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ABSTRACT 

A discussion of the determination of the quantum density matrix from 

realistic measurements using the maximum entropy principle is presented. 
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1. Introduction 

The application of MAXENT to quantum theory is not a well-developed sub- 

ject. Indeed, there is only one paper to my knowledge that gives a satisfactory 

treatment (in the mathematical sense) of this approach!” While this treatment 

lends itself to a discussion of certain questions in Quantum Measurement Theory, 

a normally esoteric subject of little physical consequence, it was developed with a 

very practical problem in mind. Namely, how does one choose a quantum density 

matrix based on realistic and necessarily incomplete measurements. Before an- 

swering this, one must answer a simpler question. How does one properly describe 

the results of a measurement of a variable with a continuous spectrum (such as 

position or momentum) when the experimental device has finite resolution? 

The answer to this question was recently given by Partoviy’ who based his 

treatment on a criticism and an idea by Deutsch!31 

Entropic Uncertainty: 

The basic ‘trick’ of the entropic formulation of uncertainty is to introduce the 

relevant characteristics of the measuring device into the measure of uncertainty. 

This inclusion will lead to unexpected physical consequencies. To that end let us 

introduce the notation of a measuring devive DA which is used to measure the 

observable A. Thus a measurement will consist of a partitioning of the spectrum 

(either continuous or discrete) of A into a collection of subsets ai. Therefore the 

state of the system, I$) , is to be described by a corresponding set of probabilities 

Pi” = Pi”($I DA). (14 

The number Pi. is the probability that the measurement will yield a value in 

the subset CY~. Since the most common type of subset will be an interval, they 

will be called ‘bins’. The spectrum is a property of A, but the manner in which 

it is partioned into bins is a property of the measuring device. 
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The process of binning is represented by the expression for the probability 

defined above 

The operator $’ is the projection onto the subspace relevant to the subset CX~ . 

The completeness relation is transformed into the operator statement 

The entropy associated with the measurement of the observable A using the 

device D including the uncertainty due to the effects of binning is 

(1.4 S($ID*) = -~P~lnP~, 
i 

where P,b is defined in eqn (1.2) . 

In the special case that the subset cyi includes only one eigenvalue of the 

operator A, then the projection operator simplifies to 

~9 = lai) (ail , 

and the measurement entropy reduces to 

S(ti I DA) = -c I W I4 I2 ln I (ti I ai> I2 (l-6) 

(1.5) 

which is the form given in ref.3 . However, in most interesting cases, at least 

some of the observables of interest will be either continuous or will be a discrete 

spectra with a limit point. 



Duetsch13’and PartoviI’lshowed that a proper definition of the uncertainty in 

the measurement of the two observables A and B in the state $J is simply the 

total entropy 

U(D*,D%) = S(ll, 1 DA) + S($ 1 DB), (l-7) 

This expression has the property that it possesses a lower bound that depends 

on the measuring devices DA and DB but not on the state $. 

Since the probabilities PiAorB are normalized, the ‘uncertainty’ can be rewrit- 

ten in terms of the joint probability PiA Pi” : 

U(D*,D~;~~) = -CC PePjB lnP,“PF . (1.8) 
i j 

This form also provides the physical justification for adding the individual en- 

tropic uncertainties and considering that as the proper measure of uncertainty. 

Note that this has nothing to do with ‘simultaneous measurements’ but is related 

to the serial measurement of the observables A and B on an identically prepared 

beam. 

This uncertainty should be interpreted in terms of a higher sample space . 

It is a generalization of the standard case in that the subsequent samples are 

not measurements of the same observable. It corresponds to independent mea- 

surements of different observables performed on an identically prepared beam. 

Therefore the product of the two probabilities is expected. The above form also 

generalizes in a natural way to the case of more than two observables (or in other 

words to more than two independent samples). 

A comparison with the classic Heisenberg’s uncertainty principle is facilitated 

by noting first that by some simple manipulations, we have 
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Pi”PF <II “4 + 7rf 112 /4 . (1.9) 

The double brace means the norm of the operator sum. Therefore the uncertainty 

can easily be shown to satisfy the inequality 

U(DA,DB;$) 2 2 ln[2/supi,j II 7~” +rf II] . (1.10) 

Since the zr are projection operators, it immediately follows that the left 

hand side of eqn. (1.9) is between the limits of l/4 to 1. It achieves unity only 

if there is a common eigenfunction of the operators A and B . It is only in this 

circumstance that the uncertainty as given in eqn. (1.8) can be zero; in all other 

circumstances it is positive. Any definition of the uncertainty should satisfy this 

condition if it is to be at all reasonable and even consistent. 

REMARK: It is interesting to note that the most popular extension of the 

uncertainty principle (as judged by the literature), namely 

[(A2)-W21[(B2)- w21 2 Ibw) I2 /4 > (1.11) 

where the expectation values are taken in the state $J, does not satisfy this 

condition (for example, let A and B have opposite symmetry. Then the right- 

hand side vanishes if the state has a definite symmetry). 

The Density Matrix: 

The object of this section will be to argue that the measurement entropy de- 

fined above is more general than the standard form yet will reduce to the familiar 

form for the ensemble entropy in the correct physical limit. The measurement 

entropy will, however, allow the proper inference of the density matrix p from 

any set of necessarily incomplete measurements. 
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We shall always consider that a measurement is performed only once on a 

particular copy of the system. We imagine an ‘oven’ that produces a beam of 

identical copies of the basic system that is overall stationary in its properties, 

and thereby reproducible. To describe such a system, we introduce the standard 

density matrix by the replacement 

I+> WI + P 3 (1.12) 

and 

There is a considerable amount of physics behind this innocent looking replace- 

ment involving an average over the output of the oven and possible correlations. 

The measurement entropy of the ensemble corresponding to the operator A 

is then taken to be 

S(t) 1 DA) = - c tr(p+ ) In tr(vd ) , (1.14) 

which is a joint property of the system and the measuring device D . 

The question that must now be answered is what operator should we 

choose for A so that S corresponds to the entropy of the ensemble? It 

should come as no surprise ( a similar result was proven by von Neumann- his 

argument can be carried over to the present case with only a minimumof thought) 

that the unique choice for A is p itself. Since the density matrix describes 

all that can be known about the system and contains nothing superfluous, it 

is the operator that has the least uncertainty/entropy about the system. The 

motivation behind this argument and this choice for the operator we term the 

maximum uncertainty principle . 
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Now note that trp = 1 and trp2 < 1. Therefore the density matrix has a 

purely discrete spectrum. Following the discussion of eqn. (1.5) , if the measuring 

device is sufficiently fine-binned, then the projection is 

7rr” = Ii) (il , 

where the state 1;) is an eigenfunction of the density matrix: 

The entropy then becomes 

S = - C /Ii In pi , 

(1.15) 

(1.16) 

(1.17) 

which can be immediately written in the familiar abstract form 

S =-tr[plnp]. (1.18) 

Thus we see that when the measuring device is made sufficiently accurate, 

the ensemble entropy defined above reduces to the usual form. However, for 

‘cruder’ (and more physical) devices, the finite resolution implicit in the projec- 

tion operators plays a crucial and new role. Thus we have given a formalism that 

provides a unified physical description of both the microscopic and macroscopic 

situations. 

The procedure now follows in analogy to the previous sections. The ensemble 

entropy is maximized subject to the measurement constraints ( a = 1, ..A ) 



Pi” = tr@r; ) . 

The result is 

p = 2-l exp[- C Xr7rf] . 
a,i 

The multipliers XT are determined from 

2 = tr( exp[- C A; Y$ 1) , 
a,i 

(1.19) 

(1.20) 

(1.21) 

and 

Pi* = 2-l tr( 7$ exp[- C XT 7rr 1) . 
a,i 

(1.22) 

It should be stressed that while the form, eqn. (1.20) , of the density matrix 

resembles the classical one, it is an operator. The projection operators in the 

exponent can be quite complicated in form, since they do not in general commute 

with each other. The density matrix must be evaluated with some care. 

Some Examples: 

In this paragraph we shall give two examples that illustrate the utility and 

simplicity of the entropic uncertainty approach. The examples are chosen for 

reasons of simplicity of presentation and relevance. 

The first is the well-discussed problem of the correct form of the uncertainty 

relation for compact variables. We choose for an example the polar angle and 

its conjugate angular momentum. Thus the relevant operators are A = 4 and 

B = L,. The apparatus will be assumed to be able to measure the angle only 

to the extent that the result can be assigned to N bins, where N = 27r/64 
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with S4 being the width of the angular bins, while the angular momentum can 

be measured and resolved down to a single value (which is integer). From eqn. 

(1.9) it is seen that we need to evaluate the maximum eigenvalue of the operator 

7rt +7rT. This eigenvalue equation takes the form 

(7rf + 7rfqy ) I4 = x I4 9 

where (the bin boundaries are located at di ) 

(1.23) 

(1.24) 

and the angular momentum projector is the integral operator 

dcj’ezp[ im(gS - 4’) ] . (1.25) 

0 

The solution corresponding to the maximum eigenvalue is found to be 

IV maz) = [l + (6+/27r)‘j27rf ] Im) , (1.26) 

where the state ]m) is an eigenfunction of the angular momentum operator with 

eigenvalue m , with 

x ma.2 = 1 + (&$/27r)l? 

The final result for the minimum uncertainty is 

(1.27) 

U(DA,DB;$) 2 2 ln[2/[1 + (64/27r)‘/“] . (1.28) 

Note that S+ is the resulution of the measuring device, not the variance. It is 

helpful in interpreting this result to note the following: if the angle 4 is found 
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to be in a particular bin while the angular momentum is measured to have a 

definite value m , then the joint probability has an upper bound given by 

P4 Pk 5 i [l + (S4/27r)‘/“]” . i (1.29) 

This is a much more reasonable expression of the physics in the uncertainty rela- 

tion than is given by the standard Heisenberg-type inequality involving variances. 

Finally, I will just quote the corresponding result for continuous variables 

and for comparison purposes will chose the classic pair z and p . For details, see 

ref. 1 . The position bins are of width 6z and the momentum bins are of width 

6p. The general case is not worth working out in detail, but in the limit that 

(6x 6p) 5 1, the joint probability satisfies 

Pi” Pi” 5 ; (1 + [(h5p)/27r]1~2)2 . (1.30) 

It is interesting to note that the wave function that saturates the above bound 

is localized in the appropriate bins but falls off only as a power-law, hence the 

variances used in the Heisenberg form are infinite for this wave function that is 

optimum for the ‘bin’ case. 
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