

16
log2(1 + x) log2(1− x)

+
3

16
π2 log2(1− x) +

1

4
log x log2(1 + x) log(1− x)

− 13

48
π2 log2(1 + x)− π2

24
log(1 + x) log(1− x) +

π2

6
log 2 log(1 + x)

+
1

4
Li4

(

1− x2
)

− 1

4
Li4

(

x2

x2 − 1

)

− Li4

(
1− x

2

)

− Li4(1− x)

− 1

2
Li4(−x) +

1

2
Li4(x) + 2Li4

(
x

x− 1

)

− Li4

(
2x

x− 1

)

+ 2Li4

(
1

1 + x

)

+ 2Li4

(
x

x+ 1

)

− 2Li4

(
2x

x+ 1

)

+ 2Li4

(
1 + x

2

)

− Li4

(
1

2

)

− π4

72
− Li3(1− x) log(1− x)− 1

3
log 2 log3(1− x)

− 1

24
log3(1 + x) log(1− x) +

1

4
log x log(1 + x) log2(1− x)

+
1

2
log2 2 log2(1 + x) +

1

4
Li4

(
4x

(x+ 1)2

)

,

H(0, 0,−1,−1;x) =− Li3(−x) log(1 + x) + ζ3 log(1 + x) +
1

12
log4(1 + x)

− π2

12
log2(1 + x) + Li4(−x) + Li4

(
1

1 + x

)

+ Li4

(
x

x+ 1

)

− π4

90
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− 1

6
log x log3(1 + x) ,

H(0, 0,−1, 1;x) =Li3(−x) log(1− x) +
3

4
ζ3 log(1− x) +

1

32
log4(1− x) +

23

96
log4(1 + x)

− 1

12
log x log3(1− x)− 1

24
log(1 + x) log3(1− x)

− 1

3
log 2 log3(1 + x)− 1

4
log x log3(1 + x)− 1

3
log3 2 log(1 + x)

− 1

16
log2(1 + x) log2(1− x) +

1

4
log x log(1 + x) log2(1− x)

+
1

4
log x log2(1 + x) log(1− x) +

1

2
log2 2 log2(1 + x)

− π2

24
log(1 + x) log(1− x) +

π2

6
log 2 log(1 + x) +

1

4
Li4

(

1− x2
)

− 1

4
Li4

(

x2

x2 − 1

)

− Li4(1− x)− 3

2
Li4(−x) +

1

2
Li4(x) + Li4

(
x

x− 1

)

+
1

4
Li4

(
4x

(x+ 1)2

)

+ 2Li4

(
1

1 + x

)

+ 2Li4

(
x

x+ 1

)

− 2Li4

(
2x

x+ 1

)

+ 2Li4

(
1 + x

2

)

− 2Li4

(
1

2

)

− π4

72
− 1

24
log3(1 + x) log(1− x)

+
π2

16
log2(1− x)− 13

48
π2 log2(1 + x) ,

H(0, 0, 0,−1;x) =− Li4(−x) ,

H(0, 0, 0, 1;x) =Li4(x) ,

H(0, 0, 1,−1;x) =Li3(x) log(1 + x) +
3

4
ζ3 log(1 + x)− 1

6
log4(1 + x) +

1

3
log 2 log3(1 + x)

+
1

6
log x log3(1 + x) +

1

3
log3 2 log(1 + x)− 1

2
log2 2 log2(1 + x)

− π2

6
log 2 log(1 + x) +

1

2
Li4(−x)− 3

2
Li4(x)− 1

4
Li4

(
4x

(x+ 1)2

)

− Li4

(
x

x+ 1

)

+ 2Li4

(
2x

x+ 1

)

− 2Li4

(
1 + x

2

)

+ 2Li4

(
1

2

)

+
π4

90

+
π2

6
log2(1 + x)− Li4

(
1

1 + x

)

,

H(0, 1,−1,−1;x) =
1

2
Li2(x) log2(1 + x) + Li3(−x) log(1 + x)− Li3(x) log(1 + x)

− Li3

(
2x

x− 1

)

log(1 + x) + Li3

(
1

1 + x

)

log(1 + x)

− Li3

(
1 + x

2

)

log(1 + x)− 3

4
ζ3 log(1 + x) +

1

6
log4(1 + x)

− 1

2
log(1− x) log3(1 + x)− 1

6
log x log3(1 + x)− 1

3
log3 2 log(1 + x)
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+
1

6
log3(1− x) log(1 + x) +

1

4
log2 2 log2(1 + x)

+ log(1− x) log x log2(1 + x)− π2

8
log2(1 + x)

− 1

2
log2(1− x) log x log(1 + x) +

π2

6
log 2 log(1 + x)

− 1

2
Li4(−x) +

1

2
Li4(x) +

1

4
Li4

(
4x

(x+ 1)2

)

+ Li4

(
1

1 + x

)

+ 3Li4

(
1 + x

2

)

− 3Li4

(
1

2

)

− π4

90
− Li3

(
1− x
1 + x

)

log(1 + x)

− 1

2
log 2 log3(1 + x) + log 2 log(1− x) log2(1 + x)

− 1

2
log 2 log2(1− x) log(1 + x) +

π2

6
log(1− x) log(1 + x)

− Li4

(
2x

x+ 1

)

,

H(0, 1,−1, 1;x) =− 47

96
log4(1− x) + log 2 log3(1− x) +

11

12
log x log3(1− x)

+
1

24
log(1 + x) log3(1− x)− 1

4
log2 2 log2(1− x)

− log 2 log(1 + x) log2(1− x)− 5

4
log x log(1 + x) log2(1− x)

− 1

2
Li2

(
1− x

2

)

log2(1− x) +
1

2
Li2(−x) log2(1− x)

− 17

48
π2 log2(1− x)− 1

6
log3 2 log(1− x) +

1

24
log3(1 + x) log(1− x)

− 1

4
log x log2(1 + x) log(1− x) +

π2

12
log 2 log(1− x)

+
1

2
log2 2 log(1 + x) log(1− x)− π2

24
log(1 + x) log(1− x)

+ log 2 Li2(x) log(1− x)− log(1 + x)Li2(x) log(1− x)

+ Li3(x) log(1− x) + 3Li3

(
2x

x− 1

)

log(1− x)− Li3

(
1

1 + x

)

log(1− x)

+ Li3

(
1− x
1 + x

)

log(1− x) + Li3

(
1 + x

2

)

log(1 − x)− 29

8
ζ3 log(1− x)

− 55

96
log4(1 + x) + log 2 log3(1 + x) +

7

12
log x log3(1 + x)

+
29

48
π2 log2(1 + x)− Li2(x)2

2
− Li2,2(−1, x) + Li2,2

(
1

2
,

2x

x− 1

)

+ log3 2 log(1 + x)− π2

2
log 2 log(1 + x)− 1

2
log2 2 Li2(x)

+ Li2(−x)Li2(x) +
π2

12
Li2(x) + 2 log(1 + x)Li3(x) + 3Li4(1− x)
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− 1

2
Li4(−x)− 3

2
Li4(x)− 2Li4

(
x

x− 1

)

+ 3Li4

(
2x

x− 1

)

− 3

4
Li4

(
4x

(x+ 1)2

)

− 4Li4

(
1

1 + x

)

− 4Li4

(
x

x+ 1

)

+ 6Li4

(
2x

x+ 1

)

− 6Li4

(
1 + x

2

)

− 1

4
Li4

(

1− x2
)

+
1

4
Li4

(

x2

x2 − 1

)

+
3

2
log(1 + x)ζ3

+ 6Li4

(
1

2

)

+
π4

72
+

9

16
log2(1 + x) log2(1− x)− 1

2
Li2(x) log2(1− x)

− Li3(−x) log(1− x)− 3

2
log2 2 log2(1 + x)− Li2

(
1− x

2

)

Li2(x) ,

H(0, 1, 0,−1;x) =− Li2,2(−1, x) ,

H(0, 1, 0, 1;x) =2Li3(x) log(1− x)− 2ζ3 log(1− x)− 1

12
log4(1− x)

− π2

6
log2(1− x) +

Li2(x)2

2
+ 2Li4(1− x)− 2Li4(x)

+
1

3
log x log3(1− x)− 2Li4

(
x

x− 1

)

− π4

45
,

H(0, 1, 1,−1;x) =Li2,2(−1, x)− Li2,2

(
1

2
,

2x

x− 1

)

+
1

2
Li2

(
1− x

2

)

log2(1− x)

− 1

2
Li2(−x) log2(1− x) +

1

2
Li2(x) log2(1− x) +

1

2
Li2(x) log2 2

− Li2(x) log 2 log(1− x)− 2Li3

(
2x

x− 1

)

log(1− x)

− 2Li3(x) log(1 + x) +
7

4
ζ3 log(1− x)− 5

8
ζ3 log(1 + x)

+
3

8
log4(1 + x)− 2

3
log 2 log3(1− x)− 1

3
log x log3(1− x)

− 2

3
log 2 log3(1 + x)− 1

3
log x log3(1 + x)− 2

3
log3 2 log(1 + x)

+
1

2
log2 2 log2(1− x) +

π2

8
log2(1− x) + log2 2 log2(1 + x)

+
π2

12
log 2 log(1− x) +

π2

3
log 2 log(1 + x) +

1

4
Li4

(

1− x2
)

+
1

2
Li2(x)2

+ Li2

(
1− x

2

)

Li2(x)− Li2(−x)Li2(x)− π2

12
Li2(x) + Li4

(
1− x

2

)

− 2Li4(1− x) + Li4(−x) + Li4(x)− 2Li4

(
2x

x− 1

)

+
1

2
Li4

(
4x

(x+ 1)2

)

+ 3Li4

(
1

1 + x

)

− 1

2
Li4

(
1− x
1 + x

)

+
1

2
Li4

(
x− 1

x+ 1

)

+ 2Li4

(
x

x+ 1

)

− 4Li4

(
2x

x+ 1

)

+ 4Li4

(
1 + x

2

)

− 5Li4

(
1

2

)

− π4

288
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− Li3(1− x) log(1 + x) +
7

24
log4(1− x)− 1

6
log3 2 log(1− x)

− 3

8
π2 log2(1 + x) ,

H(0, 1, 1, 1;x) =
1

2
Li2(x) log2(1− x) + Li3(1− x) log(1− x) +

1

3
log x log3(1− x)

− π2

12
log2(1− x)− Li4(1− x) +

π4

90
. (D.5)

Notice that we have actually used the function Li2,2 with three different arguments in the

reductions, as these formulae were already available to us. To convert to the basis with

H(0, 1, 0,−1;x) and H(0, 1, 1,−1;±x) as basis functions, one has to apply the identities

Li2,2(−1, x) = −H(0, 1, 0,−1;x) , (D.6)

Li2,2

(
1

2
,

2x

x− 1

)

=−H(0, 1, 1,−1;x) −H(0, 1, 0,−1;x) − log 2 log (1− x) Li2 (x)

+ 1/2 (log (1− x))2 Li2 (1/2− 1/2x) − 1/2 (log (1− x))2 Li2 (−x)

+ 1/2 (log 2)2 Li2 (x)− 2 log (1 + x) Li3 (x)

− 2 log (1− x) Li3

(
2x

−1 + x

)

+ 1/2 (log (1− x))2 Li2 (x)

− log (1 + x) Li3 (1− x) + Li2 (1/2 − 1/2x) Li2 (x)− Li2 (−x) Li2 (x)

− 1/12π2Li2 (x)− 1/6 (log 2)3 log (1− x) + 1/2 (log 2)2 (log (1− x))2

− 2/3 log 2 (log (1− x))3 + 1/8π2 (log (1− x))2 + 7/4 log (1− x) ζ3

+ 1/3π2 log 2 log (1 + x) + 1/12π2 log 2 log (1− x) + Li4 (−x)

− 2 Li4

(
2x

−1 + x

)

+ 1/2 Li4

(

4x

(1 + x)2

)

+ 2 Li4

(
x

1 + x

)

− 4 Li4

(
2x

1 + x

)

+ 4 Li4 (1/2 + 1/2x) + 3 Li4

(
1

1 + x

)

− 1/2 Li4

(
1− x
1 + x

)

+ 1/2 Li4

(
x− 1

1 + x

)

+ 1/4 Li4
(

1− x2
)

+ Li4 (x)

− 5 Li4 (1/2) + Li4 (1/2− 1/2x) − 2 Li4 (1− x) + 1/2 (Li2 (x))2

+ 3/8 (log (1 + x))4 +
7

24
(log (1− x))4 − 2/3 log 2 (log (1 + x))3

− 1/3 log (x) (log (1 + x))3 − 3/8π2 (log (1 + x))2 − 5/8 log (1 + x) ζ3

− 1/3 (log (1− x))3 log (x)− 2/3 (log 2)3 log (1 + x)

+ (log 2)2 (log (1 + x))2 − 1

288
π4 , (D.7)
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Li2,2

(
1

2
,

2x

x+ 1

)

=−H(0, 1, 1,−1,−x) + H(0, 1, 0,−1, x) +
7

16
(log (1 + x))4

+
7

16
(log (1− x))4 + 3 Li4

(
1

1− x

)

− 1/2 Li4

(
1 + x

1− x

)

+ 1/2 Li4

(

−1 + x

1− x

)

− 2 Li4 (1 + x)− 2 Li4

(
2x

1 + x

)

+ 1/2 Li4

(

−4x

(1− x)2

)

+ 2 Li4

(
x

x− 1

)

− 4 Li4

(
2x

x− 1

)

+ 1/2 (Li2 (−x))2 − Li4 (−x) + 2 Li4

(
x

1 + x

)

+ Li4 (1/2 + 1/2x)

− 1/2 Li4

(

x2

x2 − 1

)

+ 2 Li4

(
1

1 + x

)

+ 3/4 Li4
(

1− x2
)

− Li4 (x)

+ 2 Li4

(
x

−1 + x

)

− 5 Li4 (1/2) + 4 Li4 (1/2 − 1/2x) − 2 Li4 (1− x)

− 1/2 (log (1 + x))2 Li2 (x)

+
(

−1/3 (log (1− x))3 − 1/3 (log (1 + x))3
)

log (−x)

+
(

−1/8 (log (1 + x))2 − 1/4π2
)

(log (1− x))2

+

(

−1/12π2 log (1 + x) +
7

8
ζ3 − 1/12 (log (1 + x))3

)

log (1− x)

+
(

1/3π2 log (1− x) + 1/12π2 log (1 + x)− 2/3 (log (1− x))3

− 2/3 (log (1 + x))3
)

log 2 +
(

1/2 log (1− x) (log (1 + x))2 − 1/6 (log (1 + x))3

− 1/6 (log (1− x))3 + 1/2 (log (1− x))2 log (1 + x)
)

log (x)

+ (−2/3 log (1− x)− 1/6 log (1 + x)) (log 2)3

+
(

1/2 (log (1 + x))2 + (log (1− x))2
)

(log 2)2

− 1/12 (log (1− x))3 log (1 + x)− 1/12π2 (log (1 + x))2

+
13

4
log (1 + x) ζ3 +

(

− 1/12π2 − log 2 log (1 + x) + Li2 (1/2 + 1/2x)

+ 1/2 (log (1 + x))2 + 1/2 (log 2)2
)

Li2 (−x)

+ 1/2 (log (1 + x))2 Li2 (1/2 + 1/2x) − 2 log (1 + x) Li3

(
2x

1 + x

)

− log (1− x) Li3 (1 + x) + 2 log (1 + x) Li3 (x)− 13

1440
π4 . (D.8)
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