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Abstract

The gauge/gravity duality is a powerful mathematical tool that relates strongly-

interacting gauge theories with large numbers of colors to classical gravitational the-

ories with negative cosmological constant. This thesis uses the gauge/gravity duality

in two ways.

The first half of the thesis explores the notion of a holographic p-wave supercon-

ductor/superfluid. On the gauge theory side there is an SU(2) global symmetry that

is explicitly broken to U(1) by turning on a charge density. This U(1) symmetry is in

turn spontaneously broken when the ratio between temperature and charge density

is smaller than a critical value. The spontaneous breaking of the U(1) symmetry is

accompanied by a spontaneous breaking of rotational symmetry. On the gravity side

the SU(2) and U(1) symmetries are gauged, and the symmetry-broken backgrounds

are charged black branes surrounded by clouds made of off-diagonal gauge bosons.

The gauge/gravity duality is used to compute various critical exponents and trans-

port coefficients related to the phase transition between the U(1) symmetry-broken

and symmetry-restored phases.

The second half of this thesis builds on the recent progress on using the tech-

nique of localization for computing supersymmetry-protected quantities in gauge

theories with N ≥ 2 supersymmetry on the three-sphere. Using this technique, the

infinite-dimensional path integrals of these theories were reduced to finite-dimensional

multi-matrix integrals. In the second half of this thesis these multi-matrix integrals

are computed approximately for the case of effective gauge theories on M2-branes

probing various Calabi-Yau singularities. The answers match the predictions of the

gauge/gravity duality. In particular, they reproduce the N3/2 scaling of the number

of degrees of freedom on N coincident M2-branes.
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Chapter 1

Introduction

The gauge/gravity duality provides the closest connection to date between string

theory and the observable world. At the same time, it makes a rich playground for

enhancing our theoretical understanding of strongly-interacting quantum systems,

gravity, and ultimately string theory itself. Even though it was born out of string

theory, in the past few years this duality has started a life of its own as an effective

description of strongly-interacting quantum systems. Such an effective description

forgets about the stringy origin of the duality and focuses on some of its properties

that are believed to be universal to many other strongly-interacting systems with or

without a stringy origin. Within this context, the duality has been used extensively

to describe phenomena similar to the ones encountered in heavy-ion collisions and in

superconducting materials. The first half of this thesis takes such an approach and

investigates a gauge/gravity description of what would be a p-wave superconductor

if realized in the lab. The second half of this thesis goes back to the stringy origin

of the duality, and building on recent advances in explicit descriptions of certain

supersymmetric field theories, it solves a long-standing puzzle related to the number

of degrees of freedom in these theories. The methods used in the two halves of this

thesis are very different from each other because the first half contains calculations on
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the gravity side of the correspondence, whereas the second half deals with the gauge

theory side. The two halves may therefore seem disconnected, and they may indeed be

so, showing the versatility of the gauge/gravity correspondence as a tool for solving

a wide spectrum of problems. They are however connected in that they both aim

to describe strongly-interacting quantum systems and renormalization group flows,

both in the language of quantum field theory and in that of the dual gravitational

description.

1.1 Gauge/gravity phenomenology

One can go some way towards understanding the insights behind the gauge/gravity

duality without mentioning string theory at all. On one side of the duality there is a

strongly-interacting gauge theory with a large number of colors N in d+ 1 spacetime

dimensions, whose Lagrangian description we may not even know. What we do know

about this gauge theory are the scaling dimensions and global symmetry charges of

a few of its gauge-invariant operators. These operators could be scalars, spinors,

vectors, etc. All theories contain a universal symmetric tensor operator, namely

the stress-energy tensor Tµν . For each global symmetry, if any, there is a conserved

current Jµ. That the gauge theory is strongly interacting means that quantum effects

are important and cannot be studied using perturbation theory. The precise limit

considered in the gauge/gravity duality is the ’t Hooft limit where N is taken to

infinity while keeping the ’t Hooft coupling g2
YMN fixed, gYM being the Yang-Mills

coupling. If one further takes the strong coupling limit g2
YMN � 1, the gauge theory

becomes simpler because typically the dimensions of most operators grow with g2
YMN ,

and many operators decouple from the dynamics.

On the other side of the duality there is a classical gravitational theory with

negative cosmological constant in d+ 2 spacetime dimensions. That the gravity side
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is classical means that quantum effects are negligible, but it is assumed that this

classical theory is in fact a limit of a more general theory of quantum gravity. The

gravitational theory is described by an action written in terms of fields of various

spin. While the precise action and field content depend on the gravitational theory

in question, one of these fields, namely the metric gµν , is universal. Some of these

gravitational theories could also contain gauge sectors with gauge fields Aµ. Since

quantum effects are assumed to be small, the Euler-Lagrange equations derived from

the action provide a good approximation to the dynamics. The static solutions of

these Euler-Lagrange equations are typically black holes or black branes, but one can

also obtain in special cases smooth spacetimes without a black hole or black brane

horizon by taking the size of the horizon to zero.

An instance of the gauge/gravity duality is a pair of a (d+1)-dimensional strongly-

interacting large N quantum field theory and a (d + 2)-dimensional classical gravi-

tational theory, where quantum states in the field theory correspond to solutions of

the equations of motion in gravity, and gauge-invariant operators in the field theory

correspond to fields on the gravity side. An important example of a quantum state is

that described by a thermal density matrix with temperature T and entropy S. On

the gravity side, this state corresponds to a background with a black hole horizon

whose Hawking temperature is T and Bekenstein-Hawking entropy is S. As an exam-

ple of the correspondence between operators and fields, the field theory stress-energy

tensor Tµν corresponds to the metric gµν . A conserved current Jµ in the field theory

corresponds to a gauge field Aµ on the gravity side. In general, it may be hard to

determine which field theory operator corresponds to which field in gravity.

Small excitations around a given field theory state are dual to perturbations of

the gravitational background, where these perturbations satisfy equations of motion

derived from the gravitational action. In particular, correlation functions in the field

theory, which can be interpreted as the response of the system to small excitations,
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can be computed from the perturbations of the gravitational solution. The field

theory can be thought of as living on the boundary of the gravitational spacetime

in the sense that it is the behavior of the gravitational perturbations close to this

boundary that encode the field theory correlators. For concreteness, let us denote

the field theory coordinates by xm, with m ranging from 0 to the number d of spatial

dimensions, and the extra “radial” coordinate that exists only on the gravity side by

r. Let the boundary of the gravitational spacetime be at r =∞. If one perturbs the

boundary field theory by some operator Oφ(x), this perturbation affects the boundary

conditions at r =∞ for the dual bulk field φ and determines a unique causal solution

for φ. From the large r asymptotic behavior of φ at another point x′, one can extract

the correlation function 〈Oφ(x)Oφ(x′)〉. At short distances or large energies, when the

points x and x′ are close together, the asymptotics of φ at x′ are determined mostly

by what the gravity background is like close to boundary, at large r. When x and x′

are widely separated, the large r asymptotics of φ at x′, and hence also the correlation

function 〈Oφ(x)Oφ(x′)〉, probe regions of the geometry that are typically far from the

boundary. The coordinate r can therefore be interpreted as an energy scale in the

field theory; the farther we are from the boundary, the lower the energy scale. The

gravitational background can be interpreted as a “holographic RG flow,” with the

ultraviolet (UV) at large r and the infrared (IR) at small r. The word “holographic”

means that the bulk gravitational dynamics is determined by what happens in the

boundary field theory, and vice versa.

A dictionary of how to relate correlation functions in the field theory to per-

turbations of the gravitational solution is known in detail for the case where the

gravitational solution is asymptotically anti-de Sitter (AdS) at large r. Form the

holographic RG flow interpretation, one can infer that as we move towards the UV,

a field theory dual to an asymptotically anti-de Sitter background bears a closer and

closer resemblance to a theory dual to anti-de Sitter space. Field theories dual to
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anti-de Sitter space are special because there is no RG flow. They are invariant at

the quantum level under conformal transformations, which are rescalings of the field

theory metric by a position-dependent factor. This entire dissertation deals with

conformal field theories and RG flows caused by relevant deformations thereof, as

well as their dual gravitational descriptions. It is therefore befitting to now review

a few general properties of conformal field theories and of anti-de Sitter space in an

arbitrary number of spacetime dimensions, as well as the relation between the two.

This relation is known as the Anti-de Sitter / Conformal Field Theory (AdS/CFT)

correspondence. The results in this section are of course not new. The original papers

where the AdS/CFT correspondence was proposed are [1–3]. For a review, see for

example [4].

Before we start, it should be mentioned that in most well-understood examples

of AdS/CFT the gauge theories are supersymmetric and can be realized as effective

field theories on the intersection of various types of branes in string theory or M-

theory. Supersymmetry is important because it places very strong constraints on

various quantities that can then be computed and compared with the gravity side

even though the gauge theory is strongly-interacting. In the second half of this thesis

we will see an example of such a quantity. In some sense, the first half of this thesis

is on a less firm footing than the second half because it uses AdS/CFT more loosely.

The models used in the first half are not derived explicitly from a brane construction,

and little is known about the dual gauge theories. AdS/CFT is used to define and

explore aspects of a broad class of models.

1.1.1 Conformal field theories on Rd,1

The precise description of the conformal group depends on the manifold where the

field theory is defined. On Rd,1 with d > 1, the conformal group consists of spacetime

translations xm → xm + tm, Lorentz transformations xm → Λm
nx

n, dilatations xm →
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λxm, and special conformal transformations

xm → xm + amx2

1 + 2xnan + a2x2
. (1.1)

Here, indices are raised and lowered with the standard metric on R3,1, namely ηmn =

diag{−1, 1, 1, 1}. Let the (anti-Hermitian) generators of these transformations be Pm,

Mmn, D, and Km, respectively, normalized so that the commutation relations are

[Mmn, Pr] = −(ηmrPn − ηnrPm) , [Mmn, Kr] = −(ηmrKn − ηnrKm) ,

[Pm, Kn] = 2Mmn − 2ηmnD , [D,Pm] = −Pm , [D,Km] = Km ,

[Mmn,Mrs] = −ηmrMns − ηrnMsm − ηnsMmr − ηsmMrn ,

(1.2)

with all other commutators being zero. These commutation relations can be checked,

for example, in the differential representation where the generators of the conformal

group are

Pm = ∂m , Mmn = xm∂n − xn∂m ,

D = xm∂m , Km = x2∂m − 2xmx
n∂n .

(1.3)

The differential representation is the representation under which functions on Rd,1

transform. For example, under dilatations we have f(x)→ f(λx), so under infinites-

imal dilatations we have f(x)→ f(x)+εxm∂mf(x)+O(ε2), where we wrote λ = 1+ε

and expanded in small ε. The generator of dilatations is therefore xm∂m in this

representation, as in (1.3).

In general, operators in the field theory transform in more complicated represen-

tations of the conformal group. We see from (1.2) that the only conformal group

generator that commutes with the Lorentz generators Mmn is D, so one can choose a

basis of operators that transform in a finite-dimensional representation of the Lorentz

group and are eigenfunctions of the dilatation operator D. That an operator O is
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an eigenfunction of D with eigenvalue −∆ means that under the rescaling x→ λx it

transform as O(x)→ λ−∆O(λx). Equivalently, D acts on O as

[D,O(x)] = (−∆ + xm∂m)O(x) . (1.4)

From an AdS/CFT point of view, perhaps the most important property of the

conformal group on Rd,1 is that it is isomorphic to SO(d, 2), which as we will see in

the next section is also the isometry group of AdSd+2. That the conformal group is

isomorphic to SO(d, 2) can be seen at the level of the generators by defining

Jmn = Mmn , Jm(d+1) =
1

2
(Km − Pm) ,

J(d+2)(d+1) = D , Jm(d+2) =
1

2
(Km + Pm) .

(1.5)

An explicit computation using (1.2) shows that the JMN satisfy the commutation

relations

[JMN , JRS] = −ηMRJNS − ηRNJSM − ηNSJMR − ηSMJRN , (1.6)

with ηMN = diag{−1, 1, 1, . . . , 1,−1}. These commutation relations are those of the

SO(d, 2) algebra with the signature given by ηMN .

1.1.2 Anti-de Sitter space

AdSd+2 is a hyperboloid in Rd+1,2 with the metric ηMN introduced above. If XM

are the coordinates in Rd+1,2, and the radius of AdSd+2 is L, then the embedding of

AdSd+2 in Rd+1,2 is

ηMNX
MXN = −L2 . (1.7)
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It is not hard to see that the isometry group of AdSd+2 is SO(d, 2), because both the

metric ηMN on the ambient space Rd+1,2 and the embedding equation (1.7) are in-

variant under SO(d, 2) transformations. Each JMN generates rotations in the XMXN

plane.

While visualizing AdSd+2 as the hyperboloid (1.7) has its merits, for describing

the holographic dual of a theory on Rd,1 it is preferable to parameterize AdSd+2 by

the d + 1 field theory coordinates xm and the extra coordinate r mentioned earlier.

One can obtain such a parameterization by writing

Xm = xmer , Xd =
x2er

2L
− L sinh r ,

Xd+1 =
x2er

2L
+ L cosh r ,

(1.8)

where r and xm are unrestricted. These coordinates parameterize only half of the

hyperboloid (1.7). In these coordinates, the metric on AdSd+2 induced from ηMN is

ds2 = e2rdxmdx
m + L2dr2 , (1.9)

and the Killing vectors satisfying the commutation relations (1.2) are

Pm = ∂m , Mmn = xm∂n − xn∂m ,

D = −∂r + xm∂m , Km = x2∂m − 2xmx
n∂n + L2e−2r∂m + 2xm∂r .

(1.10)

We mentioned above that the field theory should be thought of as being defined on

the boundary of AdS, which is at r =∞. More precisely, the field theory spacetime

Rd,1 should be identified, up to a conformal transformation, with a constant r slice of

the background (1.9) as r is taken to infinity. We see quite nicely that in this limit

the Killing vectors of AdSd+2 reduce to the conformal Killing vectors on Rd,1 given in

eq. (1.3).
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1.1.3 Asymptotically AdS spacetimes

In addition to anti-de Sitter space, it is common to consider other asymptotically AdS

backgrounds. Anti-de Sitter space is an extremum of the Einstein-Hilbert action

S =
1

2κ2
d+2

∫
dd+2x

√
−g (R− 2Λ) , (1.11)

where Λ is a negative cosmological constant related to the radius L of AdSd+2 through

Λ = −d(d+1)/(2L2), and κd+2 is the gravitational constant in d+2 dimensions. The

gravitational constant is related to the Newton constantGd+2 through κ2
d+2 = 8πGd+2.

The action (1.11) has other extrema too. One of them is the black-brane metric1

ds2 = e2r
[
−f(r)dt2 + dxidx

i
]

+ L2 dr
2

f(r)
, f(r) ≡ 1− e(d+1)(rh−r) , (1.12)

where r ≥ rh for some rh, and we denoted x0 = t. At r = rh the blackening function

f has a simple zero and the spacetime has a flat event horizon. This event horizon

has an associated Hawking temperature T , which can be computed by requiring that

the Euclidean continuation of the metric (1.12) should not have a conical singularity

at r = rH . This requirement implies

T =
(d+ 1)erh

4πL
. (1.13)

The AdS-Schwarzschild metric is an example of an asymptotically-AdS metric, be-

cause at very large r, the blackening function f approaches unity, and the metric

approaches (1.9). This background is dual to a finite-temperature state of a CFT

with temperature T . One can also compute the entropy S as the area of the black

1A perhaps more familiar form of this metric can be obtained by sending r → log(r/L). Then

ds2 = r2

L2 (−fdt2 + dxidx
i) + L2

r2f dr
2 and f = 1−

(
rh
r

)d+1
.
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hole horizon divided by 4Gd+2. One obtains

S =
2π

κ2
d+2

edrhVd , (1.14)

where Vd is the d-dimensional coordinate volume.

If in addition to the Einstein-Hilbert action (1.11) one also adds matter fields, for

example a scalar φ with some potential V (φ), it may be possible to find extrema of

the action of the form

ds2 = e2a(r)dxmdx
m + L2dr2 , (1.15)

with a(r) ∼ r as r → ∞. Such a spacetime would be another example of an

asymptotically-AdS metric, and it would describe a holographic RG flow.

1.1.4 Rough AdS/CFT dictionary

What does it take for an operator Oφ of conformal dimension ∆ to be dual to some

bulk field φ in an asymptotically AdSd+2 geometry? The first requirement would be

that both Oφ and φ should transform in the same representation of the Lorentz group,

so the field φ should have an index structure in the field theory directions that mimics

that of Oφ. A second requirement would be that both Oφ and φ transform in the

same way under dilatations, and hence under the whole conformal group. While the

action of the generator D on Oφ is given in (1.4), D acts on φ through a Lie derivative

with respect to the AdS Killing field (1.10). If s is the number of lower indices minus

the number of upper indices of φ in the xm directions, an explicit calculation gives

LDφ = (xm∂m − ∂r + s)φ . (1.16)
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From comparing (1.16) with (1.4), we see that it is possible for the field φ to be

dual to Oφ while preserving conformal invariance asymptotically at large r only if

(−∂r + s)φ = ∆φ, or in other words if φ(xm, r) ∼ e−(∆−s)r at large r. The coefficient

of e−(∆−s)r can be identified up to normalization with the expectation value 〈Oφ(x)〉

because both of these quantities have the same transformation properties under the

conformal group.

Perturbations of the field theory action with a source Jφ for Oφ should also have

a dual gravity description. Adding the source Jφ means that the field theory action

changes by

δS =

∫
dd+1xJφ(x)Oφ(x) , (1.17)

where all the Lorentz indices of Oφ are contracted with those of Jφ. One can assign

Jφ conformal dimension d−∆. Of course, since Jφ is a fixed external source, it might

seem silly to say that it transforms in a particular way under dilatations. However,

if one keeps Jφ arbitrary, then the perturbed theory is classically invariant under

dilatations provided that Jφ transforms with conformal dimension d−∆. In order for

JφOφ to be a Lorentz scalar, the number of lower indices minus the number of upper

indices of Jφ must be −s. Jφ therefore transforms in the same way as the coefficient

of e−(d−∆+s)r of a bulk field φ̃ whose index structure matches that of Jφ. In simple

cases, φ and φ̃ are related by raising and lowering indices with the bulk metric. In

particular, if s = 0 one could have φ = φ̃, and the coefficient of e−dr would correspond

to 〈Oφ〉, while the coefficient of e(∆−d)r would correspond to Jφ.

For small values of φ, only the quadratic action is important because it gives a

linear equation of motion, and the corrections coming from higher order terms in φ

are small. If φ is a real scalar field one can normalize it such that the quadratic action

11



is

Sφ =

∫
dd+2x

√
−g
[

1

2
(∂µφ)2 − 1

2
m2φ2

]
, (1.18)

for some constant m, which is the mass of the scalar field. The equation of motion

takes the asymptotic form at large r:

1

e(d+1)r
∂r(e

(d+1)r∂rφ)−m2L2φ = 0 . (1.19)

The solution is given in terms of two integration constants Aφ(xm) and Bφ(xm):

φ(xm, r) = Bφ(xm)e(∆−d)r [1 + · · · ] + Aφ(xm)e−∆r [1 + · · · ] , (1.20)

where the dots stand for corrections coming from the fact that (1.19) is only an

approximation at large r. The constant ∆ satisfies the equation

∆(∆− d) = m2L2 . (1.21)

The integration constants Aφ(xm) and Bφ(xm) are not independent if one requires

φ(xm, r) to be regular at the other end of the integration region. Up to normalization

issues that will be made precise in the following section, one can interpret Aφ(xm) as

the expectation value 〈Oφ(xm)〉 in the presence of the source Jφ(xm) = Bφ(xm).

1.1.5 More precise AdS/CFT dictionary

The precise statement of the AdS/CFT correspondence is stated more clearly in

Euclidean signature for a reason that will be made clear shortly. The statement is

that the generating functional for connected correlators equals minus the on-shell
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gravitational action:

W [Jφ] = −Son-shell[Jφ] , W [Jφ] = log

〈
exp

∫
dd+1x Jφ(x)Oφ(x)

〉
, (1.22)

both computed as functionals of the source Jφ. As above, on the gravity side the

source Jφ is the coefficient of e(∆−s−d)r in the large r expansion of the dual field φ.

The gravity action is typically UV divergent, but the divergences can be subtracted

systematically through a procedure called holographic renormalization (for a review,

see [5]). Once one constructs a regularized action that is finite on-shell for any Jφ, con-

nected correlation functions of Oφ can be computed by taking functional derivatives

of the on-shell action with respect to Jφ.

It is easier to formulate the prescription for computing correlation functions in

Euclidean signature because, at finite temperature for example, the gravitational

background has only one boundary at r = ∞, and once one specifies a source Jφ at

this boundary there is a unique solution for φ that is regular everywhere away from

the boundary. In Minkowski signature the presence of an event horizon complicates

the boundary conditions one needs to use. The boundary conditions used in this

dissertation are so that φ looks like an infalling wave at the event horizon. Such

boundary conditions are appropriate for computing retarded two-point functions,

which are the two-point functions corresponding to causal field theory response to

perturbations. For a more detailed discussion, see [6–9].

1.1.6 Superconductors and superconducting black holes

Superconductors and superfluids

The first half of this dissertation contains applications of the ideas presented above

to superconductivity. A superconductor is a material where the electric current flows

with no resistance, or in other words where the DC conductivity is infinite. In addi-
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tion to being a perfect conductor, superconductors exhibit the Meissner effect, which

consists of expelling magnetic field lines from their interior. Many materials, such

as aluminum or lead, go superconducting below a certain temperature. As described

in [10], many properties of superconductors, such as the infinite DC conductivity

or the Meissner effect, can be attributed to the spontaneous breaking of the gauge

symmetry. That the gauge symmetry is spontaneously broken means that for small

excitations around the superconducting state the photon acquires a mass. Suppose

there is a vacuum with no external electromagnetic fields and zero current. The

system responds to small fluctuations of the gauge field by generating a current

Jm(ω,~k) = GR
nm(ω,~k)An(ω,~k) , (1.23)

for some function GR
nm(ω,~k). Since the symmetry is broken spontaneously, as opposed

to softly, this current is conserved, so kmGR
mn(ω,~k) = 0, where km = (ω,~k). One can

think of this response as coming from an effective action of the form
∫
δJmA

m, so the

fact that the gauge field acquires a mass translates into a nonzero limit of GR
mn(ω,~k)

as ω and ~k are taken to zero.

In order to study the conductivity, one needs to take ~k → 0 first. One can apply

an external electric field Eeiωt in the ith direction by setting An(ω, 0) = 1
iω
δniEe

iωt.

Eq. (1.23) predicts a current equal to Jj(ω, 0) = i
ω
GR
ij(ω, 0)Eeiωt. In the low-frequency

limit ω → 0, we see that as long as GR
ij(0, 0) does not vanish, a DC electric field creates

an infinite current, indicating an infinite DC conductivity. If the material is spatially

isotropic, then GR
ij(0, 0) is proportional to the identity matrix, and the conductivity is

the same in all directions. The superconductor has an s-wave symmetry in this case.

In chapters 2 and 3 in this dissertation we will find examples of superconductors where

this rotational symmetry is broken by having a preferred direction. These would be

p-wave superconductors.
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In order to study the Meissner effect, one needs to take ω → 0 first. For sim-

plicity, let’s consider the case of s-wave superconductors, in which case the condition

kmGR
mn = 0 together with the rotational symmetry in the spatial directions implies

GR
ij(0,

~k) = G(~k2)

(
δij −

kikj
~k2

)
. (1.24)

From eq. (1.23), the current is

Ji(0, ~k) = −G(~k)A⊥i (~k) , A⊥i (~k) ≡
(
δij −

kikj
~k2

)
Ai(~k) . (1.25)

In the low wavelength limit where G(~k) ≈ G(0), this equation is called the London

equation. In chapter (3) we will encounter the London equations corresponding to the

case of an anisotropic p-wave superconductor. The London equation almost shows

that there is a Meissner effect if G(0) 6= 0: taking the antisymmetrized derivative

w.r.t. xi and using the Maxwell equation ∂mFmn = Jn, one obtains the differential

equation (∇2 −G(0))Fij = 0. If G(0) 6= 0, the solutions of this differential equations

are exponentially decaying or increasing, so the magnetic field Fij is expelled from

the interior of a superconductor.

The above derivation of the Meissner effect sheds light on another issue: a su-

perconductor can also be thought of as a superfluid, and so can a system with a

spontaneously broken global as opposed to gauge symmetry. Suppose we have a non-

relativistic fluid with a U(1) global or gauge symmetry described by some Hamiltonian

H in a frame S where in the ground state the fluid is at rest. Boosting the system to a

frame S ′ moving with velocity ~v is equivalent to coupling the system to a pure gauge

external field ~A = ~v, where the charge now plays the role of the mass of each particle.

Since the change in the effective action is
∫
~J · ~A, the energy difference between the
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ground state energies in the two frames is

∆E ∝ v2G(0) . (1.26)

Now if we boost the wavefunction corresponding to the ground state of H, Galilean

transformations show that its H ′ eigenvalue would be larger than its H eigenvalue

by Mv2/2, where M is the total mass of the system. It follows from (1.26) that

the ground state is preserved under the boost only if G(0) 6= 0. When G(0) = 0 the

ground state of H is actually an excited state of H ′. Typically, under the effect of any

static perturbations in S ′ this excited state decays into states with lower energy and

the fluid eventually stops. This case corresponds to a normal fluid. For a superfluid,

the vacuum is invariant under boosts, so one necessarily has G(0) 6= 0.

Superconducting black holes

An interesting observation was made in [11] that charged black branes and black holes

in asymptotically AdS spaces can also break the gauge symmetry spontaneously. The

simplest example of this sort is the Abelian Higgs model coupled to gravity with

negative cosmological constant. The dynamical fields are the metric, a gauge field

Aµ with field strength Fµν , and a complex scalar field ψ that has charge q under Aµ.

The action is

S =
1

2κ2
d+2

∫
dd+2x

√
−g
[
R− 2Λ− 1

4
FµνF

µν − |Dµψ|2 −m2 |ψ|2
]
, (1.27)

where Dµ = ∂µ − iqAµ is the gauge covariant derivative. Suppose we want to study

static solutions of the equations of motion following from this action that are asymp-

totically AdS, have translational and rotational symmetry in d spatial directions, and

are electrically charged, meaning that asymptotically there is a nonzero electric flux.
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The ansatz appropriate for describing these solutions is

ds2 = e2a(r)(−h(r)dt2 + d~x2) + L2 dr
2

h(r)
, Aµdx

µ = Φ(r)dt , ψ = ψ(r) , (1.28)

where a, h, Φ, and ψ are functions of the radial coordinate r that satisfy equations of

motion derived from the action (1.27). Note that we take only the time component

of the gauge field to be nonzero, indicating that the black branes are electrically, and

not magnetically, charged. On the field theory side ψ is dual to an operator O of

conformal dimension ∆, where ∆(∆− d) = m2L2 , and the gauge field Aµ is dual to

a conserved current Jm. It is always the case in AdS/CFT that global symmetries on

the boundary correspond to gauge symmetries in the bulk.

The Reissner-Nordström Anti-de Sitter (RNAdS) black branes are some of the

extrema of the action of the form (1.28) with

a(r) = r , h(r) = 1 +Q2e−(2d−2)(r−rh) − (1 +Q2)e−d(r−rh) ,

ψ = 0 , Φ = µ+ ρe−d−2r ,

(1.29)

where we defined

Q2 ≡ d− 2

2(d− 1)
ρ2e−(2d−2)rh . (1.30)

These backgrounds do not break the gauge symmetry. If the charge q of the scalar

field is large enough, it was noticed in [11] in the AdS4 case that at low enough

temperatures there are also solutions of the form (1.28) where ψ is nonzero and its

behavior close to the boundary of AdS corresponds to an expectation value 〈O〉 as

opposed to a source. These “hairy” black hole solutions break the Abelian gauge

symmetry spontaneously because gauge transformations act on ψ by multiplying it

by a phase.
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The field theory interpretation is as follows. The solutions (1.28) where ψ = 0

correspond to states in a CFT at nonzero temperature and charge density. The

temperature is nonzero because the backgrounds (1.29) have a black hole horizon at

r = rh with some nonzero Hawking temperature T . The charge density is nonzero

because, as discussed earlier, the ρe−d−2r term in Φ corresponds up to normalization

to an expectation value of the dual operator, namely the time component Jt of the

conserved current dual to Aµ. The solutions with nonzero ψ that exist only at small

enough temperatures correspond to states in the CFT where in addition to a nonzero

temperature and charge density there is also a nonzero expectation value of 〈O〉.

The operator O is charged under the global U(1) symmetry generated by the current

Jm, so these states break the global symmetry spontaneously. As per the discussion

above, such states are usually referred to as superfluid states.

One can imagine weakly gauging the U(1) global symmetry in the boundary the-

ory, and thinking of this weakly gauged U(1) symmetry as describing electromag-

netism. As we have seen above, the states where the U(1) gauge symmetry is broken

then describe a superconductor because the DC conductivity is infinite and there is a

Meissner effect. In [12, 13] the AC conductivity σ(ω) was computed holographically,

and it was checked that it indeed exhibits a delta-function peak at ω = 0.

Chapters 2 and 3 contain another example of a gravity Lagrangian that exhibits

spontaneous gauge symmetry breaking. Instead of ψ and the U(1) gauge field Aµ,

these examples contain an SU(2) gauge field. We consider black holes that are charged

only with respect to a U(1) subgroup of SU(2). The off-diagonal gauge bosons com-

bine into a complex vector field that is charged under this U(1) with a charge pro-

portional to the gauge coupling. At very low temperatures, it is these gauge bosons

that play the role of ψ and condense. Since the field that condenses is now a vector,

the resulting charged black branes also break the SO(d) rotational symmetry. As

we will see, the conductivity matrix will be anisotropic in this case and describe a
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superconductor with p-wave symmetry.

1.1.7 Free energies in theories dual to AdS4

Before we move on to the study of explicit examples of theories dual to anti-de Sitter

space let us calculate from the gravity side of the correspondence two quantities that

measure the field theory number of degrees of freedom. From examining the regime

of validity of these computations, we will conclude that field theories with gravity

duals are rather special in that they contain a parametrically large number of degrees

of freedom.

Thermal free energy

One way of measuring the number of degrees of freedom is by calculating the thermal

free energy at some given temperature T . The finite temperature state is given by

the black-brane metric (1.12). Eliminating rh between the eqs. (1.13) and (1.14), one

obtains

S =
(4π)d+1

(d+ 1)d
Ld

2κ2
d+2

VdT
d . (1.31)

Invariance of a conformal field theory under dilatations implies that the expectation

value of the trace of the stress-energy tensor vanishes, so the energy density ε is

related to the pressure p through ε = dp. Extensivity of the energy as a function

of S and V implies that E = TS − pVd, so in a conformal theory it must be true

that E = d
d+1

TS. The thermal free energy FT = E − TS therefore equals − 1
d+1

TS.

Combining this expression with (1.31), one obtains

FT = −1

2

(
4π

d+ 1

)d+1
Ld

κ2
d+2

VdT
d+1 . (1.32)
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The case of interest in most of this dissertation is d = 2, corresponding to conformal

field theories dual to AdS4. In this case eq. (1.32) reduces to

FT = −32π3

27

L2

κ2
4

V2T
3 . (1.33)

Apart from the dependence on Vd and T , which follows from the extensivity of the

thermal free energy and dimensional analysis, we see that what measures the number

of degrees of freedom in a theory dual to AdSd+2 is the dimensionless ratio Ld/κ2
d+2.

It is reasonable to expect that Einstein gravity should provide a good approximation

to a more general theory of quantum gravity as long as gravity is weak. In other

words, the length scale over which the geometry doesn’t change significantly should

be large compared to the Planck length in (d + 2) dimensions. Since L is the radius

of curvature of AdSd+2, the requirement that gravity should be weak implies that

Ld/κ2
d+2 � 1. From eq. (1.33) it follows that the field theories dual to AdSd+2 have

a parametrically large number of degrees of freedom.

Free energy on S3

There is another way of estimating the number of degrees of freedom for theories

dual to AdS4 that will be relevant for the second half of this thesis. It was suggested

recently that a good measure of the number of degrees of freedom in this case might be

minus the logarithm of the path integral of the Euclidean field theory on S3 [14–18].

We will call this quantity F , and we will refer to it also as a free energy.2 While

the field theories we have been considering are defined on Minkowski space, one can

go to Euclidean signature and use conformal invariance to map these theories to the

three-sphere, which is possible because the three-sphere is conformally equivalent to

2A seemingly different measure of the number of degrees of freedom in a 3-d CFT was proposed
in [19,20]; it is the entanglement entropy between the two hemispheres in the CFT on R×S2. In [21]
it was shown that this quantity, which is the same as the entanglement entropy between a circle and
its complement on a plane, is also equal to minus the free energy of the Euclidean theory on S3.
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R3 as can be seen by using the stereographic projection. From an AdS standpoint,

going to Euclidean signature is achieved by changing the metric ηMN used to define

the hyperboloid (1.7) to ηMN = diag{1, 1, 1, 1,−1}. The resulting space

(X0)2 + (X1)2 + (X2)2 + (X3)2 − (X4)2 = −L2 (1.34)

is the four-dimensional hyperbolic space H4. Using the parameterization

Xm = L(sinh ρ)Ωm , Xd+1 = L(cosh ρ) , (1.35)

with Ωm a unit vector in R4 parameterizing S3, the metric on H4 becomes

ds2 = L2dρ2 + L2 sinh2 ρ dΩ2
3 , (1.36)

where dΩ2
3 is the standard line element on the three-sphere. In order to cover the

hyperboloid (1.34) only once, one should take ρ ≥ 0. The metric (1.36) gives a

foliation of H4 where the constant ρ leaves are conformally equivalent to S3. One can

therefore think of this metric as being dual to the vacuum state of a Euclidean theory

on S3, where the field theory lives at ρ =∞, in precisely the same way as the metric

(1.9) was appropriate for describing a field theory on R2,1 that lives at r =∞.

The AdS/CFT correspondence, in particular eq. (1.22), implies that the free en-

ergy on S3 equals the on-shell action in Euclidean signature. The Ricci scalar on Hd+2

is R = −d(d−1)/L2, so R−2Λ = −2(d+1)/L2. For d = 2, one can straightforwardly

calculate F by evaluating formally the on-shell action (1.11):

F =
1

2κ2
4

6

L2
Vol(H4) . (1.37)

The volume of H4 is of course divergent and it requires regularization. In the field
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theory, one should also perform a similar regularization of UV divergences to define

F . The regularization of Vol(H4) is done by imposing a hard cutoff ρ0 on the radial

coordinate ρ and computing the volume of the space with 0 ≤ ρ ≤ ρ0:

L4 Vol(S3)

∫ ρ0

0

dρ sinh3 ρ = 2π2L4

[
e3ρ0

24
− 3eρ0

8
+

2

3
+O(e−ρ0)

]
. (1.38)

Keeping only the finite part, it follows that the regularized volume of H4 is Vol(H4) =

4L4π2/3. The free energy is therefore [15,22,23]

F =
4π2L2

κ2
4

=
πL2

2G4

. (1.39)

Again, we see that the number of degrees of freedom is measured by L2/κ2
4, which

must be large in order for the Einstein gravity approximation to make sense.

1.2 AdS/CFT and M-theory

I will now describe examples of (2 + 1)-dimensional conformal field theories with

gravity duals. The AdS/CFT correspondence was originally proposed for (3 + 1)-

dimensional gauge theories derived from type IIB string theory backgrounds de-

scribing coincident D3-branes probing Calabi-Yau singularities (see, for example,

[1, 2, 24, 25]). In this case, the ten-dimensional metric close to the branes looks like

AdS5 × Y 5, where Y is a five-dimensional Einstein manifold. In the limit where the

number N of D3-branes is large and stringy effects are negligible, the effective field

theory on the D3-branes is dual to the low-energy string theory excitations around the

AdS5×Y 5 background. Explicit Lagrangian descriptions of many of these conformal

field theories are known, the simplest such example being the N = 4 supersymmetric

SU(N) Yang-Mills theory, for which Y 5 is the five-dimensional round sphere S5. Very

similar constructions exist in M-theory: if one places N M2-branes at a Calabi-Yau
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singularity, then close to the branes the metric becomes AdS4×Y 7 at large N , where

Y 7 is a seven-dimensional Einstein space. Explicit field theory Lagrangians in 2 + 1

dimensions describing these M2-brane theories have been written down only in the

past few years, starting with the work of Bagger and Lambert [26–28]. In this section

I will not talk about D3-branes or (3+1)-dimensional field theories at all, but instead

review some of these more recent developments related to M2-brane theories. I will

focus mostly on the simplest large N construction worked out by Aharony, Bergman,

Jafferis, and Maldacena (ABJM) [29], where the space Y 7 is a particular orbifold of

the round seven-sphere S7. The following discussion is drawn mostly from [29–33].

1.2.1 Supersymmetric Chern-Simons matter theories in three

dimensions

To construct explicit Lagrangians for 3-d supersymmetric theories, it is important to

first understand the field content of the supersymmetry multiplets at our disposal.

Any theory with N ≥ 2 supersymmetry can be described in terms of N = 2 multi-

plets, which are nothing but the dimensional reduction of the corresponding N = 1

multiplets from four dimensions. An N = 2 vector multiplet V in three dimensions

consists of a gauge field Aµ, a scalar field σ that comes from the component of the

four-dimensional gauge field along the direction we’re reducing, a two-component

Dirac spinor χ, and an auxiliary scalar D, all valued in the adjoint representation

of the gauge group. An N = 2 chiral multiplet Φ consists of a complex scalar φ, a

two-component Dirac spinor ζ, and an auxiliary complex scalar field F , all valued in

the same representation of the gauge group.

The ingredients for constructing actions with at least N = 2 supersymmetry

relevant to us are: the supersymmetric Chern-Simons action for a vector multiplet

V , the action for a chiral multiplet transforming in a given representation of the

gauge group, and a superpotential interaction term between the matter fields. The
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supersymmetric Chern-Simons action at level k is

SV(k) =
k

4π

∫
d3x tr

(
εmnr

(
Am∂nAr +

2

3
AmAnAr

)
+ iχ̄χ− 2Dσ

)
. (1.40)

Invariance of this action under large gauge transformations requires the Chern-Simons

level to be quantized. If the gauge group is SU(N) or U(N) with N > 1, the Chern-

Simons level takes integer values if the trace is in the fundamental representation.

The action of a chiral multiplet transforming in the representation R of the gauge

group is

SΦ =

∫
d3x

(
−Dmφ†Dmφ− iζ† /Dζ − F †F + φ†Dφ− φ†σ2φ

−ζ†σζ + iφ†χ̄ζ − iζ†χφ
)
.

(1.41)

The notation in this equation needs some explanation. The gauge-covariant derivative

Dm is defined as Dm = ∂m + iAαmT
α, where the (dimR) × (dimR) matrices Tα are

the generators of the gauge group in the representation R. For example, if the gauge

group is U(1) and Φ has charge q, then one can take T 1 = q; if the gauge group is

SU(2) and Φ transforms in the fundamental representation, then Tα are the Pauli

matrices. The chiral superfield Φ and all its components carry an index a that ranges

from 1 to the dimension of R. The notation F †F is short for F ∗aFa; the notation

ζ†σζ is short for ζ†aσαT
α
abζb, etc. In addition to (1.41), there could be a superpotential

interaction between the matter fields: if the superpotential is W (Φi), then

SW = −
∫
d3x

∑
i

∣∣∣∣∂W∂Φi

∣∣∣∣2 + fermionic terms , (1.42)

where the sum runs over all chiral superfields.

Using the ingredients presented above one can construct many N = 2 super-

symmetric Chern-Simons matter theories in three dimensions. All the field theo-
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ries considered in the second half of this thesis are so-called quiver gauge theories,

whose field content can be read off from a quiver diagram. These theories contain a

number of gauge groups, each with a Chern-Simons action of the form (1.40), and

each corresponding to a dot in the quiver diagram. The chiral superfields are rep-

resented by arrows. Each arrow corresponds to chiral superfield transforming in the

anti-fundamental representation of the gauge group where the arrow starts and the

fundamental representation of the gauge group where the arrow ends. The quiver

diagram does not specify the field theory uniquely—it just specifies the field content.

In the examples we will be looking at we will also need to specify the Chern-Simons

levels for each gauge group, as well as the superpotential.

In general, the gauge theories constructed this way are not conformal. In order

for the gauge theory to be conformal, the matter content and the gauge groups need

to be chosen appropriately. These are the examples we will focus on.

1.2.2 ABJM theory

The simplest superconformal gauge theory with a gravity dual is the one discovered

by ABJM [29]. This theory has N = 6 supersymmetry, but one can describe its

field content in N = 2 language. There are two U(N) gauge groups with vector

multiplets V and Ṽ , one with Chern-Simons level k and the other one −k, as well

as two bifundamental chiral superfields WA, A = 1, 2 transforming in the (N,N)

representation of U(N)×U(N), and two bifundamental chiral superfields ZA, A = 1, 2

transforming in (N,N). The superpotential is

W =
2π

k
εACε

BD tr
(
ZAWBZCWD

)
. (1.43)

The action is therefore SV(k) + SṼ(−k) +
∑2

A=1 (SZA + SWA
) + SW .

This theory has a manifest SU(2) × SU(2) global symmetry, where under the

25



first SU(2) factor the ZA transform as a doublet, and under the second SU(2) factor

the WA transform as a doublet. There is also a U(1)R symmetry under which ZA

and WA get multiplied by the same phase. Actually, one can check that because

the coefficient 2π/k in the superpotential was chosen just right, the R-symmetry is

enhanced to SU(2)R, under which (Z1,W†1) and (Z2,W†2) form doublets. Because

this SU(2)R does not commute with the global SU(2)× SU(2) symmetry mentioned

earlier, and together the two symmetries generate an SU(4) symmetry, it must be

that the R-symmetry is SU(4)R ∼= SO(6)R. Under SU(4)R, (Z1,Z2,W†1,W†2) trans-

form in the fundamental representation. In three dimensions, the R-symmetry of a

field theory with N supersymmetries is SO(N )R, so ABJM theory has N = 6 su-

persymmetry. Later on, we will encounter theories where the superpotential will not

allow an enhancement of U(1)R to SU(2)R, so those theories will just have N = 2

supersymmetry. We will also encounter theories with N = 3 supersymmetry where

there is no additional enhancement to N = 6.

In addition to the SO(6)R global symmetry, ABJM theory has a U(1)b global

symmetry that commutes with SO(6)R. If one were to examine the SU(N)×SU(N)

theory, this U(1)b would have been a “baryonic” global symmetry under which ZA

and WA transform with opposite phases. In the U(N)× U(N) theory, this baryonic

symmetry is gauged. However, in three dimensions, every Abelian gauge symmetry

with gauge connection Am and field strength Fmn has an associated global symmetry

generated by the current Jm = εmnrF
nr. The conservation of this current follows from

the Bianchi identity for Fmn. One could then ask why ABJM theory does not actually

have two conserved currents of this sort? One of these currents would be generated

by Jm = εmnr trF nr and one by J̃m = εmnr tr F̃ nr, where Fmn and F̃mn are the field

strengths of the gauge fields Am and Ãm in the two vector multiplets. The answer is

that the equations of motion for the two gauge fields imply that Jm = J̃m, so the two

currents are actually equal. Ignoring Z2 factors, the full symmetry group is therefore
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SO(6)R × U(1)b. When k = 1 or 2, this symmetry is further enhanced to SO(8)R,

and the field theory has the maximal amount of supersymmetry in three dimensions,

N = 8. It is not easy to check explicitly that the supersymmetry is indeed enhanced

to N = 8, and we will comment on this issue later on.

As a step towards understanding the gravity dual of ABJM theory, one can com-

pute the moduli space of vacua. Let us examine the case N = 1 first. The bosonic

part of the action is

S =

∫
d3x

[
k

4π
εmnr(Am∂nAr − Ãm∂nÃr)−

k

2π
(Dσ − D̃σ̃)

−
∣∣∣(∂m + iAm − iÃm)WA

∣∣∣2 +WA†(D − D̃)WA −WA†(σ − σ̃)2WA

−
∣∣∣(∂m − iAm + iÃm)ZA

∣∣∣2 + Z†A(D̃ −D)ZA − Z†A(σ − σ̃)2ZA

]
,

(1.44)

where we integrated out the auxiliary F and F̃ fields. Integrating out D and D̃ sets

σ = σ̃ =
2π

k

(
|W1|2 + |W2|2 −

∣∣Z1
∣∣2 − ∣∣Z2

∣∣2) . (1.45)

The vacua of the theory are determined by the classical solutions of the equations of

motion for which the scalar fields have constant expectation values. Plugging (1.45)

back into the action we see that the equations of motion are satisfied provided that

Am = Ãm. One can think of the condition Am = Ãm as being related to (1.45) by

supersymmetry. The resulting potential for WA and ZA is identically zero, suggesting

that all these vacua are supersymmetric. One might conclude that the there is a

C4 worth of supersymmetric vacua parameterized by the four complex numbers WA

and ZA, but this would be a little too quick, as some of these vacua may be gauge

equivalent.
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Gauge transformations act as

Am → Am + ∂mΛ , Ãm → Ãm + ∂mΛ̃ ,

WA → WAe
i(Λ−Λ̃) , ZA → ZAei(Λ̃−Λ) .

(1.46)

Under these gauge transformations, the action changes by the boundary term

δS =
k

2π

∫
S2

(
ΛF − Λ̃F̃

)
, (1.47)

where the two-sphere we are integrating over should be taken to have a very large

radius. Since Am = Ãm, this boundary term simplifies to

δS =
k

2π
(Λ− Λ̃)

∫
S2

F . (1.48)

It is sensible to require that the gauge fields Am and Ãm go to zero at infinity and that

the sources for F are localized. The second condition implies that at sufficiently large

radii, the integral of F over a two-sphere of radius r is independent of r. The first

condition implies that the gauge parameters Λ and Λ̃ must be required to approach

constant values asymptotically at large r. However, not all such gauge transforma-

tions should be allowed, because in a well-defined quantum theory the quantity eiS

should be invariant under all gauge transformations. Since Dirac quantization implies

that the integral of F over any two-manifold must be quantized in units of 2π, the

requirement that eiS should not change under gauge transformations implies that the

only allowed gauge transformations are those where

Λ− Λ̃→ 2π`

k
as r →∞ (1.49)

for some ` ∈ Z. As far as the moduli space is concerned, only constant gauge trans-
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formations are relevant because we are looking at solutions of the equations of motion

where Am = Ãm and where WA and ZA are constant. It follows that on the moduli

space, we have the identifications

WA ∼ WAe
2πi`/k , ZA ∼ ZAe−2πi`/k , (1.50)

for any integer `. The moduli space is therefore C4/Zk.

The moduli space of vacua of the U(N) × U(N) theory for N > 1 is rather

complicated, as there are now many more ways of satisfying the classical equations

of motion. While the moduli space has several branches of various dimensions, it can

be argued that the branch of moduli space with the highest dimension is the Nth

symmetric power of the N = 1 moduli space C4/Zk [29, 32].

1.2.3 The gravity dual of ABJM theory

It is believed that the N = 6 ABJM theory is the effective IR theory on N coincident

M2-branes probing a C4/Zk orbifold singularity. When N is large and k small (the

precise condition being N � k5 as we will see shortly), this brane configuration can

be described reliably within eleven-dimensional supergravity. The 11-d supergravity

action is

S =
1

2κ2
11

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

12κ2
11

∫
A3 ∧ F4 ∧ F4 , (1.51)

where κ11 is the gravitational coupling constant in eleven dimensions, which is related

to the Planck length `p by

2κ2
11 = (2π)8`9

p , (1.52)
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and A3 is the three-form gauge potential for the four-form F4 = dA3. In a little

more generality than we presently need, one can construct solutions to the equations

of motion following from (1.51) describing N coincident M2-branes at the tip of an

eight-dimensional Calabi-Yau cone X (in our case X = C4/Zk) of the form:

ds2 = H−2/3dxµdx
µ +H1/3ds2

X ,

F4 = dH−1 ∧ dx0 ∧ dx1 ∧ dx2 ,

(1.53)

where dxµdx
µ = (−dx0)2 + (dx1)2 + (dx2)2, and H is a harmonic function on X away

from the tip of the cone. Let Y be the seven-dimensional base of the cone (in our

case Y = S7/Zk). If the metric on Y is normalized so that Rmn = 6gmn, the cone

metric takes the standard form

ds2
X = dr2 + r2ds2

Y , (1.54)

where r is a radial coordinate. The simplest harmonic function on X is one that

depends only on the radial coordinate r, and the most general such function is a linear

combination of a constant function and 1/r6, as in eight-dimensional flat space: so

H = α +
(2L)6

r6
, (1.55)

for some constants α and L. If we want the solution (1.53) to asymptote to R2,1×X

at large r, we should take α = 1.

The solution (1.53) describes a stack of M2-branes extended along the 012 direc-

tions and located at the tip of the cone at r = 0. One can relate L to the number of

branes and the Planck length by a modified version of Gauss’s Law: M2-branes are

electric sources for F4 with charge equal to their tension τM2 = 2π/(2π`p)
3, so the

integral of ∗11F4 over any seven-dimensional Gaussian surface enclosing the branes
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should equal N times 2κ2
11τM2 = (2π`p)

6. The extra factor of 2κ2
11 in this formula

comes from the normalization of the action (1.51). Choosing the Gaussian surface to

be a section through the cone at a fixed radius r, we obtain

∫
Y

∗11F4 = −
∫
Y

∗8dH = 384L6 Vol(Y ) . (1.56)

Therefore

(
L

`p

)6

=
π6N

6 Vol(Y )
. (1.57)

The background (1.53) simplifies further if we look close to the stack of M2-branes.

Indeed, at small r one can neglect the constant α in (1.55). Setting α = 0 still yields

a solution to the equations of motion because α was allowed to be arbitrary in (1.55).

Close to the branes, the metric becomes

ds2 =
r4

(2L)4
dxµdx

µ +
(2L)2

r2
dr2 + (2L)2ds2

Y . (1.58)

Changing variables from r to a new radial coordinate ρ = 2 log(r/2L), this expression

becomes

ds2 = e2ρdxµdx
µ + L2dρ2 + (2L)2ds2

Y . (1.59)

In the first two terms one recovers the metric (1.9) on AdS4. The metric near a

stack of N coincident M2-branes at the tip of a Calabi-Yau cone is therefore a direct

product between AdS4 with radius L and the base Y of the cone with radius 2L.

For now we are interested only in the particular case X = C4/Zk, where Y =

S7/Zk. An important question that we have postponed so far is for what values of

N and k is the AdS4 × S7/Zk classical background a reliable approximation to the
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quantum-mechanical M-theory dynamics? Quite generally, quantum effects become

important in a gravitational theory when the geometry changes significantly over

distances of the order of the Planck length. One could then say that since L is the

only length scale in the solution (1.59), we should require it to be much larger than

the Planck length. Since Vol(S7/Zk) = π4/(3k), from the quantization condition

(1.57) we would conclude that Nk � 1. This is true, but not restrictive enough.

The smallest length scale in the geometry is the length of the circle along which

the Zk isometry acts. The length of this circle is proportional to L/k, so we should

require L/k to be much larger than the Planck length. Eq. (1.57) then gives N � k5.

This is the most restrictives range of N and k for which quantum corrections to the

AdS4 × S7/Zk background of M-theory are suppressed.

1.2.4 Why it works

Moduli space of vacua

One reason for believing that ABJM theory is the dual to AdS4 × S7/Zk is that

the moduli space of vacua of ABJM theory is the N -th symmetric power of C4/Zk.

Indeed, in M-theory parallel M2-branes are BPS objects and there is no force between

them, so one can take any number of M2-branes from the stack and move them around

on C4/Zk at no energy cost. Each such M2-brane configuration would correspond to

a vacuum of the theory on coincident M2-branes where the position of an M2-brane

away from the orbifold singularity would correspond to a vacuum expectation value

(VEV) of a certain scalar operator. Since there are N indistinguishable M2-branes

in the stack, one therefore expects that the manifold of vacua of this theory should

be the Nth symmetric power of C4/Zk.
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Type IIB brane construction

Another reason why ABJM theory is believed to be the IR fixed point of the theory

on N coincident M2-branes probing C4/Zk is based on a type IIB brane construction.

This brane construction engineers ABJM theory and, upon T-duality and lift to M-

theory, yields precisely N M2-branes probing the orbifold singularity. The type IIB

brane construction consists of an NS5-brane stretching along the 012345 directions, a

(1, k)-fivebrane3 stretching along the 012 directions and sitting at angle θ = arg(1+ik)

in the 37, 48, and 59-planes, and N D3-branes stretched along the 0126 directions.

The NS5-brane and the (1, k)-brane sit at fixed locations in the 6th direction, which

is taken to be compact. This configuration is known to preserve 6 supercharges,

corresponding to N = 3 supersymmetry from point of view of the 3-d theory on

the intersection of the three types of branes. The SO(3)R symmetry corresponds to

simultaneous rotations in the 345 and 789 subspaces.

At short distances, on each of the two D3-brane segments between the fivebranes

there is a U(N) N = 4 theory in four dimensions, which reduces to an N = 8

theory in three dimensions, which, in N = 2 language, consists of a vector multiplet

containing the open string gauge field on the D3-brane and three chiral multiplets

whose bottom components represent the position of the brane in the six transverse

directions. If instead of an NS5-brane and a (1, k)-brane we had two parallel NS5-

branes in the 012345 directions, then two chiral multiplets on each D3-brane segment

would become massive, the remaining two massless ones, Φ and Φ̃, as well as the

scalars σ and σ̃ in the vector multiplets corresponding to the motion of the D3-branes

along the NS5’s. This configuration preserves N = 4 SUSY in three dimensions, the

SO(4)R ∼= SU(2)1×SU(2)2 R-symmetry corresponding to SO(3)1
∼= SU(2)1 rotations

in the 345 subspace and SO(3)2
∼= SU(2)2 rotations in the 789 subspace.

3We adopt the convention where a (p, q)-fivebrane carries p units of NS5-charge and q units of
D5-charge.
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Turning one of the NS5-branes into a (1, k)-brane can be thought of as adding k

D5-branes in the 012789 directions intersecting that NS5, and then separating out

the D5-brane half-planes from each side of the NS5-brane by equal amounts in the 3,

4, and 5 directions. As we separate out the D5-brane half-planes, it is energetically

favorable to form a fivebrane bound state carrying (1, k) charge making an angle

θ = arg(1 + ik) with the 3, 4, and 5 axis in the 37, 48, and 59 planes. Introducing the

k D5-branes does not break any additional supersymmetry and gives rise to 4k D3-D5

strings, k of them connecting each D3-brane segment to each D5-brane segment. They

correspond to chiral multiplets qi and q̃i transforming in N and N of one of the gauge

groups and Qi and Q̃i transforming in N and N of the other gauge group, where i

runs from 1 to k. Separating out the two D5-brane half-planes and forming the (1, k)

brane gives superpotential masses proportional to k to Φ and Φ̃ and real mass terms

proportional to k to the auxiliary scalars σ and σ̃ from the vector multiplets. One

can think of these mass terms as arising from integrating out the fundamental and

antifundamental chiral fields; these mass terms are proportional to k because there are

k fundamental and antifundamental chirals of each type. When integrating out the

fermions in the chiral multiplets there is also a Chern-Simons term being generated

through the parity anomaly mechanism [34] with Chern-Simons coefficient k and −k

for the two gauge fields. (Each fermion generates a CS term with coefficient 1/2

times the sign of the fermion’s mass [34], and for each gauge group there are 2k such

fermions that we integrate out.) The separation of the D5-brane half-planes is what

breaks SUSY from N = 4 to N = 3. The remaining SO(3)R symmetry corresponds

to simultaneous SO(3) rotations in the 345 and 789 subspaces.

The degrees of freedom that we discussed so far are two vector multiplets with

Chern-Simons levels k and −k and two adjoint chirals with superpotential mass terms

δW ∼ kΦ2 − kΦ̃2. In addition to the vector multiplets, at low energies we also have

massless excitations consisting of strings connecting the two segments of D3-brane
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across the NS5 and (1, k)-branes. The strings stretching across the NS5-brane give

rise to the Z1 and W1 chiral multiplets, while the strings stretching across the (1, k)-

brane give rise to Z2 and W2. Under SO(3)R, Z1 and W†1 get mixed together, and

so do Z2 and W†2. These bifundamental fields have the standard superpotential

interactions δW ∼ tr(WAΦ̃ZA) + tr(ZAΦWA). Integrating out Φ and Φ̃ at low

energies produces a quartic superpotential proportional to 1/k, as in (1.43). The R-

symmetry enhancement in the IR from SO(3)R to SO(6)R comes from the fact that

at low energies it does not matter that the fivebranes are separated, so W1 and W2

become indistinguishable, and so do Z1 and Z2.

This configuration can be T-dualized along the 6th direction and lifted to M-

theory. Upon T-duality, the D3-branes become D2-branes, the NS5-brane becomes a

Kaluza-Klein (KK) monopole, while the (1, k)-brane becomes a bound state between

a KK monopole and k D6-branes. When this configuration is lifted to M-theory, the

D2-branes become M2-branes, and everything else lifts to Taub-NUT spaces. Such

M-theory backgrounds corresponding to M2-branes located at isolated singularities of

a superposition of Taub-NUT spaces were found in [35], and they typically preserve

3/16 supersymmetry, or N = 3 SUSY from a three-dimensional perspective. It can

be checked [29] that the specific background corresponding to an NS5-brane and a

(1, k)-brane in type IIB describes M2-branes probing a C4/Zk singularity in M-theory,

where Zk acts on the coordinates zA of C4 by the identification (z1, z2, w1, w2) ∼

(z1e
−2πi/k, z2e

−2πi/k, w1e
2πi/k, w2e

2πi/k).

There is a subtlety in the discussion of how the type IIB brane construction can

be T-dualized and lifted to M-theory, because in the supergravity approximation

T-duality works only for backgrounds with a U(1) isometry along the T-duality di-

rection. In reducing the M-theory background of [35] to type IIA and T-dualizing it

to type IIB, one does not obtain a configuration with localized NS5 and (1, k) branes

in the 6th direction. The resulting type IIB backgrounds contain smeared NS5 and
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(1, k)-branes in the 6th direction. As long as the supergravity approximation is ap-

propriate, the smeared solution is however a good approximation to the IR dynamics

of the theory on the intersection of the D3-branes with the localized fivebranes, since

at very low energies it does not matter where the fivebranes are. In eleven dimensions,

the supergravity approximation is reliable as long as the stack of M2-branes produces

a weakly curved geometry. As discussed in the previous section, this happens as long

as N � k5.

Operator matching

A third reason why ABJM theory is thought to be dual to AdS4 × S7/Zk is that the

correspondence between fields on the gravity side and operators in the field theory

is at least partly understood. The operators that correspond to fluctuations of the

AdS4 × S7/Zk background are gauge invariant single-trace operators. A subclass of

such operators consists of the chiral primaries, which are in one-to-one correspondence

with homogeneous holomorphic functions on the C4/Zk cone [36]. The homogeneous

holomorphic functions on C4/Zk are of the form za11 z
a2
2 w

b1
1 w

b2
2 with the condition that

b1 + b2 − a1 − a2 = mk for some integer m that should be imposed in order to make

these functions invariant under the Zk action. The exponents aA and bA should of

course be nonnegative integers.

Let us focus on the U(1) × U(1) gauge theory. It is tempting to say that the

functions za11 z
a2
2 w

b1
1 w

b2
2 introduced above should correspond to operators of the form

Za11 Za22 Wb1
1 Wb2

2 , but it is not hard to see that unless b1 + b2 = a1 + a2 this opera-

tor is not gauge-invariant. In addition to the WA and ZA fields, the gauge theory

contains other operators that are important in constructing low-dimension chiral op-

erators. These are called monopole operators and they create states with magnetic

flux through a two-sphere surrounding the insertion point. The monopole operators

that can be used to construct operators corresponding to homogeneous holomorphic
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functions on the moduli space are the “diagonal” ones Tm. These operators create

m units of magnetic flux through each U(1) gauge group. We have seen above that

on the moduli space we must have Am = Ãm, which is why only diagonal monopole

operators are relevant.

A monopole operator Tm has
∫
F =

∫
F̃ = 4πm, so the Chern-Simons term in

the action becomes

k

4π

∫ (
A ∧ F − Ã ∧ F̃

)
= km

∫
A− km

∫
Ã . (1.60)

This action looks like that of a point particle with charge km under the first gauge

group and −km under the second one. Recalling that the ZA have gauge charges

(−1, 1) and the WA have gauge charges (1,−1), it is therefore possible to construct

operators of the form T−mZa11 Za22 Wb1
1 Wb2

2 , which can be made gauge invariant pro-

vided that b1 + b2 − a1 − a2 = mk. These are all the operators corresponding to

holomorphic functions on C4/Zk.

Since we introduced the monopole operators, it is worth noting that they play

an important role in the supersymmetry enhancement from N = 6 to N = 8 when

k = 1 or 2. When k > 2 the R-symmetry is SO(6) ∼= SU(4), so there should be an R-

symmetry current transforming in the adjoint representation of SU(4). To write down

the 15 linearly-independent currents, it is useful to combine the bottom components

WA and ZA of WA and ZA, respectively, into the four component vector

Y A =
(
Z1, Z2,W †1W †2) , Y †A =

(
Z†1, Z

†
2,W1,W2

)
(1.61)

because now Y A transforms in the fundamental representation of SU(4)R, and more-

over all the Y A have the same charges under the two U(1) gauge groups. The SU(4)
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R-symmetry current is then

Jm
A
B ∼ Y A∂mY

†
B − (∂mY

A)Y †B + fermionic terms . (1.62)

When k = 1 or 2 it should be possible to construct an R-symmetry current transform-

ing in the adjoint representation of SO(8), so there should be 28 linearly-independent

currents. 15 of them are the ones in (1.62). One of them is the U(1)b symmetry

current under which Y A and Y †A have opposite charges:

Jm ∼ Y A∂mY
†
A − (∂mY

A)Y †A + fermionic terms . (1.63)

The remaining 12 are of the form

Jm
AB ∼ Y A∂mY

B − (∂mY
A)Y B + fermionic terms (1.64)

and their complex conjugates. While (1.62) and (1.63) are gauge-invariant expres-

sions, the currents in (1.64) need to be combined with monopole operators with two

indices in each gauge group in order to produce a gauge-invariant expression. As we

discussed, at CS level k monopole operators that create m units of flux through each

U(1) gauge group have gauge charges (km,−km). Monopole operators with gauge

charge (2,−2) needed to make (1.64) gauge-invariant therefore exist only when k = 1

or 2. The extra conserved currents (1.64) therefore simply do not exist when k > 2

and there is only N = 6 SUSY in that case.

1.2.5 Other M2-brane theories

Starting from the type IIB brane construction, there is a natural generalization of

ABJM theory that will be relevant in Chapter 4. The brane construction for ABJM

theory consists of N D3-branes in the 0126 directions and two (1, qa)-fivebranes, with
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x6

(1, q1) 5-brane

(1, q2) (1, q3) (1, q4) (1, qp)

N D3’s

Figure 1.1: A schematic picture of the brane construction. The N D3-branes span
the 0126 direction, and the (1, qa) 5-branes span the 012 directions as well as the
lines in the 37, 48, and 59 planes that make angles θa = arg(1 + iqa) with the 3, 4,
and 5 axes, respectively. The three-dimensional N = 3 theories considered in this
dissertation live on the 012 intersection of these branes.

q1 = 0 and q2 = k, filling the 012 directions and sitting at angles in the 37, 48, and 59

planes that are determined by their brane charges and the requirement that the whole

brane construction should preserve N = 3 supersymmetry. The generalization of this

construction is to have an arbitrary number p of (1, qa)-fivebranes (see figure 1.1). To

preserve supersymmetry, each (1, qa) brane should make an angle θa = arg(1 + iqa)

with the 3, 4, and 5 axes in the 37, 48, and 59 planes, respectively. It is possible to

generalize this construction further and allow the brane charges to be (pa, qa) with

pa 6= 1, but in that case the field theory description is more complicated [37].

The field content of the IR limit of these field theories can be read off from the

brane construction, just like for ABJM theory. There are p U(N) gauge groups

corresponding to the p D3-brane segments between the fivebranes, and p pairs of

bifundamental fields Aa and Ba corresponding to strings connecting the D3-branes

and that are stretched across the (1, qa)-brane. The quiver diagram resembles a

necklace (see figure 1.2).

In addition to the quiver diagram, we should specify the Chern-Simons levels and

the superpotential. As in the brane construction for ABJM theory, one can think
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Figure 1.2: Necklace quiver diagrams for U(N)p Chern-Simons gauge theories.

of a (1, qa) brane as a bound state between an NS5-brane and qa D5-branes. The

Chern-Simons levels arise from integrating out the fermions in the chiral multiplets

corresponding to the D3-D5 strings. For each gauge group a, there are qa+1 such

strings from the (1, qa+1) brane and qa strings from the (1, qa) brane. Thinking care-

fully about the signs of the masses of these fermions, one concludes that the resulting

CS levels are

ka = qa+1 − qa . (1.65)

In particular, the CS levels satisfy
∑p

a=1 ka = 0. The superpotential is just a gener-

alization of the ABJM superpotential in eq. (1.43):

W = −
p∑
a=1

2π

ka
(Ba−1Aa−1 − AaBa)

2 . (1.66)

For N = 1 the moduli space of each 3-d model was calculated in [31, 38] and shown

to be given by a certain hyper-Kähler cone in four complex dimensions [39–41]. It

was therefore conjectured that such a model describes the low-energy dynamics of N

coincident M2-branes placed at the tip of this cone.
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For a general set of Chern-Simons levels such a p > 2 gauge theory has N = 3

superconformal invariance, but in the special case where p is even and the CS levels

are (k,−k, k,−k, . . .) the supersymmetry is enhanced to N = 4 [30,38,42].

1.2.6 The number of degrees of freedom on coincident M2-

branes

In section 1.1.7 we computed two quantities that measure the number of degrees of

freedom in a field theory dual to AdS4: the thermal free energy FT and the free energy

F of the Euclidean theory on S3. Both of these quantities were proportional to the

ratio L2/κ2
4. Let’s end the discussion of M2-brane theories by expressing this ratio in

terms of the number N of coincident M2-branes at the tip of a Calabi-Yau cone X

and the volume of the base Y of this cone.

It is possible to relate the effective four-dimensional gravitational constant κ4 to

the gravitational constant in eleven dimensions by performing the integral over the

compact directions in the M-theory action (1.51):

1

2κ2
4

=
1

2κ2
11

(2L)7 Vol(Y ) . (1.67)

Combining this relation with the quantization condition (1.57), one obtains

L2

κ2
4

=
πN3/2

6
√

6 Vol(Y )
. (1.68)

The thermal free energy and the free energy of the Euclidean theory on S3 become

FT = − 27/2π4N3/2

39/2
√

Vol(Y )
T 3Vd , F = N3/2

√
2π6

27 Vol(Y )
. (1.69)
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For ABJM theory, we have further that Vol(Y ) = Vol(S7)/k = π4/(3k), and

FT = −27/2

81
π2k1/2N3/2T 3Vd , F =

π
√

2

3
k1/2N3/2 . (1.70)

The N3/2 scaling of the thermal free energy of coincident M2-branes was known

even before the discovery of the AdS/CFT duality [43]. Until recently, this N3/2

scaling had been quite puzzling because one expected the effective field theory on

coincident M2-branes to involve N ×N matrices whose number of degrees of freedom

scales as N2. The discovery of ABJM and related theories did not solve this puzzle at

first, as these theories were indeed written in terms of N ×N matrices. However, as

one takes N to infinity, the Chern-Simons level k should be held fixed, which means

that the effective coupling N/k also becomes large. At strong coupling it is possible

that the field theory intuition that gave N2 may break down.

It turns out that it is possible to compute the free energy on S3 exactly in the field

theory [44] using the method of localization originally developed by Pestun for four-

dimensional gauge theories [45]. Quite remarkably, this computation does reproduce

the N3/2 scaling, as was noticed initially [23] for ABJM theory and later on in [46]

through a different method that applies to all necklace quiver gauge theories with

N = 3 supersymmetry introduced in the previous section. In addition to the N3/2

dependence, the calculation of F also reproduces the 1/
√

Vol(Y ) dependence on

the volumes of the internal spaces Y . Chapter 4 of this dissertation contains this

calculation. Chapter 5 contains similar checks but now in theories with N = 2

supersymmetry, where we can also study RG flows between various field theories.
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Chapter 2

The gravity dual of a p-wave

superconductor

This chapter is an edited version of ref. [47] written in collaboration with Steve

Gubser.

2.1 Introduction

This chapter explores a way in which black holes in asymptotically AdS space can

break a gauge symmetry spontaneously. An example of this sort was already men-

tioned in section 1.1.6 in the context of the Abelian Higgs model coupled to gravity

with a negative cosmological constant. In that example the symmetry breaking occurs

because there are solutions of the equations of motion where a charged scalar field

has a nonvanishing profile outside the black hole horizon. The superconducting layer

of charged scalar hair floats above the horizon because the horizon is also charged.

Electrostatic repulsion overcomes the gravitational attraction that ordinarily would

suck the superconducting layer into the horizon. If the spacetime were asymptotically

flat, then (barring some special interactions such as considered in [48]) one expects

that electrostatic repulsion would cause the superconducting layer to be blown off
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to infinity. But asymptotically anti-de Sitter geometries prevent this. Massive parti-

cles, no matter how strongly repelled from a horizon, cannot reach the boundary of

anti-de Sitter space. So they instead condense near the horizon, where “near” means

that the field profile is normalizable, carrying finite charge if the horizon is finite, or

finite charge density if the horizon has infinite extent. An analogy with the classic

two-fluid model of superconductors is possible: the charged horizon describes the

normal component, and the condensate above it is the superconducting component.

See figure 2.1. In this analogy, it is important to recall that in the gauge-string dual-

ity [1–3], the extra dimension r is not an additional flat dimension transverse to the

sample; instead, it is a way of organizing energy scales in the dual field theory, which

is strictly 2 + 1-dimensional and non-gravitational. Thus, although the condensate is

“above” the horizon in the gravity picture, it interpenetrates the normal state in the

field theory picture.

The moduli space of black hole solutions includes Reissner-Nordström anti-de

Sitter black holes (hereafter RNAdS), which describe the normal state,1 joining con-

tinuously onto a branch of symmetry-breaking solutions. The simplest argument

supporting this picture is based on studying linear perturbations of the charged field

around an RNAdS solution. They obey an equation of the form

(2−m2
eff)ψ = 0 , (2.1)

where 2 is an appropriate covariant wave operator and

m2
eff = m2 + gttq2Φ2 . (2.2)

1It has been suggested [49,50] that RNAdS black holes are dual to a close analog of the pseudogap
state of high Tc materials. In the context of our constructions, this does not seem quite right, because
the fraction of charge in the condensate goes to zero near Tc, scaling as Tc−T , whereas the transition
from superconductivity to the pseudogap state appears to take place while this fraction is finite and
non-zero.

44



2,1

E

AdS4

horizon

superconducting condensate

r=r
H

r=

r

t, x, y

+

p
h
o
to

n

+ + + + + +

ψ
+

R

Figure 2.1: A superconducting condensate floats above a black hole horizon because
of a balance of gravitational and electrostatic forces. The condensate carries a finite
fraction of the total charge density, so there is more electric flux above the condensate
than there is right at the horizon. A massive charged particle, labeled ψ+, may be
driven upward by the electrostatic force, but because of the warped geometry of AdS4,
its trajectory cannot reach the boundary. So ψ+ must participate in the condensate if
it doesn’t fall into the horizon. The frequency-dependent conductivity can be found
by calculating an on-shell amplitude for a photon propagating straight down into the
geometry.
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Here q is the charge of a quantum of the charged bosonic field ψ. Φ is the electrostatic

potential, which vanishes at the horizon but grows quickly outside it if the electric

field is strong. The metric component gtt is negative in the conventions we use, and it

diverges to −∞ at the horizon, so (2.2) implies that ψ is tachyonic near the horizon if

q is big enough and m is small enough, provided also that the horizon carries sufficient

charge.2 It is a matter of calculation to determine when (2.1) admits a static solution.

When it does, one may reasonably assume that it signifies the joining of a branch of

symmetry breaking solutions onto the RNAdS solutions. And one may calculate a

critical temperature Tc where the joining occurs. It does not necessarily follow that Tc

is the temperature of a second order phase transition: it could be that the solutions

which only slightly break the symmetry are thermodynamically disfavored, and that

a first order transition to solutions with finite symmetry breaking occurs at a different

temperature.

A similar example of spontaneous symmetry breaking near a black hole horizon

was proposed in [51] in the case of the Einstein-Yang-Mills action with a negative

cosmological constant:

S =
1

2κ2

∫
d4x

[
R− 1

4
(F a

µν)
2 +

6

L2

]
, (2.3)

where F a
µν is the field strength of an SU(2) gauge field. In [51], a U(1) subgroup of

SU(2) was regarded as the gauge group of electromagnetism,3 and off-diagonal gauge

bosons, which are charged under this U(1), were observed to condense outside the

black hole horizon at low enough temperatures. The action (2.3) is almost completely

2Actually, the most commonly considered cases have m2 < 0 in the case of scalars, or m = 0 for
non-abelian gauge bosons. The argument about massive particles’ trajectories never reaching the
boundary of anti-de Sitter space then no longer holds up, but it is replaced by standard notions of
boundary conditions in anti-de Sitter space which again lead to normalizable condensates.

3More precisely, the boundary theory has a global SU(2) symmetry, and adding electromagnetism
means weakly gauging this U(1) in the boundary theory. By contrast, the gauging of the full SU(2)
symmetry in the gravity theory encodes aspects of the SU(2) current algebra dynamics in the
boundary theory.
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dictated at the two-derivative level by local diffeomorphism symmetry and SU(2)

gauge symmetry.

Part of the goal in this chapter is to construct superconducting extrema of (2.3)

different from the ones in [51] and argue that they are thermodynamically preferred

over the ones of [51]. The difference between the two types of superconducting solu-

tions is in what components of the gauge field condense and how much symmetry is

preserved by the condensate. The bulk SU(2) field in the action 2.3 corresponds to

an SU(2) conserved current in the boundary theory Jam where m is a spacetime index

and a is an adjoint SU(2) index. Let’s assume that the U(1) of electromagnetism

corresponds to the 3rd isospin direction. Turning on a nonzero charge density in this

U(1) breaks the SU(2) symmetry in the bulk to an SO(2) that acts by rotations in

the 12 isospin plane and the Lorentz symmetry SO(2, 1) also to an SO(2) of rota-

tions in the xy plane. In [51] this remaining SO(2) × SO(2) symmetry was broken

to the diagonal SO(2) by nonzero expectation values of equal magnitudes of J1
x and

J2
y . We will refer to this state and the dual gravity background as having p+ ip-wave

symmetry. In this chapter, the SO(2)× SO(2) symmetry is broken completely by a

nonzero expectation value for just J1
x , which would correspond to a superconducting

state with p-wave symmetry.

In [51] it was shown that there is a second order transition, with mean field

theory exponents, between a non-superconducting state at high temperatures, where

all the charge is in the normal component, and the p + ip superconducting state

at low temperatures. In addition to making a comparison of the free energies of

the normal and superconducting states, one must also ask whether the symmetry

breaking solution is stable under small perturbations. At least for a certain range

of parameters, we will show in section 2.4.2 that the solutions of [51] are unstable

against a perturbation that seems likely to turn them into p-wave solutions of the

form described in section 2.2. We have not yet found an unstable perturbation of the
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p-wave solutions.

The outline of the rest of this chapter is as follows. In section 2.2 we describe

the background solutions of interest. In section 2.3 we study the electromagnetic

response, along the lines of [12]. We find a frequency-dependent conductivity that

depends strongly on the polarization of the applied electric field. The low-frequency

behavior is suggestive of quasi-particle excitations whose dissipative mechanisms are

entirely due to finite-temperature effects. In section 2.4 we provide numerical evidence

that the p-wave backgrounds are stable against small perturbations that turn on a

p + ip gap. In section 2.4.2 we provide numerical evidence that the p + ip-wave

backgrounds of [11] are unstable against small perturbations that turn them into the

p-wave backgrounds described in section 2.2. Our numerical explorations are far from

covering the full range of parameters, but the simplest scenario consistent with them

is that p + ip-wave backgrounds are always unstable, and that p-wave backgrounds

represent the thermodynamically preferred phase for T less than a critical temperature

Tc.

2.2 The backgrounds

We follow the conventions of [51] for the metric and gauge field, except for denoting

the spatial directions of R2,1 as x and y rather than x1 and x2. We will restrict

attention to the limit of large g, where the metric is simply AdS4-Schwarzschild,

ds2 =
r2

L2

[
−
(

1− r3
H

r3

)
dt2 + dx2 + dy2

]
+
L2

r2

dr2

1− r3
H/r

3
. (2.4)

The gauge field ansatz is

A = Φ(r)τ 3dt+ w(r)τ 1dx . (2.5)
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It is convenient to define

Φ̃ = gL2Φ , w̃ = gL2w . (2.6)

If one also fixes a scale by setting rH = 1, then the relevant Yang-Mills equations are

Φ̃′′ +
2

r
Φ̃′ − 1

r(r3 − 1)
w̃2Φ̃ = 0 ,

w̃′′ +
1 + 2r3

r(r3 − 1)
w̃′ +

r2

(r3 − 1)2
Φ̃2w̃ = 0 ,

(2.7)

where primes denote d/dr. These equations are similar to (B4) of [51] because the

ansatz (2.5) is also similar. But in [51], the symmetry breaking term takes the form

w(τ 1dx+τ 2dy), which corresponds to wrapping the part of the gauge group generated

by τ 3—call it U(1)3—around the rotational symmetry group SO(2) that acts on x

and y. Choosing instead w(τ 1dx−τ 2dy) corresponds to wrapping U(1)3 the other way

around SO(2). We think of (2.5) heuristically as a superposition of the two different

wrapping solutions, in the same way that linearly polarized light is a superposition of

left-handed and right-handed polarizations. This analogy has limited utility because

the Yang-Mills equations governing the different “polarizations” are non-linear.

In addition to breaking U(1)3, the condensate wτ 1dx picks out the x direction

as special. Therefore, if back-reaction of the Yang-Mills field on the metric were

included, then we would not expect to be able to set gxx = gyy, as we did in (2.4).

The wrapping condensate w(τ 1dx+ τ 2dy) is simpler in this regard, because although

it breaks U(1)3 and SO(2) separately, it preserves a diagonal subgroup which makes

the stress tensor isotropic in the x and y directions.

The temperature of the horizon is

T =
3

4πL2
, (2.8)
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where, as before, we have set rH = 1. The total charge density ρ is proportional to

the τ 3 part of the electric field at infinity: if

Φ = p0 +
p1

r
+O

(
1

r2

)
, (2.9)

then

ρ = − p1

Lκ2
. (2.10)

The charge density ρn in the normal component is proportional to the τ 3 part of the

electric field at the horizon: if

Φ = Φ1(r − 1) +O[(r − 1)2] , (2.11)

then

ρn =
Φ1

Lκ2
. (2.12)

Far-field and near-horizon expansions for the rescaled fields Φ̃ and w̃ take the form

Far field:


Φ̃ = p̃0 +

p̃1

r
+ . . .

w̃ =
W̃1

r
+ . . . ,

(2.13)

Near horizon:


Φ̃ = Φ̃1(r − 1) + . . .

w̃ = w̃0 + w̃2(r − 1)2 + . . . ,

(2.14)

and it is convenient to introduce rescaled versions of the total and normal component

charge densities:

ρ̃ ≡ κ2gL2ρ = − p̃1

L
,

ρ̃n ≡ κ2gL2ρn =
Φ̃1

L
.

(2.15)

We also define the superconducting charge density as ρ̃s = ρ̃ − ρ̃n. A natural choice
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Figure 2.2: Each point along the contours plotted represents a solution to the non-
linear boundary value problem specified by (2.7), (2.13), and (2.14). Points on the
line labeled “normal” are RNAdS solutions, and if charge density is held fixed, tem-
perature rises as one moves to the left. Points on the curve labeled “superconducting”
break the abelian gauge symmetry generated by U(1)3. Points on the other curves
also break the abelian gauge symmetry but are expected to be unstable. The point
where the superconducting solutions join onto the normal solutions is labeled Tc be-
cause the simplest scenario is for there to be a second order phase transition at this
point.

of order parameter is W̃1, because the SU(2) currents Jam dual to the gauge bosons

Aaµ have a symmetry-breaking expectation value

〈Jai 〉 ∝ W̃1δ
1
i δ
a
1 . (2.16)

There is a one-parameter family of “allowed” solutions to the Yang-Mills equations

(2.7), where allowed means that the far-field and near-horizon asymptotic forms,
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(2.13) and (2.14), are satisfied. Thus (2.7), (2.13), and (2.14) specify a non-linear

boundary value problem. To understand why there is only a one-parameter family

of solutions, let us examine the far-field and near-horizon expansions separately. The

generic solution to (2.7) includes a constant term W̃0 in the far-field expansion of w̃,

and this is disallowed because it corresponds to deforming the field theory lagrangian

by some multiple of J1
1 . Another way to describe why W̃0 is disallowed is that if

it is non-zero, then the condensate is not normalizable. In the expansion (2.13), all

three parameters shown explicitly are independent, which matches a simple counting

argument: four integration constants (for two second order differential equations)

minus one (for the constraint W̃0 = 0) equals three. Requiring that the gauge field is

smooth and well-defined at the horizon leads to the expansions (2.14). The parameters

Φ̃1 and w̃0 are independent, but w̃2 and higher coefficients can be determined in terms

of them. Having only two independent parameters in the near-horizon expansion

(i.e. Φ̃1 and w̃0) means that there are two constraints at the horizon. Generically,

these two constraints will be independent of the far-field constraint W̃0 = 0. So

there are three constraints total on four integration constants, leading indeed to a

one-parameter family of solutions. At special points, one of the horizon constraints

may become degenerate with the far-field constraint, and this is when one finds two

branches of solutions joining together.

Solutions to the boundary value problem discussed in the previous paragraph can

be generated using a “shooting” procedure. First one guesses numerical values of Φ̃1

and w̃0. Then one uses the near-horizon expansion (2.14) to seed a finite-element

differential equation solver, such as Mathematica’s NDSolve. Next one matches the

numerical solution to the far-field expansion (2.13), augmented by a constant term

W̃0. In this way one finds W̃0 as a function of Φ̃1 and w̃0. The zeroes of this function

correspond to the solutions of the boundary value problem: see figure 2.2. Hereafter

we restrict attention to solutions where w̃(r) has no nodes. There are additional solu-
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Figure 2.3: The fraction ρ̃s/ρ̃ of the charge carried by the superconducting condensate
and the order parameter W̃1 are plotted against the rescaled temperature T/

√
ρ̃. At

Tc, ρ̃s/ρ̃ vanishes linearly, while W̃1 vanishes as
√
Tc − T .

tions with nodes, but one generally expects them to be thermodynamically disfavored,

because radial oscillations in w̃ cost energy.

Thermodynamic quantities for solutions along the node-free symmetry-breaking

branch labeled “superconducting” in figure 2.2 are plotted in figure 2.3.

2.3 Electromagnetic perturbations

The quantity of primary interest in understanding the electromagnetic response is

the conductivity,

σij(ω) =
i

ω
GR
ij(ω, 0) , (2.17)

where

GR
mn(ω,~k) = −i

∫
d3x eiωt−i

~k·~xθ(t)〈[Jm(t, ~x), Jn(0, 0)]〉 (2.18)

is the retarded Green’s function of the electromagnetic current Jm. The angle brackets

in (2.18) denote expectation values at finite temperature, namely

〈A〉 ≡ 1

Z
tr e−βHA , Z ≡ tr e−βH (2.19)
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for any operator A. The hermitian part of σij is dissipative, while the anti-hermitian

part is reactive.4 According to a spectral decomposition, the hermitian part of σij

should be positive semi-definite. To see this, first note that the spacetime dependence

of the hermitian operators Ji(t, ~x) is found through

Ji(t, ~x) = eiHt−i
~P ·~xJi(0, 0)e−iHt+i

~P ·~x . (2.20)

Introducing a complete set of states between the two operators in (2.18) and inte-

grating over t and ~x one obtains

GR
ij(ω, 0) =

1

Z

∑
n,m

(2π)2δ(2)(~Pnm)Jnmi Jmnj

e−βEn − e−βEm
ω + Enm + i0

, (2.21)

where

Jnmi = 〈n|Ji(0, 0)|m〉 , ~Pnm = ~Pn − ~Pm , Enm = En − Em , (2.22)

~Pn and En being the eigenvalues of ~P and H in the state |n〉. Plugging (2.21) into

(2.17) one straightforwardly obtains

1

2
(σij + σ∗ji) =

∑
n,m

Jnmi Jmnj Anm ,

Anm =
1

Z
(2π)3δ(2)(~Pnm)δ(ω + Enm)e−β

En+Em
2

sinh βω
2

ω
.

(2.23)

4In the theory of AC circuits it is standard to consider the complex power S =
∫
d2xE∗i ji =∫

d2xE∗i σijEj , whose real and imaginary parts are the real and reactive powers, respectively.
The real power P can therefore be expressed in terms of the hermitian part of σij through
P =

∫
d2xE∗i

1
2 (σij + σ∗ji)Ej , while the reactive power Q =

∫
d2xE∗i

1
2i (σij − σ

∗
ji)Ej corresponds

to the anti-hermitian part.
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Formally, Anm ≥ 0, so multiplying (2.23) by an arbitrary column vector vj to the

right and by its adjoint v∗i to the left yields

v∗i
1

2
(σij + σ∗ji)vj =

∑
n,m

|v∗i Jnmi |
2Anm ≥ 0 , (2.24)

proving that, indeed, the hermitian part of σij is positive semi-definite.

The conductivity σij(ω) characterizes the response to light of frequency ω which

is incident on the superconductor in a direction normal to the R2,1 that the sample

occupies. So it is perhaps intuitive that to calculate σij(ω) for the black hole, one

should send photons down from the boundary of AdS4 and inquire how they are

absorbed or reflected by the condensate and the horizon. More precisely, one uses

the gauge-string duality to extract two-point functions from tree-level propagation of

photons. The prescription for computing such Green’s functions was first articulated

in [2, 3]. An adaptation of it to thermal backgrounds was correctly guessed in [52]

and then derived from the original prescription of [2,3] in [6] using Schwinger-Keldysh

contours.5 In the case of two-point functions, the gauge-string prescription is closely

related to D-brane black hole absorption amplitudes computed in a long series of

papers beginning with [53]. If one expresses an asymptotically AdS4 background as

ds2 =
r2

L2
(−dt2 + dx2 + dy2) +

L2

r2
dr2 + (corrections) , (2.25)

where the terms shown explicitly are the leading large r behavior, then a complexified

photon perturbation polarized in the x direction can be expanded for large r as

Ax = e−iωt

[
A(0)
x +

A
(1)
x

r
+O

(
1

r2

)]
, (2.26)

5Modulo some issues related to behavior near ω = 0, this prescription can also be justified [7]
by the fact that if one analytically continues GRij(ω) to the upper half-plane, then at the Matsubara
frequencies ωn = 2πnT with n > 0 it agrees with the corresponding Fourier mode of the Euclidean
correlator computed from the prescription proposed in [2, 3].
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and the retarded Green’s function is given simply by

GR
xx(ω, 0) = − 2

κ2

A
(1)
x

A
(0)
x

, (2.27)

where κ =
√

8πGN is the gravitational coupling, and it is assumed that the photon

wave-function is purely infalling at the horizon. More sophisticated examples have

been discussed, for example, in [54].

In the superconducting phase of the black holes constructed using the Abelian

Higgs model, σxx = σyy and σxy = 0 because the order parameter is a scalar, breaking

gauge invariance but not rotational invariance. There is a delta-function spike in

Reσxx(ω) at ω = 0, and an associated pole in Imσxx(ω). For non-zero ω and T not

too close to Tc, Re σxx(ω) is very small up to a finite frequency, which can be denoted

ωg = 2∆ in order to evoke a comparison with BCS theory: ∆ is then to be compared

with the quantity denoted by the same letter in BCS, whose physical interpretation is

the minimal energy of a single normal-component quasi-particle excitation. Above ωg,

Reσxx(ω) rises quickly to a plateau and then asymptotes to a constant as ω → ∞.

One can argue, along the lines of [10], that the delta-function spike at ω = 0 had

to be there because of the broken gauge invariance. But the existence of a gap is

additional information, revealed by the calculations of [12] but apparently not neces-

sitated by symmetry principles. In BCS theory, the gap arises because of a pairing

mechanism of otherwise nearly free quasi-particle excitations of a Fermi surface. No

such mechanism is manifest in the gravity description; instead, the simplest way to

characterize the gravity calculation is that photons with frequency less than 2∆ are

very unlikely to penetrate through the condensate and be absorbed by the horizon.

There is clearly something in common between BCS theory and the gravitational

calculation, because the horizon represents the dynamics of the uncondensed charge

carriers (i.e. the normal component), and absorption of a photon with ω > 0 is asso-
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ciated with an excitation of these carriers. The obvious difference is that the charge

carriers in the gravitational calculation (or, more precisely, the charge carriers in the

appropriate holographic dual description) are strongly coupled even when they are in

the normal state.

The strong coupling inherent in gauge-string duals in the gravity approximation

raises the appealing possibility that black hole constructions might provide useful

physical analogies to the mysterious dynamics of electrons in high Tc materials that

go beyond traditional ideas based on quasi-particle excitations of Fermi surfaces.

But the black holes we study provide anything but a microscopic understanding of

superconductivity: the gravity description is more like Landau-Ginzburg theory, and

the dual field theory would be the venue for some attempt at a microscopic theory

comparable to BCS.

Rather than presenting superconducting black holes as an incipient theory of high

Tc, we prefer the viewpoint that they are a new theoretical laboratory, seemingly

divorced from traditional perturbative concepts, but capable of exhibiting assorted

phenomena reminiscent of real materials. Perhaps a sufficiently comprehensive un-

derstanding of their dynamics will suggest new ideas which can also be applied suc-

cessfully to real materials.

The purpose of the present chapter is to narrow the gap between black hole con-

structions and interesting high Tc materials by introducing black holes with a p-

wave gap. Although it is apparently a d-wave gap that controls the dynamics of the

cuprates, d-wave and p-wave are similar in that excitations of the normal component

can be probed using low-frequency photons.

By making the black hole charged under the gauge symmetry U(1)3 generated by

τ 3, we explicitly break the SU(2) gauge group down to U(1)3. As mentioned earlier,

we interpret U(1)3 as the gauge group of electromagnetism, which means that we
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plan to consider a weak gauging of this group in the boundary theory.6 As discussed

in the introduction, the linear response to electromagnetic probes is described by

the two-point function of the U(1)3 current, and in the dual black hole, this means

that we want to know how linear perturbations of the τ 3 component of the gauge

field propagate. We persist in choosing the spatial momenta ki = 0 in the x and

y directions, so the photon is directed straight down into AdS4, as illustrated in

figure 2.1.

As a warmup, we work out in section 2.3.1 the conductivity in two examples where

it can be done analytically, including the normal state, where the condensate w̃ is

set to 0. In section 2.3.2 we explain how to set up the perturbation equations in the

more difficult case of a symmetry-breaking background as described in section 2.2. In

sections 2.3.3 and 2.3.4 we present results of a numerical study of σxx(ω) and σyy(ω)

which reveal a p-wave gap.

2.3.1 Analytical calculations

The simplest case to start with is pure AdS4, corresponding to zero temperature, zero

charge density, and no symmetry breaking. At the linearized level, the gauge coupling

of SU(2) doesn’t enter, so we will pass to free Maxwell theory in AdS4: that is,

S =
1

2κ2

∫
d4x
√
−g
[
R− 1

4
F 2
µν +

6

L2

]
. (2.28)

The perturbation calculation is simple because the background geometry is confor-

mally flat:

ds2 =
L2

z2

(
−dt2 + dx2 + dy2 + dz2

)
. (2.29)

6This situation is analogous to the Hubbard model, which has (at least) a global U(2) symmetry.
The central U(1) is identified as the electromagnetic gauge symmetry, but electromagnetism is not
explicitly part of the model.
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Equivalently, we may consider the line element (2.4) with rH = 0: it is the same as

(2.29) if one sets

z = L2/r . (2.30)

Conformal flatness is special because Maxwell’s equations respect conformal symme-

try. Thus the complexified photon perturbation is a plane wave:

Ax = e−iω(t−z) . (2.31)

We chose the plane wave solution that moves in the positive z direction: that is, it

moves away from the conformal boundary at z = 0 and toward the degenerate Killing

horizon of the Poincaré patch, at z = ∞. (In figure 2.1, the positive z direction is

downward.) This choice means that we will wind up computing the retarded Green’s

function rather than the advanced one. The Green’s function can be read off from an

expansion near the conformal boundary:

Ax = e−iωt(1 + iωz + . . .) = e−iωt
(

1 +
iωL2

r
+ . . .

)
. (2.32)

Comparing the last expression in (2.32) to (2.26), and using (2.17) and (2.27), one

finds

σxx = σ∞ ≡
2L2

κ2
. (2.33)

Because of rotation invariance, σyy = σxx and σxy = 0. Hereafter we will normalize

all conductivities against σ∞ by defining

σ̃ij =
σij
σ∞

. (2.34)
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Putting (2.17), (2.27), (2.33), and (2.34) together, one has

σ̃xx = − i

ωL2

A
(1)
x

A
(0)
x

. (2.35)

A surprising result of [55] is that σ̃xx = σ̃yy = 1 for the AdS4-Schwarzschild solu-

tion (2.4), for all ω and T . In the approximation where the gauge field (2.5) doesn’t

back-react on the metric, this result persists so long as w̃ = 0. The quickest way to

derive it is to compute directly the linearized equation of motions for complexified

gauge field perturbations of the background (2.4)–(2.5): that is, A→ A+ a, where

a = e−iωta3
x(r)τ

3dx . (2.36)

The result of plugging this perturbation into the linearized Yang-Mills equations is

[
∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

ω2L4r2

(r3 − 1)2

]
a3
x = 0 , (2.37)

where we have set rH = 1 as usual. Because the rotational symmetry is unbroken

in the absence of the condensate, the same equation governs a3
y perturbations. The

solution to (2.37) describing gauge bosons falling into the horizon at r = 1 is

a3
x = (r − 1)−iω/4πT (r2 + r + 1)iω/8πT

(
r + 1

2
+ i
√

3
2

r + 1
2
− i
√

3
2

)√3ω/8πT

, (2.38)

where we have used (2.8). The behavior a3
x ∝ (r − 1)−iω/4πT is typical of solutions

falling into a finite-temperature horizon. The expansion of (2.38) near the conformal

boundary is the same as (2.32) through order 1/r, so the conductivity is the same, as

claimed.
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2.3.2 Electromagnetic perturbations of the superconducting

phase

In the presence of the condensate w̃τ 1dx, perturbations of the form (2.36) mix with

other components at the level of linearized equations. An ansatz which is sufficiently

general to obtain consistent linearized equations is A→ A+ a, where

a = e−iωt
[
(a1
t τ

1 + a2
t τ

2)dt+ a3
xτ

3dx+ a3
yτ

3dy
]
. (2.39)

All the aam are functions of r. Plugging the perturbation (2.39) into the linearized

Yang-Mills equations, one finds that the a3
y mode obeys an equation of motion decou-

pled from the others:

[
∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

ω2L4r2

(r3 − 1)2
− w̃2

r(r3 − 1)

]
a3
y = 0 . (2.40)

This is identical to (13) of [12], except that the last term has slightly different radial

dependence. Unsurprisingly, the rescaled complex conductivity σ̃yy exhibits similar

gapped behavior to what was found in [12]: see figure 2.4. Because the analysis is so

similar to [12], we will not discuss it further here, but simply present the results in

sections 2.3.3 and 2.3.4.

The linearized Yang-Mills equations mix a3
x with a1

t and a2
t , resulting in three

second order equations of motion,

[
∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

ω2L4r2

(r3 − 1)2

]
a3
x −

r2Φ̃w̃

(r3 − 1)2
a1
t −

iωL2r2

(r3 − 1)2
a2
t = 0 ,[

∂2
r +

2

r
∂r

]
a1
t +

Φ̃w̃

r(r3 − 1)
a3
x = 0 ,[

∂2
r +

2

r
∂r −

w̃2

r(r3 − 1)

]
a2
t −

iωL2w̃

r(r3 − 1)
a3
x = 0 ,

(2.41)
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and two first-order constraints,

iωL2(a1
t )
′ + Φ̃(a2

t )
′ − Φ̃′a2

t = 0 ,

iωL2(a2
t )
′ − Φ̃(a1

t )
′ + Φ̃′a1

t −
(

1− 1

r3

)
[w̃∂r − w̃′] a3

x = 0 ,
(2.42)

where, as before, primes mean d/dr. The constraints are not independent of the

equations of motion: if one takes the r derivative of each constraint, the resulting

second order equation follows algebraically from the equations of motion and the

undifferentiated constraints. It takes six constants of integration to specify a solution

to the equations of motion, but two of them are used up in satisfying the constraints,

leaving four independent solutions. Of these, two can be found in closed form and

are related to residual gauge invariance, as we will discuss in more detail below.

There is also a solution describing gauge bosons falling into the horizon, and another

describing gauge bosons coming out.

Let’s focus on the infalling solution, which determines a retarded Green’s function,

as we have seen in easier examples above. Near the horizon,

a3
x = (r − 1)−iω/4πT

[
1 + a3(1)

x (r − 1) + a3(2)
x + . . .

]
,

a1
t = (r − 1)−iω/4πT

[
a

1(2)
t (r − 1)2 + a

1(3)
t (r − 1)3 + . . .

]
,

a2
t = (r − 1)−iω/4πT

[
a

2(1)
t (r − 1) + a

2(2)
t (r − 1)2 + . . .

]
,

(2.43)

and all the coefficients a
a(s)
m can be determined once the background and ω are spec-

ified. Near the conformal boundary, a generic solution to the equations of motion

takes the form

a3
x = A3(0)

x +
A

3(1)
x

r
+ . . . ,

a1
t = A

1(0)
t +

A
1(1)
t

r
+ . . . ,

a2
t = A

2(0)
t +

A
2(1)
t

r
+ . . . ,

(2.44)
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and the constraints impose the relations

iωL2A
1(1)
t + p̃0A

2(1)
t − p̃1A

2(0)
t = 0 ,

iωL2A
2(1)
t − p̃0A

1(1)
t + p̃1A

1(0)
t + W̃1A

3(0)
x = 0 ,

(2.45)

where the coefficients p̃s and W̃1 are the ones appearing in (2.13). The infalling

solution is unique up to an overall scaling, which is fixed once we choose the leading

behavior of a3
x to be (r − 1)−iω/4πT as in the first line of (2.43). Thus the far-field

coefficients A
a(s)
m are in principle known as functions of ω once the background is

specified. We claim that

σ̃xx = − i

ωL2A
3(0)
x

(
A3(1)
x + W̃1

iωL2A
2(0)
t + p̃0A

1(0)
t

p̃2
0 − ω2L4

)
. (2.46)

The first term in parentheses is the expected result based on the considerations of

(2.17)–(2.27). The second term has to do with solutions to (2.41) and (2.42) which

are pure gauge outside the horizon, as we will now explain.

An infinitesimal gauge transformation of the SU(2) gauge field takes the form

δA = Dα, where D = d + gA is the gauge-covariant derivative and α is an adjoint

scalar gauge function. Let’s consider the case

α = e−iωtαaτa . (2.47)

After performing the split A → A + a of the gauge field into background and fluc-

tuating parts, we can view the infinitesimal gauge transformation as acting only on

a = e−iωtaaµτ
adxµ:

δ(e−iωtaaµ) = ∂µ(e−iωtαa) + gεabcAbµe
−iωtαc . (2.48)

If any αa depends on r, then the gauge-transformed perturbations will include compo-
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nents aar which weren’t present in the original ansatz (2.39). Setting these components

to zero amounts to choosing a form of axial gauge, and the gauge transformations

that preserve axial gauge are the ones where αa doesn’t depend on r. Dependence

on x1 and x2 is excluded because we are always considering modes with zero spatial

momentum. We also set α3 = 0 because it would introduce components of the pertur-

bations that are not present in the ansatz (2.39). To summarize: we are interested in

infinitesimal gauge transformations of the form (2.48) where α1 and α2 are constant

and α3 = 0. The explicit form of this restricted set of gauge transformations is

δa3
x = w̃α̃2 ,

δa1
t = −iωL2α̃1 − Φ̃α̃2 ,

δa2
t = −iωL2α̃2 + Φ̃α̃1 ,

(2.49)

where in order to simplify notation we have defined α̃a = αa/L2. It is readily checked

that the expressions in (2.49) solve the equations of motion (2.41) and the constraints

(2.42). This had to happen because (2.41)–(2.42) came from the gauge-invariant

Yang-Mills equations. These are the two closed-form solutions which we mentioned

in the text following (2.42).

Up to an overall scaling, there is a unique linear combination of a3
x, a

1
t , and a2

t

which is invariant under the gauge transformation (2.49):

â3
x = a3

x + w̃
iωL2a2

t − Φ̃a1
t

Φ̃2 − ω2L4
. (2.50)

The conductivity σ̃xx captures some gauge-invariant information about the bulk the-

ory, and as such it must be expressible in terms of â3
x. If one expands

â3
x = Â3(0)

x +
Â

3(1)
x

r
+ . . . (2.51)
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near the conformal boundary, then the unique extension of (2.35) that respects the

gauge invariance is

σ̃xx = − i

ωL2

Â
3(1)
x

Â
3(0)
x

. (2.52)

This is precisely the result (2.46) that we claimed earlier. In appendix 5.2 we describe

how σ̃xx fits into a 3×3 matrix of conductivities which can all be determined in terms

of A
3(0)
x and A

3(1)
x .

2.3.3 Results of numerics

Let us review the structure of the problem before discussing results. The gauge field

background (2.5) is constructed by numerically solving the Yang-Mills equations (2.7)

in a fixed gravitational background, (2.4), subject to constraints near the conformal

boundary and near the horizon, (2.14) and (2.13) respectively. From a numerical

solution, one can pick out the parameters p̃0, p̃1, and W̃1 appearing in (2.46). A

symmetry-breaking background with w̃ > 0 everywhere is labeled uniquely by the

value of T/
√
ρ̃, which has a maximum value of approximately 0.125. It is interesting

that this value is within numerical error of 1/8, but we don’t see any reason why

it should be exactly 1/8. With a numerically constructed background in hand, one

chooses a value of ω, initializes a finite-element differential equation solver close to the

horizon using the series expansion (2.43), solves (2.41), and extracts the coefficients

A
3(0)
x , A

3(1)
x , A

1(0)
t , and A

2(0)
t appearing in (2.46) by comparing the far-field behavior

of the numerical solution with the expansions (2.44). It is important to note that ω

and L appear in the differential equations (2.41) and the conductivity formula (2.46)

only in the combination

ωL2 =
3

4π

ω

T
, (2.53)

where we have used (2.8). (Recall that we have set rH = 1. If we had not, the left

hand side of (2.53) would be instead ωL2/rH , because then T = 3rH/4πL
2.) Thus it is
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more precise to say that one chooses a numerical value for the dimensionless quantity

ω/T and determines σ̃xx, which is also dimensionless, in terms of it. One expects that

for large enough ω/T , σ̃xx → 1. This is because the condensate involves dynamics

with a characteristic energy scale, which turns out to be
√
ρ̃. Provided we avoid the

extreme limit T → 0,
√
ρ̃ and T are comparable. If ω �

√
ρ̃, the propagation of

the gauge bosons should be largely insensitive to the condensate: instead, its wave

function approximately takes the form (2.31) that we found for photons in pure AdS4,

and σxx ≈ σ∞.

Numerical computations can only detect the continuous part of σ̃xx(ω), but there

is also a distributional part with some interesting structure. Because σ̃xx(ω) is pro-

portional to a retarded Green’s function, it is analytic on the upper half-plane of

complex ω. It therefore satisfies the Kramers-Kronig relations:

Re[σ̃xx(ω)− 1] =
1

π
P
∫ ∞
−∞

dω′
Im σ̃xx(ω

′)

ω′ − ω
,

Im σ̃xx(ω) = − 1

π
P
∫ ∞
−∞

dω′
Re[σ̃xx(ω

′)− 1]

ω′ − ω
.

(2.54)

The reason that σ̃xx − 1 appears in (2.54) rather than σ̃xx itself is that it is σ̃xx − 1

which vanishes as ω → ∞, and such vanishing is a necessary condition in order to

obtain (2.54) from a contour integral in the upper half-plane. P denotes the principle

part of the integral. Evidently, a simple pole in Im σ̃xx(ω) at ω = ω0 implies a delta-

function contribution δ(ω − ω0) to Re σ̃xx(ω). The positivity constraint on the real

part of conductivities applies separately to the continuous and delta-function parts

of Re σ̃xx(ω), so any pole of Im σ̃xx(ω) on the real axis must have positive residue.

Plots of σ̃xx(ω) and σ̃yy(ω) are shown in figure 2.4. The conspicuous features are:

1. σ̃xx and σ̃yy both approach 1 as ω becomes large, as expected on general grounds.

2. σ̃yy displays gapped dependence similar to the findings of [12], with ∆ ≈ 1
2

√
ρ̃.

That is, Reσ is very small in the infrared, then rises quickly at ω = 2∆ ≡ ωg ≈
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Figure 2.4: Rescaled conductivities σ̃xx and σ̃yy as functions of frequency. The dotted
curves are the best fits of the Drude model prediction (2.56) to Re σ̃xx(ω) at low ω.
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√
ρ̃, with a slight “bump” a little above ωg that is reminiscent of the behavior

expected for fermionic pairing. We use the notation ωg even though it’s not

clear that Re σ̃yy is strictly zero for 0 < ω < ωg.

3. There is a pole in Im σ̃xx at ω = ω0 ≈ 1.8
√
ρ̃. Its residue becomes small as one

approaches Tc. It’s clear from (2.46) that this pole had to arise, with residue

proportional to the order parameter W̃1: it comes from the denominator of the

second term, and

ω0 =
4π

3
p̃0T . (2.55)

As discussed following (2.54), there is a delta-function contribution to Re σ̃xx

at ω = ω0, whose coefficient is proportional to the residue of this pole. This

resonance is perfectly stable even at finite temperature, but perhaps if we relax

some of the limits we have taken (like large N) it would acquire a width.

4. Re σ̃xx never goes as low as Re σ̃yy, and its rise toward 1 happens more gradually

and at a somewhat larger value of ω, on order ω0.

5. The small ω behavior of Re σ̃xx can be parameterized very accurately in terms

of the Drude model, which predicts

ReσDrude =
σ0

1 + ω2τ 2
, (2.56)

where σ0 = ne2τ/m is a constant related to the density of charge carriers, and

τ is the scattering time.

We are especially interested in the low-frequency dependence of the conductivities.

Our numerical results make it plausible but not certain that σyy is strictly zero below a

finite value of ω when T = 0. However, neglecting the back-reaction of the gauge field

may not be a valid approximation for very low temperatures. On the other hand,

the narrow Drude peak in σ̃xx suggests conductivity due to quasi-particles whose
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scattering time diverges as T → 0. Putting the behavior of σ̃xx and σ̃yy together

suggests a very special type of “node in the gap,” namely one which is infinitely

narrow as a function of angle in Fourier space.7

2.3.4 Fits of temperature-dependent quantities

In order to extract some simple quantitative information from our numerical results,

we considered the dependence of various dimensionless quantities on the rescaled

temperature T/
√
ρ̃. Our findings can be summarized briefly as follows:

ρ̃

ρ̃n
≈ exp

{
0.303

√
ρ̃

T
− 2.20

}
,

W̃1

ρ̃
≈ 1− 167

(
T√
ρ̃

)3.05

,

ρ̃2
n

ρ̃T
τ ≈ 4.5 ,

ρ̃

ρ̃2
nτ

2
lim
ω→0

Re σ̃xx(ω) ≈ 0.302 ,(
ρ̃

ρ̃n

)2

lim
ω→0

Re σ̃yy(ω) ≈ 0.34 ,

lim
ω→0

ω√
ρ̃

Im σ̃xx(ω) ≈ 0.52 ,

lim
ω→0

ω√
ρ̃

Im σ̃yy(ω) ≈ 0.55 ,

lim
ω→ω0

ω − ω0√
ρ̃

Im σ̃xx(ω) ≈ 0.28 .

(2.57)

The approximately equalities in (2.57) are in some cases quite close over a substantial

range of
√
ρ̃/T , and in others represent no more than a T → 0 extrapolation: see

figure 2.5. None of the relations (2.57) should be taken too seriously, because they

were made over intervals where T/
√
ρ̃ varied only by a factor of 5. A particularly

challenging case is the quantity limω→0
ω√
ρ̃

Im σ̃xx(ω). The ω → 0 limit converges

7We thank D. Huse and P. Ong for discussions that led to the picture of an infinitely narrow
node described here.
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Figure 2.5: Temperature-dependent quantities and approximate fits, as explained in
(2.57) and the surrounding text. We have defined σ̃xx,0 = limω→0 Re σ̃xx(ω), σ̃yy,0 =
limω→0 Re σ̃yy(ω), Resω=0 Im σ̃xx/

√
ρ̃ = limω→0

ω√
ρ̃

Im σ̃xx(ω), Resω=0 Im σ̃yy/
√
ρ̃ =

limω→0
ω√
ρ̃

Im σ̃yy(ω), and Resω=ω0 Im σ̃xx/
√
ρ̃ = limω→ω0

ω−ω0√
ρ̃

Im σ̃xx(ω).
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slowly because of a “shelf effect:” for values in a region around ω ∼ 1/τ , we observed

ω√
ρ̃

Im σ̃xx ≈ 0.55 at low temperatures, which is the same value as we find in the

ω → 0 limit for ω√
ρ̃

Im σ̃yy. But for ω <∼ 1/50τ , we observed instead the value some

6% smaller quoted in (2.57). Our numerical algorithms aren’t optimized for extremely

small T and ω, and it’s possible that this shelf effect goes away at very small T , so

that the residues of Im σ̃xx and Im σ̃yy agree in this limit. But the balance of evidence

from our numerical exploration is that this does not happen, or happens very slowly

as T is decreased.

2.4 Stability calculations

We expected that the p-wave backgrounds (2.5) would be unstable against small

perturbations that would eventually turn them into backgrounds of the type studied

in [51]. These backgrounds display behavior analogous to a p + ip gap.8 But the

opposite seems to be true: numerical explorations of quasinormal modes close to Tc

show that it is the p + ip-wave backgrounds that are unstable, and it seems that

they evolve toward pure p-wave backgrounds, which are stable. In section 2.4.1 we

exhibit the equations describing the perturbations of the pure p-wave backgrounds

that we thought would be unstable and explain how the lowest-lying quasinormal

modes exhibit stability instead, close to Tc. In section 2.4.2, we show that similar

perturbations of the backgrounds studied in [51] exhibit an instability slightly below

Tc.

8The analogy to a p+ ip gap is apt because the combination τ1dx+τ2dy distinguishes an orienta-
tion on R2 and implies a spontaneous magnetization. To see this, note first that the positive charge
of the black hole under U(1)3 privileges τ3 over −τ3. The structure constants εabc of SU(2) then
privilege the ordering (τ1, τ2) over (τ2, τ1), because having distinguished the positive τ3 direction
in the Lie algebra lets us set c = 3. Finally, τ1dx+ τ2dy “locks” this orientation in the Lie algebra
to an orientation dx ∧ dy on R2. More physically, a contribution w(τ1dx + τ2dy) to A means that
there is a term w2τ3dx ∧ dy in F , representing a spontaneous magnetization that again picks out
an orientation dx ∧ dy in R2. In any case, the symmetries of this state are clearly those of a p+ ip
gap whose ip component is of identical magnitude to its p component, so that the gap is uniform in
magnitude but has a phase that rotates by 2π as one goes once around the Fermi surface.
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2.4.1 Quasinormal frequencies of p-wave backgrounds

Let us begin by explaining why we thought p-wave backgrounds would be unstable.

At T = Tc, both the τ 1dx mode and the τ 2dy directions exhibit marginally stable

modes. So a natural expectation is that both become unstable for T < Tc. Yet the p-

wave backgrounds described in section 2.2 involve only τ 1dx, whereas the p+ ip-wave

backgrounds of [51] involve the combination τ 1dx + τ 2dy. In the latter case we are

taking advantage of both directions of instability, and it seems reasonable that such

a configuration should be preferred. But this reasoning ignores the non-linearities of

the Yang-Mills equations. It turns out that condensing in the τ 1dx direction stabilizes

against condensation in the τ 2dy direction—at least, close to Tc. That stabilization

is what we are going to address in this section.

Starting from the backgrounds (2.5), we want to study τ 2dy perturbations, which

is to say a2
y. At the linearized level, a2

y couples with a1
y, so we are forced to examine

the combined perturbation A→ A+ a, where

a = e−iωt
(
a1
yτ

1 + a2
yτ

2
)
dy . (2.58)

The equations of motion read

[
∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

r2(ω2L4 + Φ̃2)

(r3 − 1)2

]
a1
y −

2iωL2r2Φ̃

(r3 − 1)2
a2
y = 0 ,[

∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

r2(ω2L4 + Φ̃2)

(r3 − 1)2
− w̃2

r(r3 − 1)

]
a2
y +

2iωL2r2Φ̃

(r3 − 1)2
a1
y = 0 .

(2.59)

The appropriate boundary conditions for quasinormal modes are that a1
y and a2

y should

vanish at the boundary of AdS4 and that a should be a function only of the infalling

coordinate t+ 1
4πT

log(r−1) at the black hole horizon (where, as usual, rH = 1). These

conditions can be simultaneously satisfied only for certain complex quasinormal fre-

quencies ω. Since we assumed e−iωt time dependence, quasinormal frequencies with
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Figure 2.6: Quasinormal frequencies corresponding to the perturbation (2.59) of the
p-wave superconducting background (2.5) near the critical temperature. The quasi-
normal mode spectrum is symmetric about the imaginary axis, and we are only show-
ing the quasinormal frequencies with non-negative real parts. The arrows are in the
direction of decreasing temperature, and the number displayed next to each quasinor-
mal frequency represents T/Tc. The blue points correspond to backgrounds with no
condensate above Tc; the brown points correspond to backgrounds with no conden-
sate below Tc; and the red points correspond to superconducting backgrounds below
Tc. The superconducting backgrounds also have a quasinormal mode at ω = 0 (see
main text) which is not displayed. The backgrounds with no condensate below Tc
have quasinormal frequencies with positive imaginary parts, indicating an instability.
The other backgrounds (namely normal state above Tc and superconducting below
Tc) appear to be stable.
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negative imaginary parts correspond to stable modes, while those with positive imag-

inary parts correspond to unstable modes. Solutions with purely real ω correspond

to true normal modes of the system. From the symmetries of the equations (2.59)

and of the boundary conditions described above, it follows that if ω is a quasinormal

frequency, then so is −ω∗. So let’s restrict attention to quasinormal frequencies with

Reω ≥ 0. Figure 2.6 shows how the lowest-lying quasinormal frequencies behave as

functions of temperature close to Tc. Above Tc, the normal state is stable, and the

quasinormal modes come in degenerate pairs with the same ω. As we mentioned

earlier, there are two quasinormal modes that become marginally stable at Tc: their

frequencies go to zero. One of these modes, involving only a1
y, stays right at ω = 0

below Tc on the superconducting branch. It is a Goldstone mode describing spatial

rotations of the condensate. The other mode is stable on the superconducting branch

below Tc. What makes it stable is the −w̃2

r(r3−1)
term in the second equation of (2.59).

This term is like a positive, r-dependent contribution to the mass term of the gauge

boson. Dropping this term amounts to passing to the normal state below Tc, and our

normal investigation showed that this state is unstable. So the −w̃2

r(r3−1)
term is the

advertised stabilization mechanism, and it is evidently due to the non-linearities of

the Yang-Mills equations of motion.

2.4.2 Quasinormal frequencies of p+ ip-wave backgrounds

We now wish to show that the large gL limit of the p+ ip backgrounds studied in [51]

are unstable, at least for T close to Tc. The instability decreases the ip component

of the gap and appears likely to lead the system into a p-wave state like (2.5). Our

strategy is to find out what happens to the modes which are marginally stable at

Tc as we go slightly away from the critical temperature on the superconducting and

normal branches.
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At large g, the gauge field ansatz for the circularly polarized backgrounds is

A = Φ(r)τ 3dt+ w(r)
(
τ 1dx+ τ 2dy

)
, (2.60)

and it is again convenient to define

Φ̃ = gL2Φ , w̃ = gL2w . (2.61)

In the large g limit there is no back-reaction on the metric, so the metric is simply

(2.4). The equations of motion for Φ̃ and w̃ are similar to (2.7). They are given

explicitly in (B4) of [51], and we will not reproduce them here.

There are many ways in which one can perturb the background (2.60), but the

perturbations that might show an instability towards converting p+ ip into p should

be of the form

a = e−iωta1(τ 1dx− τ 2dy) + e−iωta2(τ 2dx+ τ 1dy) . (2.62)

The a1 perturbation changes the relative magnitude of the p and ip components of

the background ansatz (2.60). Nothing in the ansatz (2.60) picks out whether τ 1dx

or τ 2dy is the p-wave part (as opposed to the ip part) so changing the relative size of

these two components with a linear perturbation can be interpreted as decreasing the

ip component without loss of generality. The a2 component is a 90◦ spatial rotation

of the a1 component. The linearized equations for a1 and a2 are

[
∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

r2(ω2L4 + Φ̃2)

(r3 − 1)2
+

w̃2

r(r3 − 1)

]
a1 +

2iωL2r2Φ̃

(r3 − 1)2
a2 = 0 ,[

∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

r2(ω2L4 + Φ̃2)

(r3 − 1)2
+

w̃2

r(r3 − 1)

]
a2 −

2iωL2r2Φ̃

(r3 − 1)2
a1 = 0 .

(2.63)

The perturbations should take the form of infalling waves close to the horizon and
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Figure 2.7: Quasinormal frequencies corresponding to the perturbation (2.62) of the
p+ ip-wave background (2.60) near the critical temperature. The spectrum of quasi-
normal modes is symmetric about the imaginary axis, and we are only showing the
quasinormal frequencies with non-negative real parts. The arrows are in the direc-
tion of decreasing temperature, and the number displayed next to each quasinormal
frequency represents T/Tc. The blue points correspond to backgrounds with no con-
densate above Tc; the brown points correspond to backgrounds with no condensate
below Tc; and the red points correspond to superconducting backgrounds below Tc.
The backgrounds with no condensate above Tc, as well as the superconducting ones
below Tc, have quasinormal frequencies with positive imaginary parts, indicating an
instability. The backgrounds with no condensate above Tc are likely to be stable.

76



should vanish at the boundary, as in the case of the linearly polarized backgrounds

examined in the previous section. Only for discretely many quasinormal frequencies

are these boundary conditions satisfied.

When w̃ = 0, equations (2.63) are the same as the equations for a1
y and a2

y given in

(2.59), so at zero condensate the quasinormal modes coincide with the ones displayed

in figure 2.6. When T < Tc we find an instability whether or not there is a condensate:

see figure 2.7. This result could perhaps have been anticipated by noting that the

w̃2/r(r3 − 1) terms in (2.63) enter with the opposite sign from the way they entered

(2.59). So instead of tending to stabilize perturbations, they tend to destabilize them.

It’s worth noting, however, that w̃ is the coefficient of τ 1dx in (2.59), whereas it is

the coefficient of τ 1dx + τ 2dy in (2.63). So, the functional forms of w̃ will differ in

the two cases, becoming equal only in the limit T → Tc.

2.5 Discussion

The distinguishing feature of the superconducting black holes constructed in this

chapter is that the condensate is anisotropic, in the sense of picking out the x direc-

tion as preferred. This is in contrast to earlier constructions [11, 12, 48, 51]. What is

special about the x directions is that the conductivity in this direction, σxx, becomes

large at small but non-zero ω. So far, the situation is similar to p-wave supercon-

ductors. But in real materials, impurity scattering would keep σxx finite for small

non-zero ω, whereas in our setup, the only upper bound comes from the effects of

finite temperature. The biggest difference from real materials—from the perspective

of the electromagnetic response—is that σyy displays gapped dependence, similar to

what was found for an s-wave construction in [12]. In real p-wave materials, the gap

vanishes at θ = 0 and θ = π but has finite slope there. Gapped σyy suggests instead

an infinitely narrow node in the gap: the slope of ∆ as a function of θ is infinite
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at θ = 0 and π. To put it another way, the states which usually occupy a Dirac

cone near a p-wave gap have been squeezed into a purely one-dimensional structure,

at least in the limit of low energy. We emphasize that this picture of an infinitely

narrow node in the gap is entirely heuristic, given that we do not have a microscopic

description of the condensate in the language of a dual CFT. What we can say most

clearly in the CFT language is that there is an SU(2) current algebra, and when there

is a strong enough chemical potential for the charge density J3
t , the component J1

x

develops an expectation value. We are tempted to conjecture that Jam ∼ ψ̄iγmτ
a
ijψi for

some fermion fields ψi in a representation of SU(2). Then the condensate is composed

of fermion pairs created by J1
x , which have one unit of angular momentum.

Our results are preliminary in various ways:

1. We didn’t consider back-reaction of the gauge field on the metric. Back-reaction

can be suppressed by taking the gauge coupling large, but this limit is non-

uniform in that as T → 0, the A1
x component of the gauge field gets larger and

larger at the horizon, demanding a bigger value of the gauge coupling to justify

the neglect of back-rection.

2. Our conductivity calculations do not allow for spatial momentum. In other

words, we calculated a retarded two-point function GR(ω, 0) of J3
i at non-zero

frequency but zero spatial momentum. A study of the electromagnetic response

at non-zero k might help consolidate the heuristic Fermi-surface picture we have

offered, or it might invalidate it and suggest a different interpretation.

3. We encountered some curious numerical coincidences, ranging from Tc/
√
ρ̃ ≈

1/8 to the scaling of the “scattering rate” 1/τ and the small ω limits of 1/σ̃xx

and σ̃yy approximately as ρ̃2
n rather than some fractional power of ρ̃n. The latter

coincidence evokes the idea that the behavior of quantities like the scattering

rate are largely controlled by kinematic factors of two incoming quasi-particles.
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It would be interesting if some of these numerical coincidences could be under-

stood in terms of exact solutions to the Yang-Mills equations, or in terms of

some systematic approximation scheme rather than brute-force numerics.

4. The scope of our stability calculations is very restricted: not only have we

limited ourselves to the no-back-reaction limit, but we also stayed close to Tc.

Moreover, we do not claim to have considered every possible perturbation, only

the ones that seemed obvious candidates for exhibiting instabilities. It would

clearly be desirable to be more thorough.

5. We have limited ourselves entirely to classical configurations, excluding any dis-

cussion of fluctuations. This would seem problematic in two spatial dimensions

because of infrared divergences, but fluctuations are suppressed when the ra-

dius of AdS4 is much larger than the Planck scale, corresponding to a large N

limit in the dual CFT. But to understand the condensate’s contribution to the

specific heat, presumably one should consider fluctuations.
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Chapter 3

The Second Sound of SU(2)

This chapter is a lightly edited version of ref. [56], which was written in collaboration

with Chris Herzog.

3.1 Introduction

As mentioned already, the gauge/gravity duality gives a new perspective on the

physics of superfluids and superconductors by equating the superconducting phase

transition with the instability of a charged black hole to develop charged scalar

hair [11, 12]. Recalling that the AdS/CFT correspondence maps a strongly interact-

ing field theory to a classical gravity description, this new perspective holds promise

for deepening our understanding of superconductivity in strongly interacting regimes

where BCS theory [57] is inadequate.1

This chapter is in some sense a continuation of the previous one, where we found

superconducting solutions of the Einstein-Yang-Mills theory with negative cosmolog-

ical constant in four spacetime dimensions. Here, we study the same model in five

spacetime dimensions. While going to five dimensions might seem like a mere rewrit-

1See ref. [58] for a review of the limits of BCS theory when confronted with high temperature
superconductivity.

80



ing of the previous chapter, there is actually a considerable benefit: in five dimensions

one can obtain analytical solutions close to the second order phase transition, and one

can compute many quantities related to the phase transition analytically. Generally,

the differential equations that describe holographic systems that exhibit spontaneous

gauge symmetry breaking are nonlinear, and analytical solutions do not appear to be

available in most cases. As in the previous chapter, one usually has to resort to the use

of numerics to see the phase transition and to calculate the conductivities and critical

exponents. Analytical results, for example the low temperature approximation of the

conductivity in ref. [12], are scarce.2 In the case of an SU(2) gauge field in AdS5,

however, it was noticed in ref. [61] that the zero mode responsible for the existence of

the superconducting branch of solutions has a simple analytic form. From this zero

mode, one can extract a long list of properties near the phase transition:

1. The speed of second sound near the phase transition.

2. That the phase transition is second order.

3. The conductivity and in particular the residue of the pole in the imaginary part

of the conductivity.

4. The system satisfies a London type equation that implies a Meissner effect.

5. A large selection of current-current Green’s functions in the hydrodynamic limit,

and that they satisfy the appropriate non-Abelian Ward identities.

The title of this chapter makes reference to the fact that in a two-component fluid

there are typically two propagating collective modes. The first mode corresponds to

ordinary sound in which the two components move in phase. The second mode corre-

sponds to second sound in which the two components move out of phase. Typically,

2See refs. [59, 60] for other nice analytic results for this class of models.
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ordinary sound can be produced by pressure oscillations while second sound couples

much more strongly to temperature oscillations [62].

As in the previous chapter, we introduce by hand a chemical potential in the

third isospin direction, which induces a charge density, 〈jt3〉 6= 0, that breaks both the

global SU(2) symmetry to a U(1) sugroup and also Lorentz invariance. There is a

superconducting phase transition at a critical temperature Tc, below which a current

develops orthogonal to the third isospin direction that completely breaks the residual

U(1) symmetry and also breaks the remaining rotational symmetry of the system to

U(1). For convenience, we take this current to be in the direction 〈j1
x〉, leaving a

rotational symmetry in the yz-plane.

The fact that rotational symmetry is broken in the superconducting phase makes

the physics of this model rich and complicated. This SU(2) model appears to be a

holographic realization of the type of scenario described from a formal perturbative

field theoretic point of view in ref. [63]. Transport coefficients such as the speed of

second sound and conductivities will depend on which direction we decide to look.

Such a breaking of rotational invariance is not unheard of in real world materials.

To pick a particularly simple example, a ferromagnet will break rotational symmetry

when the spins align. We emphasized in the previous chapter a possible connection

of this SU(2) model to a p-wave superconductor, where the order parameter for the

phase transition is a vector.

Of real world materials, superfluid liquid helium-3 perhaps comes closest in ap-

proximating the physics of the SU(2) model. Liquid helium-3 at very low tempera-

tures is a p-wave superfluid. Two fermionic helium-3 atoms pair up to form a loosely

bound bosonic molecule with weak interaction between the orbital and spin degrees

of freedom of the electrons [64]. The orbital and spin angular momenta are both

equal to one, and the order parameter is often written Aai where a indexes the spin

angular momentum and i the orbital angular momentum, in surprisingly close anal-
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ogy with our jaµ. There are many stable phases of superfluid helium-3, depending on

the pressure, temperature, and applied magnetic field. The A phases are known to

break rotational symmetry.

Despite plausible similarities between the symmetries of our model and various

real world materials, there is one crucial difference. While the order parameters for

these real world materials may have vector or tensor structure, they are not currents,

and the signature of the phase transition is not the production of a persistent current.

In contrast, the model investigated in this chapter has 〈jx1 〉 6= 0.

The summary of this chapter is as follows. We begin in Section 2 with a review of

the SU(2) model and the probe limit, this time in an arbitrary number of dimensions,

generalizing the results of Chapter 2. As in Chapter 2, we choose to work in a limit

in which gravity is weak and the non-Abelian field does not back-react on the metric.

Thus, at heart, in this paper we will be solving the classical SU(2) non-Abelian Yang-

Mills equations in a fixed background spacetime, that of a Schwarzschild black hole

in AdS5.3 In Section 3, we find a solution to the Yang-Mills equations near the phase

transition. This power series solution in the order parameter and superfluid velocities

allows us to demonstrate that the phase transition is second order and to calculate

the speed of second sound from thermodynamic identities. In Section 4, we make

some formal remarks about the current-current correlation functions for our model.

We discuss the Ward identities that these Green’s functions satisfy and some of their

discrete symmetries. We also review how to calculate these two-point functions using

the AdS/CFT correspondence. In Section 5, through a study of fluctuations about our

solution near the phase transition, we extract the current-current correlation functions

in the hydrodynamic limit. From the location of the poles, we independently confirm

the speed of second sound calculated in Section 3. We are also able to calculate

various damping coefficients and see explicitly that the Green’s functions satisfy the

3Attempts to solve the full set of coupled equations for a non-Abelian black hole go back many
years [65,66]. See refs. [67, 68] for reviews.
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non-Abelian Ward identities. In the last part of Section 5, we consider the ω → 0

and k → 0 limits. From these limits we extract conductivities and also demonstrate

that the system obeys a type of London equation.

3.2 The Model

The Einstein-Yang-Mills action coupled to gravity with a negative cosmological con-

stant Λ in d+ 1 spacetime dimensions is:

S =
1

2κ2

∫
dd+1x

√
−g (R− 2Λ)− 1

4g2

∫
dd+1x

√
−g F a

ABF
aAB . (3.1)

The field strength F aAB can be written in terms of a gauge connection AaB as follows:

F a
AB = ∂AA

a
B − ∂BAaA + fabcA

b
AA

c
B , (3.2)

where fabc are the structure constants for the Lie algebra g with generators Ta such

that [Ta, Tb] = ifab
cTc. Taking g = su(2), the generators are Ta = σa/2, σa being the

Pauli spin matrices, and the structure constants are fabc = εabc.
4

The equations of motion for the gauge field that follow from the action (3.1) are

DAF
aAB = 0, which can be expanded as

∇AF
aAB + fabcA

b
AF

cAB = 0 . (3.3)

Einstein’s equations are

RAB +

(
Λ− 1

2
R

)
gAB =

κ2

2g2

(
2F a

CAF
aC

B −
1

2
F a
CDF

aCDgAB

)
. (3.4)

4The g = su(2) indices a, b, c, . . . are raised and lowered with the Kronecker delta δab . The capital
indices A,B,C . . . are raised and lowered with the five dimensional space time metric gAB . We
will also shortly introduce Greek indices µ, ν, . . . which will be raised and lowered with the four
dimensional Minkowski tensor ηµν = (−+++).
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A solution to these equations in the case of a negative cosmological constant,

Λ = −d(d−1)/2, is a (d+1)-dimensional Reissner-Nordström black hole with anti-de

Sitter space asymptotics:5

ds2 =
1

u2

[
−f(u)dt2 + d~x2 +

du2

f(u)

]
, A =

(
µ+ ρud−2

)
T3dt (3.5)

where d~x2 = dx2 + dy2 + dz2 and the warp factor is

f(u) = 1 +Q2

(
u

uh

)2d−2

− (1 +Q2)

(
u

uh

)d
, (3.6)

with the charge Q being defined as

Q2 ≡ κ2

g2

d− 2

d− 1
ρ̃2u2d−2

h . (3.7)

This black hole solution requires only an abelian gauge symmetry, and we chose that

Abelian symmetry to be the U(1) subgroup of SU(2) generated by T3. In slightly

different conventions, this background also appears in eq. (1.29). The horizon is

located at u = uh, and the Hawking temperature is

TH =
d− (d− 2)Q2

4πuh
. (3.8)

The gauge potential (3.5) is well defined globally, at both the horizon and the bound-

ary, provided

ρ = −µ/ud−2
h . (3.9)

As in the previous chapter, one can consider the probe limit κ2/g2 → 0 where

the gauge field does not back-react on the metric. The metric remains that of an

5We set the radius of curvature L = 1.

85



uncharged black hole in anti-de Sitter space with warp factor

f(u) = 1−
(
u

uh

)d
. (3.10)

As promised, from now on we restrict to the d = 5 case because of the observa-

tion made in ref. [61] that the zero mode inducing the phase transition is known

analytically.

3.3 Critical Behavior

Close to the phase transition, the superconducting black hole solutions can be given

as a power series in three small parameters: the order parameter ε ≡ g2〈jx1 〉/2 and

chemical-potential-like objects we call superfluid velocities, A3
x(u=0) ≡ A3

x = v‖ and

A3
y(u=0) ≡ A3

y = v⊥. Velocity is a bit of a misnomer here as the objects v‖ and v⊥, like

the chemical potential µ, have mass dimension one. The name is motivated by their

canonical conjugacy to the currents jx3 and jy3 , and by the discussion in section 1.1.6

that showed that boosting the superfluid to velocity ~v is equivalent to coupling it to

an external constant gauge field.

From the AdS/CFT dictionary, the currents 〈jµa 〉 and external field strength Aaµ

in the field theory can be determined from the small u expansion of the bulk gauge

field Aaµ:

Aaµ = Aaµ +
1

2
g2〈jaµ〉u2 + . . . . (3.11)
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3.3.1 The Background

We begin with small steps and construct the solution in the limit v⊥ = v‖ = 0. In

the probe approximation, the equations of motion for the gauge field take the form

DtA3
t =

(A1
x)

2

f
A3
t and DxA1

x = −(A3
t )

2

f 2
A1
x , (3.12)

where we have defined the linear second order differential operators

Dt ≡ ∂2
u −

1

u
∂u and Dx = Dy ≡ ∂2

u +

(
f ′

f
− 1

u

)
∂u . (3.13)

To keep the equations simple in what follows, we choose to put the horizon of the black

hole at uh = 1. To restore units, dimensionful quantities such as the chemical poten-

tial µ, frequencies ω, and wave-vectors k should be replaced with the dimensionless

combinations µuh, ωuh, and kuh, respectively.

As pointed out by ref. [61], when A3
t = 4(1 − u2) there is an analytic solution to

the second equation of (3.12) that is regular at the horizon, of the form

A1
x = ε

u2

(1 + u2)2
. (3.14)

From eq. (3.11), the meaning of ε in the dual field theory is, up to normalization, that

of an expectation value for the non-abelian current 〈j1
x〉 = 2ε/g2. The existence of

the solution (3.14) indicates that the superfluid phase transition occurs when µ = 4.6

Given this zero mode, we look for a general solution to eqs. (3.12) as a series expansion

6There are in fact a countable set of such zero modes with µ = 4k where k is a positive integer,
which also have analytical expressions. As the higher zero modes have higher free energy, they
should not affect the phase diagram of the system.
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in ε:

A1
x = ε

u2

(1 + u2)2
+ ε3w1 + ε5w2 +O(ε7) , (3.15)

A3
t = 4(1− u2) + ε2φ1 + ε4φ2 +O(ε6) . (3.16)

The solution describes the system for µ & 4. Our strategy will be to fix the expecta-

tion value of 〈j1
x〉 = 2ε/g2 but to allow the chemical potential to be corrected order

by order: µ = 4 + ε2δµ1 + ε4δµ2 + . . .. Thus, in solving the differential equations,

we require the boundary condition that the O(u2) term in wi vanish while φi(0) is

allowed to be nonzero.

The differential equation governing φ1 is

Dtφ1 =
4u4

(1 + u2)5
, (3.17)

which has the solution

φ1 = (1− u2)δµ1 +
1

96

(
5u2 − 8u2(1 + 3u2 + u4)

(1 + u2)3

)
. (3.18)

We applied the boundary condition that φ1 vanish at the horizon. Also, δµ1 corre-

sponds to a shift of the chemical potential by ε2δµ1. The value of δµ1 is constrained

by the solution for w1, as we now see. The differential equation for w1 is

w′′1 −
1 + 3u4

u(1− u4)
w′1 +

16

(1 + u2)2
w1 = − 8u2

(1− u2)(1 + u2)4
δφ1 . (3.19)

We require the boundary conditions that w1 be regular at the horizon and vanish at

the boundary (u = 0). These conditions leave us with the solution

w1 =
cu2

(1 + u2)2
+
u4(39u6 − 331u4 − 819u2 − 369)

20,160(1 + u2)5
+

13u2 ln(1 + u2)

1680(1 + u2)2
, (3.20)
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and the constraint

δµ1 =
71

6720
. (3.21)

The term in w1 proportional to c is just the zero mode, and, consistent with our

strategy, we set c = 0.

For the free energy calculation we perform below, we also need the next order

corrections, φ2 and w2. The expressions are too cumbersome to repeat here. The

structure and boundary conditions are analogous to the case of φ1 and w1 considered

above.

The near boundary expansion of our solution takes the form

A1
x = εu2 +O(u4) , (3.22)

A3
t =

(
4 +

71ε2

6720
+ δµ2ε

4 +O(ε6)

)
(3.23)

−
(

4 +
281ε2

6720
−
(

1343− 1365 ln 2

2,822,400
− δµ2

)
ε4 +O(ε6)

)
u2 +O(u4) ,

where

δµ2 =
13(−4,015,679 + 5,147,520 ln 2)

75,866,112,000
. (3.24)

These expansions match well with numerical solutions that we found close to the

transition temperature.

3.3.2 Superfluid flow

In this section, we generalize the background above to allow for the possibility of a

superfluid flow. In terms of the bulk solution, this generalization requires turning on

a constant value of A3
y(u=0) = v⊥ and A3

x(u=0) = v‖ at the boundary corresponding

to a non-zero superfluid velocity (v‖, v⊥, 0). The differential equations describing this
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background are a modification of eqs. (3.12):

u2fDλA1
λ = gµν

(
A3
µA

3
νA

1
λ − A1

µA
3
νA

3
λ

)
, (3.25)

u2fDλA3
λ = gµν

(
A1
µA

1
νA

3
λ − A3

µA
1
νA

1
λ

)
, (3.26)

A1
t∂uA

3
t − A3

t∂uA
1
t = fA1

x∂uA
3
x − fA3

x∂uA
1
x + fA1

y∂uA
3
y − fA3

y∂uA
1
y , (3.27)

where we set A2
µ = Aaz = Aau = 0. The repeated covariant λ indices on the left

hand side are not to be summed over. As before, we solve this system in a small ε

expansion, but we also add another small expansion parameter δ ∼ v⊥ ∼ v‖. There

is a non-uniformity in the limit v⊥ → 0 and v‖ → 0, and we find two branches of

solutions for small values of the superfluid velocity. In the case where v⊥ > v‖, we

find

A1
t = O(ε2) , (3.28)

A1
x = ε

u2

(1 + u2)2
− ε(v2

⊥ + v2
‖)
u2(u2 + 4 ln(1 + u2))

24(1 + u2)2
+ . . . , (3.29)

A1
y = −ε

v‖
v⊥

u2

(1 + u2)2
+ ε(v2

‖ + v2
⊥)
v‖
v⊥

u2(u2 + 4 ln(1 + u2))

24(1 + u2)2
+ . . . , (3.30)

A3
t = 4(1− u2) +

1

3
(v2
‖ + v2

⊥)(1− u2) (3.31)

+ε2
v2
⊥ + v2

‖

v2
⊥

(1− u2)(71 + 3u2 − 627u4 − 279u6)

6720(1 + u2)3
+ . . . ,

A3
x = v‖ − ε2

v‖
v⊥

v2
‖ + v2

⊥

v⊥

u2(3 + 9u2 + 4u4)

144(1 + u2)3
+ . . . , (3.32)

A3
y = v⊥ − ε2

v2
‖ + v2

⊥

v⊥

u2(3 + 9u2 + 4u4)

144(1 + u2)3
+ . . . . (3.33)
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In the case v⊥ < v‖, we find

A1
t = ε

v2
⊥ + v2

‖

v‖

u2(1− u2)

4(1 + u2)
+ . . . , (3.34)

A1
x = ε

u2

(1 + u2)2
+ ε(v2

⊥ + v2
‖)
u2(u2 − 2 ln(1 + u2))

24(1 + u2)2
+ . . . , (3.35)

A1
y = ε

v⊥
v‖

u2

(1 + u2)2
+ ε(v2

⊥ + v2
‖)
v⊥
v‖

u2(u2 − 2 ln(1 + u2))

24(1 + u2)2
+ . . . , (3.36)

A3
t = 4(1− u2) +

1

6
(v2
‖ + v2

⊥)(1− u2) (3.37)

+ε2
v2
⊥ + v2

‖

v2
‖

(1− u2)(71 + 3u2 − 627u4 − 279u6)

6720(1 + u2)3
+ . . . ,

A3
x = v‖ − ε2

v2
‖ + v2

⊥

v‖

u2(3 + 9u2 − 2u4)

288(1 + u2)3
+ . . . , (3.38)

A3
y = v⊥ − ε2

v⊥
v‖

v2
‖ + v2

⊥

v‖

u2(3 + 9u2 − 2u4)

288(1 + u2)3
+ . . . . (3.39)

These solutions can be used to compute the speed of second sound perpendicular

and parallel to the order parameter A1
x. In a two component fluid, there are typically

two propagating collective modes, ordinary and second sound. In our probe approxi-

mation, we see only the superfluid component, and the single collective motion avail-

able to us we call second sound. From our holographic perspective, ordinary sound

would involve fluctuations of the metric so it is suppressed in the limit κ2/g2 → 0.

The speed of second sound, like that of ordinary sound, can be computed from

derivatives of the state variables. From ref. [69], the second sound speed squared in

this probe limit should be

c2
2 = − ∂j/∂v

∂ρ/∂µ

∣∣∣∣
v=0

. (3.40)

From eq. (3.11), the values of the charge current j = 〈jxi 〉 and the charge density

ρ = 〈jt3〉 can be read off from the order u2 pieces of A3
i and A3

t , respectively.

Because our system is not rotationally symmetric, the speed of second sound will

depend on the direction of propagation. Let c⊥ and c‖ be the speeds perpendicular
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and parallel to the order parameter A1
x, respectively. The speed c⊥ can be computed

from the background solution v⊥ > v‖ while v‖ can be computed from the solution

with v‖ > v⊥. In the case v⊥ > v‖ = 0, we find that

A3
t = µ+

1

71
(840− 281µ)u2 + . . . , (3.41)

A3
y = v⊥ −

140

71
v⊥(µ− 4)u2 + . . . . (3.42)

and hence, up to higher order corrections in ε,

c2
⊥ ≈

71

13,488
ε2 ≈ 140

281
(µ− 4) . (3.43)

(We used the fact that µ− 4 ≈ 71ε2/6720, which can be read off from (3.23).) In the

case v‖ > v⊥ = 0, at leading order A3
t remains the same but now we need

A3
x = v‖ −

70

71
v‖(µ− 4)u2 + . . . . (3.44)

We find that

c2
‖ ≈

1

2

71

13,488
ε2 ≈ 70

281
(µ− 4) . (3.45)

We confirm these results for c‖ and c⊥ in Sections 3.5.2 and 3.5.3 through an analysis

of the hydrodynamic poles in the current-current correlation functions. For numerical

results valid when ε is not necessarily small, see Figure 3.2.

These perturbative solutions in v⊥ and v‖ can also be used to analyze the phase

diagram of the system near the critical point µc = 4. At the critical point, we expect

the order parameter to vanish, so ε = 0. The value of A3
t at u = 0 can be reinterpreted

as the value of the chemical potential. These two facts give us a relation between the

chemical potential and superfluid velocity along the critical line separating the two
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phases. For superfluid flow parallel to the order parameter, we expect

µ ≈ 4 +
1

6
v2
‖ (3.46)

while for flow perpendicular to the order parameter, we have instead

µ ≈ 4 +
1

3
v2
⊥ . (3.47)

3.3.3 The Free Energy

We compute the contribution to the free energy from the gauge field term in the

on-shell action:

S = − 1

4g2

∫
d5x
√
−gF a

ABF
aAB

=
βVol3
2g2

∫ 1

0

du

u

(
(∂uA

3
t )

2 − f(u)(∂uA
1
x)

2 +
1

f(u)
(A1

xA
3
t )

2

)
= −βVol3

2g2

(∫ 1

0

du

u
f(u)(∂uA

1
x)

2 +
1

u
A3
t (∂uA

3
t )

∣∣∣∣
u=0

)
.

(3.48)

For a background where A1
x = 0 and

A3
t = (4 + δµ1ε

2 + δµ2ε
4)(1− u2) , (3.49)

the on-shell action is

Svac =
βVol3
4g2

(
64 +

71

210
ε2 +

(
− 51,145,217

2,370,816,000
+

4979

176,400
ln 2

)
ε4 +O(ε6)

)
.

(3.50)

Here Vol3 is the spatial volume of the field theory while β = 1/T is the inverse

temperature. For the background where A1
x 6= 0 has condensed, we find in contrast
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that

Ssf =
βVol3
4g2

(
64 +

71

210
ε2 +

(
− 48,014,117

2,370,816,000
+

4979

176,400
ln 2

)
ε4 +O(ε6)

)
. (3.51)

The difference in the values of the two on-shell actions is

β∆P = Svac − Ssf =
βVol3
4g2

(
− 71

53,760
ε4 +O(ε6)

)
. (3.52)

Now ∆P can be interpreted also as a difference in the free energies because the free

energy (in the grand canonical ensemble) is minus the value of the on-shell action.

That ∆P < 0 implies that the free energy of the superfluid phase is smaller and thus

the superfluid is stable.

Moreover, from the fact that the free energy difference scales as ε4, we see that the

phase transition is second order. For small ε, ε4 ∼ (µ−µc)2. If we restore dimensions,

then µ should be replaced by µuh = µ/πT . Thus, ε4 ∼ (Tc − T )2. The derivative of

P with respect to temperature is continuous but non-differentiable.

3.4 Formal Remarks about Green’s Functions

A field theory with a non-abelian global symmetry, such as SU(2), has by Noether’s

Theorem, a conserved current jµa which transforms under the adjoint representation

of this symmetry group. In this paper, we are interested in Green’s functions for this

current, in particular the Fourier transformed retarded current-current correlation

functions:

Gµν
ab (p) = i

∫
d4x e−ip·x〈[jµa (x), jνb (0)]〉θ(t) . (3.53)

If the symmetry is non-anomalous, then we can weakly gauge it by coupling the cur-

rent to an external gauge field Aaµ. Gauge invariance then implies that the correlation

functions obey a series of Ward identities. For the one-point function, the covariant
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derivative of the current vanishes:

0 =
(
∂µδ

c
a + fab

cAbµ
)
〈jµc 〉 . (3.54)

More usefully for the present discussion, there is also a Ward identity for the retarded

two-point function. We give here the Fourier transformed version:

0 = (ipµδ
c
a + fab

cAbµ)Gµν
cd (p) + fad

c〈jνc 〉 . (3.55)

For our gravitational system beyond the phase transition, the gravitational bulk

values of both A3
t and A1

x are non-zero. The AdS/CFT dictionary allows us to read

Aaµ and 〈jµa 〉 from the near boundary expansion of Aaµ using the relation (3.11). For

the system under consideration here, of the components of the external gauge field

only A3
t = µ is non-zero in the field theory. We have two non-vanishing components

of the current, 〈jx1 〉 and 〈jt3〉.

Below, we compute the Green’s functions that describe the response of the system

to an external gauge field in the third isospin direction: Gµν
a3 . The relevant Ward

identities componentwise are

0 = ipµG
µν
3a − 〈jx1 〉δa2δ

νx , (3.56)

0 = ipµG
µν
23 + µGtν

13 + 〈jx1 〉δxν , (3.57)

0 = ipµG
µν
13 − µGtν

23 . (3.58)

Our Green’s functions below obey this set of Ward identities.

Another important observation for the Green’s functions under consideration is

the symmetry under swapping the indices. We observe that

Gµν
ab (p) = (−1)φ(a,b)Gνµ

ba (p) , (3.59)
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where φ(a, b) is equal to −1 if either a = 2 or b = 2, but not both, and 1 otherwise.

This symmetry follows from the discrete symmetries of the system. Given that our

currents are even under PT, i.e. parity and time reversal, if PT were a symmetry of

the state, we would expect the Green’s functions to be symmetric under an index

swap. Our state is not symmetric under PT, but it is symmetric under PT times a

Z2 operation on the su(2) Lie algebra, σ1 → −σ1 and σ3 → −σ3.

3.4.1 Computation of two-point functions

To compute the current-current correlators (3.53) in the probe approximation, we

perturb the background gauge field by sending

AaA → AaA + δAaA . (3.60)

Consequently, the corresponding field strength F a
AB changes to F a

AB + faAB, with faAB

given by

faAB = ∂AδAB − ∂BδAA + εabcδAbAA
c
B + εabcAbAδA

c
B . (3.61)

From (3.1), one can see that the quadratic action for δAaA is

S2 = − 1

4g2

∫
d5x
√
−gfaABfABa , (3.62)

which gives the linearized equations of motion

∇AfaAB + εabcAAbf cAB + εabcδAAbF c
AB = 0 . (3.63)

The quadratic action (3.62) is in fact not well defined because the integrand diverges

as lnu at small u as we will see. We will regulate this divergence using holographic

renormalization [5].
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For definiteness, we will only analyze the case where the background gauge field

doesn’t depend on t or ~x and where its radial components Aau vanish. We choose a

similar gauge for the perturbations by requiring δAau = 0. Equations (3.63) can be

solved approximately in the limit of small u. An appropriate series expansion in this

limit is

δAaµ(t, ~x, u) = αaµ(t, ~x) + α̃aµ(t, ~x)u2 lnu+ βaµ(t, ~x)u2 + . . . . (3.64)

for some vector-valued functions α(t, ~x), α̃(t, ~x), β(t, ~x), etc. The values of α and β are

the only ones that can be specified independently; all the other functions appearing

in this expansion, namely α̃ and higher order corrections, can be expressed in terms

of α and β.

Plugging (3.64) into (3.63) and looking at the term with the lowest power of u in

the equation with B = ν, one finds a relation between α̃aν and αaν :

α̃aν = −1

2

[
∂µfaµν + εabcAµbf cµν + εabcδAµbF c

µν

] ∣∣∣∣
u=0

. (3.65)

Upon integration by parts in (3.62), the unregularized on-shell quadratic action

can be written as

Son−shell
2 =

1

2g2

∫
d4x

1

u
(δAνa)(∂uδA

a
ν)

∣∣∣∣
u=1/Λ

. (3.66)

The divergence that arises as one takes Λ → ∞ comes from the ∂uδA
a
ν term whose

most divergent piece goes like u lnu at small u. This divergence can be regulated by

adding the counterterm

Sct = − ln Λ

2g2

∫
d4x δAνa

[
∂µfaµν + εabcAµbf cµν + εabcδAµbF c

µν

] ∣∣∣∣
u=1/Λ

. (3.67)

Note that this counterterm depends only on the values of the gauge field on the

surface u = 1/Λ and on its derivatives along this surface, as required by holographic
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renormalization.

As a side note, a simpler formula for α̃aν can be found if only A3
t and α3

ν approach

non-zero values at the boundary of AdS. In this case, only α̃3
ν is non-zero and is given

by

α̃3
ν = −1

2

(
∂µ∂

µαaν − ∂µ∂ναaµ
)
. (3.68)

Assuming that αaν(t, ~x) = αaνe
−i(ωt−~p·~x) then

α̃3
ν =

1

2
(~p2 − ω2)α3

ν −
1

2
pν
(
ωα3

t + pxα
3
x + pyα

3
y + pzα

3
z

)
. (3.69)

To compute the Fourier transformed two-point function, we first Fourier transform

the regulated on-shell action

Son−shell
2 =

1

g2

∫
d4p

(2π)4
αµa(−p)(βaµ(p) + cα̃aµ(p)) , (3.70)

where c is an arbitrary constant introduced by the regularization procedure. Although

such an action is not a generating functional for the retarded Green’s function, using

the procedure outlined by Son and Starinets [52], we can identify the retarded Green’s

function as7

Gaν
µb(p) =

2

g2

∂
[
βaµ(p) + cα̃aµ(p)

]
∂αbν(p)

. (3.71)

The linear response of a system to a perturbation αbν(p) is then a current density of

the form

〈jaµ(p)〉 = Gaν
µb(p)α

b
ν(p) . (3.72)

For most physical questions, the ambiguity in the choice of c should be irrelevant.

More precisely, one can see from (3.65) that schematically α̃ = ∂∂α+∂α+α, so Gaν
µb(p)

is ambiguous up to an additive term analytic in p. Its Fourier transform Gaν
µb(x) is

7For a more precise discussion of how to derive these Green’s functions from an action principle
and generating functional, see ref. [6]. See also ref. [8] and the discussion in Appendix C of ref. [7].
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ambiguous up to an additive term of the from c1δ
4(x) + cλ2∂λδ

4(x) + cλρ3 ∂λ∂ρδ
4(x),

where c1, cλ2 , and cλρ3 are constants that depend on the particular Green’s function

we are computing. Since in position space equation (3.72) reads

〈jµa (x)〉 =

∫
d4x′Gµν

ab (x− x′)αbν(x′) , (3.73)

it follows that the ambiguity in the choice of c does not affect the result of 〈jµa (x)〉

if αbν(x) = 0. In particular, the late-time, large-distance response of the system to

localized sources is not affected by this ambiguity. There are many subtleties in these

calculations.

3.5 Fluctuations

To calculate the Fourier transformed retarded current-current correlation functions,

we need to study fluctuations of the SU(2) gauge fields Aaµ(x) in our black hole

background.

In the superfluid phase, the expectation value of the order parameter A1
x 6= 0

breaks rotational symmetry and makes our task richer and more complicated than

in the rotationally symmetric case where only A3
t 6= 0. In the rotationally symmetric

case, it would be enough to consider a fluctuation with a time and space dependence of

the form e−iωt+ikx. Given the breaking of rotational symmetry, we should in principle

consider a more general dependence where we allow for motion both parallel and

transverse to the order parameter: e−iωt+ikxx+ikyy. Because of the complexity of the

full result, we shall not present a full accounting of all the Green’s functions here.

Instead we will content ourselves by studying various informative limits where either

kx = 0 or ky = 0.

We make a few other additional simplifying restrictions. Following in the foot-

steps of refs. [47, 70] where the third isospin direction was interpreted as the U(1) of
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electricity and magnetism, we will consider Green’s functions where at least one of

the SU(2) isospin indices is equal to three. In other words, we are interested in the

linear response of the system to external electric and magnetic fields.

The last simplifying restriction is to limit our study to the hydrodynamic regime,

where the order parameter, the frequency, and the wave-vector are small compared

to the temperature. In our dimensionless notation, ε, k, ω � 1. It is only in this limit

that we have analytic results although it is straightforward to calculate the Green’s

functions numerically beyond this regime.

We work out the Green’s functions in five cases. The first and simplest case, for

which we give the most detailed description of the calculation, is for a fluctuation

transverse to the order parameter and a wave vector transverse to both the order

parameter and the polarization of the fluctuation. We call this fluctuation the pure

transverse mode. We next consider fluctuations that correspond to a second sound

mode in two different limits, one where the sound is propagating parallel to the

order parameter and one where the sound is propagating transverse. These two

sets of fluctuations give us independent confirmation of the speeds of second sound

computed in Section 3.3.2 from thermodynamics. Finally we consider fluctuations

that correspond to a diffusive mode, again in two different limits, one where the

diffusion is parallel to the order parameter, one in which the diffusion is transverse.

In Section 3.5.6, we discuss conductivities and the London equations.

In what follows, to avoid cumbersome indices, we define new variables for the

background values of the gauge field:

A1
x ≡ W and A3

t ≡ Φ . (3.74)

100



3.5.1 Pure transverse mode

The pure transverse mode is described by fluctuations of the field A3
y with only z

spatial dependence. We decompose the fluctuations into Fourier modes:

δA3
y(u, t, z) = ay(u)e−iωt+ikz . (3.75)

These modes transverse to the order parameter A1
x decouple from the other fluctua-

tions of the gauge field and are governed by the differential equation:

Dyay =
(k2 +W 2)f − ω2

f 2
ay , (3.76)

where Dy was defined in eq. (3.13).

Near the horizon u = 1, we find that ay ∼ (1 − u)±iω/4 satisfies either ingoing or

outgoing plane wave type boundary conditions. Consistent with the presence of an

event horizon, it is natural to choose ingoing boundary conditions (the minus sign in

the exponent). This choice leads to retarded, as opposed to advanced, Green’s func-

tions in the dual field theory [52]. At the boundary u = 0 of AdS, we would like the

freedom to set ay(0) = ay0 to some arbitrary value of our choosing, corresponding to

perturbing the dual field theory by a small external field strength. These two bound-

ary conditions along with the differential equation uniquely specify the functional

form of ay.

While an analytic solution to eq. (3.76) does not appear to be available, one can

easily solve this equation in the limit of small ω, k, and ε. We can write the solution

for ay, valid to order ε2k, ε2ω, k2, and ω2, in the form

ay = ay0

(
1− u2

1 + u2

)−iω/4 (
1 + ε2ayε + ε2ωayωε + k2ayk + ω2ayω + . . .

)
. (3.77)
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We find

ayε = −u
2(3 + 9u2 + 4u4)

144(1 + u2)3
, (3.78)

ayωε = −iu
2(12 + 27u2 + 13u4)

864(1 + u2)3
, (3.79)

ayk =
1

8

(
2 ln(u) ln

(
1 + u2

1− u2

)
+ Li2(−u2)− Li2(u2)

)
. (3.80)

The expression for ayω is too cumbersome to give here. Near the boundary, this

solution (3.77) has the expansion

ay = ay0 + ay0

(
iω

2
− ε2

48
− iωε2

72
− ω2 ln 2

4
+

1

2
(ω2 − k2)

(
1

2
− ln(u)

))
u2 + . . .

(3.81)

From this near boundary expansion and eq. (3.72), we can calculate the two-point

function for the current in the hydrodynamic limit:

Gyy
33(ω, k) =

2

g2

(
iω

2
− ε2

48
− iωε2

72
− ω2 ln 2

4
+ (ω2 − k2)c

)
+ . . . . (3.82)

Note that the counter-term ambiguity, proportional to an arbitrary constant c, is of

the form predicted in eq. (3.69).

3.5.2 Transverse sound fluctuations

In general, second sound modes are expected to produce poles in the density-density

correlation function. We thus need to consider fluctuations in the conjugate field A3
t .

If we consider sound modes moving transverse to the order parameter, we can take

the fluctuations to have a y dependence but no x dependence. The self-consistent set
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of fluctuations to consider that couple to δA3
t (u, t, y) are

δA3
t (u, t, y) = a3

t (u)e−iωt+iky ,

δA3
y(u, t, y) = a3

y(u)e−iωt+iky , (3.83)

δAax(u, t, y) = aax(u)e−iωt+iky ,

where a = 1, 2.

The four fluctuations satisfy four second order ordinary differential equations and

one first order constraint:

Dxa1
x =

(
−ω2 − Φ2 + k2f

f 2

)
a1
x +

2Φ(iωΦa2
x −Wa3

t )

f 2
, (3.84)

Dxa2
x =

(
−ω2 − Φ2 + k2f

f 2

)
a2
x −

2iωΦa1
x − iW (ωa3

t + kfa3
y)

f 2
, (3.85)

Dya3
y =

−ω2 +W 2f

f 2
a3
y −

kω

f 2
a3
t +

ikW

f
a2
x , (3.86)

Dta3
t = −k

2 +W 2

f
a3
t +

ωk

f
a3
x +

2WΦ

f
a1
x −

iω

f
a2
x , (3.87)

0 =
iω

f
∂ua

3
t + ik∂ua

3
y +W∂ua

2
x − (∂uW )a2

x , (3.88)

where Dt, Dx, and Dy were defined in eq. (3.13). We checked that the derivative of

the constraint equation (3.88) with respect to u is a linear combination of all five

differential equations (3.84)–(3.88). Thus if a solution of the first four differential

equations satisfies the constraint for some u, it will satisfy the constraint equation at

all u.

There are seven integration constants associated with this linear system (3.84)–

(3.88). If we look at the horizon of the black hole at u = 1, we find seven different

kinds of behavior. There exist six solutions that have plane wave behavior for a1
x, a

2
x,
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and a3
y near the horizon of the form

(1− u)±iω/4 . (3.89)

There is also a pure gauge solution,

a3
t = −iω , a3

x = ik , a2
x = −W . (3.90)

As in the pure transverse case, we choose pure ingoing boundary conditions corre-

sponding to (1−u)−iω/4 behavior. At the boundary u = 0 of our asymptotically AdS

space, we would like to be able to perturb the system with arbitrary boundary values

of a3
t and a3

y but set the “unphysical” components of the gauge field a1
x and a2

x to

zero. These are four constraints and we have only three ingoing solutions. Thus we

will also need to make use of the pure gauge solution to enforce our u = 0 boundary

conditions.

We solved the system perturbatively in ω, k, and ε. We present the results here

in the limit where ω ∼ k2 ∼ ε2. The near boundary expansion (u = 0) of the solution

takes the form

a1
x = −(at0k + ay0ω)

P
70kε

(
48k2 + 3ε2 − 248iω

)
u2 + . . . , (3.91)

a2
x = −at0k + ay0ω

P
iωε

k

(
21,840k2 + 843ε2 − 72,800iω

)
u2 + ay0

iε

k
u2 + . . . ,(3.92)

a3
y = ay0 −

(at0k + ay0ω)

P
ω
(

1120k4 + 3k2(117ε2 − 1120iω) (3.93)

+
1

48
(ε2 − 24iω)(843ε2 − 72,800iω)

)
u2 + . . . ,

a3
t = at0 +

(at0k + ay0ω)

P
k
(

1120k4 + 3k2(117ε2 − 1120iω) (3.94)

+
1

48
(ε2 − 24iω)(843ε2 − 72,800iω)

)
u2 + . . . .

Note, the expression (at0k + ay0ω) is not homogeneous in our scaling limit. We have
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included the leading corrections proportional to at0 and ay0. There are terms in the

expansion proportional to u2 lnu but they are subleading in ω, k, and ε.

The pole in this limit takes the form

P = −72,800iω3 +
(
43,120k2 + 843ε2

)
ω2 +

7i

6
(4800k4 + 553k2ε2)ω +

−71k2ε4

16
− 141k4ε2 − 1120k6 + . . . . (3.95)

Let us study this cubic polynomial in ω in two different limits. First, if k � ε, we

find three poles with the asymptotic form

ω = ±
√

71

13,488
εk − 147,217ik2

947,532
+ . . . , (3.96)

ω = − 843iε2

72,800
− 4,335,443ik2

15,397,395
+ . . . . (3.97)

The first two poles are propagating modes that we identify with second sound. Indeed,

the speed of second sound agrees with the earlier result (3.43) from Section 3.3.2. The

position of the third pole in this limit is determined mostly by the size of the order

parameter ε and so we associate it with the zero mode that causes the phase transition

from the superfluid phase back to the normal phase.

In the opposite limit, k � ε, where the order parameter is small, the behavior

should be close to that of the normal fluid. In this limit, we find

ω =

(
±11− 3i

65

)
k2 +

(
±260,803− 131,519i

26,644,800

)
ε2 + . . . (3.98)

ω = −ik
2

2
− 5iε2

2928
+ . . . . (3.99)

The first two poles are associated with the zero modes that cause the phase transition

from the normal phase to the superfluid phase and were discussed in ref. [47] while the

third pole is associated to the diffusive mode of our conserved charge density. Indeed,
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the location of this diffusive pole is determined by the dynamics of the normal phase

and was calculated, without the order ε2 correction, long ago in ref. [71]. As we vary

ε and k the number of poles cannot change. The two zero mode poles evolve into the

sound poles of the previous limit while the diffusive pole becomes the zero mode pole

of the previous limit.

From these small u expansions, we can read off the eight Green’s functions Gxt
13,

Gxy
13 , Gxt

23, Gxy
23 , Gyy

33, Gyt
33, Gty

33, and Gtt
33. From the discrete symmetries (3.59), we

can also read off four more Green’s functions with the indices swapped. Note the

prefactor at0k + ay0ω in the small u expansion. This structure is necessary to satisfy

the Ward identities (3.56).

As a further check, we consider a particular static limit of the density-density

correlation function. From eqs. (3.72) and (3.94), we can read off the Green’s function,

Gtt
33 = − 2

g2

k2

P

(
1120k4 + 3k2(117ε2 − 1120iω) +

1

48
(ε2 − 24iω)(843ε2 − 72,800iω)

)
.

(3.100)

We are interested in the long wave-length limit of this Green’s function:

lim
k→0

Gtt
33(0, k) =

2

g2

281

71
. (3.101)

This long wave-length limit is equal to a thermodynamic susceptibility,

lim
k→0

Gtt
33(0, k) =

∂2P

∂µ2
=
∂ρ

∂µ
. (3.102)

Given this relation, we see that eq. (3.41) agrees with eq. (3.101).
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3.5.3 Longitudinal sound fluctuations

Longitudinal sound modes correspond to the case where the fluctuations in A3
t depend

only on x. A self-consistent set of perturbations in this case is given by

δAat (u, t, x) = aat (u)e−iωt+ikx ,

δAbx(u, t, x) = abx(u)e−iωt+ikx , (3.103)

where a, b = 1, 2, 3. These fields satisfy the following six second order equations and

three constraints:

Dta1
t =

1

f

(
−WΦa3

x − ikΦa2
x + kωa1

x + k2a1
t

)
, (3.104)

Dta2
t =

1

f

(
2ikWa3

t +
(
k2 +W 2

)
a2
t + iWωa3

x + kωa2
x + ikΦa1

x

)
, (3.105)

Dta3
t =

1

f

((
k2 +W 2

)
a3
t − 2ikWa2

t + kωa3
x − iWωa2

x + 2WΦa1
x

)
, (3.106)

Dxa1
x =

1

f 2

(
−2WΦa3

t + ikΦa2
t − kωa1

t + 2iΦωa2
x −

(
Φ2 + ω2

)
a1
x

)
, (3.107)

Dxa2
x =

1

f 2

(
−iWωa3

t − kωa2
t − ikΦa1

t −
(
Φ2 + ω2

)
a2
x − 2iΦωa1

x

)
, (3.108)

Dxa3
x =

1

f 2

(
−kωa3

t + iWωa2
t +WΦa1

t − ω2a3
x

)
, (3.109)

0 = −Φ′a2
t + iω∂ua

1
t + Φ∂ua

2
t + ifk∂ua

1
x , (3.110)

0 = fW ′a3
x + Φ′a1

t − Φ∂ua
1
t + iω∂ua

2
t + ifk∂ua

2
x − fW∂ua

3
x , (3.111)

0 = −fW ′a2
x + iω∂ua

3
t + fW∂ua

2
x + ifk∂ua

3
x , (3.112)

with Dt and Dx as defined in (3.13). Again, the three constraint equations are con-

sistent with the second order equations in the sense that if they hold at some u, they

hold at all u.

The system (3.104)–(3.112) has nine integration constants. The nine possible

behaviors at the horizon are of two types: six plane wave solutions for a1
x, a

2
x, and a3

x
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that behave as

(1− u)±iω/4 (3.113)

close to u = 1, and three pure gauge solutions given by

a1
t = −iωα1 − Φα2 , a2

t = −iωα2 + Φα1 , a3
t = −iωα3 ,

a1
x = ikα1 , a2

x = ikα2 −Wα3 , a3
x = Wα2 + ikα3 , (3.114)

where αa are arbitrary constants. As in the previous sections, we require no outgoing

modes at the horizon, which amounts to specifying three of the nine integration

constants. The other six integration constants are specified in terms of the values

of the fields at u = 0. In order to examine fluctuations in a3
t and a3

x, we set their

boundary values to at0 and ax0, respectively, and the boundary values of the other

four fields to zero.

Solving the system (3.104)–(3.112) perturbatively in ω, k, and ε under the scaling

assumption ω ∼ k2 ∼ ε2, we find that the boundary behavior of the fluctuations is

a1
t =

at0k + ax0ω

P
εω

4
(20,160k2 + 843ε2 − 72,800iω)u2 + . . . , (3.115)

a2
t =

at0k + ax0ω

P
35k2ε

4
(48ik2 + 3iε2 + 320ω)u2 + . . . , (3.116)

a1
x = −at0k + ax0ω

P
35kε(48k2 + 3ε2 − 320iω)u2 + . . . , (3.117)

a2
x = −at0k + ax0ω

P
iεω

k

(
20,160k2 + 843ε2 − 72,800iω

)
u2 + ax0

iε

k
u2 + . . . ,(3.118)

a3
t = at0 +

at0k + ax0ω

P
k

96

(
26,880k4 + 843ε4 + 192k2(79ε2 − 840iω) + (3.119)

−113,264iε2ω − 3,494,400ω2
)
u2 + . . . ,

a3
x = ax0 −

at0k + ax0ω

P
ω

96

(
26,880k4 + 843ε4 + 192k2(79ε2 − 840iω) (3.120)

−113,264iε2ω − 3,494,400ω2
)
u2 + . . . .
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The pole here is again a cubic polynomial in ω:

P = −72,800iω3 + (39,760k2 + 843ε2)ω2 +
5

6
i(2688k4 + 451k2ε2)ω

−71

32
k2ε4 − 53k4ε2 − 280k6 . (3.121)

We consider the roots of the polynomial first in the limit k � ε:

ω = ±
√

1

2

71

13,488
εk − 103,535

947,532
ik2 + . . . , (3.122)

ω = − 843

72,800
iε2 − 5,044,459

15,397,395
ik2 + . . . . (3.123)

The first pair of poles correspond to second sound propagating in the direction parallel

to the order parameter with a speed consistent with our earlier result (3.45). The third

pole is related to the zero mode that causes a phase transition from the superfluid to

the normal phase. Next we consider the limit k � ε:

ω =
±11− 3i

130
k2 +

±192,553− 95,119i

26,644,800
ε2 , (3.124)

ω = −ik
2

2
− 13iε2

2928
+ . . . . (3.125)

The two sound poles have evolved into the zero mode poles, while the zero mode pole

has evolved into a diffusive pole.

From the small u expansion, we can read off a large number of Green’s functions

which we shall not bother to list. Similar to the transverse sound case considered

above, the prefactor (at0k + ax0ω) in the expansion means that the Ward identities

(3.56) will be satisfied. However, there is more structure here. Note that ika2
x =

4a1
t − ax0εu

2 and ika1
x = −4a2

t . In our hydrodynamic limit at leading order in ω and

k, these two equations are the Ward identities (3.57) and (3.58), respectively.
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Before moving on, we note that

lim
k→0

Gtt
33(0, k) =

2

g2

281

71
, (3.126)

which agrees with eq. (3.101), but k here is parallel rather than transverse to the

order parameter.

3.5.4 Transverse diffusive mode

In addition to the sound mode found above, in the limit k � ε, we expect to find a

diffusive mode in the current-current correlator. We begin with the slightly simpler

case of a mode polarized transverse to the order parameter but propagating paral-

lel to it, and follow in the next section with a mode polarized longitudinal to the

order parameter but propagating transversely. Thus first we look for fluctuations in

δAay(u, t, x) and any other modes that couple to it. A self-consistent set of fluctuations

to consider is

δAay(u, t, x) = aay(u)e−iωt+ikx , (3.127)

where a = 1, 2, 3.

This set of fluctuating modes gives rise to the three differential equations at linear

order:

Dxa3
y =

(k2 +W 2)f − ω2

f 2
a3
y −

2iW

f
a2
y , (3.128)

Dxa2
y =

(k2 +W 2)f − ω2 − Φ2

f 2
a2
y +

2iW

f
a3
y −

2iωΦ

f 2
a1
y , (3.129)

Dxa1
y =

k2f − ω2 − Φ2

f 2
a1
y +

2iωΦ

f 2
a2
y . (3.130)

As before, we solve this set of equations perturbatively in the limit ω ∼ k2 ∼ ε2.

The small u expansion of the solutions, from which we may read off the Green’s
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functions, takes the form:

a1
y =

ay0

P
22kεωu2 + . . . , (3.131)

a2
y =

ay0

P
2kε(2ik2 + 3ω)u2 + . . . , (3.132)

a3
y = ay0 −

ay0

P
1

3360

(
−1680k6 + 12k4(29ε2 + 700iω)− 6k2(ε4 + 28iε2ω − 10,780ω2) +

+ω(9iε4 + 4766ε2ω − 109,200iω2)
)
u2 +

1

2
ay0k

2u2 lnu+ . . . . (3.133)

The poles at leading order in this perturbative expansion come from a quadratic

polynomial in ω:

P = 65ω2 +
3i(140k2 + 3ε2)

70
ω − (70k2 + 3ε2)k2

35
. (3.134)

As before, we consider the roots of this polynomial in two limits. First we consider

k � ε, in which case we find

ω = − 9i

4550
ε2 +

112i

195
k2 + . . . , (3.135)

ω = −2ik2

3
+ . . . . (3.136)

The first pole is associated with the zero mode that causes the phase transition from

the superfluid phase to the normal phase while the second pole comes from a diffusive

mode of the charge density.

Next, we consider the limit k � ε where we recover the zero modes of the normal

phase,

ω =
±11− 3i

65
k2 +

±33− 9i

9100
ε2 + . . . . (3.137)

At leading order, the location of the pole is the same as that of eq. (3.98). However,

the subleading order ε2 corrections are different.
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3.5.5 Longitudinal diffusive mode

We continue the discussion by looking at modes polarized longitudinal to the order

parameter but propagating transversely. We consider fluctuations δA3
x(u, t, y) and all

others coupled to it:

δA3
x(u, t, y) = a3

x(u)e−iωt+iky ,

δAat (u, t, y) = aat (u)e−iωt+iky , (3.138)

δAby(u, t, y) = aby(u)e−iωt+iky ,

where a, b = 1, 2. This set of fluctuations obeys the five second order equations and

two first order constraints:

Dta1
t =

1

f

(
−WΦa3

x − ikΦa2
y + k2a1

t + kωa1
y

)
, (3.139)

Dta2
t =

1

f

(
iWωa3

x +
(
k2 +W 2

)
a2
t + kωa2

y + ikΦa1
y

)
, (3.140)

Dxa1
y =

1

f 2

(
ikΦa2

t + 2iΦωa2
y − kωat −

(
Φ2 + ω2

)
ay
)
, (3.141)

Dxa2
y =

1

f 2

(
−ifkWa3

x − kωa2
t +

(
fW 2 − Φ2 − ω2

)
a2
y − ikΦat − 2iΦωay

)
,(3.142)

Dxa3
x =

1

f 2

((
fk2 − ω2

)
a3
x + iWωa2

t + ifkWa2
y +WΦa1

t

)
, (3.143)

0 = −Φ′a2
t + iω∂ua

1
t + Φ∂ua

2
t + ifk∂ua

1
y , (3.144)

0 = fW ′a3
x + Φ′a1

t − Φ∂ua
1
t + iω∂ua

2
t − fW∂ua

3
x + ifk∂ua

2
y . (3.145)

At the horizon, there are two pure gauge solutions, three ingoing solutions, and three

outgoing solutions. We discard the outgoing solutions and use the remaining degrees

of freedom to choose the boundary values of the five fluctuations. In particular, we

set the boundary values of all the fluctuations to zero save for a3
x, which we set to

112



ax0. The near boundary expansion of the solution takes the form:

a1
t =

ax0

P
3k2ε

4
(k2 − 3iω)u2 + ax0

ε

4
u2 + . . . , (3.146)

a2
t =

ax0

P
33ik2ωε

4
u2 + . . . , (3.147)

a1
y = −ax0

P
33kεω u2 + . . . , (3.148)

a2
y = −ax0

P
3ikε(k2 − 3iω)u2 + . . . , (3.149)

a3
x = ax0 +

ax0

P
1

3360

(
840k6 − 16k4(13ε2 + 420iω)− ω(ε2 − 48iω)(9iε2 + 4550ω)

+3k2(ε4 + 125iε2ω − 39,760ω2)
)
u2 +

1

2
ax0k

2u2 lnu+ . . . . (3.150)

The pole, similar to the case considered previously, is a quadratic polynomial in ω:

P = 130ω2 +

(
6ik2 +

9iε2

35

)
ω − 3

35
k2ε2 − k4 . (3.151)

In the limit k � ε we find a zero mode and a diffusive mode:

ω = − 9i

4550
ε2 +

56i

195
k2 + . . . , (3.152)

ω = −ik
2

3
+ . . . . (3.153)

In the opposite limit, we find two zero modes:

ω =
±11− 3i

130
k2 +

±33− 9i

9100
ε2 + . . . . (3.154)

The structure of the small u expansion of the gauge fields is again related to

the Ward identities. We see that ika2
y = 4a1

t − ax0εu
2 and ika1

y = −4a2
t , which are

restatements of the Ward identities (3.57) and (3.58), respectively.
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3.5.6 Conductivity and London Equations

In this section, we begin by studying the response of the system to a homogeneous,

time dependent electric field, δA3
j ∼ e−iωt, and end with a discussion of the London

equations. A homogeneous electric field should produce a current in the system via

Ohm’s Law. To investigate the conductivity in this long wavelength limit, we set

k = 0 for the two-point functions computed above.

The case of an electric field orthogonal to the order parameter is simple; a current

and nothing more is produced. From the pure transverse mode and eq. (3.82), we

have

Gyy
33(ω) =

2

g2

(
− ε

2

48
+ i

(
1

2
− ε2

48

)
ω + c ω2

)
+ . . . . (3.155)

Reassuringly, this result agrees with the k → 0 limit of the Green’s functions associ-

ated to transverse sound propagation and the transverse diffusive mode.

For an electric field parallel to the order parameter, the physics is richer. We

find a current in the x direction but also oscillating (or precessing) charge densities

associated with the one and two isospin directions:

a3
x = ax0 + ax0

(
− ε

2

96
+ i

(
1

2
+

ε2

288

)
ω

)
u2 + . . . , (3.156)

a1
t = ax0

ε

4
u2 + . . . , (3.157)

a2
t = −ax0

iεω

16
u2 + . . . . (3.158)

This near boundary expansion agrees with the k → 0 limit of the expansions for

longitudinal sound and diffusion considered above. The associated Green’s functions
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are

Gxx
33 (ω) =

2

g2

(
− ε

2

96
+ i

(
1

2
+

ε2

288

)
ω

)
+ . . . , (3.159)

Gtx
13(ω) = − 2

g2

ε

4
+ . . . , (3.160)

Gtx
23(ω) =

2

g2

iεω

16
+ . . . . (3.161)

Identifying the electric field Ej = iω δAj and recalling Ohm’s Law, the conduc-

tivities are related via eq. (3.72) to the retarded Green’s functions,

σxx(ω) =
Gxx

33 (ω)

iω
and σyy(ω) =

Gyy
33(ω)

iω
. (3.162)

The terms proportional to ε2 in Gxx
33 and Gyy

33 thus produce a pole in the imaginary

part of the respective conductivities. As discussed in refs. [12, 13], by the Kramers-

Kronig relations (or by properly regularizing the pole) there must be a delta function

in the real part of the conductivity, indicating the material loses all resistance to DC

currents and suggesting the phase transition is to a superconducting state. While in

refs. [12, 13], the pole was seen only numerically, here we can calculate the strength

of the pole analytically close the phase transition. Its residue is given by

Resω=0σxx =
2

g2

iε2

96
+ . . . Resω=0σyy =

2

g2

iε2

48
+ . . . . (3.163)

In Figure 3.1 we show a comparison between numerical computations of the residues

of the poles at ω = 0 in σxx and σyy, along with the analytic approximation (3.163)

close to T = Tc.

In the Drude model for an ideal metal, the conductivity takes the form σ =

iρ/mω where ρ is the charge density and m is the mass of the charge carrier. In the

superconductivity literature (see for example [72]), the pole in the imaginary part of

the conductivity is thus often related to a superfluid density. Because our system is
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not rotationally symmetric, the density to mass ratio defined in this way will depend

on the orientation of the superfluid velocity with respect to the order parameter. The

proper way to interpret this situation is probably that a suitably defined effective

mass of the superfluid depends on the direction of propagation.

An important observation is that in our system, the ω → 0 and k → 0 limits of the

Green’s functions commute. The residue of the pole in the conductivity is related to

the long wavelength limit of the current-current correlation function in the following

way:

iResω=0σjj = lim
ω→0

lim
k→0

Gjj
33(ω, k) . (3.164)

The limit in the opposite order is related to a thermodynamic susceptibility:

lim
ky→0

Gxx
33 (0, ky) =

∂2P

∂v2
‖

and lim
kx→0

Gyy
33(0, kx) =

∂2P

∂v2
⊥
, (3.165)

where v‖ and v⊥ are superfluid velocities.8 It follows from eqs. (3.42) and (3.44) that

∂2P

∂v2
‖

=
∂j‖
∂v‖

= − 2

g2

ε2

96
while

∂2P

∂v2
⊥

=
∂j⊥
∂v⊥

= − 2

g2

ε2

48
. (3.166)

When combined with eq. (3.162), these results confirm eq. (3.163).

As emphasized in this context in ref. [13], that the limits commute implies the

system really does become a superconductor below Tc. Given that the limits commute,

the system obeys a London type equation for small k and ω:

〈j3
x〉 ≈ −

2

g2

ε2

96
A3
x and 〈j3

y〉 ≈ −
2

g2

ε2

48
A3
y . (3.167)

If we now imagine the U(1) subgroup generated by T 3 ∈ su(2) is weakly gauged,

8Note that to produce a perturbing magnetic field, we require a k that is transverse to the
polarization of the current-current correlation function. A perturbation of the form δA3

x ∼ eikx or
δA3

y ∼ eiky is gauge equivalent to zero and does not produce a response from the system. The
Green’s function vanishes in this limit.
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Figure 3.1: Plots of numerical results for g2

T
Resω=0Imσxx and g2

T
Resω=0Imσxx as func-

tions of temperature (solid lines), as well as analytical approximations at small ε
(dotted lines) given by equations (3.163).

these London equations imply not only infinite DC conductivity but also a Meissner

effect with London penetration depths that scale as λ⊥ ∼ λ‖ ∼ 1/ε ∼ (Tc − T )−1/2.

3.6 Discussion

One of the nicest features of our results is their analytic nature. We were able to

confirm a number of previous numeric observations [12, 47, 51, 69, 73, 74] of this su-

perfluid phase transition. In particular, we saw explicitly that the phase transition

was second order; the difference in free energy between the phases scaled as (Tc−T )2

below the phase transition. We saw the order parameter grew as ε ∼ (Tc − T )1/2

below Tc and thus has a mean field critical exponent. We calculated the speed of

second sound near the phase transition and observed that it vanished linearly with

the reduced temperature c⊥ ∼ c‖ ∼ (Tc − T ). We looked at the pole at ω = 0 in

the imaginary part of the conductivity and saw the same scaling, σ ∼ i(Tc − T )/ω,

that had been observed numerically in a related model [12] and confirmed that the

London penetration depth scales as λ ∼ 1/(Tc − T )1/2. This laundry list of scalings

117



0.6 0.7 0.8 0.9 1.0

T

Tc

0.05

0.10

0.15

0.20

0.25

0.30

c2
2

small Ε approx

c
¦

2

c
þ

2

Figure 3.2: The squared speeds of second sound c2
‖ and c2

⊥ as functions of the reduced

temperature T/Tc (solid lines) as well as analytical approximations given by eqs. (3.43)
and (3.45) close to Tc (dotted lines).

(or critical exponents) is the same observed in the mean-field Landau-Ginzburg model

of a superconductor.

Close to Tc, eqs. (3.43) and (3.45) indicate that c2
⊥ = 2c2

‖, so one may wonder

whether such a formula is valid away from Tc as well. Numerical evaluations show

that this is not the case: see Figure 3.2. At small temperatures, c2
⊥ approaches 1/3.

Our numerical evaluations are not sufficiently reliable at small temperatures to see

whether c2
‖ has the same limit.9

There are some other results in this paper that are worth emphasizing. For su-

perfluid velocities that are not too large, we were able to determine analytically

the critical line in the temperature-superfluid velocity plane separating the normal

phase from the superfluid phase. We calculated a large number of current-current

correlation functions in the hydrodynamic limit and verified that they satisfied the

non-abelian Ward identities. We also investigated how the hydrodynamic poles in

9In the case of a scalar order parameter and a phase transition that does not break rotational
symmetry, we expect the speed of second sound to approach (d − 1)−1/2 as T → 0. This limit
follows from eq. (3.40) and two observations: 1) At T = 0 the Lorentz symmetry breaking due to
the temperature disappears and the pressure can depend on µ and v only as P (µ2 − v2). 2) By
dimensional analysis, when T = v = 0, P ∼ µd. We would like to thank Amos Yarom for discussion
on this point.
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these correlation functions move around as a function of k and ε.

Optimistically, we hope that someday this system will be more than a toy model.

The introduction described possible similarities of this system to helium-3 and p-

wave superconductors. Here we add a speculation about a possible connection with

QCD. The SU(2) global symmetry of our model could be thought of as the residual

approximate isospin symmetry of QCD at low energies and our chemical potential an

isospin chemical potential. The phase structure of QCD at non-zero isospin chemical

potential has been discussed by ref. [75]. Alas, there is no persistent current in the

stable phases they discuss.

There are also some questions left unanswered for the future. While we focused

on current-current correlation functions in the third isospin direction in this paper,

it would be good to study the full set of Green’s functions more carefully. Because of

the characteristic magnetic properties of superconductors, it would be interesting to

investigate the dependence of the correlation functions on an external magnetic field.

Another interesting direction to pursue is the connection between this work and

the membrane paradigm [76] where the horizon of a black hole, rather than the

boundary of an asymptotically anti-de Sitter space, is thought of as a fluid. Related

to this direction is the observation of ref. [51] that the fraction of the total charge

density outside the black hole horizon scales as Tc − T close to Tc, suggesting that

this quantity might be related to the superfluid density. We would like to know if

this analogy can be made more precise.
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Chapter 4

Multi-Matrix Models and

Tri-Sasaki Einstein Spaces

This chapter is a lightly edited version of ref. [46], which was written in collaboration

with Chris Herzog, Igor Klebanov, and Tibi Tesileanu.

4.1 Introduction

The AdS/CFT correspondence [1–3] provides many predictions about the dynamics of

strongly interacting field theories in various numbers of dimensions. We have seen in

section 1.2.6 that for the case of three dimensions, the number of low-energy degrees

of freedom on N coincident M2-branes is expected to scale as N3/2 at large N . This

scaling appeared in two quantities: the thermal free energy and the free energy of the

Euclidean theory on S3. Only the second quantity is protected by supersymmetry,

and, because of that, there is hope that one would be able to compute it in the

field theory even at strong coupling. Indeed, using supersymmetry, this quantity

was computed in [23] in the case of ABJM theory at large N and fixed ’t Hooft

coupling N/k. In the strong coupling limit N/k � 1, the authors of [23] observed that

F ∼ k1/2N3/2, and that the coefficient matched the prediction from 11-d supergravity
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given in eq. (1.70).

The paper [23] was in turn based on [44] where the method of localization devel-

oped in [45] for four-dimensional theories on S4 was shown to reduce the path integral

of supersymmetric Chern-Simons matter theories on S3 to finite-dimensional matrix

integrals. The idea behind localization is relatively simple: suppose one can find a

Q-exact operator {Q,V} whose bosonic part is positive definite, Q being one of the

supercharges. Because {Q,V} is Q-exact, the quantity

Z =

∫
[Dφ] exp [−S − t{Q,V}] (4.1)

is independent of t, so it can be computed for example in the limit of large t. In this

limit the path integral localizes on configurations where {Q,V} is smallest, which is

{Q,V} = 0 because the Q-exact operator was also chosen to have a positive-definite

bosonic part. To evaluate Z, one solves the equations {Q,V} = 0 and approximates

Z = e−SclassicalZone-loop , (4.2)

where Sclassical is the classical action S evaluated on the solutions of {Q,V} = 0, and

Zone-loop is the one-loop determinant of fluctuations around this classical configuration.

Because one can take t to be arbitrarily large, the expression (4.2) is actually exact.

Note that the same localization trick goes through if one further inserts into the path

integral any operator that is annihilated by Q.

As explained in [44], the path integral of any N ≥ 2 Chern-Simons matter theory

where the operator scaling dimensions are canonical localizes on configurations where

the scalars σ in the N = 2 vector multiplets take constant values and all other

fields vanish. The path integral therefore becomes a multi-matrix integral over the

σ matrices. Using the U(N) symmetry, one can further reduce this multi-matrix

integral to an integral over the eigenvalues of σ. Of course, the calculation performed
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in [44] does not start with precisely the actions given in section 1.2 because those

actions describe superconformal theories on R2,1. To map these theories conformally

to S3 one has to add at the very least conformal mass terms for the scalar fields. The

field content of the theories on S3 and R2,1 is, however, unchanged, so it makes sense

to talk about the scalars σ in the S3 theories as well, even though they were originally

defined in the theories on R2,1.

In the ABJM case studied in [23], the exact solution of the matrix model was

related by analytic continuation to a solution [77] of another matrix model describing

topological Chern-Simons theory on S3/Z2. In general, the solution of these matrix

models requires some complicated mathematics. One introduces a “resolvent,” which

is a complex-valued function from whose branch cuts one can extract the eigenvalue

configuration that gives the most important contribution to the matrix integral. With

the use of holomorphy, one can then restrict the form of the resolvent to a function

with just a few parameters that can be found by performing contour integrals. In

solving the ABJM matrix model at arbitrary ’t Hooft couplingN/k, the authors of [23]

noticed that the resolvent of this model could be related by analytic continuation

to the resolvent of the S3/Z2 model, which had been previously found in [77]. A

generalization of the ABJM matrix model to the case where the Chern-Simons levels

do not add up to zero was considered in [78].

The goal in this chapter is to build on the progress achieved in [23,44,79] in several

ways. Section 4.2 starts by revisiting the matrix integral for the ABJM theory on S3,

and it uncovers the details of the eigenvalue distribution. The matrix eigenvalues are

located along the branch cuts of the resolvent of [23, 77]. While the endpoints of the

cuts can be read off directly from the resolvent, the cuts themselves are not simply

parallel to the real axis, in contrast with the matrix model of [77]. In order to gain

intuition for the location of the eigenvalues, we develop a numerical method for finite

N and k. This method allows us to access values of N and k that are large enough for
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the result to be a good approximation to the limit studied in [23,79]. Furthermore, we

will focus on the limit where N is sent to infinity at fixed k where the ABJM model

is expected to be dual to the AdS4 × S7/Zk background of M-theory. In this strong

coupling limit, which is not of the ’t Hooft type, it can be shown analytically that the

structure of the solution simplifies considerably. An ansatz where the real parts of the

eigenvalues scale with
√
N allows us to calculate the free energy analytically. Unlike

in [23], the method presented here does not rely on resolvents or mirror symmetry.

We confirm that the free energy scales as N3/2 with the coefficient found in [23] and

also given in eq. (1.70).

Section 4.3.1 contains an extension of the analytic approach described above to the

necklace quiver gauge theories with p U(N) gauge groups introduced in section 1.2.5.

Recall that these theories can be engineered using a type IIB brane construction

involving N D3-branes and p (1, qa)-branes. These theories are dual to M-theory

backgrounds of the form AdS4 × Y , where the spaces Y have three Killing spinors,

corresponding to the fact that the field theory has N = 3 supersymmetry. The spaces

Y are the bases of hyper-Kähler cones [39–41] and are called tri-Sasakian. They are

also Einstein, and we take the Einstein metric on them to be normalized so that

Rmn = 6gmn. The p-matrix models for the gauge theories dual to AdS4 × Y may

be read off from [44]. In the large N limit we calculate the eigenvalue densities for

these matrix models and show that they are piecewise linear. This remarkably simple

conclusion allows us to evaluate the coefficient of the N3/2 scaling of the free energy

as a function of the levels ka and compare it with the calculation on the gravity side

of the AdS/CFT correspondence [22, 23]. For an arbitrary compact space Y we saw

in section 1.2.6 that the gravitational free energy was given by eq. (1.69) in terms of

Vol(Y ). For p = 3 the tri-Sasaki Einstein spaces Y are the Eschenburg spaces [80]

whose volumes were determined explicitly in [81]. Our 3-matrix model free energy is

in perfect agreement with this volume formula.
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Furthermore, we carry out calculations of the p-matrix model free energy and use

them to conjecture an explicit general formula for the volumes via the AdS/CFT

correspondence. For a general p-node quiver with CS levels ka = qa+1 − qa, with

1 ≤ a ≤ p and qp+1 = q1, we conjecture in section 4.4 that

Vol(Y )

Vol(S7)
=

∑
(V,E)∈T

∏
(a,b)∈E |qa − qb|∏p

a=1

[∑p
b=1 |qa − qb|

] , (4.3)

where the sum in the numerator is over the set T of all trees (acyclic connected

graphs) with p nodes. Such a tree (V,E) consists of the vertices V = {1, 2, . . . , p}

and |E| = p−1 edges. The volumes of the corresponding tri-Sasaki Einstein spaces Y

had previously been studied by Yee, who expressed them through an integral formula

(eq. (3.49) of [82]). In the cases we have checked, our formula (4.3) is consistent with

that of [82]. Equation (4.3) is invariant under permutations of the qa, supporting the

conjectured Seiberg duality for Chern-Simons theories with at least N = 2 supersym-

metry [83–85], which may be motivated by interchanging different types of 5-branes

in the type IIB brane constructions of these models.

4.2 ABJM Matrix Model

4.2.1 Matrix Model Setup

As discussed in section 1.2, ABJM theory has only two gauge groups, and therefore

only two scalars σ and σ̃ whose eigenvalues we denote by λi and λ̃i, with 1 ≤ i ≤ N .

Written as an integral over these eigenvalues, the 2-matrix integral is [44]:

Z =
1

(N !)2

∫ ( N∏
i=1

dλi dλ̃i
(2π)2

) ∏
i<j

(
2 sinh

λi−λj
2

)2 (
2 sinh

λ̃i−λ̃j
2

)2

∏
i,j

(
2 cosh

λi−λ̃j
2

)2 exp

(
ik

4π

∑
i

(λ2
i − λ̃2

i )

)
,

(4.4)

124



where k is the Chern-Simons level, and the precise normalization was chosen as in

[23]. The integration contour should be taken to be the real axis in each integration

variable. When the number N of eigenvalues is large, the integral in eq. (4.4) can be

approximated in the saddle-point limit by Z = e−F , where the “free energy” F is an

extremum of

F (λi, λ̃i) = −i k
4π

∑
j

(λ2
j − λ̃2

j)−
∑
i<j

log

(2 sinh
λi − λj

2

)2
(

2 sinh
λ̃i − λ̃j

2

)2


+ 2
∑
i,j

log

(
2 cosh

λi − λ̃j
2

)
+ 2 logN ! + 2N log(2π)

(4.5)

with respect to λi and λ̃i. Varying (4.5) with respect to λj and λ̃j we obtain the

saddle-point equations:

−∂F
∂λi

=
ik

2π
λi −

∑
j 6=i

coth
λj − λi

2
+
∑
j

tanh
λ̃j − λi

2
= 0 ,

−∂F
∂λ̃i

= − ik
2π
λ̃i −

∑
j 6=i

coth
λ̃j − λ̃i

2
+
∑
j

tanh
λj − λ̃i

2
= 0 .

(4.6)

The goal of this section is to compute the leading contribution to F in such a large

N expansion while holding k fixed.

4.2.2 A Numerical Solution

To gain intuition, one can start by solving the saddle-point equations (4.6) numerically

for any values of N and k. One of the simplest ways to do so is to view equations

(4.6) as describing the equilibrium configuration of 2N point particles whose 2-d

coordinates are given by the complex numbers λj and λ̃j and that interact with the

forces given by eq. (4.6). This equilibrium configuration can be found by introducing

a time dimension and writing down equations of motion for λj(t) and λ̃j(t) whose
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solution approaches the equilibrium configuration (4.6) at late times in the same way

as the solution to the heat equation approaches a solution to the Laplace equation at

late times. The equations of motion for the eigenvalues are

τλ
dλi
dt

= −∂F
∂λi

, τλ̃
dλ̃i
dt

= −∂F
∂λ̃i

, (4.7)

where τλ and τλ̃ are complex numbers that need to be chosen in such a way that the

saddle point we wish to find is an attractive fixed point as t→∞.
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Figure 4.1: Numerical saddle points for the ABJM matrix model. The eigenvalues
for N = 25 are plotted in black and those for N = 100 are plotted in orange. The
plot has been obtained with τλ = τλ̃ = 1. As mentioned in the text, the real parts of
the eigenvalues grow with

√
N .

In figure 4.1 we show typical eigenvalue distributions that can be found using the

method we just explained. There are several features of the saddle-point configura-

tions that are worth emphasizing:

• The eigenvalues λj and λ̃j that solve (4.6) are not real.

That the eigenvalue distributions do not lie on the real axis might be a bit

puzzling given that λi and λ̃i are supposed to be eigenvalues of Hermitian ma-

trices. However, it is well known that in general, when using the saddle-point

approximation, the main contribution to an oscillatory integral may come from
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saddles that are not on the original integration contour but through which the

integration contour can be made to pass. We will assume that the integration

contour that should be chosen in writing down the integral in eq. (4.4) can be

deformed so that saddle points like those in figure 4.1 are the only important

ones.

• The eigenvalue distributions are invariant under λi → −λi and λ̃i → −λ̃i.

Indeed, the saddle-point equations (4.6) are invariant under these transforma-

tions, so it is reasonable to expect that there should be solutions that are also

invariant.

• In the equilibrium configuration the two types of eigenvalues are complex con-

jugates of each other: λ̃j = λ̄j.

Indeed, it is not hard to see that upon setting λ̃j = λ̄j the two equations in

(4.6) become equivalent, so it is consistent to look for solutions that have this

property.

• As one increases N at fixed k, the imaginary part of the eigenvalues stays

bounded between −π/2 and π/2, while the real part grows with N . We will

show shortly that, for the saddle points we find, the real part grows as N1/2 as

N →∞.

4.2.3 Large N Analytical Approximation

Let us now find analytically the solution to the saddle-point equations (4.6) in the

large N limit. As explained above, we can assume λ̃j = λ̄j and write1

λj = Nαxj + iyj , λ̃j = Nαxj − iyj , (4.8)

1After completing this work, we became aware that ref. [86] employs a similar ansatz.
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where we introduced a factor of Nα multiplying the real part because we want xj and

yj to be of order O(N0) and become dense in the large N limit. The constant α is so

far arbitrary but will be determined later.

In passing to the continuum limit, we define the functions x, y : [0, 1]→ R so that

xj = x(j/N) , yj = y(j/N) . (4.9)

Let us assume we order the eigenvalues in such a way that x is a strictly increasing

function on [0, 1]. Introducing the density of the real part of the eigenvalues

ρ(x) =
ds

dx
, (4.10)

one can approximate (4.5) as

F =
k

π
N1+α

∫
dx xρ(x)y(x) +N2−α

∫
dx ρ(x)2f(2y(x)) + · · · , (4.11)

where the function f is

f(t) = π2 −
(
arg eit

)2
. (4.12)

In other words, f is a periodic function with period π given by

f(t) = π2 − t2 when − π ≤ t ≤ π . (4.13)

We postpone the derivation of eq. (4.11) until the next chapter where this equation

is derived in a more general setting.

It may be a little puzzling that while the discrete expression for the free energy

in eq. (4.5) is nonlocal, in the sense that there are long-range forces between the
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eigenvalues, its large N limit (4.11) is manifestly local. One can understand this

major simplification from examining, for instance, the first saddle-point equation in

(4.6). The force felt by λi due to interactions with far-away eigenvalues λj and λ̃j is

− coth
λj − λi

2
+ tanh

λ̃j − λi
2

≈ − sgn(Reλj − Reλi) + sgn(Re λ̃j − Reλi) , (4.14)

the corrections to this formula being exponentially suppressed in Reλj − Reλi and

Re λ̃j − Reλi. In other words, the nonlocal part of the interaction force between

eigenvalues is given just by the right-hand side of eq. (4.14). The nonlocal part

of the force vanishes when Reλj = Re λ̃j, so in assuming that the two eigenvalue

distributions are complex conjugates of each other, we effectively arranged for an

exact cancellation of nonlocal effects. All that is left are short-range forces, which in

the large N limit are described by the local action (4.11).

One can view F as a functional of ρ(x) and y(x) and look for its saddle points in

the set

C =

{
(ρ, y) :

∫
dx ρ(x) = 1; ρ(x) ≥ 0 almost everywhere

}
. (4.15)

These constraints mean that ρ is a normalized density. Motivated by the numerical

analysis we performed, we assume that ρ and y describe a connected distribution of

eigenvalues contained in a bounded region of the complex plane.

Let us assume a saddle point for F exists. As N →∞, we need the two terms in

(4.11) to be of the same order in N in order to have nontrivial solutions, so from now

on we will set

α =
1

2
. (4.16)

The real part of the eigenvalues therefore grows as N1/2, and to leading order, the
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free energy behaves as N3/2 at large N . In writing (4.11) we omitted the last two

terms from eq. (4.5). They do not depend on ρ or y and hence do not affect the

saddle-point equations. They are also lower order in N given the choice of α.

To find a saddle point for F , one can add a Lagrange multiplier µ to (4.11) and

extremize

F̃ = N3/2

[
k

π

∫
dx xρ(x)y(x) +

∫
dx ρ(x)2f(2y(x))− µ

2π

(∫
dx ρ(x)− 1

)]
(4.17)

instead of (4.11). As long as ρ(x) > 0, the saddle-point eigenvalue distribution

satisfies the equations

4πρ(x)f(2y(x)) = µ− 2kxy(x) ,

2πρ(x)f ′(2y(x)) = −kx .
(4.18)

Plugging (4.13) into (4.18) one obtains

ρ(x) =
µ

4π3
, y(x) =

π2kx

2µ
, (4.19)

as long as −π/2 ≤ y(x) ≤ π/2. If ρ is supported on [−x∗, x∗] for some x∗ > 0 that

we will determine shortly, we can calculate µ from the normalization of the density

ρ(x):

∫ x∗

−x∗
dx ρ(x) = 1 =⇒ µ =

2π3

x∗
. (4.20)
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Plugging this formula back into (4.11), we obtain the free energy in terms of x∗:
2

F =
N3/2(12π4 + k2x4

∗)

24π2x∗
+ o(N3/2) . (4.21)

This expression is extremized when

x∗ = π

√
2

k
, y(x∗) =

π

2
. (4.22)

Luckily, the answer y(x∗) = π/2 is consistent with our assumption that −π/2 ≤

y(x) ≤ π/2 without which eq. (4.19) would not be correct. It can be checked that the

assumption y(x∗) > π/2 implies a contradiction. The extremum of F obtained from

eqs. (4.21) and (4.22) is

F =
π
√

2

3
k1/2N3/2 + o(N3/2) . (4.23)

Quite nicely, this result agrees with the supergravity prediction from eq. (1.70).

In the large N limit the eigenvalues therefore condense on two line segments, and

on these two line segments they have uniform density. In figure 4.2 we compare the

analytical result for the density with the numerical one.

We would like to compare the location of our eigenvalue distributions with the

results of [23]. Noting a similarity between the ABJM matrix model and the S3/Z2

matrix model solved in [77], Drukker, Marino, and Putrov [23] wrote down a resolvent

for the ABJM model. This resolvent has cuts in the λ plane corresponding to the

locations of the eigenvalues. In particular, it has a cut where the λi eigenvalues are

located and a second cut where the λ̃i eigenvalues are located but shifted by πi. More

2We distinguish between the little-o and big-O notations: f(N) = o(Nα) as N → ∞ means
that limN→∞ f(N)/Nα = 0, while f(N) = O(Nα) as N →∞ means that |f(N)| ≤ ANα for some
constant A and all large enough N . In other words o(Nα) stands for terms that grow slower than
Nα at large N , while O(Nα) stands for terms that grow at most as fast as Nα.
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Figure 4.2: Comparison between analytical prediction and numerical results for the
density of eigenvalues ρ defined in eq. (4.10). The dotted black line represents the
analytical calculation, and the numerical result is shown in orange dots.

specifically, the resolvent has the form

ω(λ) = 2 log

(
1

2

[√
(eλ + b)(eλ + 1/b)−

√
(eλ − a)(eλ − 1/a)

])
, (4.24)

where a+ 1/a+ b+ 1/b = 4 and at strong coupling,

a+
1

a
− b− 1

b
= 2i exp

(
π

√
2N

k
− 1

12

)
+ . . . (4.25)

The ellipses denote terms exponentially suppressed in N/k relative to the leading

term. Solving the equations for a and b, we find that the branch points in the λ plane

are at

± log a = π

√
2N

k
− 1

12
+
iπ

2
, (4.26)

± log b = −π
√

2N

k
− 1

12
+
iπ

2
. (4.27)

These expressions are in agreement with (4.22) in the large N limit.

Let us also try to compare our findings with the exact results found for the super-

symmetric Wilson loops in ABJM theory [23,79]. The expectation values of 1/6 and
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1/2 supersymmetric Wilson loops are proportional, respectively, to the expectation

values of
∑N

i=1 e
λi and

∑N
i=1

[
eλi + eλ̃i

]
in the matrix model [23, 44, 79, 87]. In our

approach, these quantities become

〈W 1/6
2 〉 =

2πiN

k

∫ x∗

−x∗
eλ(x)ρ(x)dx , (4.28)

〈W 1/2
2 〉 =

2πiN

k

∫ x∗

−x∗

(
eλ(x) + eλ̃(x)

)
ρ(x)dx . (4.29)

If we evaluate (4.28) and (4.29) using the saddle point we have found, we get

〈W 1/6
2 〉 ≈ −

√
N

2k
eπ
√

2N/k , (4.30)

〈W 1/2
2 〉 ≈

i

2
eπ
√

2N/k . (4.31)

The exponents in these formulae agree with the results in [23,79,87].

We should keep in mind that the ABJM model has a type IIA string interpretation

only in the limit where N/k � 1, N/k5 � 1. These conditions apply only in the limit

where both N and k are taken to infinity. Our approximations are only applicable

in the M-theory limit where N is taken to infinity at fixed k. Thus our Wilson loops

have a dual interpretation as wrapped M2-branes in M-theory rather than as strings

in type IIA string theory.

4.3 Necklace Quiver Gauge Theories

4.3.1 Multi-Matrix Models

As reviewed earlier, the results of [44] show the partition function for the necklace

quivers in figure 1.2 localizes on configurations where the scalars σa in the N = 2

vector multiplets are constant Hermitian matrices. Denoting by λa,i, 1 ≤ i ≤ N , the
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eigenvalues of σa, the partition function takes the form of the matrix integral

Z =
1

(N !)p

∫ (∏
a,i

dλa,i
2π

)
p∏
a=1


∏

i<j

(
2 sinh

λa,i−λa,j
2

)2

∏
i,j 2 cosh

λa,i−λa+1,j

2

exp

[
i

4π

∑
i

kaλ
2
a,i

] .

(4.32)

The normalization of the partition function was chosen so that it agrees with the

ABJM result from eq. (4.4) in the case p = 2. As in the ABJM case, the integration

contour should be taken to be the real axis in each integration variable. The saddle-

point equations following from (4.32) are

ika
π
λa,i − 2

∑
j 6=i

coth
λa,j − λa,i

2
+
∑
j

tanh
λa+1,j − λa,i

2
+
∑
j

tanh
λa−1,j − λa,i

2
= 0 .

(4.33)

These equations can be solved numerically using the method described in section 4.2.2:

By replacing the right-hand side of these equations by τadλa,j/dt, we obtain a system

of first order differential equations whose solution converges at late times t to a

solution of eq. (4.33) provided that the constants τa are chosen appropriately. We

will now show how to obtain an approximate analytical solution valid in the limit

where N is taken to be large and k is held fixed.

Based on our intuition from the ABJM model, let us assume that in this case too

the real part of the eigenvalues behaves as N1/2 at large N while the imaginary part

is of order one. So if one writes

λa,j = N1/2xa,j + iya,j , (4.34)

then the quantities xa,j and ya,j become dense in the large N limit. Under this

assumption, we will be able to solve the saddle-point equations to leading order in
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N in a self-consistent way. We can pass to the continuum limit by considering the

normalized densities ρa(x) of the xa,j together with the continuous functions ya(x)

that describe the imaginary parts of the eigenvalues as functions of x. Let us first

make a rough approximation to the saddle-point equations (4.33). When N is large,

we have

coth
λa,j − λa,i

2
≈ sgn (xa,j − xa,i) , tanh

λa,j − λa±1,i

2
≈ sgn (xa,j − xa±1,i) .

(4.35)

To leading order in N , the saddle-point equations then become

∫
dx′ [2ρa(x

′)− ρa+1(x′)− ρa−1(x′)] sgn(x′ − x) = 0 . (4.36)

Differentiating with respect to x, we immediately conclude that all ρa must be equal

to one another to leading order in N , so we can write ρa(x) ≡ ρ(x) for some density

function ρ(x) that is normalized as

∫
dx ρ(x) = 1 . (4.37)

With the simplifying assumption that the densities ρa are equal, one can go back

to the integral (4.32) and calculate the free energy functional F [ρ, ya] to leading order

in N :

F [ρ, ya] =
N3/2

2π

∫
dx xρ(x)

p∑
a=1

kaya(x)

+
N3/2

2

∫
dx ρ(x)2

p∑
a=1

f(ya+1(x)− ya(x)) + o(N3/2) ,

(4.38)

where f is the same function that was defined in (4.12). The derivation of this

equation will again be postponed until the next chapter where it will be done in more
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generality. We wish to evaluate the integral (4.32) in the saddle-point approximation

where it equals Z = e−F , the free energy F being an appropriate critical point of

F [ρ, ya]. Let us assume that the eigenvalue distribution corresponding to this saddle

point is connected, symmetric about x = y = 0, and bounded.

In looking for the eigenvalue distribution that extremizes (4.38) to order O(N3/2),

an important observation is that, in fact, one cannot find this distribution, because

to this order in N F [ρ, ya] has a flat direction given by ya(x)→ ya(x) + δy(x) for any

function δy(x). The second term in eq. (4.38) is clearly invariant under this trans-

formation, and the first term is also invariant because
∑p

a=1 ka = 0. The existence of

this flat direction is not a problem at all if one just wants to compute the free energy

F to leading order in N . If one’s goal is instead to find the eigenvalue distributions

for the saddle point, subleading corrections to (4.38) that presumably lift this flat

direction must be taken into account. We will content ourselves with calculating the

free energy to order O(N3/2), and will leave a careful analysis of how the flat direction

gets lifted for future work.

Before we examine the extremization of the free energy functional (4.38) in more

detail, let us make a few comments and present a result that follows already from

the discussion above. Suppose we manage to find a saddle point of F by extremizing

(4.38) for a quiver Chern-Simons gauge theory that in the large N limit and at strong

’t Hooft coupling is dual to an AdS4 × Y M-theory background. Let us assume that

this saddle point gives the most important contribution to the partition function.

What can we learn? From (4.38) one may infer that the free energy grows as N3/2 at

large N as expected from supergravity, so our computation provides a gauge theory

explanation of this N3/2 behavior. Moreover, one can compare the free energy we

obtain with the exact M-theory result (1.69). Via this formula we will compare

successfully our matrix model results with the expressions for the volumes of tri-

Sasaki Einstein space available in the literature [81, 82].
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4.3.2 A Class of Orbifold Chern-Simons Theories

The vacuum moduli space of the nonchiral quivers with alternating Chern-Simons

levels (k,−k, k,−k, . . .) and N = 1 is the orbifold C4/
(
Zp/2 × Zkp/2

)
[38]. There is

an induced orbifold action on the unit 7-sphere in C4, and thus the internal space Y

is S7/
(
Zp/2 × Zkp/2

)
. Consequently, we expect

Vol(Y ) =
4 Vol(S7)

kp2
=

4π4

3kp2
, (4.39)

where in the second equality we used the round 7-sphere volume Vol(S7) = π4/3.

This formula can be reproduced very easily from the matrix model computation.

The saddle-point equations (4.33) are solved by setting λ2a,i = λi and λ2a+1,i = λ̃i,

λi and λ̃i being the eigenvalues for the saddle point of the ABJM matrix model

discussed in detail in section 4.2. The free energy of the p-node quiver with CS levels

(k,−k, k,−k, . . .) is therefore p/2 times the free energy in the ABJM model, and thus

F =
p

2
FABJM =

π
√

2

6
pk1/2N3/2 + o(N3/2) . (4.40)

Using eq. (1.69), one immediately reproduces the volume of the S7 orbifold in eq. (4.39).

4.3.3 Warm-up: A Four-Node Quiver

Another case we can easily solve using the approximation scheme developed above is

that of the four-node quiver with CS levels ka = (k, k,−k,−k) (see figure 4.3). The

two Z2 symmetries of the quiver, one acting by interchanging nodes 1↔ 4 and 2↔ 3

and the other by interchanging nodes 1↔ 2 and 3↔ 4, allow us to set

λ1,j = λ2,j = λj , λ3,j = λ4,j = λ̃j . (4.41)
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k4 = −k k3 = −k

Figure 4.3: Four-node quiver diagram obtained as a particular case of the general
quivers presented in figure 1.2.

Moreover, in the saddle-point equations (4.33) it is consistent to set λ̃j = λ̄j as in the

ABJM case, which reduces our task to finding a single eigenvalue distribution λi. In

passing to the continuum limit, we should therefore set

y1 = y2 = −y3 = −y4 = y . (4.42)

The free energy functional (4.38) then becomes

F [ρ, y] =
2kN3/2

π

∫
dx xρ(x)y(x) +N3/2

∫
dx ρ(x)2

[
π2 + f(2y(x))

]
+ o(N3/2) .

(4.43)

In the paragraph following eq. (4.38) we discussed how for arbitrary p-node quiv-

ers we would not be able to solve for the ya themselves, but only for differences of

consecutive ya, because the leading large N contribution to the free energy func-

tional is invariant under the shifts ya → ya + δy for any function δy. In the case of

the (k, k,−k,−k) quiver we will, however, be able to determine the location of the

eigenvalues exactly, because the ansatz (4.42) breaks this shift symmetry.

In order to find the saddle points of (4.43) in the set (4.15), we should add a

Lagrange multiplier µ to enforce the normalization condition for ρ and extremize the
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functional

F̃ [ρ, y] = F − N3/2

2π
µ

(∫
dx ρ(x)− 1

)
. (4.44)

Let us assume the eigenvalue distribution is symmetric around x = y = 0 and

ranges between [−x∗, x∗]. Let us focus on the region where x ≥ 0. Solving the

equations of motion we obtain

ρ(x) =
µ

8π3
, y(x) =

2kπ2x

µ
, if |y(x)| ≤ π

2
. (4.45)

Since ρ(x) > 0 in this region, we have µ > 0 and y(x) ≥ 0. Assuming y(x∗) < π/2,

we can find µ in terms of x∗ from the normalization condition for ρ, and then express

F in terms of x∗ and extremize it. The extremization yields x∗ = 21/4π/
√
k and

y(x∗) = π/
√

2 > π/2, which suggests that the assumption y(x∗) < π/2 might be

wrong. One could imagine that y(x∗) > π/2, but solving the saddle-point equations

in the region where y > π/2 would yield ρ(x) < 0.

The correct answer is y(x∗) = π/2, and in fact y(x) = π/2 on some interval

[xπ/2, x∗] with 0 < xπ/2 < x∗. On this interval,

ρ(x) =
µ− 2kπx

4π3
, y(x) =

π

2
, (4.46)

where in obtaining these equations we only varied (4.44) with respect to ρ. The

quantity xπ/2 can be obtained from setting y(xπ/2) = π/2 in (4.45):

xπ/2 =
µ

4πk
. (4.47)

One can now find µ by imposing the normalization condition for ρ, and then express
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the free energy F in terms of x∗ and extremize with respect to x∗. The result is that

x∗ = 2xπ/2 = 2π

√
2

3k
, µ = 4π2

√
2k

3
. (4.48)

The density of eigenvalues is constant on [−xπ/2, xπ/2] and then drops linearly to
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Figure 4.4: Comparison between numerics and analytical prediction for the four-
node quiver with k = {1, 1,−1,−1}. The dotted black lines represent the large N
analytical prediction, and the orange dots represent numerical results.

zero on [−x∗,−xπ/2] and [xπ/2, x∗]. See figure 4.4 for a comparison of this analytical

prediction with a numerical solution of the saddle-point equations.

The free energy for this model can be computed from (4.43):

F =

√
32

27
πk1/2N3/2 + o(N3/2) . (4.49)

Using (1.69), we infer that the gravity dual of the Chern-Simons quiver gauge theory

with CS levels (k, k,−k,−k) is AdS4 × Y where the volume of the compact space Y

is

Vol(Y ) =
π4

16k
. (4.50)

Satisfyingly, this result is in agreement with the calculation of the corresponding

integral representation given in [82] for k = 1, which we will review in section 4.4.
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k4 = −k k3 = −k

Figure 4.5: The Chern-Simons quiver gauge theory dual to AdS4 ×Q2,2,2/Zk as pro-
posed in [88,89].

Let us also note that this volume is the same as that of a Zk orbifold of the

Sasaki-Einstein space Q2,2,2, which in turn is a Z2 orbifold of the coset space SU(2)×

SU(2)×SU(2)/ (U(1)× U(1)). If we denote the generators of the three SU(2) factors

by ~JA, ~JB, and ~JC , then the two U(1) groups we are modding out by are generated

by JA3 + JB3 and JA3 + JC3. Q2,2,2 admits a toric Sasaki-Einstein metric, and a

proposal for the Chern-Simons quiver gauge theory dual to AdS4 × Q2,2,2/Zk was

made in [88,89]. This proposal is quite similar to the (k, k,−k,−k) nonchiral quiver

in figure 4.3, except it is chiral—see figure 4.5. Because of the chiral nature of the

quiver, the corresponding matrix model that follows from [44] is somewhat different.

Its analysis is beyond the scope of this thesis.

4.3.4 Extremization of the Free Energy Functional and Sym-

metries

Since the free energy functional (4.38) depends only on differences between consecu-

tive ya, we find it convenient to introduce the notation δya = ya−1 − ya and to write
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ka = qa+1 − qa as in eq. (1.65). Equation (4.38) becomes

F [ρ, δya] =
N3/2

2π

∫
dx xρ(x)

p∑
a=1

qaδya(x) +
N3/2

2

∫
dx ρ(x)2

p∑
a=1

f(δya(x)) + o(N3/2) .

(4.51)

This expression should be extremized over the set

C =

{
(ρ, δya) :

∫
dx ρ(x) = 1; ρ(x) ≥ 0,

p∑
a=1

δya(x) = 0 almost everywhere

}
.

(4.52)

Since
∑p

a=1 δya = 0, one could either use this constraint to solve for one of the δya

and extremize (4.51) only with respect to the remaining ones, or, as we will do, one

could introduce a Lagrange multiplier ν(x) that enforces the constraint and treat all

δya on equal footing. Because of the normalization constraint (4.37) we also need a

Lagrange multiplier µ. We therefore will extremize

F̃ [ρ, δya] = F [ρ, δya]−
N3/2

2π
µ

(∫
dx ρ(x)− 1

)
− N3/2

2π

∫
dx ρ(x)ν(x)

p∑
a=1

δya(x)

(4.53)

instead of (4.51). Suppose a saddle point exists. As long as ρ(x) > 0, the saddle-point

eigenvalue distribution should satisfy the equations

p∑
a=1

[2πf(δya(x))ρ(x) + (qax− ν(x)) δya(x)] = µ , (4.54a)

πf ′(δya(x))ρ(x) + qax = ν(x) . (4.54b)

The extremization problem has the following discrete symmetries:

• The free energy functional (4.51) has a Z2 symmetry under which qa and δya all

change sign, so in the large N limit the partition function and the free energy
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are also invariant under sending qa → −qa for all a. This symmetry acts as

ka → −ka and is therefore a parity transformation.

• Equation (4.51) is invariant under an overall shift of all the qa. This symmetry

was to be expected given that, after all, the original integral (4.32) depends

only on ka, which are differences of consecutive qa.

• Interestingly, the free energy functional we are extremizing is invariant under

permutations of the qa and δya, so the partition function and the free energy

will also be invariant under permutations of the qa. Up to order O(N0) shifts

in the ranks of the gauge groups, which should be dropped in the large N limit

we are taking, such permutations correspond to Seiberg dualities in the N = 2

Chern-Simons gauge theories [83–85].

Some of the symmetries discussed above correspond to the action of the dihedral

group Dp on the CS levels ka. Our formalism shows that to leading order in N the

free energy is in fact invariant under a larger symmetry group that acts on the qa and

that includes the dihedral group.

4.3.5 Three-Node Quivers

Let us now compute the free energy for arbitrary three-node quivers with CS levels

(k1, k2, k3) satisfying k1 + k2 + k3 = 0. Since the ka sum to zero, two of them must

have the same sign and be smaller in absolute value than the third. Let us begin by

studying the particular case where k2 ≥ k1 ≥ 0 and k3 < 0. For simplicity, we choose∑3
a=1 qa = 0, which implies

q1 = −2k1 + k2

3
, q2 =

k1 − k2

3
, q3 =

k1 + 2k2

3
, (4.55)
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and we have q3 > 0 > q2 ≥ q1 and |q3| > |q1| ≥ |q2|. The solution to eqs. (4.54) is

symmetric about x = δya = 0, and when x ≥ 0 it breaks into three regions:

0 ≤ x ≤ µ

3πq3

: (4.56a)

δya =
3π2xqa
µ

, ρ =
µ

6π3
,

µ

3πq3

≤ x ≤ − µ

3πq1

: (4.56b)

δy1 =
(q1 − q2)x

4πρ
− π

2
, δy2 =

(q2 − q1)x

4πρ
− π

2
, δy3 = π ,

ρ =
2µ− 3πq3x

6π3
,

(4.56c)

− µ

3πq1

≤ x ≤ µ

π(q3 − q1)
: (4.56d)

δy1 = −π , δy2 = 0 , δy3 = π ,

ρ =
µ+ (q1 − q3)πx

2π3
.

The first region ends when one of the three differences δya reaches ±π. The relations
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Figure 4.6: Comparison between numerics and analytical results for a three-node
quiver. The dotted black lines represent the analytical large N approximation, while
the orange dots represent numerical results.

between the qa imply that at the end of the first region δy3 = π, while |δy1| =
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π |q1| / |q3| < π and |δy2| = π |q2| / |q3| < π. Throughout the second region δy3 = π.

The second region ends when δy1 or δy2 reaches ±π. When q1 = q2, the third region

is absent. When q1 < q2 < 0, in this region δy2 is monotonically increasing and δy1 is

monotonically decreasing, and since
∑
δya = 0 it must be that δy1 reaches −π next.

In the third region the δya are all constant and the density ρ decreases linearly to

zero. See figure 4.6 for a particular example.

The normalization condition on ρ yields

µ = π2

√
18q1(q1 + q2)(2q1 + q2)

q2
2 − 5q2

1 − 5q1q2

= π2

√
2(k1 + k2)(k2 − k3)(k1 − k3)

(k1k2 − k1k3 − k2k3)
. (4.57)

Performing the integral (4.38), one obtains

F =
N3/2µ

3π
=
N3/2π

√
2

3

√
(k1 + k2)(k2 − k3)(k1 − k3)

k1k2 − k1k3 − k2k3

. (4.58)

Given the free energy in the case k3 < 0 < k1 ≤ k2, it is actually possible to

compute the free energy for any three-node quivers. Indeed, since in the case where

there are only three nodes a permutation of the ka can be thought of as a relabeling

of the nodes, the free energy must be invariant under all such permutations. In

addition, the free energy must be invariant under sending ka → −ka according to the

second discrete symmetry discussed at the end of section 4.3.4. Combining these two

properties, one can find the free energy of an arbitrary quiver with CS levels ka by

constructing the new CS levels k̃1 = min(|k1| , |k2| , |k3|), k̃3 = −max(|k1| , |k2| , |k3|),

and k̃2 = −k̃1 − k̃3 that satisfy k̃3 < 0 < k̃1 ≤ k̃2 and for which eq. (4.58) holds. The

unique extension of (4.58) that gives the correct answer for arbitrary CS levels is

F =
N3/2π

√
2

3

√
(|k1|+ |k2|)(|k2|+ |k3|)(|k1|+ |k3|)
|k1| |k2|+ |k1| |k3|+ |k2| |k3|

. (4.59)

Quite remarkably, this formula, whose derivation is based solely on gauge theory
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arguments, agrees with the supergravity prediction: Using (1.69), one can reproduce

the volume of a Zgcd{k1,k2,k3} orbifold of a compact Eschenburg space. The Eschenburg

space is specified by three relatively prime integers ta, and its volume is [81]

Vol(S(t1, t2, t3))

Vol(S7)
=

t1t2 + t1t3 + t2t3
(t1 + t2)(t2 + t3)(t1 + t3)

. (4.60)

In terms of the ka, the positive integers ta are ta = |ka| / gcd{k1, k2, k3} [31], so

Vol(Y )

Vol(S7)
=

1

gcd{k1, k2, k3}
Vol(S(t1, t2, t3))

Vol(S7)
=

|k1| |k2|+ |k1| |k3|+ |k2| |k3|
(|k1|+ |k2|)(|k2|+ |k3|)(|k1|+ |k3|)

,

(4.61)

in agreement with (1.69) and (4.59).

4.3.6 General Four-Node Quivers

We can also compute the leading large N contribution to the free energy for arbitrary

four-node quivers. Let us first examine the case where q4 ≥ q2 ≥ q1 ≥ q3 and |q4| is

the largest among the qa. It is convenient to require
∑4

a=1 qa = 0 since many of the

intermediate formulae simplify under this assumption. Then we have q4 > 0 ≥ q1 ≥ q3

and |q4| ≥ |q3| ≥ |q1| ≥ |q2|. As in the three-node case, the solution to eqs. (4.54) is
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symmetric about x = δya = 0, and when x ≥ 0 it breaks into three regions:

0 ≤ x ≤ µ

4πq4

: (4.62a)

δya =
4π2xqa
µ

, ρ =
µ

8π3
,

µ

4πq4

≤ x ≤ − µ

4πq3

: (4.62b)

δy1 =
(3q1 + q4)x

6πρ
− π

3
, δy2 =

(3q2 + q4)x

6πρ
− π

3
,

δy3 =
(3q3 + q4)x

6πρ
− π

3
, δy4 = π , ρ =

3µ− 4πq4x

16π3
,

− µ

4πq3

≤ x ≤ µ

2π(q2 + q4)
: (4.62c)

δy1 =
(q1 − q2)x

4πρ
, δy2 =

(q2 − q1)x

4πρ
,

δy3 = −π , δy4 = π , ρ =
µ+ (q3 − q4)πx

4π3
.

The first region ends where δy4 reaches π. At this endpoint |δya| = π |qa| / |q4| ≤ π
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Figure 4.7: Comparison between numerics and analytical results for a four-node
quiver. The dotted black lines represent the analytical large N approximation, while
the orange dots represent numerical results.

for a = 1, 2, 3. The second region ends where δy3 = −π. At this endpoint δy1 =

π(q1 − q2)/(q1 + q2 − 2q3), and since q1 ≥ q3 and q2 ≥ q3, by the triangle inequality

it follows that |q1 − q2| ≤ q1 + q2 − 2q3, so |δy1| ≤ π. Similarly, |δy2| ≤ π also.

Lastly, if q2 = q1, the third region does not exist. When q2 > q1 and q1 < 0, δy1 is
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monotonically decreasing and δy2 is monotonically increasing in the third region, and

this region ends where δy1 = −π and δy2 = π. See figure 4.7 for an example.

From
∫
dx ρ(x) = 1, one can find that µ is given by

8π2

µ
=

√
1

q3

− 1

q4

+
4(q2 + q3)

(q2 + q4)2
+

12

q2 + q4

. (4.63)

The free energy is

F =
N3/2µ

3π
=

8πN3/2

3

(
1

q3

− 1

q4

+
4(q2 + q3)

(q2 + q4)2
+

12

q2 + q4

)−1/2

. (4.64)

Given eq. (4.64), one can use the symmetries we discussed at the end of sec-

tion 4.3.4 to compute the free energy of a quiver gauge theory with arbitrary qa.

Indeed, one can define q̃a to be a permutation of the four numbers qa− 1
4

∑4
b=1 qb that

gives |q̃4| ≥ |q̃3| ≥ |q̃1| ≥ |q̃2|. If q̃4 is negative, one should flip the sign of all q̃a, so

we can assume q̃4 > 0. By construction, the q̃a sum to zero, so the second and third

largest in absolute value, namely q̃3 and q̃1, are negative. Therefore, the q̃a satisfy all

the assumptions under which eq. (4.64) was derived, and since the free energy does

not change in going from qa to q̃a, one can plug the q̃a into eq. (4.64) to find the free

energy of an arbitrary four-node quiver theory. The unique extension of (4.64) to

arbitrary qa can also be written as

F =
N3/2π

√
2

3

√ ∏4
a=1

(∑4
b=1 |qab|

)∑
(a,b)6=(c,d) 6=(e,f) |qab| |qcd| |qef | −

∑
(a,b,c) |qab| |qbc| |qca|

, (4.65)

where qab denotes qa − qb, and in the denominator the first sum is over distinct

unordered pairs of numbers from 1 to 4 while the second sum is over unordered

triplets. Using eq. (1.69), we obtain a prediction for the volume of the compact space
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Y :

Vol(Y )

Vol(S7)
=

∑
(a,b)6=(c,d) 6=(e,f) |qab| |qcd| |qef | −

∑
(a,b,c) |qab| |qbc| |qca|∏4

a=1

(∑4
b=1 |qab|

) . (4.66)

4.4 A General Formula and its Tests

Equations (4.65) and (4.66) suggest a generalization to arbitrary p-node quivers. Note

first that the numerator of eq. (4.66) is a sum over all possible graphs with 4 nodes

and 3 edges from which we subtract the sum over all cyclic graphs with 4 nodes and

3 edges, yielding a sum over all possible trees.

We conjecture that for a p-node quiver, the volume of the tri-Sasaki Einstein space

Y (normalized so that Rmn = 6gmn) is given by

Vol(Y )

Vol(S7)
=

∑
(V,E)∈T

∏
(a,b)∈E |qa − qb|∏p

a=1

[∑p
b=1 |qa − qb|

] , (4.67)

where T is the set of all trees (acyclic connected graphs) with nodes V = {1, 2, . . . , p}

and edges

E = {(a1, b1), (a2, b2), . . . , (ap−1, bp−1)} . (4.68)

A standard result in graph theory states that trees with p nodes have p− 1 edges.

The conjecture in eq. (4.67) is consistent with the results from two-, three-, and

four-node quivers, and we also checked it for five- and six-node quivers. This formula is

invariant under all the symmetries discussed at the end of section 4.3.4. In particular,

a quite nontrivial check of our approach is that this formula is invariant under the

Seiberg dualities described in [83–85]. The connection we observe between large

N matrix integrals and sums over the tree graphs is reminiscent of the connection

between matrix models for 2-d quantum gravity and the Kontsevich matrix model
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which generates ribbon graphs [90].

An integral representation of volumes of tri-Sasaki Einstein spaces was given by

Yee [82]. In general, our spaces Y are Zk orbifolds of those considered in [82], where

k = gcd{ka}. To simplify the following discussion, let us focus on the k = 1 case. In

this case [82],

Vol(Y ) =
2p−2π4

3 Vol (U(1)p−2)

∫ p−2∏
j=1

dφj
p∏
a=1

1

1 +
(∑p−2

j=1 Q
j
aφj
)2 . (4.69)

Here, Vol (U(1)p−2) is the volume of a unit cell in the (p − 2)-dimensional lattice

defined by the identifications ξj ∼ ξj + ηj, where ηj satisfy
∑p−2

j=1 Q
j
aηj ∈ 2πZ for all

a = 1, . . . , p. The Qj
a span the kernel of

 1 1 1 · · · 1

q1 q2 q3 · · · qp

 . (4.70)

(The Qj
a are taken to be relatively prime here.) In the U(1)p Chern-Simons gauge

theory, the Qj
a are the charges of the bifundamental fields under the unbroken U(1)p−2

symmetry [31]. We can take a spanning set of ~Qj to be, for a fixed j, Qj
1 = q2 − qj,

Qj
2 = qj − q1, and Qj

j = q1 − q2 with all other Qj
a = 0. For this choice of Qj

a, the

volume of U(1)p−2 is

Vol
(
U(1)p−2

)
=

(2π)p−2

|q1 − q2|p−3 . (4.71)

Note that Vol(Y ) is invariant under permutation of the qa. Although we have not

carried out the integral in general, we can investigate specific cases with ease. For

example, for the choice ~q = (3, 2, 1, 2), corresponding to the ~k = (1, 1,−1,−1) quiver,

both our formulae (4.67) and (4.69) give Vol(Y ) = π4/16. A more nontrivial choice

is ~q = (3, 2, 1, 5) for which both formulae yield 139π4/4725. By evaluating (4.69)
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numerically, we were able to check agreement with (4.67) in a number of randomly

selected cases for p = 4, 5, and 6.

The volume formula (4.67) is invariant under a shift qa → qa + 1. In the type

IIB brane construction, which involves a sequence of (1, qa) 5-branes, this symmetry

corresponds to the T transformation of the SL(2,Z) S-duality group. We could use

the SL(2,Z) symmetry to generalize the free energy to theories whose brane construc-

tions involve general ua = (pa, qa) 5-branes. This generalization is accomplished by

replacing the differences |qa − qb| in the volume formula with |ua ∧ ub| = |paqb − pbqa|.

For special cases where some of the pa vanish, this formula describes theories with

fields in the fundamental representation. For example, for the ABJM model with Nf

flavors, corresponding to u1 = (1, k), u2 = (1, 0), u3 = (0, Nf ), our formula predicts

Vol(Y )

Vol(S7)
=

2k +Nf

2(k +Nf )2
. (4.72)

This equation agrees with the explicit matrix model calculation [91] and with the

volumes of Eschenburg spaces S(Nf , Nf , k) [81].

4.5 Discussion

In this chapter we have studied p-matrix models describing certain U(N)p Chern-

Simons quiver gauge theories with N = 3 supersymmetry. In the large N limit these

theories are dual to eleven-dimensional supergravity on AdS4 × Y , where Y is a tri-

Sasaki Einstein space. By finding an analytical large N limit of the matrix integrals,

we were able to check the supergravity prediction that the logarithm of the partition

function of the gauge theories on S3 should grow as N3/2. In AdS4×Y the coefficient

of proportionality depends on the volume of the compact spaces Y , so we could

compare our gauge theory results with the volumes computed earlier using geometric

techniques [81,82]. These successful comparisons constitute new detailed tests of the
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AdS4/CFT3 dualities. In eq. (4.67) we conjectured an explicit combinatorial volume

formula for arbitrary p. It should be possible to derive this formula in an independent

way using algebraic geometry techniques similar to those in [92].

Quite generally, the main difficulty in solving matrix models is that the interac-

tions between the eigenvalues are long-ranged, and the saddle-point approximation

yields integral equations in the continuum limit. Remarkably, in solving the models

described in this paper, one can set up an approximation scheme where the eigen-

value distributions can be found by solving algebraic equations. The limit in which

the saddle-point equations simplify is the limit of “large cuts” where the eigenvalues

grow as an appropriate positive power of N . Perhaps the key insight in solving these

matrix models was that the long-range forces between the eigenvalues can be made to

vanish by choosing the distribution of the real parts of the eigenvalues to be the same

for each set of eigenvalues. The remaining interaction forces between the eigenvalues

are short-ranged, and that is the reason why in the right variables the saddle-point

equations were local and algebraic in the large N limit.

While we worked in the limit where N is sent to infinity and the Chern-Simons

levels ka are kept fixed, it is of obvious further interest to relax these assumptions and

study 1/N corrections. In doing so, a subtle issue that needs a better understanding is

the imaginary part of the free energy. At first sight, the imaginary part in the ABJM

model is of order O(N). On the other hand, one could argue that this imaginary part

is only defined modulo 2π because a shift of the free energy by an integer multiple of

2πi leaves the partition function unchanged.

Another interesting generalization of our results is to solve the matrix model in the

scaling limit where the Chern-Simons levels are sent to infinity, with N/ka kept finite.

One could calculate the free energy as a function of the ’t Hooft-like couplings N/ka

and check that, as predicted by the AdS/CFT correspondence, it should interpolate

between an N2 behavior at small N/ka dictated by perturbation theory and the
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k1/2N3/2 behavior at large N/ka that we found. For p = 2 this check was performed

in [23] by computing the resolvent of the matrix model using the techniques developed

in [77]. We believe a similar check should also be possible for the N = 3 theories

studied in this paper, using perhaps similar techniques. Such an approach should also

provide access to the ABJ-like cases where the ranks of the p gauge groups are not

equal.

Finally, it would be interesting to investigate whether the large N matrix integrals

we have calculated play a role in four-dimensional gauge theories, for example, in the

4-d “parent theories” [24,36] of the 3-d Chern-Simons models we have studied.
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Chapter 5

Towards the F -Theorem: N = 2

Field Theories on the Three-Sphere

This chapter is an edited version of ref. [15] written in collaboration with Daniel

Jafferis, Igor Klebanov, and Ben Safdi.

5.1 Introduction

Among the earliest tests of the AdS5/CFT4 correspondence [1–3] were comparisons

of the Weyl anomaly coefficients a and c. On the gravity side these coefficients were

calculated in [93] and were found to be equal; their values match the corresponding

results in a variety of large N superconformal 4-d gauge theories.

Thanks to the important progress during the past several years, there now also

exists a large set of precisely formulated AdS4/CFT3 conjectures. Examples with

N ≥ 3 supersymmetry were reviewed briefly in section 1.2 of Chapter 1. Many

similar duality conjectures with N = 2 supersymmetry are also available. While

various successful tests of some of these AdS4/CFT3 conjectures have been made, it

is interesting to ask whether there exists an analog in this dimensionality of the Weyl

anomaly matching. At first this question seems silly: of course, there are no anomalies
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in 3-d field theories. Nevertheless, it has recently been realized [14, 23, 44, 46] that

the free energy of the Euclidean field theory on S3 plays a special role and may be

analogous to the anomaly a-coefficient in 4 dimensions.1 As we have seen in the

previous chapter, explicit calculations in unitary 3-d CFTs give positive values for F

(see also [14, 23, 91]), in contrast with the thermal free energy on R2 × S1, which is

negative. More generally, F is positive in all gauge theories with gravity duals—see

eq. (1.39).

Recall from Chapter 4 that for field theories with extended supersymmetry, the

free energy on S3 can be calculated using the method of localization that reduces it

to certain matrix integrals. We have seen how for theories with M-theory duals and

N ≥ 3 supersymmetry there is agreement between the matrix model computation

and the answer (1.70) predicted by 11-d supergravity. In this chapter we extend these

results to theories with N = 2 supersymmetry. For such theories the modification of

the localization procedure that takes into account anomalous dimensions was derived

in [14,94]. We will solve a variety of corresponding large N matrix models and provide

many new tests of AdS4/CFT3 conjectures.

These solvable N = 2 theories give rise to some new phenomena that could not

be seen in models with higher supersymmetry. In N = 2 theories the constraints of

conformal invariance are in general not sufficient to fix all the R-charges of gauge-

invariant operators. In such cases it was proposed [14] that the remaining freedom in

the R-charges should be fixed by extremizing the free energy on S3. We apply this

idea to various large N models and show that the R-charges determined this way are

in agreement with the AdS/CFT correspondence. In fact, in all cases we find that

the R-charges locally maximize F . This is analogous to the well-known statement

that R-charges in four-dimensional N = 1 theories locally maximize the anomaly

coefficient a [95].

1Similarly, in a 4-d CFT the anomaly a-coefficient may be extracted from the free energy on the
four-sphere after removing the power-law divergences and differentiating with respect to lnR.
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We also study some pairs of fixed points connected by RG flow and find that F

decreases along the flow, just like a does in 4 dimensions (there is growing evidence

for the a-theorem in 4-d that states that a decreases along RG trajectories and is

stationary at RG fixed points [96]). We also find that, just like a, the free energy

F stays constant under exactly marginal deformations. It is therefore tempting to

conjecture that there exists a similar F -theorem in 3-d, stating that the free energy

on the three-sphere decreases along RG trajectories and is stationary at RG fixed

points.

The rest of this chapter is organized as follows. In section 5.2 we review the rules by

which one can construct the matrix model associated with a particular N = 2 quiver.

These rules are then derived in section 5.3, which can be skipped on a first reading.

We show that in gauge theories where the bifundamentals are non-chiral, the total

number of fundamentals equals the total number of anti-fundamentals, and the Chern-

Simons levels sum to zero, the free energy scales as N3/2. In section 5.4 we discuss

an infinite class of the necklace quiver gauge theories with N = 2 supersymmetry

where the N = 3 theories introduced in section 1.2.5 are deformed by adding a cubic

superpotential for the adjoints [97]. In sections 5.5 and 5.7 we display examples of

flavored quivers whose quantum corrected moduli space of vacua was constructed in

[98,99] and perform F -maximization to find the R-symmetry in the IR. In section 5.6

we discuss deformations of ABJM theory and RG flows. We end with a discussion in

section 5.8.

5.2 Matrix models for N = 2 quiver gauge theories

Generalizing the localization argument of [44], it was shown in [14, 94] that the S3

partition function of N = 2 Chern-Simons-matter theories is also given by a matrix

integral over the Cartan subalgebra of the gauge groups. The integrand involves both
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gaussians determined by the Chern-Simons levels as well as factors appearing from

one-loop determinants. The latter depend on the curvature couplings on the sphere,

parameterized by trial R-charges ∆:

F (∆) = − ln

∫ ( ∏
Cartan

dσ

2π

)
exp

[
i

4π
trk σ

2 − trm σ

]
detAd

(
2 sinh

σ

2

)
×

∏
chirals

in rep Ri

detRi

(
e`(1−∆i+i

σ
2π )
)
,

(5.1)

where the function

`(z) = −z ln
(
1− e2πiz

)
+
i

2

(
πz2 +

1

π
Li2
(
e2πiz

))
− iπ

12
(5.2)

satisfies the differential equation d`/dz = −πz cot(πz) with `(0) = 0. The integration

variables σ are the scalars in the vector multiplets. Since these scalars transform

in the adjoint representation of the gauge group, the integration contour for each

eigenvalue of σ should be taken to be the real axis. The trace trk is normalized so

that for each gauge group a it equals the Chern-Simons level ka times the trace in the

fundamental representation. We will explain the term trm σ at the end of the next

paragraph.

Some of the important ingredients of the U(N)p CS gauge theories we study are

the topological conserved currents jtop,a = ∗ trFa and monopole operators T~q that

create qa units of trFa flux through a two-sphere surrounding the insertion point.

In general, the R-symmetry can mix with these topological global symmetries, and

the monopole operators T~q acquire R-charges R[T~q] = γ~q +
∑

a ∆
(a)
m qa, where γ~q is an

anomalous dimension invariant under sending ~q → −~q, and the ∆
(a)
m are what we call

bare monopole R-charges. The anomalous dimensions γ~q can be computed exactly at

one-loop in perturbation theory from the matter R-charges, as in refs. [98, 99] based

on the work of [100]. Of special interest will be the “diagonal” monopole operators
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T corresponding to ~q = (1, 1, 1, . . .) and T̃ corresponding to ~q = (−1,−1,−1, . . .),

because they play a crucial role in the construction of the quantum-corrected moduli

space of vacua in these theories [98, 99]. Their R-charges satisfy the relation

R[T ]−R[T̃ ] = 2∆m , ∆m ≡
∑
a

∆(a)
m . (5.3)

The modification of the couplings to curvature associated to mixing the R-charge with

one of the topological charges is precisely the complexification of the FI parameter,

appropriately supersymmetrized on S3. This modification results in the appearance

of trm σ in the matrix integral (5.1). Note that the trace trm is normalized so that for

each gauge group it equals the trace in the fundamental representation times the bare

monopole R-charge ∆
(a)
m ; when this charge vanishes the trm σ term may be removed

from (5.1).

One may worry already that the bare R-charges of the diagonal monopole oper-

ators are not gauge-invariant observables because the Chern-Simons coupling makes

the monopole operators not gauge-invariant. As we will explain in more detail in

section 5.2.3, with an appropriate choice of gauge group one can construct gauge-

invariant operators out of T or out of T̃ , and from the R-charges of these gauge-

invariant operators one can calculate ∆m. (In passing, note that the same concern

can be raised about the R-charges of the bifundamental fields, and the same resolution

holds.) In theories with charge conjugation symmetry the R-charge of T should equal

that of T̃ , which implies ∆m = 0. Indeed, F -maximization in non-chiral theories is

consistent with this observation.

Since the R-symmetry can mix with any other abelian global symmetry, it would

be interesting to ask how many such global symmetries there are for a given quiver.

We will be interested in quivers with gauge group U(N)p as well as quivers with gauge

group SU(N)p × U(1), where the second factor is the diagonal U(1) in U(N)p. If
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there is no superpotential, we can show that the number of abelian flavor symmetries

equals the number of matter representations regardless of which choice of gauge group.

Indeed, if all the gauge groups are SU(N), then for each matter field there is a U(1)

global symmetry that acts by multiplying that field by a phase. Replacing some of

the SU(N) gauge groups by U(N) gauges some of these U(1) symmetries. However,

for each new U(1) gauge symmetry there is now an additional topological conserved

current jtop = ∗F in addition to the old conserved current jmatter. For Chern-Simons

level k the U(1) gauge field now couples to jmatter + kjtop. Going from SU(N) to

U(N) gauge theory therefore introduces a new topological U(1) symmetry and gauges

a linear combination of this U(1) and the diagonal U(1) in U(N). Thus, the total

number of global symmetries does not change and stays equal to the number of

matter representations for any of choice of gauge group. A non-trivial superpotential

will generically break some of these flavor symmetries.

5.2.1 The forces on the eigenvalues

Suppose we have a quiver with nodes 1, 2, . . . , p with U(N) gauge groups and CS

levels ka. Let’s denote the eigenvalues corresponding to the ath node by λ
(a)
i , with

i = 1, 2, . . . , N . In the saddle point approximation the force acting on λ
(a)
i can be

split into several pieces:

F
(a)
i = F

(a)
i,ext + F

(a)
i,self +

∑
b

F
(a,b)
i,inter +

∑
b

F
(b,a)
i,inter . (5.4)

The first term is the external force

F
(a)
i,ext =

ika
2π
λ

(a)
i −∆(a)

m , (5.5)

159



where ∆
(a)
m is the corresponding bare monopole R-charge. The second term is due to

interactions with eigenvalues belonging to the same node:

F
(a)
i,self =

∑
j 6=i

coth
λ

(a)
i − λ

(a)
j

2
. (5.6)

Finally, the last two terms in eq. (5.4) correspond to contributions of bifundamental

fields (a, b) that transform in the fundamental representation of node a and the anti-

fundamental representation of node b. We have

F
(a,b)
i,inter =

∑
j

[
∆(a,b) − 1

2
− i

λ
(a)
i − λ

(b)
j

4π

]
coth

[
λ

(a)
i − λ

(b)
j

2
− iπ

(
1−∆(a,b)

)]
, (5.7)

F
(b,a)
i,inter =

∑
j

[
∆(b,a) − 1

2
+ i

λ
(a)
i − λ

(b)
j

4π

]
coth

[
λ

(a)
i − λ

(b)
j

2
+ iπ

(
1−∆(b,a)

)]
. (5.8)

We can split the interaction forces between the eigenvalues into long-range forces

and short-range forces. We define the long-range forces to be those forces obtained

by replacing coth(u) with its large u approximation, sgn Re(u). Since sgn Re(αu) =

sgn Re(u) if α > 0, we have

F
(a)
i,self ≈ F̂

(a)
i,self =

∑
j 6=i

sgn Re
(
λ

(a)
i − λ

(a)
j

)
,

F
(a,b)
i,inter ≈ F̂

(a,b)
i,inter =

∑
j

[
∆(a,b) − 1

2
− i

λ
(a)
i − λ

(b)
j

4π

]
sgn Re

(
λ

(a)
i − λ

(b)
j

)
,

F
(b,a)
i,inter ≈ F̂

(b,a)
i,inter =

∑
j

[
∆(b,a) − 1

2
+ i

λ
(a)
i − λ

(b)
j

4π

]
sgn Re

(
λ

(a)
i − λ

(b)
j

)
.

(5.9)

5.2.2 General rules for matrix models with no long-range

forces

We want to study quiver gauge theories with free energies that scale as N3/2 in

the large N limit, because these theories are thought to have M-theory duals. One

160



way of achieving this is for the real part of the eigenvalues to scale as N1/2 and the

imaginary parts to stay order N0 in the large N limit (see section 5.3 for more details).

A necessary condition for this scaling is that the long range forces must vanish at the

saddle point of the matrix integral.

A large class of such theories are quiver gauge theories with non-chiral bifunda-

mental superfields, meaning that for each N = 2 chiral superfield X(a,b) transforming

in (N,N) of the gauge groups U(N)a × U(N)b there exists another chiral superfield

X(b,a) transforming in (N,N). The two fields X(a,b) and X(b,a) need not be related

by supersymmetry, and thus their R-charges ∆(a,b) and ∆(b,a) need not be equal. In

addition to these bifundamental fields we will also allow for equal numbers of fun-

damental and anti-fundamental fields.2 The kinetic terms for the vector multiplets

could be either Chern-Simons with level ka or Yang-Mills. Additionally we require

∑
a

ka = 0 . (5.10)

For such theories the condition that the long-range forces (5.9) vanish is equivalent

to

∑
∆(a,b) +

∑
∆(b,a) = n(a) − 2 (5.11)

for each node a, where the sum is taken over all the bifundamental fields transforming

non-trivially under U(N)a, and na denotes the number of such fields (adjoint fields

are supposed to be counted twice: once as part of the first sum and once as part of

the second sum).

With these assumptions, it is consistent to assume that, as in Chapter 4, in the

2Equal in total number; the number of fundamental and anti-fundamental fields charged under
a given gauge group are allowed to differ.
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large N limit the eigenvalues λ
(a)
i behave as

λ
(a)
i = N1/2xi + iya,i + o(N0). (5.12)

As we take N to infinity, we can replace xi and ya,i by continuous functions x(s) and

ya(s) such that xi = x(i/N) and ya,i = ya(i/N). In the following discussion, it will

be useful to consider the density

ρ(x) =
ds

dx
(5.13)

and express the imaginary parts of the eigenvalues as functions ya(x).

That the long-range forces (5.9) vanish implies that the free energy functional is

local. Here are the rules for constructing the free energy functional for any N = 2

quiver theory that satisfies the conditions described above:

1. For each gauge group a with CS level ka and bare monopole R-charge ∆
(a)
m one

should add the term

ka
2π
N3/2

∫
dx ρ(x)xya(x) + ∆(a)

m N3/2

∫
dx ρ(x)x . (5.14)

2. For a pair of bifundamental fields, one of R-charge ∆(a,b) transforming in the

(N,N) of U(N)a×U(N)b and one of R-charge ∆(b,a) transforming in the (N,N)

of U(N)a × U(N)b, one should add

−N3/2
2−∆+

(a,b)

2

∫
dx ρ(x)2

[(
ya − yb + π∆−(a,b)

)2

− 1

3
π2∆+

(a,b)

(
4−∆+

(a,b)

)]
,

(5.15)
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where ∆±(a,b) ≡ ∆(a,b) ±∆(b,a) satisfies ∆+
(a,b) < 2, and ya − yb is in the range

∣∣∣ya − yb + π∆−(a,b)

∣∣∣ ≤ π∆+
(a,b) . (5.16)

Outside this range the formula (5.15) is no longer valid, and in fact for arbi-

trary ya − yb the integrand is a non-smooth function. The boundaries of the

range (5.16) are points where the integrand should be considered to be non-

differentiable. In practice, this means that the equations obtained from vary-

ing the free energy functional with respect to ya − yb need not hold whenever∣∣∣ya − yb + π∆−(a,b)

∣∣∣ = ±π∆+
(a,b).

3. For an adjoint field of R-charge ∆(a,a), one should add

2π2

3
N3/2∆(a,a)

(
1−∆(a,a)

) (
2−∆(a,a)

) ∫
dx ρ(x)2 . (5.17)

4. For a field Xa with R-charge ∆a transforming in the fundamental of U(N)a,

one should add

N3/2

∫
dx ρ(x) |x|

(
1−∆a

2
− 1

4π
ya(x)

)
, (5.18)

while for an anti-fundamental field of R-charge ∆̃a one should add

N3/2

∫
dx ρ(x) |x|

(
1− ∆̃a

2
+

1

4π
ya(x)

)
. (5.19)

These rules will be derived in Section 5.3.
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5.2.3 Flat directions and U(N) vs. SU(N)

In a theory with p U(N) gauge groups, the matrix integral (5.1), seen as a function

of the R-charges of the matter fields as well as the bare monopole R-charges ∆
(a)
m , has

the following symmetries parameterized by p real numbers δ(a):

eigenvalues λ
(a)
i for ath gauge group: λ

(a)
i → λ

(a)
i − 2πiδ(a) ,

U(N)a × U(N)b bifundamental of R-charge ∆(a,b): ∆(a,b) → ∆(a,b) + δ(a) − δ(b) ,

U(N)a fundamental of R-charge ∆a: ∆a → ∆a + δ(a) ,

U(N)a anti-fundamental of R-charge ∆̃a: ∆̃a → ∆̃a − δ(a) ,

bare monopole R-charge ∆(a)
m for ath gauge group: ∆(a)

m → ∆(a)
m + kaδ

(a) .

(5.20)

The transformations (5.20) leave the matrix integral (5.1) invariant (up to a phase)

because they are equivalent to a change of variables where the integration contour for

each set of eigenvalues is shifted by a constant amount.

A consequence of this symmetry is that at finite N the free energy F (∆) (namely

the extremum of the free energy functional for fixed R-charges ∆) has p flat directions

parameterized by δ(a). In the U(N)p theory, these flat directions are to be expected

because, for example, the bifundamental fields in the theory are not gauge-invariant

operators. The free energy should depend only on the R-charges of gauge-invariant

operators. One then has two options: work with the U(N)p theory where by maximiz-

ing F one can only determine the R-charges of composite gauge-invariant operators

(for example, ∆(a,b) +∆(b,a) would be a well-defined number since it is the R-charge of

the gauge-invariant operator trX(a,b)X(b,a)), or ungauge some of the diagonal U(1)a’s

in the U(N)a gauge groups. If the U(N)a gauge group is replaced by SU(N)a then
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the corresponding eigenvalues λ
(a)
i should satisfy the tracelessness condition

∑
i

λ
(a)
i = 0 . (5.21)

This condition fixes δ(a) and removes a flat direction from F .

In the large N limit the free energy will generically have more flat directions than

at finite N . For example, at large N there are an additional nf flat directions coming

from the flavors for the following reason. In the theories we consider each funda-

mental field is paired with an anti-fundamental field. Let the R-charge of one of the

fundamental fields be ∆f and the R-charge of the corresponding anti-fundamental

field be ∆̃f . At finite N the sum ∆f + ∆̃f is fixed by the marginality of the super-

potential, leaving one free R-charge. However the finite N free energy will typically

be a non-trivial function of both ∆f and ∆̃f . At large N , on the other hand, the free

energy really only depends on the sum ∆f + ∆̃f , as can be seen from eqs. (5.18) and

(5.19). This gives us an additional nf “accidental” flat directions at large N .

Looking at equation (5.14), one can see that at large N the free energy only

depends on the sum

∆m =

p∑
a=1

∆(a)
m . (5.22)

Naively one would think this gives us p − 1 additional flat directions corresponding

to shifts in the individual ∆
(a)
m , which leave the sum in equation (5.22) invariant.

However, in theories where
∑

a ka = 0, which are all the theories presented in this

chapter, the story is slightly more subtle. In these theories we actually only gain p−2

additional flat directions in the large N limit. This is because at order O(N3/2) the

symmetry corresponding to δ(a) = δ is equivalent to one of the “new” flat directions,

which correspond to symmetries of the sum (5.22). To summarize, at large N we

have a total of 2(p−1)+nf flat directions of the free energy. However, only p of these
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flat directions correspond to gauge symmetries. The other p− 2 + nf flat directions

are only there at infinite N .

One could choose to eliminate some of the flat directions in the free energy by

changing the gauge groups from U(N) to SU(N). Since the diagonal monopole

operators T and T̃ are essential in obtaining the quantum-corrected moduli space in

these theories, we would like to keep the diagonal U(1) in U(N)p as a gauge symmetry.

So, let’s choose to eliminate all the flat directions in the free energy coming from the

abelian gauge symmetries, except for the flat direction corresponding to this diagonal

U(1). The R-charges of the (bi)fundamental fields are then gauge invariant quantities,

as we will explain below. The residual abelian gauge symmetry gives us p− 1 gauge

invariant combinations of the p bare monopole R-charges ∆
(a)
m . However, at large N

we will only be able to compute the sums ∆m and ∆f + ∆̃f because of the accidental

flat directions.

In going from U(N)p to SU(N)p × U(1) we should regard

A+ =

p∑
a=1

trAa (5.23)

as a dynamical gauge field, while the other gauge fields A(b) =
∑

a α
b
a trAa, where αba

is a basis of solutions to
∑p

a=1 α
b
a = 0, should be treated as background fields that we

set to zero. The ungauging procedure [101] can be done rigorously by adding p − 1

vector multiplets whose vector components are Bb, b = 1, 2, . . . , p−1, and that couple

to the topological currents ∗F (b) = ∗
∑p

a=1 α
b
a trFa through

δS =

p−1∑
b=1

∫
Bb ∧ F (b) , (5.24)

with an appropriate supersymmetric completion. Making the fields Bb dynamical,

the integration over them in the path integral essentially ungauges A(b). For related

discussions, see [102–105].
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To summarize so far, in the U(N)p gauge theory the large N free energy F (∆)

generically has 2p − 2 + nf flat directions. However, only p of these symmetries

correspond to gauge symmetries with the rest being accidental flat direction appearing

only at large N . If we want to remove p − 1 of the flat directions corresponding to

gauge symmetries, we should consider the SU(N)p × U(1) gauge theory, where the

U(1) gauge field is A+. In this theory one can construct the baryonic operator

B
(
X(a,b)

)
= εi1···iN ε

j1···jN
(
X(a,b)

)i1
j1
· · ·
(
X(a,b)

)iN
jN
, (5.25)

which is a gauge-invariant chiral primary with R-charge N∆(a,b). In other words, the

operator X(a,b) can be assigned a unique R-charge ∆(a,b) because the baryon B
(
X(a,b)

)
has the well-defined R-charge N∆(a,b). Minimizing F (∆) in this theory one can then

determine the R-charges of the bifundamenal fields.

Ungauging the p − 1 off-diagonal U(1) gauge fields makes it possible to define

gauge-invariant baryonic operators at the expense of removing from the chiral ring

the off-diagonal monopole operators that generate non-zero numbers of F (b) flux units

that exist in the U(N)p theory. This ungauging doesn’t remove, however, the diagonal

monopole operators T and T̃ , because these operators generate equal numbers of trFa

flux units and thus no F (b) flux units. Moreover, the bare monopole R-charges ∆m of

T and −∆m of T̃ are well-defined quantities because one can construct a baryonic-like

operator out of T or T̃ .

From an AdS/CFT point of view, ungauging U(1) symmetries in the boundary

theory is equivalent to changing boundary conditions in the bulk for the bulk gauge

fields dual to those U(1) symmetries. In M-theory, the boundary conditions cor-

responding to the U(N)p gauge theory allow the existence of M2-branes wrapping

topologically non-trivial two-cycles, but disallow the existence of the magnetic dual

objects, which would be the M5-branes wrapping the dual five-cycles. The boundary
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conditions for the SU(N)p×U(1) gauge theory allow the existence of M5-branes but

disallow M2-branes wrapped on topologically non-trivial cycles. Since these wrapped

M2-branes are dual to off-diagonal monopole operators and the M5-branes wrapping

topologically non-trivial cycles are dual to baryonic operators, the general picture on

the gravity side is consistent with the field theory analysis. See [104, 105] for a more

detailed discussion.

In addition to M5-branes wrapping topologically non-trivial cycles that are allowed

only in the SU(N)p × U(1) gauge theory, on the gravity side one can also consider

giant gravitons, which are BPS configurations of M5-branes wrapping topologically

trivial five-cycles and rotating within the 7-d space Y [106]. On the field theory side,

these objects are thought to be dual to determinants of operators that transform

in the adjoint representation of one of the gauge groups (such as determinants of

products of bifundamental fields). These determinant operators are gauge invariant

in both the U(N)p and SU(N)p × U(1) gauge theory.

In general, the relation between the volume of a five-cycle wrapped by an M5-brane

and the dimension of the corresponding gauge theory operator is [107]

∆ =
πN

6

Vol(Σ5)

Vol(Y )
, (5.26)

regardless of whether the five-cycle the brane is wrapping is topologically trivial or

not. We will make extensive use of this formula, as it provides a way of extracting the

expected R-charge of the bifundamental fields (or of certain products of bifundamental

fields) from the gravity side. Indeed, after performing F -maximization, we check not

only that the extremum of F matches the supergravity prediction (1.69) computed

using the volume of Y , but also that the dimensions of the operators dual to wrapped

M5-branes agree with eq. (5.26), which involves the volumes of the various five-cycles

computed from the gravity side.
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5.3 Derivation of matrix model rules

In this section we provide a derivation of the rules we gave in section 5.2.2 for finding

the continuum limit of the free energy in eq. (5.1). This section is rather technical

and can be skipped on a first reading. We assume that at large N the eigenvalues

scale as

λ
(a)
i = Nαxi + iya,i + o(1) (5.27)

for some number α ∈ (0, 1). We will eventually be interested in setting α = 1/2. In

writing eq. (5.27) we implicitly assume that as we take N to infinity, the xi and ya,i

become dense, so in the continuum limit we can express ya as a continuous function

ya(x). It is convenient to define the density

ρ(x) =
1

N

N∑
i=1

δ(x− xi) , (5.28)

which as we take N →∞ also becomes a continuous function of x normalized so that∫
dx ρ(x) = 1.

5.3.1 First rule

For each gauge group a with CS level ka and bare monopole R-charge ∆
(a)
m , the

discrete contribution to F is

F1 =
N∑
i=1

[
−ika

4π
(λa,i)

2 + ∆(a)
m λa,i

]

=
N∑
i=1

[
−ika

4π
(Nαxi + iya,i)

2 + ∆(a)
m (Nαxi + iya,i)

]
+ o(N1+α) ,

(5.29)
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where in the second line we used (5.27). Expanding in N we obtain

F1 = −ika
4π
N2α

N∑
i=1

x2
i +Nα

N∑
i=1

[
ka
2π
xiya,i + ∆(a)

m xi

]
+ o(N1+α) . (5.30)

The first term in this sum vanishes when we sum over a because we assume
∑

a ka = 0.

In taking the continuum limit we therefore only need to keep the second term and

replace
∑

i (· · · ) by N
∫
dx ρ(x) (· · · ). We get

F1 = Nα+1

∫
dx ρ(x)

[
ka
2π
xya(x) + ∆(a)

m x

]
+ o(N1+α) , (5.31)

reproducing eq. (5.14) when α = 1/2.

5.3.2 Second and third rules

The interaction terms between the eigenvalues contain two types of terms: one coming

from the one-loop determinant of the fields in the vector multiplets

F2,vector = −1

2

p∑
a=1

N∑
i,j=1

ln

(
4 sinh2

λ
(a)
i − λ

(a)
j

2

)
(5.32)

for each gauge group a, and one coming from the one-loop determinants of the matter

fields

F2,matter = −
∑

bifundamentals
(a,b)

N∑
i,j=1

`

(
1−∆(a,b) + i

λ
(a)
i − λ

(b)
j

2π

)
, (5.33)
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where the function `(z) was defined in eq. (5.2). Since for each gauge group we require

the relation (5.11) to hold, we can rewrite the contribution F2,vector as

F2,vector = −1

4

∑
bifundamentals

(a,b)

(
1−∆(a,b)

) N∑
i,j=1

ln

(
16 sinh2

λ
(a)
i − λ

(a)
j

2
sinh2

λ
(b)
i − λ

(b)
j

2

)
.

(5.34)

Combining (5.34) and (5.33) one can write the interaction term in the free energy as

a sum over the bifundamental fields.

In order to calculate F2 = F2,matter + F2,vector as N → ∞ we find it easier to first

calculate the derivatives of F2 with respect to ya. We have

∂F2

∂ya,i
=

N∑
j=1

[
− i

2

(
2−∆(a,b) −∆(b,a)

)
coth

Nα(xi − xj) + i(ya,i − ya,j)
2

− 1

4π
cot

[
π∆(a,b) +

iNα(xj − xi) + ya,i − yb,j
2

] (
2π(∆(a,b) − 1) + iNα(xj − xi) + ya,i − yb,j

)
+

1

4π
cot

[
π∆(b,a) −

iNα(xj − xi) + ya,i − yb,j
2

] (
2π(∆(b,a) − 1)− iNα(xj − xi) + ya,i − yb,j

) ]
,

(5.35)

where in the first term we should not let j = i. In the continuum limit this expression

becomes

δF2

δya(x)
≈ N2ρ(x)2

∑
bifundamentals
(a, b) and (b, a)

P.V.

∫
dx′
[
i

2

(
2−∆(a,b) −∆(b,a)

)
coth

λa(x)− λa(x′)
2

− 1

4π
cot

[
π∆(a,b) +

i(λb(x
′)− λa(x))

2

] (
2π(∆(a,b) − 1) + i(λb(x

′)− λa(x))
)

+
1

4π
cot

[
π∆(b,a) −

i(λb(x
′)− λa(x))

2

] (
2π(∆(b,a) − 1)− i(λb(x′)− λa(x))

) ]
,

(5.36)

where P.V. denotes principal value integration and by λa(x) we mean Nαx+ iya(x).

In the sum over pairs of bifundamental fields, adjoint fields should be counted once
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and should come with an explicit factor of 1/2. Changing variables from x′ to ξ =

Nα(x′ − x) and taking N →∞, the integral in (5.36) becomes

δF2

δya(x)
≈ N2−αρ(x)2

∑
bifundamentals
(a, b) and (b, a)

∫ ∞
−∞

dξ

[
− 1

4π
cot

[
π∆(a,b) +

iξ + ya(x)− yb(x)

2

] (
2π(∆(a,b) − 1) + iξ + ya(x)− yb(x)

)
+

1

4π
cot

[
π∆(b,a) −

iξ + ya(x)− yb(x)

2

] (
2π(∆(b,a) − 1)− iξ − ya(x) + yb(x)

)]
.

(5.37)

This integral converges and can be evaluated to

δF2

δya(x)
≈ N2−αρ(x)2

∑
bifundamentals
(a, b) and (b, a)

[
− fab(x)

(
fab(x)

4π
+ 1−∆(a,b) −

ya(x)− yb(x)

2π

)

+ fba(x)

(
fba(x)

4π
+ 1−∆(b,a) −

yb(x)− ya(x)

2π

)]
,

(5.38)

where we have defined

fab(x) ≡ −i ln ei[ya(x)−yb(x)+2π(∆(a,b)−1/2)] . (5.39)

Integrating this expression with respect to ya(x) one obtains an expression for F up

to ya-independent terms. The ya-independent terms can be found by approximating

F2 itself when ya = 0 in the same way that we approximated δF/δya(x) above. The

final answer is

F2 = −N
2−α

12π

∑
bifundamentals

(a, b)

∫
dx ρ(x)2

[
π2 − f 2

ab

] [
2fab + 3

(
ya − yb + 2π(∆(a,b) − 1)

)]
.

(5.40)
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In the region where ya(x) − yb(x) + 2π(∆(a,b) − 1/2) ∈ (−π, 3π), as will be the case

most of the time, we have

fab(x) = ya(x)− yb(x) + 2π

(
∆(a,b) −

1

2

)
, (5.41)

and (5.40) becomes

F2 = −N2−α
∑

bifundamentals
(a, b) and (b, a)

2−∆+
(a,b)

2

∫
dx ρ(x)2

[(
ya − yb + π∆−(a,b)

)2

− 1

3
π2∆+

(a,b)

(
4−∆+

(a,b)

)]
,

(5.42)

where ∆±(a,b) ≡ ∆(a,b) ±∆(b,a), reproducing eq. (5.15) for α = 1/2. Eq. (5.42) is valid

in the range

∣∣∣ya − yb + π∆−(a,b)

∣∣∣ ≤ π∆+
(a,b) . (5.43)

In order to reproduce eq. (5.17) for a field transforming in the adjoint of the ath

gauge group, we take ya = yb, ∆+
(a,a) = 2∆(a,a), and ∆−(a,a) = 0 in one of the terms of

(5.42), which we then multiply by a factor of 1/2 as explained above.

5.3.3 Fourth rule

The contribution from the fundamental and anti-fundamental fields is

F3 = −
∑

fundamental
a

N∑
i

`

(
1−∆a + i

λ
(a)
i

2π

)
−

∑
anti-fundamental

a

N∑
i

`

(
1− ∆̃a − i

λ
(a)
i

2π

)
,

(5.44)

where we denoted the dimension of the fundamentals and anti-fundamentals by ∆

and ∆̃, respectively, to avoid confusion. In the continuum limit, replacing
∑

i by
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N
∫
dx ρ(x) as usual and using the scaling ansatz (5.27) we get

F3 =
i(nf − na)

8π
N1+2α

∫
dx ρx2 +N1+α

∑
fundamental

a

∫
dx ρ(x) |x|

(
1−∆a

2
− 1

4π
ya(x)

)

+N1+α
∑

anti-fundamental
a

∫
dx ρ(x) |x|

(
1− ∆̃a

2
+

1

4π
ya(x)

)
,

(5.45)

where nf is the total number of fundamentals and na is the total number of anti-

fundamentals. When nf = na and α = 1/2 one reproduces eqs. (5.18) and (5.19).

5.3.4 Why α = 1/2?

When the CS levels sum to zero and the number of fundamentals equals the number

of anti-fundamentals, we find F1 +F3 ∼ N1+α at large N and F2 ∼ N2−α. In order to

have a non-trivial saddle point we have to balance out these two terms, so 1+α = 2−α

implying α = 1/2. The free energy therefore scales as N3/2.

5.4 A class of N = 2 necklace quivers

The first class of quiver gauge theories where we apply the formalism developed in the

previous section involves a modification of the necklace N = 3 Chern-Simons theories

introduced in section 1.2.5 and studied in Chapter 4. The N = 3 quivers involve p

gauge groups with CS levels ka that satisfy
∑p

a=1 ka = 0 as well as bifundamental

chiral superfields Aa,a+1 and Ba+1,a. These theories are natural generalizations of the

ABJM model, which corresponds to p = 2. They have quartic superpotentials W ∼∑
a

1
ka

tr(Aa,a+1Ba+1,a − Ba,a−1Aa−1,a). An equivalent description of these theories
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k1

k2

k3

k4

kp

Ap,1 A1,2

A2,3

A3,4

B2,1

B3,2

B4,3

B1,p

Φ1

Φ4

Φ3

Φ2

Φp

Figure 5.1: A “necklace” quiver diagram for the N = 3 Chern-Simons-matter gauge
theories with superpotential (5.47) or the N = 2 CS-matter gauge theories with
superpotential (5.46). We impose the condition that the CS levels ka should sum to
zero.

involves extra adjoint chiral multiplets Φa and the superpotential

WN=3 ∼
∑
a

tr
(
kaΦ

2
a + Φa(Aa,a+1Ba+1,a −Ba,a−1Aa−1,a)

)
(5.46)

(see figure 5.1). That the two descriptions are equivalent can be seen by simply

integrating out the fields Φa. If one now changes the superpotential to

WN=2 ∼
∑
a

tr
(
µaΦ

3
a + Φa(Aa,a+1Ba+1,a −Ba,a−1Aa−1,a)

)
, (5.47)

for some set of parameters µa, the resulting theories have onlyN = 2 supersymmetry.3

If we perturb such an N = 2 fixed point by the relevant superpotential deformation

δW =
∑

a tr (kaΦ
2
a) then it should flow to the corresponding N = 3 theory.

3In the two-node case this model is equivalent to the Martelli-Sparks proposal for the dual of
AdS4 × V5,2 [97].
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To keep the discussion as general as possible, let us consider the class of superpo-

tentials

W ∼
∑
a

tr
[
µaΦ

n+1
a + Φa(Aa,a+1Ba+1,a −Ba,a−1Aa−1,a)

)
, (5.48)

where we assume that all the parameters µa are non-vanishing. If n = 1 or 2, this

theory is dual to AdS4 × Yn(~k). The spaces Yn(~k) probably have a Sasaki-Einstein

metric only when n ≤ 2, though, because of the Lichnerowicz obstruction of [97,108].

Let us denote by ∆A and ∆B the conformal dimensions of the bifundamental fields

Aa and Ba, respectively, and by δ the conformal dimensions of the adjoints Φa. The

condition that the superpotential is marginal implies

δ = 2/(n+ 1) , ∆+ ≡ ∆A + ∆B = 2n/(n+ 1) . (5.49)

Setting the bare monopole R-charge ∆m = 0,4 eqs. (5.14)–(5.15) then imply that the

free energy functional is

Fn[ρ, ya] =

p∑
a=1

ka
2π
N3/2

∫
dx ρxya +

2π2p

3
N3/2δ(δ − 1)(δ − 2)

∫
dx ρ2

−N3/2 2−∆+

2

p∑
a=1

∫
dx ρ2

[
(ya − ya−1 + π∆−)2 − π2∆+(4−∆+)

3

]
,

(5.50)

with ∆− ≡ ∆A −∆B. Using (5.49), this equation can be simplified to

Fn[ρ, ya] =

p∑
a=1

ka
2π
N3/2

∫
dx ρxya −N3/2

p∑
a=1

∫
dx ρ2

[
(ya − ya−1 + π∆−)2

n+ 1
− 4π2n2

(n+ 1)3

]
.

(5.51)

4If one includes a non-zero ∆m in the free energy, F -maximization requires the bare monopole
R-charge to vanish.
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As discussed after eq. (5.15), this expression holds as long as |ya − ya−1 + π∆−| ≤

π∆+ = 2πn/(n+ 1).

Since the quiver is symmetric under interchanging the A fields with the B fields,

we expect that the saddle point has ∆A = ∆B, so ∆− = 0. In this case, we can

absorb the dependence on n into a redefinition of ya and ρ. By writing

ya =
2n

n+ 1
ŷa , ρ→ n+ 1

2
√
n
ρ̂ , x→ 2

√
n

n+ 1
x̂ , (5.52)

one can easily show that

Fn[ρ, ya] =
4n3/2

(n+ 1)2
F1[ρ̂, ŷa] . (5.53)

Clearly, this relation is also satisfied by the extrema Fn and F1 of the functionals

Fn[ρ, ya] and F1[ρ̂, ŷa], respectively, which given (1.69) implies

Vol(Yn(~k)) =
(n+ 1)4

16n3
Vol(Y1(~k)) . (5.54)

In particular, we have

Vol(Y2(~k)) =
81

128
Vol(Y1(~k)) . (5.55)

When ~k = (1,−1) then Y1(~k) = S7 with volume Vol(S7) = π4/3 and Y2(~k) = V5,2 [97]

with volume Vol(V5,2) = 27π4/128 [92], in agreement with eq. (5.55).

We have just shown that for the RG flow between the N = 2 theory (5.47) in the

UV deformed by the relevant superpotential deformation δW =
∑

a tr (kaΦ
2
a) and the

N = 3 theory (5.46) in the IR, we have (FIR/FUV)2 = 81/128. The universal ratio

81/128 is reminiscent of the aIR/aUV = 27/32 that often arises in (3 + 1)-dimensional

RG flows; see [109] for a general argument.
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5.5 Flavored gauge theories with one gauge group

The first examples we consider are flavored variations of the 3-d N = 8 Yang-Mills

theory, which can be obtained as the dimensional reduction of theN = 4 gauge theory

in four dimensions. In N = 2 notation, the 3-d N = 8 vector multiplet consists of an

N = 2 vector multiplet with gauge group U(N) or SU(N) as well as three adjoint

chiral superfields Xi, 1 ≤ i ≤ 3. The superpotential

W0 = trX1[X2, X3] (5.56)

ensures that the long-range forces between the eigenvalues vanish, because the require-

ment that the superpotential is marginal is equivalent to eq. (5.11). The flavoring of

this model consists of adding fields qα and q̃α transforming in the anti-fundamental

and fundamental representations of the gauge group, respectively, coupled to the

adjoints Xi through the superpotential coupling

∑
α

qαOα(Xi)q̃α . (5.57)

Here, Oα(Xi) are polynomials in the Xi with no constant term, which, as operators,

also transform in the adjoint representation of the gauge group. It was conjectured

in [98,99] that the U(1) quantum corrected moduli space in this case can be described

as the embedded codimension one surface

T T̃ =
∏
α

Oα(Xi) (5.58)

in C5, where the monopole operators T and T̃ as well as the three fields Xi should be

regarded as the five complex coordinates in C5. This moduli space is a Calabi-Yau

space with a conical singularity at T = T̃ = Xi = 0. The field theory we just described
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is then conjectured to be the theory on M2-branes placed at the tip of the Calabi-Yau

cone (5.58) and is therefore dual to AdS4 × Y , where Y is the Sasaki-Einstein base

of the cone (5.58).

5.5.1 An infinite family of AdS4/CFT3 duals

Let’s first couple the basic model with superpotential (5.56) to three sets of pairs of

chiral superfields
(
q

(i)
j , q̃

(i)
j

)
, where i = 1, 2, 3 and j = 1, 2, . . . , ni for some integers

ni ≥ 0 with at least one of the ni being strictly positive. The quiver diagram for this

theory is shown in figure 5.2. The superpotential of the flavored theory is

X1
X2 X3

U(n2)

U(N)

U(n1)

U(n3)

Figure 5.2: The quiver diagram for the flavored theories corresponding to the super-
potential in equation (5.59).

W ∼ W0 + tr

[
n1∑
j=1

q
(1)
j X1q̃

(1)
j +

n2∑
j=1

q
(2)
j X2q̃

(2)
j +

n3∑
j=1

q
(3)
j X3q̃

(3)
j

]
. (5.59)

These theories were considered in detail in [98] where it was shown that for each such

theory the quantum corrected moduli space of vacua is a toric Calabi-Yau cone. This

cone can be parameterized by the complex coordinates Xi as well as the monopole
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operators T and T̃ subject to the constraint

T T̃ = Xn1
1 Xn2

2 Xn3
3 . (5.60)

The fact that the superpotential should have R-charge R[W ] = 2 as well as the

constraint (5.60) imposes a number of constraints on the R-charges of the various

fields:

3∑
i=1

R[Xi] = 2 , R[T ] +R[T̃ ] =
3∑
i=1

niR[Xi] , R[q
(i)
j ] +R[q̃

(i)
j ] +R[Xi] = 2 .

(5.61)

With these assumptions, the rules of section 5.2.2 imply that the free energy functional

is5

F [ρ] = 2π2N3/2∆1∆2∆3

∫
dx ρ2 +

N3/2

2

(
3∑
i=1

ni∆i

)∫
dx ρ |x|+N3/2∆m

∫
dx ρx ,

(5.62)

where we denoted R[Xi] = ∆i. We also have R[T ]−R[T̃ ] = 2∆m (see eq. (5.3)).

The eigenvalue density ρ(x) that maximizes F is supported on [x−, x+] with x− <

0 < x+:

ρ =



(∑3
i=1 ni∆i

)
− 2∆m

8π2∆1∆2∆3

(x− x−) if x < 0 ,

(∑3
i=1 ni∆i

)
+ 2∆m

8π2∆1∆2∆3

(x+ − x) if x ≥ 0 ,

(5.63)

5In these non-chiral theories, F -maximization will give ∆m = 0 due to charge conjugation sym-
metry, but we will nevertheless keep ∆m explicitly in the intermediate steps.
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where the endpoints of the distribution are such that ρ is continuous at x = 0,

x± ≡ ±

√
8π2∆1∆2∆3

[(∑3
i=1 ni∆i

)
∓ 2∆m

](∑3
i=1 ni∆i

) [(∑3
i=1 ni∆i

)
± 2∆m

] . (5.64)

Plugging these expressions into eq. (5.62), we find that the extremum of F [ρ] at given

∆i and ∆m is given by

F =
2
√

2πN3/2

3

√√√√∆1∆2∆3

[(
3∑
i=1

ni∆i

)
− 4∆2

m(∑3
i=1 ni∆i

)] . (5.65)

In order to find ∆i and ∆m, one just has to maximize F under the constraint that∑3
i=1 ∆i = 2. The maximization problem clearly implies that ∆m = 0, so

F =
2
√

2πN3/2

3

√√√√∆1∆2∆3

(
3∑
i=1

ni∆i

)
. (5.66)

Finding ∆i requires solving a system of algebraic equations with no simple closed-

form solutions. However, in section 5.5.2 we will examine a variety of special cases

where closed-form solutions are available.

It can be shown using toric geometry techniques that the extremum of the free

energy (5.65) matches with the gravity prediction based on the volume of the internal

space Y and eq. (1.69). We will not reproduce the details of that computation here;

the interested reader is referred to section 7 of [15].

5.5.2 Particular cases

C2 × (C2/Zn1)

It is instructive to examine particular cases of our general formula (5.66). The

first particular case we study is n2 = n3 = 0 with n1 arbitrary. The moduli

space (5.60) is in this case C2 × (C2/Zn1), where the Zn1 is generated by (z3, z4) ∼

181



(
z3e

2πi/n1 , z4e
−2πi/n1

)
. This theory should therefore be dual to AdS4×S7/Zn1 , where

the Zn1 action on S7 is that induced by the corresponding Zn1 action on C4 [110].

Eq. (5.66) is extremized for ∆1 = 1 and ∆2 = ∆3 = 1/2, which, when combined with

(1.69) gives

Vol(Y ) =
π4

3n1

. (5.67)

Since the volume of the round seven-sphere is Vol(S7) = π4/3, this formula is consis-

tent with the expectation that the internal space Y is a Zn1 orbifold of S7. Indeed, it

was argued in [110] that there is a supersymmetry enhancement to maximal N = 8

supersymmetry when n1 = 1.

CY3 × C theories

Consider n3 = 0 with arbitrary n1 and n2. The equation describing the moduli space

reduces to T T̃ = Xn1
1 Xn2

2 , which describes a toric CY3 cone times C, the complex

coordinate in C being X3. Since the CY3 is singular at X1 = X2 = 0, the space

CY3 ×C has non-isolated singularities and so does the base of this cone, the Sasaki-

Einstein space Y . These non-isolated singularities might be a reason to worry to

what extent AdS/CFT results are applicable in this case, as additional states in M-

theory might appear from these singularities. As we will explain, the matrix model

computation of the free energy matches the M-theory expectation (1.69) in spite of

these potential problems. The free energy (5.66) is extremized by

∆1 =
n1 − 2n2 +

√
n2

1 + n2
2 − n1n2

2(n1 − n2)
, ∆3 =

1

2
,

∆2 =
n2 − 2n1 +

√
n2

1 + n2
2 − n1n2

2(n2 − n1)
,

(5.68)
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giving

Fn1,n2 =
πN3/2

3
√

2 |n1 − n2|

[(
n1 + n2 +

√
n2

1 + n2
2 − n1n2

)

×
(
n1 − 2n2 +

√
n2

1 + n2
2 − n1n2

)(
−2n1 + n2 +

√
n2

1 + n2
2 − n1n2

)]1/2

.

(5.69)

Note that the field X3 corresponding to the C factor in CY3 × C has the canonical

R-charge ∆3 = 1/2.

When n1 = n2 = 1 the Calabi-Yau three-fold is the well-known conifold C. In this

case ∆1 = ∆2 = 3/4, and from eqs. (5.69) and (1.69) one obtains Vol(Y ) = 16π4/81.

This value can be confirmed from a direct calculation of the volume using the metric

on C× C or from toric geometry. See [15] for details.

The D3 theory

Another fairly simple particular case is n1 = n2 = n3 = 1. The associated CY4 is

described by the equation T T̃ = X1X2X3 and is therefore a complete intersection.

While the volume of the Sasaki-Einstein base Y can of course be obtained as a par-

ticular case from the toric geometry computation in section 7 of [15], there is actually

a simpler way of computing this volume using the results of [92]. Indeed, eq. (16)

of that paper with n = 4, d = 6, ~w = (3, 3, 2, 2, 2) (so w = 72 and |w| = 12) gives

Vol(Y ) = 9π4/64. From the matrix model, the extremum of the free energy (5.66)

can be found to be

F =
8π

9

√
2

3
N3/2 , (5.70)

in agreement with the value we found for Vol(Y ).
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5.5.3 Universal RG flows

The theories discussed in section 5.5.2 dual to CY3 × C have two obvious relevant

superpotential deformations: tr(X3)2 of R-charge 1 and tr(X3)3 of R-charge 3/2.

Adding either of these operators to the superpotential causes an RG flow to a new

IR fixed point. The RG flows obtained this way are universal in the sense that, as we

will now show, the ratio of the IR and UV free energies is independent of the details

of the three-fold CY3. We will only compute this ratio for the toric CY3 examples

of section 5.5.2, but we believe that the same ratio can be obtained for non-toric

examples.

To give a unified treatment of the tr(X3)2 and tr(X3)3 deformations, let’s examine

the theory obtained by adding tr(X3)p to the superpotentials (5.59) with n3 = 0 but

otherwise arbitrary n1 and n2. This extra term in the superpotential fixes the R-

charge of X3 to be ∆3 = 2/p. Fixing ∆3 to this value and writing for example

∆2 = 2−∆1−∆3 one can find the R-charges of the new IR fixed point by maximizing

(5.66). A simple computation shows that the IR R-charges are related to the UV R-

charges through

∆IR
1 =

4(p− 1)

3p
∆UV

1 , ∆IR
2 =

4(p− 1)

3p
∆UV

2 , ∆IR
3 =

2

p
, (5.71)

where ∆UV
1 and ∆UV

2 have the values given in (5.68). Consequently, the IR free energy

is also related to the UV free energy in a way independent of which CY3 space one

may want to consider:

F IR =
16(p− 1)3/2

3
√

3p2
FUV . (5.72)

In particular, for p = 2 one obtains F IR/FUV = 4/(3
√

3) and for p = 3 one obtains

F IR/FUV = 32
√

2/(27
√

3).
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One obvious question to ask is: what are the gravity duals to these RG flows? For

p = 2, we believe this holographic RG flow was constructed in [111] (for p = 3, we

are not aware of a similar holographic construction). Let’s examine the holographic

RG flow of [111] in more detail. This flow was originally found in 4-d N = 8 gauged

supergravity as a flow between two extrema of the gauged supergravity potential—the

maximally supersymmetric one and the U(1)R×SU(3)-symmetric one found in [112].

An uplift of this flow to 11-d supergravity was constructed in [111] where in the UV

the geometry aysmptotes to AdS4 × S7, and in the IR it asymptotes to a warped

product between AdS4 and a stretched and squashed seven-sphere. It was noticed

in [111] that the uplift of the 4-d flow to eleven dimensions was not unique in the

sense that an S5 ⊂ S7 in the UV geometry could be replaced by the base of any

CY3 cone which is a regular Sasaki-Einstein manifold. Such a generalization of the

holographic RG flow [111] should be dual to the flow induced by the superpotential

perturbation tr(X3)2 in all the gauge theories dual to CY3 × C.

We can compare the field theory prediction (5.72) with the gravity computation.

From a four-dimensional perspective, the free energy on S3 is given by eq. (1.39) in

terms of the radius L of AdS4 and the effective 4-d Newton constant G4. In the

holographic RG-flow of [111], the 4-d Newton constant is kept fixed, so the ratio of

free energies is

FIR

FUV

=

(
LIR

LUV

)2

=
4

3
√

3
, (5.73)

where in the last equation we used LUV/LIR = 33/4/2 [111]. Indeed, this expression

is in agreement with eq. (5.72).

Two comments are in order. First, when CY3 = C3 supergravity predicts that

the IR theory has emergent U(1)R × SU(3) symmetry. We now explain why this

is a consistent possibility in the field theory. In the field theory, at the IR fixed
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point one can just integrate out X3 ∼ [X1, X2] and obtain the effective superpoten-

tial tr ([X1, X2]2 + qX1q̃). The monopole operators have the OPE T T̃ ∼ X1, which

implies R[X1] = R[T ] + R[T̃ ]. From eq. (5.71) we see that ∆UV
1 = 1 and ∆UV

2 = 1/2

in the UV (see section 5.5.2) implies ∆IR
1 = 2/3 and ∆IR

2 = 1/3 in IR. The fact

that ∆m = 0 tells us R[T ] − R[T̃ ] = 0, and combining the above observations we

conclude R[T ] = R[T̃ ] = 1/3. This leads us to conjecture that T , T̃ , and X2 form

a triplet of SU(3), making the expected symmetry enhancement to U(1)R × SU(3)

a consistent possibility. We thus propose that this gauge theory is dual to Warner’s

U(1)R × SU(3) invariant fixed point of gauged supergravity [112]. Another proposed

gauge theory dual is a certain mass-deformed version of ABJM theory [30]; we will

solve the corresponding matrix model in section 5.6.

The second comment starts with the observation that the IR free energy of the

mass-deformed C × C theory, C being the conifold, is the same as that of the unde-

formed C4 theory. There is a field theory argument that explains this match: The

C4 theory (whose superpotential is W ∼ tr(X1[X2, X3] + qX1q̃)) has a marginal di-

rection where one adds X2
1 to the superpotential. Integrating out X1 one obtains

W ∼ tr([X2, X3]2 + q[X2, X3]q̃). This theory is related by another marginal deforma-

tion to W ∼ tr([X2, X3]2 + qX2X3q̃), which in turn can be obtained by integrating

out X1 from W ∼ tr(X1[X2, X3] + qX2X3q̃ + mX2
1 ). The theory with the latter

superpotential has the same free energy as the mass-deformed C× C theory.

5.5.4 A non-toric example: The cone over V5,2/Zn

It was proposed in [99] that the theory dual to the AdS4 × V5,2/Zn M-theory back-

ground is a Yang-Mills U(N) gauge theory with three adjoint fields Xi and 2n fields

qj and q̃j transforming in N and N of U(N), respectively, and superpotential

W ∼ tr

[
X1[X2, X3] +

n∑
j=1

qj(X
2
1 +X2

2 +X2
3 )q̃j

]
. (5.74)
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The fact that the superpotential has R-charge R[W ] = 2 implies that Xi has R-charge

2/3 and qj and q̃j have R-charge 1/3.

The free energy functional is in this case

F [ρ] =
16π2

27
N3/2

∫
dx ρ2 +

2n

3
N3/2

∫
dx ρ |x|+N3/2

∫
dx ρx∆m . (5.75)

Extremizing with respect to ρ under the constraint that ρ is a density, one obtains

F =
8π
√
nN3/2

27

√
4− 9∆2

m

n2
. (5.76)

Maximizing this expression with respect to ∆m gives ∆m = 0 and

F =
16π
√
nN3/2

27
. (5.77)

Combining this expression with the M-theory expectation (1.69), one obtains

Vol(Y ) =
27π4

128n
, (5.78)

in agreement with the expectation that the space Y is a Zn orbifold of V5,2.

5.6 Deforming the ABJM theory

In this section we will study some deformations of the ABJM theory that lead to RG

flow. Before we do that though, we look at the ABJM theory and assign arbitrary

R-charges to the bifundamental fields Ai and Bi that are consistent with the fact that

the superpotential

W0 ∼ tr
[
εijεklAiBkAjBl

]
(5.79)
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has R-charge two. In other words, denoting R[Ai] = ∆Ai and R[Bi] = ∆Bi , the

constraint the R-charges satisfy is

∆A1 + ∆A2 + ∆B1 + ∆B2 = 2 . (5.80)

Of course, assigning arbitrary R-charges ∆Ai and ∆Bi breaks SUSY from N = 6 to

N = 2. The quiver diagram for this theory is shown in figure 5.3

A1A2

U(N)k U(N)−k

B1B2

Figure 5.3: The quiver diagram for the ABJM theory at CS level k.

Using the general rules from section 5.2.2, the matrix model free energy functional

is

F [ρ, δy] =
k

2π
N3/2

∫
dx ρxδy −N3/2

∫
dx ρ2

[
(δy)2 + 2πδy(∆A1∆A2 −∆B1∆B2)

− 2π2

(
∆A1∆A2(∆B1 + ∆B2) + ∆B1∆B2(∆A1 + ∆A2)

)]
+N3/2

∫
dx ρx∆m ,

(5.81)

where δy ≡ y1− y2 and ∆m = ∆m1 + ∆m2 is the sum of the bare monopole R-charges

∆
(1)
m and ∆

(2)
m for the two gauge groups. In order to find a saddle point of the path

integral on S3, this free energy functional should be extremized as usual under the

constraint that ρ is a density, namely
∫
dx ρ = 1 and ρ ≥ 0 almost everywhere. So

we should introduce a Lagrange multiplier µ and extremize

F̃ [ρ, δy] = F − µN
3/2

2π

(∫
dx ρ− 1

)
(5.82)
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instead of (5.81). Assuming without loss of generality that ∆A1 > ∆A2 and ∆B1 >

∆B2 , one can write the eigenvalue distribution that extremizes (5.82) as a piecewise

smooth function:

− µ

2π(k∆A2 −∆m)
< x < − µ

2π(k∆A1 −∆m)
:

ρ =
µ+ 2πx(k∆A2 −∆m)

8π3(∆A2 + ∆B2)(∆A2 + ∆B1)(∆A1 −∆A2)
, δy = −2π∆A2 ,

(5.83a)

− µ

2π(k∆A1 −∆m)
< x <

µ

2π(k∆B1 −∆m)
:

ρ =
µ+ πx [k(∆A1∆A2 −∆B1∆B2)− 2∆m]

4π3(∆A1 + ∆B1)(∆A1 + ∆B2)(∆A2 + ∆B1)(∆A2 + ∆B2)
,

δy =
2kπ2x [∆A1∆A2(∆B1 + ∆B2) + ∆B1∆B2(∆A1 + ∆A2)]

µ+ πx [k(∆A1∆A2 −∆B1∆B2)− 2∆m]
,

+
π(∆A1∆A2 −∆B1∆B2)(2πx∆m − µ)

µ+ πx [k(∆A1∆A2 −∆B1∆B2)− 2∆m]
,

(5.83b)

µ

2π(k∆B1 + ∆m)
< x <

µ

2π(k∆B2 + ∆m)
:

ρ =
µ− 2πx(k∆B2 + ∆m)

8π3(∆A1 + ∆B2)(∆A2 + ∆B2)(∆B1 −∆B2)
, δy = 2π∆B2 ,

(5.83c)

where

µ2 =
32π4

k3
(k∆A1 −∆m)(k∆A2 −∆m)(k∆B1 + ∆m)(k∆B2 + ∆m) . (5.84)
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By plugging this solution into (5.81) one obtains

F =
N3/2µ

3π
=
N3/24

√
2π

3k3/2

√
(k∆A1 −∆m)(k∆A2 −∆m)(k∆B1 + ∆m)(k∆B2 + ∆m) .

(5.85)

As expected from the discussion in section 5.2.3, for the U(N)×U(N) gauge theory

the free energy has one flat direction under which ∆Ai → ∆Ai+ δ̂, ∆Bi → ∆Bi− δ̂, and

∆m → ∆m + kδ̂, corresponding in the notation of section 5.2.3 to δ(1) = −δ(2) = δ̂/2.

This flat direction is due to the fact that the bifundamental fields as well as the

diagonal monopole operators T and T̃ are charged under the U(1) gauge symmetry

corresponding to the gauge field tr(A1µ−A2µ), so it is not meaningful to assign them

individual R-charges. Under this gauge symmetry, the operators A1 and A2 have

charge 1, B1 and B2 have charge −1, and the monopole operators T and T̃ have

charges k and −k, respectively. The gauge-invariant operators include for example

tr T̃ (Ai)
k and trT (Bi)

k with R-charges k∆Ai − ∆m and k∆Bi + ∆m, and these are

indeed the combinations that appear in the expression for F in eq. (5.85).

Regarding ∆m = 0 as a gauge choice, we can maximize (5.85) under the constraint

(5.80) that the R-charges of the Ai and Bi fields sum up to two. The maximum is

at ∆A1 = ∆A2 = ∆B1 = ∆B2 = 1/2, which are the correct R-charges for the N = 6

ABJM theory. The value of F at the maximum is

F =

√
2kπN3/2

3
, (5.86)

which, when combined with eq. (1.69), implies Vol(Y ) = π4/(3k), in agreement with

the fact that ABJM theory is dual to AdS4 × S7/Zk, the volume of S7 being π4/3.

A superpotential deformation of the schematic form tr(T̃A1)2 when k = 1 or

tr T̃A2
1 when k = 2 causes an RG flow to a new IR fixed point where the field A1 can

be integrated out. It was proposed in [30, 113] (see also [114]) that the holographic
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dual of this RG flow was constructed in [111], first as a flow in 4-d N = 8 gauged

supergravity from the maximally symmetric point to the U(1)R × SU(3)-invariant

extremum [112] of the gauged supergravity potential, and then uplifted to M-theory

as a flow from AdS4 × S7 to a warped product between AdS4 and a stretched and

squashed seven-sphere. (See also section 5.5.3 for another gauge theory realization of

the same holographic RG flow.)

Working in the gauge ∆m = 0, the superpotential deformation mentioned above

imposes in the IR the constraint ∆A1 = 1, so

F =
4
√

2kπN3/2

3

√
∆A2∆B1∆B2 . (5.87)

This expression should be maximized under the constraint (5.80) that ∆A2 + ∆B1 +

∆B2 = 1. By the standard inequality between the geometric and arithmetic mean,

the product of three numbers whose sum is kept fixed is maximized when all the

numbers are equal, so F has a maximum when ∆A2 = ∆B1 = ∆B2 = 1/3. In the IR

we therefore have

FIR =
4
√

2kπN3/2

9
√

3
=

4

3
√

3
FUV , (5.88)

where FUV is the free energy of the ABJM theory in eq. (5.86). As already discussed

in section 5.5.3, the ratio of FIR to FUV given above is what one expects from the

dual holographic RG flow of [111].

5.7 Flavoring the ABJM quiver

In this section we will analyze N = 2 theories that come from adding flavors to the

U(N)×U(N) N = 6 ABJM theory [29] at level k. In general, we could add four pairs

of bifundamental fields (q
(i)
j , q̃

(i)
j ) with i = 1, 2 and j = 1, 2, . . . , nai and (Q

(i)
j , Q̃

(i)
j )
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with i = 1, 2 and j = 1, 2, . . . , nbi, and we could couple these fields to the ABJM

theory (5.79) through the superpotential coupling

δW ∼ tr

[
na1∑
j=1

q
(1)
j A1q̃

(1)
j +

na2∑
j=1

q
(2)
j A2q̃

(2)
j +

nb1∑
j=1

Q
(1)
j B1Q̃

(1)
j +

nb2∑
j=1

Q
(2)
j B2Q̃

(2)
j

]
.

(5.89)

As far as the matrix model goes, these extra fields corresponds to adding

δF [ρ, δy] =
N3/2

2

∫
dx ρ |x|

[
2∑
i=1

(nai∆Ai + nbi∆Bi) +
δy

2π
(na1 + na2 − nb1 − nb2)

]
(5.90)

to the free energy functional for ABJM theory in eq. (5.81). The quiver diagram for

this theory is given in figure 5.4. It is straightforward to do the extremization of the

A1A2

U(N) U(N)

U(na1)

B1B2

U(nb2)

U(nb1)

U(na2)

Figure 5.4: The quiver diagram for the flavored theories corresponding to the super-
potential in equations (5.79) and (5.89).

free energy functional for arbitrary nai and nbi, but the resulting formulae are fairly

long, so we will just examine a few particular cases.
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5.7.1 An infinite class of flavored theories

The first particular case we examine is in some sense a generalization of the flavored

quivers we studied in section 5.5.1. Like in the models in that section, there are no

Chern-Simons terms and the number of arrows going out of any given node equals

the number of arrows going in:

na1 + na2 = nb1 + nb2 , k = 0 . (5.91)

The U(1) quantum corrected moduli space of these theories is given by the relation

T T̃ = Ana11 Ana22 Bnb1
1 Bnb2

2 in C6 together with a Kähler quotient acting with charges

(0, 0, 1, 1,−1,−1) on (T, T̃ , A1, A2, B1, B2) [98, 99]. The free energy is

F =
2πN3/2

3

√√√√ 2∏
i,j=1

(
∆Ai + ∆Bj

) [ 2∑
i=1

(nai∆Ai + nbi∆Bi)−
4∆2

m∑2
i=1 (nai∆Ai + nbi∆Bi)

]
.

(5.92)

In order to find the R-charges in the IR, this expression should be locally maximized

under the constraint (5.80). Clearly, the maximization over ∆m yields simply ∆m = 0,

so there is no asymmetry between the R-charges of the monopole operators T and T̃ ,

and the free energy as a function of ∆Ai and ∆Bi reduces to

F =
2πN3/2

3

√√√√ 2∏
i,j=1

(
∆Ai + ∆Bj

) 2∑
i=1

(nai∆Ai + nbi∆Bi) . (5.93)

In the U(N)×U(N) gauge theory, the free energy (5.93) is invariant under ∆Ai →

∆Ai + δ̂ and ∆Bi → ∆Bi − δ̂, corresponding to δ(1) = −δ(2) = δ̂/2 in the notation

of section 5.2.3. As discussed in section 5.2.3, to remove this flat direction one can

ungauge the gauge symmetry that rotates Ai and Bi by opposite phases and consider

instead a gauge theory with SU(N)×SU(N)×U(1) gauge group, where the remaining

193



U(1) comes from the diagonal U(1) in U(N) × U(N). The difference between the

SU(N)×SU(N)×U(1) gauge theory and the U(N)×U(N) one is that in the former

there is an extra constraint

∫
dx ρδy = 0 . (5.94)

Imposing this constraint removes the flat direction mentioned above. An explicit

calculation for the saddle point of the theories we are examining in this section gives

that eq. (5.94) is equivalent to

∆A1∆A2 −∆B1∆B2 = 0 . (5.95)

In the SU(N)×SU(N)×U(1) gauge theory one can therefore determine the R-charges

of the bifundamental fields uniquely by maximizing (5.93) under the constraints (5.80)

and (5.95).

There are two particular cases where the quantum corrected moduli space can be

expressed as a complete intersection and one can apply the methods of [92] to compute

the volume of the 7-d Sasaki-Einstein space Y . The first case is na1 = nb1 = 1 and

na2 = nb2 = 0, where the cone over Y can be described by the equation z1z2 = z3z4z5

in C5 [98]. In fact, we encountered this space in section 5.5.2 where we found that the

volume was Vol(Y ) = 9π4/64. One can indeed reproduce this volume by minimizing

(5.93) explicitly and using eq. (1.69).

Another particular case is na1 = na2 = nb1 = nb2 = 0, where the Calabi-Yau cone

over Y is the “cubic conifold” described as a complete intersection by the equations

z1z2 = z3z4 = z5z6 in C6. Eq. (16) of [92] with n = 4, d = 4, ~w = (1, 1, 1, 1, 1, 1)

(so w = 1 and |w| = 6) gives Vol(Y ) = π4/12. Indeed, extremizing (5.93) and using

(1.69) one can reproduce the volume of Y in this case too.
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5.7.2 M2-branes probing C× C

A quite non-trivial example where the bare monopole R-charge ∆m plays a crucial

role is the case na1 = 1 and na2 = nb1 = nb2 = 0 at CS level k = 1/2. The CS level is

a half-integer because in the IR there is an extra 1/2 shift in the CS level coming from

integrating out the fermions in the chiral multiplets q(1) and q̃(1), which are massive

at generic points on the moduli space. The U(1) quantum corrected moduli space is

C times the conifold C.

The U(N) × U(N) theory has a flat direction given by ∆Ai → ∆Ai + δ̂, ∆Bi →

∆Bi + δ̂, and ∆m → ∆m + δ̂/2, so the free energy should only be a function of

∆̂Ai ≡ ∆Ai − 2∆m , ∆̂Bi ≡ ∆Bi + 2∆m . (5.96)

Indeed, an explicit extremization of the free energy functional gives

F =
2
√

2πN3/2

3

√√√√∆̂A1

(
∆̂A2 + ∆̂B1

)(
∆̂A2 + ∆̂B2

)(
∆̂A1 + 2∆̂B1

)(
∆̂A2 + 2∆̂B2

)
4− ∆̂A1

,

(5.97)

where ∆̂Ai and ∆̂Bi satisfy the constraint ∆̂A1 + ∆̂A2 + ∆̂B1 + ∆̂B2 = 2 coming from

eq. (5.80). This expression is maximized for

∆̂A1 = 1 , ∆̂A2 =
1

2
, ∆̂B1 = ∆̂B2 =

1

4
, (5.98)

yielding

F =

√
3πN3/2

2
√

2
. (5.99)

From (1.69) one obtains that the Sasaki-Einstein base Y of C×C has volume Vol(Y ) =
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16π4/81, as can be checked by an explicit computation using the metric or using toric

geometry techniques.

In the SU(N) × SU(N) × U(1) theory the flat direction in F is no longer there

because one imposes as an additional constraint that
∫
dx ρδy = 0. From an explicit

computation of the saddle point, one finds that this constraint reduces to

∆m =
2∆̂B1∆̂B2 − ∆̂A1∆̂A2

2
(

4− ∆̂A1

) . (5.100)

Using (5.98) one obtains

∆m = − 1

16
, ∆A1 =

7

8
, ∆A2 = ∆B1 = ∆B2 =

3

8
. (5.101)

5.7.3 Dual to AdS4 ×Q1,1,1/Zn

Another example is the theory that was proposed in [98, 99] as a dual of AdS4 ×

Q1,1,1/Zn. This theory has na1 = na2 = n, nb1 = nb2 = 0, and vanishing CS levels

k = 0. Obtaining an expression for the free energy as a function of arbitrary R-

charges ∆Ai and ∆Bi is fairly involved, so using the symmetries of the quiver let’s

just focus on the subspace where

∆Ai = ∆ , ∆Bi = 1−∆ , (5.102)

in agreement with the constraint (5.80), and allow an arbitrary bare monopole R-

charge ∆m. The extremization of the free energy functional gives

F =
4πN3/2

3
√
n

|n2 −∆2
m|√

3n2 −∆2
m

(5.103)
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as well as

∫
dx ρδy = π

[
4n2

3n2 −∆2
m

− 2∆

]
. (5.104)

Notice that in this case the free energy F is independent of ∆, because the fact

that k = 0 implies that the flat direction discussed in section 5.2.3 corresponds to

∆→ ∆ + δ̂ (where δ̂ = δ(1) = −δ(2)) leaving ∆m invariant. Maximizing (5.103) with

respect to ∆m one obtains ∆m = 0 and

F =
4π
√
nN3/2

3
√

3
, (5.105)

in agreement with the fact that the volume of Y = Q1,1,1/Zn is Vol(Y ) = π4/(8n).

As before, for the U(N)×U(N) theory it doesn’t make sense to assign any meaning

to ∆ because one cannot construct a gauge-invariant operator just from the Ai fields,

for example. In the SU(N)×SU(N)×U(1) theory, on the other hand, the condition∫
dx ρδy = 0 combined with (5.104) and ∆m = 0 implies ∆ = 2/3. It follows that

the baryonic operators constructed out the Bi, such as B(B1), have dimensions N/3

in agreement with the dimension of wrapped M5-branes [107].

5.8 Discussion

This chapter contained calculations of the three-sphere free energy F for a variety of

N = 2 superconformal gauge theories with large numbers of colors. The localization

of the free energy for such theories, which allows for varying the R-charges of the

fields, was carried out in [14,94], and we used their results to write down and solve a

variety of large N matrix models with the method introduced in [46]. The subsequent

maximization of F over the space of trial R-charges consistent with the marginality of

the superpotential fixes them and the value of F . The results we find are in complete
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agreement with the conjectured dual AdS4×Y M-theory backgrounds. We have also

studied various RG flows and have found that F decreases in all of them. F is also

constant along exactly marginal directions. Thus, F seems to be a good candidate to

serve as a 3-d analogue of the a-coefficient in the 4-d Weyl anomaly. This has led us

to propose the F -theorem in three dimensions, analogous to the a-theorem in 4-d.

The reader will note that none of the models solved in this paper include chiral bi-

fundamental fields. Instead, we have relied on models with non-chiral bifundamentals,

such as the ABJM model, which may be coupled to a rather general set of fundamental

fields, either chiral or non-chiral. Constructions of this kind were used in [98, 99] to

conjecture gauge theories dual to a variety of N = 2 M-theory backgrounds, including

such well-known solutions as AdS4 ×Q1,1,1 and AdS4 × V5,2. These novel conjectures

rely heavily on non-perturbative effects associated with monopole operators: in fact,

in these theories the monopole operators play a geometrical role on an equal footing

with the fields in the lagrangian. Our work, as well as the superconformal index

calculation for the flavored AdS4 ×Q1,1,1 model [115], provides rather intricate tests

of these conjectures.

The earlier and perhaps better known conjectures for the gauge theories dual to

AdS4 ×M1,1,1, AdS4 × Q1,1,1 and AdS4 × Q2,2,2 [32, 85, 88, 89, 116, 117] have instead

involved chiral bifundamental fields. The rules derived in [14, 94] seem to apply to

these models as well, and we have attempted to study these matrix models both

numerically and analytically. Unfortunately, the essential phenomenon in the matrix

models exhibiting the N3/2 scaling of the free energy, namely the cancellation of long

range forces between the eigenvalues, cannot be achieved in the theories with chiral

bifundamentals. As a result, the range of the eigenvalues grows as N , rather than
√
N , and the free energy scales as N2. The latter behavior is in obvious contradiction

with the M-theory result (1.69). As N increases, the eigenvalue distribution does not

become dense; instead, the gaps do not shrink as N is increased. This leads to an
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entirely different structure from what we have observed in the various matrix models

that do produce the desired N3/2 scaling of the free energy. The question whether

the matrix models with chiral bifundamentals can be “repaired” is an interesting one

and we hope it will be investigated further.

More generally, we find it exciting that the F -theorem for the three-sphere free

energy might hold. Such a theorem should be applicable to all 3-d theories, either

supersymmetric or not. Further tests of these ideas, as well as attempts at a general

field theoretic proof, would be very useful at this stage.
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Chapter 6

Conclusions

The first half of this thesis explored connections between black hole physics and

superconductivity. The spontaneous breaking of a gauge symmetry by a black hole

relied on the fact that AdS space acts like a box in preventing particles with charge

of the same sign as the black hole horizon from escaping out to infinity. The only

option for these particles is to condense somewhere outside of the black hole horizon,

leading to the spontaneous breaking of a global symmetry in the dual field theory

interpretation. The symmetry broken state is a superfluid. In Chapters 2 and 3

we computed various transport coefficients related to the phase transition to the

superfluid state, and in Chapter 3 we demonstrated analytically that in AdS5 this

phase transition is of second order.

One desirable follow-up to the first half of this thesis would be to understand the

physics of the superconducting black holes, or more generally of the gravitational

systems used in modeling phenomena encountered in condensed matter physics, in

more controlled examples. Over the past few years there have been attempts at

embedding the more phenomenological models given by effective actions in AdS into

string theory and M-theory. For example: the Abelian Higgs model was embedded

into type IIB supergravity in [118] and into 11-d supergravity in [119, 120] (see also

200



[121]); the p-wave model was embedded using D-branes in [122,123]; there have been

attempts at looking for Fermi surfaces in string and M-theory examples [124–126];

and constructions exhibiting quantum critical behavior [104, 127]. One area that is

still unexplored, perhaps because of an insufficient understanding of the more formal

aspects of the gauge/gravity duality in that case, relates to higher-spin gauge theories

[128–131], which are conjectured to be dual to non-supersymmetric field theories like

the critical O(N) model [132] (see [133, 134] for tests of this conjecture). Theories

based on the critical O(N) model might in some sense be closer to the models studied

in the condensed matter literature than the string theory constructions mentioned

above, mainly because they are not supersymmetric.

The more general topic of using AdS/CFT to extract transport coefficients has

been a recurring theme in many papers over the past ten years, starting with [71].

The computation of some of these transport coefficients is similar to the computa-

tions of absorption coefficients by black branes from more than ten years ago—see,

for example, [135–137]. A better understanding of the relation between these two

computations would be a worthwhile goal.

The second half of this thesis contained computations of the free energy on S3

of many N ≥ 2 field theories with M-theory dual, with the aim of testing the var-

ious AdS4/CFT3 that have been proposed in recent years. Quite remarkably, these

computations also reproduce the N3/2 scaling of the number of degrees of freedom

on coincident M2-branes. Even though the N3/2 scaling at large N comes out of the

field theory computation, this thesis leaves unanswered the question of whether there

is any intuition behind this scaling. The recent papers [138, 139] relate conjecturally

the saddle-point eigenvalue distributions to numbers of operators in the field theory,

suggesting that all eigenvalues whose real parts are between x and x + dx describe

properties of just a certain group of chiral operators. A proof of this result could lead

to a constructive proof of AdS/CFT.
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More generally, much of the recent effort in using localization to compute field

theory quantities protected by supersymmetry has been focused on field theories in

three and four dimensions only. An obvious follow-up is to extend these computations

to theories in higher numbers of dimensions. Perhaps one can learn new things about

theories on Dp-branes. Perhaps one can observe the N3 scaling of the number of

degrees of freedom on N coincident M5-branes.

The free energy F of the Euclidean theory on S3 turned out to be a good measure

of the number of degrees of freedom for supersymmetric theories, as we have seen

in Chapter 5 in a few examples that this quantity decreases along RG flow (see

also [16, 17]). This property was called “the F -theorem.” Recently, it was noticed

in [18] that the F -theorem also holds for very simple non-supersymmetric RG flows.

The possibility of the F -theorem being true for all three-dimensional field theories

is tantalizing, as this result would provide strong constraints on possible RG flows.

The relation between F and other quantities, such as the equivalence noticed in [21]

between F and the entanglement entropy, is worth exploring in more detail.
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