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1. INTRODUCTION

The minimal Standard Model with three generations of fermions and a sin-
gle Higgs doublet is the ssimplest theoretical framework which is consistent with
all experimental measurements of electroweak phenomena. The predictions of the
minimal Standard Model can all be given in terms of eighteen independent pa-
rameters. Of these, ten are related to the quark sector of the theory: six quark
masses and four mixing parameters. The latter ones parametrize the Cabibbo -
Kobayashi - Maskawa (CKM) mixing matrix (1,2). In this work, we describe our
present knowledge of the CKM matrix.

The concept of quark mixing isaresult of quark mass eigenstates being different
from quark interaction eigenstates. We explain this in the second section. The
CKM matrix, which connects them, is unitary and consequently its nine complex
elements are given by only four independent parameters. We explain this counting

of parameters and how it generalizes to any number of generations.

In the third section we present the specific parametrization with which we work,
and mention other possible parametrizations. The physics related to the mixing
matrix is, of course, independent of any specific parametrization. We explain
what are the parametrization independent quantities, with special emphasis on

CP violating observables.

The main source of information on the CKM elements are direct measurements,
namely measurements of processes which occur at the tree level in the Standard
Model. In the fourth section we survey the determination of the six matrix elements

which have been directly measured.



Based on knowledge of some of the CKM elements from direct measurements,
one can obtain further information on additional matrix elements from unitarity.
In the fifth section we explain the assumptions that are made when using unitarity;
we calculate the unitarity constraints; and we present the unitarity triangle, which

is a convenient geometrical presentation of these constraints.

__Additional information on the CKM elements is achieved from indirect mea-
surements, namely measurements of processes which occur at one loop level in the
Standard Model. The alowed ranges for the CKM elements depend on the yet
unknown mass of the top quark. In the sixth section we discuss measurements of

mixing in the K° and B° systems and of the CP violating parameter e.

The number of parametersin the quark sector is reduced in a class of models
that go beyond the Standard Model. In particular, various schemes for quark mass
matrices suggest relations among quark masses and mixing angles. In the seventh
section we describe various approaches to this problem. We discuss in some detail

the Fritzsch scheme.

Finally, we give an overview on experimental and theoretical progress which

could be expected in the near future.



2. WEAK AND MASS EIGENSTATES

The gauge group of electroweak interactionsis SU(2); x U(1)y. Left-handed
quarks are in doublets of SU(2), while right-handed quarks are singlets of SU(2).

Consequently, only left-handed quarks take part in charged weak interactions:

g —
—Lw = ﬁvﬁ‘wi W+ he. (2.1)
where U7 (D) is a vector in generation-space of the |eft-handed up- (down-) quark
Interaction-eigenstates, and 1 is a unit-matrix in the generation-space. This unit-
matrix is written explicitly to emphasize that the W-interactions are, by definition,

diagonal in the interactioneigenbasis.

If SU(2)r x U(1)y were an exact symmetry, all quarks would be massless, and‘
there would be no physical distinction between the interaction eigenbasis and the
mass eigenbasis. However, in the physical world, this symmetry is broken. In the
Standard Model, the breaking is spontaneous due to a vacuum expectation value
(VEV) of aHiggs doublet. The Y ukawa interactions of #°, the neutral member of

the Higgs doublet, are given by:
—Ly = UIFURH® + DIGDLH® + he. (2.2)

where F and G are the Yukawa matrices. The most important feature of these
matrices for our discussion is that they cannot be simultaneously diagonalized.

When the neutral member of the Higgs doublet assumes a VEV, (H?) = v/V/2,
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the quarks acquire masses:
My = Fv/V2; Mp = Gv/V2. (2.3)

Without loss of generality, we can choose to identify the up quark interaction eigen-
states with the mass eigenstates (quark mass eigenstates will carry no superscript),
UL;’R‘: U,{,R. This means that we work in a basis where F is diagonal, and conse-
quntIy S0 is My . However, in this basis G is non-diagonal, and consequently so

IS Mb. We can always use a bi-unitary transformation to diagonalize Mp:
M&* = vy MpV}. (2.4)
As-the mass eigenstates Dy, g fulfill DyM$* Dg = DL Mp D}, we identify
Dy = VD, Dp'= VgD5. (2.5)
The gauge interaction term becomes
—Lw = %Ey’vﬁmwgf + he. (2.6)

%

The matrix Vg IS the mixing matrix for quarks. For n generationsitisann» x n
unitary matrix. As such, it generally contains n? parameters, of which n(n —1)/2

can be chosen as real angles, and n(n +1)/2 are phases. By the transformation
v = PyV} P}, (2.7)

with Py and Pp unitary diagonal matrices, we may eliminate (2n — 1) phases.

The number of physically meaningful phasesin V is, therefore, (n — 1)(n — 2)/2.



With two generations V is the Cabibbo matrix (2) of one real angle. With three

generations,
Via Vus Vap
V=1 Va Ve Va (2.8)
A\ Vi Vi Vi
is the KM matrix (1) of three real angles and one complex phase.

3. PARAMETRIZATIONS

3.1. THE “STANDARD” PARAMETRIZATION

The specific choice of parameters for V is quite arbitrary. Many different
choices have been proposed for the three generation case as well asfor then > 3
case. A “good” choice depends on the intended use of that parametrization: For
different purposes, different parametrizations may prove to be convenient. We use
a parametrization first introduced by Chau & Keung (3) on the basis of suggestions
by Maiani (4) and Wolfenstein (5), generalized to four generations by Botella &
Chau (6) and to any number of generations by Harari & Leurer (7) and Fritzsch &
Plankl (8pnd chosen by the Particle Data Group (9) as standard. The advantages
of this parametrization are explained in detail in ref. (7), and it is particularly
suitable for our purposes.

For three generations the matrix is [in the notation of ref. (7)]:

—ib
c12€13 $12€13 s13€”"

V = | —s12c03 — c12523513€'° 12023 — s12823813€'° s2303 (3.1)

5 i
—C€12823 — S12€23513€"  €23€13

512823 — C12623813€
where ¢;; = cos 6;; and s;; = sin 6;;. In the limit 6,3 = 6,3 = 0 the third generation

decouples, and the situation reduces to the usual Cabibbo mixing of the first two



generations with 6;, identified with the Cabibbo angle. The real angles 612, 023, 613
can al be made to lie in the first quadrant by an appropriate redefinition of quark
field phases. Then dl si; and ¢;; are positive, |Vus| = s12¢13, |Vus| = s13, and
|Vey] = sesciz. As cy3 is known to deviate from unity only in the fifth decimal
place, |Vas| = 12, |Vis| = s13, and |V = s23 to an excellent approximation. We

often use theratio

¢ = [Vus/Veb| = s13/s23. (3.2)

The phase § lies in the range 0 < § < 2=, with non-zero values generally breaking

CP invariance for the weak interactions.

3.2. THE KM PARAMETRIZATION

K obayashi & Maskawa (1) originally chose-a parametrization involving the four
angles, 1, 02, 0, 6:

C1 —81€3 —38183
s1c2  cycpcs — s283€®  cicasy + saczetd (3.3)

5182 c182¢3 + c253€'®  c15283 — cacze’®
where ¢; = cos §; and s; =sin6; for i =1,2,3. Inthe limit 8, = 83 = 0, this reduces
to the usual Cabibbo mixing with 4, identified (up to a sign) with the Cabibbo
angle (2). Slightly different forms of the Kobayashi-Maskawa parametrization are
found in the literature. The CKM matrix used in the 1982 Review of Particle
Properties is obtained by letting s; — —s; and § — §+= in the matrix given above.
An aternative is to change Eqg. (3.3) bys;— —s; but leave § unchanged. With

this change in s, the angle 6; becomes the usual Cabibbo angle, with the “ correct”



sign (i.e. df = d cos 6; +s sin 6;) in the limit 8; = 3 = 0. The angles 6,, 6, 63 can,
as before, all be taken to lie in the first quadrant by adjusting quark field phases.
Since al these parametrizations are referred to as “the” Kobayashi-Maskawa form,
some care about which one is being used is needed when the quadrant in which §

lies is under discussion.

__Other parametrizations, mentioned above, are due to Maiani (4) and to Wolfen-
stein (5). The latter emphasizes the relative sizes of the matrix elements by express-
ing them in powers of the Cabibbo angle. Still other parametrizations have come
into the literature in connection with attempts to define “ maximal CP violation”
[see e.g ref. (10)]. No physics can depend on which of the above parametrizations
(or any other) is used as long as a single one is used consistently and care is taken

to be sure that no other choice of phasesisin conflict.

3.3. CP VIOLATION

Physical observables are independent of the parametrization of the mixing ma-
trix. Though it is convenient to use specific parametrizations in actual calculations,
it is helpful to demonstrate that one could use parametrization-invariants in the

various analyses.

The absolute values of the various matrix elements are all parametrization-
invariant. This is obvious, since these are physical observables, determined for
example from hadron semileptonic decay rates. It is somewhat more compli-
cated to understand how various CP violating observables can be expressed in

a parametrization-independent manner.



The CKM matrix for three quark generations and its generalizationto n > 3
generations suggest that CP-invariance may be broken by complex phasesin the

matrix.

Within the three generation model, there is only ore physical phase, é of the
matrix (3.1). There are several conditions that have to be fulfilled in order that

CR isviolated with three generations:
1.sin6 # 0.

2. There should be no mass degeneracy among the three up-sector quarks or
among the three down-sector quarks. We explain this by an example: sup-
pose that the « and the ¢ quarks are degenerate in mass. Then any linear
combination of the mass eigenstates « and c is still a mass eigenstate. Con-

sequently, instead of a diagonal unitary-matrix Py [EQ. (2.7)], we may use a

U
Py = ( ei¢> (3.4)

where U isageneral 2 x 2 unitary matrix. This alows us to remove one more

more general form:

phase (and an angle) from V, thus making V real.

3. All mixing angles, s12, s23 and s;3, and al the cosines, ci2, c23 and ci3,

should be different from zero.

The above conditions can be summarized in one equation, which must be ful-

filled if CPisviolated:

T(M?)-B(Mj)-J #0, (3.5)
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where
T(M?Z) = (m] — m2)(m? — m%)(m{ — m})

B(MJ) = (m} — m3)(ms — m3)(my — m}) (3.6)
J = c12€23€33812523513 SIN § = c1c2¢3898283 SN 6

The above condition can be restated in another way (11), which is explicitly inde-

pendent of the parametrization of V. Choose any basis for the quarks, and assume

th;I ihe mass matrices in this basis are Mp and My. Then the L.h.s of Eq. (3.5)

eguals (up to a possible sign) Im{det[MDML, MUM);]}/z. Thus, for an arbitrary

basis, CPisviolated in the three generation Standard Model if and only if (11):

Im{det[Mp M}, MyM}]} #0. (3.7)

J, the function of the mixing angles and the phase, can also be written in aform

which is explicitly parametrization-independent:
[J1 = [Im(Vi; Vis Vit Vi)l (3.8)

for any choice of 1, 3, k, .

The numerical values that we later find for the different mixing angles imply
that | J|<10~%, even for sin § = 1. This value isto be compared with the maximum
possible value of 1/(6+/3). The Standard Model predicts a small intrinsic value for

this measure of CP-violation.

In experiments, one really measures the ratio between the CP-violating part
of a process to its CP-conserving part. This ratio is the CP-asymmetry. The

asymmetry is given by the Lh.s of EQ. (3.5), divided by the total rate of the

9



process. As the L.h.s of Eq. (3.5) does not depend on the specific process, the
product of the CP-asymmetry and the branching ratio is roughly of the same
order of magnitude in all measurements of CP-violation. The result of that is that
processes with large asymmetries tend to have small branching ratios, while those

with large branching ratios usually have small asymmetries.

4. DIRECT MEASUREMENTS (12)

In direct measurements we measure processes which occur at the tree level
within the Standard Model. The assumption made here is that there are no pro-
cesses from new physics which compete with Standard Model tree-level processes.
This assumption holds in most models which go beyond the Standard Model. Thus,
we expect the values of CKM matrix elementswhich are extracted from direct mea-

surements to hold even if the Standard Model is only alow-energy effective theory.

As the top-quark has not been experimentally observed, its mixings, V;;, cannot
be directly measured. At present we have direct information on the six elements
of the first two rows in the CKM matrix, and in this section we describe this

information.

The simplest example of a model in which direct measurements would lead to
wrong values for the CKM elements is a two Higgs doublet model, with a light
charged Higgs. The two body decay into a charged Higgs and a quark could
dominate over W-mediated decays. However, the present limits on the mass of a
charged Higgs allow this decay mode for only the top-quark, whose mixings have

not been directly measured anyway.
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Our present knowledge of the matrix elements comes from the following sources:

1. Nuclear beta decay, when compared to muon decay, gives (13 — 16)

[Va| = 0.9744 £ 0.0010 . (4.1)

This includes refinements in the analysis of the radiative corrections, espe-
cially the order Za? effects, which have brought the ft-values from low and

high Z Fermi transitions into good agreement.

2. Analysis of K.3 decays yields (17)

[Vus| = 0.2196 £ 0.0023 .~ (4.2)

The isospin violation between KJ; and- K2 decays has been taken into ac-
count, bringing the values of |V,,,| extracted from these two decaysinto agree-
ment at the 1% level of accuracy. The analysis of hyperon decay data has
larger theoretical uncertainties because of first order SU(3) symmetry break-
ing effects in the axial-vector couplings, but due account of symmetry break-
ing (18) applied to the WA2 data (19) gives a corrected value (J. M. Gaillard
and G. Sauvage, private communication) of 0.222 4 0.003 . We average these

two results to obtain:

Vs | = 0.2205 + 0.0018 . (4.3)

3. The magnitude of |V,4] may be deduced from neutrino and antineutrino pro-

duction of charm off valence d quarks. The dimuon production cross sections
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of the CDHS group (20) yield B, |V,4|? = (0.41 £ 0.07) x 10~2, where
B, is the semileptonic branching fraction of the charmed hadrons produced,
The corresponding preliminary value from arecent Tevatron experiment (21)
i's Be |V.al*= (0.53430:33%) x 1072, Averaging these two results gives
B, |V.4|* = (0.47 + 0.05) x 10~2. Supplementing this with measurements
of the semileptonic branching fractions of charmed mesons (22), weighted by
aproduction ratio of D%/D* = (60+10)/(40F10), to give B, = 0.113f0.015,
yields

|V.q| = 0.204 + 0.017. (4.4)

4. Values of |V s| from neutrino production of charm are dependent on as-
sumptions about the strange quark density in the parton-sea. The most
conservative assumption, that the strange-quark sea does not exceed the
value corresponding to an SU(3) symmetric sea, leads to a lower bound (20),
|Ves| > 0.59. It is more advantageous to proceed analogously to the method
used for extracting |V,,| from K.3; decay; namely, we compare the experi-
mental value for the width of D.3 decay with the expression [The result for
M =22 GeV is found in ref. (23)] that follows from the standard weak

interaction amplitude:
I(D — Ketve) = |f2(0)]2Ves *(1.54 X 10Msec™). (4.5)

Here f2(4?), with ¢ = pp — pk, is the form factor relevant to D.; de-
cay; its variation has been taken into account with the parametrization
f2(t)/fP(0) = M?/(M? — t) and M = 2.1 GeV/c?, a form and mass con-

sistent with Mark 111 and E691 measurements (24, 25). Combining data on

12



branching ratios for D,; decays (24, 25) with accurate values (26) for 7p+ and

7po, gives the value (0.78f0.11) x 10! sec~! for I'(D — Ke*tv,). Therefore
|2 (0)*Ves|* = 051 £ 0.07. (4.6)

A very conservative assumption is that | f2(0)| < 1, from which it follows

_ that |V,| > 0.66 . Caculations of the form factor either performed (27,28)
directly at g2 = 0, or done (29) at the maximum value of ¢? = (mp — mg)?
and interpreted at ¢% = 0 using the measured ¢* dependence, yield f2(0) =
0.7+ 0.1. It follows that

Vis| = 1.02 £ 0.18 . (4.7)

The constraint of unitarity when there are only three generations gives a

much tighter bound (see below).

5. The ratio |Vy/ V.| can be obtained from the semileptonic decay of B mesons
by fitting to the lepton energy spectrum as a sum of contributions involv-
ing b — u and b — c. The relative overall phase space factor between the
two processes is calculated from the usual four-fermion interaction with one
massive fermion (C quark or u quark) in the final state. The value of this
factor depends on the quark masses, but is roughly one-half (in suppressing
b — ¢ compared to b — u). Both the CLEO (30) and ARGUS (31) collabora-
tions have reported evidence for & — « transitions in semileptonic B decays.
The interpretation of the result in terms of |V,,;/ V.| depends fairly strongly
on the theoretical model used to generate the lepton energy spectrum, es-

pecialy for & — u transitions (28, 29, 32). Combining the experimental and
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theoretical uncertainties, we quote

g = |Vis/Vis| = 0.11 £ 0.05. (4.8)

6. The magnitude of V,, itself can be determined if the measured semileptonic
bottom hadron partial width is assumed to be that of a b quark decaying

__through the usual V — A interaction:

_ BR(b — cti Gim?
F(b—) cful) - ( Th e) = 1;2#:

nF(me/my)|Va|? (4.9)

where 7, isthe b lifetime, n isa QCD correction factor and F'(m./my) iSsthe
phase space factor noted above as approximately one-half. Most of the error
on |V, derived from Eqg. (4.9) is not from the experimental uncertainties,
but in the theoretical uncertainties in choosing a value of m, and in the use
of the quark model to represent inclusively semileptonic decays which, at
least for the B meson, are dominated by a few exclusive channels. Instead
we quote the value derived from By; decay, B — D{ip,, by comparing the
observed rate with the theoretical expression that involves a form factor,
f2(¢%). This is analogous to what gives the most accurate values for | V|
(from K3 decay) and |V,.s| (from Dg3 decay). It avoids all questions of what
masses to use, and the heavy quarks in both the initial and final states give
more confidence in the accuracy of the theoretical calculations of the form
factor. With account of a number of models of the form factor,. the data (33)

yield
[V.s| = 0.044 + 0.009 . (4.10)

The central value and the error are now comparable to what is obtained from

14



the inclusive semileptonic decays, but ultimately, with more data and more
confidence in the calculation of the form factor, exclusive semileptonic decays

should provide the most accurate value of |V .

5. UNITARITY
-5. 1. INTRODUCTION

The requirement of unitarity can be simply stated as viv=1. This IMposes

the following conditions on the matrix elements:
oWl =1 D Vil =1 > Vivi; =0 (5.1)

Unitarity may be used in several ways. - -

1. If we directly measure enough of the matrix elements, we may check whether
their values are consistent with the unitarity constraint. We illustrate this
In a two generation model, and explain the present situation in the three

generation case.

2. Within the minimal Standard Model, where neutrinos are all massless, the
number of generations is known to be three. We may then find values (or
allowed ranges) for the matrix elements which have not been directly mea-

sured.

3. In extensions of the Standard Model, where neutrinos of higher generations
may be very massive, the number of generationsis only known to be a.? least

three. We may still give upper bounds on the unmeasured matrix elements.
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5.2. TWO GENERATIONS

To demonstrate how unitarity gives a consistency check on our measurements,
we now assume that we know of two generations only. The mixing matrix isthe 2 x 2
Cabibbo matrix. Direct measurements give the following range for the absolute

values of its e ements:

(0.9744 + 0.0010 0.2205 + 0.0018) (5.2)
Vo = ‘

0.204 + 0.017 102 £0.18

Unitarity implies that the above matrix depends on one parameter only:

Vo = ( “ s”). (5.3)

—3812 €12
With the above measurements we have certainly overdetermined the Cabibbo an=
gle. The test of the two generation Standard Modd is the following: Can we find

a range for the Cabibbo angle which is consistent with all measurements? The

answer isin the affirmative if
0.220 < 512 <0.221. (5.4)

Thus, atwo generation picture is consistent within the experimental errors on the
matrix elements; we could not tell that there is a third generation if it were not for
its direct observation (or from CP violation). From our knowledge about |V,;| and
| V] We know that the third generation mixings would be probed only if we reached
an accuracy level of 10~* in the determination of |V,;| or 10~ in the determination

of |Vii| (2 = d, 9); thisiswell beyond the present level of accuracy. At present, the
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values in Eq. (5.2) imply only the following mild bounds on the possible mixings
of athird generation:

0-—0.07

0 051 (5.5)

V= \0-013 0-050 Q-1

The-results derived here have some bearing on the three generation analysis. We
have directly measured six elements, which should give a consistency check on the
four parameters of the CKM matrix. However, due to the small values of |V,;| and
| V4| together with the present level of accuracy, four of the elements overdetermine
s12, just as described above for two generations, and there is no overdetermination

yet of the other parameters.

5.3. THREE GENERATIONS

The recent measurements of the number of light neutrinos (34 — 38) imply
that, within the minimal Standard Model and some of its extensions, the number
of generationsisthree. This makesit very likely that the 3 x 3 CKM matrix exactly
fulfills the unitarity constraints. Consequently, we may deduce the alowed ranges
for the V;; elements, and also further restrict the allowed ranges for e ements which

were directly measured.

1. The value of |V}, | is derived from

[Vaol? + [Veol® + [Vis]? = 1. (5.6)

As both |V,;| and |V,;| are measured to be much smaller than 1, the |V |
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valueisvery closeto 1.

0.9986 < |Vy3] < 0.9994. (5.7)

2. The value for |Vi,| is derived from

Vu‘svub + Vc:svcb + Vt:th = 0. (5.8)

As the first term on the left hand side is much smaller than the other two,
and as both |V,s| and |V;;| are very close to 1, the |Vi,| value is very close to

[Vab!:

0.034 < | V44| < 0.055. (5.9)

3. The allowed range for |V,4| is derived from

VisVaud + Vi Vea + VigVia = 0. (5.10)

As both V4 and V;;, are very close to 1, and as V4 &~ —s12, We may approx-

imate Eq. (5.10) by
Vis + Via = s12Vey,. (5.11)
This gives:

0.002 < |Viq| < 0.020. (5.12)

Full information on the ranges for the absolute values of the CKM el ements
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(at one sigm?) from both direct measurements and unitarity is summarized by:

0.9749 — 09754 0.2187 — 0.2223  0.002 — 0.009
v = \ 0187 -0.221 0.974 — 0.982 0.035 — 0.053 (5.13)
0.002 —0.020  0.034 — 0.055 0.9986 — 0.9994

In terms of the parameters of Eq. (3.1) we get:
812=0.2205+0.0018; s23 = 0.044 £+ 0.009; ¢ = s13/s23 = 0.11 +£ 0.05. (5.14)

There are no direct constraints on the phase . Among the three real angles, there
are large uncertainties in sy3 only. Therefore, it is useful to present the information

coming from indirect measurements as constraints in the ¢ — § plane.

5:4. THE UNITARITY TRIANGLE

Asis apparent from Eg. (5.13), the only poorly determined matrix elements are
Vig and V. They are related to each other by the unitarity constraint (5.10) or, to
avery good approximation, (5.11). The information that we may get from indirect
measurements will have to comply with this constraint. It is very convenient to
present such information and to discuss further predictions by using the unitarity
triangle, which is just a geometrical representation of the relation (5.11) in the

complex plane:  The three complex quantities, V*

ub>

Via and s,V should form
atriangle, as shown in Figure 1. Rescaling the triangle by [1/(si2|Ve|)], the

coordinates of the three vertices A, B and C become

Re Vub Im Vub

A -
s12|Ves|” 12|Vl

B(1,0), C(0, 0). (5.15)

In the Wolfenstein parametrization (5), which is just the small mixing-angle ap-

proximation of the parametrization (3.1), the coordinates of the vertex A are (p, 7).
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5.5. MORE THAN THREE GENERATIONS

The existence of more than three generations is possible only if neutrinos of
higher generations are massive, and their masses are & Mz /2. If, indeed, there are
more than three generations, we could still derive useful limits on the elements of

the 3 x 3 sub-matrix:

o 3 3
YoVl <Y vl <1 (5.16)
j=1 =1
This would give the following ranges for the elements of the sub-matrix:
0.9734-0.9754 0.2187-0.2223 0.002 — 0.009
v =| 0187-0.221 0.84-0.98  0.035 - 0.053 (5.17)
0-0.13 0-050 0 - 0.9994

6. INDIRECT MEASUREMENTS
6.1. INTRODUCTION

With indirect measurements we are able to probe physics at a high energy
scale due to loop effects. Most important, loop contributions from an intermediate
top quark alow us to measure its mass and mixings. The assumption made is
that there are no important contributions from new physics beyond the Standard
Model. Note, however, that this does not hold in many extensions of the Standard
Model: loop diagrams within the Standard Model are suppressed by being of higher
order in the weak coupling and by the GIM mechanism, while tree level processes
from beyond the Standard Model are suppressed by the high energy scale, but

are lower order in the couplings and may be free of GIM suppression. Thus, they
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may compete with or even dominate over the Standard Model contributions. This
makes indirect measurements an important test of the Standard Model, and at the

same time a sensitive probe of physics beyond it.

A useful demonstration of the use of indirect measurementsis the analysis of
K — K mixing. The existence of athird generation is not necessary, and we show

how the two generation Standard Model is tested.

All other indirect measurements that we study have significant contributions
from the top quark. Within the Standard Model, the strongest lower bound on the

top mass comes from the CDF collaboration (39):
my > 77 GeV. (6.1)

This bound may be evaded in specific extensions of the Standard Model. For
example, within atwo Higgs doublet model, the present limits from hadron coIIider'sw
may not hold, and the strongest limit comes from measurements by OPAL (40),
my > 43.5 GeV. Another measurement by CDF which determines the W-width
(41), gives a bound that is independent of the decay modes of the top quark,
my > 41 GeV. An upper limit on m; is derived from the virtual effects of the
top quark on the gauge sector parameters (42 — 44). The main ingredients in
this analysis are the consistency through one-loop electroweak corrections of the
precisely known values of «, Gr and Mz with the measurements of My /M
and deep inelastic neutrino scattering on nucleons. Though this is an indirect
determination of m,, the only assumption made on the CKM elements is a very

mild one, |Vy3] ~ 1. It gives:
my S 200 GeV. (6.2)
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As long as the top quark is not experimentally observed, it is impossible in
principle to directly measure the values of the three elements |Vi;|. (It is important
to emphasize that even when the top quark is finally observed, it may be very
difficult, if not impossible, to measure some of these elements.) Consequently,
the only way to improve our knowledge of these parameters beyond the unitarity
cpgst_rai nts, is by using indirect measurements. In all these measurements, the
results depend on both the top-quark mixings and its mass. We study mixing in
the B — B system and CP violation in the neutral K system to further constrain

the V;; elements.

6.2. K — K MIXING

The mass difference A My between the two neutral K-mesons is a result of
mixing, M12(K°), between the two isospin eigenstates. With two generations, the
short distance contribution to the mass difference is given by (45):

G3 .
AMy . (1= D) = hm My (B i) MiycRel (Vv (63)

where y; = m?/MZ,. We divide the parameters in this equation (other than m., V.4

and V) into two categories:

1. Parameters which are known to a high level of accuracy. We collect many of
them into

6mAMy
Ckg = il K

=18x107° 6.4
LI MEME, (6.4)
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where we use;

Gr = 1.166 x 1075GeV ™2, My = 80 GeV

f3 =(0.165 GeV)?, My = 0.498 GeV, AMg = 3.52 x 107 5GeV.
(6.5)

The parameter »; is a QCD correction (46): n; = 0.7.

-2 Parameters with large theoretical uncertainties. The D parameter gives the

relative part of long distance contributions to AMg. We use
0<D<0.5. (6.6)

The By parameter gives the ratio between the short distance contribution

to AMy and its value in the vacuum insertion approximation. We use

-

1
3 < B <1 (6.7)

Eq. (6.3) can then be rewritten as

1-D
CK( B ) = nlyc(Vchcs)z- (6'8)
K

(In the two generation case al matrix elements are real.) When the origina study
of K — K mixing (45) was performed, the c-quark was not yet experimentally
discovered. Thus, one could use Eq. (6.8) to predict the mass of the c-quark. In the
original calculation, the vacuum saturation approximation was used (B = 1), and

neither long-distance contributions nor QCD corrections were taken into account
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(D =0, n; = 1). This led, somewhat coincidentally, to the correct prediction (45):
m. = 1.5 GeV. With the full range of By and D,

(1-D
B

09 x107° < Ck ) <5.3x107°, (6.9)
K

and with the correct value for n;, one would have predicted 1.3 GeV < m, <
3.2 GeV. If, on the other hand, we use m, = 1.4 GeV, we get 0.20 < V_4V,, < 0.50.
Thisis to be compared with the constraints from direct measurements and unitarity

as follow from Eq. (5.4).

With three generations one has to take into account contributions from in-
termediate t-quarks. The r.h.s of Eg. (6.8) becomes more complicated (47) and
depends also on m;, Vi and V4. However, the contribution of diagrams involving
the t-quark is suppressed by more than an order of magnitude compared to the
c-quark contribution. With the large theoretical uncertainties, it is impossible to

derive any useful information on m, and V,,.

6.3. B — B MIXING: z,4

Mixing in the B — B system is characterized by the parameter z; = AM/I'.
Within the Standard Model it is given to a very good approximation by

GZ
Tq= Tb6_7£7IMB(BBf123)MV2Vytf2(yt)|Vtrlvtbl2 (6.10)
where
—1_ 3w +y) 2y; 6.11
fa(y1) TREY [1+ 1—-:?/?hl(yt) . (6.12)

Corrections of order m?/m? due to external momenta are neglected. This affects

the result by 1% or less. We note two important differences from the K — K case:
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1. For neutral mesons AM « Re [(M1z — 4T12)(M}, — %I‘;z)]l/z. In the K°
system, both Mi; and T'jz are amost real, and the mixing depends on
Re[M;2(K%)]. In the B system we have |Tj2| <« |Mi2|, and the mixing
depends on | My2(B°)|.

2. In the K system, the contribution from intermediate ¢ quarks is suppressed

|

-because the external d and s quarks are of the first and second generations,
with small mixing to the third generation quark. In the B system, the
external d and b quarks are of first and third generations. Thus the ¢ quark
couplings are not suppressed, and with its large mass the diagram with two
intermediate ¢ quarks is dominant. In fact, the contribution of » and c

intermediate quarks can be safely neglected.

The parameters in Eq. (6.10) (other than m, and Vy4) can be divided into:

-

1. Parameters which are known to a high level of accuracy. We collect them
into

672
Cg =————=13x%x10"GeV 6.12
B GiMpME, ‘ (6.12)

where, in addition to the previously given parameters, G and My, we use

Mg = 5.28 GeV. (6.13)

The parameter n is a QCD correction (48): n = 0.85. To a very good

approximation V, = 1.

2. Parameters with relatively large theoretical ambiguities(Bgf3), experimen-

tal errors (z4), or both (7|V|?).
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One should note that |V,4| and 7, appear Only in the combination m3|V,s|?,
which does not depend on r,, as can be readily seen from Eqg. (4.9). Therefore,

the error on this combination is somewhat smaller than on |V,|? alone:
7|V.s)? = (3.5 £ 0.6) x 10° GeV 1. (6.14)

The hadronic parameter Bg (analogous to By of the Kaon system) is believed
to be close to 1. However, there is much uncertainty involved in the calculation
of the B decay constant fg. (Note that for the K, the decay constant fx is
experimentally determined.) A range of values for fg has been derived from QCD

sum rules and lattice calculations:

VBpfp=0.15+ 0.05GeV. (6.15)

The ARGUS (49) and CLEO (50)chlatora tons observe B; — B; mixing with

{)0.21 + 0.06 ARGUS
T

(6.16)
14 + 0.05 CLEO

The z4 parameter is related to ry by rq = 23/(2 + 23). We take the combined
result of the two experiments, ry = 0.18 + 0.05, and get

z4=0.66+0.11. (6.17)

Eq. (6.10) then can be rewritten as

T4
| Veb|?) (BB %)

CB( = 9y f2(y1)|Vaa/ Veo|*. (6.18)
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With the parametrization (3.1) we get

Td

C
B mIVal?)(Baf3)

= nyef2(ye)(siz + ¢° — 2s12q cos 6). (6.19)
From the ranges given above:

0.044 < Td

.35, 2
. B e Val) (B g = % (620

Eqg. (6.18) tagether with the unitarity constraints on |Viy| gives m; & 50 GeV,
which is below the bound from direct searches, but may be useful in extensions of

the Standard Model (51). Eq. (6.18) together with the upper bound on m, gives
[Vi4| = 0.004. (6.21)

For m; 2 185 GeV the upper limit on|V;4] that follows from Eq. (6.18) is stronger

than the unitarity bound.

6.4. THE ¢ PARAMETER

The expression for ¢ is (47)

o =2k, M
T 1272 \2OAMy
x {mycm [(V3Ves)’] + mayefa(yo)Im [(VigVas)?] + 2na f3(ye)Im [V, Vi t’;Vzé];Z

(Bk f3 )My

where

Y 3y Y
f3(yt) = In (;) — Zl—_yt [1 + 1 ” ln(yt)} . (623)

The parameters (other than those in the curly brackets) are divided into:
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1. Well-known parameters, which we collect into
Ce = V2|e|Cx = 5.6 x 1078 (6.24)
where, in addition to the parameters given previously, we have used

le| = 2.27 x 1073 (6.25)

2. Parameters with large uncertainties. The long distance contribution to ¢
Is small and introduces.an uncertainty smaller than 5%. Thus, the large

uncertainty is in By, which we have aready encountered in Eq. (6.7).

Eq. (6.22) can be rewritten as

Ce

-

= ~|ValIm(Vig) {[mafa(ye) — mlyc|Veal + n2yefa(ye)|Ves|Re(Via)} . (6.26)

or, using the parametrization (3.1),
C( 2 . 2
Br - (s23)°q sin & { [n3f3(ye) — mlyesi2 + meyifo(yi)(s23)(s12 — g cos 6)} .
(6.27)
For the terms in the curly brackets we use m. = 1.4 GeV and (46) 7 =0.7; 72 =

0.6; n3 = 0.4 (the n; are QCD corrections).
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6.5. RESULTS

We present our results for the CKM parameters in two equivalent ways:

1. Allowed regions in the ¢ — é plane (52,53). We use Eq. (6.19) involving
zq and Eq. (6.27) involving e. For each relation, we use the full range of
parameters as given in Egs. (6.20) and [(6.7),(4.10)], respectively. For afixed

" top quark mass, we get allowed bands in the ¢ — 6 plane. The final allowed
region is within the two bands and within the direct limits on ¢ [eq. (4.8)].

We show the constraints for m; = 80, 120, 160 and 200 GeV in Figure 2.

2. Allowed region for the vertex A of the unitarity triangle (54). The analysisis
done using the z, relation as given in Eq. (6.18) and the e relation as given

in Eq. (6.26). The constraints are shown in Figure 3.

7. RELATIONS AMONG QUARK
MASSES, MIXING ANGLES AND PHASES

Within the Standard Model, the quark sector is described by ten free pa
rameters. In the physical (mass) basis, these are the six quark masses, three
mixing angles and one phase. These parameters can all be experimentally de-
termined. Whatever their experimental values are, the Standard Model remains

salf-consistent.

In the interaction basis, our parameters are entries of the yet undiagonalized
mass matrices. If we had some theoretical principle from which we could determine
the mass matrices, we would predict the values of the physical parameters. In

several schemes of mass matrices, the number of independent entries in the mass
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matrices is less than ten; some entries vanish or there are relations among the
non-vanishing entries. Such schemes conseguently provide us with relations among

quark masses, angles and phases.

One needs to check whether the relations are consistent with experimental
data. If the relations suggested by a certain scheme were not compatible with the
experimental constraints, then either the scheme is incorrect, or new physics must
intervene to alter the parameters derived from indirect measurements. We note
that the existence of new physics beyond the Standard Model is aready inherent in
the suggestion of schemes for quark mass matrices. The validity of the discussion on
the experimental consistency of various schemes given below lies in the assumption
that this new physics itself does not significantly contribute to CP violation or to
B — B mixing. This is the case, for example, if the new physics takes place at a

high enough energy scale.

Various approaches to the problem have been tried. Some ssimply give a qual-
itative explanation for the smallness of the angles, e.g. the work by Froggatt and
Nielsen (55). Others try to derive the form of the mass matrices from a fundamen-
tal theoretical framework such as string theory [see e.g. ref. (56) and references
therein]. Still others postulate a certain form for the mass matrices (or equivalently
a discrete symmetry) and study the resulting predictions. Many of these schemes
are inconsistent with the B — B mixing measurement (52) or with the recent lower
bounds on the top mass [Eq. (6.1)], e.g. the Stech scheme (57). We demonstrate
the general approach using a scheme due to Fritzsch (58); which is consistent with

present data.
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Fritzsch suggested the following form for the mass matrices (58):

0 a* O 0 alei® 0
MY=1]a" 0 b M? = | ade™'® 0 bdei?: (7.1)
0 b 0 ple—i42 c?

The six real parameters (a®, b%, ¢¥, a4, b4, ¢?) can be expressed in terms of the six

quark masses:

a® & /mym. ; b* ~ /memy ; ¢t & my

at vmgms ; bt vVmsmy ; P my
The approximation is good to O(mg/ms) ~ (1/20). The two phases (¢1, ¢2) can

(7.2)

be expressed in terms of the quarks masses and the two known mixing angles, s

and 823
812 &~ —rft—d- - 6_i¢1 -nlﬁ (73)
My Me ’
sa3 & | |2 — emita [ (7.4)
my my

Thus, the eight parameters of the Fritzsch scheme are expressible in terms of eight
other parameters. seven known (five quark masses and two mixing angles) and one
unknown (the mass of the top quark). Consequently, if we select a value of m,, we

get predictions for ¢ = s13/s23 and for the phase 6:

513 1 (me\*? /mg ; [may
=222 | — (_> 4 4 gmi(grtes) [T (7.5)
523 823 my mg me
where the phase 43 is defined through szse %2 -, / B e~z / me,
siné N singy (7.6)
(s12/q) —cos 8 o5 ¢y — Tl

A detailed comparison between the predictions of the Fritzsch scheme and the
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allowed ranges for the CKM parameters given in previous sections, shows that in
order to get a consistent solution (a) the mass ratio m,/m; should be close to its
lower limit, m,/m; ~ 0.021, (b) the mixing angle s23 should be close to its upper
limit, sq3 ~ 0.053, () the B — B mixing parameter z4 should be close to its lower
limit, z4 ~ 0.55, (d) the B decay constant fg should be close to the upper limit
of its theoretical range, Bp f§ ~ (0.20 GeV)?, and (€) the B constant should
be close to the upper limit of its theoretical range, Bx ~ 1. Only if al of these
conditions are simultaneously fulfilled will there be a narrow region of (my, ¢, §)
space which is consistent with both the Fritzsch relations and the experimental.

data. This region is within the following bounds:
77 GeV <my <96 GeV
0.06 <¢ <0.08 (7.7)

90" <6 <110°

These constraints give many specific predictions that can be tested in the near

future (53).

8. FURTHER PROGRESS

What further progress can be expected in the determination of the CKM matrix
elements? In what follows we give a brief overview of the on-going and near-future
studies, both experimental and theoretical, which may improve our understanding

of quark mixing.

1. The determination of |V 4| and |V,s| from semileptonic D decays, and the

determination of |V,;| and |V,,| from semileptonic B decays.
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With higher statistics, the experimental errors on the relevant branching ra-
tios will become smaller. Moreover, we will have detailed information on exclusive
semileptonic decays. branching ratios, polarization, angular distribution, etc. This
will help to test the various phenomenological models and to tune their parame-
ters. Consequently, we will have a more reliable theoretical interpretation of the

experimental results.
2. The determination of |V;, | and V4| from B — B mixing.

A B factory or a Z factory may give afirst measurement of B, — B, mixing. In
addition, the mixing in By — B, will be measured more accurately. The accuracy
in the determination of Vi, and Vjg will be mainly limited by the theoretical un-
certainties in the calculation of fg. However, the ratio z4/x, IS well-approximated

by

-

2
zq |Vual® [,

Tg |‘/ts|2f_1233'

(8.1)

The ratio fg,/ fe, = 1 in the SU(3)symmetry limit. One expects the deviation
from the symmetry limit to make the ratio smaller than 1 by 0(0.1). Lattice cal-
culations (extrapolating from lower energy scales) may give a better understanding

of this deviation.

Within the Standard Model, z; is predicted to be large. Consequently, its mea-
surement can be done only in atime-dependent way. Studies of future experimental
facilities show (59, 60) that the measurement is feasible only if z, < 15. However,
if such a measurement is made, and if the theoretical understanding of the ratio
fB./ fB, improves to the 10% level, it will provide us with very strong constraints

on the CKM parameters: within the Standard Model, where |Vi| = |V,3|, we will
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have the |V,q4/(V.4V.q)| Side of the triangle determined with 10% accuracy. This

measurement, though indirect, will be independent of m; and V,;.
3. CPviolation in B® decays.

The main goal of future B factories is to measure CP asymmetries in B decays.
This tests the CKM description of quark mixing, and in particular the mechanism
of CP violation. The decay rate of a timeevolved, initialy pure B® (B?) into a

CP-eigendtate, |, is [see ref. (61) and references therein]:

T(Bdys(t) = j) o< e [1 — Im X sin(Am t)]

(8.2)

P(Blhys(t) = J) oc e ™[I+ Im A sin( Am ¢)] .

CP-violating effects are manifest through the presence of the interference term
Im . For the processes under consideration here, the CP violation arises from thg
quantum mechanical interference of amplitudes corresponding to two paths to the
same fina state, one of which involves B? — B® mixing. The CP asymmetry, Im ),
depends only on the CKM matrix elements. More specificaly, Im A = sin(2¢)
where ¢ stands for one of the angles of the unitarity triangle, «, 8 or v (see Figure
1). The best known examples are the measurement of sin(28) in By — ¥ Kg;
the measurement of sin(2a) in By — #*x~; and the measurement of sin(27) in
Bs — pKgs. [For arecent study of the Standard Model predictions for these

processes, see ref. (54).]

There are many other measurements that may provide us with additional in-
formation on the CKM elements. For some, we need to improve our theoretical
understanding, (e.g. €'/¢). For others, we need higher energy (e.g. finding the top

quark and measuring m,) or higher statistics [e.9. BR(K — wvv)] experiments.
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The Standard Model describes quark mixing and CP violation through the
CKM matrix. When we measure the values of the CKM elements and CP asym-
metries in many different ways, we test this description. Even if the Standard
Model remains consistent with all measurements, the values of the various param-

eters may give us awindow into a more fundamental framework, one which is able

to-predict them from first principles.
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FIGURE CAPTIONS

Figure 1. Representation in the complex plane of (&) the triangle formed by
the CKM matrix elements V3;, Vo - V3 and Ve, and (b) the rescaled triangle with
vertices at A(p, ), B(l, 0) and C(O,0). A relevant B° decay mode is indicated for
the angle involved in the corresponding CP-violating asymmetry, as explained in

seetion 8.

Figure 2. Constraints from |Vy/ V.| (dotted lines), z; (dashed curves) and
e (solid curves) on the parameters ¢ = s13/s23 and é for m; = 80,120,160 and

200 GeV. The shaded region is the finaly allowed range.

Figure 3. Constraints from |V,;/V,s| (dotted circles), z4 (dashed circles) and
e (solid hyperbolas) on the rescaled unitarity triangle for m, = 80,120,160 and

200 GeV . The shaded region is that allowed-for the vertex A(p, 7).
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