
Higher-Dimensional Theories with continuous or
fuzzy coset spaces as extra dimensions

G. Zoupanos∗, D. Gavriil†, G. Manolakos‡

Physics Department, National Technical University,
Zografou Campus, GR-15780 Athens, Greece

Abstract

We review the Coset Space Dimensional Reduction (CSDR) scheme and the best
model constructed so far. Then we present some details of the CSDR programme,
in an alternate version, in which the extra dimensions are considered to be fuzzy.
Specifically, we present a four-dimensional N = 4 SYM theory, orbifolded by Z3,
which mimics the behaviour of a dimensionally reduced N = 1, ten-dimensional
gauge theory over a set of fuzzy spheres at intermediate high scales. This leads to
the trinification GUT SU(3)3 at slightly lower, which in turn can be spontaneously
broken to the MSSM in low scales.

1. Introduction

Scientists have set in high priority the aspect of unification of the funda-
mental forces. Appealing approaches are the ones that support the exis-
tence of extra dimensions. A very consistent framework in the unification
of all forces supporting such a scenario is Superstring theories [1], with
most promising the Heterotic string [2] due to the connections to the low-
energy physics. Another remarkable framework for the unification attempt
was employed, a few years before the discovery of the Heterotic string, that
is the dimensional reduction of higher-dimensional gauge theories. This
field was pioneered by Forgacs and Manton with studies on Coset Space
Dimensional Reduction (CSDR) [3, 4, 5] and the Scherk-Schwarz group
manifold reduction [8]. In these two approaches, a starting gauge theory
governs the regime of higher dimensions, where gauge-Higgs unification
is achieved, leading to a four-dimensional theory in which the gauge and
Higgs fields are the surviving components of the initial fields in high di-
mensions. In the CSDR scheme, fermions are included in the initial gauge
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theory, resulting to Yukawa couplings in four dimensions. The initial the-
ory is required to be N = 1 supersymmetric, i.e. gauge and fermion fields
belong to the same vector supermultiplet, relating gauge and fermion fields
that have been introduced. Resulting with chiral theories in four dimen-
sions [9, 10] is regarded as a notable achievement.

In order to preserve an N = 1 supersymmetry after the dimensional
reduction, Calabi-Yau (CY) spaces are considered as suitable compact
internal manifolds [11]. However, the moduli stabilization problem that
arose, led to a wider class of internal spaces, called manifolds with SU(3)-
structure. Specifically, here we consider an interesting class of SU(3)-
structure manifolds, called nearly-Kähler manifolds [12, 14, 15], also see
refs from [13].

The homogeneous nearly-Kähler manifolds in six dimensions are the
three non-symmetric coset spacesG2/SU(3), Sp(4)/(SU(2)×U(1))non−max
and SU(3)/U(1) × U(1) and the group manifold SU(2) × SU(2) [15] (see
also [14, 12]). It is worth noting that in four-dimensional theories resulting
from dimensional reduction of a ten-dimensional, N = 1 supersymmetric
gauge theory over non-symmetric coset spaces, supersymmetry breaking
terms are automatically included [16], [17], contrary to CY spaces.

Another promising framework for describing physics at Planck scale
is Non-commutative geometry [18] - [38]. Non-commutative geometry was
considered as an appropriate framework for regularizing quantum field
theories, or even better, building finite ones. However, constructing quan-
tum field theories on Non-commutative spaces is much more difficult than
expected and , furthermore, problematic ultraviolet features have emerged
[21] (see also [22] and [23]). Nevertheless, this framework is appropriate
to accommodate particle models with Non-commutative gauge theory [24]
(see also [25, 26, 27]).

Remarkably, the two frameworks came closer by realizing that in M-
theory and "open string theory", in the presence of a non-vanishing back-
ground antisymmetric field, the effective physics on D-branes can be de-
scribed by an Non-commutative gauge theory [28, 29]. Thus, Non-commutative
field theories emerge as effective description of string dynamics. Moreover,
major contribution in Non-commutative geometry was made by Seiberg
and Witten [29]. Their study triggered notable developments [32, 31] and ,
based on them, Non-commutative versions of SM were built [33]. Unfortu-
nately, those models fail to troubleshoot the main problem of the SM, that
is the presence of numerous free parameters, due to the ad hoc consider-
ation of Higgs and Yukawa sectors. Finally, an interesting programme has
been suggested and investigated [34, 35, 36, 37, 38] considering the extra
dimensions as Non-commutative. This programme overcomes the ultravio-
let/infrared problems of theories defined in Non-commutative spaces in an
obvious way offering the new possibility to start with an abelian gauge the-
ory defined on the higher-dimensional space and result with a non-abelian
one in four dimensions, after dimensional reduction. Additionally, another
spectacular feature of this programme is that theories constructed on Non-
commutative (fuzzy) manifolds as approximations of the continuous ones,
are renormalizable contrary to all known higher-dimensional theories. The
latter property was examined from the four-dimensional point of view, too,
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using spontaneous symmetry breakings, which mimic the results of the
dimensional reduction of a higher-dimensional gauge theory with fuzzy ex-
tra dimensions. Finally, in this framework, chiral realistic theories have
been constructed, too.

2. The Coset Space Dimensional Reduction

The CSDR procedure demands that the field dependence on the extra co-
ordinates is such that the Lagrangian is independent of them. An elegant
way to fulfill the above requirement is to allow for a non-trivial dependence
on them, in the sense that a symmetry transformation by an element of
the isometry group S of the space formed by the extra dimensions B corre-
sponds to a gauge transformation. Along this framework, a gauge invariant
Lagrangian will be independent of the extra coordinates. The above mech-
anism is the basis of the CSDR scheme [3, 4, 5], which assumes that B is
a compact coset space, S/R.

In the CSDR scheme one considers a Yang-Mills-Dirac Lagrangian, with
gauge group G, defined on a D-dimensional spacetime MD, with metric
gMN , which is compactified to M4 × S/R, with S/R a coset space. We
assume the following form for the metric

gMN =

(
ηµν 0
0 −gab

)
, (1)

where ηµν = diag(1,−1,−1,−1) and gab is the coset space metric. The
requirement that transformations of the fields under the action of the
symmetry group of S/R are compensated by gauge transformations, im-
poses certain constraints on the fields of our theory. The analysis of these
constraints provides us with the four-dimensional unconstrained fields,
as well as with the gauge invariance that remains in the theory after di-
mensional reduction. Therefore, a potential unification of all low energy
interactions, gauge, Yukawa and Higgs is achieved.

It is worth noting that the dimensional reduction of higher-dimensional
theories results in effective field theories that might contain also towers of
massive higher harmonic (Kaluza-Klein) excitations. The behaviour of the
running couplings is altered from logarithmic to power [42] by the quantum
level contributions of these excitations, resulting in a remarkable change
of the traditional unification picture [43]. Using the continuous Wilson
renormalization group technique [44], which can be formulated in any
number of space-time dimensions, higher-dimensional theories have also
been studied at the quantum level, with results in agreement with the
treatment involving massive Kaluza-Klein excitations.

2.1. Reduction of a D-dimensional Yang-Mills-Dirac Lagrangian.

Considering a Lie group S and its subgroup R we define a d-dimensional
coset S/R on which the extra dimensions ofM4×S/R are compactified (M4

is our space-time). S acts as a symmetry group of the extra coordinates.
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According to the CSDR scheme, an S-transformation of the extra d coordi-
nates is a gauge transformation of the fields that are defined on M4×S/R,
thus a gauge invariant Lagrangian written on this space is independent of
the extra coordinates. Fields defined in this way are called symmetric. The
d-dimensional gauge field AM (x, y) is split into its components Aµ(x, y)
and Aα(x, y), corresponding to M4 and S/R respectively.

Let us now consider a Yang-Mills-Dirac theory with gauge group G
defined on a manifold MD which, as stated, will be compactified to M4 ×
S/R, D = 4 + d, d = dimS − dimR. The action is

A =

∫
d4xddy

√
−g
[
−1

4
Tr(FMNFKΛ)g

MKgNΛ +
i

2
ψ̄ΓMDMψ

]
, (2)

where DM = ∂M − θM −AM , with θM = 1
2θMNΛΣ

NΛ, the spin-connection
of MD, and FMN = ∂MAN − ∂NAM − [AM , AN ], where M,N run over
the D-dimensional space and AM and ψ are D-dimensional symmetric
fields. The fermion fields can be accommodated in any representation F
of G, unless a further symmetry, such as supersymmetry, is required. If
we denote by ξαA, (A = 1, ..., dimS and α = dimR + 1, ..., dimS the curved
index) the Killing vectors which generate the symmetries of S/R and byWA
the compensating gauge transformation associated with ξA, the following
constraint equations for scalar ϕ, vector Aα and spinor ψ fields on S/R,
are expressing the requirement that transformations of the fields under
the action of S/R are compensated by gauge transformations

δAϕ = ξαA∂αϕ = D(WA)ϕ, (3)

δAAα = ξβA∂βAα + ∂αξ
β
AAβ = ∂αWA − [WA, Aα], (4)

δAψ = ξαA∂αψ − 1

2
GAbcΣ

bcψ = D(WA)ψ , (5)

where WA depend only on internal coordinates y and D(WA) represents a
gauge transformation in the appropriate representation of the fields.

Regarding the constraints (3)-(5), they provide us [3, 6, 4] with the
four-dimensional unconstrained fields as well as with the gauge invariance
that remains in the theory after dimensional reduction. The components
Aµ(x, y) of the initial gauge field AM (x, y) become, after dimensional re-
duction, the four dimensional gauge fields and they are independent of y.
Additionally, they have to commute with the elements of the RG, subgroup
of G, meaning that the four-dimensional gauge group H is the centralizer
of R in G, H = CG(RG). We denote by ϕα(x, y) the Aα(x, y) components
of AM (x, y). They become scalars in four dimensions and they transform
under R as a vector υ, i.e.

S ⊃ R (6)
adjS =adjR+ υ. (7)
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Moreover, the ϕα(x, y) fields act as an interwining operators connecting
induced representations of R acting on G and S/R. According to Schur’s
lemma, the previous expression implies that the transformation properties
of the fields ϕα(x, y) under H can be found, if we decompose the adjoint
representation of G according to the embedding:

G ⊃RG ×H (8)

adjG = (adjR, 1)+(1, adjH) +
∑

(ri, hi). (9)

Then, if υ =
∑
si, where each si is an irreducible representation of R,

there survives a Higgs multiplet transforming under the representation hi
of H and all other scalar fields vanish.

Regarding the fermion fields [4, 45, 9, 10] we proceed along similar
lines as in the case of scalars. It turns out that the spinor fields act as in-
terwining operators connecting induced representations of R in SO(d) and
G. In order to obtain the H representation content of the four-dimensional
fermions, we have to decompose the representation F of the initial gauge
group, in which the fermions are assigned in higher dimensions, under
RG ×H, i.e.

F =
∑

(ti, hi), (10)

and the spinor of SO(d) under R

σd =
∑

σj . (11)

Then for each pair (ri, σi), where ri and σi are identical irreducible rep-
resentations of R there is an hi multiplet of spinor fields in the four-
dimensional theory. Regarding the possibility of obtaining chiral fermions
in the effective theory, we notice that if we start with Dirac fermions in
higher dimensions it is impossible to obtain chiral fermions in four di-
mensions. Further requirements must be considered in order to achieve
chiral fermions in the resulting theory. Imposing the Weyl condition in
D dimensions, we obtain two sets of Weyl fermions with the same quan-
tum numbers under H. Although this is already a chiral theory, we can
go further and try to impose Majorana condition in order to eliminate the
doubling of the fermionic spectrum. Majorana and Weyl conditions are
compatible in D = 4n+ 2 which is the case of our interest.

The allowed embeddings of R into G are restricted by the condition
that an anomaly free theory in higher dimensions must fulfill, in order
to obtain anomaly free theories in four dimensions after the dimensional
reduction [46]. According to that condition, the allowed embeddings are
related with the embedding of R into SO(6), the tangent space of the six-
dimensional cosets we consider [4, 40, 7]. According to ref. [7] the anomaly
cancelation condition is automatically satisfied for the choice of embedding
E8 ⊃ SO(6) ⊃ R, which we adopt here.
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2.2. Dimensional Reduction of E8 over SU(3)/U(1)× U(1)

In this subsection we summarize a few results concerning the dimensional
reduction of the N = 1, E8 SYM over SU(3)/U(1) × U(1) [39]. The four-
dimensional gauge group will be provided by the decomposition ofE8 under
R = U(1)× U(1) suggested by

E8 ⊃ E6 × SU(3) ⊃ E6 × U(1)A × U(1)B . (12)

According to the rules of the previous section, the surviving gauge group
in four dimensions is

H = CE8(U(1)A × U(1)B) = E6 × U(1)A × U(1)B . (13)

The surviving scalars and fermions in four dimensions are provided by
the explicit decomposition of the adjoint representation of E8, 248 under
U(1)A × U(1)B. Applying the CSDR rules we find that the resulting four-
dimensional theory is an N = 1, E6 GUT with U(1)A, U(1)B as global
symmetries. The potential is determined by the decomposition of the spe-
cific S = SU(3) under R = U(1) × U(1) studied in [17]. The D-terms
can be constructed and the F-terms are obtained by the superpotential.
The rest of the terms in the potential could be interpreted as soft scalar
masses and trilinear soft terms. Finally, the gaugino obtains a mass and
receives contribution from the torsion contrary to the rest soft supersym-
metry breaking terms.

2.3. SU(3)3 due to Wilson flux

According to the previous section, the E6 × U(1)× U(1) group is the sur-
viving gauge group of the initial’s E8 group dimensional reduction. The
surviving scalars in the four-dimensional theory, being in the fundamental
representation of the gauge group are not able to provide the appropri-
ate symmetry breaking towards the standard model. In order to reduce
further the gauge symmetry, one has to apply the Wilson flux breaking
mechanism [49, 48, 47]. Application of this mechanism imposes further
constraints in the scheme.

In the case of our interest, instead of considering the simply connected
manifold B0, where B0 is the coset S/R, we consider the multiply con-
nected manifold B = B0/F

S/R with FS/R a freely acting discrete symme-
try of B0. The manifold B is multiply connected due to the presence of
the symmetry FS/R. For each element g ∈ FS/R, we pick up an element
Ug in H, which can be represented as the Wilson loop. If the manifold is
simply connected, then the vanishing of the field strength ensures that we
can set the gauge field to zero by a gauge transformation. In the case of a
multiply connected manifold, although the vacuum field strength vanishes
everywhere, Ug cannot be set to one and the gauge field cannot be set to
zero. Therefore, a homomorphism of FS/R into H is induced with image
TH , which is the subgroup of H generated by the element Ug.

Concerning the gauge symmetry that is preserved by the vacuum, we
consider the following. The vacuum has Aa

µ = 0 and we represent a gauge
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transformation by a space-dependent matrix V (x) of H. In order to keep
Aa

µ = 0 and leave the vacuum invariant, V (x) must be a constant. More-
over, the matrix V (x) is consistent with the action of the elements Ug only
if [V,Ug] = 0 for all g ∈ FS/R. Therefore, the unbroken subgroup of H is
the centralizer of TH in H. Respectively, the surviving matter fields are
those that are invariant under the diagonal sum FS/R ⊕ TH . The dis-
crete symmetries FS/R, which act freely on coset spaces B0 = S/R are
the center of S, Z(S) and W = WS/WR , where WS and WR are the
Weyl groups of S and R, respectively. In the case of our interest, where
B0 = SU(3)/U(1) × U(1), we have FS/R = Z3 ⊆ W . After the Z3 projec-
tion, the gauge group E6 breaks to SU(3)C × SU(3)L × SU(3)R, (the first
of the SU(3) factors is the Standard Model colour gauge group). More-
over, one can obtain three fermion generations by introducing non-trivial
monopole charges in the U(1)’s in R.

In ref [14] it was shown that the scalar potential leads to the proper
hierarchy of spontaneous breaking. Using the appropriate vev’s, a first
spontaneous symmetry breaking leads to the MSSM [50], while the elec-
troweak breaking proceeds by a second one [51]. It is worth noting that
before the EW symmetry breaking, supersymmetry is broken by both D-
terms and F-terms, in addition to its breaking by the soft terms.

We plan to examine in detail the phenomenological consequences of the
resulting model, taking also into account the massive Kaluza-Klein modes.

3. Fuzzy spaces and fuzzy dimensional reduction

In order to continue our analysis, it is fundamental to introduce the con-
cept of the fuzzy sphere [41]. The appropriate way to do so, is to initially
consider the ordinary sphere S2, on which the algebra of functions is com-
mutative, and then define the fuzzy sphere as its extension.

It is known that the algebra of functions on S2 is generated by the
spherical harmonics, Ylm, i.e. any arbitrary function on S2 can be ex-
panded in terms of Ylm, since they form a complete and orthogonal set of
functions. In the fuzzy case (the most typical case of Non-commutative
geometry), contrary to the non-fuzzy sphere, the integer number l does
have an upper limit. So, the algebra of functions on the fuzzy sphere is
truncated to finite dimensional - naturally considered as a matrix alge-
bra. Therefore, it proves that it is consistent to define the fuzzy sphere1

as a matrix approximation of the non-fuzzy sphere and that the trunca-
tion of the algebra of the functions2 is responsible for the deprivation of
commutativity.

Given that we aim at studying gauge theory on fuzzy sphere, the next
-obvious- step is to examine the behaviour of the gauge fields on the fuzzy
sphere. So, we consider a field ϕ(Xa) on the fuzzy sphere, with Xa being

1The geometry of other (higher-dimensional) fuzzy spaces (e.g. fuzzy CPM ) are exam-
ined in [52, 53]

2Besides of functions on the fuzzy sphere, spinors can be examined as well [34]
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the covariant coordinates [54] and then we take an infinitesimal transfor-
mation of this field

δϕ(X) = λ(X)ϕ(X) , (14)

where λ(X) is the parameter of the gauge transformation. Under the above
gauge transformation it holds that δXa = 0, ensuring the invariance of the
covariant coordinates. Therefore, in the Non-commutative case, when left
multiplying by a coordinate, we obtain

δ(Xaϕ) = Xaλ(X)ϕ , (15)

and in general, it holds that Xaλ(X)ϕ ̸= λ(X)Xaϕ. So, according to the
non-fuzzy gauge theory, one needs to introduce the covariant coordinates
phia, in order to obtain δ(ϕaϕ) = λϕaϕ, with δ(ϕa) = [λ, ϕa]. Also, it is
set that ϕa ≡ Xa + Aa, where Aa is the gauge potential, concluding in
the equivalence that ϕa is the analogue of the covariant derivative of the
original gauge theories. From the above equations, the transformation of
Aa is

δAa = −[Xa, λ] + [λ,Aa] , (16)

encouraging the identification of Aa with a gauge field.

4. Fuzzy CSDR

Attempts to reproduce the dominant gauge theory that describes physics
in low energies are based on the above structure. More specifically, we
consider a Non-commutative gauge theory on the M4 × (S/R)F

3 space,
then we perform dimensional reduction and in the end we result with
a four dimensional theory. Unfortunately, realistic results did not arise
using this method, therefore, in order to obtain a more appropriate gauge
theory in four dimensions, a non trivial dimensional reduction had to be
applied, namely the fuzzy extension of the CSDR scheme.

The factor that differentiates the fuzzy CSDR from the original one, is
the consideration of the extra dimensions as fuzzy coset spaces [34] (see
also [55]), meaning that the group S acts now on the fuzzy coset (S/R)F ,
with the fields remaining invariant under an infinitesimal transformation
of S - up to an infinitesimal gauge transformation. Specifically, the fuzzy
coset we make use is the fuzzy sphere, (SU(2)/U(1))F , therefore scalar and
gauge fields should be left invariant under an infinitesimal transformation
of SU(2) on the fuzzy sphere, up to an infinitesimal gauge transformation

Lbϕ = δWb
=Wbϕ (17)

LbA = δWb
A = −DWb , (18)

whereA is the gauge potential andWb is an antihermitian gauge parameter
which depends on Xa. Therefore, Wb can be written as

Wb =W I
b T I , I = 1, 2, . . . , P 2 , (19)

3(S/R)F is a fuzzy coset e.g. the fuzzy sphere.
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where T I are the hermitian generators of the gauge group of the theory
U(P ) and (W I

b )
† = −W I

b . The CSDR constraints are converted in the form

[ωb, Aµ] = 0 (20)
Cbdeϕ

e = [ωb, ϕd] , (21)

where ϕa ≡ Xa + Aa -as mentioned above- and ωa ≡ Xa − Wa. Since
Lie derivatives respect the su(2) commutation relations, one is led to the
consistency condition

[ωa, ωb] = Cc
abωc , (22)

where ωa transforms as ωa → ω′
a = gωag

−1. As for the spinors, a quite
similar procedure that is followed [34].

As an application of the fuzzy CSDR scheme, we present the example,
where the gauge group is U(1) and the fuzzy coset is the fuzzy sphere. The
ωa are N ×N antihermitian matrices, therefore they can be considered as
elements of U(N). Though, the consistency relation, (22), must hold, that
is the ωa obeys the commutation relation of the SU(2) algebra. Thus, the
SU(2) algebra has to be embedded into the U(1) algebra. So, let T h, h =
1 . . . , N2 be the generators of the U(N) in the fundamental representation,
and make use of the convention h(a, u), a = 1, 2, 3, u = 4, 5, . . . , N2, with
the generators T a satisfying the SU(2) algebra [T a, T b] = Cab

c T
c. Obviously

the embedding is achieved with the identification ωa = Ta.
Let us now examine and give interpretations of the two constraints (20),

(21). The first one suggests that the gauge group of the four-dimensional
theory is the centralizer of the image of SU(2) in U(N), that is

K = CU(N)(SU(2)) = SU(N − 2)× U(1)× U(1) . (23)

Therefore, there is an arbitrariness on the dependance of Aµ(x,X) on x,
but as for X, they depend on them meaning that the latter are valued in
K instead of U(N). Rephrasing, the 4-dimensional gauge potential that
one is led is valued in K. The second constraint is satisfied after choosing
ϕa = rϕ(x)ωa. This means that the remaining unconstrained degrees of
freedom are related to the scalar field ϕ(x), which belongs to the trivial
representation of the 4-dimensional gauge group K.

Summing up the above procedure, one starts with a gauge theory which
is described by a U(1) on M4 × S2

N . The consistency condition is satisfied
by embedding the SU(2) into U(N)4. Then, imposing the two CSDR con-
straints, the four-dimensional group is obtained and the scalar fields that
do survive the reduction procedure arise.

Let us now proceed with listing the results of the above procedure, for
the fermionic case. The extended analysis [34] proves that the appropriate
embedding is S ⊂ SO(dimS), which is achieved by Ta = 1

2CabcΓ
bc, which

respects the SU(2) commutation relation. Therefore, ψ is an interwining
4Instead of embedding the SU(2) into the fundamental representation of U(N), one

could have used other representations, too [41]
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operator between the representations of S and SO(dimS). According to
the commutative case [4], the surviving fermions in four-dimensional the-
ory arise by decomposing the adjoint representation of U(NP ) under the
product SU(NP ) ×K, that is

U(NP ) ⊃ SU(NP ) ×K , adjU(NP ) =
∑
i

(si, ki) . (24)

Moreover, the decomposition of the spinorial representation σ of SO(dimS)
under S is

SO(dimS) ⊃ S , σ =
∑
e

σe . (25)

Therefore, in case that the two irreducible representations si, σe are iden-
tical, the fermions that survive (4-dimensional spinors) and are present in
the four-dimensional theory, belong to the ki representation of K.

Ending this section, it is important to compare the ordinary higher-
dimensional theory M4 × (S/R), to the fuzzy one, M4 × (S/R)F . Both
theories have the same isometries - fuzziness does not affect them -, i.e.
SO(1, 3) × SO(3). In addition, the dimensionality of the gauge couplings
defined on the two spaces is the same. On the other side, they present
a very striking difference: Non-commutative higher-dimensional theory is
the only one that is renormalizable5. Moreover, a U(1) gauge group defined
on the M4 × (S/R)F space, is appropriate in order to end up with a non-
abelian four-dimensional theory 6.

5. Orbifolds and fuzzy extra dimensions

The recovering of chiral four-dimensional theories starting from higher-
dimensional theories with fuzzy extra dimensions was the motivation of the
introduction of the orbifold structure, similar to the one in [56]. The orb-
ifold procedure offers an alternative way to obtain N = 1 four-dimensional
models after reducing a higher-dimensional theory on appropriate man-
ifolds, e.g. Calabi-Yau [57] or SU(3) structured ones [12, 58]. Duality
between four-dimensional N = 4, U(N) SYM theory and Type IIB string
theory onAdS5×S5 [59], motivated the authors of [56] to proceed to the ap-
plication of orbifold techniques - similar to [60, 61] - in order to break some
of the four supersymmetries. Moreover, the initial gauge group, SU(3N),
that is realized on 3N D3 branes7, breaks to SU(N)3 with fermions being
accommodated into its chiral representations.

The concept of deconstructing dimensions [62], motivated the idea to
reverse the above procedure [35, 36, 37] for further justification of the

5Meaning that the divergencies are eliminated by a finite number of counter-terms.
6Technically, this is possible because N × N matrices could be decomposed on the

U(N) generators.
7This is point where the two different frameworks (superstring theories and Non-

commutative geometry) that aim at unification meet, i.e. Non-commutative gauge theory
can describe effective physics on D-branes.
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renormalizability of the theory and construction of chiral models in theo-
ries arising from the framework of fuzzy extra dimensions. Reversing the
procedure gives hope that consideration of the initial abelian gauge the-
ory as a higher-dimensional one is not necessary, instead the non-abelian
gauge theory could emerge from fluctuations of the coordinates [63]. Re-
alizing the last consideration, one has to start with a four-dimensional
gauge theory, including an appropriate scalar spectrum and a suitable po-
tential producing vacua that could be interpreted as dynamically generated
fuzzy extra dimensions including, at the same time, a finite Kaluza-Klein
tower of massive modes. Also, although in such models the inclusion of
chiral fermions is preferred, the best one achieved so far includes mirror
fermions8 [36, 37].

In this review, the above sketch is realized performing a dimensional re-
duction on an orbifold [65, 64]. More specifically, we examine the spectrum
of the surviving fields and the superpotential of the projected theory, after
the application of Z3 orbifold projection of the N = 4 SYM theory [66]. In
our case, this theory is an SU(3N) and the particle content is one SU(3N)
gauge supermultiplet and three adjoint chiral supermultiplets. Their com-
ponent fields are the gauge bosons, six adjoint real scalars and four adjoint
Weyl fermions. The scalars and Weyl fermions transform under represen-
tations of the SU(4)R symmetry of the theory - 6, 4 respectively. That is
the reason why - in order to introduce orbifolds - the discrete group Z3
must be included as a subgroup of SU(4)R. Although there are more than
one options, the appropriate one is to embed the discrete group into the
SU(3) subgroup of SU(4)R. The suitability of this choice lies into the fact
that it is the only one that leads to the desired N = 1 supersymmetric
models [56] (with U(1)R R-symmetry). Since the particles that consist the
spectrum of the theory belong to different representations of SU(4)R, it
is expected that Z3 will act non-trivially on them. In the case of gauge
and gaugino fields, the action of Z3 is trivial, since they are singlets un-
der SU(4)R. On the other hand, scalars and fermions will transform non
trivially under the above action. Specifically, as far as the matter fields is
concerned, since they are not invariant under a gauge transformation, Z3
acts on their gauge indices, too. Therefore, the orbifold filters this way the
particle spectrum and the derived theory contains the particles which are
invariant under the combined Z3 action on both the geometric9 and gauge
indices [61].

So - after the orbifold projection - the gauge group of the initial the-
ory breaks down to the group H = SU(N) × SU(N) × SU(N) with both
scalar and fermionic fields transforming under the same representation
3 ·
(
(N, N̄, 1) + (N̄ , 1, N) + (1, N, N̄)

)
, a result that demonstrates the pres-

ence of the N = 1 remnant supersymmetry. The chiral supermultiplet,
which fermions and scalars share, is an anomaly free representation of H.

8Ending up with mirror fermions does not forbid phenomenological contact [79], how-
ever exactly chiral fermions are preferred.

9In case of ordinary reduction of a 10-dimensional N = 1 SYM theory, one obtains an
N = 4 SYM theory in four dimensions with a global SU(4)R symmetry which is identified
with the tangent space SO(6) of the extra dimensions [16, 17].
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Besides the particle spectrum of the projected theory, it is necessary to
determine its superpotential, which is derived from the superpotential of
the initial N = 4 SYM theory [66]

WN=4 = ϵijkTr(ΦiΦjΦk) , (26)

where the Φ’s are chiral superfields. The above structure remains the same
after the projection, but it encodes only the surviving fields of the N = 1
theory that passed the orbifold filtering

W
(proj)
N=1 =

∑
I

ϵijkΦ
i
I,I+aiΦ

j
I+ai,I+ai+aj

Φk
I+ai+aj ,I . (27)

The next step is to find the scalar potential of the projected thepry. This
can be achieved by extracting it from the above superpotential, W (proj)

N=1 .
Therefore, the scalar potential is

V proj
N=1(ϕ) =

1

4
Tr
(
[ϕi, ϕj ]†[ϕi, ϕj ]

)
, (28)

where, ϕi are the scalar component fields of the chiral superfield Φi. Unfor-
tunately, the minimization of V proj

N=1(ϕ) is achieved only by vanishing vevs
of the fields, therefore, it is necessary to modify it in order that solutions
which could be interpreted as vacua of a Non-commutative geometry to
be emerged. So, addressed to this direction, N = 1 soft supersymmetric
terms of the form10

VSSB =
1

2

∑
i

m2
iϕ

i†ϕi +
1

2

∑
i,j,k

hijkϕ
iϕjϕk + h.c. (29)

are inserted into V proj
N=1(ϕ), where hijk = 0, unless i+ j + k = 0mod3. It is

important to refer that the introduction of the SSB terms does not cause
embarrassment, since an SSB sector is indispensable for a model aspired
to be realistic, see e.g. [68].

So, the total scalar potential is

V = V proj
N=1 + VSSB + VD , (30)

where the term VD represents the D-terms of the theory, which are given
by

VD =
1

2
D2 =

1

2
DIDI , (31)

10Only purely scalar SSB terms will be inserted into the scalar potential. Of course,
other SSB terms have to be included in order to obtain the full SSB sector [68], however it
is not necessary for our purposes.
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where DI = ϕ†iT
Iϕi and T I are the generators of the chiral multiplets -

in the representation they belong. Fixing the parameters of the (29) to
m2

i = 1 , hijk = ϵijk, the total scalar potential turns to be

V =
1

4
(F ij)†F ij + VD , (32)

where F ij is11

F ij = [ϕi, ϕj ]− iϵijk(ϕk)† . (33)
Obviously, the first term of (32) is positive definite, which means that

the global minimum of the potential is obtained if

[ϕi, ϕj ] = iϵijk(ϕ
k)† , ϕi(ϕj)† = R2 , (34)

with [R2, ϕi] = 0. It seems that the fuzzy sphere underlies in the above
equations, so it just remains to designate it. This will arise by defining
the untwisted fields ϕ̃i as ϕi = Ωϕ̃i, with Ω ̸= 1, satisfying the following
relations

Ω3 = 1 , [Ω, ϕi] = 0 , Ω† = Ω−1 , (ϕ̃i)† = ϕ̃i ⇔ (ϕi)† = Ωϕi . (35)

Now, it is clear that (34) reduce to the ordinary fuzzy sphere relation gen-
erated by ϕ̃i

[ϕ̃i, ϕ̃j ] = iϵijkϕ̃
k , ϕ̃iϕ̃i = R2 . (36)

This demonstrates the reason why the Non-commutative space that gen-
erates the ϕi is called twisted fuzzy sphere, S̃2

N . The fact that the above
structure is valid only for Z3, poses it as the unique choice as the appro-
priate cyclic group for the orbifold projection.

A configuration of the twisted fields, ϕi, that satisfy (34) is ϕi = Ω(13 ⊗
λi(N)), where λi(N) are the generators in the N -dimensional irreducible
representation of SU(2) and Ω is the matrix described by the following
relations:

Ω = Ω3 ⊗ 1N , Ω3 =

(
0 1 0
0 0 1
1 0 0

)
, Ω3 = 1 . (37)

According to the transformation ϕi = Ωϕ̃i, the "off-diagonal" orbifold sec-
tors are expressed in block-diagonal form

ϕi =

 0 (λi(N))(N,N̄,1) 0

0 0 (λi(N))(1,N,N̄)

(λi(N))(N̄,1,N) 0 0

 = Ω

 λi(N) 0 0

0 λi(N) 0

0 0 λi(N)

 .

(38)
11The VD term settles for a change on the radius of the sphere, in accordance to the

ordinary fuzzy sphere case [35, 69, 37]
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It is clear that the (untwisted) fields, ϕ̃i, that generate the ordinary fuzzy
sphere, have taken a block-diagonal form. Each block separately can be
regarded as an ordinary fuzzy sphere, since the corresponding commuta-
tion relations (36) they separately satisfied. Therefore, the configuration
(38) could be interpreted as three separate fuzzy spheres (branes), embed-
ded with relative angles 2π/3. Rephrasing, the solution ϕi is equivalent to
three fuzzy spheres which conform with the orbifolding. In a few words, the
global minimum of the scalar potential - at least for a fixed range of param-
eters - is achieved by a twisted fuzzy sphere. So, the F ij that was defined
in (33), could be considered as the field strength on the spontaneously
generated fuzzy extra dimensions.

Let us now examine the potential’s vacuum from a geometric point of
view. Fixing the parameters, the potential gets minimized by a twisted
fuzzy sphere solution

ϕi = Ω(13 ⊗ (λi(N−n))⊕ 0n) , (39)

where 0n is the n×n matrix with zero entries. This non-vanishing vacuum
- a vacuum considered as R4 × S̃2

N with a twisted fuzzy sphere in the ϕi

coordinates - breaks the gauge symmetry, SU(N)3 down to SU(n)3.
The fluctuations of the scalar fields around the vacuum can be under-

stood by considering the transformation, ϕi = Ωϕ̃i. In the non-twisted
case, fluctuations around the vacuum describe scalar and gauge fields on
S2
N [54, 63], which gain mass from the R4 point of view. The (38) exhibits

that the matrix Ω maps the twisted fuzzy sphere into three ordinary fuzzy
spheres as three N ×N blocks are diagonally embedded into the original
3N × 3N matrix. Therefore, all fluctuations could be considered as fields
on the three untwisted fuzzy spheres

ϕi = Ω̃(λi(N) +Ai) =

 λi(N) +Ai 0 0

0 ω(λi(N) +Ai) 0

0 0 ω2(λi(N) +Ai)

 ,

(40)
as well as specific massive off-diagonal states which cyclically connect
these spheres. The field strength F ij , (33), converts to

F ij = [ϕi, ϕj ]− iϵijk(ϕk)† = Ω2
(
[ϕ̃i, ϕ̃j ]− iϵijkϕ̃k

)
, (41)

that is the field strength on an untwisted fuzzy sphere. Thus, at interme-
diate energy scales, the vacuum can be interpreted as R4 × S2

N with three
untwisted fuzzy spheres in the ϕ̃i coordinates. The three spheres do not
mix, due to the lack of off-diagonal entries, due to the orbifold projection.
As in [35, 36, 37], because of the Higgs effect, fermions and gauge fields
decompose to a finite Kaluza-Klein tower of massive modes on S2

N resp.
S̃2
N , as well as a massless sector.
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6. The SU(3)c × SU(3)L × SU(3)R chiral model

Working in the above context, three (minimal and anomaly free) models
emerge, however we will focus on the most interesting one. For all models
the initial theory is the same, i.e. a N = 1 SYM 4-dimensional SU(3N)
gauge theory whose field spectrum was listed in the previous section. Then
it follows the realization of the orbifold projection of the theory, embedding
- as we have already noted - the Z3 into the SU(3) subgroup of SU(4)R.
After the projection, the initial gauge group breaks to the N = 1 SU(N)3

and the fields of the theory are accommodated into chiral representations
of the gauge group. More specifically, there are three families transforming
as

(N, N̄, 1) + (N̄ , 1, N) + (1, N, N̄) (42)

under the gauge group SU(N)3. Of course, due to the different ways
the initial gauge group SU(3N) is spontaneously broken, we end up with
different unification groups SU(4)×SU(2)×SU(2), SU(4)3 and SU(3)312.

Let us now focus on the very interesting trinification group SU(3)c ×
SU(3)L ×SU(3)R [70, 71] (see also [72, 73, 74, 75, 76]; for a string theory
approach see [77]). At first, we need to decompose the integer N as N =
n+ 3 and then - for the SU(N) - we consider the embedding

SU(N) ⊃ SU(n)× SU(3)× U(1) , (43)

from which it is follows that the embedding for the total gauge group
SU(N)3 is

SU(N)3 ⊃ SU(n)×SU(3)×SU(n)×SU(3)×SU(n)×SU(3)×U(1)3 . (44)

The three U(1) factors13 are ignored and according to the above decomposi-
tion, the representations (42) decompose (44), (after reordering the factors)
as

SU(n)× SU(n)× SU(n)× SU(3)× SU(3)× SU(3) ,

(n, n̄, 1; 1, 1, 1) + (1, n, n̄; 1, 1, 1) + (n̄, 1, n; 1, 1, 1) + (1, 1, 1; 3, 3̄, 1)

+ (1, 1, 1; 1, 3, 3̄) + (1, 1, 1; 3̄, 1, 3) + (n, 1, 1; 1, 3̄, 1) + (1, n, 1; 1, 1, 3̄)

+ (1, 1, n; 3̄, 1, 1) + (n̄, 1, 1; 1, 1, 3) + (1, n̄, 1; 3, 1, 1) + (1, 1, n̄; 1, 3, 1) . (45)

So, judging from the decomposition (43), the gauge group is broken to
SU(3)3. The surviving fields transform under the gauge group SU(3)3, as

SU(3)× SU(3)× SU(3) , (46)
((3, 3̄, 1) + (3̄, 1, 3) + (1, 3, 3̄)) , (47)

12Similar approaches have been examined in the YM matrix models framework [78], but
they deprived of phenomenological viability.

13These factors decouple at the low energy sector of the theory due to a possible gaining
of mass by the Green-Schwarz mechanism [67].
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which correspond to the desired chiral representations of the trinification
group. The transformation of quarks and leptons (only for the first family
but it is similar for the other two) under the gauge group SU(3)c×SU(3)L×
SU(3)R is

q =

(
d u h
d u h
d u h

)
∼ (3, 3̄, 1) , qc =

(
dc dc dc

uc uc uc

hc hc hc

)
∼ (3̄, 1, 3) ,

λ =

(
N Ec v
E N c e
vc ec S

)
∼ (1, 3, 3̄) , (48)

respectively.
It is crucial to mention that this theory could be upgraded to a two-loop

finite theory (see reviews [80, 81, 82, 51]) and furthermore could make
testable predictions [51].

Moreover, the fuzzy orbifold mechanism can be used to break spon-
taneously the unification gauge group down to MSSM and then, in turn,
to the SU(3)c × U(1)em. Concluding, it is useful to sum up the general
idea of the theoretical model. At the very high-scale regime, there is an
unbroken renormalizable gauge theory. After the spontaneous symmetry
breaking, the resulting gauge theory we are led to, is an SU(3)3 GUT, ac-
companied by a finite tower of massive Kaluza-Klein modes. Finally, in
the low scale regime, the trinification group SU(3)3 breaks down to the
MSSM. Thus, we conclude with the statement that fuzzy extra dimensions
can be used to construct chiral, renormalizable and phenomenologically
viable field-theoretical models.

A natural extension of the above ideas and methods have been re-
ported in ref [83] (see also [84]), realized in the context of Matrix Mod-
els (MM). At a fundamental level, the MMs introduced by Banks-Fischler-
Shenker-Susskind (BFSS) and Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT),
are supposed to provide a non-perturbative definition of M-theory and type
IIB string theory respectively [30, 85]. On the other hand, MMs are also
useful laboratories for the study of structures which could be relevant
from a low-energy point of view. Indeed, they generate a plethora of in-
teresting solutions, corresponding to strings, D-branes and their inter-
actions [30, 86], as well as to non-commutative/fuzzy spaces, such as
fuzzy tori and spheres [87]. Such backgrounds naturally give rise to non-
abelian gauge theories. Therefore, it appears natural to pose the question
whether it is possible to construct phenomenologically interesting particle
physics models in this framework as well. In addition, an orbifold MM
was proposed by Aoki-Iso-Suyama (AIS) in [88] as a particular projection
of the IKKT model, and it is directly related to the construction described
above in which fuzzy extra dimensions arise with trinification gauge the-
ory [38]. By Z3 - orbifolding, the original symmetry of the IKKT matrix
model with matrix size 3N×3N is generally reduced from SO(9, 1)×U(3N)
to SO(3, 1) × U(N)3. This model is chiral and has D = 4, N = 1 super-
symmetry of Yang-Mills type as well as an inhomogeneous supersymmetry
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specific to matrix models. The Z3 - invariant fermion fields transform as
bi-fundamental representations under the unbroken gauge symmetry ex-
actly as in the constructions described above. In the future we plan to
extend further the studies initiated in refs [83, 84] in the context of orb-
ifolded IKKT models.
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