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Abstract. We discuss the conceptual design of a system to reduce the 6D emittance of a circulating 
muon beam. This system utilizes ionization cooling to achieve 6D phase reduction of the beam. Our 
design is based on a hydrogen gas filled ring which incorporates optics consisting of weak-focusing 
dipoles and 200 MHz rf cavities which restore the ionization energy loss due to the muons 
traversing the hydrogen gas. 

INTRODUCTION 

Muon beams can be cooled by ionization cooling, in which the muons lose momentum 
traversing a material absorber, and regain the longitudinal momentum component 
traversing an RF cavity. Focusing magnets, such as solenoids or quadrupoles, contain the 
beam.  The system can be closed into a ring by bending magnets or by tilting solenoids. 
A ring system provides 6D cooling, while a straight one only cools transversely. We have 
been investigating cooling rings with lattices composed of various combinations of 
dipoles and quadrupoles. The first rings designed included short liquid hydrogen (LiH2) 
absorbers, but subsequently we have have investigated rings in  which the energy 
absorbtion  occurs in compressed hydrogen gas that fills the entire beam enclosure. We 
will briefly discuss some LiH2  based rings, then turn to the gas-filled rings. and lastly 
discuss a small demonstration ring intended to validate the principle of  6D muon 
cooling. 

 

DIPOLE-QUADRUPOLE RINGS WITH Li H2 ABSORBERS 

Before studying gas-filled rings, many rings were designed for cooling with short LiH2 
absorbers. Their performance was simulated with ICOOL The magnet lattices used 
various arrangements of dipoles and quadrupoles, or of dipoles alone with edge focusing. 
The main lattice objectives were to have low beta-function values in the absorbers to 
reduce heating, to minimize the maximum beta-function values elsewhere to obtain large 
acceptances and to reduce the cell lengths to increase cooling efficiency. Figure 1 shows 
an example of this type or ring cooler.   
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FIGURE 1.  Cell of an 4-cell quadrupole-dipole ring with LiH2absorber in the center. The ‘ears’ on the 
dipoles (B ) indicate edge focusing. 

DIPOLE-ONLY GAS-FILLED RINGS  

We have adopted the following approach to muon beam cooling in gas-
filled rings:  

Rings filled with high-pressure hydrogen gas for energy absorption. 
  efficient cooling (absorber everywhere) 
  RF breakdown voltage increased  

 
Dipole-only, scaling lattices 

  compact rings 
  lower betamax values, high acceptances 

 
Two types of scaling lattice rings have been investigated: Alternating Gradient Rings 
and Zero-gradient sector dipole rings. Examples are shown in Figures 2 and 3. 
 

 
 
 
 
 
 
 
 
 
 

 
FIGURE 2.  Three cells of FFAG Alternating Gradient 12 cell Ring. 
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Low � (25 cm) at absorber 
Combined function dipole simulated 
Dispersion only at absorber 
(allows for matching straight sections) 
Cell tune  ~ 3/4 
Beam momentum 250 MeV/c 
25 cm LiH2 wedges 
Wedge angle 200 
rf frequency 201.25 MHz 
Emax  = 16 MV/m 
Transmission 50% 
Total Merit = Transmission x 
(ex ey ez )initial/ (ex ey ez )final  = 15 

Lattice consists of alternating vertically 
defocusing and horizontally focusing 
magnets 
 
No drift spaces between dipoles. 
 

Bo = 2.6T   and Po = 250 MeV/c 
 

Total merit with decay = 120 
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FIGURE 3.  Schematic diagram of 6 cell weak focusing high-field ring.  

RINGS TO DEMONSTRATE COOLING  

We have proceeded to make a design scenario to demonstrate 6D muon cooling with a 
small zero-gradient dipole ring, In order to make this demonstration economically 
feasible we have reduced the cooling goals to correspond to a merit factor of at least 10, 
and set the following design parameters:  

1.8T conventional magnets, 200 MHz RF cavities, 40 Atmosphere compressed H2 
For each harmonic, the beam momentum that corresponds to the field is calculated and 
the cooling performance evaluated. Comparisons are made for different harmonics. It was 
found that 4 or 6 dipole rings and harmonic number 3 were optimum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 4. 6-dipole ring: schematic, parameters and performance for harmonic numbers 2 and 3. 

 

Harmonic 2  
Circumference = 1.76 m, P0   = 77 MeV/c  

Harmonic 3  
Circumference = 3.76 m,  P0   = 165 MeV/c  

Harmonic 4  
Circumference = 5.45 m, P0   = 240 MeV/c 
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Key parameters at r = 60 cm 
βx = 53 to 72 cm ; βy = 60 to 64 cm 
Dispersion = 60 to 64 cm  
Circumference  =  3.91 m 
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FIGURE 5. 4-dipole ring: Schematic, parameters and performance for harmonic number 3. 

SMALL MUON RING FOR A COOLING DEMONSTRATION 

A preliminary plan has been made to demonstrate muon cooling in a gas-filled ring. 
The conceptual design and parameters are shown in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6. Proposed gas-filled muon storage ring for cooling demonstration. 
 
In order to model the fields more realistically, these have been calculated with the 

TOSCA code and tracking and performances obtained using the field maps generated. 
 
 
 
 
 

Harmonic 3  
Circumference = 3.76 m 
P0   = 165 MeV/c  
40 Atmosphere H2 

Total Merit without decay = 20 

1.6 m

Parameter Value
Dipole Field 1.8 T

Number of Cells 4
Reference Momentum 172.12 MeV/c
Ring Circumference 3.81 m

X Aperture ±20 cm
Y Aperture ±10 cm

Pz Acceptance ±10 MeV/c
Minimum βX 38 cm
Maximum βX 92 cm
Minimum βY 54 cm
Maximum βY 66 cm

Hydrogen Gas Pressure 40 Atm @ 300¼ K
RF Gradient 10 MV/m

RF Frequency 201.25 MHz
Total RF Length 1.2 m
Total Orbit Turns 100
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FIGURE 7. Azimuthal fields generated by TOSCA with three models. 
 
Not surprisingly, cooling is best with the hardedge model. Studies have been made and 

will continue to shape the poles and coil configuration to maximize performance.  

SUMMARY 

• Quadrupole-dipole rings with LiH2 absorbers require high fields for cooling. 
• Dipole-only rings are more compact and thus have better cooling performance. 
• Rings filled with compressed  hydrogen gas with scaling lattices are promising. 
• A small weak focusing ring system has been designed to demonstrate feasibility 

of 6-D muon ionization cooling. 
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