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Abstract

We derive a graph expansion for the thermal partition function of solvable two-dimensional models with 
boundaries. This expansion of the integration measure over the virtual particles winding around the time 
cycle is obtained with the help of the matrix-tree theorem. The free energy is a sum over all connected 
graphs, which can be either trees or trees with one loop. The generating function for the connected trees 
satisfies a non-linear integral equation, which is equivalent to the TBA equation. The sum over connected 
graphs gives the bulk free energy as well as the exact g-functions for the two boundaries. We reproduced 
the integral formula conjectured by Dorey, Fioravanti, Rim and Tateo, and proved subsequently by Pozsgay. 
Our method can be extended to the case of non-diagonal bulk scattering and diagonal reflection matrices 
with proper regularization.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The notion of integrability has been extended to systems with boundary by Ghoshal and 
Zamolodchikov [1]. With the Yang-Baxter equation, unitarity, analyticity and crossing symmetry 
for both bulk scattering matrix and boundary reflection matrix, a model with integrable boundary 
is expected to be exactly solved. One of the simplest observables in such system is its free en-
ergy in large volume limit and at finite temperature. Unlike in periodic systems, this free energy 
contains a volume-independent correction, also known as the boundary entropy or g-function 
[2].
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The first attempt to compute g-function was carried out by LeClair, Mussardo, Saleur and 
Skorik [3], using the Thermodynamics Bethe Ansatz (TBA) saddle point approximation. They 
obtained an expression similar to the bulk TBA free energy

log(gagb)
saddle(R) = 1

2

+∞∫
−∞

du

2π
�ab(u) log[1 + e−ε(u)], (1.1)

where u is the rapidity variable, ε is the pseudo-energy at inverse temperature R and � term 
involves the bulk scattering and the boundary reflection matrices.

It was later shown by Woynarovich [4] that another volume-independent contribution is pro-
duced by the fluctuation around the TBA saddle point. The result can be written as a Fredholm 
determinant

log(gagb)
fluc(R) = − log det(1 − K̂+), (1.2)

where the kernel K̂+ involves the pseudo-energy and the bulk scattering matrix but not the reflec-
tion matrices. In other words, this fluctuation around the saddle point is boundary independent. A 
major problem of Woynarovich’s computation is that it also predicts a similar term for periodic 
systems, while it is known that there is no such correction.

Dorey, Fioravanti, Rim and Tateo [5] took a different approach towards this problem. They 
started with the definition of the partition function as a thermal sum over a complete set of states 
labeled by mode numbers. In the infinite volume limit, this sum can be replaced by integrals 
over rapidity. The integrands were explicitly worked out for small number of particles. Based 
on these first terms and the structure of TBA saddle point result (1.1), the authors advanced a 
conjecture about the boundary-independent part of g-function. Their proposal has the structure 
of a Leclair-Mussardo type series

log(gagb)(R) = log(gagb)
saddle(R)

+
∑
n≥1

1

n

n∏
j=1

+∞∫
−∞

duj

2π

1

1 + eε(uj )
K(u1 + u2)K(u2 − u3)...K(un − u1), (1.3)

where K is the logarithmic derivative of the bulk scattering matrix.
Pozsgay [6] (see also Woynarovich [7]) argued that the same expression for g-function could 

be obtained from a refined version of TBA saddle point approximation. He noticed that the 
mismatch between (1.2) and the series in (1.3) is resolved if one uses a non-flat measure for 
the TBA functional integration. This non-trivial measure comes from the Jacobian of the change 
of variables from mode number to rapidity, and represents the continuum limit of the Gaudin 
determinant.

The fluctuation around the saddle point involves only diagonal elements of this Gaudin matrix, 
resulting in the inverse power of the Fredholm determinant det(1 − K̂+). On the other hand, 
the functional integration measure contains the off-diagonal elements as well, which constitute 
another Fredholm determinant det(1 − K̂−). Pozsgay rewrote the result (1.3) in terms of these 
two Fredholm determinants

log(gagb)(R) = log(gagb)
saddle(R) + log det

1 − K̂−

1 − K̂+ . (1.4)
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The two kernels K̂± can be read off from the asymptotic Bethe equations. For a periodic system, 
they happen to be the same and the effects from the fluctuation and the measure cancel each 
other.

It is important to distinguish the Jacobians in [5] from the one in [6]. The former appear in 
each term of the cluster expansion while the latter is obtained from the thermodynamics state that 
minimizes the TBA functional action. Put it simply, the Jacobian in [6] is the thermal average of 
all the Jacobians in [5].

In this paper, we derive this known result for g-function, following the strategy of [5]: writing 
the partition function as a sum over mode numbers and replacing it by an integral over phase 
space in the infinite volume limit. In contrast to [5], we are able to exactly carry out the cluster 
expansion, by virtue of the matrix-tree theorem [8]. This theorem allows us to write the Jacobian 
for a finite number of particles as a sum over diagrams. Consequently, the g-function is expressed 
as a sum over graphs with no loops (trees) and graphs with one loop. These combinatorial objects 
possess simple structure and their sum can be written in the form (1.3) or (1.4). Compared to 
[6], the Gaussian fluctuations and the measure can be respectively interpreted as the sum over 
two types of loops. Our final result coincides with the one of [6], but our method allows an 
exact treatment of each term in the canonical partition sum, before the thermodynamical limit. 
Such advantage makes it potentially useful in the computation of more subtle objects such as 
correlation functions. This method has been applied for the free energy and one point function 
of a local observable of a periodic system [9], [10], [11]. The same idea has been used to derive 
the equation of state in Generalized Hydrodynamics [12].

Generalization to a theory with n species of particles interacting via diagonal bulk scattering 
and diagonal reflection matrices is straightforward. The graphs now involve n types of vertices 
and the Fredholm kernels are n × n matrices. We also comment on how the g-function of a 
theory solved by Nested Bethe Ansatz can be obtained through a regularization procedure. We 
implement such procedure for a concrete example in another work [13].

The paper is structured as follows. In section 2 we recall the definition of g-function and 
spell out the Fredholm determinant formula (1.4) for a massive theory with diagonal bulk and 
boundary scattering. In section 3 we develop the combinatorics needed to sum up the cluster 
expansion and express the partition function on a cylinder as a sum over (multi)wrapping virtual 
particles. In section 4 we expand, with help of the matrix-tree theorem, the canonical partition 
function on a cylinder as a sum over certain set of Feynman graphs. In section 5 we perform 
the sum and recover the expression for the g-function. We compute the excited state g-function 
at the end of the section. In section 6 we generalize our method to theories of more than one 
type of particle with diagonal scatterings. We also establish a protocol to deal with g-function of 
theories solved by Nested Bethe Ansatz. The two appendices present two different proofs of the 
matrix-tree theorem in the form used in this paper.

2. Bulk and boundary free energy of a massive integrable field theory

The g-function, also known as boundary entropy or ground-state degeneracy, was first intro-
duced by Affleck and Ludwig [2] and since then has been given many physical interpretations. 
In this paper we shall look at this multifaceted object as the non-extensive contribution to free 
energy of a system with boundaries.

Let us consider an 1 + 1 dimensional field theory with a single massive excitation above the 
vacuum, defined in an open interval of length L, whose boundaries will be denoted by a and b.
The momentum and energy of a particle are parameterized by its rapidity p = p(u), E = E(u). 
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Fig. 1. Two equivalent ways of evaluating the partition function on a cylinder.

The theory is integrable with a two-to-two bulk scattering phase S(u, v) and reflection factors 
Ra(u), Rb(u) at the boundaries. They satisfy a set of conditions [1], among which the unitarity 
condition

S(u, v)S(v,u) = Ra(u)Ra(−u) = Rb(u)Rb(−u) = 1. (2.1)

The bulk scattering phase does not necessarily depend on the difference between rapidities. We 
assume a milder condition

S(u,−v)S(−u,v) = 1, (2.2)

as well as S(u, u) = −1.
The partition function at inverse temperature R is defined by the thermal trace

Zab(R,L) = Tr e−Hab(L)R, (2.3)

where Hab(L) is the Hamiltonian of the theory living on a segment of length L with boundary 
conditions a and b. One can consider in parallel the partition function of a theory defined on a 
circle of length L

Z(R,L) = Tr e−H(L)R. (2.4)

The boundary entropy of the open system is given by the difference in the two free energies

Fab(R,L) ≡ logZab(R,L) − logZ(R,L). (2.5)

The g-function is defined as the contribution of a single boundary to the free energy. To compute 
it, we pull the two boundaries far away from each other to avoid interference

logga(R) = 1

2
lim

L→∞Faa(R,L). (2.6)

Compared to the usual definition of g-function given in perturbed CFTs literature, our definition 
seems to be over-simplifying. This is due to our specific choice of normalization of partition 
functions. More precisely, we have fixed the ground state energy in the L → ∞ limit of both 
Hamiltonians H(L) and Hab(L) to zero by discarding the bulk energy density as well as its 
non-extensive boundary contributions (see Fig. 1).

In a relativistic theory there is a mirror transformation exchanging the roles of space and time

p̃(u) = −iE(uγ ), Ẽ(u) = −ip(uγ ), (2.7)
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where uγ means analytical continuation in the rapidity variable which assures that the mirror 
particle has positive energy Ẽ and real momentum p̃. The inverse is true only if the mirror theory 
coincides with the original one. In this case the natural parametrization is p = m sinhu, E =
m coshu and uγ = u + iπ/2. The product of two mirror transformations, u → u + iπ , gives a 
crossing transformation.

In terms of the mirror theory, defined on a circle with circumference R, the partition function 
with periodic boundary conditions (2.4) takes a similar form

Z(R,L) = Tr e−H̃ (R)L, (2.8)

where the trace is in the Hilbert space of the mirror theory. In contrast, after a mirror transfor-
mation the thermal partition function with open boundary conditions becomes the overlap of an 
initial state 〈Ba| and a final state |Bb〉 defined on a circle of circumference R after evolution at 
mirror time L [1]. Evaluated in the mirror theory, the partition function (2.3) reads

Zab(R,L) = 〈Ba |e−H̃ (R)L|Bb〉. (2.9)

Although the partition function is the same, the physics is rather different in the two channels. In 
the mirror theory, the g-function provides information about overlapping of the boundary states 
and the ground state at finite volume. To see this, we write (2.9) as a sum over eigenstates |ψ〉 of 
the periodic Hamiltonian H̃ (R)

〈Ba |e−H̃ (R)L|Bb〉 =
∑
|ψ〉

〈Ba |ψ〉√〈ψ |ψ〉e
−LẼ(|ψ〉) 〈ψ |Bb〉√〈ψ |ψ〉 .

In the large L limit, this sum is dominated by a single term corresponding to the ground state 
|ψ0〉. The g-function is then given by the overlap between this state and the boundary state

ga(R) = 〈Ba |ψ0〉√〈ψ0|ψ0〉 . (2.10)

An expression for g-function was conjectured in [5] and proven in [6]. Here we write down 
this result for the case where the bulk scattering matrix is not of difference form. Let us denote 
respectively by K, Ka and Kb the logarithmic derivatives of the bulk scattering phase and the 
boundary reflection factors associated with the boundaries a and b

K(u, v) = −i∂u logS(u, v), Ka(u) = −i∂u logRa(u), Kb(u) = −i∂u logRb(u).

It follows from (2.1) and (2.2) that

Ka(u) = Ka(−u), Kb(u) = Kb(−u), K(u,−v) = K(−u,v). (2.11)

Let us also define

��(u) ≡ K�(u) − K(u,−u) − πδ(u), � = a, b. (2.12)

Then the expression for g-function found in [6] reads

logga(R) = 1

2

+∞∫
−∞

du

2π
�a(u) log(1 + e−ε(u)) + 1

2
log det

1 − K̂−

1 − K̂+ , (2.13)

where ε is the pseudo-energy at inverse temperature R
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e−ε(u) = e−E(u)R exp

[ ∞∫
−∞

dv

2π
K(v,u) log(1 + e−ε(v))

]
. (2.14)

The kernels K̂± have support on the positive real axis and their action is given by

K̂±F(u) =
∞∫

0

dv

2π

[
K(u,v) ± K(u,−v)

] 1

1 + eε(v)
F (v). (2.15)

In the next sections we will derive the expression (2.13) by evaluating the partition function in the 
R-channel, namely equation (2.3), in the limit when L is large. In order to do that, we will insert 
a decomposition of the identity in a complete basis of eigenstates of the Hamiltonian Hab(L) and 
perform the thermal trace.

3. Partition function on a cylinder as a sum over wrapping particles

3.1. Asymptotic Bethe equations in presence of boundaries

The g-function (2.6) is extracted by taking the limit of large volume L. In this limit, we can 
diagonalize the Hamiltonian Hab(L) using the technique of Bethe ansatz.

Consider an N -particle eigenstate |u〉 = |u1, u2, ..., uN 〉. To obtain the Bethe Ansatz equations 
in presence of two boundaries, we follow a particle of rapidity uj as it propagates to a boundary 
and is reflected to the opposite direction. It continues to the other boundary, being reflected for 
a second time and finally comes back to its initial position, finishing a trajectory of length 2L. 
During its propagation, it scatters with the rest of the particles twice, once from the left and once 
from the right. This process translates into the quantization condition of the state |u〉

e2ip(uj )LRa(uj )Rb(uj )

N∏
k 
=j

S(uj , uk)S(uj ,−uk) = 1, ∀j = 1, ...,N. (3.1)

We can write these equations in logarithmic form by introducing a new set of variables: the total 
scattering phases φ1, φ2, ..., φn defined by

φj (u) ≡ 2p(uj )L − i log[RaRb(uj )

N∏
k 
=j

S(uj , uk)S(uj ,−uk)], ∀j = 1, ...,N. (3.2)

In terms of these variables, the quantization of state |u〉 reads

φj (u) = 2πnj ∀j = 1, ...,N with nj ∈ Z. (3.3)

The next step is to impose particle statistics and indistinguishability. In periodic systems, simply 
taking the mode numbers nj to be all different automatically satisfies both principles. However 
in the presence of boundary two particles having the same mode numbers but of opposite signs 
are indistinguishable. To avoid overcounting of states, we should put a positivity constraint on 
mode numbers.

A basis in the N -particle sector of the Hilbert space is then labeled by all sets of strictly in-
creasing positive integers 0 < n1 < · · · < nN . The corresponding eigenvector of the Hamiltonian 
Hab(L) is characterized by a set of rapidities 0 < u1 < · · · < uN , obtained by solving the Bethe 
equations (3.2) and (3.3).
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Inserting a complete set of eigenstates we write the partition function on a cylinder as

Zab(R,L) =
∞∑

N=0

∑
0<n1<...<nN

e−RE(n1,...,nN ). (3.4)

In this equation, the energy E is a function of mode numbers n1, ..., nN . To find its explicit form, 
one needs to solve the Bethe equations for the corresponding rapidities u1, ..., uN . As a function 
of the rapidities, the energy is equal to the sum of the energies of the individual particles

E(u1, ..., uN) =
N∑

j=1

E(uj ).

In order to write the sum (3.4) as an integral over rapidities, we first have to remove the 
constraint between the mode numbers. We do this by inserting Kronecker symbols to get rid of 
unwanted configurations

Zab(R,L) =
∞∑

N=0

1

N !
∑

0≤n1,...,nN

N∏
j<k

(1 − δnj ,nk
)

N∏
j=1

(1 − δnj ,0)e
−RE(n1,...,nN ). (3.5)

The first Kronecker symbol introduces the condition that the mode numbers are all different, and 
the second one eliminates the mode numbers equal to zero.

Let us expand in monomials the first factor containing Kronecker symbols, which imposes 
the exclusion principle. The partition function (3.5) can be written as a sum over all sequences 
(n

r1
1 , ..., nrm

m ) of non-negative, but otherwise unrestricted mode numbers ni with multiplicities 
ri . Each sequence (nr1

1 , ..., nrm
m ) in the sum corresponds to a state with rj particles of the same 

mode number nj , for j = 1, 2, ..., m. The total number of particles in such a sequence is N =
r1 + · · · + rm.

For instance, there are four sequences all correspond to unphysical state with three particles 
of the same mode number n: (n3), (n2, n1), (n1, n2) and (n1, n1, n1). They come with the coef-
ficients of 1/3, −1/4, −1/4 and 1/6 respectively. These coefficients sum up to zero, removing 
this unphysical state from the partition function. Only when n1, .., nm are pairwise different and 
when r1, ..., rm are equal to one we have a physical state.

The coefficients in the expansion are purely combinatorial and have been worked out in [9]

Zab(R,L) =
∞∑

m=0

(−1)m

m!
∑

0≤n1,...,nm

m∏
j=1

(1 − δnj ,0)
∑

1≤r1,...,rm

(−1)r1+....+rm

r1....rm
e−RE(n

r1
1 ,...,n

rm
N ).

(3.6)

The rapidities u1, . . . , um of a generalized Bethe states (nr1
1 , ..., nrm

m ) satisfy the Bethe equations

φj = 2πnj , j = 1, . . . ,m , (3.7)

where the scattering phases φj = φj (u1, . . . , um) are defined by

eiφj ≡ e2ip(uj )L × Ra(uj )Rb(uj ) × (eiπS(uj ,−uj ))
rj −1 ×

m∏
k 
=j

(S(uj , uk)S(uj ,−uk))
rk .

(3.8)
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3.2. From mode numbers to rapidities

In the large L limit, we can replace a discrete sum over mode numbers n by a continuum 
integral over variables φ

∑
0≤n1,...,nm

=
∞∫

0

dφ1

2π
...

∞∫
0

dφm

2π
+O(e−L).

We can then use equation (3.8) to pass from (φ1, ..., φm) to rapidity variables (u1, ..., um). The 
only subtle point compared with the periodic case is the factor excluding the mode numbers 
nj = 0 from the sum (3.6)

∑
0≤n1,...,nm

m∏
j=1

(1 − δnj ,0) =
∞∫

0

dφ1

2π
...

∞∫
0

dφm

2π

m∏
j=1

(1 − 2πδ(φj )) +O(e−L). (3.9)

We would like to incorporate this factor into the Jacobian matrix ∂uφ. We can do this by first 
expanding the product as a sum over subsets α ⊂ {1, 2, ..., m},

∞∫
0

dφ1

2π
...

∞∫
0

dφm

2π

∑
α

(−2π)|α|δ(φα) =
∑
α

m∏
j=1

∞∫
0

duj

2π

[
∂φ

∂u

]
α,α

(−2π)|α|δ(uα)

=
m∏

j=1

∞∫
0

duj

2π
det

[
∂φ

∂u
− 2πδ(u)

]
.

Here [∂φ/∂u]α,α denotes the diagonal minor of the Jacobian matrix obtained by deleting its 
α-rows and α-columns. The sum over subsets is the expansion of the determinant of a sum of 
two matrices. Hence the unphysical state at u = 0 can be eliminated by adding a term −2πδ(u)

to the diagonal elements of the Jacobian matrix when we change variables from φ to u,

Gjk(u
r1
1 , ..., urm

m ) ≡ ∂uk
φj − 2πδ(uj )δjk

= [
Dab(uj ) + 2rjK(uj ,−uj ) +

m∑
l 
=j

rl(K(uj ,ul) + K(uj ,−ul))
]
δjk

− rk[K(uk,uj ) − K(uk,−uj )] (1 − δjk), ∀j, k = 1,2, ...,m, (3.10)

where

Dab(u) ≡ 2Lp′(u) + �a(u) + �b(u), (3.11)

with �a , �b defined in (2.12). In order to apply the matrix-tree theorem, we consider the follow-
ing matrix

Ĝjk ≡ rkGkj =[
rjDab(uj , rj ) + 2r2

j K̄jj +
m∑

l 
=j

rj rl(Kjl + K̄jl)
]
δjk

− rj rk(Kjk − K̄jk) (1 − δjk), ∀j, k = 1,2, ...,m, (3.12)

where we have used the notation
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Kjk = K(uj ,uk), K̄jk = K(uj ,−uk) = K(−uj ,uk). (3.13)

In terms of this matrix, the partition function is written as

Zab(R,L) =
∞∑

m=0

(−1)m

m!
∑

1≤r1,...,rm

m∏
j=1

∞∫
0

duj

2π

(−1)rj

r2
j

e−rj RE(uj ) det Ĝ(u
r1
1 , ..., urm

m ).

(3.14)

4. Partition function as a sum over graphs

4.1. Matrix-tree theorem

The matrix-tree theorem for signed graphs [8] allows us to write the determinant of the matrix 
(3.12) as a sum over graphs. This theorem as stated in [8] is quite technical and we provide a 
brief formulation in the following together with two proofs, one combinatorial and one field-
theoretical in the appendices.

First, let us define

K±
jk = Kjk ± K̄jk. (4.1)

Then the Gaudin-like matrix (3.12) takes the form (j, k = 1, 2, ..., m)

Ĝjk = [
rjDab(uj ) + r2

j (K+
jj − K−

jj ) +
m∑

l 
=j

rj rl K
+
j l

]
δjk − rj rk K−

jk(1 − δjk). (4.2)

The determinant of this matrix can be written as a sum over all (not necessarily connected) graphs 
F having exactly m vertices labeled by vj with j = 1, ..., m and two types of edges, positive and 
negative, which we denote by �±

jk ≡ 〈vj → vk〉±. The connected component of each graph is 
either:

• A rooted directed tree with only positive edges �+
kl = 〈vk → vl〉+ oriented so that the edge 

points to the vertex which is farther from the root, as shown in Fig. 2. The weight of such 
a tree is a product of a factor rjDab(uj ) associated with the root vj and factors rlrkK

+
lk

associated with its edges �+
kl .• A positive (Fig. 3a) or a negative (Fig. 3b) oriented cycle with outgrowing trees. A pos-

itive/negative loop is an oriented cycle (including tadpoles which are cycles of length 1) 
entirely made of positive/negative edges having the same orientation. The outgrowing trees 
consist of positive edges only. The weight of a loop with outgrowing trees is the product 
of the weights of its edges, with the weight of an edge �±

kl given by rlrkK
±
lk . In addition, a 

Fig. 2. A tree with K+ edges.
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Fig. 3. Examples of loops with out-growing trees. K− propagators are drawn as dashed lines. They appear only in a loop 
and such loop comes with a factor of −1. Tadpoles are loops of length 1.

negative loop carries an extra minus sign. This is why we will call the positive loops bosonic 
and the negative loops fermionic.

Summarizing, we write the determinant of the matrix (4.2) as

det Ĝjk =
∑
F

W [F],

W [F] = (−1)#negative loops
∏

vj ∈roots

rjDab(uj )
∏

�±
kl∈edges

rlrkK
±(ul, uk),

(4.3)

with K±(u, v) = K(u, v) ±K(u, −v). Equation (4.3) allows us to express the Jacobian for the in-
tegration measure as a sum over graphs whose weights depend only on the “coordinates” {uj, rj }
of its vertices. For a periodic system K+ = K− and the two families of loops cancel each other, 
leaving only trees in the expansion of the Gaudin matrix [9].

4.2. Graph expansion of the partition function

Applying the matrix-tree theorem for each term in the series (3.14), we obtain a graph expan-
sion for the partition function

Zab(R,L) =
∞∑

m=0

(−1)m

m!
∑

1≤r1,...,rm

m∏
j=1

∞∫
0

duj

2π

(−1)rj

r2
j

e−rj RE(uj )
∑
F

W [F], (4.4)

where the last sum runs over all graphs F with m vertices as constructed above.
The next step is to invert the order of the sum over graphs and the integral/sum over the 

coordinates {uj , rj } assigned to the vertices. As a result we obtain a sum over the ensemble of 
abstract oriented tree/loop graphs, with their symmetry factors, embedded in the space R+ ×N
where the coordinates u, r of the vertices take values. The embedding is free, in the sense that 
the sum over the positions of the vertices is taken without restriction. As a result, the sum over 
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Fig. 4. The Feynman rules for the partition function. The vertex labeled by (u, r) has r outgoing lines.

the embedded graphs is the exponential of the sum over connected ones. One can think of these 
graphs as Feynman diagrams obtained by applying the Feynman rules in Fig. 4.

The Feynman rules comprise there kinds of vertices: “root” vertices with only outgoing 
bosons, “bosonic” vertices with one incoming boson and an arbitrary number of outgoing bosons, 
“fermionic” vertices with one incoming and one outgoing fermion, together with an arbitrary 
number of outgoing bosons. The connected diagrams built from these vertices are either trees 
(Fig. 2) or bosonic loops (Fig. 3a) or fermionic loops (Fig. 3b).

The free energy is a sum over these graphs,

logZab(R,L) =
∞∫

0

du

2π
Dab(u)

∑
r≥1

rYr(u) +
∑
n≥1

C±
n . (4.5)

In this expression, Yr(u) denotes the sum of over all trees rooted at the point (u, r) and C±
n is 

the sum over the Feynman graphs having a bosonic/fermionic loop of length n. We have defined 
Yr(u) in such a way that the all vertices with r outgoing lines, including the root, have the same 
weight.

5. Summing up the connected graphs: the exact g-function

5.1. The tree contribution

In this section, we analyze the part of free energy (4.5) that comes from the tree-diagrams

logZab(R,L)trees =
+∞∫

du

2π
Dab(u)

∑
r≥1

rYr(u), (5.1)
0
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Fig. 5. The combinatorial structure of trees with a fixed root.

(5.2)

Being the generating function for directed trees rooted at (u, r), Yr(u) obeys a simple equation

Yr(u) = (−1)r−1

r2 e−rRE(u)

∞∑
n=0

1

n!
( ∞∑

s=1

+∞∫
0

dv

2π
srK+(v,u)Ys(v)

)n

= (−1)r−1

r2

[
e−RE(u) exp

∞∑
s=0

+∞∫
0

dv

2π
K+(v,u)sYs(v)

]r

. (5.3)

This equation can be understood diagrammatically as in Fig. 5.
In particular, we have for r = 1

Y1(u) = e−RE(u) exp
∞∑

s=0

+∞∫
0

dv

2π
K+(v,u)sYs(v). (5.4)

By replacing (5.4) into (5.3), we can express Yr in terms of Y1 for arbitrary r ≥ 1

Yr(u) = (−1)r−1

r2 Y1(u)r . (5.5)

This allows us to rewrite (5.4) as a closed equation for Y1

Y1(u) = e−RE(u) exp

+∞∫
0

dv

2π
K+(v,u) log[1 + Y1(v)].

This integral can be extended to the real axis by using the parity of the kernel K+(v, u) =
K(v, u) + K(−v, u) and by defining Y1(−u) = Y1(u)

Y1(u) = e−RE(u) exp

+∞∫
−∞

dv

2π
K(v,u) log[1 + Y1(v)].

This is nothing but the TBA equation for a periodic system at inverse temperature R. In particular, 
the periodic partition function can be written in terms of Y1

logZ(R,L) = L

+∞∫
−∞

du

2π
p′(u) log[1 + Y1(u)]. (5.6)
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Fig. 6. A K− loop connecting n points (uj , rj ). Trees growing out of a vertex (uj , rj ) sum up to the corresponding 
Yr (u) function. The factor rj−1rj of the propagator from (uj−1, rj−1) to (uj , rj ) can be pulled into the adjacent trees. 
Taking the sum over all rj results in the Fermi-Dirac factor Y1(uj )/(1 + Y1(uj )) at each vertex j .

Similarly, we can also extend the domain of integration in (5.2) to the real axis, using the parity 
of Dab(u, r) and Y1. By subtracting the periodic free energy (5.6) from the tree part of the free 
energy (5.2), we obtain the tree contribution to g-function

Fab(R)trees = 1

2

+∞∫
−∞

du

2π
[�a(u) + �b(u)] log[1 + Y1(u)]. (5.7)

5.2. Loop contribution

Now we turn to the sum over loops and show that they fill the missing part [5] of the g-function 
(2.13). Let us define

Fab(R,L)loops =
∑
n≥1

C±
n . (5.8)

For each n ≥ 1, C±
n is the partition sum of K± loops of length n with the trees growing out of 

these loops which can be summed separately

C±
n = ±1

n

∑
1≤r1,...,rn

∞∫
0

du1

2π
...

∞∫
0

dun

2π
Yr1(u1)....Yrn(un)r2r1K

±(u2, u1)....r1rnK
±(u1, un).

In this expression, the sign comes from fermion loop and 1/n is the usual loop symmetry factor
(see Fig. 6).

We can use the relation (5.5) to carry out the sum over r∑
r≥1

r2Yr(u) = Y1(u)

1 + Y1(u)
.

It follows that

C±
n = ±1

n
tr(K̂±)n, (5.9)

where the kernels K̂± are defined in (2.15). The loop contribution is therefore given by

Fab(R)loops = log det
1 − K̂−

1 − K̂+ . (5.10)
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The g-function is obtained by combining (5.7) and (5.10) and set a = b

logga(R) =1

2

[
F trees

aa (R) +F loops
aa (R)

]

=1

2

+∞∫
−∞

du

2π
�a(u) log[1 + Y1(u)] + 1

2
log det

1 − K̂−

1 − K̂+ . (5.11)

5.3. Excited state g-function

In this section, we derive the excited state g-function. This quantity can be regarded as the 
normalized overlap between the boundary state and an excited bulk eigenstate

gψ
a = 〈Ba |ψ〉√〈ψ |ψ〉 . (5.12)

By setting |ψ〉 to the ground state |ψ0〉, we recover the definition (2.10) of the g-function. We 
restrict our computation to the case where |ψ〉 is of the form | ± w1, ±w2, ..., ±wN 〉. We also 
assume for simplicity that the scattering matrix is a function of the difference of rapidities (rela-
tivistic invariance).

First, let us briefly summarize the excited state TBA equations for a periodic system, following 
[9]. We consider a torus with one large dimension L (physical volume) and a finite dimension 
R (mirror volume). A mirror state |ϑ〉 = |v1, ..., vN 〉 propagates along the L direction. Note that 
the mirror-physics convention is in reverse order compared to [9]. The Boltzmann weight of a 
physical particle is dressed by the interaction with these mirror particles

Y ◦
ϑ(u) = e−RE(u)

N∏
j=1

S(u − vj + iπ/2). (5.13)

To compute the energy of the mirror state |ϑ〉, we have to add to the free energy the contribution 
from the mirror particles that go directly to the opposite edge without scattering

E(ϑ) = − 1

L
logZ(R,L,ϑ) =

N∑
j=1

E(vj ) −
+∞∫

−∞

du

2π
p′(u) log(1 + Yϑ(u)), (5.14)

where Yϑ solves for the excited state TBA equation

Yϑ(u) = Y ◦
ϑ(u) exp

[ +∞∫
−∞

dw

2π
K(w,u) log(1 + Yϑ(w))

]
. (5.15)

The on-shell condition for the state |ϑ〉 is obtained by transforming a mirror particle of rapidity 
vj to a physical particle of rapidity vj − iπ/2. The relative factor between the two ways of com-
puting the partition function is −Y(vj − iπ/2). This leads to the finite volume Bethe equations

Y(vj − iπ/2) = −1, j = 1,2, ...,N. (5.16)

Now let us return to the excited state g-function (5.12). We repeat the same exercise for a 
long cylinder of length L and radius R with two boundaries a and b together with a state |ψ〉 =
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| ± w1, ±w2, ..., ±wN 〉 propagating in the L direction. We denote the partition function in this 
case by Zab(R, L, ψ).

The idea is, if we can identify the excited energy (5.14) with the extensive part of the parti-
tion function Zab(R, L, ψ) when |ψ〉 ≡ |ϑ〉, then the rest (intensive part) gives us the excited 
g-function corresponding to |ψ〉

gψ
a g

ψ
b = Zab(R,L,ψ)

Z(R,L,ψ)
. (5.17)

To compute Zab(R, L, ψ) we perform the sum over eigenstates of the physical Hamiltonian 
with boundary Hab. The procedure is similar to that of ground-state g-function: we obtain a sum 
over trees and loops. The only difference is the Feynman rule for the vertices

e−RE(u) → e−RE(u)

N∏
j=1

S(u − wj + iπ/2)S(u + wj + iπ/2) ≡ Ỹ ◦
ψ(u) (5.18)

In particular, the extensive part of the partition function Zab(R, L, ψ) is given by

logZab(R,L,ψ)extensive = −L

N∑
j=1

E(±wj) + 2L

∞∫
0

du

2π
p′(u) log(1 + Ỹψ (u)) (5.19)

where Ỹψ (u) being the sum of trees rooted at vertex u now satisfies the equation

Ỹψ (u) = Ỹ ◦
ψ(u) exp

[ +∞∫
0

dw

2π
K+(w,u) log(1 + Ỹψ (w))

]
. (5.20)

As a consequence of the crossing symmetry S(u) = S(iπ − u) we have the identity

S(u − wj + iπ/2)S(u + wj + iπ/2) = S(−u − wj + iπ/2)S(−u + wj + iπ/2) (5.21)

which means that the function Ỹ ◦
ψ(u) is an even function of u. Therefore we can extend Ỹψ to the 

real axis and identify Ỹψ with Yϑ when |ψ〉 = |ϑ〉. Again we have Ỹψ(wj ) = Ỹψ (−wj) = −1. 
We conclude that

log(gψ
a g

ψ
b )(R) =

∞∫
0

du

2π
[�a(u) + �b(u)] log(1 + Ỹψ (u)) + log det

1 − K̂−
ψ

1 + K̂+
ψ

, (5.22)

where the Fermi-Dirac factor in the kernel K̂±
ψ is now given by Ỹψ/(1 + Ỹψ ), cf. eq. (2.15).

Our method produces correctly equations (5.15), (5.16), (5.20) that determine the excited 
states in both periodic and open case. However in the periodic case our intuitive picture misses 
a contribution 

∑
E(vj ) to the excited state energy. Similarly, we believe that the structure of 

the excited state g-function given in (5.22) is correct up to a simple additional contribution. By 
comparison with the asymptotic g-function derived in [14], this term appears to be the mirror-
continued reflection factor. We leave this problem to future investigations.
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6. More than one type of particle

In this section we generalize our method to theories with multiple species of particle inter-
acting via diagonal bulk scattering and diagonal reflection matrices. This generalization also 
provides insight on g-function of non-diagonal theories solved by Nested Bethe Ansatz. We 
present a regularization scheme for these theories and we consider an explicit example in an-
other work [13].

For simplicity we consider a theory with two species. The bulk scattering matrices and the 
reflection matrices are denoted by Spq and Rpa, Rpb for p, q ∈ {1, 2}. They are assumed to 
satisfy the following properties

Spp(u,u) = −1,

Spq(u, v)Sqp(v,u) = Rpa(u)Rpa(−u) = Rpb(u)Rpb(−u) = 1, (6.1)

Spq(u,−v)Sqp(−u,v) = 1.

The last property is only needed for system with boundaries.

6.1. Periodic systems

An (N1 +N2)-particle state is characterized by a set of rapidities |u11, ..., u1N1 , u21, ..., u2N2〉. 
Particles of the same type must have different rapidities: u1j 
= u1k , u2j 
= u2k . The Bethe equa-
tions for such state read

p1(u1j )L +
N1∑
k 
=j

−i logS11(u1j , u1k) +
N2∑
k=1

−i logS12(u1j , u2k) = φ1j = 2πn1j ,

p2(u2j )L +
N1∑
k=1

−i logS21(u2j , u1k) +
N2∑
k 
=j

−i logS22(u2j , u2k) = φ2j = 2πn2j .

(6.2)

The partition function can be written as a sum runs over two sets of mode numbers n1 =
n11, ..., n1m1 and n2 = n21, ..., n2m2 along with two sets of multiplicities (wrapping numbers) 
r1 = r11, ..., r1m1 and r2 = r21, ..., r2m2

Zab(R,L) =
∞∑

m1=0
m2=0

(−1)m1+m2

m1!m2!
∑

0≤n1,n2
1≤r1,r2

2∏
p=1

mp∏
j=1

(−1)rpj

rpj

e−RE((n1,r1),(n2,r2)). (6.3)

The mode numbers ((n1, r1), (n2, r2)) are related to the rapidities ((u1, r1), (u2, r2)) through 
Bethe equations with multiplicities

p1(u1j )L +
m1∑
k 
=j

−ir1k logS11(u1j , u1k) +
m2∑
k=1

−ir2k logS12(u1j , u2k) = φ1j = 2πn1j ,

p2(u2j )L +
m1∑
k=1

−ir1k logS21(u2j , u1k) +
m2∑
k 
=j

−ir2k logS22(u2j , u2k) = φ2j = 2πn2j .

The Gaudin matrix has a 2 × 2 block structure
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Ĝ =
(

r1∂u1φ1 r1∂u2φ1
r2∂u1φ2 r2∂u2φ2

)t

=
(

Â B̂

Ĉ D̂

)
(6.4)

The explicit expressions of each block are

Âjk = δjk[r1jLp′
1j +

m1∑
l 
=j

r1j r1lK
jl

11 +
m2∑
l=1

r1j r2lK
jl

12] − r1j r1kK
jk

11 ,

B̂jk = −r1j r2kK
jk
12 , Ĉjk = −r2j r1kK

jk
21 ,

D̂jk = δjk[r2jLp′
2j +

m1∑
l=1

r2j r1lK
jl

21 +
m2∑
l 
=j

r2j r2lK
jl

22] − r2j r2kK
jk

22 .

The partition function can be written in terms of the determinant of this matrix

Z(R,L) =
∞∑

m1=0
m2=0

1

m1!m2!
∑
r1,r2

2∏
p=1

mp∏
j=1

+∞∫
−∞

dupj

2π

(−1)rpj −1

r2
pj

e−rpj REp(upj ) det Ĝ. (6.5)

We apply the matrix-tree theorem for the matrix Ĝ and obtain a tree expansion of the free 
energy. Each vertex now carries an index p ∈ {1, 2} to indicate what type of particle it stands for. 
A branch going from vertex of type p to vertex of type q has a weight of rqrpKqp . We represent 
vertices of type 1 by a disk and those of type 2 by a circle.

Let us denote by Ypr(u) the sum over all the trees rooted at (u, r) of type p. The free energy 
is given by

logZ(R,L) = L

+∞∫
−∞

du

2π

[
p′

1(u)
∑

r

rY1r (u) + p′
2(u)

∑
r

Y2r (u)

]
, (6.6)

(6.7)

The generating functions of the two types of trees (see Fig. 7) are intertwined with each other

Y1r (u) = (−1)r−1

r2 e−rRE1(u) exp

[
r

∫
dv

2π

∑
s

sK11(v,u)Y1s(v) + sK21(v,u)Y2s(v)

]
,

Y2r (u) = (−1)r−1

r2 e−rRE2(u) exp

[
r

∫
dv

2π

∑
s

sK12(v,u)Y1s(v) + sK22(v,u)Y2s(v)

]
.

In particular, we have

Y1r (u) = (−1)r−1

r2 Y r
11(u), Y r

2r (u) = (−1)r−1

r2 Y r
21(u). (6.8)
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Fig. 7. The two-species TBA equations.

For simplicity, let us denote Y11 and Y21 simply by Y1 and Y2. We recover the TBA equation of 
two species

logZ(R,L) = L

+∞∫
−∞

du

2π

{
p′

1(u) log[1 + Y1(u)] + p′
2(u) log[1 + Y2(u)]

}
,

Y1(u) = e−RE1(u) exp
[
K11 � log(1 + Y1) + K21 � log(1 + Y2)

]
,

Y2(u) = e−RE2(u) exp
[
K12 � log(1 + Y1) + K22 � log(1 + Y2)

]
.

(6.9)

6.2. Open systems

Let us denote by R1ab and R2ab the reflection factors of the first and second particle. The
Bethe equations for the state |u11, ..., u1N1 , u21, ..., u2N2〉 now read

e2ip1(u1j )LR1ab(u1j )

N1∏
k 
=j

S11(u1j , u1k)S11(u1j ,−u1k)

×
N2∏
k=1

S12(u1j , u2k)S12(u1j ,−u2k) = 1,

e2ip2(u2j )LR2ab(u2j )

N1∏
k=1

S21(u2j , u1k)S21(u2j ,−u1k)

×
N2∏
k 
=j

S22(u2j , u2k)S22(u2j ,−u2k) = 1.

The rapidities and the mode numbers are taken to be positive. Similar to (3.6), we have

Zab(R,L) =
∞∑

m1=0
m2=0

(−1)m1+m2

m1!m2!
∑

0≤n1,n2
1≤r1,r2

2∏
p=1

mp∏
j=1

(−1)rpj

rpj

(1 − δnpj ,0)e
−RE((n1,r1),(n2,r2)).

(6.10)

The conversion between mode numbers and rapidities under the presence of multiplicities
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2p1(u1j )L − i log

[
R1ab(u1j )[S11(u1j , u1j )]r1j −1

m1∏
k 
=j

[S11(u1j , u1k)]r1k

×
m2∏
k=1

[S12(u1j , u2k)]r2k

]
= φ1j

2p2(u2j )L − i log

[
R2ab(u2j )[S22(u2j , u2j )]r2j −1

m1∏
k=1

[S21(u2j , u1k)]r1k

×
m2∏
k 
=j

[S22(u2j , u2k)]r2k

]
= φ2j

where we have used the notation Spq(u, v) = Spq(u, v)Spq(u, −v). The Gaudin matrix now has 
a 2 × 2 block structure

Ĝab =
(

r1[∂u1φ1 − 2πδ(u1)] r1∂u2φ1
r2∂u1φ2 r2[∂u2φ2 − 2πδ(u2)]

)t

=
(

Â B̂

Ĉ D̂

)
. (6.11)

The explicit expressions of each block are

Âjk = δjk

[
r1j [2Lp′

1(u1j ) + �1ab(u1j )] + r2
1j (K

jj+
11 − K

jj−
11 ) +

n∑
l 
=j

r1j r1lK
jl+
11

+
m∑

l=1

r1j r2lK
jl+
12

]
− r1j r1kK

jk−
11 ,

B̂jk = −r1j r2kK
jk−
12 , Ĉjk = −r2j r1kK

jk−
21 ,

D̂jk = δjk

[
r2j [2Lp′

2(u1j ) + �2ab(u2j )] + r2
2j (K

jj+
22 − K

jj−
22 ) +

m∑
l=1

r2j r1lK
jl+
21

+
m∑

l 
=j

r2j r2lK
jl+
22

]
− r2j r2kK

jk−
22 ,

where the notations are

�pab = �pa + �pb, �p�(u) = Kp�(u) − Kpp(u,−u) − πδ(u), � = a, b

K
jk±
pq = Kpq(upj , uqk) ± Kpq(upj ,−uqk), for p,q ∈ {1,2}.

If we set � to zero and K+ and K− to equal then we would recover the Gaudin matrix for the 
periodic system (6.4). The partition function is written in terms of the determinant of this matrix

Zab(R,L) =
∑
m1=0
m2=0

1

m1!m2!
∑

1≤r1,r2

2∏
p=1

mp∏
j=1

+∞∫
−∞

dupj

2π

(−1)rpj −1

r2
pj

e−rpj REp(upj ) det Ĝab.

(6.12)

The tree contribution to g-function is obtained in a similar way as before
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log(gagb)
trees(R) = 1

2

2∑
p=1

+∞∫
−∞

du

2π
�pab(u) log(1 + Yp(u)), (6.13)

where Yp for p = 1, 2 are solutions of the TBA equations (6.9).
Now comes the loop contribution

log(gagb)
loops(R) =

∑
n≥1

C±
n , (6.14)

where C±
n denotes the sum over bosonic/fermionic loops of length n. Each of these n vertices can 

be either of type 1 or 2. The trees growing out of each vertex can be summed to the Fermi-Dirac 
factor of each type, by virtue of the relation (6.8)

∑
r

r2Ypr(u) = Yp(u)

1 + Yp(u)
= fp(u), p = 1,2. (6.15)

The loop contribution can then be written as a sum over cyclic sets p of C({1, 2}n)

C±
n = ±

∑
p1,...,pn∈C({1,2}n)

1

S(p)

n∏
j=1

+∞∫
0

duj

2π
fpj

(uj )K
±
p2p1

(u2, u1)....K
±
p1pn

(u1, un), (6.16)

where S(p) is the symmetry factor of p. This sum is nothing but the trace of 2 × 2 matrices K̂±
with elements

K±
pq(F )(u) =

+∞∫
0

dv

2π
K±

pq(u, v)fq(v)F (v), p, q ∈ {1,2}.

We obtain two Fredholm determinants with 2 × 2 matrix kernels as a generalization of (5.10)

log(gagb)
loops(R) = log det

1 − K̂−

1 − K̂+ . (6.17)

6.3. g-function of theories with non-diagonal bulk scattering

A periodic theory with non-diagonal bulk scattering can be diagonalized with the Nested 
Bethe Ansatz technique. The Bethe equations then involve additional particles with vanishing 
momentum and energy. These particles called magnons can be regarded as excitations on a spin 
chain where the physical rapidities are non-dynamical impurities. In particular the number of 
magnons cannot exceed the number of physical particles. This constraint presents a major ob-
struction in the implementation of our approach for non-diagonal theories as we cannot carry out 
the first step of summing over mode numbers.

When the number of physical particles is large however, magnons can form strings of evenly 
distributed complex rapidities. As a consequent, the TBA equations are effectively the same as 
those of diagonal theories with an infinite number of particles in the spectrum. This means that if 
we include magnon strings into our cluster expansion and remove the constraint of their numbers, 
then according to the above analysis we will recover the correct TBA equations.

If we follow this line of logic to non-diagonal open systems, we come to the conclusion 
that the g-function of these theories is an infinite-dimensional extension of (6.13) and (6.17). 
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Such direct extension proves however to be problematic. Indeed, as magnons have vanishing 
energy, there is no driving term in the TBA equations determining their pseudo-energies. As a 
consequent, the corresponding Y-functions do not vanish at zero temperature limit and so does 
the g-function. This value of g-function at zero temperature comes from graphs made entirely 
of magnons. Their contribution is present at any temperature and we propose to get rid of it by 
normalizing the finite temperature g-function by its zero temperature limit value

g(R) → gren(R) ≡ g(R)

g(R = +∞)
.

Under the presence of an infinite tower of magnon strings this normalization can be subtle. We 
consider a concrete model with string solutions in another paper [13].

7. Conclusion and outlook

We propose a graph theory-based method to compute the g-function of a theory with diagonal 
bulk scattering and diagonal reflection matrices. The idea is to apply the matrix-tree theorem to 
write the Jacobians in the cluster expansion of the partition function by a sum over graphs. The 
g-function is then written as a sum over trees and loops. The sum over trees gives TBA saddle 
point result while the sum over loops constitute the two Fredholm determinants. The method was 
generalized to theories of more than one particle type with diagonal bulk scattering and diagonal 
reflection matrices. We also propose a protocol to obtain g-function of non-diagonal theories 
solved by Nested Bethe Ansatz.

We would like to point out the relationship between the expression of the g-function and the 
overlap between an initial state and the ground-state (2.10). The normalized overlaps play an 
important role in the study of out of equilibrium dynamics [15–19] and one point function in 
AdS/CFT [20], [21–23]. A direct comparison of the two types of results on the overlaps is not 
straightforward since they imply different regimes of parameters, but it is an interesting open 
problem to understand the link between the two.

Several other directions can be investigated in near future. First, we would like to find the 
missing contribution in our proposition of the excited state g-function. As explained in the main 
text, our approach yields the correct equations that determine the excited states so it could po-
tentially be modified to produce the corresponding g-function. Second, one can consider the case 
of non-diagonal reflection matrices. It would be ideal to have a candidate theory which is suffi-
ciently simple to be the working example. Last but not least, our method could also be applied 
in the hexagon proposal for three point functions in N = 4 super Yang-Mills [24], [25]. This 
non-perturbative approach is plagued with divergence when one glues two hexagon form factors 
together [26]. The divergence takes the form of a free energy of particles in the mirror channel. 
The regularization prescription that leads to this free energy also predicts a finite contribution 
which bears some similarities to the g-function.
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Appendix A. A combinatorial proof for the matrix-tree theorem

In this appendix we give a direct proof of the matrix-tree theorem in the form presented in 
section 4.1

The aim is to compute the determinant of a n × n matrix M with elements

Mij =
⎛
⎝Di +

∑
k 
=i

K+
ik

⎞
⎠ δij − K−

ij (1 − δij ) (A.1)

in terms of trees and loops made by the elements K+
ij and K−

ij .
Compared to the Gaudin matrix (4.2), the notations are related as follows

Di → riDab(ui) + r2
i (K+

ii − K−
ii ),

K±
ij → rirjK

±
ij

The tree-matrix theorem states that the determinant of (A.1) can be written as a sum over 
spanning forests for the complete graph formed by the n vertices. The disconnected trees contain 
each either a single loop formed by K− elements, or a loop formed by K+ elements, or a root 
associated with Di ’s. In this section we do not distinguish between tadpoles and roots. Each K−
loop comes with a minus sign.

To proceed, we express the determinant as a sum over permutations

detM =
∑
σ∈Sn

(−1)s(σ )M1σ(1) . . .Mnσ(n) . (A.2)

Each permutation can be decomposed as a product of disjoint cycles of lengths k1, . . . , km with 
k1 + . . . + km = n. Each cycle of length k comes with a sign (−1)k−1, since it involves at least 
k − 1 transpositions. The structure of the diagonal and off-diagonal elements of the matrix M is 
different, one should consider separately the non-trivial cycles, of length greater than one, and 
the trivial ones. Each non-trivial cycle in the permutation σ gives as a factor a loop formed out 
of elements K−

ij . For example the cycle (123) will give a contribution

(123) −→ −K−
(123) ≡ −K−

12 K−
23 K−

31 . (A.3)

The overall minus sign comes from the signature of the cycle times (−1)k form the individual 
contributions of the matrix elements. To discuss the contribution of the trivial cycles, i.e. of the 
diagonal elements Mii , it is convenient to introduce an orientation for the elements K+

ij , with an 

arrow going from j to i (the same can be done for the elements K−
ij , so the cycle in (A.3) has an 

arrow circulating around the loop). Let us now consider the factors which contain the diagonal 
elements Mii . For simplicity we are going to consider indices i = 1, . . . , l, the other cases will 
be obtained by permutation of the indices. We have

Ml ≡
l∏

i=1

Mii =
l∏

i=1

⎛
⎝Di +

l∑
k 
=i

K+
ik +

n∑
k=l+1

K+
ik

⎞
⎠ , (A.4)

while the complement is given by

M̃l =
∑

r

∑
cycles∈Sn−l

(−1)rK−
cycle 1 . . .K−

cycle r , (A.5)
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where the sum is over the non-trivial cycles involving indices from l + 1 to n and r is the number 
of cycles. In (A.4) we have separated in the sums the terms which have both indices in the 
ensemble {1, . . . , l} and those which have one index inside and one index outside the ensemble. 
The sum in (A.4) can be expanded then as

Ml =
∑

α1∪α2∪α3={1,...,l}

∏
i∈α1

⎛
⎝ l∑

k 
=i

K+
ik

⎞
⎠ ∏

i∈α2

Di

∏
i∈α3

(
n∑

k=l+1

K+
ik

)
. (A.6)

The terms from the last factor will grow branches attached to the loops K−
(s1 s2 ... sm) with indices 

{s1, s2, . . . , sm} ⊂ {l + 1, . . . , n}.1 The tips of these branches belong to the ensemble α3. The 
second factor in (A.6) give roots in the ensemble α2.

The first factor 
∏

i∈α1

∑l
k 
=i K

+
ik has a more complicated structure. In the case when α1 =

{1, . . . , l}, it contains at least one loop of type K+
(s1 s2 ... sm) with indices in {s1, s2, . . . , sm} ⊂

{1, . . . , l}. The reason is that each term in the sum has the structure

K+
1� K+

2� . . .K+
l� , (A.7)

where � denotes an arbitrary second index not equal to the first one. Let us suppose that one of 
the indices denoted by a star is the beginning of a tree. Because the same index appears as a first 
index as well, we conclude that the corresponding vertex is also the tip of a branch, so it belongs 
to a loop. In a single factor of the type (A.7) there can be several loops, and multiple branches 
can grow out from these loops. Two different loops cannot be joined by a branch, because in this 
case two branches would join at their tips, and this is forbidden by the structure in (A.7) where 
each tip of a branch is different from the others. We conclude that when α1 = {1, . . . , l} the 
corresponding contribution is that of disjoint graphs with a single loop each and with branching 
growing out of them, spanning the ensemble of vertices {1, . . . , l}.

When α1 
= {1, . . . , l} one should repeat again the procedure of splitting the sum over indices,

∏
i∈α1

⎛
⎝ l∑

k 
=i

K+
ik

⎞
⎠ =

∏
i∈α1

⎛
⎝ ∑

k 
=i;k∈α1

K+
ik +

∑
k /∈α1

K+
ik

⎞
⎠ (A.8)

=
∑

α11∪α12=α1

∏
i∈α11

⎛
⎝ ∑

k 
=i;k∈α1

K+
ik

⎞
⎠ ∏

i∈α12

⎛
⎝ ∑

k∈α2∪α3

K+
ik

⎞
⎠ .

The terms from the second product in the second line above will add a new layer of branches 
from the branches already grown from the loops of type K−

(s1 s2 ... sm), if k ∈ α3, or will grow 
branches from the roots Di , if k ∈ α2. The new branches have tips in the ensemble α12. The 
terms in the first product will be treated as in the previous stage. The procedure will be repeated 
until all the indices are exhausted.

We conclude that after repeating the procedure we are left with an ensemble of disconnected 
(generalized) trees each growing out from

• a loop of type K−
(s1 s2 ... sm) or

1 A branch is associated with a factor of type K+
ij

, the origin of the branch being the second index, j and the tips to the 
first index i.
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• a loop of type K+
(s1 s2 ... sm) or

• a root of type Di

spanning the indices {1, . . . , n}.

Appendix B. A field-theoretical proof of the matrix-tree theorem

To begin with, we write the matrix M defined by (A.1) in a slightly different form,

Mij = M̂i δij − K−
ij , M̂i ≡ D̂i +

n∑
k=1

K+
ik . (B.1)

Note that in this writing the second term does not vanish on the diagonal. Compared to the 
Gaudin matrix (4.2), the notations here are related as follows

D̂i → riDab(ui),

K±
ij → rirjK

±
ij .

The starting point is the representation of the determinant (A.1) as an integral with respect 
to n pairs of Grassmannian variables θi, θ̄i (i = 1, ..., n). The determinant of any matrix M =
{Mjk}mj,k=1 can be written as an integral over n pairs of Grassmannian variables θ = {θ1, ..., θm}
and θ̄ = {θ̄1, ..., θ̄m}T :

detM =
∫ n∏

i=1

dθidθ̄i e
∑

ij θ̄iMij θj . (B.2)

For a matrix of the type (B.1) we want to express the determinant in terms of the quantities D̂i

and K±
ij . For that we first expand the exponential of the diagonal part using the nilpotent property 

of the Grassmannian variables,

detM= (−1)n
∫ n∏

j=1

dθjdθ̄j (1 + θ̄j θj M̂j ) e
− ∑n

j,k=1 θ̄j K−
jkθk . (B.3)

Now we go to the dual variables ψ̄i, ψi , related to the original ones by a Hubbard-Stratonovich 
transformation

detM =
∫ n∏

j=1

dθjdθ̄j dψjdψ̄j e
− ∑

j,k θ̄j K−
jkθk−∑

j (θ̄j ψj +θj ψ̄j )
∏
j

(
ψ̄jψj + M̂j

)
. (B.4)

Here we used the obvious identities for Grassmanian integration∫
dψdψ̄ eθ̄ψ+θψ̄ = θ̄ θ ,

∫
dψdψ̄ eθ̄ψ+θψ̄ ψ̄ψ = 1. (B.5)

This Gaussian integral is evaluated by performing all Wick contractions 〈 ψ̄jψk 〉 = K−
jk . Sym-

bolically

detM =
〈 m∏ (

ψ̄jψj + M̂j

)〉
Wick

, 〈 ψ̄jψk 〉 = K−
jk . (B.6)
j=1
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In a similar way, we will introduce the piece 
∑

k K+
jk in Mj through the expectation value 

with respect to n pairs of bosonic variables ϕi, ϕ̄i (i = 1, ..., n)

n∏
j=1

(ψ̄iψi + M̂j ) = e

∑n
j,k=1

∂
∂ϕj

K+
jk

∂
∂ϕ̄k

n∏
j=1

eϕj

[
D̂j + ϕ̄j + ψ̄iψi

] ∣∣∣∣∣
ϕj =ϕ̄j =0

. (B.7)

Equivalently one can represent the rhs as an expectation value with respect to n pairs of quantum 
bosonic variables with correlator 〈 ϕ̄iϕj 〉 = K+

ij , with all other correlators vanishing. Together 
with (B.6), this yields the following representation of the determinant as an expectation value

detM =
〈

m∏
j=1

(D̂j + ϕ̄j + ψ̄jψj ) eϕj

〉
Wick

, (B.8)

with the non-zero bosonic and fermionic propagators given respectively by

〈ϕj ϕ̄k〉 = K+
jk, 〈ψj ψ̄k〉 = K−

jk. (B.9)

Performing all possible fermionic and bosonic Wick contractions generates the forest expansion 
of the determinant. The expectation value is a sum of all Feynman graphs (in general discon-
nected) whose vertices cover the set {1, 2, ..., n} once and only once. Each Feynman graph 
consists of vertices connected by propagators. The correlator 〈 ϕ̄iϕj 〉 = K+

ji is represented by 

an oriented line pointing from i to j . The correlator 〈ψ̄iψj 〉 = K−
ij is represented by an oriented 

dotted line. At each vertex there is at most one incoming line while the number of the outgoing 
lines is unrestricted. The vertices with one incoming line have weight 1 while the vertices with 
only outgoing lines have weight D̂i . If a vertex has a fermionic incoming line, then it must have 
one fermionic outgoing lines and an unrestricted number of outgoing bosonic lines. There is only 
one such vertex per connected tree and it corresponds to the root. Each connected graph can have 
at most one loop, fermionic or bosonic. The fermionic loops have extra factor (−1).
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