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ABSTRACT
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the mixing matrix. We give the ranges for the parameters as determined by direct

measurements (tree-level processes), unitarity and indirect measurements (one-loop

processes). We explain how schemes for mass matrices may give reMions among

the CKM parameters. Finally, we overview further progress in the determination

of the matrix elements which can be expected in the near future.
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1. INTRODUCTION

The minimal Standard Model with three generations of fermions and a sin-

gle Higgs doublet is the simplest theoretical framework which is consistent with

all experimental measurements of electroweak phenomena. The predictions of the

minimal Standard Model can all be given in terms of eighteen independent pa-

rameters. Of these, ten are related to the quark sector of the theory: six quark

masses and four mixing parameters. The latter ones parametrize the Cabibbo -

Kobayashi - Maskawa (CKM) mixing matrix (1,2). In this work, we describe our

present knowledge of the CKM ma.trix.

The concept of quark mixing is a result of quark mass eigenstates being different

from quark interaction eigenstates. We explain this in the second section. The

CKM matrix, which connects them, is unitary and consequently its nine complex

elements are given by only four independent parameters. We explain this count,ing

of parameters and how it generalizes to any number of generations.

In the third section we present the specific parametrization with which we work,

and mention other possible parametrizations. The physics related to the mixing

matrix is, of course, independent of any specific parametrization. We explain

what are the parametrization independent quantities, with special emphasis on

CP violating observables.

The main source of information on the CKM elements are direct measurements,

namely measurements of processes which occur at the tree level in the Standard

Model. In the fourth section we survey the determination of the six matrix elements

which have been directly measured.
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Based on knowledge of some of the CKM elements from direct measurements,

one can obtain further information on additional matrix elements from unitarity.

In the fifth section we explain the assumptions that are made when using unitarity;

we calculate the unitarity constraints; and we present the unitarity triangle, which

is a convenient geometrical presentation of these constraints.

Additional information on the CKM elements is achieved from indirect mea--__ _

surements, namely measurements of processes which occur at one loop level in the

Standard Model. The allowed ranges for the CKM elements depend on the yet

unknown mass of the top quark. In the sixth section we discuss measurements of

mixing in the K” and B” systems and of the CP violating parameter 6.

The number of parameters in the quark sector is reduced in a class of models

that go beyond the Standard Model. In particular, various schemes for quark mass.o
matrices suggest relations among quark masses and mixing angles. In the seventh

section we describe various approaches to this problem. We discuss in some detail

the Fritzsch scheme.

Finally, we give an overview on experimental and theoretical progress which

could be expected in the near future.
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2. WEAK AND MASS EIGENSTATES

The gauge group of electroweak interactions is sum x U(l)y. Left-handed

quarks are in doublets of SU(2),5, while right-handed quarks are singlets of SU(2),5.

Consequently, only left-handed quarks take part in charged weak interactions:

-lw = Jz-%&‘lD; W; + h.c. (24

where Ui(Di) is a vector in generation-space of the left-handed up- (down-) quark

interaction-eigenstates, and 1 is a unit-matrix in the generation-space. This unit-

matrix is written explicitly to emphasize tha.t the W-interactions are, by definition,

diagonal in the interactioneigenbasis.
,D

If SU(2)L x U(1))’ were an exact symmetry, all quarks would be massless, and

there would be no physical distinction between the interaction eigenbasis and the

mass eigenbasis. However, in the physical world, this symmetry is broken. In the

Standard Model, the breaking is spontaneous due to a vacuum expectation value

(VEV) of a Higgs doublet. The Yu *awa interactions of Ho, the neutral member ofh

the Higgs doublet, are given by:

-dy = ?@vfiHo’ + D@DiH” + h.c. (2.2)

where F and G are the Yukawa matrices. The most important feature of these

matrices for our discussion is that they cannot be simultaneously diagonalized.

When the neutral member of the Higgs doublet assumes a VEV, (HO) = v/a,
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the quarks acquire masses:

M,y = Fv/JZ; MD = Gv/JZ. (2.3)

Without loss of generality, we can choose to identify the up quark interaction eigen-

states with the mass eigenstates (quark mass eigenstates will carry no superscript),

UL R = ui,$. This means that we work in a basis where F is diagonal, and conse-- -2 _
quently so is Mu. However, in this basis G is non-diagonal, and consequently so

is MD. We can always use a bi-unitary transformation to diagonalize MD:

hfdiag
D = VLMDV~. (2.4)

As-the mass eigenstates DL,R fulfill zMgagDR = ~MDD~, we identify

DL = VLD~; DR-= VRD~.

The gauge interaction term becomes

9-p t-Lw = $7~7 VL DLW; + h.c.

(2.5’j _ 1

(24

The matrix Vj is the mixing matrix for quarks. For n generations it is an n x n

unitary matrix. As such, it generally contains n2 parameters, of which n(n - 1)/2

can be chosen as real angles, and n(n + 1)/2 are phases. By the transformation

v = P&P;,, (2.7)

with Per and PD unitary diagonal matrices, we may eliminate (2n - 1) phases.

The number of physically meaningful phases in V is, therefore, (n - l)(n - 2)/2.
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With two generations V is the Cabibbo matrix (2) of one real angle. With three

generations,

G-4

is the KM matrix (1) of three real angles and one complex phase.

-_ _
3. PARAMETRIZATIONS

3 . 1 .  THE “STANDARD” PARAMETRIZATION

The specific choice of parameters for V is quite arbitrary. Many different

choices have been proposed for the three generation case as well as for the n > 3

case. A “good” choice depends on the intended use of that pa.rametrization: For

different purposes, different parametrizations may prove to be convenient. We use

a parametrization first introduced by Chau & Keung (3) on the basis of suggestions

by Maiani (4) and Wolfenstein (5), generalized to four generations by Botella &

Chau (6) and to any number of generations by Harari & Leurer (7) and Fritzsch &

Plank1 (8) d han c osen by the Particle Data Group (9) as standard. The advanta.ges

of this parametrization are explained in detail in ref. (7), and it is particularly

suitable for our purposes.

For three generations the matrix is [in the notation of ref. (7)]:

v= --s12C23  - C12s23S13e
i6 c12c23 - S12S23s13e

i6
s23c13

s12s23 - cl2c23s13e
i6

--c12s23 - sl2c23sl3e
i6

c23c13

where cij z cos 8ij and sij - sin 6ij. In the limit 023 = 013 = 0 the third generation

decouples, and the situation reduces to the usual Cabibbo mixing of the first two
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generations with 012 identified with the Cabibbo angle. The real angles 612,823,&s

can all be made to lie in the first quadrant by an appropriate redefinition of quark

field phases. Then all Sij and cij are positive, jVusl = ~12~13, lvubl = 513, and

cl3 is known to,

IGbj  = ~13, and  1’

IKbl = s23c13. As

place, IV,,1 = s12,
often use the ratio

q 2 IKb/v,bl = %3/s23. (3.2)

deviate from unity only in the fifth decimal

Kbl  = s23 to an excellent approximation. We

The phase 6 lies in the range 0 5 6 5 27r, with non-zero values generally breaking

CP invariance for the weak interactions.

3.2. THE KM PARAMETRIZATION

Kobayashi & Maskawa (1) originally chose-a parametrization involving the four-

angles, 81, 02, 63, 6:

Cl -s1c3 -s1s3

s1c2 ClC2C3 - s2sgei6 clcPs3 +s2c3e i6

SlS2 cls2c3 + c2s3ei6 ClS2S3 - c2c3e i6

where ci = cos Bi and si = sin 8; for i = 1,2,3.  In the limit 02 = 03 = 0, this reduces

to the usual Cabibbo mixing with 01 identified (up to a sign) with the Cabibbo

angle (2). Slightly different forms of the Kobayashi-Maskawa parametrization are

found in the literat,ure.  The CKM matrix used in the 1982 Review of Particle

Properties is obtained by letting sr + -sr and 6 -+ 6+n in the matrix given above.

An alternative is to change Eq. (3.3) by 1s + -sr but leave 6 unchanged. With

this change in ~1, the angle 01 b.ecomes the usual Cabibbo angle, with the “correct”
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sign (i.e. d’ = d cos 61 +s sin 0,) in the limit 62 = 03 = 0. The angles 01, 02, 03 can,

as before, all be taken to lie in the first quadrant by adjusting quark field phases.

Since all these parametrizations are referred to as “the” Kobayashi-Maskawa form,

some care about which one is being used is needed when the quadrant in which 6

lies is under discussion.

_--Other parametrizations, mentioned above, are due to Maiani (4) and to Wolfen-

stein (5). The latter emphasizes the relative sizes of the matrix elements by express-

ing them in powers of the Cabibbo angle. Still other parametrizations have come

into the literature in connection with attempts to define “maximal CP violation”

[see e.g ref. (lo)]. No physics can depend on which of the above parametrizations

(or any other) is used as long as a single one is used consistently and care is taken

to be sure that no other choice of phases is in conflict.

3.3. CP VIOLATION

Physical observables are independent of the parametrization of the mixing ma-

trix. Though it is convenient to use specific parametrizations in actual calculations,

it is helpful to demonstrate that one could use parametrization-invariants in the

various analyses.

The absolute values of the various matrix elements are all parametrization-

invariant. This is obvious, since these are physical observables, determined for

example from hadron semileptonic decay rates. It is somewhat more compli-

cated to understand how various CP violating observables can be expressed in

a parametrization-independent manner.
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The CKM matrix for three quark generations and its generalization to n 2 3

generations suggest that CP-invariance may be broken by complex phases in the

matrix.

Within the three generation model, there is only one physical phase, S of the

matrix (3.1). There are several conditions that have to be fulfilled in order that

GF is violated with three generations:

1. sin6 # 0.

2. There should be no mass degeneracy among the three up-sector quarks or

among the three down-sector quarks. We explain this by an example: sup-

pose that the u and the c quarks are degenerate in mass. Then any linear

combination of the mass eigenstates u and c is still a mass eigenstate. Con-

sequently, instead of a diagonal  unitary-matrix Pu [Eq. (2.7)]; we may use a

more general form:

u
P(yJ =

( >ei4 (3.4)

where U is a general 2 x 2 unitary matrix. This allows us to remove one more

phase (and an angle) from V, thus making V real.

3. All mixing angles, ~12, ~23 and ~13, and all the cosines, ~12, ~23 and ~13,

should be different from zero.

The above conditions can be summarized in one equation, which must be ful-

filled if CP is violated:

T( M;) . B(Mj) . J # 0, (3.5)
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where
T(MZ) = (7-n; - ?-r&m; - m~)(m~ - m2,)

B(Mi) = (m,” - m~)(m~ - ??-&m; -n-L;) (3*6)

J = c12c23c~~sm23s13 sin 6 = c1c2C3Sfs2s3  sin 6KM

The above condition can be restated in another way (ll), which is explicitly inde-

pendent of the parametrization of V. Choose any basis for the quarks, and assume
-_ _
that the mass matrices in this basis are MD and Mu. Then the 1.&s of Eq. (3.5)

equals (up to a possible sign) Im{det[MDMh, MuMi]}/2. Thus, for an arbitrary

basis, CP is violated in the three generation Standard Model if and only if (11):

Im{det[MDMJ, MUMJ]}  # 0. (3.7)

J, the function of the mixing angles and the phase, can also be written in a form,s
which is explicitly parametrization-independent:

for any choice of ;, j, k, I.

The numerical values that we later find for the different mixing angles imply

that I JI < 10e4, even for sin S = 1. This value is to be compared with the maximum

possible value of l/(64). The Standard Model predicts a small intrinsic value for

this measure of CP-violation.

In experiments, one really measures the ratio between the CP-violating part

of a process to its CP-conserving part. This ratio is the CP-asymmetry. The

asymmetry is given by the 1.h.s of Eq. (3.5), divided by the total rate of the
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process. As the 1.h.s of Eq. (3.5) does not depend on the specific process, the

product of the CP-asymmetry and the branching ratio is roughly of the same

order of magnitude in all measurements of CP-violation. The result of that is that

processes with large asymmetries tend to have small branching ratios, while those

with large branching ratios usually have small asymmetries.

.- -

4. DIRECT MEASUREMENTS (12)

In direct measurements we measure processes which occur at the tree level

within the Standard Model. The assumption made here is that there are no pro-

cesses from new physics which compete with Standard Model tree-level processes.

This assumption holds in most models which go beyond the Standard Model. Thus,
.

we expect the values of CKM matrix elementswhich are extracted from direct mea-

surements to hold even if the Standard Model is only a low-energy effective theory.

As the top-quark has not been experimentally observed, its mixings, Vti, cannot

be directly measured. At present we have direct information on the six elements

of the first two rows in the CKM matrix, and in this section we describe this

information.

The simplest example of a model in which direct measurements would lead to

wrong values for the CKM elements is a two Higgs doublet model, with a light

charged Higgs. The two body decay into a charged Higgs and a quark could

dominate over W-mediated decays. However, the present limits on the mass of a 4

charged Higgs allow this decay mode for only the top-quark, whose mixings have

not been directly measured anyway.
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Our present knowledge of the matrix elements comes from the following sources:

1. Nuclear beta decay, when compared to muon decay, gives (13 - 16)

l&l = 0.9744 f 0.0010 . (4.1)

This includes refinements in the analysis of the radiative corrections, espe-

cially the order Zcr2 effects, which have brought the ft-values from low and

high 2 Fermi transitions into good agreement.

2. Analysis of Ice3  decays yields (17)

IV,,l = 0.2196 f 0.0023 . .. (4.2)

The isospin violation between 11’:~ and- lii3 decays has been taken into ac,;

count, bringing the values of IV,, I extracted from these two decays into agree-

ment at the 1% level of accuracy. The analysis of hyperon decay data has

larger theoretical uncertainties because of first order SU(3) symmetry break-

ing effects in the axial-vector couplings, but due account of symmetry break-

ing (18) applied to the WA2 data (19) gives a corrected value (J. M. Gaillard

and G. Sauvage, private communication) of 0.222 f 0.003 . We average these

two results to obtain:

IV,,l = 0.2205 f 0.0018 . (4.3)

3. The magnitude of lvCdl ma,y be deduced from neutrino and antineutrino pro-

duction of charm off valence d quarks. The dimuon production cross sections
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of the CDHS group (20) yield ??, IV&l2 = (0.41 f 0.07) x 10v2, where

Bc is the semileptonic branching fraction of the charmed hadrons produced,

The corresponding preliminary value from a recent Tevatron experiment (21)

i s  Bc lvcd12 = (0.534++$;) x 10-2. Averaging these two results gives

Bc Iv&l2 = (0.47 f 0.05) x lo-2. Supplementing this with measurements

of the semileptonic branching fractions of charmed mesons (22), weighted by
._ _

a production ratio of Do/D + = (60f10)/(40~10), to give Bc = 0.113f0.015,

yields

Ii’&1 = 0.204 f 0.017. (4.4)

4. Values of IV,, I from neutrino production of charm are dependent on as-

sumptions about the strange quark density in the parton-sea. The most

conservative assumption, tha.t the strange-quark sea does not exceed the

value corresponding to an SU(3) symmetric sea, leads to a lower bound (20),

IV,,/ > 0.59. It is more advantageous to proceed analogously to the method

used for extracting IV..,/ from Ice3 decay; namely, we compare the experi-

mental value for the width of De3 deca.y with the expression [The result for

M = 2.2 GeV is found in ref. (23)] that follows from the standard weak

interaction amplitude:

r(D + Ke+v,)  = lf+D(0)~2~V,,~2(1.54  x 10rlsec-‘). (4.5)

Here ff(q2), with q = pi - pi, is the form factor relevant to II,3 de-

cay; its variation has been taken into account with the parametrization

f+D(t)/f+D(O)  = M2/(M2 - t) and M = 2.1 GeV/c2, a form and mass con-

sistent with Mark III and E691 measurements (24,25).  Combining data on
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branching ratios for Df3 decays (24,25) with accurate values (26) for TD+ and

700,  gives the value (0.78f0.11) x 1Or’ see-’ for I’(D + Ke+v,).  Therefore

lf+D~o)121v,~12 = 0.51 f 0.07. (4.6)

A very conservative assumption is that If+D(O)I < 1, from which it follows

-_ _ that lVcsI > 0.66 . Calculations of the form factor either performed (27,28)

directly at q2 = 0, or done (29) at the maximum value of q2 = (mD - m~)~

and interpreted at q2 = 0 using the measured q2 dependence, yield f+D(O) =

0.7 f 0.1 . It follows that

IV,,1 = 1.02 f 0.18 . (4.7)

The constraint of unitarity when there are only three generations gives a
D

much tighter bound (see below).

5. The ratio IV&/I&l can be obtained from the semileptonic decay of B mesons

by fitting to the lepton energy spectrum as a sum of contributions involv-

ing b + u and b + c. The relative overall phase space factor between the

two processes is calculated from the usual four-fermion interaction with one

massive fermion (c quark or u quark) in the final state. The value of this

factor depends on the quark masses, but is roughly one-half (in suppressing

b + c compared to b + u). Both the CLEO (30) and ARGUS (31) collabora-

tions have reported evidence for b + u transitions in semileptonic B decays.

The interpretation of the result in terms of IVub/&bj depends fairly strongly

on the theoretical model used to generate the lepton energy spectrum, es-

pecially for b + u transitions (28,29,32). Combining the experimental and
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theoretical uncertainties, we quote

q = Ivub/vcbI = 0.11 f 0.05. w-9

6. The magnitude of v& itself can be determined if the measured semileptonic

bottom hadron partial width is assumed to be that of a b quark decaying

-_ _ through the usual V - A interaction:

where rb is the b lifetime, 77 is a QCD correction factor and F(m,/mb) is the

phase space factor noted above as approximately one-half. Most of the error

on l&J,/ derived from Eq. (4.9) is not from the experimental uncertainties,

but in the theoretical uncertainties in choosing a value of mb and in the use

of the quark model to represent inclusively semileptonic decays which, at

least for the B meson, are dominated by a few exclusive channels. Instead

we quote the value derived from Bps decay, B + o&j!, by comparing the

observed rate with the theoretical expression that involves a form factor,

f+8(q2).  This is analogous to what gives the most accurate values for IV,,l

(from Ice3 decay) and IVcs I (from De3 decay). It avoids all questions of what

masses to use, and the heavy quarks in both the initial and final states give

more confidence in the accuracy of the theoretical calculations of the form

factor. With account of a number of models of the form factor,. the data (33)

yield

lK(,l = 0.044 f 0.009 . (4.10)

The central value and the error are now comparable to what is obtained from
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the inclusive semileptonic decays, but ultimately, with more data and more

confidence in the calculation of the form factor, exclusive semileptonic decays

should provide the most accurate value of Iv&l .

5. UNITARITY

-5: I-. INTRODUCTION

The requirement of unitarity can be simply stated as VtV = 1. This imposes

the following conditions on the matrix elements:

n n n

j=l k=l

Unitarity may be used in several ways: -- ,9

1. If we directly measure enough of the matrix elements, we may check whether

their values are consistent with the unitarity constraint. We illustrate this

in a two generation model, and explain the present situation in the three

generation case.

2. Within the minimal Standard Model, where neutrinos are all massless, the

number of generations is known to be three. We may then find values (or

allowed ranges) for the matrix elements which have not been directly mea-

sured.

3. In extensions of the Standard Model, where neutrinos of higher generations

may be very massive, the number of generations is only known to be a.? least

three. We may still give upper bounds on the unmeasured matrix elements.
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5.2. TWO GENERATIONS

To demonstrate how unitarity gives a consistency check on our measurements,

we now assume that we know of two generations only. The mixing matrix is the 2 x 2

Cabibbo matrix. Direct measurements give the following range for the absolute

values of its elements:

0.9744 f 0.0010 0.2205 f 0.0018
vc = -0.204 f 0.017 1.02 f 0.18 >

Unitarity implies that the above matrix depends on one parameter only:

vc = Cl2 s12

( >*-312 Cl2

(5.2)

(5.3)

With the above measurements we have certainly overdetermined the Cabibbo an;

gle. The test of the two generation Standard Model is the following: Can we find

a range for the Cabibbo angle which is consistent with all measurements? The

answer is in the affirmative if

0.220 < s12 5 0.221. (54

Thus, a two generation picture is consistent within the experimental errors on the

matrix elements; we could not tell that there is a third generation if it were not for

its direct observation (or from CP violation). From our knowledge about /v&l and

lVvbl we know that the third generation mixings would be probed only if we reached

an accuracy level of 10N4 in the determination of IVuil or 10m3 in the determination

Of IVcil (i = d, s); this is well beyond the present level of a.ccuracy. At present, the
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values in Eq. (5.2) imply only the following mild bounds on the possible mixings

of a third generation:

v= ( - 0 - 0.07

. .

0

-

0.51
0 - 0.13 0 - 0.50 0 - 1 1

(5.5)

The-results derived here have some bearing on the three generation analysis. We

have directly measured six elements, which should give a consistency check on the

four parameters of the CKM matrix. However, due to the small values of IvUbl and

II&l together with the present level of accuracy, four of the elements overdetermine

~12, just as described above for two generations, and there is no overdetermination

yet of the other parameters.

5.3. THREE  GENERATIONS
,e

The recent measurements of the number of light neutrinos (34 - 38) imply

that, within the minimal Standard Model and some of its extensions, the number

of generations is three. This makes it very likely that the 3 x 3 CKM matrix exactly

fulfills the unitarity constraints. Consequently, we may deduce the allowed ranges

for the &i elements, and also further restrict the allowed ranges for elements which

were directly measured.

1. The value of I&, 1 is derived from

Ihbi2  + lv,b12 + lvib12  = 1. (5.6)

As both IvUbl and lvcbl are measured to be much smaller than 1, the lVtb I
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value is very close to 1:

0.9986 < l&b/ < 0.9994. (5.7)

2. The value for I&I is derived from

As the first term on the left hand side is much smaller than the other t.wo,

and as both IV,,l and Ik$,l are very close to 1, the IVtsI value is very close to

i&b/:

0.034 5 I&I 5 0.055. W-9
.D,

3. The allowed range for l&l is derived from

v,bvnd + V;Vcd + y;& = 0. (5.10)

As both Vud and &, are very close to 1, and as Vcd z -s12, we may approx-

imate Eq. (5.10) by

v;b + Vtd = %2&b. (5.11)

This gives:

0.002 5 p&l 5 0.020. (5.12)

Full information on the ranges for the absolute values of the CKM elements
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(at one sigma) from both direct measurements and unitarity is summarized by:

(
0.9749 - 0.9754 0.2187 - 0.2223 0.002 - 0.009

v = 0.187 - 0.221 0.974 - 0.982 0.035 - 0.053 (5.13)
0.002 - 0.020 0.034 - 0.055 0.9986 - 0.9994

In terms of the parameters of Eq. (3.1) we get:

~12 = 0.2205 f 0.0018; ~23 = 0.044 f 0.009; q E ~13/~23  = 0.11 f 0.05. (5.14)-_ _

There are no direct constraints on the phase S. Among the three real angles, there

are large uncertainties in 513 only. Therefore, it is useful to present the information

coming from indirect measurements as constraints in the q - S plane.

5:4. THE UNITARITY TRIANGLE

As is apparent from Eq. (5.13), the only poorly determined matrix elements are,O
L& and I&,. They are related to each other by the unitarity constraint (5.10) or, to

a very good approximation, (5.11). The information that we may get from indirect

measurements will have to comply with this constraint. It is very convenient to

present such information and to discuss further predictions by using the unitarity

triangle, which is just a geometrical representation of the relation (5.11) in the

complex plane: The three complex quantities, k$,, Vtd and S12Vcb should form

a triangle, as shown in Figure 1. Resealing the triangle by [l/(Sl2]I&])],  the

coordinates of the three vertices A, B and C become

Im cb

-slPI&bl  ’I
m O), C(O, 0). (5.15)

In the Wolfenstein parametrization (5), which is just the small mixing-angle ap-

proximation of the parametrization (3.1), the coordinates of the vertex A are (p, 7).
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5.5. MORE THAN THREE  GENERATIONS

The existence of more than three generations is possible only if neutrinos of

higher generations are massive, and their masses are X Mz/2. If, indeed, there are

more than three generations, we could still derive useful limits on the elements of

the 3 x 3 sub-matrix:
-.- _

& lKj12 I 1; 2 l&j12 2 1.
j=l i=l

This would give the following ranges for the elements of the sub-matrix:

0.9734 - 0.9754 0.2187 - 0.2223 0.002 - 0.009

v = 0.187 - 0.221 0.84 - 0.98 0.035 y- 0.053

0 - 0.13 0 - 0.50 0 - 0.9994

(5.16)

(5.17)

6. INDIRECT MEASUREMENTS

6.1. INTRODUCTION

With indirect measurements we are able to probe physics at a high energy

scale due to loop effects. Most important, loop contributions from an intermediate

top quark allow us to measure its mass and mixings. The assumption made is

that there are no important contributions from new physics beyond the Standard

Model. Note, however, that this does not hold in many extensions of the Standard

Model: loop diagrams within the Standard Model are suppressed by being of higher

order in the weak coupling and by the GIM mechanism, while tree level processes

from beyond the Standard Model are suppressed by the high energy scale, but

are lower order in the couplings and may be free of GIM suppression. Thus, they
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may compete with or even dominate over the Standard Model contributions. This

makes indirect measurements an important test of the Standard Model, and at the

same time a sensitive probe of physics beyond it.

A useful demonstration of the use of indirect measurements is the analysis of

K - I? mixing. The existence of a third generation is not necessary, and we show

how the two generation Standard Model is tested.._ _

All other indirect measurements that we study have significant contributions

from the top quark. Within the Standard Model, the strongest lower bound on the

top mass comes from the CDF collaboration (39):

mt 2 77 GeV. (6.1)

This bound may be evaded in specific extensions of the Standard Model. For

example, within a two Higgs doublet model, the present limits from hadron colliders

may not hold, and the strongest limit comes from measurements by OPAL (40),

mt > 43.5 GeV. Another measurement by CDF which determines the W-width

(41), gives a bound that is independent of the decay modes of the top quark,

mt > 41 GeV. An upper limit on mt is derived from the virtual effects of the

top quark on the gauge sector parameters (42 - 44). The main ingredients in

this analysis are the consistency through one-loop electroweak corrections of the

precisely known values of o, GF and Mz with the measurements of Mw/Mz

and deep inelastic neutrino scattering on nucleons. Though this is an indirect

determination of mt, the only assumption made on the CKM elements is a very

mild one, /&,I N 1. It gives:

mt =5 200 GeV. (6.2)
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As long as the top quark is not experimentally observed, it is impossible in

principle to directly measure the values of the three elements IVtil. (It is important

to emphasize that even when the top quark is finally observed, it may be very

difficult, if not impossible, to measure some of these elements.) Consequently,

the only way to improve our knowledge of these parameters beyond the unitarity

constraints, is by using indirect measurements. In all these measurements, the-_ -
results depend on both the top-quark mixings and its mass. We study mixing in

the B - B system and CP violation in the neutral K system to further constrain

the Vii elements.

6.2.  K-ii MIXING

The mass difference AM,q- between the two neutral I<-mesons’is a result of”

mixing, Mlz(K’), between the two isospin eigenstates. With two genera.tions, the

short distance contribution to the mass difference is given by (45):

AMK . (1 - 0) = 6~2-171M~(B~f~.)M~YcRe[(V,‘dVcs)2] (6.3)

where 9; = mf/M&. We divide the parameters in this equation (other than m,, Vcd

and V&) into two categories:

1. Parameters which are known to a high level of accuracy. We collect many of

them into

ch’ =
6s2A MA’

- 1.8 x 1O-5
G$firMKM& - (6.4)
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where we use:

GF = 1.166 x 10-5GeV-2,  Mw = 80 GeV

fi- = (0.165 GeV)2, M,q- = 0.498 GeV, AMK = 3.52 x lo-15GeV.
(64

The parameter ~1 is a QCD correction (46): 71 = 0.7.

-‘2: Parameters with large theoretical uncertainties. The D parameter gives the

relative part of long distance contributions to AMK. We use

The BK parameter gives the ratio between the short distance contribution

to AMK and its value in the vacuum insertion approximation. We use ,D

Eq. (6.3) can then be rewritten as

CK(l -D)
- 81Yc(Kdv,,)2.BK - (6.8)

(In the two generation case all matrix elements are real.) When the original study

of K - K mixing (45) was performed, the c-quark was not yet experimentally

discovered. Thus, one could use Eq. (6.8) to predict the mass of the c-quark. In the

original calculation, the vacuum saturation approximation was used (BK = l), and

neither long-distance contributions nor QCD corrections were taken into account
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(D = 0, 71 = 1). This led, somewhat coincidentally, to the correct prediction (45):

m, = 1.5 GeV. With the full range of BK and D,

0.9 x lo-5 2 CK Cl- D)
BK

5 5.3 x 10-5, (6.9)

and with the correct value for 71, one would have predicted 1.3 GeV 5 m, 5

3.2 GeV. If, on the other hand, we use m, = 1.4 GeV, we get 0.20 < VcdVcs 5 0.50.
-_ _
This is to be compared with the constraints from direct measurements and unitarity

as follow from Eq. (5.4).

With three generations one has to take into account contributions from in-

termediate t-quarks. The r.h.s of Eq. (6.8) becomes more complicated (47) and

depends also on mt, Vts and Vtd. However, the contribution of diagrams involving

the t-quark is suppressed by more than an order of magnitude compared to the
,9

c-quark contribution. With the large theoretical uncertainties, it is impossible to

derive any useful information on rn,t and V&.

6.3. B - B MIXING:  xd

Mixing in the B - B system is characterized by the parameter Xd = AM/I’.

Within the Standa.rd Model it is given to a very good approximation by

where

f2(yt) = ’ - nY;,(‘_;Ji [ 1 + 3 ln(yl)] .
t

(6.10)

(6.11)

Corrections of order mi/rni due to external momenta are neglected. This affects

the result by 1% or less. We note two important differences from the K - 17 case:
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1. For neutral mesons AM 0; Re [(Ml2 - iI’12)(MT2 - t!jri2)]1’2. In the K”

system, both Ml2 and I’12 are almost real, and the mixing depends on

Re[M12(K”)]. In the B” system we have )I’121 < IM121,  and the mixing

depends on lM12(B”)l.

2. In the I< system, the contribution from intermediate t quarks is suppressed

- .- -because the external d and s quarks are of the first and second generations,

with small mixing to the third generation quark. In the B system, the

external d and b quarks are of first and third generations. Thus the t quark

couplings are not suppressed, and with its large mass the diagram with two

intermediate t quarks is dominant. In fact, the contribution of u and c

intermediate quarks can be safely neglected.

The parameters in Eq. (6.10) (other than mt and I&) can be divided into: :,.

1. Parameters which are known to a high level of accuracy. We collect them

into

CB E 6n2
G;M*M$,

= 1.3 x lo7 GeV

where, in addition to the previously given parameters, GF and Mw, we use

MB = 5.28 GeV. (6.13)

The parameter 77 is a QCD correction (48): n = 0.85. To a very good

approximation vtb = 1.

2. Parameters with relatively large theoretical ambiguities (B~fi), experimen-

tal errors (Xd), or both (rbIvcb12).
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One should note that Iv&l and rb appear Only in the combination rbIVcb12,

which does not depend on q, as can be readily seen from Eq. (4.9). Therefore,

the error on this combination is somewhat smaller than on Iv,b12 alone:

qlv&12 = (3.5 f 0.6) x 10’ GeV-‘. (6.14)

The hadronic parameter Bg (analogous to BK of the Kaon system) is believed

to be close to 1. However, there is much uncertainty involved in the calculation

of the B decay constant Jo. (Note that for the K, the decay constant fK is

experimentally determined.) A range of values for f~ has been derived from QCD

sum rules and lattice calculations:

dsfB = 0.15 f 0.05 GeV. (6.151

The ARGUS (49) and CLEO (50) 11 bco a ora ions observe Bd - Bd mixing witht

0.21 f 0.06 ARGUS
rd = 0.14 f 0.05 CLEO

(6.16)

The Xd parameter is related to rd by rd = xi/(2 + xi). We take the combined

result of the two experiments, rd = 0.18 f 0.05, and get

xd = 0.66 f 0.11.

Eq. (6.10) then can be rewritten as

(6.17)

(6.18)
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With the parametrization (3.1) we get

CB
xd

kblv,b12)(BB.f;)
= vYtf2(Yt)(s;2  + q2 - 2~12VOS 6). (6.19)

From the ranges given above:

(6.20)

Eq. (6.18) t g tho e er with the unitarity constraints on l&l gives mt 2 50 GeV,

which is below the bound from direct searches, but may be useful in extensions of

the Standard Model (51). Eq. (6.18) together with the upper bound on mt gives

l&l > 0.004. (6.21)

For mt X 185 GeV the upper limit on lvtdl that follows from Eq. (6.‘18) is strange;

than the unitarity bound.

6.4. THE E PARAMETER

The expression for c is (47)

(cl = Gg@fiy;K(BKfaG
x {VlYJm  [(vc*d~~)~]  + 772Ytfi(YtPm  [(vt*dvts)2]  + Q3f3(yt)Im  [V~Vcs~~~s])

(6.22)

where

f3(Yt)  = In (;) -$ [l+&l”(Yt)]. (6.23)

The parameters  (other than th,ose in the curly brackets) are divided into:
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1. Well-known parameters, which we collect into

cc E filfl&'- = 5.6 x lo--'

where, in addition to the parameters given previously, we have used

(6.24)

1~1 = 2.27 x 1O-3 (6.25)

2. Parameters with large uncertainties. The long distance contribution to E

is small and introduces.an uncertainty smaller than 5%. Thus, the large

uncertainty is in Bx, which we have already encountered in Eq. (6.7).

Eq. (6.22) can be rewritten as

D

cc
- = +<blIm(Vtd)  {b?3f3(Yt) - Vl]Ycihdl  + 772Ytf2(Yt)IVcbIRe(~d)}.  (6.26)
BK

or, using the parametrization (3.1),

-$ = (s23)2q sin 5 { [173f3(yt) - rllIYcSl2  + 1/2Ytf2(Yt)(s23)2(s12 - qcosq) .

(6.27)

For the terms in the curly brackets we use m, = 1.4 GeV and (46) 771 = 0.7; q2 =

0.6; 773 = 0.4 (the 7; are QCD corrections).
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6.5. RESULTS

We present our results for the CKM parameters in two equivalent ways:

1. Allowed regions in the q - 6 plane (52,53).  We use Eq. (6.19) involving

xd and Eq. (6.27) involving E. For each relation, we use the full range of

parameters as given in Eqs. (6.20) and [(6.7),(4.10)], respectively. For a fixed
-_ _

top quark mass, we get allowed bands in the q - 6 plane. The final allowed

region is within the two bands and within the direct limits on q [eq. (4.8)].

We show the constraints for ml = 80, 120, 160 and 200 GeV in Figure 2.

2. Allowed region for the vertex A of the unitarity triangle (54). The analysis is

done using the xd relation as given in Eq. (6.18) and the E relation as given

in Eq. (6.26). The constraints are shown in Figure 3.
.- ,0,

7. RELATIONS AMONG QUARK

MASSES, MIXING ANGLES AND PHASES

Within the Standard Model, the quark sector is described by ten free pa-

rameters. In the physical (mass) basis, these are the six quark masses, three

mixing angles and one phase. These parameters can all be experimentally de-

termined. Whatever their experimental values are, the Standard Model remains

self-consistent.

In the interaction basis, our parameters are entries of the yet undiagonalized

mass matrices. If we had some theoretical principle from which we could determine

the mass matrices, we would predict the values of the physical parameters. In

several schemes of mass matrices, the number of independent entries in the mass
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matrices is less than ten; some entries vanish or there are relations among the

non-vanishing entries. Such schemes consequently provide us with relations among

quark masses, angles and phases.

One needs to check whether the relations are consistent with experimental

data. If the relations suggested by a certain scheme were not compatible with the

experimental constraints, then either the scheme is incorrect, or new physics must

intervene to alter the parameters derived from indirect measurements. We note

that the existence of new physics beyond the Standard Model is already inherent in

the suggestion of schemes for quark mass matrices. The validity of the discussion on

the experimental consistency of various schemes given below lies in the assumption

that this new physics itself does not significantly contribute to CP violation or to

B - B mixing. This is the case, for example, if the new physics takes place at a

high enough energy scale.

Various approaches to the problem have been tried. Some simply give a qual-

itative explanation for the smallness of the angles, e.g. the work by Froggatt and

Nielsen (55). Others try to derive the form of the mass matrices from a fundamen-

tal theoretical framework such as string theory [see e.g. ref. (56) and references

therein]. Still others postulate a certain form for the mass matrices (or equivalently

a discrete symmetry) and study the resulting predictions. Many of these schemes

are inconsistent with the B - B mixing measurement (52) or with the recent lower

bounds on the top mass [Eq. (S.l)], e.g. the Stech scheme (57). We demonstrate

the general approach using a scheme due to Fritzsch (58); which is consistent with

present data.
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Fritzsch suggested

( 0
MU = au

0

the following form for the mass matrices (58):

a” 0 0 ,d,idl 0
0 b” ade-ih 0 bde’h

b” c” 0 bde-ib  ,d
(74

The six real parameters (au, b“, c”, a d, bd, cd) can be expressed in terms of the six

quark masses:
-_ _

aUxJm,m,; b”xJm,mt; c”xmt

ad=,/=; bdxJ;n’iJma;  cd:,mb
(74

The approximation is good to o(md/m,) N (l/20). The two phases ($1, $2) can

be expressed in terms of the quarks masses and the two known mixing angles, ~12

and ~23

(7.4) -

Thus, the eight parameters of the Fritzsch scheme are expressible in terms of eight

other parameters: seven known (five quark masses and two mixing angles) and one

unknown (the mass of the top quark). Consequently, if we select a value of nzt, we

get predictions for q E srs/s23 and for the phase 6:

where the phase $3 is defined through s23e-‘d3 -= @- ,-ih$i&;

sin S sin 41
+12/q) - ax f5

M (7.6)
ax 91 - ’mdm,

J-m,m u

A detailed comparison between the predictions of the Fritzsch scheme and the
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allowed ranges for the CKM parameters given in previous sections, shows that in

order to get a consistent solution (a) the mass ratio T?XS/mb should be close to its

lower limit, m,/mb N 0.021,  (b) the mixing angle ~23 should be close to its upper

limit, ~23 - 0.053, (c) the B - B mixing parameter zd should be close to its lower

limit, Xd N 0.55, (d) the B decay constant Jo should be close to the upper limit

of its theoretical range, BB ji N (0.20 GeV)2, and (e) the BK constant should._ _

be close to the upper limit of its theoretical range, BK N 1. Only if all of these

conditions are simultaneously fulfilled will there be a narrow region of (mt, q, S)

space which is consistent with both the Fritzsch relations and the experimental.

data. This region is within the following bounds:

77 GeV Lrnt < 96 GeV

0.06 <q < 0.08._

90” $5 < llo”

These constraints give many specific predictions that can be tested in the near

future (53).

8. FURTHER PROGRESS

What further progress can be expected in the determination of the CKM matrix

elements? In what follows we give a brief overview of the on-going and near-future

studies, both experimental and theoretical, which may improve our understanding

of quark mixing.

1. The determination of lvcd/ and IV,,/ from semileptonic D decays, and the

determination of l&b 1 and /v&l from semileptonic B decays.
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With higher statistics, the experimental errors on the relevant branching ra-

tios will become smaller. Moreover, we will have detailed information on exclusive

semileptonic decays: branching ratios, polarization, angular distribution, etc. This

will help to test the various phenomenological models and to tune their parame-

ters. Consequently, we will have a more reliable theoretical interpretation of the

experimental results.._ _

2. The determination of IV,, I and I&d/ from B - B mixing.

A B factory or a 2 factory may give a first measurement of B, - Bs mixing. In

addition, the mixing in Bd - Bd will be measured more accurately. The accuracy

in the determination of Vt, and Vtd will be mainly limited by the theoretical un-

certainties in the calculation of f~. However, the ratio Xd/z, is well-approximated

xd Ivtd12 f&,-=--
xs 1%12 f& *

(8.1) -

The ratio Jo,/ Jo, = 1 in the SU(3) ys mmetry limit. One expects the deviation

from the symmetry limit to make the ratio smaller than 1 by O(O.1). Lattice cal-

culations (extrapolating from lower energy scales) may give a better understanding

of this deviation.

Within the Standard Model, x5 is predicted to be large. Consequently, its mea-

surement can be done only in a time-dependent way. Studies of future experimental

facilities show (59,60) that the measurement is feasible only if x, =5 15. However,

if such a measurement is made, and if the theoretical understanding of the ratio

jam/ Jo, improves to the 10% level, it will provide us with very strong constraints

on the CKM parameters: within the Standard Model, where IVtsI = II&l, we will

33



have the ]&/(VcbV&)] side of the triangle determined with 10% accuracy. This

measurement, though indirect, will be independent of mt and Kb.

3. CP violation in B” decays.

The main goal of future B factories is to measure CP asymmetries in B” decays.

This tests the CKM description of quark mixing, and in particular the mechanism

OFCP violation. The decay rate of a timeevolved, initially pure B” (B”) into a

CP-eigenstate, j, is [see ref. (61) and references therein]:

I’(B~,,,(t) + j) 0; eWrt [1 - Im X sin(Am t)]

I’(i?$,ys(t) t j) cx emrt [l + Im X sin( Am t)] .
(8.2)

CP-violating effects are manifest through the presence of the interference term

Im X. For the processes under considera.tion here, the CP violation arises from the

quantum mechanical interference of amplitudes corresponding to two paths to the

same final state, one of which involves B” - B” mixing. The CP asymmetry, Im X,

depends only on the CKM matrix elements. More specifically, Im A = sin(2$)

where 4 stands for one of the angles of the unitarity triangle, o, /3 or y (see Figure

1). The best known examples are the measurement of sin(2P) in Bd --f G~<s;

the measurement of sin(2a) in Bd + 7~+rr-; and the measurement of sin(2y) in

BS --f ,oKs. [For a recent study of the Standard Model predictions for these

processes, see ref. (54).]

-

There are many other measurements that may provide us with additional in-

formation on the CKM elements. For some, we need to improve our theoretical

understanding, (e.g. c//c). For others, we need higher energy (e.g. finding the top

quark and measuring mt) or higher statistics [e.g. BR(K -+ ~vv)] experiments.
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I

The Standard Model describes quark mixing and CP violation through the

CKM matrix. When we measure the values of the CKM elements and CP asym-

metries in many different ways, we test this description. Even if the Standard

Model remains consistent with all measurements, the values of the various param-

eters may give us a window into a more fundamental framework, one which is able

to-predict them from first principles.
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FIGURE CAPTIONS

Figure 1. Representation in the complex plane of (a) the triangle formed by

the CKM matrix elements v$,, V&e Vci and I&, and (b) the resealed triangle with

vertices at A(p, v), B(l, 0) and C(O,O). A re evant1 B” decay mode is indicated for

the angle involved in the corresponding CP-violating asymmetry, as explained in

se&on 8.

Figure 2. Constraints from jl/ub/&bl (dotted lines), Xd (dashed curves) and

E (solid curves) on the parameters q = sls/s23 and 6 for mt = 80,120,160 and

200 GeV. The shaded region is the finally allowed range.

Figure 3. Constraints from /I&b/I’&/ (dotted circles), Xd (dashed circles) and

c (solid hyperbolas) on the resealed unitarity triangle for mt = 80,120,160 and

200 GeV. The shaded region is that allowed-for the vertex A(p,q).* ,D,
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