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Abstract In some well-known scenarios of open-universe eternal inflation,
developed by Vilenkin and co-workers, a large number of universes nucleate and
thermalize within the eternally inflating mega-universe. According to the proposal,
each universe nucleates at a point, and therefore the boundary of the nucleated uni-
verse is a space-like surface nearly coincident with the future light cone emanating
from the point of nucleation, all points of which have the same proper-time. This
leads the authors to conclude that at the proper-time t = tnuc at which any such
nucleation occurs, an infinite open universe comes into existence. We point out
that this is due entirely to the supposition of the nucleation occurring at a single
point, which in light of quantum cosmology seems difficult to support. Even an
infinitesimal space-like length at the moment of nucleation gives a rather differ-
ent result—the boundary of the nucleating universe evolves in proper time and
becomes infinite only in an infinite time. The alleged infinity is never attained at
any finite time.

Keywords Inflation, Infinity

1 Introduction

It is commonly stated that infinities can occur in inflationary cosmology in two
ways. Firstly, it is stated that quantum tunnelling can lead from a universe with
finite
spatial sections to an imbedded expanding universe domain with infinite spatial
sections. Secondly, it is claimed this will occur an infinite number of times: “most
important of all is that once inflation starts it produces not just one universe, but
an infinite number of universes” [6]. Thus what is proposed is the existence of
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an infinite number of expanding universe domains like the one we see around us,
but each with somewhat different characteristics, all imbedded in a surrounding
inflationary universe; and each with infinite spatial sections.

The way this is stated implies, implicitly or explicitly, that the infinite spatial
sections come into being instantaneously in each bubble; as soon as soon as a
bubble nucleates in an inflating universe, negatively curved infinite spatial sections
come into existence at that instant. This claim, which is repeated and provides the
basis for further philosophical speculations in later work (e.g. [7; 9; 11]), is based
essentially on identifying the future light cone of the point of nucleation—or more
precisely, an exactly constant proper time surface very close to that light cone—as
the effective boundary of the bubble universe. As such it is a surface of infinite
extent that is everywhere at the same space–time distance from the origin, with
a foliation of spacelike surfaces of constant negative curvature and infinite extent
asymptotic to this light cone in its future. However, this conclusion is the result of
assuming that the bubble universe originates at a single point, instead of as a region
with some extension, no matter how small. When we substitute this alternative, the
instantaneous emergence of the infinite bubble boundary is no longer apparent. We
are left with a finite boundary which expands forever—but only becomes infinite
in an infinite time, and hence is never in fact attained.

Thus in both cases, there is an ongoing process: at any finite time there never
exists the claimed infinite number; it is what the situation tends to but never attains.
The universe is evolving towards such a state, but never reaches it; for that is the
essential nature of infinity.

2 Origination of infinite bubble universes: the null cone

In their development of open-universe inflation, Vilenkin and Winitzki [12] con-
sider a mega-universe dominated by false vacuum inflating with an approximately
de Sitter metric

ds2 =−dt2 + exp(2H0t)(dr2 + r2dΩ
2), (1)

where H0 =
√

2πV0/3, V0 being the false vacuum potential. Within this inflat-
ing mega-verse, spherical bubbles of true vacuum nucleate to form daughter uni-
verses which quickly thermalize and evolve separately as Friedmann–Lemaı̂tre–
Robertson–Walker (FLRW) universes. If we focus on one case of cosmic nucle-
ation, at the moment of nucleation—at a particular point in time and in space, say
at t = 0 and r = r0—a bubble of true vacuum is formed, which looks like an open
FLRW universe with

dss = dτ
2 +a2(τ)(dξ

2 + sinh2
ξ dΩ

2), (2)

where for small values of τ , setting nucleation at τ = t = 0, the bubble has yet to
thermalize and is still inflating. So it is very close to de Sitter, with

a(τ) = H−1
0 sinh(H0τ). (3)

Vilenkin and Winitzki [12] carefully relate the coordinates of the metrics, discuss
the conditions for continued brief acceleration of the bubble universe and for its
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thermalization. Similar analyses are given by other writers, for example Freivogel
et al. [5], but in that case with tunnelling from the compact k = +1 form of the de
Sitter universe.

The argument for at infinite bubble universe originating at a point t = τ = 0
with point-like radial position r = r0 is straightforward. Since it has no spatial
extension, from (1) ds2 = −dt2, and the proper interval s there can be identified
with t = 0. So s = t = 0 at the origin. But the whole future light cone emanat-
ing from there is at the same proper distance from the origin, since it is given by
ds = 0. And that surface extends to infinity. In a definite sense then, that whole
surface comes into existence instantaneously at the instant t = 0. Vilenkin and
Winitzki [12] show that the boundary of the bubble universe is in this case a con-
stant proper-time spacelike surface infinitesimally close to that future light cone.
Thus, an infinite bubble universe comes into existence at that moment. Spacelike
surfaces of constant proper time occur within this boundary, each at a constant
proper time from the origin; thus after say a finite time τ1, no matter how small,
infinite spacelike surfaces exist with every point produced through physical pro-
cesses taking the identical time τ1 since nucleation, no matter how far from the
origin they are. An actual infinite spatial extent comes into existence in a finite
time, originating from a universe with compact spatial sections—a truly remark-
able claim, based on the nature of the hyperbolic geometry of special and general
relativity theory.

3 Spatially extended finite alternative

Is this claim that an infinite bubble universe emerges instantaneously at t = τ = 0
supportable? As emphasized above, this rests on the supposition that the surface
of the bubble universe can be identified with the future light cone emanating from
that point, which requires that it originate precisely at that point—without spatial
extension. However, this supposition seems somewhat dubious from the point of
view of quantum cosmology, taking into account the fact that such transitions
really take place within finite spatial volumes—not at idealized points. Indeed
according to Freivogel et al. [5], quantum tunnelling leads to a domain of finite
radius coming into existence instantaneously. This is quite different than when it
is supposed to occur at a point-like event.

So, what happens when we suppose, instead, that the bubble universe origi-
nates in a volume with some finite extension? Let’s simply represent it as ∆r2.
Then, from the point of view of the de Sitter mega-universe metric, we see that
that originating surface is not at the same proper distance form the origin, since

∆s2 =−∆ t2 + exp(2H0t)∆r2.

Clearly t = τ = 0 cannot now be identified with the proper-interval of the surface
of the originating bubble, and, as that surface evolves forward in time, expanding
rapidly by inflation at least for a short while before thermalization, its boundary
will not have the same proper distance from every part of that originating surface
at t = τ = 0. In fact, the proper time on that boundary measured from the various
spatial points in the nucleated bubble, will diverge. There is then no support for
considering it instantaneously infinite—it began finite, and continues to be finite
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at every physically attainable time. It approaches infinity in an infinite time—but
that is never actually reached or completed, in any real sense of that word.

Thus, the interpretation of an infinite t = 0 constant initial surface of a bub-
ble universe coming into existence at that time within an eternally inflating mega-
universe appears to be an artifact of treating its origination in a unwarranted ideal-
ized fashion—at a single space–time point. This is an example of how careful we
need to be in drawing conclusions from idealizations which involve unextended
points and the infinities which are connected with them.

4 Spacelike Surfaces and the emerging universe

The key underlying point is that the whole space–time does not come into being
instantaneously: things take place physically, as events unroll along particle world
lines (particles tunnel, scalar field roll down potential surfaces, particles collide,
etc.). The outcome is determined as it happens (because quantum events are involved),
determining both what happens in the space–time and (because space–time curva-
ture is determined by the matter in the space–time) even the space–time structure
itself. We do not in the real world have a block universe that instantaneously comes
into being; rather we have an Evolving Block Universe that unrolls over time [2].

But which spacelike surfaces are the relevant ones for this process? Differ-
ent choices of time are represented by different choices of spacelike surfaces of
constant time, as depicted in Fig. 1 for the case of Minkowski (flat) space–time,
which adequately illustrates the main points to be made here. Spacelike surfaces
S0 = constant are at constant proper time from the origin of coordinates. In effect,
the suggestion made by Vilenkin et al. is that we should take seriously these sur-
faces of constant distance from the origin rather than the surfaces of constant
Minkowski time T .

How to choose between them? Well, in fact [2] events normally unroll along
timelike or null world lines, rather than being based on spacelike surfaces, conve-
nient as these are for setting up coordinate systems. Every point in each surface
S0 = constant is at the same proper time from the origin of coordinates. So one
can imagine a physical process that takes a proper time S0 to develop after the
initiation event at O; then the outcome will occur simultaneously at every point
on the surface S0 = constant, no matter how far away in spatial terms. Thus one
can claim that infinitely far away events (in spacelike terms) occur simultaneously
with the nearest ones, in these surfaces. This is the rationale for claiming infinities
of spatial events actually exist immediately after the tunnelling; for this argument
holds no matter how small S0 is.

It is in this context that it matters that the causal origin of the physical events
after tunnelling is of finite extent, see Fig. 2 of [5] for this context. It is as a result
of this finite size that infinities never exist at any finite time after the tunnelling
event. We consider this first in the paradigmatic case of Minkowski space–time,
and then in the context of general bifurcate Killing horizons, such as occur for
example in de Sitter space–time.
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Fig. 1 Constant time surfaces in Minkowski space–time. The surface S0 of constant proper time
from the origin of coordinates O lies inside the future light cone C of O, and is a spacelike
surface of constant negative curvature. For events Q and R on that surface, there are alternative
surfaces of constant time, such as the surface of constant Minkowski time T . The event R lies at
a later Minkowski time than the event Q, even though both are at the same proper time from O

Fig. 2 Space–time distances in Minkowski space–time. The surface S0 of constant proper time
T0 from the origin of coordinates O is not a surface of constant time from the event P. The proper
time from O to R is the same as the proper time from O to Q; but the proper time from P to R
is greater than the proper time from P to Q (n.b.: because this is a hyperbolic geometry, that
statement is not obvious from the diagram)

4.1 Paradigmatic example: Minkowski space–time

Proper time from the origin O to a point Q on the surface at constant proper time
from O in Minkowski space–time is by definition of that surface the same as the
proper time from the origin O to any other point R on the surface (See Fig. 2), even
though the first corresponds to a smaller Minkowski time T than second. However
the proper time from P to R is greater than the proper time from P to Q. To show
this in detail: let O be at (TO,XO) = (0,0) and P be at (TP,XP) = (0,ε) with ε > 0.
The surface S0 is given by

−T 2 +X2 =−S2
0. (4)

Thus Q is at (TQ,XQ) where XQ = +
√

T 2
Q −S2

0. The space–time distance from P
to Q is given by

− τ
2
PQ =−(TP−TQ)2 +(XP−XQ)2 (5)

Substituting for (TP,XP,XQ), (5) becomes

τ
2
PQ =

(
S2

0− ε
2)+2ε

√
T 2

Q −S2
0

Applying the same calculation to R and subtracting,

τ
2
PR− τ

2
PQ = 2ε

(√
T 2

R −S2
0−

√
T 2

Q −S2
0

)
(6)

which diverges as TR → ∞ for fixed P and Q, provided ε 6= 0 (i.e. P is not at O);
for large TR,

τ
2
PR ' 2εTR. (7)

Thus a process that takes a minimum proper time τ1 to occur, but depending on all
the points in an initial domain U = (0,x), 0 < x < ε , in the surface T = 0 will grad-
ually progress up the points in the surface S0 = const and will take an arbitrarily
long time to reach the furthest points in this surface, no matter how small ε is, pro-
vided it is non-zero. It will take an infinite time to affect all points in the surface in
the true meaning of the word infinity: it will always be progressing to further and
further points, and will never complete the process in any finite time. If however
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ε = 0 (i.e. P is
at O), the originating events are of zero spacelike extent and we recover τ2

PR = τ2
PQ

(both Q and R are at the same proper time from O); all events on the surface occur
simultaneously in terms of proper time along the world lines from O. But this
exactly pointlike origin of later physical events is unphysical; it cannot occur in
practice.

4.2 Bifurcate horizons

The more general context context worth considering is that of bifurcate Killing
vectors, considered so clearly by Boyer [1], which includes the previous example
and the de Sitter case considered in [12] as special cases.1 The group of isometries
acts as an isotropy group about the points in the bifurcate Killing horizon, which
are fixed points of the group. As the group acts on the points in the space–time,
the proper time τ(O,Pi) from the origin O to images Pi of a point in the surface of
constant proper time from the origin stays invariant (Fig. 3). Similarly the proper
time τ(Qi,Pi) from images Qi at constant spatial distance from the origin of a
point Q1, to images Pi of a point P1 in the surface of constant time from O, stays
invariant (Fig. 4). However the proper time τ(Q1,Qi) from Q1 to Qi increases
linearly with the group parameter ξ along the timelike group orbits in the surfaces
of constant distance from the origin. The proper time τ(P1,Qi) is greater than the
sum of the times τ(P1,P2) and τ(P2,Q2) (as a timelike geodesic without conjugate
points is longer than any other curve between its endpoints). Hence

τ(P1,Q2) > τ(P1,P2)+ τ(P2,Q2) = αξ + τ(P1,Q1) (8)

for some constant α; thus τ(P1,Q2)→∞ as ξ →∞ and the proper time from P1 to
points on the surface T 0 is unbounded in concordance with (7). The physical con-
clusions are the same as in the previous case. In particular this argument applies to
the De Sitter Universe, where the static frame represents the transition to spatial
surfaces of constant negative curvature.

1 See for example Rindler [10], pages 49–54 and 306–309, respectively

Fig. 3 Group action about origin O for any bifurcate horizon. The symmetry group of a bifurcate
horizon moves the point Q1 in the surface S0 (constant proper time T 0 from O) to the point Q2 in
the same surface. The proper time OQ1 is the same as the proper time OQ2, because an isometry
group leaves space–time distances invariant. The future null cone of O is mapped into itself by
the group, and O is a fixed point of the group

Fig. 4 Group action on points near a bifurcate horizon. The symmetry group of a bifurcate
horizon moves the point Q1 in the surface S0 (constant proper time T 0 from O) to the point Q2
in the same surface, and moves the point P1 in the surface D0 (constant proper spatial distance
D0 from O) to the point P2. The proper time P1Q1 is the same as the proper time P2Q2, because
an isometry group leaves space–time distances invariant, but is less than the proper time P1Q2
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4.3 The null cone revisited

The same argument applies to the null cone, see Fig. 5 for the Minkowski space–
time situation. The set of points represented by the null cone is instantaneous for
the origin O, but more distant points on the null cone are at larger and larger proper
distances from any point P = (0,ε) in the surface T = 0, no matter how small ε ,
provided ε 6= 0. Essentially the same argument applies in both Figs. 2 and 5; hence
events unroll along the null cone too, because they are based in what occurs in a
finite rather than pointlike domain in the initial surface T = 0. In fact the same
Eqs. (4)–(7) apply as before, but now with S0 = 0. Thus we get

τ
2
PR = τ

2
PQ +2ε (TR−TQ), (9)

again leading to (7) for large TR.
This argument will again extend to the case of any bifurcate Killing horizon as

defined in [1]. Figure 6 is the relevant diagram, with the same argument as above
in relation to Fig. 4 leading to the same result as before, but now as regards points
on the light cone.

5 Conclusion

An infinite set of universes never exists at any finite time in chaotic inflation—it
is a state that is never attained, but is what the physical situation tends to as time
progresses. Similarly spatial infinities cannot occur at any finite time in any one of
the universe domains resulting from quantum tunnelling; rather they may be the
state that the models tend to as time goes to infinity. This is so even though the
hyperbolic infinite space sections are at unit proper time from the origin, because
what happens at later times is not determined only by what happens at a space–
time point such as the origin.

Genuine physical processes will originate from domains with non-zero spatial
extent. And as soon as this domain has finite extent, arbitrarily near points to the
origin in the Minkowski surfaces of constant time T = const are infinitely distant
in proper time from the infinitely distant spatial events in the surfaces of constant
proper time from the origin S = const, and it will take an infinite time for their
consequences to develop to the furthest reaches of these spacelike surfaces. The
putative spatial infinities will not come into being at any finite time. The key point
is that the physics does not take place instantaneously in the spatial sections at

Fig. 5 Space–time distances and the null cone of O in Minkowski space–time. Both Q and R
lie on the future light cone of O, and hence are at zero proper distance from it, hence influences
from O reach both Q and R simultaneously. The proper time PR however is greater than the
proper time PQ, hence influences from P reach Q before they reach R

Fig. 6 Group action and the null cone of a bifurcate horizon. The symmetry group of a bifurcate
horizon moves the point Q1 in the future null cone of O to the point Q2 in that null cone, and
moves the point P1 in the surface D0 (constant proper distance D0 from O) to the point P2.
The proper time P1Q1 is the same as the proper time P2Q2, because an isometry group leaves
space–time distances invariant, but is less than the proper time P1Q2
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constant proper distance from the origin, because it cannot have an exactly point-
like physical origin. Consequently, the potential infinity is never actually attained
in physical terms. It is always in the future of what actually exists.

One of the main reasons that we study cosmology is because of our fascina-
tion with its philosophical aspects. The idea of infinite spatial sections has bizarre
implications; if true, it plausibly implies that countless identical civilizations to
ours are scattered in the infinite expanse of the cosmos, with semi-identical his-
tories to ours replicated an infinite number of times out there [4]. Vilenkin et al.
claim this is a necessary outcome of current inflationary theories [9; 11]. We claim
that this is not the case, the catch lying in the idea that this is currently how things
are: that it is the state at the present instant. As explained above, the real situation
is that physical processes may be such that eventually an infinite number of galax-
ies, stars, planets, and civilizations will tend to come into existence; but that state
is not achieved at any finite time through the supposed physical processes.

Any claims of actual existence of physical infinities in the real universe should
be treated with great caution (cf. [3], Sec. 9.3.2), as emphasized by David Hilbert
long ago ([8], p. 151):

“Our principal result is that the infinite is nowhere to be found in real-
ity. It neither exists in nature nor provides a legitimate basis for rational
thought. . .. The role that remains for the infinite to play is solely that of an
idea . . . which transcends all experience and which completes the concrete
as a totality. . .”

Our results concur with this judgement.

References

1. R.H. Boyer (1969) Geodesic killing orbits and bifurcate killing horizons Proc.
R. Soc. (Lond.) A311 245 – 252

2. Ellis, G.F.R.: Physics in the real universe: time and space–time. Gen. Relativ.
Gravit. 38, 1797–1824 (2006). arXiv:gr-qc/0605049

3. Ellis, G.F.R.: Issues in the philosophy of cosmology. In: Butterfield, J., Ear-
man, J. (eds.) Handbook in Philosophy of Physics, pp. 1183–1285. Elsevier,
Amsterdam (2006). arxiv:astro-ph/0602280

4. G.F.R. Ellis G.B. Brundrit (1979) Life in the infinite universe Q. J. R. Asiat.
Soc. 20 37 – 41

5. Freivogel, B., Kleban, M., Martinez, M.R., Susskind, L.: Observational con-
sequences of a landscape. JHEP 0603:039 (2006). arXiv:hep-th/0505232

6. Guth, A.: Eternal inflation and its implications. J. Phys. A. 40, 6811–6826
(2007). arXiv:hep-th/0702178

7. Garriga, J., Vilenkin, A.: Many worlds in one. Phys. Rev. D64, 043511 (2001).
arxiv:gr-qc/0102010

8. Hilbert, D.: On the infinite. In: Benacerraf, P.,
Putnam, H. (eds.) Philosophy of Mathematics,
pp. 134–151. Prentice-Hall, Englewood Cliff (1964)

9. Knobe, J., Ohm, K.D., Vilenkin, A.: Philosophical implications of inflationary
cosmology. Br. J. Philos. Sci. 57, 47–67 (2006). arxiv: physics/0302071



A note on infinities in eternal inflation 9

10. W. Rindler (2001) Relativity: Special, General, and Cosmological Oxford
University Press Oxford

11. A. Vilenkin (2006) Many Worlds in One. The Search for Other Universes Hill
and Wang New York

12. Vilenkin, A., Winitzki, S.: Probability distribution for Ω in open-universe
inflation. Phys. Rev. D55, 548–559 (1997). arxiv:astro-ph/9605191


