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Chapter 1

Introduction

As far as we know today, the luminous matter in the universe, i.e. any matter that
directly or indirectly emits electromagnetic radiation, is almost completely composed
of nucleons (=protons, neutrons) and electrons. According to the big bang model the
universe began in a state of infinite density and temperature which was followed by
a rapid expansion and cooling [Mis73]. About 10−30 seconds after its birth, quarks,
leptons and gauge bosons were created; an overview is given in Tabs. 1.1 and 1.2. Only
a few microseconds later the quarks were bound together and formed the nucleons.
This process is called hadronization.

In addition to the nucleons, hundreds of unstable bound states of quarks (and
antiquarks) have been discovered in various cosmic ray and accelerator experiments
within the last 60 years. These strongly interacting particles are called hadrons and
can be grouped into two types of quark combinations [Gel64]: baryons (three quark
fermion states qqq) and mesons (quark-antiquark boson states qq̄). Since the quarks
themselves are fermions, the existence of a spin-3/2 bound state of three identical
quarks is forbidden by Fermi statistics. However, in 1951 Fermi and collaborators
discovered the ∆++ which is a baryon made up of three u quarks with aligned spins.
It is therefore necessary to introduce a new quantum number for quarks: color. One
usually supposes that quarks come in three colors1: red r, green g and blue b, and that
every free particle must be color neutral. The latter assumption is supported by the
experimental fact that one does not observe several color combinations for hadrons,
e.g. a red, a green and a blue proton. The existence of exactly three colors is indicated
by experiments like electron-positron annihilation into hadrons or the two-photon decay
of the neutral pion [Per87].

The requirement that all free particles have to be color neutral also explains why
one does not observe free (colored) quarks but only the color singlet combinations qqq
and qq̄, i.e. the hadrons2. This phenomenon is called confinement and implies that the
potential energy of two colored objects strongly increases with their separation. In fact
the spectroscopy of charmonium (cc̄) points towards a potential which is Coulomb-like
at small distances and increases linearly for larger separations. The field configuration
that corresponds to the linear potential has a cylindric shape and is concentrated
between the two color charges. It is usually called flux tube or string. If one tries to

1The antiquarks carry anticolor.
2Recently, evidence for a color neutral pentaquark state has been discovered experimentally [Nak03].
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2 1. Introduction

generation
fermions

1 2 3
el. charge color

νe νµ ντ 0
leptons

e µ τ -1
–

u c t +2/3
quarks

d s b -1/3
r, g, b

Table 1.1: Elementary spin-1/2 fermions of the standard model [Pov97].

stretch the string by more than 1–2 fm the field energy becomes large enough to create
a quark-antiquark pair from the vacuum which combines with the endpoint particles
to form two color neutral hadrons.

The quark substructure of hadrons suggests a dynamical understanding of the
strong force in terms of color interactions between the quarks: quantum chromodynam-
ics (QCD). In contrast to quantum electrodynamics (QED), QCD is a non-Abelian
gauge theory. As a result the gauge bosons that mediate the color interactions, i.e. the
gluons, themselves carry (color) charge and can therefore interact with each other. This
leads to an anti-shielding of color charges which has two remarkable consequences that
do not exist in an Abelian gauge theory like QED. At short distances, or correspond-
ingly large momentum transfers, the coupling becomes small and the quarks inside
the hadrons behave essentially as free noninteracting particles (asymptotic freedom).
In this kinematic regime one can thus apply perturbative techniques to calculate the
interaction between quarks and gluons. On the other hand, the anti-shielding of QCD
is analogous to a color-dielectric medium with a dielectric constant ε� 1 [Mos98]. An
isolated color charge in such a medium would correspond to a state of infinite (or very
large) energy (confinement).

Since the coupling increases with decreasing momentum transfer, perturbative meth-
ods cannot be used to describe the low-energy phenomena of QCD. Therefore, a thor-
ough proof that QCD indeed leads to color confinement is yet missing. For the same
reason, also the properties of hadrons like masses and excitation spectra cannot be cal-
culated within perturbative QCD (pQCD). The only possibility is to numerically solve
a discretized version of QCD on a lattice. However, this is connected with a lot of com-
putational effort and conceptional problems and one is still far away from a complete
lattice description of both the hadronic spectra and low-energy hadronic interactions.
We are therefore left with a purely phenomenological treatment of low-energy QCD.

One of the greatest achievements of high-energy physics over the last 30 years
has been the quantitative verification of QCD in very hard collisions. Because of
asymptotic freedom the constituents of the hadrons, i.e. the quarks and gluons, behave
like free particles in such collisions. As pointed out, this behavior vanishes for small
momentum transfers and the quarks and gluons are confined into hadrons by the strong
force that does not allow for the observation of any free colored object. This phase
transition from partonic degrees of freedom (quarks and gluons) to interacting hadrons
– as encountered in the early universe shortly after the big bang – is a central topic of
modern hadron physics. In order to understand the dynamics and relevant scales of this
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interaction couples to exchange boson

strong color 8 gluons (g)

electromagnetic el. charge photon (γ)

weak weak charge W±, Z0

Table 1.2: Elementary interactions of the standard model [Pov97].

transition, laboratory experiments under controlled conditions are presently performed
at the SPS and RHIC with ultra-relativistic nucleus-nucleus collisions that are being
thought of as repeated ’tiny bangs’. However, the complexity of a heavy-ion collision
that passes through various density and temperature phases makes it hard to draw any
comprehensive conclusion about the space-time picture of the hadronization process.

In the early 1970s, the quark structure of the nucleon has been verified by deep
inelastic electron-proton scattering at SLAC. In such a reaction the electron emits a
virtual photon with large energy and momentum which is absorbed by a quark inside
the proton. The four-momentum transfer readily determines the fraction of the proton
momentum that is carried by the struck quark. By varying the energy and momentum
of the virtual photon, one can therefore measure the quark distributions inside the
nucleon. Since this pioneering work, a lot has been learned about the quark and gluon
structure of hadronic matter through deep inelastic scattering experiments at CERN,
DESY, FNAL and SLAC.

By deep inelastic lepton scattering on nuclear targets the modifications of the quark
and gluon distributions inside the nuclear medium are accessible. However, the use
of nuclear targets has an additional advantage. If the quark that is struck by the
virtual photon separates from the rest of the residual system it takes a finite time until
the reaction products hadronize. Due to time dilatation the corresponding hadron
formation length at high energies is comparable to nuclear radii. In lepton-nucleus
interactions the reaction products can, therefore, interact with the surrounding nuclear
medium during the formation time. Here the nuclear target can be viewed as a micro-
laboratory that provides an intrinsic (variable) time scale due to the size of the target
nucleus, which can be exploited to get information on the actual time scale of the
hadronization itself. By using different nuclear targets and varying the kinematics of
the virtual photon, one can therefore study the propagation of the quark and how the
color field of the hadron is restored.

First studies of high-energy hadron electroproduction off nuclei have been carried
out in the late seventies at SLAC [Osb78]. In the early nineties the European Muon
Collaboration (EMC) [Ash91] and E665 [Ada94] have looked into the attenuation of
fast hadrons in the scattering of high-energy muons on nuclear targets at CERN and
FNAL. Recently, the HERMES collaboration at DESY has put a lot of effort into the
detailed experimental investigation of hadron attenuation in deep inelastic scattering of
27.7 GeV positrons on complex nuclei [Air01, Air03b]. A similar experiment is currently
performed at Jefferson Lab using the available 6 GeV electron beam [WBr02, KWa04]
and an additional one is anticipated to run after the 12 GeV upgrade [Arr03, WBr03].
Furthermore, the investigation of hadronization in nucleons and nuclei is part of the



4 1. Introduction

Figure 1.1: Kinematic regime covered by the electron-nucleus scattering experiments
at CERN, DESY, Jefferson Lab and the planned EIC. The photon energy in the rest
frame of the nucleus is denoted by ν and the virtuality of the photon by Q2.

physics program at the planned electron-ion collider (EIC) [Des02] which will collide
5-10 GeV electrons/positrons and a 100 AGeV nuclear beam. In Fig. 1.1 we give an
overview of the different kinematic regimes covered by the various experiments. The
energy of the photon in the rest frame of the nuclear target is denoted by ν and −Q2

is the four-momentum of the virtual photon squared. The theoretical understanding of
the observed hadron attenuation is a subject of high current interest [Guo00, Wan01,
Wan02, Wan03, Acc03, Arl03, Kop03].

Closely related to hadron production in deep inelastic scattering is the phenomenon
of color transparency [Mue82, Bro82]. In a deep inelastic scattering event the photon
transfers all of its energy and momentum to one single quark inside the target nucleon.
As a result the target nucleon is in general destroyed. However, at high energies the
(virtual) photon can also fluctuate into a vector meson or perturbatively branch into a
quark-antiquark pair before the actual interaction with the nucleon takes place. In the
subsequent scattering the momentum transfer may be soft. A prominent example is
diffractive vector meson production where a hadronic fluctuation of the photon is put
on its mass shell by a small momentum exchange with the nucleon. The nucleon stays
intact and the two final states, i.e. the vector meson and the nucleon, are separated by
a large gap in rapidity. The geometric size of the initial quark-antiquark fluctuation is
expected to decrease with increasing photon virtuality Q2. For large Q2 the colorless
quark-antiquark pair is thus in a small sized configuration during the early stage of the
evolution and mainly reacts via its color dipole moment. Its cross section is therefore
quadratic in the transverse size of the pair. Because of time dilatation the high-energy
quark-antiquark pair can travel a large distance while being ’frozen’ in this small sized
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configuration. If this distance exceeds the diameter of a nucleus color transparency
leads to a large nuclear transparency for vector meson production at large photon
energy and virtuality.

The HERMES collaboration has studied the nuclear transparency ratio of exclusive
ρ0 electroproduction on a nitrogen target [Ack99, Air03] and a similar experiment is
currently performed at Jefferson Lab [Haf02]. It is hard to extract a clear signal for color
transparency from such a reaction since the effect is superposed by coherent multiple
scattering of the photon’s vector meson fluctuation in the nuclear target. The latter
leads to nuclear shadowing, i.e. a reduction of the nuclear production cross section
by ’initial state interactions’ of the photon. This effect is also observed in the nuclear
photoabsorption cross section [Bau78] and gives rise to the EMC effect [EMC83, Arn94]
at small values of the Bjorken scaling variable x.

A clear separation between the direct photon interactions and the ones mediated
by the hadronic fluctuations of the photon, is not possible in the kinematic regimes
of the EMC, HERMES and Jefferson Lab experiments. Therefore, both aspects of
high-energy photon interactions have to be taken into account if one wants to extract
the space-time behavior of hadronization from these experiments.

Besides being a fascinating topic on its own, a detailed space-time picture of
hadronization should also help to clarify to what extent the jet suppression, recently
observed in heavy-ion collisions at RHIC [PH03, PH04, ST03, ST03b], is due to (pre-)
hadronic final state interactions (FSI) [Gal03, Kop03, Cas04] or partonic energy loss
[Wan92, Wan98, Bai00, Gyu03]. The suppression of high pT hadrons in Au+Au reac-
tions relative to p+ p collisions is often thought to be due to jet quenching in a quark
gluon plasma, i.e. a state where the relevant degrees of freedom are no longer hadrons
but free quarks and gluons. However, the attenuation of high pT hadrons might at
least partly be due to hadronic rescattering processes.

Electron-nucleus interactions have the advantage that the nucleus remains more or
less in its ground state throughout the reaction. Contrary to nucleus-nucleus collisions,
where the created ’fireball’ is rapidly expanding, lepton-nucleus reactions therefore pro-
vide rather clear geometrical constraints, which are well under control experimentally.
In addition the system is closer to equilibrium than in a heavy-ion collision.

The standard theoretical approach to high-energy nuclear reactions is Glauber the-
ory [Gla59, Gla70] which reduces the nuclear reaction to more elementary interactions
with individual nucleons. It allows for a full quantum-mechanical description of the
scattering process by a coherent summation of the various multiple scattering ampli-
tudes. Such a quantum-mechanical treatment is of course only feasible under many
approximations. Therefore, one usually neglects all coupled-channel effects in the calcu-
lation and restricts oneself to a purely absorptive description of the FSI of the reaction
products.

A more sophisticated, although probabilistic, coupled-channel treatment of the FSI
can be realized in the framework of semi-classical transport models. During the past
20 years transport models based on the Boltzmann-Uehling-Uhlenbeck (BUU) equa-
tion [Brt84] have been successfully applied to describe particle production in heavy-
ion collisions. One major drawback of these models is obviously the vast number of
free parameters. It is therefore mandatory to test the results of the model against
as many experimental observables as possible, thereby using the same set of param-
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eters and physics assumptions. Our transport model has been originally developed
to describe heavy-ion collisions at SIS energies [Tei96, Tei97, Hom99]. Later on it
has been extended in Refs. [Wei99, Eff99b] and [Eff99a, Eff96, Leh99, Leh00] to de-
scribe pion-induced as well as photon- and electron-induced reactions in the nucleon
resonance region. Based on the earlier work on high-energy photon-nucleus reactions
in Refs. [Eff99c, Eff00] we have extended the model to simulate nuclear interactions
of high-energy photons and electrons in the kinematic regime of the Jefferson Lab,
HERMES and EMC experiments.

We begin our studies with a discussion of the different event classes of elementary
hadron-hadron interactions in Chap. 2. It turns out that the high-energy cross sections
of hadrons are dominated by diffractive excitation which can be addressed within Regge
theory. For this reason we included a brief introduction to the Regge picture of high-
energy collisions.

We then turn to the interactions of high-energy photons and electrons with hadrons.
In the one-photon exchange approximation the electron-nucleon scattering can be de-
composed into the emission and absorption of a virtual photon. In certain kinematic
regimes the contributions from the hadronic fluctuations of the (virtual) photon domi-
nate the photon-nucleon interaction. In that case we expect strong similarities between
photon- and hadron-induced reactions. In Chap. 3 we outline the possible event classes
and discuss their importance in different kinematic regimes.

In Chap. 4 we give an overview on the actual event generation in our model. The
event generators PYTHIA [Sjö01a, Sjö01b] and FRITIOF [And87, Pi92, And93] that
determine the final state of a scattering event above the resonance region are based
on the Lund model [And83, And98]. In Sec. 4.3 we use the Lund model to extract
the production and formation times of the hadrons. While the production times of
the color neutral prehadrons are essentially the times of the string fragmentation, the
formation time corresponds to the time when the hadronic wave function has built up.

In Chap. 5 we turn to hadron-induced nuclear reactions. Since we often compare
our results from the transport model with those of Glauber theory we start this chapter
with an introduction to the Glauber model. The BUU transport model is described
in Sec. 5.2. We give a complete description of all model aspects that we consider
relevant for the high energy reactions addressed in this work. In Sec. 5.3 we compare
the predictions of the Glauber and the BUU model for reactions of 100 GeV protons
incident on various nuclear targets. Here, we also discuss the concept of leading hadrons
which is generally used in transport models for high-energy nuclear reactions.

The central part of this work – the description of high energy photon- and electron-
induced nuclear reactions – is presented in Chap. 6. Like before we discuss both the
Glauber and the BUU approach. As already pointed out, the high-energy interactions
of photons are shadowed in nuclei. While this shadowing can be in principle understood
within Glauber theory, it is not straight forward to account for this quantum mechanic
interference effect within a semi-classical transport model. A first attempt has been
made in Ref. [Eff99a] but still disregarded the fact that the various photon components
are modified differently in the nuclear medium. In Sec. 6.1.2 we present a method to
correctly account for shadowing in transport theory.

In Sec. 6.2 we test whether our implementation of shadowing correctly reproduces
the coherence length effects observed in exclusive ρ0 electroproduction at HERMES
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[Ack99, Air03]. In addition we focus on the impact of the coherence length and the
coupled channel FSI on the nuclear transparency ratio of ρ0 production. In Sec. 6.3
we study semi-inclusive photoproduction of pions, kaons and open charm at photon
energies in the range 1–30 GeV. The attenuation of charged hadrons in deep inelastic
lepton scattering off complex nuclei is discussed in Sec. 6.4 using different hadronization
scenarios. We split this section into three parts according to the different kinematic
regimes of the HERMES, the EMC and the Jefferson Lab experiments. Besides the
attenuation of pions, kaons, protons and antiprotons as a function of the photon energy
and the energy and transverse momentum of the hadrons, we also consider the double
hadron attenuation which has recently been measured at HERMES. We also demon-
strate how the detector acceptance and kinematic cuts affect the observed multiplicity
ratio.

We end this work with a summary and outlook in Chap. 7.
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Chapter 2

Hadron-hadron interactions

In this work we investigate interactions of high-energy protons, photons and electrons
with nuclei. In such reactions the projectile and the reaction products scatter off the
bound nucleons inside the nucleus. Unlike in heavy-ion collisions, interactions between
the reaction products themselves such as meson-meson collisions are very unlikely.

As we show in Chap. 3 reactions of high-energy photons show some striking simi-
larities to those of hadronic projectiles. The reason for this is the hadronic structure
of the photon as explained in Sec. 3.1.1. Also electron scattering can be reduced to the
exchange of a (virtual) photon with the target nucleon (see Sec. 3.2.1). We therefore
need at first a way to model the interactions of high-energy hadrons with nucleons
before we turn to electromagnetic probes. A comprehensive introduction to hadron
interactions at high energies can be found in Ref. [Col84].

At low energies interactions between hadrons and nucleons mainly proceed via the
excitation and decay of nucleon resonances. At high energies the possible reactions can
be divided into four different classes: elastic scattering (which is of course also possible
at low energies), diffractive excitation, hard scattering between the constituents (quarks
and gluons) of the colliding partners and soft non-diffractive interactions (e.g. soft gluon
exchange). The first task is to determine the probability for each reaction type to occur,
i.e. the size of the cross sections for the different event classes. This problem is tackled
within this chapter using Regge theory and perturbative QCD (pQCD). The second
task, namely the determination of the final-state particles emerging from an inelastic
collision, is postponed to Chap. 4 where we provide a description of the Lund string
model.

We start this chapter with a short introduction to Regge theory and address the four
different event classes in Secs. 2.2.2 – 2.2.5. At the end of this chapter we try to link
Regge theory to the string model that is later on used to determine the fragmentation
of the reaction products into the final-state hadrons.

2.1 S matrix and Regge theory

In the resonance region, i.e. at center-of-mass energies below approximately 2 GeV
the scattering of hadrons can be described using effective field theories with meson
and baryon resonance degrees of freedom. Some detailed studies in this field have
been made in Refs. [Pen02a, Pen02b] which simultaneously investigate pion-nucleon

9



10 2. Hadron-hadron interactions

and photon-nucleon scattering within the framework of a coupled-channel model by
solving the Bethe-Salpeter equation in the so-called K-matrix approximation. The
model parameters are the masses and coupling constants of the resonances. They are
extracted by comparing the model predictions with the experimental cross sections on
meson production (πN , 2πN , ηN , KΛ, ωN , γN).

At higher energies the resonant structure in the cross sections vanishes and inter-
actions lead to more complicated final states with large particle multiplicities. Thus
resonance models seem not to be the right tool to describe high-energy reactions.

With increasing center-of-mass energy the scattering of single hadron constituents
at large momentum transfer becomes possible. Therefore, pQCD can be applied to
calculate the cross section for the elementary hard parton-parton scattering. If the
parton distributions in the hadrons are known one can also deduce the size of the hard
hadron-hadron scattering cross section. However, it is not possible within pQCD to
determine the final state of a hard reaction since the hadronization of the reaction
products involves small momentum transfers of only a few hundred MeV. The strong
coupling constant becomes large at these low energies and perturbation theory breaks
down.

Furthermore, hard interactions make up only for a small fraction of the total
hadronic cross section because of the smallness of the strong coupling constant at
large momentum transfers (asymptotic freedom).

Regge theory [Reg59, Reg60] provides us with a framework to describe the inter-
action of hadrons at large energies and momentum transfer of the order of a hadronic
mass scale without the assumption of an underlying field theory, solely by making use
of Lorentz invariance, unitarity and analyticity of the scattering matrix. A profound
discussion of Regge theory and its applications can be found in Ref. [Col77].

2.1.1 Scattering Matrix

Consider a set of free particles which are described by the physical state vector |i〉 and
scatter into a set of outgoing particles characterized by the state vector |f〉. In our
studies the initial state always consists of only two particles whereas the final state can
in principle contain an arbitrarily large number of ejectiles which is only constrained
by the conservation of energy, momentum and quantum numbers. The (fi)-th element
of the scattering matrix S is defined as the overlap of the asymptotic initial and final
state in the scattering process:

Sfi = 〈f |i〉.
One can separate the trivial part of the scattering matrix by introducing the T matrix:

S = �+ iT (2.1)

whose elements can be expressed in terms of the invariant amplitude M:

〈{
pf}|iT |
pa, 
pb〉 = (2π)4δ(4)(pa + pb −
∑
f

pf) iM (pa, pb → {pf}) . (2.2)

Here 
pa (pa) and 
pb (pb) denote the (four-)momenta of the incoming collision partners
and {
pf} ({pf}) are the (four-)momenta of the final-state particles. The delta function
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Figure 2.1: Mandelstam variables s and t in the scattering process ab→ cd.

in Eq. (2.2) reflects energy and momentum conservation. All particles are assumed to
be on their mass shell (p0 = E =

√
m2 + 
p 2) and the normalization is chosen to be

the same as in Ref. [Pes95]:

〈
p ′|
p 〉 = 2E(2π)3δ(3) (
p− 
p ′) .

In the following three sections we postulate three properties of the scattering matrix
and discuss their consequences.

2.1.2 Lorentz invariance

Postulate 1: The S matrix is Lorentz invariant, i.e. it can be expressed as a function
of Lorentz-invariant Mandelstam variables.

This postulate seems quite reasonable since the outcome of a scattering process should
not depend on the reference frame one is using for the description. Lorentz invariant
quantities can be obtained by squaring the sums and differences of the four-momenta
of the colliding particles and the reaction products. The Mandelstam variables for a
2 → 2 scattering process (see Fig. 2.1) for example are defined as:

s = (pa + pb)
2

t = (pc − pa)
2

u = (pd − pa)
2.

Hence, s is just the center-of-mass energy squared, t is the square of transfered four-
momentum and u is related to s and t via the relation:

s+ t+ u = m2
a +m2

b +m2
c +m2

d. (2.3)

In the case that the initial or final state consists of more than two particles one can
define additional invariants in an analogous way [Byk73].

2.1.3 Unitarity

Postulate 2: The S matrix is unitary: S†S = �.

Postulate 2 is equivalent to the conservation of probability, i.e. the probability for an
initial state to end up in a particular final state, summed over all possible final states,
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Figure 2.2: Singularities of the scattering amplitude M in the (right) complex s plane.

must be unity. As a consequence this leads to the optical theorem which relates the
imaginary part of the forward-scattering amplitude to the total cross section:

ImM(pa, pb → pa, pb) = 2pcm

√
s σtot(ab → X). (2.4)

Here pcm denotes the center-of-mass momentum of the incoming particles:

pcm =

√
(s−m2

a −m2
b)

2 − 4m2
am

2
b

4s
.

The derivation of Eq. (2.4) as well as further forms of the optical theorem for different
scattering amplitudes can be found in Appx. A.

2.1.4 Analyticity

Postulate 3: The S matrix is an analytic function of Lorentz invariants with only
those singularities required by unitarity.

It can be shown [Col77] that this analyticity property follows from causality, i.e. that
two spacelike separated regions do not influence each other.

The analyticity structure of the amplitude M in the complex s plane can be deter-
mined using the optical theorem (2.4). Two particles can either scatter into a bound
state with mass MR and width ΓR or, at large enough energies, into a final state that
consists of two or more particles. For massive scatterers the cross section σtot is zero
below a minimum energy s+

th and M is real on the positive real s axis for s < s+
th

because of relation (2.4). The latter allows the application of the Schwarz reflection
principle [Br95]

M(s∗, t) = M(s, t)∗

throughout the domain of analyticity. Hence, we obtain for real s and ε the so-called
s-channel discontinuity

lim
ε→0

ImM(s+ iε, t) =
1

2i
lim
ε→0

(M(s+ iε, t) −M(s+ iε, t)∗)

=
1

2i
lim
ε→0

(M(s+ iε, t) −M(s− iε, t))

≡ DiscsM(s, t). (2.5)
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Figure 2.3: Contour of the integral in Eq. (2.8).

The amplitude M thus has a branch cut along the real s axis above the two-particle
threshold s+

th. The bound states lead to poles in the complex s plane at positions
M2

R − iMRΓR (see also Ref. [Col77]) as depicted in Fig. 2.2.

Crossing symmetry

One of the consequences of analyticity is crossing symmetry. For example one gets
from the amplitude Mab→cd by analytical continuation from the physical region s > 0
and t, u < 0 to the region t > 0 and s, u < 0 the scattering amplitude for the t-channel
process ac̄→ b̄d:

Mac̄→b̄d(s, t, u) = Mab→cd(t, s, u). (2.6)

In an analogous way one has for the u channel

Mad̄→b̄c(s, t, u) = Mab→cd(u, t, s). (2.7)

Using Eq. (2.3) one finds from the physical threshold u+
th of the u-channel process (2.7)

that the s-channel amplitude must also have a cut along the negative real s axis with
a branch point at s−th =

∑
im

2
i − t− u+

th.

Dispersion relations

Another useful consequence of analyticity is the so-called dispersion relation that makes
it possible to reconstruct the real part of an amplitude from its imaginary part. Starting
from the Cauchy integral formula [Br95]

M(s, t) =
1

2πi

∮
C

M(s′, t)
s′ − s

ds′ , (2.8)



14 2. Hadron-hadron interactions

where C is a contour that does not enclose any of the singularities of M (see Fig. 2.3)
one ends up with the dispersion relation

M(s, t) =
1

2πi

(∫ s+th

∞

M(s′ − iε, t)

s′ − s
ds′ +

∫ ∞

s+th

M(s′ + iε, t)

s′ − s
ds′

+

∫ s−th

−∞

M(s′ + iε, t)

s′ − s
ds′ +

∫ −∞

s−th

M(s′ − iε, t)

s′ − s
ds′

)

=
1

π

(∫ ∞

s+th

ImM(s′, t)
s′ − s

ds′ +
∫ s−th

−∞

ImM(s′, t)
s′ − s

ds′
)

(2.9)

provided M(s, t) tends to zero as |s| → ∞. In the last step we have used the discon-
tinuity Eq. (2.5). In the dispersion relation (2.9) we have assumed no contributions
from bound state poles which generally add extra contributions. In the second integral
the imaginary part of the amplitude for s < s−th can be obtained by crossing from the
discontinuity of the corresponding u channel process.

In the case that the amplitude M(s, t) does not vanish for |s| → ∞ one has to
divide it by as many factors of s− si as necessary to produce a vanishing contribution
from the semi circles of C at infinity. Making only one of these so-called subtractions
at s = s0 one ends up with the subtracted dispersion relation

M(s, t) = M(s0, t) +
(s− s0)

π

(∫ ∞

s+th

ImM(s′, t)
(s′ − s)(s′ − s0)

ds′ +

∫ s−th

−∞

ImM(s′, t)
(s′ − s)(s′ − s0)

ds′
)
. (2.10)

Together with the optical theorem (2.4) we now have a tool at hand to deduce the
imaginary and the real part of the forward-scattering amplitude M(s, t = 0) from the
total cross section.

2.1.5 Reggeon exchange

In 1959 Regge [Reg59] suggested to regard the angular momentum in non-relativistic
potential scattering as a complex variable. This led to the foundation of a new concept
for dealing with scattering amplitudes which in the following years became a very
useful tool in high-energy particle physics. The interested reader can find a detailed
introduction to Regge theory in the book of Collins [Col77]. In Appx. B we present
the construction of the Regge amplitude, i.e. the scattering amplitude in the kinematic
limit s� t, for the scattering process ab→ cd.

Regge amplitude

The Regge amplitude which is diagrammatically illustrated in Fig. 2.4 can be written
in the factorized form

Mab→cd(s, t) =
γac(t)γbd(t)

Γ(α(t))

(η + e−iπα(t))

sin(πα(t))

(
s

s0

)α(t)

. (2.11)
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Figure 2.4: Regge exchange diagram (see Eq. (2.11)).

As discussed in Appx. B it can be viewed as the exchange of an object with ’angular
momentum’ α(t) which is called Reggeon. Since α(t) does not need to be integer (or
half integer) and is a function of the Mandelstam variable t, the Reggeon is not a real
particle. The Reggeon exchange amplitude can rather be seen as the superposition of
all particle exchanges in the t channel that are quantum mechanically allowed. The
Sommerfeld-Watson transformation (B.3) includes all partial waves in the t channel.
The amplitude (2.11) is thus not restricted to the exchange of some isolated poles
but includes a whole family of particles with the same internal quantum numbers
(baryon number B, strangeness S, charge conjugation C, parity P , G parity, charge
Q, signature η, etc.) but with different spin. The factorization of the Regge amplitude
into a coupling γac(t) of the Reggeon to particles a and c, a similar coupling γbd(t)
between particles b and d, and a universal contribution from the Reggeon exchange is
verified by various experiments.

Using the Regge amplitude (2.11) one can immediately write down the ratio of the
real to imaginary part of the scattering amplitude at large energies:

ρ =
ReM
ImM = −η + cos(πα(t))

sin(πα(t))
. (2.12)

Regge trajectories

If α(t) passes through an integer the ’Reggeon propagator’ [sin(πα(t))]−1 in Eq. (2.11)
produces a pole in the amplitude. For positive integers this can be understood as
the t-channel exchange of a particle with integer spin Ji and mass mi =

√
t, where

α(m2
i ) = Ji. The nonsense poles at negative integer values of ’spin’ are canceled by

the factor Γ(α(t))−1. It has phenomenologically been observed by Chew and Frautschi
[Che61, Che62] that the spins of a set of resonant states are linear functions of their
masses squared (see Fig. 2.5), i.e.

α(t) = α(0) + α′ t ,

for positive values of t. For all observed baryon and meson trajectories the slope turns
out to be α′

�
≈ 0.9 GeV−2. We show in Sec. 2.3 how this linear behavior and the

universal slope is related to the underlying partonic substructure and the confining
potential of all hadrons. In addition, the trajectories of mesons that contain only
light quarks (up u and down d) have the same intercept α�(0) ≈ 0.44 as can be seen
for example from the ρ-, ω-, f - and the a-trajectory in Fig. 2.5. The intercepts of
meson trajectories that involve heavier quarks are in general smaller. This has also
a straight-forward interpretation in the parton model of Regge exchange as we show
later.
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Figure 2.5: Chew-Frautschi plot of the ρ-, ω-, f - and the a-trajectory. The linear fit is
taken from Ref. [Don92]: α�(t) = 0.44 + 0.93t. The masses of the particles are taken
from Ref. [PDG02].

The functional form of the Regge trajectories for negative values of t, i.e. in the
physical t region, can be deduced from the asymptotic s dependence of the differential
cross section

dσ

dt
≈ |M(s, t)|2

16πs2
∼ s2α(0)−2α′t−2 (2.13)

of a scattering process with the t-channel exchange of the corresponding internal quan-
tum numbers. For example, to extract the functional form of the ρ trajectory for
negative t one has to consider a process in which isospin I = 1 is exchanged in the t
channel, such as

π−p→ π0n.

It turns out that the linearity continues for negative values of t with the same values
for the slope and the intercept.

Parton model of Reggeon exchange

The resonances which lie on the Regge trajectories in Fig. 2.5 are quark-antiquark
bound states. One can therefore try to understand Reggeon exchange in terms of
the building blocks of hadrons namely quarks and gluons. Fig. 2.6 suggests a physical
description [Col84, Col77] of the Reggeon exchange process in meson-baryon scattering.
In the process depicted on the left-hand side of Fig. 2.6 two quarks q2 and q3 of the
approaching hadrons attract each other and slow down by radiating many soft virtual
gluons. By absorbing the gluons emitted from the other quark, each quark can reverse
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Figure 2.6: Parton description of Reggeon exchange. See text for details. Left: A
meson (q̄1q2) and a baryon (q3q4q5) exchange the quarks q2 and q3 in the scattering
process. Right: The antiquark q̄1 from the meson (q̄1q2) and the quark q1 from the
incoming baryon (q1q3q4) annihilate into a new quark-antiquark pair q5q̄5 and form the
meson (q̄5q2) and baryon (q3q4q5).

its direction of motion, and thus they can be exchanged between the hadrons. If a
quark q1 from the baryon and an antiquark q̄1 from the meson attract each other as
shown on the right-hand side of Fig. 2.6, they can annihilate and subsequently form a
new quark-antiquark pair q5q̄5 leaving again behind two colorless hadrons in the final
state.

In contrast to the hard parton scattering which we discuss in Sec. 2.2.4 each gluon
in the scattering processes of Fig. 2.6 carries only a momentum transfer of the order of
the hadronic mass scale. Because of the running coupling constant of QCD the cross
section for Reggeon exchange is therefore much larger than the direct annihilation of
a quark and an antiquark of the projectiles into a single high-energy gluon.

Since heavier quarks (strange s, charm c, bottom b) are harder to ’turn around’ one
might expect a smaller cross section for a scattering process involving the exchange
of a S = 1 trajectory. This is indeed the case, as the intercept of the K trajectory
is α(0) = −0.2 and that of the K∗ trajectory is α(0) = 0.3. These intercepts lead to
a smaller cross section (2.13) than the exchange of the trajectories shown in Fig. 2.5
which have an intercept α(0) = 0.44.

2.2 Hadronic cross sections

Following the procedure of the PYTHIA model [Sjö01a, Sjö01b] which we later use
in our Monte Carlo simulation, we distinguish between four event classes that can
occur in the scattering of two hadrons a and b at high energies. The first possibility
is elastic scattering ab → ab which is discussed in Sec. 2.2.2. The second possibility is
diffractive excitation (ab → Xb, ab → aX, ab → X1X2) in which one or both hadrons
get excited via a small momentum transfer (small means of the order of the hadronic
mass scale) but keep their intrinsic quantum numbers. The decay products of the
two excited hadrons thus have a large rapidity gap. This event class is explained in
Sec. 2.2.3. At large enough energies there is also the possibility of a hard scattering
taking place between the partons, i.e. the quarks and gluons inside the hadrons. These
hard non-diffractive processes can be described with the help of perturbative QCD as
sketched in Sec. 2.2.4. Last but not least, there are the events which we refer to as soft
non-diffractive that cannot be treated within perturbative QCD. How one has to deal
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Figure 2.7: The composition of the total πp cross section according to Ref. [Sch94].

with this last event class is explained in Sec. 2.2.5.
Hence, we subdivide the total cross section according to

σabtot = σabel + σabsd(Xb) + σabsd(aX) + σabdd + σabnd ,

where σel is the elastic cross section, σsd and σdd are the single and double diffractive
cross sections, respectively, and the non-diffractive cross section is split into a hard and
a soft part: σnd = σhard + σsoft. As an example we illustrate the contributions of the
different event classes to the total pion-proton cross section in Fig. 2.7.

2.2.1 Total cross section

The total cross section is related to the forward-scattering amplitude via the optical
theorem (2.4). If Reggeon exchange was the only process that contributes to forward
scattering at large values of s one would get from the Regge amplitude (2.11) the
following asymptotic behavior of the total cross section:

σtot ≈ 1

s
ImM(s, t = 0) ∼ sα(0)−1 (2.14)

with the intercept α(0) of the exchanged Reggeon. As discussed above the Regge
trajectories in general have α(0) � 1/2 and thus lead to a falling cross section with
increasing s. One expects this behavior from the parton model of Reggeon exchange
since the probability for two outgoing hadrons mopping up all the virtual glue in the
way depicted in Fig. 2.6 is rather small at high energies.
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Figure 2.8: Parton description of Pomeron exchange in elastic scattering. Left: Fun-
damental two gluon exchange diagram. Right: Exchange of gluon ladders may sum up
to produce a Pomeron trajectory.

However, it is observed experimentally that total cross sections rise slowly as s
increases (cf. Fig. 2.7). It has been shown in Ref. [Fol63] that if the cross section
for a particular scattering process does not fall as s increases, the process must be
dominated by the exchange of vacuum quantum numbers (I = 0, C = +, Q = 0,
. . .). If one therefore attributes the increasing cross section to the exchange of a single
Reggeon in the forward-scattering amplitude it must carry the quantum numbers of
the vacuum and have an intercept α�(0) that is larger than 1. This object is called
the Pomeron, named after its inventor I. Y. Pomeranchuk.

At high energies the experimental data for all total cross sections, e.g. pp, pp̄, pn,
π±p, K±p but also γp, can be fitted by the simple ansatz [Don92]

σabtot = Xabs
ε + Yabs

−η (2.15)

with

ε = 0.0808 η = 0.4525.

The fact that the photon-proton cross section also perfectly fits into the scheme of the
hadronic cross sections can already be seen as a hint for the hadronic structure of the
photon. The second term in Eq. (2.15) clearly arises from the exchange of the ρ-, ω-, f -
and the a-trajectory which have the intercept α�(0) = 0.44 as can be seen from Fig. 2.5.
The small deviation from the exponent 0.56 that one expects according to Eq. (2.14)
arises from multi Reggeon exchange [Don92]. The first term in the expression (2.15)
stems from Pomeron exchange and determines the intercept of the Pomeron trajectory
α�(0) ≈ 1.08. Since the Pomeron is even under charge conjugation it couples with the
same strength to particle and antiparticle. This is indeed seen in the experimentally
observed coefficients: Xpp = Xpp̄, Xπ+p = Xπ−p and XK+p = XK−p. In addition, one
finds Xpn = Xpp which reflects the fact that the Pomeron has isospin I = 0.

The experimentally observed approximate flavor blindness of the Pomeron ex-
change, e.g. Xπ+p ≈ XK+p, and the fact that the known trajectories involving quark
exchange all have an intercept smaller that 1/2 suggest that the Pomeron represents the
exchange of gluons. The fundamental diagram for Pomeron exchange in the forward-
scattering amplitude, or more general in elastic scattering, is shown on the left-hand
side of Fig. 2.8. It represents the exchange of two gluons between the scatterers.
Single-gluon exchange would lead to two color octets as we discuss in more detail in
Sec. 2.2.5. The exchange of a second gluon is necessary to produce two outgoing color
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singlets. Inserting gluons to make ladders like on the left-hand side of Fig. 2.8 may
finally reproduce the Pomeron trajectory [For97]. The Pomeron that we have discussed
so far cannot be calculated from QCD since it involves soft momentum transfers. It is
purely phenomenological and its slope and intercept are extracted from experimental
data. The Pomeron that one calculates in perturbative QCD [For97] is hard and has a
different slope and intercept than the soft Pomeron. It is important for the description
of scattering processes at larger t and cannot be extrapolated to zero t.

The scattering process in Fig. 2.8 might be regarded as a Pomeron exchange between
two quarks with the remaining quarks in the hadrons being simply spectators. From
the different number of ways of pairing the valence quarks one gets for the total cross
sections of meson-meson, meson-baryon and baryon-baryon scattering: σmmtot = 4σqqtot,
σmbtot = 6σqqtot and σbbtot = 9σqqtot. Hence, in this additive quark model the ratio of, e.g., the
coefficients Xπp and Xpp should be 2/3 which is close to the experimental value 0.63.
A further justification of the assumption that the Pomeron couples to a quark inside a
hadron like a point particle comes from the t dependence of elastic meson-baryon and
baryon-baryon scattering. We postpone this discussion to the next Section.

2.2.2 Elastic scattering

Elastic scattering above the resonance region can be described by the sum of the
Reggeon and the Pomeron exchange amplitudes. As discussed in the last Section
the Reggeon amplitude falls off at large s so that the elastic scattering amplitude at
high energies is dominated by Pomeron exchange and can be written with the help of
Eq. (2.11) and (2.12) as

Mab→ab(s, t) = βa�(t)βb�(t)(i+ ρ)

(
s

s0

)α�(t)

≈ iβa�(t)βb�(t)

(
s

s0

)α�(t)

. (2.16)

In the last step we have neglected the real part of the forward-scattering amplitude
since inserting α�(0) into Eq. (2.12)1 yields a ratio of only ρ = 13%. The new vertex
functions β(t) denote the coupling of particle a and b to the Pomeron and are obviously
related via the optical theorem to the fit parameter Xab = βa�(0)βb�(0) of Eq. (2.15).

The slope of the Pomeron trajectory can therefore be determined from the large s
dependence of the differential elastic cross section at different values of t, cf. Eq. (2.13).
A fit to the experimental data on elastic pp and pp̄ scattering at large energy gives
α′
�

= 0.25 GeV−2. Using this slope one sees that α�(t) reaches the value 2 at t = 3.7
GeV2 which means that there should exist a spin 2 particle with the quantum numbers
of the vacuum and a mass of

√
3.7 GeV2 = 1.9 GeV. A glueball candidate with this

mass has been found at CERN [Aba94] meaning that the right-hand side of Fig. 2.8
can be interpreted as the exchange of a flavorless particle made solely from gluons just
as the particles on the Regge trajectories in Sec. 2.1.5 arose from the binding of quarks.

From the differential elastic cross section one can also determine the t dependence
of the vertex functions γ(t) in Eq. (2.11). They turn out to be proportional to the

1The Pomeron has even signature η = +1.
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electromagnetic form factor which supports the assumption that the Pomeron couples
to hadrons like the photon, namely as a point particle.

At not too large momentum transfer the t dependence of the experimental differ-
ential cross section can be approximated by a simple exponential fall-off. Neglecting
again the ratio ρ of real to imaginary part of the forward-scattering amplitude one gets
with the help of the optical theorem (2.4):

dσel

dt
=

σ2
tot

16π
(1 + ρ2)eBelt

≈ σ2
tot

16π
eBel t. (2.17)

Unless we state something different, the elastic slope Bel is parametrized in the same
way as in the PYTHIA model [Sjö01b]:

Bel = 2ba + 2bb + 4sε − 4.2

with s given in units of GeV2 and Bel in GeV−2. The constants bx arise from the form
factors of the particles involved in the scattering process: βx�(t) = βx�(0) exp(bxt).
The values are taken from Ref. [Sjö01b]: bp = 2.3, bπ,ρ,ω,φ = 1.4 and bJ/ψ = 0.23.
The s dependence of the slope parameter reproduces the experimentally observed ratio
σel/σtot. In the following we use the slope parameter bp for all baryons and bπ,ρ,ω,φ for
all mesons except for the J/ψ.

There is a second relation between σel and σtot besides Eq. (2.17) which can be
derived using the finite mass sum rule [Gou83] of diffractive interactions. The latter
relates the high mass and the low mass diffractive cross sections (including elastic scat-
tering) and is an extension of the finite energy sum rule which states that the description
of the total cross section via s-channel resonance production and decay (which works
best at low energies) and the description via t−channel Reggeon exchanges (which
works at high energies) are equivalent. As a result the average behavior of the to-
tal cross section in the resonance region is well described by the extrapolation of the
smooth high-energy behavior into low energies. This phenomenon is usually referred
to as duality. From the finite mass sum rule one can obtain the relation [Gou83]:

σtot ∼
∫ −∞

0

t

(
dσel

dt

)
dt. (2.18)

If one again assumes that the differential elastic cross section is of the form dσel/dt =
A exp[Belt] the right-hand side of Eq. (2.18) can be integrated by parts and one gets

σtot ∼ σel

Bel
. (2.19)

On the other hand the integration of Eq. (2.17) leads to the relation

σel ∼ σ2
tot

Bel
. (2.20)

Combining Eqs. (2.19) and (2.20) and eliminating Bel one finally has

σel = c σ
3/2
tot (2.21)

where the constant c is the same for all hadrons. Relationship (2.21) has been compared
to high-energy data in Ref. [Gou83] and was found to hold remarkably well.
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Figure 2.9: Pictorial representation of Mueller’s optical theorem. In the first step the
definition of the differential cross section for the inclusive process ab → cX has been
used. In the second step we use the completeness relation, then cross c→ c̄ and in the
last step use the unitarity relation for the 3 → 3 amplitude.

2.2.3 Diffractive excitation

In addition to elastic scattering the Pomeron exchange depicted in Fig. 2.8 can lead
to the excitation of quarks so that the outgoing particles have the same flavor content
but higher masses than the incoming hadrons. In the process of single diffractive
dissociation ab→ aX one of the incident particles remains unchanged and just scatters
through a small angle by emitting a Pomeron. By absorbing the Pomeron the other
incident particle b receives enough energy to break up into its constituent partons which
then hadronize to produce a cluster of hadrons X. In the case that both incident
particles break up, ab→ X1X2 one talks about double diffractive excitation.

Diffractive events are characterized by a large rapidity gap between the parent
hadron a and the hadronic system X (between X1 and X2 in case of double diffractive
scattering). Since the scattering angle is small (|t| � s) the rapidity

y =
1

2
ln

(
E + pz
E − pz

)

of the parent hadron is large and positive (provided the z direction is chosen as the
incident direction of particle a) while the particles in the hadronic subsystem X are
moving almost parallel to the negative z axis and therefore have large negative rapidi-
ties. The subsystem X is therefore often called the beam jet of particle b while in
double diffractive events X1 and X2 are the beam remnants of a and b respectively.

The terminology ’diffractive’ arises from the angular distribution of diffractively
(but also elastically) scattered hadrons at high energies which shows a zero-degree
peak followed by a dip and a secondary maximum very much like the diffraction of
light through a hole.

One can make use of Mueller’s generalized optical theorem [Mue70] to relate the
differential cross section of the inclusive reaction ab → cX to the elastic forward am-
plitude of the three-body process abc̄ → abc̄:

Ec
d3σ

d3pc
(ab→ cX) ≈ 1

s
DiscM2

X
M(abc̄→ abc̄)

where the discontinuity has to be taken across the M2
X = (pa+pb+pc̄)

2 = (pa+pb−pc)2

cut of the elastic 3 → 3 amplitude. The pictorial derivation of Mueller’s theorem is
given in Fig. 2.9 and can directly be compared with the representation of the optical
theorem in Fig. A.1.

Using Mueller’s theorem one can directly read off the form of the single diffractive
cross section for the process ab → aX from the factorized Pomeron interaction shown
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Figure 2.10: Triple Pomeron amplitude for the single diffraction reaction ab→ aX.

in Fig. 2.10:

d2σsd

dt dM2
X

=
g3�(t)

16πM2
X

βa�(t)2βb�(0)

(
s

M2
X

)2(α�(t)−1) (
M2

X

s0

)α�(0)−1

(2.22)

where s = (pa + pb)
2 is the total center-of-mass energy squared and t = (pa − p′a)

2 =
(pa+pā)

2 denotes the four-momentum transfer between the parent hadron a and hadron
b. The vertex functions are the same as in elastic scattering and take the form βa�(t) =
βa�(0) exp(bat) for small values of t. Strictly speaking Eq. (2.22) is only valid for
intermediate MX , i.e. in the so-called triple Regge limit (M2

X → ∞, s/M2
X → ∞).

However, for lack of better alternatives it is usually used over a wider range of masses.

The form of the double diffractive cross section can be derived in a similar way
[Sch94]:

d3σdd

dt dM2
1 dM

2
2

=
g2

3�(t)

16πM2
1M

2
2

βa�(0)βb�(0)

×
(

ss0

M2
1M

2
2

)2(α�(t)−1) (
M2

1

s0

)α�(0)−1 (
M2

2

s0

)α�(0)−1

.

In summary it may be said that Regge theory relates total, elastic and diffractive
cross sections and allows for a consistent parametrization of all three quantities. How-
ever, elastic and diffractive scattering do not sum up to yield the total cross section
as can be seen from Fig. 2.7. The difference σnd = σtot − σel − σsd − σdd can be at-
tributed to non-diffractive interactions between the incident hadrons. These remaining
non-diffractive events are discussed within the next two sections.

2.2.4 Hard scattering

Instead of exchanging many soft gluons as in Reggeon exchange the quarks of the two
projectiles can also interact by the exchange of one hard gluon which caries a large
momentum as depicted in Fig. 2.11. The struck quarks then change their flight direc-
tion with respect to the original axis and fly apart with a considerable large transverse
momentum pT . Due to confinement the colored quarks cannot separate over macro-
scopic distances but hadronize due to the creation of several quark-antiquark pairs
from the vacuum. This hadronization process involves only soft momentum transfers
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Figure 2.11: Example for a hard scattering process. A quark carrying the fraction
x1 of the incoming meson momentum P1 scatters from a quark with momentum x2P2

inside the baryon. Initial transverse momenta have been neglected. At large transverse
momentum transfers the elementary interaction takes place very rapidly compared to
the internal time scale of the hadron wave functions. The scattering cross section is
therefore given by the cross section of the leading order QCD subprocess folded with
the parton distribution functions f(x,Q2) (see Eq. (2.23)).

and therefore does not strongly affect the momentum of the leading hadrons, i.e. those
involving the quarks of the hard interaction. Therefore, a hard scattering leads to the
creation of hadron jets with large pT > pT min ≈ 1.5 − 2 GeV which can be seen in
collider experiments at large energies s.

From Fig. 2.7 it can be seen that the cross sections for hard interactions between
one or several parton pairs (quarks q as well as gluons g) of the projectiles such as

q + q′ → q + q′

q + g → q + g

g + g → g + g

are small over a large range of s. The reason for this is that hard processes by definition
involve a large momentum scale pT at which the QCD coupling constant is small.
On the other side, this is what makes the cross sections in principle calculable using
perturbative QCD (see for example [Mut87]). To lowest order the differential cross
section for hard hadron-hadron scattering is given by

dσ

dp2
T

=
∑
i,j,k

∫
dx1

∫
dx2

∫
dt̂fi(x1, Q

2 = p2
T )fj(x2, Q

2 = p2
T )
dσ̂kij

dt̂
δ(p2

T − t̂ û

ŝ
) (2.23)

where i and j label possible incoming partons from the incoming hadrons and k different
allowed final-state flavor contents. Eq. (2.23) expresses the hadronic cross section σ in
terms of the partonic cross section σ̂ for the underlying QCD subprocess i+j → k. The
Mandelstam variables ŝ, t̂ and û of the partons involved in the 2 → 2 scattering are
explained in Appx. C. At large enough p2

T the parton-parton scattering cross section
dσ̂/dt̂ can be calculated within perturbative QCD using Feynman diagram techniques
[Owe78].
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Figure 2.12: Physical origin of scaling violation. A quark with momentum fraction x
can radiate a gluon with momentum fraction x2 < x. After the emission of the gluon
the quark carries a smaller momentum fraction x1 < x than before. At low resolution
Q2

0 the probe sees the quark and the gluon as a whole. When increasing the resolution
from Q2

0 to Q2 > Q2
0 the probe can see the quark (or the gluon) separately and therefore

always probes a smaller momentum fraction.

The parton distribution functions fi(x,Q
2) in Eq. (2.23) describe the probability

that the struck parton i carries a fraction x of the hadron’s light-cone momentum
p+ = E+ pz where E and pz denote energy and momentum of the hadron respectively.
The x dependence of the fi cannot be derived from QCD and has to be taken from
experimental measurements. Since the fi are closely related to the structure functions
that are measured in deep inelastic lepton-hadron scattering (cf. Eq. (3.22)) a large
number of parton distribution sets for the proton is on the market [Plo93, Plo95]. The
up and down quark distributions for the neutron can be related by isospin symmetry
to those of the proton measured in deep inelastic scattering: fnd = f pu , f

n
u = f pd . For the

hyperons Λ, Σ, Ξ and Ω one can make a simple ansatz [Sjö01b] and construct an average
valence quark distribution fval = 1

3
(f pu,val+f

p
d,val), assuming that the sea quark and gluon

distributions are the same as in the proton. Data on meson parton distributions are
only available for the π± [Glü92]. One therefore has again to make simple assumptions

for the parton distributions of the other mesons, e.g., f ρ
0

i = fπ
0

i = 1
2
(fπ

+

i + fπ
−

i ) which

is motivated by the additive quark model, or fval = 1
2
(fπ

+

u,val + fπ
−

d,val) similar to the case
of baryons.

Due to QCD processes like for example gluon bremsstrahlung the parton distribu-
tions are scale dependent [Mut87] as is illustrated in Fig. 2.12. The resolution of the
probe, i.e. the virtual photon in case of deep inelastic scattering or the gluon in hard
hadron-hadron scattering, is determined by its wave length which again depends on the
momentum transfer Q2. Increasing the momentum transfer and, hence, the resolution
one gets an increased probability of finding a parton at small x and a decreased chance
of finding one at high x because high momentum quarks lose momentum by radiating
gluons. In the case of parton-parton scattering one usually fixes the scale by the trans-
verse momentum transfer: Q2 = p2

T . Once the x dependence of the parton distributions
are known for one scale Q2

0, e.g. from deep inelastic scattering experiments, they can
be evolved to different scales Q2 using the Altarelli-Parisi Equation [Mut87].

To avoid regions where pQCD is not applicable one has to introduce a lower cut-off
pT min below which the wavelength of the exchanged gluon is not large enough to resolve
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Figure 2.13: Soft non-diffractive interaction of two baryons. While the two baryons
pass each other a soft gluon exchange between the blue and the green quark of the
incoming baryons leads to the two-string configuration shown on the right-hand side:
Each of the two color strings is stretched between the quark in one baryon and the
diquark in the other, i.e. between a color triplet 3 and antitriplet 3̄.

individual color charges. The integrated cross section for hard scattering above this
cut-off is given by

σhard(pT min) =

∫ s/4

pT min

dσ

dp2
T

dp2
T . (2.24)

Note that since each hard scattering event described by Eq. (2.24) contains two jets
the inclusive jet rate measured in experiment is a factor two larger.

For a reasonable large pT min, such that σhard � σnd, the partonic cross section (2.24)
can be roughly equated with the cross section for a hard hadron-hadron interaction.
One can then subdivide the non-diffractive events into a part of events with hard jets
and a part of low-pT events with a cross section σsoft(pT min) = σnd(s) − σhard(pT min).
However, the differential jet cross section diverges with increasing s and can exceed
σnd(s). This is not a contradiction since σhard gives the parton-parton cross section and
each of the incoming hadrons may be viewed as a beam of partons with the possibility
of having several parton-parton interactions when the hadrons pass through each other.
Therefore, 〈n〉 = σhard(pT min)/σnd(s) is simply the average number of parton-parton
scatterings above pT min in an event, and can be larger than unity. Unitarization cor-
rections are applied by distributing a varying number of interactions per event [Dur88]
to ensure σsoft ≥ 0.

At the end of this section we want to point out that hard interactions are in general
accompanied by initial and final-state showers (q → qg, g → qq̄ and g → gg) which
smear the kinematics of the naive hard process described above and can be viewed
as higher order corrections in the strong coupling αS. In principle the partons in the
actual hard reaction might also stem from initial-state showers.

2.2.5 Soft non-diffractive scattering

At the end of this section we want to discuss the remaining event class, namely the
soft non-diffractive scattering. As can be seen from Fig. 2.7 the hard processes make
up only for a very small fraction of the total cross sections at low energies. The other
class of non-diffractive events which does not contain high-pT jets in the final states
can be handled [Sjö01a, Sjö01b] as if originating from a single soft gluon exchange
between the incoming hadrons. In contrast to the two gluon or Pomeron exchange in
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Figure 2.14: Color charges in the chromodielectric model. A green and a red quark are
sources for both the D3 and the D8 field, while the blue quark is only a source of the
D8 field.

diffractive interactions and elastic scattering the two outgoing hadron remnants are
now color octets, i.e. they are connected by color fields. Because of the strong color
interactions these fields are pulled together into the form of a tube or string. If one
decomposes each remnant into a color triplet and one antitriplet, e.g., a quark and a
diquark in the case of baryons or a quark and an antiquark in the case of mesons, one
ends up with two strings per event. Each of the strings stretches between a triplet
in one remnant and an antitriplet in the other as illustrated in Fig. 2.13 for the case
of soft non-diffractive baryon-baryon scattering. The two strings are then assumed to
fragment independently of each other.

The simplified string configuration of Fig. 2.13 is not very different from what can
be extracted from the chromodielectric model [Fri77a, Fri77b, Tra99, Mar04]. In this
model the nonabelian part of the gluon sector is accounted for by a scalar σ field.
This field acts like a medium with dielectric constant ε < 1 in which the color charges
are embedded. These color charges are sources of two fields, the D3 and the D8 field
(corresponding to the commutating Gell-Mann matrices λ3 and λ8 in QCD) which can
only interact indirectly with each other via a scalar σ field. In this abelian approach
the colored quarks carry electric charges according to Fig. 2.14. The green and the red
quark are sources for both the D3 and the D8 field, while the blue quark provides only
a source for the D8 field.

The quark configuration on the right-hand side of Fig. 2.13 thus leads to the field
configurations [Mar] illustrated in Fig. 2.15. The solid lines represent the contour lines
of the electric energy density

W =
1

2

∑
a=3,8


Da · 
Ea (2.25)

where 
E = 
D/ε as in usual Maxwell theory. The shape of the energy density looks
pretty much like in the simplified string configuration of Fig. 2.13. However, one sees
that in contrast to the situation described above the D8 field now connects all four
string ends. The assumption that the two strings decay independently of each other
might therefore be questionable.
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Figure 2.15: Field configuration of the D8 (upper panel) and the D3 (lower panel) field
in the chromodielectric model [Mar]. The color configuration of the quarks corresponds
to that after the soft gluon exchange, i.e. the situation depicted on the right-hand side
of Fig. 2.13. The contour lines represent the electric energy density (2.25) for the values
3, 4, 5 and 6 fm−4 (increasing towards the locations of the charges).

2.3 String model of Regge trajectories

At the end of this chapter we give a classical explanation [Per87] for the linearity of
Regge trajectories and the universal slope parameter α′

�
of Sec. 2.1.5. Since the media-

tors of the color force, i.e. the gluons, themselves carry color charges they are subject to
strong self interactions. If the sources are separated more than ≈ 0.3 fm these strong
color interactions confine the field lines to a narrow flux tube with constant energy
density κ per unit length. This leads to the linear increase of the quark potential at
large distances which is seen for example in charmonium and bottonium spectroscopy,
i.e. the energy levels of bound cc̄ pairs.

If one considers a hadron as two (massless) quarks which are connected by a string
as in Fig. 2.16 the angular momentum of this object will be equal to the total orbital
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Figure 2.16: Simple string model for hadron. Neglecting the masses of the quarks the
angular momentum of the hadron is given by the orbital angular momentum of the
flux tube.

momentum of the flux tube. Assume that the ends of the tube rotate with the velocity
of light. Then the local velocity at radius r will be

β(r) =
r

r0
(2.26)

where r0 is half the length of the string. The total mass is then

M = 2

∫ r0

0

κ dr√
1 − β(r)2

= κr0π,

and the orbital momentum of the hadron is given as

J = 2

∫ r0

0

κrβ dr√
1 − β(r)2

=
κr2

0π

2
.

Eliminating r0 between these equations yields the linear relation between the angular
momentum and mass of a hadron which we know from the Chew-Frautschi plot in
Fig. 2.5:

J = α′M2 + const

with α′ = (2πκ)−1. The string tension κ can be estimated via the typical hadronic
mass 1 GeV and the hadronic diameter which is known from electron scattering to be
about 1 fm. The linear energy density then yields κ ≈ 1 GeVfm−1 and α′ ≈ 0.8 GeV−2

which has to be compared to α′
�
≈ 0.9 GeV−2 of the Regge trajectories. One can say

that despite of its simplicity the string model yields an astonishing good estimate for
the Regge slope α′

�
.
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Chapter 3

Photon-hadron and electron-hadron
interactions

The interactions of high-energy photons with hadrons show some striking similarities
to hadronic reactions. Since the scattering of leptons off nucleons can be reduced to the
interaction of a virtual photon γ∗ in the so-called one-photon exchange approximation
these similarities also show up in electron-induced reactions. An extensive discussion
of the hadronic properties of the (virtual) photon in high-energy reactions as well as a
theoretical interpretation in terms of generalized vector meson dominance can be found
in Refs. [Bau78, Don78].

This chapter is organized as follows. In Sec. 3.1 we discuss the hadronic structure
of real photons and their interaction with nucleons. We show that instead of coupling
directly to a quark inside the nucleon the photon can also fluctuate into a quantum
mechanically allowed hadronic state which subsequently scatters off the nucleon. This
picture is generalized in Sec. 3.2 for the description of virtual photons. The probability
whether the photon interacts directly or as a resolved hadronic state will strongly
depend on its kinematics, i.e. the photon’s energy and in case of lepton scattering
also on the four-momentum transfer squared. We adopt the theoretical approach of
Sjöstrand et al. [Sch93a, Sch93b, Sch95, Sch96, Fr00a, Fr00b, Fr00c] which has been
developed during the past 20 years and which has been successfully implemented into
the PYTHIA model [Sjö01a, Sjö01b] to describe γN , γ∗N and γ∗γ∗ reactions at large
energies.

In what follows we mainly focus on the description of resolved photon events since
the direct photon interactions are completely taken care of by the PYTHIA Monte
Carlo generator.

3.1 Real photons

There are many experiments, performed e.g. at DESY, ELSA, MAMI, Jefferson Lab,
SLAC and SPring8 with beam energies ranging from a few hundred MeV up to several
hundred GeV, that investigate the hadronic interactions of real photons. Most of them
use a tagged photon beam, i.e. they produce high-energy photons via bremsstrahlung
by bombarding a thin radiator with a monochromatic electron or positron beam. The
energy of the photon is determined by measuring the momentum of the incoming and

31
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outgoing electron.

In most of the experiments one uses hydrogen or deuterium targets. In the low
energy regime, i.e. at center-of-mass energies below

√
s ≈ 2 GeV, the main goal of

these experiments is to investigate the structure of nucleons via resonance excitation.
At larger energies one can study the production mechanism of vector mesons as well
as strange and charmed baryons and mesons.

By using nuclear targets one can examine the in-medium properties of hadrons
such as a possible modification of masses and widths at finite nuclear density. For an
overview see [Fal03a] and references therein. In addition, the determination of mean
free paths allows to extract the cross sections of unstable particles. The nucleus can
also serve as a kind of ’micro-detector’ for the study of hadron formation times in
photonuclear reactions as we discuss in detail in Chap. 6.

There is also the possibility to use polarized photon beams and/or targets to inves-
tigate the spin structure of the nucleon. In this work, however, we only consider spin
averaged cross sections mainly due to technical reasons.

3.1.1 Hadronic structure of the photon

The total photon-nucleon cross section shows a clear resonant structure at low energies
which vanishes for center-of-mass energies above approximately 2 GeV. For high en-
ergies the cross section becomes more or less constant with only a logarithmic energy
dependence. The same behavior is observed in pion-proton scattering. Above the res-
onance region the two cross sections differ only by a constant factor of the order of the
fine structure constant αem [Gre73]. In addition, one observes that the photoabsorption
cross sections for protons and neutrons become approximately equal at high energies
which shows that high-energy photons do not couple primarily to the charge of the
target.

Above the baryon resonance region also the t dependence of the cross section for
Compton scattering (γN → γN) does not differ qualitatively from that of hadronic
cross sections like elastic πN scattering or vector meson photoproduction despite a
rescaling with the appropriate powers of αem. All differential cross sections show a fast
exponential decrease with increasing momentum transfer |t|.

Concerning the phase of the Compton amplitude dispersion relations (cf. Eq. (2.10))
for the forward amplitude [Dam70] as well as direct measurements [Alv73] show that
the forward amplitude is almost purely imaginary for high values of s. This is also the
case for elastic πN and NN amplitudes.

All of these observations can be understood within Regge theory if one assumes that
the photon can couple to the Pomeron. We have already mentioned in Sec. 2.2.1 that
the Regge parametrization of total cross sections also works for photon-induced reac-
tions which means that the Compton forward amplitude is dominated by Reggeon and
Pomeron exchange. In addition, we have seen in Sec. 2.2.2 that the leading contribution
to elastic scattering at high energies arises from the t-channel exchange of a Pomeron
which would give a natural explanation for the similarity of the elastic scattering am-
plitudes. A further hint to a a photon-Pomeron coupling is provided by the phase of
the Compton amplitude. Inserting the Pomeron intercept α�(0) into Eq. (2.12) yields
a very small value for the ratio of real to imaginary part of the forward-scattering am-
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plitude. The parton model of the last chapter, which explains Reggeon and Pomeron
exchange in terms of quarks and gluons therefore suggests a hadronic substructure of
the photon.

Besides the above mentioned similarities, there is also an important difference be-
tween photon and hadron-induced reactions at high energies. In purely hadronic re-
actions the elastic cross section σel typically makes up for about 15-20% of the total
cross section σtot (see also Fig. 2.7). This is not the case for electromagnetic processes
since the cross section for Compton scattering is smaller by a factor αem in order of
magnitude. However, the fraction of the total cross section that stems from exclu-
sive vector meson production (γN → V N) approximately equals the ratio σsd/σtot in
hadronic scattering. If one in addition accounts for the similar s and t dependence of
dσ/dt(γN → V N) and diffractive hadron-hadron scattering, vector meson photopro-
duction at large energies can be viewed as the photon analogon to diffractive excitation
in hadron scattering.

Last but not least one observes a striking similarity between photon and hadron-
induced reactions in nuclear reactions. In both cases the total nuclear cross section σA
is considerably reduced compared to A times the nucleonic cross section σN :

σA < AσN ,

where A denotes the atomic mass number. At large energies the nuclear absorption
cross section scales approximately with A2/3 for both photon and hadron-induced reac-
tions1. In case of hadronic projectiles this can easily be understood since the mean free
path of the hadron inside the nuclear medium is short compared to the nuclear diame-
ter and the first interaction of the projectile already takes place on the front side of the
nucleus. This leads to an absorption cross section that is proportional to the nuclear
surface. The fact that this so-called shadowing effect also occurs in γA reactions has
been considered for a long time as the perhaps strongest confirmation of the photon’s
hadronic structure. However, as we show in Sec. 6.1.1 one can in principle understand
this effect within Glauber theory without the need of a hadronic component of the
photon.

3.1.2 Resolved interactions

If one uses time-ordered perturbation theory to describe the interaction of a (virtual)
photon with a hadron one will encounter two time-ordered contributions to the scatter-
ing amplitude [Pil95]. The two amplitudes are shown in Fig. 3.1. In the left diagram
the photon is absorbed by a quark from the target. In the right diagram the photon
dissociates into a quark-antiquark pair before the interaction with the target takes
place. In the rest frame of the target the photon has energy ν and momentum 
q. We
assume that its energy is large compared to the average momentum of a quark inside
the hadron 〈
p 2

q 〉1/2 and the photon virtuality

Q2 = −(ν2 − 
q 2),

1Note that in contrast to the total γA and hA cross sections the inclusive production cross sections
can show a different A dependence. For example one expects the inclusive production cross section
σ(aA → bX) to scale with the nuclear mass number A at high energies (AGK cancellation) as we
discuss at the end of Sec. 5.1.2.
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Figure 3.1: Time-ordered amplitudes for photon-hadron scattering (t2 > t1). Left:
The photon interacts with a quark inside the target (amplitude Aa). Right: The
photon fluctuates into a quark-antiquark pair which subsequently scatters off the target
(amplitude Ab).

i.e. ν2 � 〈
p 2
q 〉 and ν2 � Q2.

The weight of each time-ordered amplitude can be estimated via the energy differ-
ence that occurs if one puts the quarks on their mass shell and postulates only three
momentum conservation at each vertex [Hal84]. Neglecting the masses of the quarks
the energy difference for the left diagram (amplitude Aa) in Fig. 3.1 is then given by

∆Ea = Ea(t2) − Ea(t1)

=
√
〈(
pq + 
q )2〉 − (ν + 〈
p 2

q 〉1/2)
=

√
〈
p 2
q 〉 + 
q 2 − (ν + 〈
p 2

q 〉1/2)

≈ 〈
p 2
q 〉 +Q2

2ν
− 〈
p 2

q 〉1/2

and that of the right diagram (amplitude Ab) is

∆Eb = Eb(t2) − Eb(t1)

= E(qq̄) − ν

=
√
m2
qq̄ + 
q 2 − ν

≈ m2
qq̄ +Q2

2ν

where mqq̄ denotes the mass of the quark-antiquark pair. In the case of large photon
energies the ratio of the two amplitudes can then be estimated as

|Ab|
|Aa| ∼

∣∣∣∣∆Ea∆Eb

∣∣∣∣ =

∣∣∣∣∣〈
p
2
q 〉 +Q2 − 2ν〈
p 2

q 〉1/2
m2
qq̄ +Q2

∣∣∣∣∣
≈ 2ν〈
p 2

q 〉1/2
m2
qq̄ +Q2

. (3.1)

Of course only the sum of the two time-ordered amplitudes is gauge invariant. However,
if one assumes that only qq̄ pairs with m2

qq̄ � Q2 contribute to amplitude Ab, Eq. (3.1)
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Figure 3.2: Ratio R = σ(e+e−→hadrons)
σ(e+e−→µ+µ−)

as function of the center-of-mass energy
√
s.

shows that amplitude Ab dominates for very high photon energies. In this kinematic
regime the photon therefore fluctuates into a hadronic state with quantum numbers
of the photon (spin, parity and charge conjugation JPC = 1−−) which subsequently
scatters from the target.

For real photons, i.e. Q2 = 0, the requirement m2
qq̄ � Q2 constrains the fluctuations

to the lightest hadronic states with the appropriate quantum numbers. Looking into
the hadronic spectrum of the reaction e+e− → γ∗ → hadrons in which a timelike photon
dissociates into hadrons (see Fig. 3.2), one can identify the four lowest resonant states:
the vector mesons ρ0, ω, φ and J/ψ with masses mρ = 771 MeV, mω = 783 MeV,
mφ = 1019 MeV and mJ/ψ = 3097 MeV. They can be viewed as bound quark-antiquark
systems where the first two contain the light up and down quarks and the latter two
are made of strange and charm quarks, respectively. In addition, one observes a non-
resonant background with thresholds at energies where qq̄ pairs of new flavors can be
produced.

The physical photon can therefore be decomposed as illustrated in Fig. 3.3 into a
bare photon that interacts directly with a parton from the target, the vector meson
fluctuations V = ρ0, ω, φ, J/ψ, some non-resonant qq̄ fluctuation of larger virtuality as
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Figure 3.3: Physical photon. The physical photon can be thought of as a superposition
of a bare photon, vector mesons as well as fluctuations into qq̄ and dilepton pairs.

well as fluctuations into dileptons:

|γ〉 =
√
Z3|γ0〉 +

∑
V

e

gV
|V 〉 +

∑
q

e

gqq̄
|qq̄〉 +

∑
l

e

gll
|l+l−〉 (3.2)

with the wave function renormalization

Z3 = 1 −
∑
V

(
e

gV

)2

−
∑
q

(
e

gqq̄

)2

−
∑
l

(
e

gll

)2

. (3.3)

Since the leptonic component of the photon can only interact strongly at higher orders
in αem its contributions to hadronic interactions can be neglected.

Vector meson dominance

The strict vector meson dominance (VMD) model [Sak60, Gel61] neglects any contri-
bution from the bare photon and the qq̄ continuum in photon-hadron interactions. The
invariant amplitude for the process γ∗h → X can therefore be expressed in terms of
the on-shell vector meson scattering amplitudes:

Mγ∗h→X(Q2, s, t, . . .) =
∑
V

e

gV

m2
V

Q2 +m2
V

MV h→X(s, t, . . .) . (3.4)

Here mV denotes the mass of the vector meson V and (e/gV )2 gives the probability
for the transition γ∗ → V . Any dependence of the amplitude on the virtuality Q2 is
taken care of by the vector meson propagator. In Sec. 3.2.1 we show that for Q2 �= 0
also a contribution from longitudinally polarized photons exists. This issue is not
addressed by (3.4) which only describes the Q2 dependence of the transverse part. The
photon-vector meson coupling constants e/gV can either be extracted directly from
e+e− → hadrons or via Eq. (3.8) from photoproduction of vector mesons on nucleons.
Throughout this work we use the values from Ref. [Bau78] which are the geometrical
mean of the two possible extractions and coincide with the values used in the PYTHIA
model (see Tab. 3.1). Inserting these values into Eq. (3.3) one sees that the real photon
can be found in a VMD state about 0.5% of the time. Although this sounds tiny, one
has to be aware that the vector meson component interacts with a hadronic cross
section that is a factor α−1

em larger in order of magnitude than that of the bare photon.

As discussed in Sec. 2.2.1 one can use Regge theory to parametrize total hadronic
cross sections. Assuming an additive quark model the total V p cross sections can be
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V ρ0 ω φ J/ψ

g2
V /4π 2.20 23.6 18.4 11.5

Table 3.1: VMD coupling constants gV [Bau78].

parametrized as [Sch95, Sch96]

σρ
0p

tot (s) ≈ σωptot(s) ≈
1

2
(σπ

+p
tot + σπ

−p
tot ) ≈ 13.63sε + 31.79s−η [mb],

σφptot(s) ≈ σK
+p

tot + σK
−p

tot − σπ
+p

tot ≈ 10.01sε − 1.52s−η [mb],

σ
J/ψp
tot (s) ≈ m2

φ

m2
J/ψ

σφptot(s) ≈
1

10
σφptot(s), (3.5)

with s in GeV2 and ε, η as in Eq. (2.15). The cross sections on a neutron are the same
because of isospin symmetry.

Using the VMD amplitude (3.4) in the optical theorem (2.4) one gets in the ’diagonal
approximation’, i.e. neglecting off-diagonal scattering V N → V ′N with V ′ �= V :

σγpVMD(s) =
∑
V

e2

g2
V

σV ptot (s). (3.6)

This has to be compared with the empirical parametrization [Don92] for the total γp
cross section:

σγptot(s) = 67.7sε + 129s−η [µb]. (3.7)

The two cross sections are plotted in Fig. 3.4. One sees that the vector meson compo-
nents (dashed line) alone already make up for about 80% of the real photoabsorption
cross section which explains the Regge form of the total γN cross section. The remain-
ing 20% are shared among the direct and qq̄ interactions. Fig. 3.4 also shows the ρ0

contribution to the total photoabsorption cross section (dotted line). Obviously, the
VMD contribution is dominated by the ρ0 component of the photon.

In case that the photon interacts via a vector meson fluctuation all processes that are
allowed in hadron physics and that are described in Chap. 2 may occur. This includes
elastic and diffractive as well as soft and hard non-diffractive events. In case of elastic
scattering one ends up with exclusive V production γN → V N . Exclusive vector
meson production at large energies can therefore be understood as a process where
a preformed vector meson fluctuation is put on its mass shell by a small momentum
transfer to the proton. This explains the observed exponential fall-off of the differential
exclusive vector meson production cross section:

dσ

dt
(γN → V N) ≈

(
e

gV

)2
(σV Ntot )2

16π
(1 + ρ2)eBelt, (3.8)

which simply arises from the exchange of a Pomeron (cf. Eq. (2.17)).
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Figure 3.4: Photoabsorption cross section on the nucleon. The solid line represents
the fit (3.7) to the proton data [Don92], the dashed line shows the VMD contribution
according to Eq. (3.6) and the dotted line is the part that arises from the fluctuation
into ρ0. The data are taken from Ref. [PDG02].

Generalized vector meson dominance

As can be seen from Fig. 3.4 the VMD events do not sum up to the full photoabsorption
cross section. The major fraction of what remains stems from interactions of the qq̄
fluctuations. Since one may view these states as excited higher resonances (ρ′ etc.) one
calls this event class ’generalized vector meson dominance’ (GVMD). Their contribution
to the photoabsorption cross section can be written similarly to the VMD part (3.6)
as [Fr00c]

σγpGVMD(s) =
αem

π

∑
q

z2
q

∫ k2
1

k2
0

dk2
T

k2
T

σqq̄p(s; kT ), (3.9)

where zq is the charge of a quark with flavor q in units of e and k1 can be identified with
the pT min cut-off of the perturbative hard hadron-hadron scattering on Sec. 2.2.4. The
prefactor and integral over dk2

T/k
2
T gives the probability for the photon to split into a

qq̄ pair of transverse momenta ±kT and σqq̄p denotes the cross section for this pair to
interact with the proton. The kT dependence of this cross section can be modeled using
color transparency arguments. As we discuss in Sec. 6.2 the cross section of small-sized
color singlet object scales with its transverse radius squared. The uncertainty relation
yields a maximal size k−1

T for a state of virtuality kT . If the qq̄ had formed a virtual
vector meson state V it would have the size k−1

V (qq̄) ≈ 2/mV . This suggests the rescaling
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Figure 3.5: Direct photon interaction in lowest order of αs. Left: Photon-gluon fusion
γg → qq̄. Right: QCD Compton γq → qg.

ansatz:

σqq̄p(s; kT ) =
k2
V (qq̄)

k2
T

σV (qq̄)p(s),

where σV (qq̄)p is the cross section of a vector meson with quark content qq̄ (cf. Eq. (3.5)).
We adopt the values from the PYTHIA model [Sjö01b] k0 = 0.5 GeV, kV (qq̄) = 0.4 GeV
and k1 = pT min = (1.9 GeV)(s/TeV2)ε.

After the photon has branched into a qq̄ pair one of the quarks or a daughter parton
thereof interacts with a parton from the target. This is not different from the usual
hard hadron-hadron scattering discussed in Sec. 2.2.4 besides the fact that the initial
parton distribution and its subsequent QCD evolution is now perturbatively calculable
[Sjö01b]. It is important to note that the higher Fock components of the photon such
as |qq̄g〉, |qq̄gg〉, |qq̄qq̄〉, etc. are effectively taken into account by the possibility of
initial-state radiation in the hard scattering process.

3.1.3 Direct interactions

As can be seen from the wave function renormalization (3.3) the physical photon is still
a pointlike particle most of the time, 1 − Z3 � 1. The reason why most γp reactions
are dominated by the VMD and GVMD contributions is because the hadronic ρ0p cross
section is so much larger than that of the direct photon.

To leading order in the strong coupling αs the direct photon processes are the
photon-gluon fusion γg → qq̄ and the QCD Compton process γq → qg, both shown
in Fig. 3.5. The latter can be viewed as the higher-order correction to deep inelastic
scattering of virtual photons γ∗q → q which is discussed in the next section and is
illustrated in Fig. 3.7. The absorption of a real photon on a single quark without the
emission of a hard gluon is not possible because it requires a quark far off its mass
shell either in the entrance or in the outgoing channel. Since the bound quarks in the
proton are in general only slightly off-shell2 and the hadronization of the outgoing quark
involves only soft momentum transfers this process cannot contribute for real photons.
The cross sections for the photon-gluon fusion and the QCD Compton process become
calculable within pQCD by introducing a lower cut-off on the transverse momenta
kT > pT min(= k1) of the outgoing quark pair (see [Sjö01b] and references therein). The

2Note that the interactions with other quarks inside the nucleon may lead to a finite quark width,
e.g. the on-shell width of constituent quarks (mq = 300 MeV) in infinite quark matter is 0.1–10 MeV
[Frö03].
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parton distributions of the nucleon that enter the calculations are the same as for hard
hadron-hadron scattering.

The events that correspond to the different cross sections in the incoherent sum

σγNtot (s) = σγNVMD(s) + σγNGVMD(s) + σγNdir (s)

lead by construction to experimentally distinguishable final states: The typical event
structure of a direct photon-proton interaction is two high pT > k1 jets and a proton
remnant. In contrast to resolved events where the photon also leaves behind a beam
remnant which in case of VMD events is smeared with a typical primordial kT � k0,
i.e. a few hundred MeV and in case of GVMD events has kT � k0. The direct events
do not involve a beam remnant of the photon. Interference effects between the three
different event classes can therefore be neglected.

3.2 Electron-nucleon interactions

In this section we give a brief introduction to electron-nucleon interactions. A detailed
review on electron-induced reactions can be found in Refs. [Hal84, Bof96a]. In Sec. 3.2.1
we show how to relate electron-nucleon scattering to the interaction of a virtual photon
with a nucleon. After that we generalize the theoretical framework of Sec. 3.1 to virtual
photons.

3.2.1 One-photon exchange approximation

Let us consider the inelastic scattering of an electron with four-momentum k on a
nucleon with four-momentum p. The four-momentum transfer

q = k − k′

is always spacelike as can be easily seen in the rest frame of the projectile:

q2 = 2m2
e − 2kk′ = 2m2

e − 2me

√
m2
e + 
k 2 < 0. (3.10)

One therefore usually introduces the photon virtuality Q2 := −q2 as a positive quantity.
For large values of Q2 the target nucleon is destroyed and in addition to the scattered
electron one observes a ensemble of hadrons with invariant mass squared W 2 = (p+q)2

(see Fig. 3.6).
If one detects only the scattered electron one ends up with the inclusive scattering

cross section which in the rest frame of the target nucleon takes on the form

d2σ

dΩdE ′ =
α2

em

Q4

E ′

E
LµνWµν . (3.11)

Here E and E ′ denote the energy of the electron before and after the collision. The
leptonic tensor has the simple form

Lµν = 2

(
kµk′ν + k′µkν +

q2

2
gµν

)
.
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Figure 3.6: Electron-nucleon scattering in first order of αem: One-photon exchange
approximation.

The hadronic tensor W µν describes the coupling of the photon to the nucleon. Since
the nucleon is not a pointlike particle, two structure functions W1(ν,Q

2) and W2(ν,Q
2)

enter the hadronic tensor (ν = E − E ′):

W µν = W1(ν,Q
2)

(
qµqν

q2
− gµν

)
+

1

m2
N

W2(ν,Q
2)

(
pµ − p · q

q2
qµ
)(

pν − p · q
q2

qν
)
.

We have omitted the antisymmetric part of W µν , since it does not contribute to the
cross section when contracted with the symmetric tensor Lµν in (3.11).

The lower part of the diagram in Fig. 3.6 solely represents the absorption of the
virtual photon γ∗ which has been emitted by the electron. By defining a virtual photon
flux Γ one can therefore rewrite the inclusive electrons scattering cross section (3.11)
in the factorized form

d2σ

dΩdE ′ = Γ(σγ
∗N
T + εσγ

∗N
L ) ≡ Γσγ

∗N
tot .

Here σγ
∗N
T and σγ

∗N
L denote the photoabsorption cross sections for transversal and

longitudinal photons and the polarization parameter ε gives the ratio of the longitudinal
and transversal photon flux:

ε =
ΓL
ΓT

≡ ΓL
Γ
.

Of course there is an ambiguity in the definition of the virtual photon flux. We use the
Hand convention [Han63]:

Γ =
αemK

2π2Q2

E ′

E

1

1 − ε
, (3.12)

ε =

[
1 + 2

(
1 +

ν2

Q2

)
tan2 θ

2

]−1

(3.13)

where

K =
W 2 −m2

N

2mN
(3.14)

is the equivalent photon energy, i.e. the energy that a real photon must have in the
rest frame of the nucleon to produce the same invariant mass W in the photon-nucleon
system as the virtual photon. The electron scattering angle θ is is also taken in the
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nucleon rest frame. With these definitions the photoabsorption cross sections become
[Hal84]

σγ
∗N
T =

4π2αem
K

W1(ν,Q
2),

σγ
∗N
L =

4π2αem
K

((
1 +

ν2

Q2

)
W2(ν,Q

2) −W1(ν,Q
2)

)
.

In case of electron-induced reactions on nuclei the lab frame, i.e. the frame where
the nucleus is at rest, does not coincide with the rest frame of the nucleon because of
Fermi motion. It is therefore useful to define the Lorentz-invariant cross section

d2σ

dydQ2
=

π

E ′
d2σ

dE ′dΩ

with all quantities on the right-hand side given in the rest frame of the nucleon and
y = pq/pk. We show in Appx. D that for large energies this invariant cross section
takes on the form

d2σ

dydQ2
≈ αem

2π

(1 − x)

Q2

(
1 + (1 − y)2

y

)
(σγ

∗N
T + εσγ

∗N
L ) (3.15)

with

ε ≈ 1 − y

1 − y + y2/2
(3.16)

and

σγ
∗N
T =

4παem

Q2(1 − x)
2xF1(x,Q

2), (3.17)

σγ
∗N
L =

4παem

Q2(1 − x)
FL(x,Q2). (3.18)

In the last step we have expressed the virtual photoabsorption cross sections in
terms of the dimensionless structure functions

F1(x,Q
2) = mNW1(ν,Q

2), (3.19)

F2(x,Q
2) = νW2(ν,Q

2), (3.20)

FL(x,Q2) =
4m2

Nx
2 +Q2

Q2
F2(x,Q

2) − 2xF1(x,Q
2) (3.21)

which scale in the so-called Bjorken limit

ν,Q2 → ∞ for fixed x =
Q2

2mNν
,

i.e. they only show a weak logarithmic dependence on Q2. The variable x is usually
called Bjorken scaling variable. In the Breit frame the energy transfer vanishes and the
spacial resolution of the virtual photon is given by

√
Q2. If the photon scattered from

non-interacting pointlike partons inside the nucleon the structure functions would be
independent of Q2. The observed scaling violation of the structure functions is directly
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connected to the Q2 dependence of the quark distribution functions fq(x,Q
2) which

we discussed in Sec. 2.2.4. If one considers the eN scattering process in a frame that
is moving very fast, i.e. where the nucleon is moving with a very large momentum
|
p | → ∞, one can neglect the masses and the transverse momenta of the partons and
the inner structure of the nucleon is given by their longitudinal momentum distribution
only. Because of time dilatation the interactions of the partons among each other is
frozen during the scattering process. In this infinite momentum frame the Bjorken
variable x simply yields the fraction of the nucleon’s four-momentum carried by the
struck quark. Using the parton distribution functions fq of Sec. 2.2.4 one can express
the structure function F2 as a weighted sum over the quark momentum distributions

F2(x,Q
2) = x

∑
q

z2
qfq(x,Q

2). (3.22)

Here the sum runs over both quarks and antiquarks inside the nucleon. Since quarks are
spin-1/2 fermions one obtains in addition the so-called Callan-Gross relation [Hal84]

F2(x,Q
2) = 2xF1(x,Q

2). (3.23)

From Eq. (3.21) one sees that the Callan-Gross relation leads to a vanishing of the
longitudinal photoabsorption cross section (3.18) in the Bjorken limit and gives

σγ
∗N

tot
Bjorken−−−−→ σγ

∗N
T =

4π2αem

Q2
F2(x,Q

2) (3.24)

for the total virtual photoabsorption cross section.
To summarize we expect that the virtual photon in the limit of very large Q2

couples directly to the quarks inside the nucleon. However, Eq. (3.1) tells us that also
for virtual photons a kinematic regime exists where the photon interacts via a hadronic
fluctuation.

3.2.2 Resolved interactions

The resolved event classes of real photons can easily be extended to those of virtual
photons. For the transverse part of the photon one can account for the virtuality Q2

via a dipole factor as in strict VMD (cf. (3.4)) which ensures a smooth transition to real
photons (Q2 = 0). However, measurements of the structure functions F1 and F2 [Ben89,
Adl97, Ack00] show a non-negligible contribution to σγ

∗N
tot arising from longitudinal

photons (cf. Eq. (3.18)). A common approach is to attribute the longitudinal cross
section with an extra factor of rV ∼ Q2/m2

V relative to the transverse one [Sak69]
which guarantees that σγ

∗N
L vanishes for Q2 → 0. Since such an ansatz seems only

reasonable for moderately small Q2 we adopt the alternative parametrization from
Ref. [Fr00c]:

r(m2
V , Q

2) = a
4m2

VQ
2

(m2
V +Q2)2

, (3.25)

with a=0.5 as in the PYTHIA model [Sjö01b]. Now the longitudinal contribution
vanishes for both low (Q2 → 0) and very high virtualities (Q2 → ∞).
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Figure 3.7: Lowest-order deep inelastic scattering γ∗q → q. The photon-gluon fusion
and QCD Compton process of Fig. 3.5 can be viewed as higher-order αs corrections of
this process.

Vector meson dominance

Using Eq. (3.25) to account for longitudinal photons and replacing the squared center-
of-mass energy s of the real photon interaction by the corresponding invariant mass
squared W 2 of the virtual photon-nucleon interaction, the VMD contribution (3.6) to
the total cross section becomes:

σγ
∗p

VMD(W 2, Q2) =
∑
V

e2

g2
V

[1 + ε r(m2
V , Q

2)]

(
m2
V

m2
V +Q2

)2

σV ptot (W
2). (3.26)

From Eq. (3.26) one sees that with increasing Q2 also the heavier vector mesons become
important. In the limit of very large Q2, however, the VMD contribution vanishes as
it should since for high virtualities Q2 and finite ν the photon behaves like a pointlike
particle according to Eq. (3.1).

Generalized vector meson dominance

The GVMD part (3.9) of the total photon cross section generalizes in a completely
analogous way if one recalls that now mV has to be replaced by 2kT :

σγ
∗p

GVMD(W 2, Q2) =
αem

π

∑
q

z2
q

∫ k2
1

k2
0

dk2
T

k2
T

[1 + ε r(4k2
T , Q

2)]

(
4k2

T

4k2
T +Q2

)2

σqq̄p(W 2; kT ).

(3.27)
As can be seen from Eq. (3.27) also the GVMD contribution to σγ

∗N
tot vanishes for

asymptotically large Q2.

3.2.3 Direct interactions

As discussed in Sec. 3.2.1 electron-nucleon scattering at large values of Q2 is dominated
by deep inelastic scattering of the virtual photon on a quark inside the nucleon. The
process is depicted in Fig. 3.7. To lowest order in αs, i.e. at very high Q2, the deep
inelastic scattering cross section is given via Eqs. (3.24) and (3.22) as

σγ
∗N

DIS ≈ 4π2αem

Q2
x
∑
q

z2
qfq(x,Q

2) (3.28)
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Figure 3.8: PYTHIA result for the fraction of the total γ∗N cross section that is
contributed by the VMD (solid line), GVMD (dashed) and direct (dotted) part of the
photon as a function of Q2 for fixed invariant mass W=5 GeV. Note that in contrast
to the authors of Ref. [Fr00c] we call every pointlike interaction of the photon a direct
process.

where the sum runs again over quarks and antiquarks inside the nucleon. In addition,
one has the higher-order corrections whose matrix elements smoothly approach those
of QCD Compton scattering and photon-gluon fusion of real photons as Q2 → 0. In the
PYTHIA model [Sjö01b] the contribution of the lowest-order deep inelastic scattering
to the direct processes is damped by a further factor of Q4/(Q2 + m2

ρ))
2 to obtain a

well-behaved deep inelastic scattering cross section for Q2 → 0 and to simultaneously
retain (3.28) in the limit of very high Q2.

Furthermore the resolved events in the PYTHIA model are suppressed by a factor
(W 2/(Q2 + W 2))3 to avoid double counting with the lowest-order DIS events in the
region of intermediate Q2 and small W 2 [Fr00c]. The total virtual photon-nucleon cross
section is therefore given by

σγ
∗N

tot (W 2, Q2) = σγ
∗N

dir (W 2, Q2) +

(
W 2

Q2 +W 2

)3 (
σγ

∗N
VMD(W 2, Q2) + σγ

∗N
GVMD(W 2, Q2)

)
(3.29)

where σγ
∗p

dir now contains the lowest-order deep inelastic scattering plus the two higher-
order corrections that reproduce the QCD Compton and photon-gluon fusion in the
limit Q2 → 0. Speaking of resolved photon cross sections in the following we always
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implicitly include the damping factor (W 2/(Q2 +W 2))3, i.e.

σγ
∗N

VMD(W 2, Q2) =

(
W 2

Q2 +W 2

)3 ∑
V

e2

g2
V

[1 + ε r(m2
V , Q

2)]

(
m2
V

m2
V +Q2

)2

σV Ntot (W 2)

(3.30)
and

σγ
∗N

GVMD(W 2, Q2) =
αem

π

(
W 2

Q2 +W 2

)3 ∑
q

z2
q

∫ k2
1

k2
0

dk2
T

k2
T

[1 + ε r(4k2
T , Q

2)]

×
(

4k2
T

4k2
T +Q2

)2 k2
V (qq̄)

k2
T

σV (qq̄)N (W ). (3.31)

Fig. 3.8 shows the contributions of the three event classes to the total photon-
nucleon cross section as a function of Q2 for a fixed invariant mass W=5 GeV. This
is approximately the kinematic regime of the HERMES experiment which we mainly
focus on in our discussion of electroproduction in Sec. 6. One clearly sees that for
Q2 → 0 one retains the situation we encountered for real photons, namely that the
VMD class (solid line) contributes to about 80% to the real photon cross section while
the rest is dominated by the GVMD class (dashed line). The situation changes with
increasing Q2. At Q2 ≈1 GeV2 about half of the total cross section can be attributed
to pointlike photon interactions (dotted line) with the rest shared among the VMD
and GVMD events. Already at Q2 �10 GeV2 the cross section is mainly due to the
direct photon interactions. In the whole kinematic regime that we are interested in
throughout this work the GVMD component of the photon only contributes with less
than 15 % to the total photon-nucleon cross section.



Chapter 4

The Lund model

In the preceding chapters we have focused on the different event classes in high-energy
hadron-hadron and photon-hadron scattering. We have shown in Sec. 2.2.5 how in the
case of soft non-diffractive scattering the single-gluon exchange leads to the creation
of two hadronic strings, i.e. the properties of the QCD vacuum confine the energy
density to narrow flux tubes connecting the colored string ends. One can imagine
that also shortly after a hard non-diffractive event the various colored objects that
emerge from the hard scattering and the final-state radiation1 are connected by such
strings. In addition, the excited hadronic states of the diffractive scattering events can
be viewed as hadronic strings – however with a lower invariant mass than in the other
event classes. The final particle spectrum of a high-energy reaction therefore strongly
depends on the decay mechanism of the hadronic string.

The Monte Carlo simulation programs PYTHIA [Sjö01a, Sjö01b] and FRITIOF
[And87, Pi92, And93] which determine the outcome of high-energy photon-nucleon
and hadron-hadron interactions in our model use the Lund formalism to describe the
breakup of the strings into hadrons in form of the JETSET package. This chapter
should serve as a brief introduction into the basic ideas of the Lund model [And83,
And98]. In Sec. 4.1 the concept of the massless relativistic string is introduced as a
simple model for hadrons. In Sec. 4.2 we describe how an excited string fragments into
hadrons due to the creation of quark-antiquark pairs from the vacuum. Within the
Lund model it is also possible to give a quantitative estimate of the hadron-formation
times. This is done in Sec. 4.3. We end this chapter with a brief discussion of the
Monte Carlo methods that we use for the event generation in high-energy reactions.

4.1 Yoyo hadrons

As discussed in Sec. 2.3 the Regge spectrum of hadrons can be explained by assuming
that the quark and antiquark (diquark) are connected by a color field which is com-
pressed into a flux tube that contains a constant amount of energy per unit length. This
constant force field leads to a linearly rising potential which is also seen in charmonium
and bottonium spectroscopy as well as lattice QCD results. Phenomenologically, the
string tension is known to be κ ≈ 1 GeV/fm ≈ 0.2 GeV2, cf. Sec. 2.3.

1In case of hadron-hadron scattering or resolved photon interactions there might be also color
charges arising from the initial-state radiation.

47
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Figure 4.1: Space-time trajectory of a particle with mass µ moving in positive x-
direction at t = 0 under the influence of a constant force −κ.

In this section we introduce a simple model which describes hadrons as a charge
and an anticharge connected by a massless relativistic string that plays the role of the
constant force field. The momentum of the state is located in the endpoint particles
and its total energy can be decomposed into the potential energy in the force field and
the kinetic energy of the endpoint particles.

The solution of the equation of motion

dp

dt
= −κ (4.1)

of a relativistic particle under the influence of a constant force −κ is

p(t) = κ(t0 − t). (4.2)

The Hamilton equations of motion yield the velocity of this particle as

dx

dt
=
∂H

∂p
=

∂

∂p

[√
p2 + µ2 + κ(x− x0)

]
=

p

E
, (4.3)

where
E =

√
p2 + µ2 (4.4)

denotes the relativistic energy of a (free) particle with mass µ. Combining Eqs. (4.1)
and (4.3), one gets

dE

dx
=
dE

dp

dp

dt

dt

dx
= −κ (4.5)

and, hence, the energy
E(x(t)) = κ(x0 − x(t)). (4.6)

depends on the space coordinate of the particle. By taking the square of Eq. (4.4):

µ2 = E2 − p2 = κ2
[
(x0 − x)2 − (t0 − t)2

]
,
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Figure 4.2: Left: Space-time diagram of a yoyo hadron with mass m at rest. Right:
Snap shots of the yoyo hadron at different times. At time t = 0 the two endpoint charges
move apart with the same energy E0 but opposite direction. During the following
separation each particle looses the energy κt due to the force field while the force field
has gained the energy 2κt. At time t0 = E0/κ they have lost all their energy and turn
back towards each other. While approaching each endpoint particle obtains the energy
κ(t − t0) from the force field until they meet again at time 2t0. Obviously, the period
of motion is T = 4t0 = 2Etot/κ.

one sees that the particle moves on a hyperbola in space time which is centered at
(t0, x0) and has the size parameter µ/κ (see Fig. 4.1). A massless particle (µ = 0)
would move on the lightcones |t − t0| = |x − x0|, i.e. the asymptotes in Fig. 4.1. At
the turning point (t0, x0) it would have vanishing momentum and energy and would
change its velocity instantaneously from +c to −c.

We will treat a meson as a system of two massless particles, a quark and an anti-
quark, which interact with each other by an attractive constant force. Replacing the
antiquark by a diquark one ends up with a model for a baryon. The space-time picture
of such a yoyo hadron at rest is depicted in Fig. 4.2. If the two constituents of the
hadron move apart with the same energy E0 from a common origin but in opposite
direction, the total momentum of the system vanishes and its total energy

Etot = 2E0

equals the hadron mass m. The two particles then move along the two different light-
cones and loose energy and momentum κ per unit length and time to the force field
according to Eqs. (4.2) and (4.6). At time t0 = E0/κ they turn around and after that
they head towards each other and now gain energy and momentum from the force field.
The period of the motion is

T = 4t0 =
2Etot

κ
, (4.7)

where the latter equality is also true for a moving yoyo hadron as we will show in a
moment.
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Figure 4.3: yoyo hadron that moves with rapidity y along the negative x-direction.

Another general property of the massless relativistic string model is the so-called
area law: The total area spanned by the force field in space-time during one period is
related to the squared mass of the system. For the yoyo hadron at rest this area can
directly be read off from the left-hand side of Fig. 4.2. It is given by the sum of the
two squares with diagonal 2t0 = Etot/κ:

κ2A = κ2 2
t20
2

= E2
tot = m2. (4.8)

Fig. 4.3 now shows a yoyo hadron that moves with rapidity

y =
1

2
ln

[
Eh + ph
Eh − ph

]
(4.9)

along the negative x-direction. The energy Eh and momentum ph of the hadron is
given by the sum of the quark energies and momenta. Boosting from the rest frame of
the yoyo hadron to the moving system one gets for the particle which initially moves
to the right the new turn-over time

t cosh y − x sinh y = t(cosh y − sinh y) = t0 exp[−y]
and for the particle moving to the left

t cosh y − x sinh y = t(cosh y + sinh y) = t0 exp[+y]

where we have used the fact that massless particles move on the lightcone (x = ±t).
Fig. 4.3 shows that by adding these two times one gets the new meeting time 2t0 cosh y.
The period of the moving hadron is therefore time dilated

T ′ = 4t0 cosh y > T.

Using Eq. (4.7), one can rewrite this as

T ′ =
2Etot cosh y

κ
=

2E ′
tot

κ
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Figure 4.4: The string fragments due to the creation of two qq̄ pairs at vertices A and
B. The quark qA and the antiquark q̄B meet at space-time point O to form a yoyo
hadron SAB.

and the yoyo period of a moving hadron is again determined by its total energy E ′
tot =

Eh.
The space-time area covered by the force field can once more be directly read off

from Fig. 4.3. It is two times the size of the shown rectangle, i.e.

A′ = 4t20 =
m2

κ2
= A.

4.2 Decay of an excited string

The strings that are formed after a high-energy collision have an invariant mass that is
in general larger than that of stable hadrons or low lying excited states. Therefore, they
decay into lower mass fragments due to the creation of new quark-antiquark pairs out
of the vacuum along the force field. At each vertex where a new qq̄ pair is produced one
has to require local conservation of energy, momentum and internal quantum numbers,
e.g. charge, strangeness, etc. As a consequence the newly created q and q̄ have zero
momenta and start to separate because of the two attached string pieces. During the
separation they gain energy and momentum by ’eating up’ the force field between them
and the other string end.

Fig. 4.4 shows how a quark from vertex A = (xA, tA) and an antiquark from vertex
B = (xB, tB) form a state SAB which consists of the quark qA, the antiquark q̄B and
the field in between them. From Eqs. (4.2) and (4.6) one sees that at the meeting point
O the two constituents of SAB have gained momentum

pA = κ(tA − tO) , pB = κ(tO − tB)
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Figure 4.5: The on-shell condition for meson SAB forces vertex B to lie on a hyperbola
with size parameter m/κ centered around vertex A.

and energy
EA = κ(xA − xO) , EB = κ(xO − xB).

The total energy and momentum of the system SAB therefore only depend on the
space-time difference of the production vertices A and B

pAB = pA + pB = κ(tA − tB) ,

EAB = EA + EB = κ(xA − xB).

If SAB is supposed to be a hadron with invariant mass m the on-shell condition yields

m2

κ2
=
E2
AB − p2

AB

κ2
= (xA − xB)2 − (tA − tB)2, (4.10)

i.e. for a given vertex A vertex B has to lie on a hyperbola with size parameter m/κ
(cf. Fig. 4.5).

From Eq. (4.10) one sees that the distance of the two vertices A and B has to be
spacelike. Hence, the two production points are not causally related and the (ordinary)
time ordering of the break up vertices is not Lorentz invariant. One therefore usually
orders the produced hadrons along one of the two lightcones, which is unique. The
choice of the positive lightcone, i.e. starting from the right is illustrated in Fig. 4.6.
The j-th hadron, i.e. the one that consists of the quark qj−1 and the antiquark q̄j has
energy and momentum

Ej = κ(xj−1 − xj) ≡ κ∆xj

pj = κ(tj−1 − tj) ≡ κ∆tj

where (xj ,tj) denotes the production vertex of the pair qj q̄j . The index j is also
called the rank of the hadron. For meson j the lightcone momenta p+

j = Ej + pj and
p−j = Ej − pj are given by the space-time distance passed by q̄j and qj−1 respectively
before they meet. Thus the q̄j can be considered as the carrier of the p+ component of
meson j while qj−1 carries the p− component.

Introducing the lightcone coordinates x±i = ti±xi of the production vertices as well
as the lightcone distances

∆x±j = ∆tj ± ∆xj = x±j−1 − x±j ,
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Figure 4.6: Numbering of the produced hadrons along the positive lightcone.

one can write the on-shell condition (4.10) for meson j as

m2
j

κ2
= ∆x2

j − ∆t2j = −∆x+
j ∆x−j . (4.11)

Therefore, the production process of mesons in the fragmentation of a hadronic
string can be viewed as a series of steps along the (positive) lightcone (cf. Fig. 4.7).
Starting at the turning point of the original quark q0 in the excited string

x+
0 =

p+
0

κ
, x−0 = 0 ,

where p+
0 denotes the lightcone momentum of q0 at time zero, one takes random steps

along the positive lightcone

∆x+
j = zjx

+
j−1 , zj ∈ [0, 1]. (4.12)

The fragmentation function f(z) which gives the probability distribution of the random
variable zj is discussed at the end of this section. A step along the negative lightcone
is fixed by the mass constraint (4.11):

∆x−j = − m2
j

κ2∆x+
j

. (4.13)

Thus we have the recursion formulae

x+
j = x+

j−1 − ∆x+
j = (1 − zj)x

+
j−1 (4.14)

x−j = x−j−1 − ∆x−j = x−j−1 +
1 − zj
zjx

+
j

m2
j

κ2
(4.15)
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Figure 4.7: The fragmentation of the string viewed as a series of steps along the positive
lightcone. The on-shell condition fixes the steps along the negative lightcone. See text
for details.

together with the constraint that the path must end at the turning point of q̄0:

x+
n = 0 , x−n =

p−0
κ
. (4.16)

Each step divides the fragmenting system into a meson (qj−1q̄j) and a remainder
string (q̄0qj) with reduced energy and momentum (cf. Fig. 4.8).

The requirement that the last fragmentation step has to end at the turning point
of q̄0 assures energy and momentum conservation

n∑
j=1

p±j = p±0 .

The fragmentation process is uniquely determined by the set of Lorentz-invariant
scaling variables {zi} and therefore only depends on the fragmentation function f(z).
As shown in Appx. E, the requirement that taking the fragmentation steps along the
negative and positive lightcone should lead to the same result in the limit n → ∞
restricts the fragmentation function to the following functional form

f(z) = N
(1 − z)a

z
exp(−bm

2

z
), (4.17)

which is called Lund fragmentation function. Here a and b are parameters which have
to be fitted to experiment while N is a normalization constant and m denotes the mass
of the produced hadron. For details see Appx. E.

The Lund fragmentation function f(z) is plotted in Fig. 4.9 for m = 0.5 GeV and
different choices of the parameters a and b (cf. Tab. 4.1). The parameters determine
the behavior of f(z) as z approaches 0 or 1. The factor (1/z) exp(−bm2/z) peaks at
z = bm2 (for bm2 < 1) and rapidly vanishes for smaller z. The factor (1− z)a vanishes
as z → 1. One sees that as long as the mass m of the produced hadron is small
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Figure 4.8: Every creation of a new qq̄ pair splits the system into a meson and a
remainder string with down-scaled lightcone momentum.

a b [GeV−2]

1 Lund [And83] 1. 0.44

2 PYTHIA 6.208 [Sjö01b] 0.3 0.58

3 HSD [Gei98a, Gei98b] 0.23 0.34

4 FRITIOF 7.02 [Pi92] 0.44 0.37

5 JETSET 7.3 [Sjö04] 0.5 0.9

Table 4.1: Different parameter sets for the Lund fragmentation function (4.17).

compared to 1/
√
b ≈1.0–1.7 GeV it is very unlikely that the fragment carries a large

fraction of the available string energy. The average fraction

〈z〉 =

1∫
0

dz zf(z)

that the hadron takes from the (positive) lightcone momentum of the (remainder)
string lies between 0.18 (for m = 0.14 GeV ≈ mπ) and 0.5 (for m = 1 GeV ≈ mN ).
The ultimate number of string fragments depends on the invariant mass of the initial
string.

In principle, a set of independently chosen random numbers {zi} can solve the
problem of fragmenting a high energetic string. However, it is very unlikely that
the iteration process ends at the turning point of the q̄0 which is required by energy
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Figure 4.9: Lund fragmentation function (4.17) form=0.5 GeV and different parameter
sets (a,b). See Tab. 4.1 for details.

and momentum conservation. There are some ways to cure this problem [Ede00] but
which show up to be unsuitable for Monte Carlo implementation. In the JETSET
package the following way was chosen: Fragmentation happens randomly at both ends
of the string, until the remaining invariant mass drops below a certain threshold. In
the final step the kinematics of two hadrons are chosen simultaneously and energy
and momentum conservation is guaranteed. The choice of some parameters, e.g. the
threshold invariant mass, ensure that the z distribution of the final particles agrees
with the default distribution (4.17).

As we have already discussed, Eq. (4.10) states that the different production vertices
are not causally connected. The fact that the string nevertheless fragments into on-
shell hadrons cannot be understood in purely classical terms. It can be argued on a
quantum mechanical level that all breakup configurations that give unphysical masses
simply cannot be projected onto a physical state. Note that in the nuclear medium the
interactions with the surrounding nucleons may modify the masses of the fragments
compared to the situation in vacuum.

Transverse momentum and massive quarks

Up to now we have neglected the transverse momenta pT and the masses µ of the
quarks. The q and the q̄ that are created in the string fragmentation have transverse
momentum pT (q) = −pT (q̄) and instead of the hadron mass m the transverse mass

mT =
√
m2 + p2

T

enters Eqs. (4.13) and (4.17). Furthermore, if the quarks have a finite mass they do
not move on the lightcones anymore but their trajectories in space-time will be the
hyperbolae discussed in Sec. 4.1. The asymptotes of such a yoyo mode are again
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Figure 4.10: Left: Motion of a massive q and q̄ in a yoyo hadron. Right: A pair of
massive quarks is created in the force field and moves apart on different branches of
the same hyperbola.

rectangles, cf. left-hand side of Fig. 4.10, but in contrast to the situation of massless
constituents the oscillation time now also depends on the constituent mass µ. However,
this only influences the internal motion of the hadron after the production and is of no
importance for the fragmentation process itself. Note, however, that the constituent
masses µ might influence the hadron-formation times, i.e. the times when the world
lines of the quark and antiquark of a yoyo hadron cross. By interpreting the straight
lines of the previous fragmentation diagrams as the asymptotes for the hyperbolic world
lines of massive quarks, the fragmentation model can be developed in exactly the same
way as before [And98].

There is nevertheless a physical difference between the production of massless and
massive quarks (see right-hand side of Fig. 4.10). Because of local energy conservation
a real massive qq̄ pair cannot be created at one single space-time point. This is only
possible for virtual quark pairs which then tunnel to real quark pairs. The connected
tunneling probability has been calculated in Ref. [Gle83] and leads to an additional
suppression of heavy quark production in the string fragmentation. Consider a newly
created virtual qq̄ pair at time t = 0. Due to local energy conservation the energy of
the quark (or antiquark) must be zero:

t = 0 : E2
q = E2

q̄ = 0 = p2
L + p2

T + µ2,

where pT denotes the transverse momentum of the quark (pT (q̄) = −pT (q)) and µ its
constituent mass. They therefore both have (imaginary) longitudinal momenta:

t = 0 : pL = ±iµT = ±i
√
p2
T + µ2.
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At time t > 0 the quark and antiquark have separated a distance 2r and thereby gained
the energy 2κr from the flux tube:

t > 0 : Eq + Eq̄ = 2
√
pL(r)2 + µ2

T = 2κr

⇒ pL(r) = ±i
√
µ2
T − (κr)2.

The quarks have tunneled to real quarks when pL(r) = 0, i.e. when r = µT/κ. Hence,
the tunneling probability is given as [Sak94]:

P = |e−S|2 with S = 2

µT /κ∫
0

|pL(r)|dr =
πµ2

T

2κ
. (4.18)

Eq. (4.18) leads to a Gaussian distribution of transverse momentum and suppresses high
pT . Furthermore, the production of quarks with large constituent mass µ is strongly
reduced by the tunneling probability. This leads to a suppression of strange and charm
particle production in the string fragmentation.

Since the tunneling amplitude is very sensitive to the size of the constituent quark
masses which are not well-defined quantities, one usually extracts the suppression fac-
tors from experiment. As we show in Sec. 4.4.1, one experimentally observes that
strangeness production in pp collisions is suppressed by about a factor of 0.3. If one in-
serts the constituent mass [Sjö01b] of the light quark flavors u and d (µu ≈ µd ≈ 0.325
GeV) into Eq. (4.18), one ends up with a realistic value for the constituent strange
quark mass of µs ≈ 0.425 GeV for this suppression factor. Furthermore, a constituent
charm quark mass µc ≈ 1.3 GeV leads to a relative suppression

P (uū, dd̄) : P (ss̄) : P (cc̄) ≈ 1 : 0.3 : 10−11. (4.19)

This means that cc̄ pair creation essentially never occurs during a soft hadronization
process but only in hard processes like qq̄ → cc̄ or gg → cc̄. The tunneling probability
also suppresses the production of antibaryons via diquark-antidiquark creation in the
string fragmentation. Assuming a mass of about 0.5 GeV for the diquark leads to a
suppression factor of about 0.1 compared to uū or dd̄ creation. However, there are other
possibilities for baryon creation in a fragmentation process as we discuss in Sec. 4.4.2.

Note that the above suppression factors are extracted from experiments using ele-
mentary targets and projectiles, i.e. they correspond to the string tension and quark
masses in vacuum. If the string fragmentation takes place inside (a dense) nuclear
medium, the quark masses as well as the value of κ might change and could lead to
different tunneling amplitudes.

Degeneracies

So far we have not considered the spin degree of freedom in the fragmentation process.
If one takes the degeneracy (2J+1) of the final-state hadrons in spin space into account,
one recognizes that, e.g. the production of ρ mesons (J = 1) should be about a factor
three times larger than that of the pseudoscalar π meson (J = 0). This naive factor
of three is then modified by some wave-function normalization factor which disfavors
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the production of heavier states. This has to be kept in mind when determining the
hadron species from the quark content.

At the end of this chapter we want to summarize how the decay of an excited string
can be realized schematically. First the flavor and transverse momentum of the qq̄ pair
at the first vertex is chosen using the suppression factors and Gaussian pT distribution
given by Eq. (4.18). Now, knowing the quark content of the first-rank hadron, its
isospin and spin can be determined, hence, fixing the identity of the particle2. If the
particle is unstable a mass is chosen according to its spectral function. After the
mass has been fixed the fragmentation function (4.17) is used to determine the energy
and momentum fraction carried away by the hadron. After that the whole process
is repeated until the invariant mass of the remainder string drops below a certain
threshold and the kinematics of the two final hadrons are chosen to fulfill energy and
momentum conservation.

4.3 Formation time

One of our main goals is the investigation of the hadronization time, i.e. the time
that passes between the photon-nucleon interaction and the time when the reaction
products have evolved to physical hadrons. We now use the Lund model to extract some
quantitative estimates and show that these formation times are indeed smaller than
those usually quoted in connection with the Lund model, i.e. 2 fm/c. The reason for this
is essentially the finite energy of the primarily excited string in contrast to the infinite-
mass formulae used in literature. Before we start our discussion we point out that
the Lund model might correctly describe the experimentally observed particle spectra.
However, it is not clear whether the underlying space-time picture of hadronization is
realistic. Therefore, we will use later on the output of the fragmentation model (i.e. the
exclusive particle spectra) which is verified by experiment and investigate in addition
different hadronization scenarios.

Within the Lund model Lorentz-invariant statements can only be made about the
qq̄ production vertices and the space-time points where q and q̄ world lines cross. If one
defines the first ones as the production points of the prehadrons and the latter as the
space-time points where the yoyo hadrons form, it is evident that for any Lorentz frame
the particles with lowest momentum are always produced first in time3 (cf. Fig. 4.11).

For the fragmentation of a string with a very large invariant mass W into a large
number of yoyo hadrons the proper times τV of the vertices V are distributed according
to Eq. (E.11) as

H(ΓV ) = CΓaV exp(−bΓV ),

where ΓV and τV are connected via relation (E.1):

τ 2
V =

ΓV
κ2
.

2In FRITIOF and PYTHIA only the mesons and baryons with L = 0 are considered as possible
fragments.

3This is only true if one does not consider the fragmentation into different mass hadrons. Here the
vertices move along different hyperbolae during a Lorentz boost.
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Figure 4.11: Before the Lorentz boost the third-rank particle is at rest and produced
first in time. After boosting into the rest frame of the first-rank particle, the latter is
produced first in time. The reason is that all the (spacelike separated) vertices move
on hyperbolae during the Lorentz boost.

According to Eq. (E.11), the average production proper time of the prehadrons

τV∞ =
√
〈τ 2
V 〉W→∞ =

⎛
⎝ 1

κ2

∞∫
0

dΓ ΓH(Γ)

⎞
⎠

1
2

(4.20)

lies in the range τV∞ ≈ 1.3 − 2.1 fm/c for a string tension κ ≈ 1 GeV2 and the
parameters given in Tab. 4.1. These times are quite large indeed.

Production and formation times averaged over all ranks

In Ref. [Bia87] Bialas and Gyulassy have examined the z dependence of the vertices
V and the meeting points O (cf. Fig. 4.4) using a somewhat simpler fragmentation
function

f(z) = (1 + C)(1 − z)C (4.21)

which obviously does not depend on the mass of the produced hadrons. They have again
considered the fragmentation of a very massive string into a large number of hadrons
but now in a frame where hadronization occurs very near the lightcone, i.e. p+

j � mj

so that the steps along the negative lightcone (4.13) can be neglected. In a scattering
process where a large positive lightcone momentum is transfered to a constituent q0 of
the original yoyo hadron this frame coincides with the laboratory frame, i.e. the frame
in which the yoyo hadron was initially at rest. By averaging over infinitely many ranks,
they derived for C = 1 the analytic expressions

tV∞(zh) =

(
ln(1/z2

h) − 1 + z2
h

1 − z2
h

)
zh
p+

0

2κ
(4.22)

tO∞(zh) =

(
ln(1/z2

h)

1 − z2
h

)
zh
p+

0

2κ
. (4.23)

for the average production and formation times of a hadron that carries the fraction
zh of the original quark’s lightcone momentum p+

0 . The zh dependence of both times
is illustrated in Fig. 4.12. An increase of the yoyo formation time tO with rising
zh might have already been expected from time-dilatation arguments even though
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Figure 4.12: The dashed line represents the average time when the qq̄ pairs are produced
in the string fragmentation (Eq. (4.22)) and the solid line shows when the yoyo hadrons
have formed according to Eq. (4.23).

such arguments (assuming a constant formation proper time) would predict a linear
growth with zh. The much more interesting aspect of Fig. 4.12 is that if one identifies
tV with a prehadron-production time these prehadrons are created very early in the
string fragmentation if they carry a very small or very large fraction of the lightcone
momentum.

A similar behavior is also expected for the leading hadron, i.e. the first-rank hadron,
from models where the struck quark q0 looses energy through gluon bremsstrahlung (see
e.g. Ref. [Kop03]). The radiated gluons then split into qq̄ pairs and finally combine to
produce the colorless prehadrons. In such a scenario the leading quark q0 looses more
energy by radiation the longer the hadronization process lasts. If it is not allowed
to loose any energy at all, i.e. if zh = 1, the colorless prehadron has to be created
instantaneously.

Production and formation times for different ranks

Up to now we have only considered the production and formation times averaged over
infinitely many hadrons. However, within the scope of this work the invariant mass
of the hadronic string is only around W ≈ 5 GeV which limits the average number of
fragments to around 4–5. Hence, we now examine explicitly the average formation times
of the first-, second- and third-rank hadrons in the Lund decay scheme. Let us first
define the averaged rescaled fragmentation functions f i(ζi) that give the probability
that the ith hadron carries away a fraction zh = ζi of the original lightcone momentum.
Obviously, this is given by

ζi = zi

i−1∏
j=1

(1 − zj) (4.24)
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Figure 4.13: Averaged rescaled fragmentation functions f i as defined in Eq. (4.25).
We have used the parameter set (3) from Tab. 4.1 as well as an average hadron mass
m = 0.5 GeV.

and the first three averaged rescaled fragmentation functions f i are

f 1(zh) = f(zh)

f 2(zh) =

1−zh∫
0

dz1 f(
zh

1 − z1
)f(z1)

f 3(zh) =

1−zh∫
0

dz1

1−z1−zh
1−z1∫
0

dz2 f(
zh

(1 − z1)(1 − z2)
)f(z1)f(z2). (4.25)

They are plotted in Fig. 4.13 for an average hadron mass m = 0.5 GeV using the
parameter set (3) from Tab. 4.1. As expected, the higher-rank hadrons in average
carry a smaller fraction zh of the original lightcone momentum, namely 〈zh〉1 ≈ 0.34,
〈zh〉2 ≈ 0.17 and 〈zh〉3 ≈ 0.08.

We have already shown that the proper times of the vertices Vi are connected to
the areas Γi illustrated in Fig. E.1 as

τ 2
Vi

= x+
i x

−
i . (4.26)

Similarly, the proper times of the prehadron-formation points are given by the space-
time areas under the meeting points Oi

τ 2
Oi

= x+
i−1x

−
i . (4.27)

We can now use the recursion formulae (4.14) and (4.15) to express these times by the
lightcone momentum fractions {zi}. Replacing all hadron masses mi by an average
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Figure 4.14: Average proper times for the production and formation of a hadron with
lightcone momentum fraction zh. The lower two plots show the product of the proper
times and zh which is proportional to the dilated times in the laboratory frame. The
parameter set (3) from Tab. 4.1 with an average hadron mass m = 0.5 GeV was used.

mass m, we get for the first three production times:

τ 2
V1

(z1) =
m2

κ2

1 − z1
z1

τ 2
V2

(z1, z2) =
m2

κ2
(1 − z2)(1 − z1)

(
1

z1
+

1

z2(1 − z1)

)
(4.28)

τ 2
V3

(z1, z2, z3) =
m2

κ2
(1 − z3)(1 − z2)(1 − z1)

(
1

z1
+

1

z2(1 − z1)
+

1

z3(1 − z2)(1 − z1)

)

and for the prehadron-formation times

τ 2
Oj

({zi}) =
τ 2
Vj

({zi})
1 − zj

. (4.29)

These expressions can now be used to calculate the average proper times for production
and formation of a hadron with mass m that carries the fraction zh of the original
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m [GeV] τV1 [fm/c] τV2 [fm/c] τV3 [fm/c] τO1 [fm/c] τO2 [fm/c] τO3[fm/c]

0.14 0.59–0.83 0.78–1.11 0.91–1.30 0.60–0.84 0.84–1.18 0.99–1.40

0.5 0.82–1.14 1.04–1.49 1.15–1.70 0.96–1.25 1.27–1.69 1.42–1.94

1.0 0.99–1.40 1.18–1.76 1.24–1.93 1.18–1.72 1.72–2.22 1.83–2.46

Table 4.2: Average proper times (4.30) for the production and formation of hadrons
with different rank and mass m.

lightcone momentum:

τ 2
V1,O1

(zh) = τ 2
V1,O1

(zh)

τ 2
V2,O2

(zh) =

1−zh∫
0

dz1 τ
2
V2,O2

(z1,
zh

1 − z1
)f(z1)

τ 2
V3,O3

(zh) =

1−zh∫
0

dz1

1−z1−zh
1−z1∫
0

dz2 τ
2
V3,O3

(z1, z2,
zh

(1 − z1)(1 − z2)
)f(z1)f(z2)

which are shown in Fig. 4.14 again for m = 0.5 GeV and the parameter set (3).
If one compares Fig. 4.14 with the averaged fragmentation functions shown in

Fig. 4.13 one sees that the higher-rank hadrons are in general produced and formed
later in time. Fig. 4.14 also shows the product of zh and τVj ,Oj

(zh) which is propor-
tional to the production and formation time in the lab frame, i.e. their shapes have
to be compared with those shown in Fig. 4.12. One sees that Eqs. (4.22) and (4.23)
oversimplify the physical picture. For large values of zh the production and formation
times of higher-rank hadrons are smaller than those of the first-rank hadron. However,
most of the higher-rank hadrons carry only small momentum fractions zh for which the
production and formation times are larger. Furthermore, one sees that the behavior of
the yoyo formation time (solid line in Fig. 4.12) at large zh is generated completely by
the first-rank hadron. This is reasonable since zh = 1 means that the string can only
fragment into one hadron. We note that these findings are still in the framework of a
toy model. Realistic production and formation times as given by JETSET are depicted
in Figs. 4.16 and 4.17.

The average formation times can be calculated from Eqs. (4.28) and (4.29):

τ 2
Vj ,Oj

=

⎡
⎣ j∏
i=1

1∫
0

f(zi)dzi

⎤
⎦ τ 2

Vj ,Oj
({zi}). (4.30)

Depending on which parameter set of Tab. 4.1 one uses, one gets the values listed in
Tab. 4.2. Hereby, the parameter set (5) always gives the smallest values while the
parameter set (1) in general gives the largest. One clearly sees how the average proper
time of the vertices increases with rank which explains the large asymptotic value
τV∞ ≈ 1.3−2.1 fm/c for the vertex proper time averaged over infinitely many hadrons
(4.20). Also the proper times of the meeting points grows with rank. In addition, one
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Figure 4.15: Example for a space-time picture of a real Lund fragmentation of a string
with mass W = 10 GeV into hadrons with mass m. The dashed and dotted lines show
the hyperbolae of the average production and formation time respectively. We have
again used the parameter set (3) from Tab. 4.1 as well as an average hadron mass
m = 0.5 GeV.

observes larger proper times for the heavier hadrons which could have been expected
because of the factor m2/κ2 in Eq. (4.28). However, the production and formation
proper times are not simply proportional to the hadron mass m since the mass also
enters the Lund fragmentation function (4.17). In the full Lund model one has to
replace m with the transverse mass mT in the equations given above. This implies that
the differences between the production and formation times for different mass hadrons
become smaller since they are smeared out by the transverse momentum pT .

Strings with finite invariant mass

Up to now we always neglected the mass of the fragmenting system. For a finite mass
W =

√
p+

0 p
−
0 , the boundary condition (4.16) that the last iteration step has to end on

the turning point of the q̄0 leads to a change of the average proper times for vertices
and meeting points. We have therefore investigated the decay of a string with invariant
mass W = 10 GeV into hadrons of mass m within a simple Lund fragmentation scheme.
In our model simulation we assumed massless quarks and neglected the widths and
transverse momenta of the produced hadrons. As above, Fig. 4.15 shows an example
for such a fragmentation process. The production vertices and meeting points are
distributed around hyperbolae which correspond to the average proper times deduced
from many string fragmentations. The average production and formation times are
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m [GeV] τV [fm/c] τO [fm/c]

0.14 0.4–0.6 0.5–0.7

0.5 0.7–0.8 1.0–1.1

1.0 0.9–1.1 1.4–1.7

Table 4.3: Average proper times for the production and formation of hadrons with
different mass m in the fragmentation of a string with invariant mass W = 10 GeV.

listed in Tab. 4.3. Again, one observes an increase of the proper times with rising
hadron mass m. However, the values are smaller than those shown in Tab. 4.2 which
were derived for an infinitely large mass W of the fragmenting system. These results
make models relying on assumptions as indicated in Fig. 4.12 questionable.

Production and formation times from JETSET

The event generators implemented in our simulations (FRITIOF, PYTHIA) are based
on the Lund fragmentation scheme. In the first place, they provide us with the reaction
products and their four-momenta. Knowing that the fragmentation happens according
to the Lund model, it is in principle possible to reconstruct the prehadron produc-
tion and formation times from the kinematics of the string fragments (see Appx. F).
However, it is much more reliable to extract the times directly form the fragmentation
routines implemented in JETSET.

As described above there are in principle three time scales involved in the Lund
fragmentation process: i) The production proper time τp1 of the hadron’s first con-
stituent, which is obviously zero if the hadron contains a constituent from a string end,
ii) the production proper time τp2 when the second constituent is produced and a color
neutral object is formed, and iii) the formation proper time τf where the two world
lines of the constituents cross for the first time.

We now investigate how these times depend on the fractional hadron energy zh =
Eh/ν in deep inelastic scattering of 27.6 GeV positrons on nucleons4. This kinematic
situation corresponds to the one in the HERMES experiment which we extensively
study when investigating hadron attenuation in DIS off complex nuclei in Sec. 6.4.

In the upper panel of Fig. 4.16 we show the zh dependence of the extracted average
production proper times τp1 and τp2 of the two hadron constituents as well as the
hadron-formation proper time τf . We always label the smaller production time τp1 and
the larger τp2. Note that, if more than one string is produced in the electron-nucleon
interaction, the observed zh = Eh/ν is in general different from the quantity ζ of
Eq. (4.24). The difference is most significant for zh � 0.5. However, one also has to be
careful with the interpretation of zh in the limit zh → 1. In this kinematic regime the
hadron spectrum is dominated by diffractively produced vector mesons (cf. Fig. 4.29)
whose production times τp1 and τp2 for the constituents are both zero. Furthermore,
we show in our theoretical study of incoherent ρ0 electroproduction in Sec. 6.2 that
also the formation time τf of a diffractively produced vector meson is compatible with

4By ’nucleon’ we mean the isospin average over proton and neutron
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Figure 4.16: Average (proper) times for hadron formation and the production of the
first and second constituent as a function of zh = Eh/ν in the kinematic regime of
the HERMES experiment. All times have been extracted directly from the JETSET
routines which describes the string fragmentation in PYTHIA.

zero in the HERMES kinematic regime. Consequently, the proper times τp1, τp2 and
τf for the ρ0 (dash-dot-dotted line) vanish as zρ0 → 1.

In a direct photon-nucleon interaction the probability, that a meson contains the
struck quark from the string end, increases with zh and, consequently, τp1 vanishes for
larger zh. On the other hand, the diquark that is left behind, i.e. the second string
end, will most likely form a proton with small zh which leads to a vanishing of τp1 for
low-zh protons (dash-dotted line). In case of diffractive photon-nucleon interactions
the proton stays intact and τp1, τp2 and τf are zero which leads to a decrease of τp2 and
τf for low-zh protons. The Lund model predicts a vanishing of the production time τp2
for z → 1 which can be seen from Eq. (4.28). However, because of the finite bin-size
the production time τp2 in Fig. 4.16 stays finite in the last zh bin for all hadrons except
for the diffractively produced vector mesons.

In fact, one observes the general tendency that more massive hadrons like protons
and ρ mesons are formed later in proper time than lighter hadrons like pions (solid
line) which is in line with our previous findings. Again the diffractively produced
vector mesons are the exception.

In the lower panel of Fig. 4.16 we also show the corresponding production and for-
mation times in the laboratory frame, i.e. the rest frame of the target nucleon. Because
of time dilatation the light pions now have average production and formation times as
large as 10–70 fm/c. However, as we discuss in the next section (and as can be seen
from Fig. 4.29) pion production receives a large contribution from string fragmentation
into ρ mesons that – due to their larger mass – have a considerably smaller average
production time 0.5–3 fm/c in the laboratory frame. Therefore attenuation of pions in
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Figure 4.17: Average (proper) time for hadron formation (solid line) and the production
of the first (dashed line) and second (dotted line) constituent as a function of zh = Eh/ν
in the kinematic regime of the HERMES and EMC experiments. The shaded areas
are bounded by simulations using a 100 GeV (lower boundary) and 200 GeV (upper
boundary) muon beam. All times have been extracted directly from the JETSET
routines and averaged over all hadron species. The solid symbols indicate the average
starting times of the prehadronic (squares) and hadronic (circles) interactions in the
constituent quark concept (5.35) using a formation time τf = 0.5 fm/c.

the nuclear medium is partly due to the absorption of ρ mesons prior to their decay
into pions.

In Fig. 4.17 we show the production and formation (proper) times averaged over
all hadron species. For HERMES energies we find that the average production proper
time τp1 of the first hadron constituent (dashed line) lies between 0.04 fm/c at zh ≈ 0.95
and 0.4 fm/c at zh ≈ 0.35. The production proper time τp2 of the second constituent
(dotted line) is somewhat larger. It ranges from 0.3 fm/c at zh ≈ 0.95 to about 1.2
fm/c at zh ≈ 0.35. The average hadron-formation proper time τf (solid line) is of
the order 1.1 – 1.5 fm/c except for the very large-zh hadrons which are dominated by
diffractively produced ρ0 mesons and, hence, have again a very small formation time
around 0.4 fm/c at zh ≈ 0.95.

In Fig. 4.17 we also show the production and formation (proper) times averaged
over all hadron species at EMC energies. The muon-beam energy Ebeam = 100 − 200
GeV in the EMC experiment is considerably larger than the positron-beam energy at
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HERMES. Hence, the invariant mass of the excited strings as well as time dilatation
effects are in general increased. While the first leads only to a small increase of the pro-
duction and formation proper times, the latter increases the production and formation
times in the lab frame tremendously.

Note that the production and formation times in Fig. 4.16 and Fig. 4.17 are averaged
times. In our actual simulations of nuclear reactions we assign in each scattering event
the individual production and formation time from JETSET for each hadron.

In summary one can say that the large formation times that are usually quoted in
connection with the Lund model are only valid for the fragmentation of an infinitely
heavy system. The reason for this is that the proper times of vertices and yoyo forma-
tion points increase with rank and that in reality the number of fragments is limited,
whereas Eqs. (E.11), (4.22) and (4.23) require an infinite number of qq̄ production ver-
tices. The boundary condition (4.16), which was dictated by energy and momentum
conservation, leads to an additional reduction of the proper times. Furthermore, one
observes that the production and formation times depend on the hadron masses. This
is already the case for the decay of the infinitely heavy string. As a tendency, the
average production and formation proper times of more massive particles are larger
than those of lighter fragments.

4.4 Monte Carlo generators

In this last section we briefly discuss the event generators that are used in our transport
simulation. In general the outcome of a (virtual) photon-nucleon interaction above the
nucleon resonance region is determined by the event generator PYTHIA 6.208 which
allows for the description of γN , γ∗N and γ∗γ∗ interactions. For technical reasons,
resolved γ∗N events can only be generated by PYTHIA if the invariant mass of the
photon-nucleon system is larger than a threshold energy WPY which depends on the
PYTHIA parameters and takes on the value WPY = 4 GeV for the default parameter
set. For invariant masses 2 GeV ≤W ≤WPY we employ the event generator FRITIOF
7.02 to simulate the resolved photon interactions since FRITIOF can be applied down
to invariant masses of W = 2 GeV without any technical problems. FRITIOF is also
used to model high-energy hadronic final-state interactions in case of nuclear reactions.
Below an invariant mass of

√
s = 2.2 GeV for meson-baryon and

√
s = 2.6 GeV for

baryon-baryon collisions we apply the resonance model of Ref. [Eff99a].

In the following two subsections we want to stress some of the important features of
FRITIOF and PYTHIA. For a extensive discussion of the two Monte Carlo generators
we refer the reader to Refs. [And87, Pi92, And93] and [Sjö01a, Sjö01b].

4.4.1 Simulation of hadronic interactions with FRITIOF

In the simulation of a hadron-hadron collision with FRITIOF, the momentum transfer
between projectile and target leads to the excitation of two hadronic strings that carry
the quantum numbers of the incoming particles. Physically, this can be interpreted as
diffractive excitation due to Pomeron exchange which we have discussed in Sec. 2.2.3.
The kinematics of the two incoming hadrons can be expressed in terms of the lightcone
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momenta
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where we have assumed that particle 1 moves along the positive and particle 2 along
the negative z axis and used the on-shell condition p+p− = m2 to express the small
components p−1 , p+

2 in terms of the large components p+
1 , p−2 . The momentum transfer
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QT ) leads to two highly excited objects with lightcone momenta
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In the FRITIOF model the longitudinal momentum transfer is chosen by Monte Carlo
according to the probability distribution

dP ∼ dP−
f

P−
f

dP+
f

P+
f

and the transverse momentum transfer is distributed according to a Gaussian

P (QT ) ∼ 1√
πσ

exp

(
−Q

2
T

σ2

)

with width σ = 0.5 GeV. The invariant masses of the two strings and thus the energy
available for particle production is essentially determined by the longitudinal momen-
tum transfer.

We have seen in Chap. 2 that hard processes become sizable with increasing energy.
Therefore, FRITIOF also allows for elastic parton-parton scattering above an invariant
energy

√
s > 10 GeV using an older version of PYTHIA. The accompanying final-state

gluon radiation is taken care of by the ARIADNE program [Lön92, And93].
If not stated differently, we employ the same FRITIOF parameters as in the HSD

model [Gei98a, Gei98b, Cas99] throughout the scope of this work. In Refs. [Gei98a,
Gei98b] it was shown that this choice of parameters provides a good description of
particle production over a broad energy range. The only exception is the strangeness
suppression factor for ss̄ creation in the string fragmentation (cf. Eq. (4.19)) which
we reset to the FRITIOF default value 0.3 to improve the agreement with the latest
strangeness production data [Wag04].

Total cross sections

In contrast to PYTHIA, the FRITIOF event generator does not provide absolute cross
sections but only determines the final state of a scattering event. Therefore, we have to
explicitly parameterize the total cross sections at large energies. For all baryon-baryon
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A B n C D

σtot
pp 48.0 0. – 0.522 -4.51

σel
pp 11.9 26.9 -1.12 0.169 -1.85

σtot
p̄p 38.4 77.6 -0.64 0.26 -1.2

σel
p̄p 10.2 52.7 -1.16 0.125 -1.28

σtot
π+p 16.4 19.3 -0.42 0.19 0.

σel
π+p 0. 11.4 -0.4 0.079 0.

σtot
π−p 33.0 14.0 -1.36 0.456 -4.03

σel
π−p 1.76 14.0 -1.36 0.456 -4.03

σtot
K+p 18.1 0. – 0.26 -1.

σel
K+p 5. 8.1 -1.8 0.16 -1.3

σtot
K+n 18.7 0. – 0.21 -1.3

σtot
K−p 32.1 0. – 0.66 -5.6

σel
K−p 7.3 0. – 0.29 -2.4

σtot
K−n 25.2 0. – 0.38 -2.9

Table 4.4: Parameters for the cross section parametrization (4.31). The parameters for
are taken from Ref. [PDG94].

collisions – that solely involve non-strange baryons in the entrance channel – we use
the cross section parametrization [PDG94]

σ =
[
A +Bpn + C ln2 p+D ln p

]
mb (4.31)

with the parameters for proton-proton collisions listed in Tab. 4.4. In Eq. (4.31) p de-
notes the laboratory momentum in GeV. As shown in Ref. [PDG94], this parametriza-
tion yields a good description of the cross sections down to the resonance region. In
the current version of our transport simulation we neglect collisions of strange and
charmed baryons.

For the meson-nucleon interactions, that can be addressed experimentally like π±p,
K±p and K±n (from K±d), we use Eq. (4.31) with the parameters listed in Tab. 4.4.
The cross sections for the other isospin channels are given by isospin symmetry

σπ0N =
1

2
(σπ+p + σπ−p) ,

σπ+n = σπ−p ,

σπ−n = σπ+p ,

σK0p = σK+n ,

σK̄0p = σK−n , etc.

The cross sections for the K∗ and K̄∗ mesons are assumed to be the same as for K and
K̄.

As we have pointed out in Sec. 3.1.2, vector meson dominance relates the neutral
vector meson-nucleon scattering cross sections to vector meson photoproduction via
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Figure 4.18: Cross sections for π±p and K±p scattering. The solid lines represent
the total cross sections. The dashed lines show the cross sections for elastic scatter-
ing. The high-energy part given by Eq. (4.31) is continuously connected to the cross
sections of the resonance model [Eff99a] below

√
s = 2.2 GeV. The solid triangles

show the FRITIOF result for elastic pion-proton scattering. The data are taken from
Ref. [PDG02].

Eq. (3.8). We therefore use the same (total and elastic) V N cross section as for the
photon-induced reactions, i.e. the PYTHIA parameterizations (3.5) and (2.17).

For all other high-energy meson-baryon collisions we make an ansatz similar to that
of the UrQMD model [Bas98]:

σtot
mb(s) = σtot

πN(s)
(
1 − 0.4xmS − 0.5xmC

)(
1 − 0.4xbS − 0.5xbC

)
where xmS,C and xbS,C represents the strangeness and charm content of the meson m and
baryon b:

xmS =
|S(m)|

2
, xmC =

|C(m)|
2

,

xbS =
|S(b)|

3
, xbC =

|C(b)|
3

.

Here S and C denote the strangeness and the charm quantum numbers of the meson
and baryon, respectively.

Since the cross sections for baryon-baryon collisions below
√
s = 2.6 GeV and

meson-baryon collisions below
√
s = 2.2 GeV are given by the resonance model of
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Ref. [Eff99a], we continuously connect the high-energy parametrization to the resonance
part. As an example, Fig. 4.18 shows our parametrization of the total and elastic π±p
and K±p cross section in comparison with the experimental data.

Elastic scattering

There are two problems connected with the FRITIOF model. The first is that it does
not generate enough elastic scattering events as can be seen by the solid triangles
in Fig. 4.18. We cure this deficiency by also parameterizing the elastic cross section
and simulating elastic scattering externally; FRITIOF is then only called for inelastic
collisions (cf. Ref. [Cas99]).

For all elastic baryon-baryon collisions, that solely involve non-strange baryons in
the entrance channel, we use the same parametrization as for elastic pp scattering (see
Tab. 4.4).

The cross sections for elastic π±p and K±p scattering are again taken from experi-
ment (see Tab. 4.4) and those for elastic V N scattering are given by VMD, cf. Eq. (3.8):

σel
V N ≈

(gV
e

)2

σγN→V N .

For the remaining particles we use Eq. (2.21) which relates elastic and total cross
sections. The value c = 0.039 mb−1/2 is taken from the UrQMD model [Bas98].

Above the resonance region the angular distribution for all elastic scatterings is
given by Eq. (2.17).

Quark-antiquark annihilation

A second problem with FRITIOF is that it does not account for quark-antiquark
annihilation in meson-baryon scattering in correspondence to the t-channel Reggeon
exchange depicted in Fig. 2.6. This process, however, gives a finite contribution to the
total cross section for low

√
s as we have pointed out in the discussion of Eq. (2.15).

We therefore keep the option to simulate its contribution to the inelastic collisions
independently of FRITIOF using the method of Ref. [Wag04] where the antiquark
from the meson and a constituent of the baryon with the same flavor may annihilate.
We assume that the momenta of the two annihilating quarks are very small so that we
do not need to treat the final gluon explicitly. The final state of such an annihilation
process is modeled by an excited string with the invariant mass of the colliding system.
The decay of the string into hadrons is taken into account using the Lund fragmentation
routine JETSET 7.3 as also used by FRITIOF. In contrast to the two excited strings of
a FRITIOF event, the string – emerging after qq̄ annihilation – has a larger invariant
mass and therefore has more energy available for ss̄ creation. Hence, the annihilation
process has a strong effect on strangeness production in meson-baryon scattering and
the energy dependence of its cross section. Above

√
s = 2.2 GeV the annihilation cross

section relative to strangeness production in pion-nucleon scattering [Wag04] can be
fitted by:

σanni
mb

σinel
mb

= max

[
1.2 − 0.2

√
s

GeV
, 0

]
.



74 4. The Lund model

Figure 4.19: Cross sections for π±p → strange particles in comparison with experi-
mental data [Bal88]. The dashed line represents a simulation without quark-antiquark
annihilation the solid line shows the full result. The figure is taken from Ref. [Wag04].

Fig. 4.19 shows the resulting cross section for strangeness production in π±p with
(solid line) and without (dashed line) the quark-antiquark annihilation contribution.
One clearly sees that the incorporation of the annihilation part leads to a much better
agreement with data.

Antibaryons

Finally, there is the possibility of elastic and inelastic baryon-antibaryon (bb̄) inter-
actions in photon and hadron-induced nuclear reactions. The total and elastic cross
sections for pp̄ scattering are again taken from experiment, i.e. Eq. (4.31) and Tab. 4.4.
For the rest of the non-strange antibaryons we use the same cross sections as for an-
tiprotons. Elastic bb̄ scattering is simulated in the same way as in all other elastic
channels. The inelastic fraction of the total cross section is experimentally known
to be dominated by annihilation. We therefore reduce the inelastic cross section of
(anti-)baryons that involve (s̄)s quarks according to the simple valence quark picture:

σanni
Y N̄ = σanni

Ȳ N =
3 − |S|

3
(σtot

pp̄ − σel
pp̄)

where S denotes the strangeness of the (anti-)hyperons. The annihilation in collisions
that involve charmed (anti-)baryons is neglected here. The annihilation process is
modeled in the same way as in Ref. [Gei98a, Gei98b]: After annihilation of a quark
and an antiquark with the same flavor the remaining (anti-)quarks form two orthogonal
qq̄ jets which equally share the invariant mass of the colliding system. This is of course
a simplification of the real angular distribution. As in the case of qq̄ annihilation in
meson-baryon scattering the strings are fragmented using JETSET 7.3.

Throughout this work we neglect the possibility of meson-meson, meson-antibaryon
as well as antibaryon-antibaryon interactions. They are very unlikely in reactions
induced by elementary projectiles like protons, photons and electrons since they require
interactions between the few reaction products among each other. However, we point
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out that meson-meson interactions might become important for heavy-ion collisions
that involve large meson densities.

4.4.2 Simulation of γ∗N events with PYTHIA and FRITIOF

We use PYTHIA 6.208 to describe high-energy γ∗N reactions. Normally, PYTHIA
determines the kinematics of the virtual photon randomly by simulating the lepton-
nucleon scattering event. However, for most of our purposes it is more convenient to
initialize the reaction of a virtual photon with specific four-momentum and polarization.
We therefore restrict the electron scattering kinematics in the PYTHIA simulation in
such a way that the photon has the desired energy ν, virtuality Q2 and polarization
ε. After that we rotate the whole event until the photon momentum points into the z
direction of the lab frame. For real photons we simply take the limit Q2 → 0. In case
that we need a realistic distribution of ν, Q2 and ε we choose the photon kinematics
and polarization by Monte Carlo using the photon flux (D.6) and Eq. (D.4).

Transition region W ≤ WPY

The physics of γ∗N interactions that we have described in Sec. 3.2 is exactly what
is implemented in PYTHIA 6.208. This means that there is the possibility of direct
and resolved photon-nucleon interactions in PYTHIA. In case of VMD events the same
processes as in hadron-hadron interactions (cf. Chap. 2) can occur including diffractive
scattering. The major drawback of PYTHIA is that for technical reasons the resolved
events can only be simulated down to W = WPY where W denotes the invariant
mass of the photon-nucleon system. In the transition region from WPY down to the
resonance region (W = 2 GeV) we therefore generate the resolved events by FRITIOF.
To simulate the VMD contribution we pass the photon as a massless vector meson V
with a probability

PV (W 2, Q2) =

(
W 2

W 2+Q2

)3
e2

g2V
[1 + ε r(m2

V , Q
2)]

(
m2

V

m2
V +Q2

)2

σV Ntot (W 2)

σγ
∗N

tot (W 2, Q2)
, (4.32)

according to Eqs. (3.26) and (3.29).
We have already pointed out in Sec. 4.4.1 that FRITIOF insufficiently describes

elastic scattering, which directly affects the diffractive vector meson photoproduction
γN → V N . In the transition region below WPY we therefore parameterize the diffrac-
tive production cross section for ρ0, ω and φ using the Regge prescription of Donnachie
and Landshoff [Don00] which also provides us with the correct dependence on the
four-momentum transfer squared t. The high-energy cross sections are continuously
extrapolated to our parametrization in the resonance region [Eff99a]. For the descrip-
tion of J/ψ production close to threshold we use the two- and three-gluon exchange
model of Brodsky et al. [Bro00]. Fig. 4.20 shows our parameterizations in compari-
son with a collection of experimental data. For comparison we also show the result
one obtains if one uses the PYTHIA parametrization of the total V N cross sections
(3.5) together with simple vector meson dominance (cf. (3.8) with ρ = 0). Both the
Donnachie-Landshoff (solid line) as well as the PYTHIA parametrization (dashed line)
are compatible with ρ0, ω and φ photoproduction data but fail to describe diffractive
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Figure 4.20: Cross sections for exclusive vector meson photoproduction γp → V p
as a function of the invariant energy W . Above the resonance region W = 2 GeV
the solid lines represent our default parametrization taken from Refs. [Don00, Bro00].
The dashed lines illustrate the result that one obtains if one uses VMD and the to-
tal V N cross sections (3.5). The dotted line in J/ψ photoproduction represents our
parametrization (4.33). The data are taken from Ref. [PDG02].

J/ψ production. In case that we apply FRITIOF for γN reactions above WPY (see dis-
cussion below) we therefore parameterize the high-energy J/ψ photoproduction data
as

σγN→J/ψN = 0.002

( √
s

GeV

)0.77

µb. (4.33)

This parametrization is represented by the dotted line in Fig. 4.20.
In addition, we have found in [Müh03] and [Müh04] that it is better to also treat

the process γN → V∆ independently of FRITIOF. We therefore parameterize the
production cross section as

σγN→V∆(s) =
1

pis

∫
dµ∆

∫
dµVA∆(µ∆)AV (µV )|MV (s)|2pf(µ∆, µV ),

where A∆,V denotes the spectral function of the ∆ and V , pi,f the initial and final
center-of-mass momentum and MV the matrix element which is fitted to inclusive φ
and ω production data:

|Mω(s)|2 =
A

(
√
s−M)2 + Γ2/4

|Mφ|2 = 7.45 · 10−3

with A = 0.122 GeV2, M = 2.3 GeV and Γ = 1.8 GeV. The spectral functions are
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Figure 4.21: Differential cross section for the reaction γp → ω∆+. The experimental
data is taken from Ref. [Bar84]. This figure is taken from Ref. [Müh04].

parameterized as in Ref. [Eff99a]:

Ai(µ) =
2

π

µ2Γtot(µ)

(µ2 −M2
i )

2 + µ2Γ2
tot(µ)

. (4.34)

where Mi denotes the pole mass of particle i and Γtot its total width which in medium
has an additional dependence on the particle momentum.

The angular dependence for the two channels is taken from the differential cross
section

dσγN→ω∆

dt
∼ eBωt

dσγN→φ∆

dt
∼ eBφt

(
1

t−m2
π

)2

.

with Bω = 6 GeV−2 and Bφ = 6.5 GeV−2. In Figs. 4.21 and 4.22 we compare the two
parameterizations with experimental data. At the moment we use for γN → ρ0∆ the
same matrix element and slope parameter B as for the ω channel.
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Figure 4.22: Differential cross section for the reaction γp→ φX with 1.2 GeV ≤ MX ≤
2.1 GeV. The dashed line shows the contribution from γp → φ∆. The experimental
data is taken from Ref. [Beh78]. This figure is taken from Ref. [Müh03].

To account for the virtuality Q2 of virtual photons we multiply the vector meson
photoproduction cross sections with the VMD formfactor of Sec. 3.2:

F 2
V (Q2) =

(
W 2

Q2 +W 2

)3

[1 + ε r(m2
V , Q

2)]

(
m2
V

m2
V +Q2

)2

. (4.35)

Furthermore, the FRITIOF model has the tendency to simply flip the spin of the
incoming vector meson to zero thereby creating a lot of events like γ∗N → π0N with
vanishing momentum transfer, a problem not present in PYTHIA. These events would
correspond to diffractive π0 production. However, since the Pomeron carries the quan-
tum numbers of the vacuum it cannot change the charge conjugation quantum number
of the incoming ρ0 (C = −1) to that of the outgoing π0 (C = +1). We therefore simply
remove these unphysical events from our simulation.

In Fig. 4.23 we compare the particle spectra of VMD events generated by FRITIOF
and PYTHIA at the threshold energy W = 4 GeV. The virtuality of the photon
was chosen to be Q2 = 1 GeV2. Since FRITIOF generates more ∆ resonances than
PYTHIA through diffractive excitation of the nucleon we compare the two model pre-
dictions after the ∆ has decayed into πN . We thereby assume that the decay is isotropic
in the rest frame of the ∆ resonance. Note, however, that for nuclear reactions it is a
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Figure 4.23: Momentum spectra of hadrons created in a VMD process. The invariant
mass of the γ∗N system is W = 4 GeV and the virtuality of the photon is Q2 = 1
GeV2. Diffractive vector meson production γ∗N → V N has been excluded. The solid
line shows the result of PYTHIA 6.208, the dashed line shows the result of FRITIOF
7.02 together with our vector meson dominance recipe (4.32). To ease comparison we
let all ∆ resonances decay into πN .

priori not clear whether the explicit propagation of the ∆ leaves the particle spectra
unchanged. In the γ∗A simulations we therefore include the possibility to switch be-
tween an instantaneous decay of the ∆ and an explicit propagation. Throughout the
results of this work we only found a negligible difference between the two methods.

Despite the two different natures of FRITIOF and PYTHIA the momentum spectra
in Fig. 4.23 show an astonishingly strong similarity. The peaks at large plab which are
still visible in the η and η′ spectra reflect the shortcoming of FRITIOF that we have
already discussed above, namely that FRITIOF often does nothing else but simply
changing the spin of the incoming vector meson to zero in the scattering event. Since
the effect is not that pronounced as for ρ0N → π0N we decided to keep these events. Al-
though the spectra are in satisfying agreement we keep the option to generate all VMD
events by FRITIOF to ensure a continuous transition at invariant energies W = WPY.
For calculations that are clearly above the questionable energy regime, like at EMC
energies, we use only the PYTHIA model. Note, however, that the VMD contribution
vanishes with increasing Q2 and already at Q2 = 1 GeV2 the VMD cross section σγ

∗N
VMD

accounts for only 50% of the total photon-nucleon cross section at HERMES energies
(see Fig. 3.8).

The GVMD part below WPY is modeled by passing a massless vector meson with
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Figure 4.24: Momentum spectra of π±, K±, p and p̄ within the HERMES detector
acceptance for a hydrogen target. The spectra are normalized to the number of deep
inelastically scattered leptons. The solid lines represent the calculated results using our
standard method of generating all resolved photon-nucleon events below WPY = 4 GeV
and all VMD events above WPY with FRITIOF. Generating all events with PYTHIA
leads to the spectra shown in terms of the dashed lines. The dotted lines show the result
of a simulation without employing any kinematic or detector cuts for the hadrons. The
data (full squares) are taken from Ref. [Hil03].

the quark content of the qq̄ fluctuation to FRITIOF. In analogy to Eq. (4.32) the
probability is now given by the corresponding GVMD term in the sum (3.31) normalized
to σγ

∗N
tot . As we have discussed in Section 3.1 the products of a GVMD and VMD event

are different in nature since the VMD and GVMD components of the photon involve
different intrinsic kT . Therefore, we should not trust in this recipe too much. However,
as one can see from Fig. 3.8 the GVMD part in the transition region only contributes
by less than 15% to the total photon-nucleon cross section. Hence, one can postpone
a more sophisticated treatment unless one looks at events that are especially triggered
by the GVMD component of the photon.

Comparison with ep data at HERMES

An important aspect of this work is our investigation of hadron attenuation at HER-
MES energies in Sec. 6.4. For this reason we now compare our model for electroproduc-
tion on a proton target with the hydrogen data of the HERMES collaboration [Hil03]
taken at a positron-beam energy Ebeam = 27.6 GeV. In our calculation we apply the
same cuts on the event kinematics as in the experiment: For the positrons these are
Q2 > 1 GeV2, W 2 > 10 GeV2 and 0.1 < y = ν/Ebeam < 0.85. For the momenta of
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Figure 4.25: Feynman-xF spectra of π±, K±, p and p̄ within the HERMES detector
acceptance for a hydrogen target. The meaning of the lines is the same as in Fig. 4.24.
The data (full squares) are taken from Ref. [Hil03].

the produced hadrons we require 1 GeV/c < pπ < 15 GeV/c, 2 GeV/c < pK,p,p̄ < 15
GeV/c as well as xF > 0.1, where we define the Feynman variable xF as in experiment
by

xF =
pcm
‖

|
qcm | . (4.36)

Here pcm
‖ denotes the momentum of the hadron parallel to the momentum 
qcm of the

virtual photon in the center-of-mass frame of the photon-nucleon system. Since the
data are not acceptance and efficiency corrected we account for the angular acceptance
of the HERMES detector [Ack98], i.e. ±170 mrad horizontally and ±(40 − 140) mrad
vertically, for both the scattered positrons and the produced hadrons in our simulation.

In Figs. 4.24 through 4.27 we show the p, xF , zh = Eh/ν and pT spectra of π±,
K±, p and p̄ normalized to the number Ne of deep inelastically scattered positrons.
The solid lines show our results using FRITIOF for the resolved events below WPY = 4
GeV as well as for all VMD events above WPY. The dashed lines represent calculations
where we have changed the default parameters of PYTHIA 6.2 in such a way that it
is applicable down to WPY ≈ 3 GeV and, hence, simulate all events with PYTHIA.
Except for a small deviation in the proton spectra both methods yield essentially the
same result. In view of the fact, that we do not include the detector efficiency in
our calculation, which is unknown to the author, but only account for its angular
acceptance, our calculations are in satisfying agreement with the experimental data.
One can see that without any further fine tuning our simulation including the kinematic
cuts and detector acceptance reproduces the absolute size of the multiplicity spectra.
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Figure 4.26: Fractional energy spectra of π±, K±, p and p̄ within the HERMES detector
acceptance for a hydrogen target. The meaning of the lines is the same as in Fig. 4.24.
The data (full squares) are taken from Ref. [Hil03].

Figure 4.27: Transverse-momentum spectra of π±, K±, p and p̄ within the HERMES
detector acceptance for a hydrogen target. The meaning of the lines is the same as in
Fig. 4.24. The data (full squares) are taken from Ref. [Hil03].
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Figure 4.28: Production of a baryon-antibaryon pair via the popcorn mechanism. In-
stead of creating a diquark-antidiquark pair in the fragmentation of the mesonic string
two quark-antiquark pairs q1q̄1 and q2q̄2 are subsequently created.

To demonstrate the effects of the kinematic cuts and the limited angular acceptance
of the HERMES detector, the dotted lines in Figs. 4.24 through 4.27 show the results
of a simulation where no cuts on the hadron kinematics have been applied and where
we have assumed a 4π-detector.

Complications in the string fragmentation

We point out that particle production in PYTHIA (and also FRITIOF) is much more
complicated than one might expect after having read the preceding sections. In ad-
dition to the complexity of initial and final-state radiation that come with most hard
scattering events, string fragmentation in JETSET also includes more features than
we can discuss within this work. As an example we mention the possibility of baryon-
antibaryon production without diquark-antidiquark creation via the so-called popcorn
mechanism. The process is depicted in Fig. 4.28. The first produced (green-antigreen)
quark-antiquark pair q1q̄1 combines with the original (red-antired) qq̄ to produce an
antiblue diquark qq1 and a blue antidiquark q̄1q̄. In a second step, a (blue-antiblue)
quark-antiquark pair q2q̄2 is created and separates in the color force field to produce a
baryon qq1q2 an an antibaryon q̄q̄1q̄2. Furthermore, JETSET can split the diquark and
thereby create three target remnants from the fragmentation of a baryonic string. For
a detailed discussion of all features of PYTHIA (and JETSET) we refer the reader to
the PYTHIA manual [Sjö01b].

Furthermore, a string may contain one or several gluons, i.e. it might have the
structure qgq̄, qggq̄ etc. In general, the gluons have momenta transverse to the center-
of-mass momentum of the quark and antiquark. This leads to more complicated topolo-
gies than just a linearly expanding string [And98] and has to be taken into account in
the fragmentation.

Beam and target remnants in ep scattering at HERMES

It should have become clear that the modeling of particle production at high energies is
very complicated. To make things worse, it turns out to be important for high-energy
nuclear reactions that one identifies the target and beam remnants of a binary collision.
To identify the target and beam remnants we trace the (anti-)quarks of the projectile
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Figure 4.29: Energy spectra of hadrons produced in electron-nucleon interactions at
HERMES. The different lines indicate the hadrons that contain zero (solid line), one
(dashed line), two (dotted line) or three quarks (dash-dotted line) from the beam or
target. For the proton the solid line nearly coincides with the zh axis, which implies
that most protons contain at least one leading quark.

and target all the way through the fragmentation process in JETSET. At the end of the
reaction we then know those hadrons that contain the original (anti-)quarks, i.e. the
beam and target remnants. Correspondingly, also those hadrons exclusively made from
(anti-)quarks created in the string fragmentation are known explicitly.

In Fig. 4.29 we show the fractional energy spectra of hadrons produced in electron-
nucleon interactions at HERMES. The different lines indicate the hadrons that contain
zero (solid line), one (dashed line), two (dotted line) or three quarks (dash-dotted line)
from the beam or target. Obviously, only resolved photon interactions can lead to a
beam remnant. In the dotted curves one can clearly identify the diffractive peak in
the ρ0 and φ spectra at zh ≈ 1, where the vector mesons contain the qq̄ of the resolved
photon. By comparing the ρ0 and π0 spectra one finds that the ρ0 strongly contributes
to the total pion yield by its subsequent decay into π+π−.

From theK+ andK− spectra one sees (dashed lines) that due to their quark content
(ūs) the K− mesons contain less quarks from the beam or target than the K+ mesons.
The K−, that are not solely made of quarks and antiquarks created from the vacuum
in the string fragmentation, carry (anti-)quarks from the resolved photon component
or the nucleon sea.

Finally, one finds that there are only very few protons containing no quarks from
the beam or target since diquark-antidiquark creation is strongly suppressed in the
string fragmentation due to the relatively large diquark masses. This also explains
why most protons at large zh contain two of the original quarks, i.e. the diquark from
the target nucleon struck by the photon.

In our constituent quark ansatz (5.35) the number of quarks that originate from the
beam or target determine the size of the prehadronic cross section during the formation
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time. Because a diquark is counted as two quarks we expect a very large prehadronic
cross section for the high-zh-protons.
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Chapter 5

Hadron-nucleus interactions

It is experimentally not possible to study elementary reactions of hadrons that are
unstable with respect to the strong interaction. Due to their very short lifetimes these
particles can neither be used as a beam or a target in experiment. In elementary
hadronic reactions one is therefore limited to investigate the interactions of protons,
pions and kaons. Furthermore, one cannot learn any details about the space-time pic-
ture of hadronization from elementary reactions since the reaction products hadronize
long before they reach the detector.

This changes when using nuclear targets. If a collision takes place inside a nucleus
the reaction products can interact with the surrounding nuclear medium. Hence, the
nucleus serves as a kind of micro-detector for short-lived particles and in addition
provides us with the possibility to explore the time scales of hadronization as well as
prehadronic interactions.

In this chapter we focus on nuclear reactions of high-energy hadrons. Usually,
these reactions are described within Glauber theory. We introduce the Glauber model
in Sec. 5.1. The advantage of this model is the quantum mechanical treatment of the
scattering process by a coherent summation of the multiple scattering amplitudes. This,
however, is only possible under many approximations and restricts its applicability to a
very limited number of observables. In Sec. 5.2 we introduce our BUU transport model
which provides us with a probabilistic coupled-channel description of hadron-nucleus
scattering. Within such a model the number of observables which can be investigated
is almost unlimited. In Sec. 5.3 we compare the two models by looking at high-energy
proton-nucleus scattering.

5.1 Glauber theory

Glauber theory [Gla59, Gla70] reduces the interaction of a high-energy particle with a
nucleus to more fundamental interactions with the single nucleons in the nucleus. In
the following section we give a brief introduction to the Glauber model. For a more
detailed discussion of Glauber theory we refer the reader to Ref. [Fal00a]. At the end
of this section we use the Glauber model to calculate the total, elastic and inelastic
hadron-nucleus cross section.

87
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Figure 5.1: An incoming plane wave hits a nucleon which acts like an absorptive sphere.
The result is a shadow region behind the nucleon which at high energies extends far
beyond the nuclear radius.

5.1.1 Introduction to Glauber theory

The simple Glauber model treats the nucleus as an ensemble of nucleons whose Fermi
motion and mutual interactions are neglected throughout the reaction with the projec-
tile. The projectile always interacts with only one nucleon at a time and the possibility
of scattering on virtual particles, i.e. exchange mesons that give rise to nuclear binding,
is ignored.

At high energies one can assume that the reaction products of each single projectile-
nucleon interaction are concentrated in the ’shadow region’ immediately behind the
nucleon. As we discuss in Ref. [Fal00a], the distance that it takes the shadow to ’heal’
is very large compared to the nuclear radius. Fig. 5.1 illustrates the elastic scattering
of an incoming plane wave with momentum 
k = k
ez,

ψ(
r) = χ(
b)eikz , (5.1)

on a nucleon which is located at position 
0. Behind the nucleon the wave can be
considered a superposition of the original wave and a (negative) plane wave confined
to the shadow region:

ψ(
b, z) = χ(
b)
(
eikz − Γ(
b)eikz

)
. (5.2)

As shown in Ref. [Fal00a], the profile function Γ is related to the elastic scattering
amplitude f :

Γ(
b) =
1

2πik

∫
d2qT e

−i�qT ·�bf(
qT ). (5.3)

Here 
qT denotes the transverse momentum transfer in the scattering process. The
longitudinal momentum transfer can be neglected at high energies. Consequently, one
obtains via Fourier transform in impact parameter space

f(
qT ) =
ik

2π

∫
d2bei�qT ·�bΓ(
b) (5.4)

and may express the elastic scattering cross section

dσel

dΩ
= |f(
qT )|2
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Figure 5.2: Wave path through the nucleus.

in terms of the profile function Γ

σel =

∫
dΩ|f(qT )|2

=
k2

4π2

∫
d2b

∫
d2b′

∫
d2qT
k2

ei�qT (�b−�b′)Γ(
b)Γ∗(
b′)

=

∫
d2b|Γ(
b)|2, (5.5)

where in the second step we have used dΩ = d2qT/k
2. Using the optical theorem (A.5)

and (5.4) we obtain for the total cross section

σtot =
4π

k
Imf(
0)

= 2

∫
d2bReΓ(
b). (5.6)

Finally, by combining Eqs. (5.5) and (5.6), the inelastic cross section is given as:

σinel = σtot − σel

=

∫
d2b

[
2ReΓ(
b) − |Γ(
b)|2

]
. (5.7)

Let us now consider the scattering of the incoming plane wave (5.1) on an ensemble
of A nucleons which are located at fixed positions {
ri = (
si, zi)}. According to Eq. (5.2),

the plane wave is modified by a factor 1 − Γ(
b − 
si) for each nucleon that is passed.
The wave path through the nucleus is shown in Fig. 5.2 for a particular value of the
impact parameter 
b. The amplitude along the path is

(a) 1

(b) [1 − Γ(
b− 
s2)]

(c) [1 − Γ(
b− 
s2)][1 − Γ(
b− 
s3)]

(d) [1 − Γ(
b− 
s2)][1 − Γ(
b− 
s3)][1 − Γ(
b− 
s5)].

In total the collection of nucleons modifies the plane wave by a factor

1 − ΓA(
b, 
si) =
A∏
i=1

[1 − Γ(
b− 
si)],
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Figure 5.3: Multiple scattering series that corresponds to elastic hA scattering. In
Eq. (5.14) the intermediate state X has been restricted to h. At very high energies,
however, there are contributions from diagrams which include a diffractively excited
intermediate state.

where we have also included those nucleons in the product that do not lie on the
path with impact parameter 
b. The latter is possible because the radius of the profile
function Γ approximately equals that of the nucleon and therefore the nucleons which
do not lie on the trajectory lead to a factor 1 − Γ = 1.

For a nucleus the nuclear profile function ΓA must be regarded as an operator which
may induce transitions between the ground state |0〉 and an arbitrary final state |f〉
that consists of A nucleons:

Γf0
A (
b) = δf0 − 〈f |

A∏
i=1

[1 − Γ(
b− 
si)]|0〉. (5.8)

The elastic scattering amplitude (|f〉 = |0〉) on a nucleus is then given in analogy
to Eq. (5.4):

F (
qT ) =
ik

2π

∫
d2bei�qT ·�bΓ00

A (
b). (5.9)

For the calculation of Γ00
A (
b) one needs to know the nuclear ground state density

|ψ0(
r1, ..., 
rA)|2 = ρA(
r1, ..., 
rA).

For simplicity we treat the nucleons as independent particles and write the nuclear
ground state density ρA as a product of one-particle densities ρ1:

ρA(
r1, ..., 
rA) ∼=
A∏
i=1

ρ1(
ri)

with the normalization ∫
ρ1(
r)d

3r = 1.

One can improve this description by accounting for two-particle correlations as we
discuss in Sec. 6.1.1.

Within the independent-particle model one obtains for the nuclear profile function

Γ00
A (
b) ≈ 1 −

A∏
i=1

∫
d2si

∫
dzi[1 − Γ(
b− 
si)]ρ1(
si, zi)

= 1 −
[
1 −

∫
d2s

∫
dzΓ(
b− 
s)ρ1(
s, z)

]A
. (5.10)
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As already pointed out before, the nucleon profile function Γ has typically a radius of
the size of the nucleon. In Ref. [Fal00a] we have shown that one can therefore make
the approximation

ρ1(
s, z) → ρ1(
b, z)

in Eq. (5.10) to get

Γ00
A ≈ 1 −

[
1 −

∫
dzρ1(
b, z)

∫
d2sΓ(
s)

]A
. (5.11)

With the help of Eq. (5.4) it is possible to express the last integral in terms of the
forward-scattering amplitude: ∫

d2sΓ(
s) =
2π

ik
f(
0).

On the other hand, the forward-scattering amplitude is related to the total cross section
via the optical theorem (A.5)

f(
0) =
ik

4π
σtot(1 − iα)

with α = Ref(
0)/Imf(
0). If one furthermore introduces the nucleon-number density

ρ(
b, z) := Aρ1(
b, z),

one can write the nuclear profile function (5.11) as

Γ00
A ≈ 1 −

[
1 − 1

2
σtot(1 − iα)

∫ +∞
−∞ dzρ(
b, z)

A

]A
. (5.12)

With a relative error of order A−1 one can approximate Eq. (5.12) as

Γ00
A ≈ 1 − exp

[
−1

2
σtot(1 − iα)

∫ +∞

−∞
dzρ(
b, z)

]
. (5.13)

Substituting Eq. (5.13) into Eq. (5.9) one ends up with the Glauber expression for the
elastic scattering amplitude of a hadron h on a nucleus

F (
qT ) =
ik

2π

∫
d2b ei�qT ·�b

{
1 − exp

[
−1

2
σtot(1 − iα)

∫ +∞

−∞
dzρ(
b, z)

]}
. (5.14)

Graphically, this amplitude corresponds to the sum of multiple scattering diagrams
shown in Fig. 5.3 with the intermediate state X fixed to X = h. In each elementary
scattering reaction hN → hN the nucleus is assumed to remain in its ground state.
This guarantees that the nucleus is in the ground state after the last scattering as it has
to be since we required |f〉 = |0〉 in the beginning. In the independent-particle model
it is not possible to excite the nucleus by scattering on one nucleon and return to the
ground state by scattering on another nucleon. The latter would require two-particle
correlations and is suppressed by the inelastic formfactor of the nucleus.
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5.1.2 Nuclear cross sections

Using the optical theorem (A.5) and the Glauber amplitude (5.14) for elastic scattering
on a nucleus, one can derive the total hadron-nucleus cross section

σtot
hA =

4π

k
ImF (
0)

= 2

∫
d2bRe

{
1 − exp

[
−1

2
σtot
hN(1 − iα)

∫ +∞

−∞
dzρ(
b, z)

]}
. (5.15)

Assuming a uniform density distribution with radius R:

ρ(
r) = ρ0Θ(R− r)

with

ρ0 =
A

4
3
πR3

and neglecting the imaginary part of the elementary hN scattering amplitude (α = 0),
one can easily perform the integration in (5.15) and express the cross section in terms
of the ratio of the nuclear radius R and the mean free path λh = 1/(ρ0σ

tot
hN ):

σtot
hA =

3

(R/λh)3

[
(1 +R/λh)e

−R/λh − 1 +
1

2
(R/λh)

2

]
Aσtot

hN . (5.16)

If the projectile has a very small nucleonic cross section σtot
hN , i.e. in the limit λh � R,

one obtains by expanding the exponential function:

σtot
hA = Aσtot

hN .

This result is trivial since a very large mean free path means that the interaction
probability with the projectile is equal for all nucleons. The total cross section therefore
scales with the total number of nucleons A or in other words with the volume of the
nucleus (R ∼ A1/3).

In the extreme case that the nucleonic cross section is very large (λh � R)) one
gets from (5.16):

σtot
hA = 2πR2 ∼ A2/3. (5.17)

In this so-called black-disc limit the projectile always interacts with the nucleons on
the front side of the nucleus and the nuclear cross section scales with the geometric
cross section πR2 of the nucleus. The factor two in Eq. (5.17) cannot be explained
in classical terms. It arises because quantum mechanically the cross section consists
of a real scattering term which exactly corresponds to the classical expectation and a
diffractive term which only accounts for forward scattering of the incoming wave. The
latter is necessary to interfere destructively with the original wave behind the target
to assure unitarity. In principle, this just explains the optical theorem in terms of
wave functions. In the black-disc limit, all of the original wave has to vanish behind
the target and therefore the scattering and the diffractive term are of the same size,
namely πR2.

Finally, we want to note that even if the total cross section scales with A2/3 the
inclusive particle production cross section can behave quite differently. As discussed
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for example in Ref. [Cap99] all rescattering terms that contribute to inclusive particle
production in hA collisions in the central rapidity region cancel with each other and
one is left with

σhA→mX = AσhN→mX (5.18)

for the inclusive production of particles of type m. This is usually referred to as
AGK1 cancellation [AGK74] and at first sight seems to violate unitarity since σhA→mX

can become larger than σtot
hA. This is, however, not a problem since the inclusive

production cross section σhA→mX includes the multiplicity of particles m as we show
in the derivation of (5.18) in Appx. G.

5.2 BUU

In this section we give a brief introduction to our BUU transport model and sketch
the basics of its numerical realization. Since we are only interested in its application
at high energies we refer the reader to Refs. [Eff99a, Leh03] for a detailed description
of the resonance part of the model, as well as medium modifications of resonances and
off-shell transport. Refs. [Eff99a, Leh03] also contain an extensive discussion of the
underlying theory as well as an explicit description of the numerical methods.

Our transport model is based on the Boltzmann-Uehling-Uhlenbeck (BUU) equa-
tion. It has been originally developed to model heavy-ion collisions at SIS energies
[Tei96, Tei97, Hom99] and later been extended to describe pion-induced reactions
[Wei99, Eff99b] as well as photo- [Eff99a, Eff96] and electroproduction [Leh99, Leh00] in
the resonance region. In the more recent past we have extended the model to also sim-
ulate nuclear interactions of high-energy photons and electrons in the kinematic regime
of the Jefferson Lab [Eff99c, Eff00, Fal02] and HERMES [Fal03b, Fal04, Fal04b] ex-
periments. Obviously, one of the big advantages of the model is its applicability to
many different kinds of nuclear reactions with basically the same set of parameters
and physics assumptions. In addition, the coupled-channel treatment of the final-state
interactions goes far beyond the standard Glauber approach since it allows for side-
feeding of particles in the final-state interactions.

5.2.1 Theoretical basics

For each particle species i in our model, there exists a generalized BUU equation(
∂

∂t
+ 
∇�pH
∇�r − 
∇�rH
∇�p

)
Fi(
r, 
p, µ; t) = Icoll({Fj}) (5.19)

where

H =

√
(µ+ US(
r, 
p; t))2 + 
p 2 (5.20)

denotes the relativistic Hamilton function of a particle with mass µ in a scalar potential
US . For vanishing collision term Icoll Eq. (5.19) describes the time evolution of the
spectral phase-space density

Fi(
r, 
p, µ; t) = fi(
r, 
p; t)Ai(µ, 
p) (5.21)

1Abramovsky, Gribov, Kancheli
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of non-interacting particles that move in a scalar mean-field potential US which in
general depends on the phase-space densities {fj} of all other particle species (including
i). The spectral functions Ai are again of the form (4.34).

The collision term

Icoll({Fj}) = −iΣ>
i ({Fj})Aifi − iΣ<

i ({Fj})Ai(1 ± fi) (5.22)

in Eq. (5.19) accounts for changes in the spectral phase-space density of particle species
i = a1 due to multi-particle collisions of the type a1, . . . , an → b1 . . . bm and b1 . . . bm →
a1, . . . , an. The factor (1±f) has the plus sign for bosons (Bose enhancement) and the
minus sign for fermions (Pauli blocking). The collision term consists of a loss term of
particle species a1

iΣ>
a1

=
1

2Ea1

∫ (
n∏
j=2

gaj

d3paj

(2π)3

dµaj

2Eaj

Aaj
(µaj

, 
paj
)faj

)

×
(

m∏
k=1

d3pbk
(2π)3

dµbk
2Ebk

Abk(µbk , 
pbk)(1 ± fbk)

)

×(2π)4δ4(

n∑
j=1

paj
−

m∑
k=1

pbk)Sa2,...,anSb1,...,bm|Ma1,...,an→b1...bm |2

and a gain term

−iΣ<
a1

=
1

2Ea1

∫ (
m∏
j=1

gbj
d3pbj
(2π)3

dµbj
2Ebj

Abj (µbj , 
pbj )fbj

)

×
(

n∏
k=2

d3pak

(2π)3

dµak

2Eak

Aak
(µak

, 
pak
)(1 ± fak

)

)

×(2π)4δ4(

m∑
j=1

pbj −
n∑
k=1

paj
)Sb1,...,bmSa2,...,bn |Mb1,...,bm→a1...an |2

where gj are degeneration factors that account for the spin of particle j and |M|2 is the
squared scattering matrix element averaged over incoming and summed over outgoing
spins. S denotes symmetry factors that take into account the existence of identical
particles in the incoming and outgoing channel, e.g.,

Sb1,...,bm =

m∏
k=1

1

Mbk !

with Mbk denoting the multiplicity of particle bk.

Potential

All BUU equations (5.19) are coupled by the collision term and the scalar potential
US in the Hamilton function (5.20) where in our model the latter is usually only in-
corporated in case of baryons. The scalar potential US can be related to the effective
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(non-relativistic) potential U which accounts for the many-body interactions of the
baryons among each other. The general expression for the relativistic energy of a par-
ticle under the influence of a scalar potential S and a vector potential V = (V0, 
V )
is

H =

√
(µ+ S)2 + (
p− 
V )2 + V0.

In the local rest frame (LRF), i.e. where the baryon current locally vanishes, the spatial

components 
V vanish [Tei96]. We arbitrarily set S = 0 and interpret the effective
potential U as the zeroth component V0 of the vector potential:

HLRF =
√
µ2 + p2

LRF + U(
r, 
pLRF).

We can then define the scalar potential US of Eq. (5.20) in any frame as

US :=
√
H2

LRF − p2
LRF − µ.

Note that for photon- and electron-induced reactions the local rest frame coincides
with the frame where the target nucleus is at rest, i.e. the laboratory frame in case of
fixed target experiments.

For nucleons the effective potential U is parameterized according to Refs. [Wel88,
Ga90] as a sum of a Skyrme part, which only depends on the baryon density ρ, and a
momentum-dependent part:

U(
r, 
p) = A
ρ(
r)

ρ0
+B

(
ρ(
r)

ρ0

)τ

+
2C

ρ0
g

∫
d3p′

(2π)3

f(
r, 
p ′)

1 +
(
�p−�p ′

Λ

)2 , (5.23)

where ρ0 = 0.168 fm−3 denotes the saturation density of nuclear matter. In the re-
actions considered in this work, the nucleus remains close to its ground state and the
phase-space density f in (5.23) can be approximated by the phase-space density of
(uncorrelated) cold nuclear matter

f(
r, 
p) = Θ(pF (
r) − |
p|) (5.24)

with the local Fermi momentum

pF (
r) =

(
6π2

g
ρ(r)

)1/3

.

Here g = 4 again denotes the factor of degeneracy. For the density distribution of
complex nuclei we use the Woods-Saxon parametrization:

ρ(r) =
ρ0

1 + exp
(
r−R
a

) (5.25)

with the parameters of Tab. 5.1 that have been extracted from a Hartree-Fock calcu-
lation [Tei96] for stable nuclei. For light nuclei like 12C and 14N, however, we use in
general a Gaussian shape:

ρg(r) =
1

π3/2a3
g

exp

(
− r2

a2
gA

2/3

)
(5.26)
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R [fm] a [fm] ρ0 [fm−3]
12C 2.328 0.479 0.160
14N 2.476 0.479 0.161
20Ne 2.851 0.479 0.161
27Al 3.202 0.478 0.161
63Cu 4.409 0.477 0.157
84Kr 4.911 0.476 0.155
107Ag 5.356 0.476 0.154
131Xe 5.777 0.476 0.152
208Pb 6.826 0.476 0.149

Table 5.1: Woods-Saxon parameters (5.25) for the nuclei investigated in this work.

A [MeV] B [MeV] C [MeV] τ Λ [fm−1]

−29.3 57.2 -63.5 1.76 2.13

Table 5.2: Parameters of the nucleon potential (5.23) used in this work.

with agA
1/3 =

√
2
3
rrms and rrms = 1.21A1/3 fm [Pov97].

The use of (5.24) allows us to employ an analytic expression for the momentum-
dependent part of the potential (5.23)

2C

ρ0

g

∫
d3p′

(2π)3

Θ(pF (
r) − |
p ′|)
1 +

(
�p−�p ′

Λ

)2 =
2C

ρ0

g

(2π)3
πΛ3

{
p2
F (
r) + Λ2 − p2

2pΛ
ln

[
(p+ pF (
r))2 + Λ2

(p− pF (
r))2 + Λ2

]

+
2pF (
r)

Λ
− 2

[
arctan

(
p+ pF (
r)

Λ

)
− arctan

(
p− pF (
r)

Λ

)]}
.

The parameters of the mean-field potential (5.23) are fitted to the saturation prop-
erties of nuclear matter and the momentum dependence of the nucleon optical potential
as measured in pA collisions [Eff99a]. Throughout this work we employ the parameters
given in Tab. 5.2. For nuclear matter density ρ0 = 0.168 fm−3 the effective potential
U increases monotonically from

U(p = 0, ρ = ρ0) = −75 MeV

to
U(p → ∞, ρ = ρ0) = 30.5 MeV. (5.27)

For the densities of nuclei listed in Tab. 5.1 the absolute value of the effective potential
is even smaller.

We use the same mean-field potential for all baryons except for the ∆ resonance
for which we assume

U∆ =
2

3
U.



5.2. BUU 97

This choice is motivated by the phenomenological value of -30 MeV at density ρ0

[Eri88]. As mentioned above, we neglect any hadronic potential for mesons as well as
any influence of the Coulomb potential in our present investigations.

Collision term

According to Eq. (5.27) the coupling of the BUU equations (5.19) via the mean field is
rather low in the multi-GeV range of interest. One is therefore left with the coupling
through the collision term (5.22). For high-energy nuclear reactions of elementary
probes like pions, protons and (virtual) photons binary collisions a1, a2 → b1, . . . bm
play the dominant role. Note, however, that in heavy-ion collisions due to the high
densities involved, multi-particle collisions can become important. Since some of the
particles in our simulation are unstable with respect to strong decays one has to keep
in mind that also the decay of a particle into several other hadrons leads to changes in
the phase-space densities.

In the mesonic sector we account for all particles listed in Tab. 5.3. Mesons that
can only decay due to the weak interaction are considered stable within our model.
The only exception is the η whose decay is explicitly accounted for when looking into
pion production.

Besides the nucleon (mN = 938 MeV) and the Delta (m∆ = 1232 MeV, Γ∆ = 118
MeV) we account for 29 additional nucleon resonances [Eff99a] in the baryonic sector
whose properties are taken from an analysis of πN scattering [Man92]. In our model the
∆ always decays to Nπ whereas the other resonances can couple to the channels Nπ,
Nη, ΛK, Nω, ∆π, Nρ, Nσ, N(1440)π and ∆ρ. In addition to the Λ (mΛ = 1116 MeV)
and the Σ (mΣ = 1189 MeV), which are stable with respect to the strong decay, we
also include 19 further S = −1 resonances that can decay into Λπ, NK, Σπ, Σ∗π, λη,
NK∗ and Λ∗π. Furthermore, we include the strange and charmed baryons of Tab. 5.4
in our model. Due to a lack of a complete analysis, the parameters for the strange and
charmed baryons are taken from Ref. [PDG98]. For each baryon we also account for
the corresponding antiparticle.

Since we explicitly consider the charge of the particles, each isospin state of a particle
leads to a separate BUU equation. The spin is only accounted for as a statistical weight
in the degeneracy factor g.

5.2.2 Numerical implementation

The set of coupled differential-integral equations (5.19) is solved via a test-particle
ansatz for the spectral phase-space densities (5.21):

F (
r, 
p, µ; t) =
1

N

(2π)3

g

N∑
i=1

δ(
r − 
ri(t))δ(
p− 
pi(t))δ(µ− µi(t)) (5.28)

where 
ri, 
pi and µi denote the position, momentum and mass of the test particle i at
time t and N is the number of test particles per physical particle. In this work we
use the method of parallel ensembles, i.e. the test particles are divided into N different
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m Γ

[MeV] [MeV]
J I S C decay channel

π 138 0 0 1 0 0

η 547 1.2 · 10−3 0 0 0 0 γγ (40%), π+π−π0 (28%), 3π0 (32%)

ρ 770 151 1 1 0 0 ππ

σ 800 800 0 0 0 0 ππ

ω 782 8.4 1 0 0 0 ππ (2%), π0γ (9%), π+π−π0 (89%)

η′ 958 0.2 0 0 0 0 ρ0γ (31%), ππη (69%)

φ 1020 4.4 1 0 0 0 ρπ (13%), KK̄ (84%), π+π−π0 (3%)

K 496 0 0 1/2 1 0

K̄ 496 0 0 1/2 -1 0

K∗ 892 50 1 1/2 1 0 Kπ

K̄∗ 892 50 1 1/2 -1 0 K̄π

ηc 2980 0 0 0 0 0

J/ψ 3097 0 1 0 0 0

D 1869 0 0 1/2 0 1

D̄ 1869 0 0 1/2 0 -1

D∗ 2007 1 1 1/2 0 1 Dπ

D̄∗ 2007 1 1 1/2 0 -1 D̄π

Ds 1969 0 0 0 1 1

D̄s 1969 0 0 0 -1 -1

D∗
s 2112 1.9 1 0 1 1 Dsγ (94%), Dsπ (4%)

D̄∗
s 2112 1.9 1 0 -1 -1 D̄sγ (94%), D̄sπ (4%)

Table 5.3: List of mesons included in the BUU model, their quantum numbers (spin
J , isospin I, strangeness S, charm C) and decay channels. The parameters are taken
from Ref. [PDG98] except for the σ meson [Man92].

ensembles which do not influence each other2. This is equivalent to simulating N
independent nuclear reactions in parallel and averaging the observables at the end.
For a test-particle number N → ∞ the test particles will give the time evolution of the
spectral phase-space densities.

Initialization

When initializing a nuclear reaction the test particles, that correspond to nucleons of
the nucleus, are distributed in position space following the Woods-Saxon distribution

2Only the baryon density in AA and pA collisions which determines the mean-field potential and
Pauli blocking is calculated from the distribution of all test-particles [Eff99a]. In case of photon- and
electron-induced reactions one expects only minor changes in the nucleon density during the reaction.
For these reactions we calculate the potential and Pauli blocking directly from the ground state density
(5.25).
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m Γ

[MeV] [MeV]
J I S C decay channel

Ξ 1315 0 1/2 1/2 -2 0

Ξ∗ 1530 9.5 3/2 1/2 -2 0 Ξπ

Ω 1672 0 3/2 0 -3 0

Λc 2285 0 1/2 0 0 1

Σc 2455 0 1/2 1 0 1

Σ∗
c 2530 15 3/2 1 0 1 Λcπ

Ξc 2466 0 1/2 1/2 -1 1

Ξ∗
c 2645 4 3/2 1/2 -1 1 Ξcπ

Ωc 2704 0 1/2 0 -2 1

Table 5.4: List of baryons with S < −1 or C > 0 included in the BUU model, their
quantum numbers (spin J , isospin I, strangeness S, charm C) and decay channels.
The parameters are taken from Ref. [PDG98].

(5.25) or a Gauss distribution (5.26) for 12C and 14N, respectively. We here assume
that the form of the density distribution is the same for protons and neutrons. For
the initialization in momentum space we use the local Thomas-Fermi approximation
(5.24).

Propagation

The calculation is performed on a discretized time grid with grid size ∆t = 0.5 fm/c.
A further reduction of the time step ∆t was found to have no influence on our results.
However, as we discuss below, one has to use a smaller value for ∆t if one wants to
describe reactions that involve high particle densities like heavy-ion collisions. During
each time step the test particles are assumed to move as non-interacting particles in
the mean field US. Substituting the test-particle ansatz (5.28) into the BUU Eq. (5.19)
– with the collision term set to zero – yields the classical Hamilton equations of motion:

d
ri
dt

= 
∇�pi
H

d
pi
dt

= −
∇�riH (5.29)

dµi
dt

= 0

with H being a functional of the phase-space density f .
The initializations according to Eqs. (5.25) and (5.26) do not correspond to the exact

ground state of the nuclear potential. As discussed in Ref. [Eff99a] this leads to an
oscillating density distribution of the nucleon test particles. For both initializations the
density fluctuations are on the level of about 20% [Leh]. The period of the oscillation is
about ten times larger than the time that a high-energy particle (with velocity close to
the speed of light) needs to escape the nucleus, i.e. the reaction time. For photon and
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electron induced reactions the density is frozen until the time of the primary photon-
nucleon interaction. As a result, the mean squared radius has changed by less than 4%
[Eff99a] by the time that the high-energy particles have left the nucleus.

Collisions

Between the time steps the particles may collide. We do not assume any medium
modification of the matrix elements M that enter the collision term (5.22). If one
accounts for the energy shift caused by the scalar potential US, the transition rates can
be directly taken from the corresponding vacuum cross sections. Note, however, that
in the resonance region cross sections might be modified due to in-medium changes of
the resonance properties as discussed in Refs. [Eff99a, Leh03].

Concerning the collision criteria we follow the method by Kodama et al. [Kod84]:
Two particles collide in a time step ∆t if the impact parameter b, i.e. the minimum
separation in their center-of-momentum system, is smaller than

b ≤
√
σtot(s)

π
. (5.30)

Furthermore, it is checked if both particles reach this minimal distance during the time
step ∆t. In Eq. (5.30) σtot denotes the total cross section for the interaction of the
two particles. For high-energy collisions these are the ones given in Sec. 4.4.1. Elastic
interactions occur with a probability

Pel =
σel(s)

σtot(s)
;

the scattering angle is determined according to Eq. (2.17). In case of a high-energy
inelastic collision the reaction products are determined by FRITIOF (or JETSET for
baryon-antibaryon annihilation). In the resonance region, i.e. below

√
s = 2.2 GeV for

meson-baryon and
√
s = 2.6 for baryon-baryon scattering, the total cross section is an

incoherent sum of the cross sections for the reactions

mB ↔ R πN ↔ πN πN → ππN πN ↔ η∆ πN ↔ ωN

πN → πωN πN ↔ φN ωN ↔ ωN ωN → ππN φN ↔ φN

φN → ππN πB ↔ KY πB → KK̄N K̄N ↔ K̄N K̄N ↔ πY

K̄N ↔ πY ∗ KN ↔ KN KN → KπN

in case of meson-baryon collisions and

NN ↔ NN NN ↔ NR NN ↔ ∆∆ NN ↔ NNπ NN → NNω

NR ↔ NR′ BB → NYK BB → NY ∗K BB → NNKK̄

for baryon-baryon collisions. Here m stands for a meson, B=N,∆; nucleon resonances
are denoted by R and R′, hyperon resonances by Y ∗ and Y=Σ,Λ. The reactions
involving antibaryons are obtained by charge conjugation. The reaction channel ab →
X in the collision of two particles a and b is chosen by Monte Carlo with a probability
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determined from its contribution to the summed total cross section (see Ref. [Eff99a]
for details)

Pab→X =
σab→X(s)

σtot
ab (s)

. (5.31)

Furthermore, our BUU model allows for meson-meson collisions of the kind mm′ ↔
m′′ as well as the reaction ππ ↔ KK̄. However, as we pointed out in Sec. 4.4.1,
meson-meson collisions are only relevant at high meson densities as reached in heavy-
ion collisions and can be neglected for photon- and electron-induced reactions.

Our model also includes the possibility to account for collisions with three particles
in the initial state. If the matrix element is known from detailed balance, like for
example in the process NN → πNN , one can also include the three-particle collision
πNN → NN following the method developed in Ref. [Eff99a]. However, these reactions
turn out to be unimportant at higher energies and nuclear ground-state densities.

In the present realization of the collision term it is essential to forbid collisions
among the products of a primary reaction before they have participated in another
interaction [Eff99a]. Otherwise the same two particles would collide over and over
again during the next time steps, since they do not separate far enough during ∆t.
However, this does not rule out the possibility that, during the same time step ∆t, test
particles created in one collision interact with test particles that emerge from another
reaction. For large particle densities – as reached for example in heavy-ion collisions –
this will lead to a vast number of collisions during one time step if one does not properly
adjust ∆t. This problem is absent for perturbative particles (see below) which are not
allowed to interact with each other throughout the simulation.

Decay

An important feature of our model is the decay of unstable particles with mass µ and
energy E during a time step ∆t. The corresponding decay probability is given by

Pdec = 1 − exp

(
−Γ(µ)

γ
∆t

)

where γ = E/µ is the Lorentz factor while Γ denotes the width of the particle in its
rest frame. The final state of the decay is again determined by Monte Carlo assuming
the decay to be isotropic in the rest frame of the particle since we neglect the spin
degree of freedom.

Pauli blocking

Due to the low densities of other baryons, Pauli blocking is only accounted for in
collisions and decays that involve nucleons in the final state. The Pauli factors in the
collision term (5.22) are in general calculated by averaging the phase-space density over
a small volume around the phase-space point:

1 − f(
r, 
p; t) = 1 −
∫

∆Vr

d3r′
∫

∆Vp

d3p′f(
r ′
p ′; t).
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For γ∗A reactions, where the nucleus approximately stays in its ground state, one can
approximate the probability that an event at position 
r with an outgoing nucleon of
momentum 
p is Pauli blocked via Eq. (5.24) as

PPauli = Θ(pF (
r) − |
p|). (5.32)

Perturbative particles

Finally, we outline the method of perturbative particles which we employ for photon-
and electron-induced reactions. Originally, this method has been developed to describe
the production of particles which are created very rarely and which therefore have
only very little influence on the time evolution of the spectral phase-space density
[Wei99, Bra98]. The propagation and collisions of perturbative test particles are only
effected by the real particles. On the other hand, the perturbative test particles have
no influence on the real particles whatsoever.

As discussed above, the probability that the real final state X is produced in a
collision of two particles a and b is given by Eq. (5.31). Each real test particle in the
final state X can be assigned a statistical weight 1. Perturbative particles, however,
are produced in every collision of a and b and therefore must be assigned a statistical
weight σab→X/σ

tot
ab < 1. In any interaction of a perturbative particle with a real particle

this statistical weight is transfered to the reaction products.

In case of high-energy γ∗A interactions we initialize a γ∗N reaction on each of the
A nucleons in one ensemble. The reaction products are then treated as perturbative
particles, and each perturbative test particle gets a statistical weight s(
r)σtot

γN/A where
s(
r) denotes the shadowing factor which we introduce in Sec. 6.1.2. It accounts for
the multiple scattering of the resolved photon components on the way through the
nucleus to position 
r where the reaction takes place. In using the perturbative particle
method for γ∗A reactions one saves a tremendous amount of CPU time since one can
now consider A instead of one reaction per ensemble at a time.

The reaction products that are relevant for our investigations have momenta of the
order of several GeV. We therefore neglect the effect of the effective potential US for all
perturbative particles. As a result, the equations of motions (5.29) for the perturbative
particles simplify considerably:

d
ri
dt

=

pi√

µ2
i + 
p 2

i

d
pi
dt

= 0

dµi
dt

= 0.

We have verified that this approximation does not affect the results of our model
calculations in the kinematic regime of the HERMES experiment, and conclude that it
is of no importance for the even higher EMC energies. However, it may play a role for
the energy spectra of protons and neutrons observed at Jefferson Lab. However, since
the latter are strongly contaminated by protons and neutrons that are knocked out of
the nucleus in the FSI, they will most likely not be studied in experiment [WBr].
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Figure 5.4: Initialization of a pA collision in the BUU simulation.

5.3 Proton-nucleus reactions

In this section we want to compare the results of the Glauber and the BUU model
for high-energy pA collisions. To calculate the pA cross section in the BUU model
we randomly initialize the incoming protons in the lab frame with energy Ep and

momentum 
p =
√
E2 −m2

N
ez inside a disc of radius

bmax = 1.1 fm · A1/3 +

√
σmax

π

which is located 4 fm away from the surface of the nucleus (cf. Fig. 5.4). The cross
section σmax must be larger than the total high-energy pN cross section so that any
proton with larger impact parameter would miss the nucleus in the simulation. We use
the value σmax = 55 mb.

5.3.1 Total cross section

In the BUU model the incoherent pA reaction cross section is given by the product of
the area πb2max and the relative reaction frequency:

σreac
pA = πb2max

(
N −N0

N

)
(5.33)

where N denotes the numbers of initial protons3 and N0 is the number of protons from
the incoming beam which pass the nucleus without any interaction. If one neglects
coherent interactions where the proton scatters on the nucleus as a whole instead of
individual nucleons the reaction cross section (5.33) equals the total pA cross section
σtot
pA .

We have calculated the total cross section for the scattering of 100 GeV protons
on 12C, 27Al, 63Cu, 107Ag and 208Pb targets. The BUU results are illustrated by the
open circles in Fig. 5.5. From the A dependence of the BUU cross section we extract
a scaling with A0.68 which perfectly agrees with the experimental result (solid crosses)
of Ref. [Car79]. This is astonishing since our semi-classical approach disregards the
quantum mechanic interference effects that led to the factor of two in Eq. (5.17). On

3In the parallel ensemble method this number equals the number of ensembles.
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Figure 5.5: Total pA cross section for a proton lab energy of 100 GeV. The open circles
show the result (5.33) of the BUU simulation and show a scaling with A0.68. The
Glauber cross section (5.15) is represented by the solid squares. Its scaling with A0.77

is clearly too large. The data (solid crosses) are taken from Ref. [Car79].

the other hand the total pA cross section in the BUU model is not simply πR2 but
rather

σtot
pA ≈ π

(
R +

√
σpN
π

)2

,

which is further modified by the fact that a nucleus is not a sphere with a sharp radius
R = r0A

1/3 (cf. Eqs. (5.25) and (5.26)).
We now discuss the prediction of Glauber theory for the total pA cross section. In

the discussion of Eq. (5.16) we have pointed out that – in the limit of a very small
mean free path of the hadronic projectile in the nucleus – the cross section scales like
A2/3, i.e. the nucleons on the front side of the nucleus shadow the down stream nucleons
from the interaction, a phenomenon called nuclear shadowing. For a high-energy proton
(σpp ≈ 40 mb) the mean free path in nuclear matter (ρ0 = 0.168 fm−3) is approximately
λp = 1.5 fm. The average density of finite nuclei is somewhat smaller than ρ0 and
therefore λp in nuclei is not much smaller than the nuclear radius (e.g. RPb = 6.6 fm)
and we expect that the total pA cross section scales like Aα with a scaling exponent
2/3 < α < 1 according to our Glauber investigations of Sec. 5.1.2. In Fig. 5.5 the solid
squares represent the Glauber result (5.15) for the total cross section σtot

pA for 12C, 27Al,
63Cu, 120Sn and 208Pb. Our calculations show that Glauber theory yields a scaling
exponent α = 0.77 for 100 GeV protons which is obviously too large compared to the
experimental data. The reason for this deviation might be that at very high energies
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expression (5.15) has to be corrected for single diffractive excitation hN → XN . This
means that an intermediate state X with mass mX ≥ mh propagates in the multiple
scattering series shown in Fig. 5.3. In addition, there might be off-diagonal transitions
X1N → X2N in the single scattering events which complicate things furthermore. As
Gribov has shown in Ref. [Gri69], such inelastic corrections guarantee that the non-
relativistic Glauber approach that we have presented in Sec. 5.1 can be applied up to
very high energies. In Appx. H we show how one has to modify the nuclear profile
function (5.8) for hA scattering to account for Gribov’s inelastic corrections.

5.3.2 Inclusive meson production

At the end of Sec. 5.1.2 we have pointed out that the AGK cancellation predicts a
scaling of the inclusive production cross section σpA→mX with the nucleon number A.
How can such a behavior be reproduced by our semi-classical BUU transport model?

As we have discussed in the preceding chapters, the product of a high-energy
hadron-hadron collision will be either a bunch of hadronic strings or diffractively ex-
cited hadrons. At not too large energies the latter is more likely since the cross section
for hard scatterings is relatively small as can be seen in Fig. 2.7. In the realization of
our BUU model the final state of a high-energy hadronic interaction will be determined
by FRITIOF which means that the final state consists of two excited hadronic strings
with a large separation in rapidity. These strings then fragment into hadrons accord-
ing to the Lund model. We have already discussed production and formation times in
Sec. 4.3 and found that depending on the mass of the hadrons the formation proper
times in the Lund model lie in the range τf=0.5–1.7 fm/c. Independently of the Lund
model, one can estimate a lower boundary for the time that it takes until the reac-
tion products have evolved to physical hadrons, i.e. until they interact with their full
hadronic cross section. In the rest frame of each hadron this lower boundary is given
by the time that the hadron constituents need to propagate a distance of the order of
the hadronic radius, i.e. τf = 0.5–0.8 fm/c. Due to time dilatation the formation times
in the laboratory frame

tf = γτf =
Eh
mh

τf (5.34)

may become quite large and the corresponding formation lengths may easily exceed
nuclear dimensions at high energies. In Eq. (5.34) Eh and mh denote the energy and
mass of the produced hadron.

Leading hadrons

If the reaction takes place in a nuclear environment the question arises how the strings
and their color-neutral fragments interact with the surrounding nucleons during the
formation time. Fig. 5.6 illustrates schematically the interaction of a high-energy pro-
ton with a nucleus. In the extreme scenario in which the reaction products do not
interact at all during the formation proper time τf the production cross section should
roughly scale with A2/3. The reason for this is that due to its relatively small mean
free path the incoming proton will mainly interact on the front side of the nucleus and
produce a bunch of high-energy particles which then leave the nucleus without further
interactions. This scenario, however, seems unrealistic, since it is unclear why the
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Figure 5.6: Schematic illustration of particle production in a high-energy pA reac-
tion. In the first scenario the reaction products of a collision are assumed to be
non-interacting during some constant formation proper time τf (dashed lines). As
a consequence, the incoming proton interacts on the front side of the nucleus and pro-
duces a bunch of high-energy particles which due to time dilatation escape the nucleus
without further interactions. This leads to a production cross section σpA→mX that
roughly scales with A2/3. In the second scenario the remnant of the incoming proton
interacts during the formation time (solid line) and contributes to particle production
in each subsequent collision. In the latter case the production cross section σpA→mX

scales with the number of nucleons in the nucleus.

diffractively excited nucleons should behave that much different than normal nucleons.
If, however, the proton remnant could interact with the surrounding medium during
the formation time the inclusive meson production cross section would approximately
scale with A since each subsequent scattering can contribute to meson production.

In transport models one usually assumes that each string decays instantaneously
into color-neutral prehadrons which are then propagated. In the Lund model this
corresponds to a vanishingly small production time of the qq̄ vertices.

In the HSD model [Gei98a, Gei98b, Cas99] the method of leading hadrons is used to
account for the interactions of the beam (and target) remnants during the formation
time. The leading prehadrons are defined as the ones having largest and smallest
longitudinal momentum in the rest frames of the two fragmenting strings that were
created by FRITIOF. In most cases those prehadrons coincide with the four hadrons
that emerge from the end points of the strings in the fragmentation. In the HSD model
the cross sections of the four leading prehadrons are then reduced during the formation
time and the cross sections of the remaining prehadrons are set to zero during τf .

In the previous version of our BUU model [Eff99a] the leading prehadrons have been
defined as the two hadrons with the largest and smallest longitudinal momentum in the
center-of-mass system of the collision. Since one has now only two leading prehadrons
per collision the leading prehadron cross section has to be approximately twice as large
as in the HSD model to get similar results for the description of high-energy pA and
AA reactions. Even though the two methods might produce similar results [Sor90], we
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Figure 5.7: Ratio of nuclear and elementary cross section for inclusive π± and K±

production of 100 GeV protons incident on nuclear targets. The open (solid) symbols
represent the result without (with) prehadronic interactions during the formation time
τf = 0.5 fm/c. For comparison we also show the two lines A (dashed) and A2/3 (solid).

think that the first one is closer connected to the underlying physical process.
As we have pointed out at the end of Sec. 4.4.2 hard processes, especially the direct

photon interactions simulated with PYTHIA may lead to quite complicated final states
that consist of more than two strings. Hence, the recipe of identifying the fastest and
slowest prehadron produced in each string decay as a beam or target remnant is not
always correct. For this reason, we rather trace back the fragmentation process in
JETSET and identify the prehadrons that contain constituents of the projectile or
target hadron.

In our default approach we set the production times τp of all prehadrons to zero
and rescale their cross sections during the formation time τf according to a simple
constituent quark model:

σtot
prebaryon =

norg

3
σbaryon

σtot
premeson =

norg

2
σmeson (5.35)

where norg denotes the number of (anti-)quarks in the prehadron stemming from the
beam or target. As a consequence, the prehadrons that are no beam or target rem-
nants, i.e. those that solely contain (anti-)quarks produced from the vacuum in the
string fragmentation, do not interact during τf . The ansatz (5.35) ensures that the
summed cross section of the string fragments right after the scattering process takes
on a hadronic value. This is reasonable since the excited string is a rather short color
neutral object which has the transverse size of the original hadron [Cio02] and there-
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fore should interact with about the same cross section. As we discuss in more detail in
Sec. 6.4 the summed cross section then rises each time when a new hadron has formed.
For simplicity we assume that the formation time is a constant in the rest frame of each
hadron and that it does not depend on the particle species as in Ref. [Gei98b, Cas99].
In Chap. 6 we also discuss other concepts of production times, formation times and
prehadronic cross sections. However, as we show in Sec. 6.4 concept (5.35) gives a
good description of the available electroproduction data. This also holds for parti-
cle production in proton-nucleus and heavy-ion collisions in a wide dynamical range
[Web03, Bra03].

Integrated production cross section

In Fig. 5.7 we show our results for the normalized inclusive production cross section
σpA→mX/Aσpp→mX of π± and K± for protons incident on nuclear targets at 100 GeV.
For comparison we also show two lines which illustrate a scaling with A and A2/3

respectively.
The open symbols represent the result one gets if one assumes no interactions of

any prehadrons during the formation time τf = 0.5 fm/c. The production cross section
σpA→mX then simply scales with the surface of the nucleus, i.e. with A2/3. The reason
for this is that – as already mentioned above – the incoming proton gets absorbed on
the front side of the nucleus and thereby produces a bunch of particles which do not
interact during the formation time. Due to time dilatation the corresponding formation
lengths in the laboratory frame are larger than the nuclear dimensions and therefore
the reaction products escape the nucleus without any further interaction. Hence, only
the nucleons on the front side of the nucleus contribute to particle production.

The solid symbols represent the calculated cross section with our constituent quark
ansatz (5.35) for the prehadronic cross sections. The beam remnants already interact
during the formation time (τf = 0.5 fm/c) and scatter on the surrounding target nucle-
ons. In each scattering process, new particles are created. As a result, the production
cross section σpA→mX is proportional to A as required by AGK cancellation (5.18).

Differential production cross section

To compare our model with experiment, we have calculated the inclusive invariant
differential cross section Ed3σ/d3p for π± and K± production of 100 GeV protons on
protons and nuclei and compare our results for the ratio

R =
E d3σ
d3p

(pA→ mX)

E d3σ
d3p

(pp→ mX)
(5.36)

with the experimental FNAL data (solid squares) of Ref. [Ba83] in Fig. 5.8. The meson
momenta transverse to the direction of the incoming proton beam was required to lie
in the bin 0.2 GeV≤ pT ≤0.4 GeV. The data has been taken for several momentum
intervals. The size of this (longitudinal) momentum binning is 10 GeV and the center
values of p are given in the figure. As can be seen from Fig. 5.8, the experimental data
roughly scale with A2/3.

The open squares represent the result of a BUU calculation without prehadronic
interactions during the formation time τf = 0.5 fm/c. The error bars on the BUU
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results indicate the statistical error in our simulation. For the same reasons as for the
integrated inclusive production cross section in Fig. 5.7 the ratio (5.36) scales with the
surface of the nucleus, i.e. with A2/3, in agreement with experimental data.

This, however, does not rule out the presence of prehadronic interactions since the
BUU calculation with our prehadron concept (5.35) also yields an approximate scaling
with A2/3. At first sight this seems to contradict the observed scaling of the integrated
production cross section but this is not the case. The reason is that the prehadronic FSI
on the one hand increase the particle yield and thereby the integrated production cross
section σpA→mX . On the other hand they shift strength from high to low energies due
to energy and momentum conservation in each scattering process. An interaction of a
high-energy prehadron can only increase the number of mesons in a lower momentum
bin. In the end one has only very few particles with very high momentum (close to
Ep = 100 GeV) and a lot of low-energy particles which do not fall in the intermediate
momentum bins shown in Fig. 5.8 but contribute to the integrated cross section. We
meet this phenomenon again in Sec. 6.4 when discussing hadron attenuation in deep
inelastic lepton scattering off nuclei.

Obviously, the specific data of Ref. [Ba83] that we have used to study the A depen-
dence of semi-inclusive meson production in pA reactions cannot distinguish between
a scenario with or without prehadronic interactions. The detailed understanding of
this insensitivity in combination with an analysis of the various other pA data will be
a task for the future. The observed insensitivity does not imply that high-energy pA
collisions cannot be exploited to study the effects of formation times and prehadronic
interactions. For example the authors of Ref. [Cas02] investigated antiproton produc-
tion in pA collisions as measured by the E910 collaboration [Chm01] at 12.3 GeV/c and
17.5 GeV/c and found that the antiproton rapidity distributions for heavy targets are
sensitive to the p̄ formation time. Furthermore, it was shown in Ref. [Cas04] that even
at considerably higher energies, i.e. in d+A reactions at RHIC (

√
s = 200 GeV), pre-

hadronic interactions play an important role. Unlike in eA reactions – where the hard
scale is set by the virtuality Q2 of the photon – one cannot trigger directly on hard reac-
tions in pA collisions by varying the momentum of the proton projectile. As discussed
in Sec. 2.2 one can only increase the probability of a hard interaction by increasing the
proton momentum, cf. Fig. 2.7. However, one can study the FSI of particles produced
in soft and hard interactions by looking at different observables. For example, particles
with a large momentum component transverse to the beam direction are predominantly
produced in hard scattering events. High-energy proton-nucleus scattering therefore
provides us with a supplemental tool to investigate hadron formation. A simultaneous
analysis of the available pA and γ∗A data at various energies within our model may
help to distinguish between different hadronization scenarios.
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Figure 5.8: Ratio (5.36) of the inclusive invariant differential cross section for π± and
K± production of 100 GeV protons on protons and nuclei which has been measured
in Ref. [Ba83]. For all plots the transverse momentum of the observed mesons has
to lie in the interval 0.2–0.4 GeV/c. The plots show calculations with (open squares)
and without (open circles) prehadronic interactions (5.35) during the formation time
τf = 0.5 fm/c. The data (solid squares) are taken from Ref. [Ba83].



Chapter 6

Photon-nucleus and
electron-nucleus interactions

In this chapter we discuss the interactions of real and virtual high-energy photons
with complex nuclei. As already pointed out in Ref. [Kop96], these reactions offer a
promising tool to study the physics of hadronization. Since the nucleus stays almost
intact during the reaction, photon- and electron-induced reactions make it possible
to study hadronization and prehadronic FSI in cold nuclear matter. The latter is
essential before one tackles the problem of more complex reactions such as heavy-ion
collisions where the system passes various phases of high densities and temperatures
and where the collision geometry is much less under control. A further advantage of
electron-induced reactions is that one can vary the energy ν and virtuality Q2 of the
photon independently of each other. This allows us to study the phenomenon of color
transparency [Mue82, Bro82], i.e. the reduced interaction cross section of a small sized
color singlet object. In the kinematic region where one is less sensitive to the resolved
interactions of the virtual photon, the nuclear reactions are not contaminated by initial-
state interactions which is an advantage compared to the use of hadronic projectiles.
On the other hand, there is a kinematic regime where the resolved components of
the photon interact coherently with many nucleons inside the nucleus and where the
interactions of (virtual) photons show a striking similarity to hadron-induced reactions
[Bau78, Don78].

Already in the late seventies electroproduction of hadrons from nuclei has been
studied at SLAC [Osb78]. In the early nineties the European Muon Collaboration
(EMC) [Ash91] and E665 [Ada94] have looked into the attenuation of fast hadrons in
the scattering of high-energy muons on nuclear targets at CERN and FNAL.

In the past few years the HERMES collaboration has put a lot of effort in the
study of π±,0, K±, p and p̄ production in deep inelastic scattering of a 27.6 GeV
positron beam off nuclear gas targets. The HERMES experiments on nuclear targets are
mainly concerned with the study of coherence-length and color-transparency effects in
vector meson electroproduction [Ack99, Air03] and hadron attenuation in deep inelastic
scattering off complex nuclei [Air01, Muc02, Gar02, Air03b]. Recently, Jefferson Lab
has started similar experiments with a 5 GeV electron beam [Haf02, WBr02, KWa04]
and there exists a proposal to repeat this investigation after the planned 12 GeV
upgrade [WBr03].

111
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This chapter is structured in the following way: In Sec. 6.1.1 we use Glauber theory
to explain how the phenomenon of nuclear shadowing arises in photon- and electron-
induced reactions off nuclei. In Sec. 6.1.2 we then demonstrate how one can account for
such a quantum mechanical interference effect within our semi-classical BUU transport
model. Coherence-length effects and color transparency in vector meson photo- and
electroproduction are discussed in Sec. 6.2. Here we also compare our calculations with
the HERMES results on exclusive incoherent ρ0 electroproduction. In Sec. 6.3 we then
demonstrate the importance of coupled-channel effects in more inclusive reactions like
semi-inclusive meson photoproduction. The attenuation of pions, kaons, protons and
antiprotons in deep inelastic scattering off complex nuclei is investigated in Sec. 6.4.
We compare how the experimental HERMES and EMC data can distinguish between
different space-time pictures of hadronization and give predictions for the kinematic
region of the Jefferson Lab experiments.

6.1 Shadowing

In Chap. 3 we have discussed the resolved interactions of real and virtual photons. We
have seen that – depending on its energy ν and virtuality Q2 – the photon sometimes
interacts not directly with the target nucleon but via one of its hadronic fluctuations.
Depending on the time that the photon travels as such a fluctuation, one might expect
similarities between photon-nucleus and hadron-nucleus interactions. In Chap. 5 we
demonstrated that hadron-induced nuclear reactions are shadowed because the mean
free path of the hadronic projectile is in general small compared to the size of the
nucleus. As a result, the hadronic projectile primarily interacts with the nucleons on the
front side of the nucleus which then shadow the downstream nucleons. If the distance
lh that the photon travels as a hadronic fluctuation becomes larger than the mean free
path λh of the fluctuation inside the nuclear medium, one will expect shadowing also
for γ∗A reactions.

The distance that the photon travels as a hadronic fluctuation, i.e. the so-called
coherence length lh, can be estimated via Heisenberg’s uncertainty principle. It is
given by the inverse difference between the photon momentum k and the momentum
kh that the hadronic fluctuation would have if it was on its mass shell:

lh = |k − kh|−1

=

∣∣∣∣k −
√
ν2 −m2

h

∣∣∣∣
−1

≈ 2ν

Q2 +m2
h

(6.1)

where the last expression is valid in the limit of high photon energies (ν2 � m2
h, Q

2).
From Eq. (6.1) one sees that the onset energy of shadowing is determined by the

lightest hadronic fluctuation, i.e. the ρ0 which has the largest coherence length and a
strong coupling to the photon. For a real photon with energy ν = 10 GeV the co-
herence length of the ρ0 fluctuation is 7 fm. This is not only larger than the mean
free path of the ρ0 in nuclear matter (λρ ≈ 2.4 fm) but also larger than the radii of
heavy nuclei, cf. Tab. 5.1. It is therefore no surprise that at these energies the nuclear
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Figure 6.1: The nuclear photoabsorption cross section divided by AσγN plotted versus
the photon energy Eγ. The solid line represents the result of Eq. (6.7). for the total
photon nucleus cross section. The dashed line shows the contribution from incoherent
reactions to σtot

γA and is calculated using Eq. (6.27). More than 90% of the difference
between σinc

γA and σtot
γA is due to coherent ρ0 photoproduction. The experimental data

are taken from Refs. [Cal73, Brk73, Mic77, Ara78, Cal79].

photoabsorption cross section is smaller than A times the nucleonic cross section. How-
ever, photoabsorption data [Bi96, Muc99] on C, Al, Cu, Sn and Pb display an early
onset of the shadowing effect around ν = 1 GeV. Substituting mρ = 770 MeV into
Eq. (6.1) one finds that the ρ0 coherence length of a 1 GeV photon is only 0.7 fm. This
led to the interpretation [Bi99] of the low energy onset of shadowing as a signature of
a decreasing ρ0 mass in the nuclear medium since a decrease of the ρ0 mass increases
the coherence length lρ. As we have shown in Refs. [Fal00a, Fal00b, Fal01] and as we
discuss at the end of Sec. 6.1.1, this interpretation is not necessarily correct.

In Sec. 6.1.1 we show how one can quantitatively understand the shadowing of high-
energy photons within Glauber theory by relating the nuclear photoabsorption cross
section via the optical theorem to the nuclear Compton forward-scattering amplitude.
In order αem one gets two contributions to this amplitude whose interference gives rise
to nuclear shadowing.

Obviously, it is not straightforward to account for such a quantum mechanical
interference effect within our semi-classical transport model. A first attempt was made
in Refs. [Eff99a, Eff00]. In Sec. 6.1.2 we show how to implement the shadowing of the
photon’s different vector meson components in our BUU calculations.

When repeating the Glauber derivation of the total hadron-nucleus cross section
(5.15) for photons, it is at first sight not clear why there should be a strong shadowing of
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the total photon-nucleus cross section. Since every elastic γN scattering is suppressed
by a factor αem, the equivalent of the nuclear profile function (5.8) in order αem reads

Γf0
A (
b) = δf0 − 〈f |[1 −

A∑
i=1

Γγ(
b− 
si)]|0〉.

Following the steps of Sec. 5.1.1, one can derive from this profile function the nuclear
Compton forward-scattering amplitude in the independent-particle model:

F (
0) =
ik

2π

∫
d2bΓ00

A (
b)

=
ik

2π

∫
d2bA

∫
dz ρ1(
b, z)

2π

ik
fγ(
0)

= Afγ(
0) (6.2)

where fγ denotes the Compton scattering amplitude on a nucleon. Using Eq. (6.2) in
the optical theorem one gets

σγ∗A = Aσγ∗N (6.3)

and there seems to be no shadowing in photoabsorption up to order αem. However, as
can be seen from Fig. 6.1 the experimental data indicate shadowing corrections to the
total γA cross section (6.3) as large as 20%–40%.

6.1.1 Shadowing in Glauber theory

The shadowing in γ∗A reactions arises from Gribov’s inelastic corrections that we al-
ready encountered as high-energy corrections to the total proton-nucleus cross section
in Sec. 5.3.1. The amplitude (6.2) which leads to the unshadowed cross section corre-
sponds to processes where the photon scatters off a single nucleon inside the nucleus
(see left-hand side of Fig. 6.2). There is, however, a second amplitude in order αem

which is shown on the right-hand side of Fig. 6.2. Here the photon diffractively pro-
duces a hadronic state X on a nucleon at position z1 which propagates through the
nucleus to a nucleon at position z2 and scatters into the outgoing photon.

We can derive the complete nuclear profile function for nuclear Compton scattering
by following the steps that lead to Eq. (H.5) in Appx. H. Neglecting all terms that are
of order α2

em or higher we obtain

Γf0(
b) = δf0 − 〈f |{[1 −
A∑
i=1

Γγ(
b− 
si)] (6.4)

+
∑
X

A∑
i,j

ΓγX(
b− 
si)ΓXγ(
b− 
sj)e
iqX(zi−zj)Θ(zj − zi)

×
A∏

k �=i,j
[1 − ΓX(
b− 
sk)]Θ(zj − zk)Θ(zk − zi)

}|0〉 (6.5)

where the profile functions Γγ and ΓX are the Fourier transforms of the elastic γN
and XN scattering amplitudes and ΓγX = ΓXγ denotes the Fourier transform of the
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Figure 6.2: The two amplitudes of order αem that contribute to the nuclear Compton
amplitude. The left amplitude corresponds to a process where the photon scatters on a
single nucleon. The right amplitude is also of order αem. Here the photon diffractively
produces a hadronic state X at position z1 that propagates at fixed impact parameter
b
(eikonal approximation) through the nucleus. At position z2 the hadronic state scatters
back into the outgoing photon. In case of forward scattering the incoming and outgoing
photon have equal energy and momentum and the nucleus is still in its ground state.
The interference of the two amplitudes of order αem gives rise to shadowing.

diffractive photoproduction amplitude fγX :

ΓγX(
b) =
1

2πikX

∫
d2qT e

i�qT ·�bfγX(
qT ).

As explained in Appx. H, the momentum transfer

qX = k − kX (6.6)

arises from putting the diffractive state X on its mass shell and is just the inverse of the
coherence length lX . In hA collisions the effect of the inelastic corrections is relatively
small because the forward-scattering amplitude XN → XN is of the same magnitude
as the scattering NN → NN . Obviously, this is no longer the case for γA collisions
since Γγ is smaller than ΓX by a factor of αem.

Like in Sec. 5.1.1 we can make use of the independent-particle model and the optical
theorem to calculate the photoabsorption cross section from the nuclear profile function
(6.4):

σγ∗A = Aσγ∗N +
∑
X

8π2

kkX
Re

{
fγX(
0)fXγ(
0)

∫
d2b

∫ +∞

−∞
dz1

∫ +∞

z1

dz2 ρ(
b, z1)ρ(
b, z2)

×eiqX(z1−z2) exp

[
−1

2
σXN (1 − iαX)

∫ z2

z1

dz′ ρ(
b, z′)
]}

(6.7)

where αX denotes the ratio of real and imaginary part of the XN forward-scattering
amplitude.

According to Eqs. (6.1) and (6.6), a small coherence length lX corresponds to a
large momentum transfer qX . To contribute to the forward-scattering amplitude, the
nucleus has to remain in its ground state and large momentum transfers are suppressed
by the elastic form factor of the nucleus. This can also be seen in Eq. (6.7) where a large
value of qX leads to a rapidly oscillating factor in the integral and, hence, a vanishing
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contribution to the shadowing correction. Therefore, only the intermediate states X
with a large coherence length contribute to shadowing. For real photons these are the
low lying vector mesons ρ0, ω, φ and J/ψ. As discussed for example in Ref. [Pil00],
shadowing of the qq̄ continuum, i.e. the GVMD part of the photon, becomes important
for virtual photons and gives rise to the EMC effect [EMC83, Arn94] at small Bjorken
x.

From Eq. (6.7) we see that for very large qX the second term on the right-hand side
contributes most if z1 ≈ z2, that is when the first and the last nucleon in the scattering
process are approximately at the same position. Replacing the product of one-particle
densities by the two-particle density

ρ(z1,
b)ρ(z2,
b) → ρ2(
b, z1, z2) = ρ(z1,
b)ρ(z2,
b) + ∆(
b, |z1 − z2|), (6.8)

as proposed in Ref. [Bof96b], avoids such unphysical contributions. Since for z1 ≈ z2
the last exponential in (6.7) is approximately one, consideration of correlations between
the first and the last nucleon should be sufficient. For the two-body correlation function
∆ we use the same Bessel function parametrization as in Ref. [Bof96b]:

∆(
b, |z1 − z2|) = −j0(qc|z1 − z2|)ρ(z1,
b)ρ(z2,
b)
with qc = 780 MeV.

For real photons and in the kinematic regime of the HERMES and Jefferson Lab ex-
periments we can restrict the sum in (6.7) to the vector mesons V = ρ0, ω, φ, J/ψ. The
amplitudes fγV are related to the vector meson-nucleon forward-scattering amplitudes
via VMD:

fγV (
0)fV γ(
0) =
e2

g2
V

F 2
V (Q2)f 2

V (
0) (6.9)

where we have used the VMD coupling constants from Tab. 3.1 and the form factor
(4.35) for virtual photons. The V N forward-scattering amplitudes can be extracted
from the total V N cross sections using the optical theorem

fV (
0) =
ikV
4π

σV N(1 − iαV ). (6.10)

Except for the J/ψ we use the parameterizations of Ref. [Bau78] for the calculation of
the shadowing effect:

σρ0N ≈ σωN = 20.8

(
1 +

0.766√
kρ,ω/GeV

)
mb (6.11)

σφ ≈ 12 mb

and

αρ0 = αω = − 0.766√
kρ,ω/GeV + 0.766

(6.12)

αφ = 0.

At high energies these total cross sections agree within 10% with the parametrizations
(3.5) and, as we have shown in Ref. [Fal00b], the use of (6.11) together with the real
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part (6.12) ensures a perfect description of the shadowing effect in photoabsorption
down to the onset energy of about 1 GeV. For the total J/ψ cross section we use the
same parametrization as in Eq. (3.5) and neglect the real part of the forward-scattering
amplitude. The solid line in Fig. 6.1 shows the resulting ratio σγA/AσγN as a function
of the photon energy Eγ . As one can see, our approach yields a good description of
shadowing in photoabsorption.

As we explain in Ref. [Fal00b], it is the negative real part of the production am-
plitude fγρ which leads to the early onset of the shadowing effect in nuclear photoab-
sorption. At high energies the scattering amplitudes are dominated by their imaginary
part [WW74]. However, experiments [Alv70, Alv71, Big71] show that for energies of
about 4 and 6 GeV the real part of the ρN forward-scattering amplitude is negative
and already of the same order of magnitude as its imaginary part. Dispersion theoret-
ical calculations [Ele97, Kon98] indicate that this is also the case in the onset region of
shadowing. A negative real part indeed leads to a positive mass shift of the ρ in medium
as pointed out by Eletsky and Ioffe [Ele97]. As discussed in Ref. [Fal00b], this positive
mass shift diminishes the shadowing effect. This is understandable since a larger ρ
mass corresponds to a smaller coherence length. The reduction arises from the αρ in
the last exponential of Eq. (6.7) which accounts for mass changes of the propagating
ρ0 through multiple scattering in the medium. However, αρ also enters the prefactor
fγρfργ via (6.9) and (6.10) and thereby increases shadowing. In total, this leads to an
enhancement of the shadowing effect in combination with an increased ρ meson mass
in nuclear medium at large momenta, which is in agreement with dispersion theoretical
analyses.

Finally, we point out that some of the assumptions that are made in this simple
model of shadowing, like the validity of the eikonal approximation and the neglect of
the finite width of the ρ0 meson become questionable at low energies. In Ref. [Fal01] we
therefore used a multiple scattering approach [Gri70, Ber72, We76] that we consider as
more reliable in the shadowing onset region. Within this approach we account for the
vacuum self energy of the ρ0 and include scattering processes in non-forward direction.
We find that the latter allows for a new contribution to nuclear shadowing in photoab-
sorption at low energies, namely the production of π0 as intermediate hadronic states.
Since neutral pions cannot be produced in the forward direction without excitation of
the nucleus they do not contribute in calculations based on the eikonal approximation.

6.1.2 Shadowing in BUU

From the last section it should have become clear that shadowing is a quantum mechan-
ical interference effect which is not reproduced by our semi-classical BUU transport
model. If we want to describe high-energy photo- and electroproduction we therefore
have to build shadowing explicitly into our model.

In Ref. [Eff99a] shadowing was accounted for by multiplying the statistical weight
σγN/A of each perturbative particle created in a γN interaction at position 
r inside
the nucleus with a position- and energy-dependent shadowing factor:

sold(
r) = 1 − Sold(
r)

σγN



118 6. Photon-nucleus and electron-nucleus interactions

where Sold(
r) was directly read off the nuclear photoabsorption cross section (6.7):

Sold(
b, z) =
∑
V

8π2

kkV
Re

{
fγV (
0)fV γ(
0)

∫ z

−∞
dz1 ρ2(
b, z1, z)

×eiqV (z1−z) exp

[
−1

2
σV N(1 − iαV )

∫ z

z1

dz′ ρ(
b, z′)
]}

. (6.13)

This simple recipe cannot be correct for two reasons: First, it has the wrong normal-
ization, i.e. it equates the γA reaction cross section in the BUU simulation with the
total nuclear photoabsorption cross section (6.7). However, the total nuclear photoab-
sorption also includes coherent reactions1 such as coherent vector meson production
γA → V A. These events are missing in the BUU simulation and therefore their cross
sections must be added at the end. The second phenomenon which Eq. (6.13) can ob-
viously not account for is that different reactions are effected differently by shadowing.
One expects that reactions which are mainly triggered by the ρ0 component of the
photon, e.g. diffractive ρ0 production γN → ρ0N , are strongly reduced while direct in-
teractions are not influenced at all by the nuclear environment. In Refs. [Fal02, Fal03b]
we developed a new method which is capable to account for these effects.

We express the physical photon state |γ〉 in terms of the vector meson states |V 〉
and a state |γ0〉 which consists of the pointlike photon and the GVMD part. This
makes sense if one assumes that the GVMD part does not get shadowed because of its
smaller coherence length or as in our case is unimportant for kinematic reasons:

|γ〉 =

⎛
⎝1 −

∑
V=ρ,ω,φ,J/Ψ

e2

2g2
V

F 2
V

⎞
⎠ |γ0〉 +

∑
V=ρ,ω,φ,J/Ψ

e

gV
FV |V 〉. (6.14)

The formfactor is taken from Eq. (4.35) and, as discussed in Sec. 3.2, also accounts for
contributions of longitudinal photons.

For a photon with momentum k
ez the wave function of the component V can be
written as

ψ
(0)
V (
b, z) = χ(
b)eikz. (6.15)

On the way through the nucleus the vector meson components get modified. Consider
an ensemble of A nucleons at positions {
ri} = {(
si, zi)} which are labeled in such a
way that z1 < z2 < ... < zA. According to the Glauber model discussed in Sec. 5.1.1
the wave function ψV behind the first nucleon looks like

ψ
(1)
V (
b, z) = ψ

(0)
V (
b, z) − ΓV (
b− 
s1)ψ

(0)
V (
b, z1)e

ikV (z−z1) (6.16)

= χ(
b)
(
eikz − ΓV (
b− 
s1)e

iqV z1eikV z
)

if one neglects off-diagonal scattering from one vector meson component into another
(diagonal approximation). The phase factor in the second term arises from putting the
vector meson component on its mass shell, i.e. kV =

√
ν2 −m2

V and qV = k − kV is
the corresponding momentum transfer. According to Eq. (5.3) the profile function ΓV

1By coherent we mean that the nucleus as a whole participates in the production process, i.e. it
remains in its ground state and absorbs the total momentum transfer.
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is related to the elastic vector meson nucleon scattering amplitude fV in the following
way:

ΓV (
b) =
1

2πikV

∫
d2qT e

i�qT ·�bfV (
kt). (6.17)

After passing the second nucleon, the wave function takes on the form

ψ
(2)
V (
b, z) = χ(
b)

(
eikz − ΓV (
b− 
s2)e

iqV z2eikV z − ΓV (
b− 
s1)[1 − ΓV (
b− 
s2)]e
iqV z1eikV z

)
.

(6.18)
At position z the whole ensemble of A nucleons has led to the modification

ψ
(A)
V (
b, z) = χ(
b)

(
eikz −

A∑
j=1

ΓV (
b− 
sj)e
iqV zj

×
A∏
k �=j

[
1 − ΓV (
b− 
sk)Θ(zk − zj)

]
Θ(z − zk)e

ikV z

)

=

{
1 −

A∑
j=1

ΓV (
b− 
sj)e
iqV (zj−z)

×
A∏
k �=j

[
1 − ΓV (
b− 
sk)Θ(zk − zj)

]
Θ(z − zk)

}
ψ

(0)
V (
b, z)

=
{

1 − Γ
(A)
V (
b, z; {
ri})

}
ψ

(0)
V (
b, z). (6.19)

Hence, the physical photon state changes on its way through the nucleus to position

r = (
b, z) according to

|γ(
r)〉 =

⎛
⎝1 −

∑
V=ρ,ω,φ,J/Ψ

e2

2g2
V

F 2
V

⎞
⎠ |γ0〉 +

∑
V=ρ,ω,φ,J/Ψ

e

gV
FV

(
1 − Γ

(A)
V (
r)

)
|V 〉 (6.20)

where the nuclear profile function from (6.19) must be averaged over the positions of
the nucleons in the nucleus

Γ
(A)
V (
b, z) = 〈0|Γ(A)

V (
b, z; {
ri})|0〉

=

z∫
−∞

dziρ(
b, zi)
σV N

2
(1 − iαV )eiqV (zi−z)

× exp

⎡
⎣−1

2
σV N(1 − iαV )

z∫
zi

dzkρ(
b, zk)

⎤
⎦ . (6.21)

To get to the second line of Eq. (6.21) we have followed the procedure of Sec. 5.1.1,
i.e. making use of the independent-particle model and the large A limit and using the
optical theorem to express the elastic forward scattering amplitude in terms of the total
V N cross section σV :

fV (
0) =
ikV
4π

σV (1 − iαV ). (6.22)
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As before the nucleon number density is denoted by ρ(
r) and normalized to A. If we
want to account for two-body correlations (6.8) such as in photoabsorption we simply
have to make the replacement

ρ(
b, zi) → ρ(
b, zi)(1 − j0(qc|zi − z|)) (6.23)

in Eq. (6.21).
Neglecting any influence of the FSI, the reaction amplitude for the process γN → f

on a nucleon at position 
r inside a nucleus changes compared to the vacuum due to
these ’initial-state interactions’ of the photon:

〈f |T̂ |γ〉 → 〈f |T̂ |γ(
r)〉. (6.24)

By comparing Eqs. (6.14) and (6.20), one sees that to account for shadowing in inco-
herent photoproduction one only has to multiply the amplitude of each vector meson

states |V 〉 by the corresponding factor
(
1 − Γ

(A)
V (
r)

)
. In the numerical realization we

simply modify the corresponding VMD coupling constants in the PYTHIA generator
depending on the position of the γN interaction inside the nucleus:

e2

g2
V

→ e2

g2
V

∣∣∣1 − Γ
(A)
V (
r)

∣∣∣2 . (6.25)

The cross section for the photon to react with nucleon j at position 
r inside the
nucleus can be deduced via (6.20) and (6.24) from the optical theorem:

σγN (
r) =

(
1 −

∑
V=ρ,ω,φ

e2

2g2
V

F 2
V

)2

σγ0N +
∑

V=ρ,ω,φ

(
e

gV

)2

F 2
V

∣∣∣1 − Γ
(A)
V (
r)

∣∣∣2 σV N . (6.26)

Like for the photon in vacuum, each term gives the relative weight for the corresponding
photon component to interact with the nucleon. When integrated over the whole
nucleus one gets from Eq. (6.26) the total incoherent photonuclear cross section

σinc
γA =

∫
d3r ρ(
r)σγN(
r) (6.27)

which is shown in Fig. 6.1 by the dashed line together with the total nuclear pho-
toabsorption cross section (6.7). More than 90% of the difference between those two
cross sections stems from coherent ρ0 photoproduction, whose contribution has been
calculated within Glauber theory in Refs. [Hüf96, Fal00a]:

σγA→ρ0A = σγN→ρ0N

⎧⎨
⎩1

4

(σρ0N)2

σel
ρ0N

∫
d2b

∣∣∣∣∣∣
+∞∫

−∞

dz ρ(
b, z)eiqV ze−
1
2
σρ0N

∫∞
z dz′ρ(�b,z′)

∣∣∣∣∣∣
2⎫⎬
⎭

≈ 1

4

(
e

gρ

)2

(σρ0N)2

∫
d2b

∣∣∣∣∣∣
+∞∫

−∞

dz ρ(
b, z)eiqV ze−
1
2
σρ0N

∫∞
z
dz′ρ(�b,z′)

∣∣∣∣∣∣
2

. (6.28)

In the second step we have used the VMD relation (3.4) between the diffractive ρ0

photoproduction amplitude and the elastic ρ0N scattering amplitude.
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Figure 6.3: The number density of nucleons that react with the φ component (left
side) and ρ0 component (right side) of a real 20 GeV photon for 208Pb calculated using
Eq. (6.29). In both cases the nucleons on the front side of the nucleus shadow the
downstream nucleons. This effect is stronger for the ρ0 component because of its larger
nucleonic cross section.

Eq. (6.27) provides us with the new shadowing factor for the perturbative test
particles:

snew(
r) =
σγN (
r)

σγN
.

Hence, in addition to the replacement (6.25) which determines the composition of the
physical photon at position 
r inside the nucleus each perturbative test particle now
gets the statistical weight σγN (
r)/A.

In Fig. 6.3 we show how strongly the ρ0 and the φ components of a real 20 GeV
photon are separately shadowed in 208Pb. We plot the number density of the nucleons
reacting with the V components of the photon

aVeff(
r) = ρ(
r)
1

σγN

(
e

gV

)2 ∣∣∣1 − Γ
(A)
V (
r)

∣∣∣2 σV N (6.29)

as a function of 
r. One clearly sees that due to its smaller nucleonic cross section the
φ component is less shadowed than the ρ0 component at the backside of the nucleus.
As a consequence strangeness production (e.g. K photoproduction), where the primary
reaction is preferably triggered by the φ component of the photon, is less shadowed
than, e.g. π photoproduction. This dependence of the strength of shadowing on the
reaction type is new compared to the treatment of shadowing in Ref. [Eff00] and can
also be seen directly from the second amplitude in Fig. 6.4 because of the occurrence
of the scattering process V N → XN at nucleon j.

Finally, we compare our method of describing shadowing of incoherent electropro-
duction with conventional Glauber results. We therefore calculate the incoherent vector
meson electroproduction cross section off a nucleus and assume purely absorptive FSI



122 6. Photon-nucleus and electron-nucleus interactions

Figure 6.4: The two amplitudes of order αem that contribute to incoherent meson
photoproduction in simple Glauber theory. The left amplitude alone would lead to
an unshadowed cross section. Its interference with the right amplitude gives rise to
shadowing.

for the moment. After averaging over all positions 
r = (
b, z) we get:

σγA→V A∗ = σγN→V N

∫
d2b

∞∫
−∞

dz ρ(
b, z)

∣∣∣∣1 −
z∫

−∞

dzi ρ(
b, zi)
σV N

2
(1 − iαV )

×eiqV (zi−z) exp

⎡
⎣−1

2
σV N(1 − iαV )

z∫
zi

dzk ρ(
b, zk)

⎤
⎦ ∣∣∣∣

2

× exp

⎡
⎣−σinel

V N

∞∫
z

dz′ ρ(
b, z′)

⎤
⎦ . (6.30)

In (6.30) we again neglect off-diagonal scattering, i.e. V production is triggered by the
V component of the photon only. The last factor in (6.30) includes the inelastic V N
cross section σinel

V N and accounts for the FSI.

The production process described by Eq. (6.30) is illustrated in Fig. 6.4: The

incoherent vector meson production takes place on a nucleon j at position (
b, z). The
production is triggered either directly by the photon or via an intermediate vector
meson which was earlier produced on a nucleon at position (
b, zi) without excitation of
the nucleus. The interactions of this vector meson on its way from zi to position z are
of optical potential type and leave the nucleus in its ground state. This propagation is
described by the second exponential in (6.30). The interference between the direct and
the indirect process leads to shadowing. The nucleus gets excited in the incoherent
reaction at position z. The possibility that the vector meson is lost on its way from
position z out of the nucleus is taken care of by the last exponential.

Expression (6.30) formally differs only slightly from the approximate result for the
incoherent vector meson production cross section which is given without derivation
in Ref. [Yen71]. The latter can be obtained by making the following replacements in
(6.30):

eiqV (zi−z) → eiqV zi, σinel
V N → σV N . (6.31)

The last replacement simply means that one neglects the possibility of elastic V N scat-
tering whereas the occurrence of the different phase factor is unclear. The authors of
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Ref. [Hüf96] have given a seemingly different result for incoherent V electroproduction:

σγA→V A∗ = σγN→V N

∫
d2b

{ +∞∫
−∞

dz ρ(
b, z)e−σ
inel
V NTz(�b)

+
1

2

σV N
σel
V N

(σinel
V N − σel

V N)

+∞∫
−∞

dz1 ρ(
b, z1)

+∞∫
z1

dz2 ρ(
b, z2)

× cos [qV (z1 − z2)] e
− 1

2
(σinel

V N−σel
V N )Tz2 (�b)− 1

2
σV NTz1 (�b)

−1

4

(σV N)2

σel
V N

∣∣∣∣∣∣
+∞∫

−∞

dz ρ(
b, z)eiqV ze−
1
2
σV NTz(�b)

∣∣∣∣∣∣
2 }

(6.32)

with Tz(
b) =
∫∞
z
ρ(
b, z′)dz′ and T (
b) = Tz=−∞(
b). In Ref. [Fal00a] we present a de-

tailed derivation of (6.32) including a finite real part of the V N scattering amplitude.
Expression (6.32) can be interpreted as follows: The last term represents the coherent
V photoproduction cross section (6.28) which is subtracted from the inclusive V pho-
toproduction cross section to yield the incoherent part. In Appx. I we show that the
physically more transparent expression (6.30) is mathematically identical to (6.32).

6.2 Incoherent ρ0 production off nuclei

Exclusive vector meson photo- and electroproduction on nuclei is an ideal tool to study
effects of the coherence length, formation time and color transparency. Exclusive ρ0

electroproduction on a 14N target has been investigated by the HERMES collabora-
tion [Ack99, Air03] at photon energies between 10 GeV and 20 GeV and virtualities
Q2 � 5 GeV2.

In this section we study exclusive incoherent ρ0 photoproduction off 208Pb for real 7
GeV photons as well as ρ0 electroproduction off 14N and 84Kr in the energy regime of the
HERMES experiment. In this kinematic regime the coherence length of the photon’s ρ0

component is large and quantum mechanical interference effects play an important role.
In the last section we presented a method to account for this shadowing effect within
our semi-classical BUU transport model by distinguishing between the ’initial-state
interactions’ of the photon that give rise to shadowing and the final-state interactions
(FSI) of the produced particles. The coupled-channel treatment of the FSI in the
transport model allows for a broader spectrum of FSI than the generally used Glauber
theory. In addition, we can account for Fermi motion and Pauli blocking during the
reaction and take the finite lifetime of unstable reaction products into account.

In the case of diffractive vector meson electroproduction (γ∗N → V N) the virtual
photon initially produces a colorless qq̄ pair whose size is expected to decrease with
increasing photon virtuality Q2 [Kop01]. As long as the qq̄ pair is very small, i.e. in the
early stage of its evolution into the physical vector meson, it mainly reacts via its color
dipole moment. This leads to a cross section that is quadratic in the qq̄ pair’s size.
At large enough energies the qq̄ pair is frozen in this small sized configuration over a
distance that, because of time dilatation, can exceed the diameter of a nucleus. This
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effect is expected to lead to a large nuclear transparency for vector meson production
at large photon energy ν and virtuality Q2 (color transparency). For a detailed review
of color transparency see e.g. [Jai96] and references therein.

It is not clear whether the energy and the virtuality of the photon in the HERMES
experiment is large enough to see an onset of color transparency. As we show in
Sec. 6.2.2, we do not find evidence for a finite formation time of the produced vector
meson. The 14N data for the transparency ratio as function of the coherence length
is compatible with the assumption that the diffractively produced ρ0 starts to interact
with its full hadronic cross section right after its production.

Kopeliovich et al. [Kop01] point out that this might be an accidental consequence
of the specific correlation between the Q2 of the photon and the coherence length of
the ρ0 in the HERMES data. In their work a lightcone QCD formalism was used to
incorporate formation and coherence-length effects in coherent and incoherent vector
meson electroproduction. The evolution of the qq̄ pair’s size – due to the transverse
motion of the quarks – and the related change of the interaction cross section during
the propagation through the nuclear medium was described quantum mechanically
within the lightcone Green-function technique. The absorption of the qq̄ dipole was
accounted for by an imaginary part of the potential in the Schrödinger equation. Like in
conventional Glauber theory, complicated coupled-channel effect had to be neglected.
In addition, the effect of gluon shadowing2 was studied, but found to be negligible in
the case of incoherent ρ0 production at HERMES energies.

In Ref. [Kop01] the decrease of the transparency ratio due to the finite ρ0 lifetime
was discussed as well. This effect is automatically included within our transport model.
In Sec. 6.2.1 we show within our coupled-channel calculation that the effects of side
feeding in the FSI are unimportant because of the kinematic cuts of the HERMES
experiment. Therefore, Glauber theory seems to be appropriate for these reactions.
However, we find that for heavy nuclei the kinematic cuts lead to an additional reduc-
tion of the transparency ratio due to elastic FSI which scatter the produced particle
out of the acceptance window. For heavy nuclei one therefore has to use a larger cross
section than σinel

ρN in the last exponential of Eq. (6.30) to account for the additional
attenuation of ρ0 mesons due to elastic scattering and in-medium decay.

6.2.1 Color transparency vs. coupled channels

The calculations for meson production on nuclei are in general done within Glauber
theory (cf. Eq. (6.32)). As already mentioned above, the FSI in Glauber theory are
usually purely absorptive. This means that for the reaction γA → ρ0A∗ the primary
reaction has to be γN → ρ0N . If one treats the FSI via an absorptive optical potential
one gets an exponential damping ∼ exp[−σinel

ρN

∫∞
zj
dzρ(
b, z)] of the nuclear production

cross section similar to Eq. (6.30).

Any change in the reaction probability of a hadron h during its formation time

2In Glauber theory gluon shadowing arises from off-diagonal scattering into qq̄g intermediate states.
However, these contributions to the Glauber multiple scattering series are suppressed by a large
momentum transfer, i.e. small coherence length, similar to the GVMD states. Their contribution only
becomes important for very small values of Bjorken x.
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Figure 6.5: Coupled-channel effects that can mimic color transparency in ρ0 photo-
production by increasing the nuclear transparency ratio (6.33). Left: Regeneration. A
primarily produced ρ0 gets absorbed on a nucleon in the FSI. Thereby a pion is created
which in an interaction with another nucleon produces a ρ0 again. Middle: Inclusive
ρ0 production. There is a contribution to exclusive ρ0 production on a nucleus from
inclusive primary reactions γ∗N → ρ0X where only the ρ0 escapes the nucleus. Right:
Side feeding. A ρ0 is produced in the FSI of some particle that was created in the
primary γ∗N reaction.

affects the so-called nuclear transparency

TA =
σγ∗A→hX

Aσγ∗N→hX
(6.33)

if the formation length, i.e. the length that the hadron travels during its formation
time, exceeds the average internucleon distance (≈ 1.7 fm) inside the nucleus.

Within Glauber theory a reduction of the ρN cross section due to color trans-
parency leads to less attenuation in the FSI and, hence, to a larger transparency ratio
(6.33). However, there exist coupled-channel effects which also enhance the nuclear
transparency ratio and therefore mimic CT. They are shown in Fig. 6.5. The first
effect is ρ0 regeneration during the FSI. A ρ0 which is absorbed in the FSI can be
recreated later on in the FSI of another particle. In addition, there is the possibility of
side feeding where there is no ρ0 produced at all in the primary γ∗N interaction and the
ρ0 emerges from the FSI of the primary reaction products. It turns out that the most
important effect which influences the nuclear transparency ratio (6.33) is inclusive ρ0

production in the primary γ∗N reaction where everything except the ρ0 is absorbed in
the FSI.

In Fig. 6.6 we show the results of our model for the mass differential cross section
of incoherent, exclusive ρ0 photoproduction on 208Pb for Eγ = 7 GeV. In this case
’exclusive’ means that the final state consists of a π+π− pair and 208 bound nucleons.
The solid line represents a calculation with the primary reaction restricted to γN →
ρ0N . It already includes the effects of shadowing, Fermi motion, Pauli blocking and
the nucleon potential, but no FSI. The dotted line shows the effect of the FSI without
a formation time of the ρ0 in γN → ρ0N . The Glauber model yields quantitatively
the same effect of the FSI. This means that in this case (only γN → ρ0N as primary
reaction) FSI processes like ρ0N → πN → ρ0N , where the primary ρ0 gets absorbed
first and is fed into the outgoing channel by a later FSI, are negligible.

If one assumes a formation time of τf = 0.8 fm/c for the ρ0 and assumes no pre-
hadronic interactions, one gets the result indicated by the dash-dotted line. Due to
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Figure 6.6: Mass differential cross section for exclusive ρ0 production on 208Pb at
Eγ = 7 GeV. The meaning of the different curves is explained in detail in the text. All
the curves, except for the one with the explicitly given formation time τf = 0.8 fm/c
have been calculated with τf = 0. The fluctuations in the dashed and dash-dot-dotted
curves are statistical only.

the finite formation time there is considerably less absorption and the nuclear produc-
tion cross section increases. The neglect of the prehadronic interactions during the
formation time τf can be interpreted as CT.

However, one will get a similar result with τf = 0 if one allows for other primary
reactions besides γN → ρ0N and uses a coupled channel model. This can be seen by
looking at the dashed line in Fig. 6.6. We find that about 60% of the additional ρ0 stem
from inelastic ρ0 production in the primary reaction, e.g. γN → ρ0πN and γN → ρ0∆
where the π gets absorbed during the FSI. Since these coupled-channel effects are
usually neglected in Glauber theory one would be led to the wrong conclusion that the
observed spectra is again due to CT effects.

We now apply an exclusivity measure like the one used in the HERMES experiment
[Ack99]

−2 GeV < ∆E =
p2
X −m2

N

2mN
< 0.6 GeV, (6.34)

where mN is the nucleon mass and

pX = pN + pγ − pρ (6.35)

is the four-momentum of the undetected final state (cf. Fig. 6.7). Here pγ and pρ denote
the four-momenta of the incoming photon and the detected π+π− pair and pN is the
four-momentum of the struck nucleon which, for the calculation of pX , is assumed to
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Figure 6.7: Inclusive ρ0 photoproduction off a nucleon.

be at rest. Using (6.34) leads to a decrease of the cross section (dash-dot-dotted line in
Fig. 6.6) because some of the inelastic primary events are excluded. If the exclusivity
measure was good enough to single out only the elastic γN → ρ0N reactions from
the primary events, the dash-dot-dotted curve would coincide with the dotted line and
Glauber theory would be applicable. Since this is not the case, one still extracts too
large a formation time when using Glauber theory.

One therefore needs a further constraint in addition to the exclusivity measure
(6.34) which becomes apparent by looking at the differential cross section dσ/dt in
Fig. 6.8; the meaning of the lines is as before. For |t| > 0.1 GeV2, the full calculation
with exclusivity measure (dash-dot-dotted line) gives the same result as the one with
the primary reaction γN → ρ0N and FSI (dotted line). In this kinematic regime
Glauber theory can therefore be used. For |t| < 0.1 GeV2, however, the exclusivity
measure (6.34) cannot distinguish between elastic ρ0 photoproduction (γN → ρ0N)
and other primary reactions, e.g. inelastic ρ0 photoproduction (γN → ρ0X, X �= N).
At low values of |t| there exist many states X with invariant masses which are not
excluded by the exclusivity measure (6.34). In addition, we find that about 25% of the
finally accepted ρ0 in this t region are not produced in the primary reaction but stem
from side feeding in the FSI. In the HERMES experiment one makes a lower |t| cut to
get rid of the coherent ρ0 photoproduction contribution. The Glauber expression for
the differential coherent ρ0 photoproduction cross section is [Yen71]

dσcoh
γA→ρ0A

dt
=

dσγN→ρ0N

dt

∣∣∣∣
t=0

×
∣∣∣∣
∫
d2b dz ρ(
b, z)ei(�qT ·�b+qV z) exp

[
−1

2
σρ0N(1 − iαρ)Tz(
b)

]∣∣∣∣
2

where the four momentum squared is given by t = −(
q 2
T +q2

V ). For large enough values
of t the strongly oscillating exponential under the integral leads to a vanishing of the
coherent photoproduction cross section. Note that this just reflects the suppression of
large momentum transfers by the elastic formfactor of the nucleus because the nucleus
has to remain in its ground state. In the case of lead and Eγ = 7 GeV the coherent
part turns out to be negligible for |t| � 0.05 GeV2. However, to get rid of the coupled-
channel effects one has to increase this threshold to approximately |t| = 0.1 GeV2.
Glauber theory can thus be trusted only under certain kinematic constraints.

In this section we have shown that it is necessary to have a reliable model of the FSI
to extract the formation time from the production cross sections of high-energy photo-
and electroproduction off nuclei. Whereas Glauber models allow for a straightforward
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Figure 6.8: Calculated dσ
dt

for exclusive ρ0 production on 208Pb at Eγ = 7 GeV. The
meaning of the different curves is the same as in Fig. 6.6. The structures in the curves
at large |t| are statistical only.

implementation of the nuclear shadowing effect they usually have the disadvantage of
a purely absorptive treatment of the FSI. In Sec. 6.3 we show that in particular the
production of mesons with long mean free path will be affected by the coupled-channel
effects in the FSI.

6.2.2 Color transparency vs. coherence-length effects

In this section we want to compare the results of our model with recent ρ0 electropro-
duction data of the HERMES collaboration. Before we turn to nuclear targets we first
verify that the input of our model is reasonable and look at exclusive ρ0 production off
hydrogen. We use the same kinematic cuts as in the HERMES experiment [Air00],
i.e. the final state has to consist of two oppositely charged pions3 with invariant mass
between 0.6 GeV and 1 GeV. The four-momentum transfer |t− tmax| between the vir-
tual photon and the π+π− pair has to be smaller than 0.4 GeV2 and we apply the
exclusivity measure

∆E =
p2
X −m2

N

2mN
< 0.4 GeV.

In Fig. 6.9 we compare our calculation of the exclusive ρ0 production cross section
off hydrogen with experimental data [Air00, Ada95, Cle69]. In the whole Q2 region
covered by the HERMES experiment we find very good agreement for a broad range of

3Nucleons with momenta below 1 GeV have been neglected.
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Figure 6.9: Calculated virtual photoproduction cross section for ρ0 production versus
invariant mass W at average Q2 values of 0.83, 1.3, 2.3 and 4.0 GeV2. The data have
been taken from the HERMES collaboration (filled circles) and E665 (open circles).

the invariant mass W of the photon-nucleon system. Also the slope of the differential
production cross section is reproduced very well by the PYTHIA model as can be seen
from the solid line in Fig. 6.10 where we show our calculation of dσ/dt(γ∗p → ρ0p)
together with the HERMES data.

For our calculations on exclusive ρ0 electroproduction off nuclei we again use the
kinematic cuts of the HERMES collaboration [Ack99]. This means that we restrict our
exclusivity measure to the region

−2 GeV < ∆E < 0.6 GeV,

and introduce a lower boundary for the four-momentum transfer |t− tmax| >0.09 GeV2

as imposed by the HERMES collaboration to get rid of coherently produced ρ0. From
the dashed line in Fig. 6.10 one sees that the differential ρ0 electroproduction cross
section off 14N is again in excellent agreement with the HERMES data. Throughout
our calculations the effect of the nucleon potential turns out to be negligible. This
is reasonable since the involved energies are much larger than the typical binding
energies which are in the order of a few MeV. A combined effect of Fermi motion
and Pauli blocking on the incoherent differential production cross section is visible
at |t − tmax| < 0.1 GeV2. At |t − tmax| ≈ 0.05 GeV2 the differential cross section
is about 25% smaller than the calculation without Fermi motion and Pauli blocking
(dotted curve). The reason for this reduction is that in the case that the bound nucleon
moves towards the incoming photon, the outgoing nucleon might be Pauli blocked for
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Figure 6.10: The exclusive incoherent differential ρ0 production cross section for 1H
(solid line) and 14N (dashed line) in comparison with experimental data from the
HERMES collaboration [Ack99]. The calculation has been performed for ν = 13 GeV
and Q2 = 1.7 GeV2. The dotted curve represents a calculation for 14N without Pauli
blocking and Fermi motion. For details on the exclusivity measure see text.

small momentum transfers. Note that this Pauli blocking just means that the whole
nucleus absorbs the transferred momentum, i.e. this event contributes to the coherent
production cross section which we do not consider here.

In Fig. 6.11 we show the transparency ratio TA for exclusive ρ0 production as a
function of the coherence length lρ = q−1

ρ . The solid line is the result that one gets if
one uses Eq. (6.30) and accounts for two-body correlations by making the substitution
(6.23) to avoid unphysical contributions from processes where zi ≈ z which would con-
tribute for small values of the coherence length lρ. In Ref. [Fal00a, Fal00b] we showed
that this replacement yields a good description of shadowing in photoabsorption. In
Eq. (6.30) we use for the total ρ0N cross section σρ0N = 25 mb and for the elastic part
σel
ρ0N = 3 mb. These two values correspond to the ρN cross sections used within the

transport model for the involved ρ0 momenta.

The result of the transport model using our prehadron concept (5.35) together
with τf = 0.5 fm/c is represented by the open squares. For each data point we have
made a separate calculation with the corresponding ν and Q2. In the case of 14N the
Glauber and the transport calculation are in perfect agreement with each other and
the experimental data. This demonstrates that, as we have discussed in the preceding
section, Glauber theory can be used for the FSI if the right kinematic constraints
are applied. For comparison we also show the result of Hüfner et al. [Hüf96] (dashed
curve) as well as the result that one gets when using the approximate expression by
Yennie [Yen71], i.e. the replacements (6.31) including two-body correlations (dotted
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Figure 6.11: Nuclear transparency ratio TA for ρ0 electroproduction plotted versus the
coherence length of the ρ0 component of the photon. The data is taken from [Air03]
(filled circles), [Ada95] (open circles) and [Cle69] (open diamonds). The solid line rep-
resents the Glauber result when using (6.30) including nucleon-nucleon correlations.
The dashed curve represents the Glauber result using (6.32) with the density distribu-
tion of Ref. [Hüf96]. For each transparency ratio calculated within our transport model
(open squares), we use the average value of Q2 and ν of the corresponding data point.

curve). The somewhat larger transparency ratio of Hüfner et al. is caused by the
density distribution that the authors of Ref. [Hüf96] use and that differs from our
parametrization (5.25). The difference of the Yennie result (dotted curve) and our
calculation arises mainly from the different cross section in the FSI (second replacement
in (6.31)). The different phase factor leads to the change in the transparency ratio at
small coherence lengths, since qV = l−1

V .

After applying all of the above cuts, nearly all of the detected ρ0 stem from diffrac-
tive ρ0 production. The diffractively produced vector meson contains both the quark
and the antiquark from the resolved photon and according to our concept (5.35) inter-
acts with its full cross section during the formation time τf . The 14N data therefore
seem to support the assumption that the time needed to put the preformed ρ0 fluctua-
tion on its mass shell and let the wave function evolve to that of a physical ρ0 is small
for the considered values of Q2. Furthermore, the photon energy is too low to yield a
large enough γ factor to make the formation length exceed the internucleon distance
and make color transparency visible. This conclusion is at variance with that reached
in Ref. [Kop01].
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Figure 6.12: The decay of the ρ0 inside the nucleus reduces the transparency ratio
(6.33) because the probability that at least one of the pions interacts on its way out of
the nucleus is about twice as large as that of the ρ0. The probability for an in-medium
decay is higher for large nuclei and low energies where the decay is less time dilated.

We now turn to 84Kr where we expect a stronger effect of the FSI. Unfortunately,
there are yet no data available to compare with. As can be seen from Fig. 6.11,
the transport calculation for 84Kr gives a slightly smaller transparency ratio than the
Glauber calculation, especially at low values of the coherence length, i.e. small momenta
of the produced ρ0. There are two reasons for this: About 10% of the difference arises
from the fact that within the transport model the ρ0 is allowed to decay into two
pions (cf. Fig. 6.12). The probability that at least one of the pions interacts on its
way out of the nucleus is about twice as large as that of the ρ0. The other reason is
that in the Glauber calculation (6.30) only the inelastic part of the ρ0N cross section
enters whereas the transport calculation contains the elastic part as well. Thus all
elastic scattering events out of the experimentally imposed t window are neglected in
the Glauber description. It is because of this t window that also elastic ρ0N scattering
reduces the transport transparency ratio shown in Fig. 6.11. Both effects are more
pronounced at lower energies and become negligible for the much smaller 14N nucleus.

We have shown that our method to account for coherence-length effects within the
BUU model gives a perfect description of the measured transparency ratio for exclusive
incoherent ρ0 photoproduction off 14N. Furthermore it allows us to distinguish between
the initial-state interactions of the photon (shadowing) and the FSI of the reaction
products. As we have shown in Sec. 6.1.2, our result is equivalent to the exact result of
Glauber theory if one treats the FSI as purely absorptive. In the case of 14N Glauber
theory is applicable after the kinematic cuts of the HERMES experiment are applied.
The deviations from the simple Glauber model caused by the finite life time of the ρ0

and elastic scattering out of the kinematically allowed |t| region should be taken into
account when evaluating the 84Kr data in search of color transparency.

In our calculations the diffractively produced vector meson interacts with its full
cross section during the formation time. We therefore conclude that there is no sign
for color transparency in the presented HERMES data. As discussed by Kopeliovich
et al. [Kop01], one might see an onset of color transparency when investigating the
transparency ratio as a function of Q2 for fixed coherence length. In fact our calculated
multiplicity ratio does not show any Q2 dependence if we keep the coherence length
fixed. An increase of the measured transparency ratio with Q2 for fixed coherence
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Figure 6.13: Photoproduction cross section for π−X on 12C and 208Pb plotted as a
function of the photon energy in the energy range 1–7 GeV. The solid line represents
the full calculation with no prehadronic interactions during τf = 0.8 fm/c. The dash-
dotted line shows the result without shadowing of the incoming photon, the dashed
line the result without FSI and the dotted line the calculation with formation time
τf = 0.

length would therefore require a V N cross section that decreases with Q2. The present
data situation [Air03] on this subject is not very conclusive. We expect a cleaner signal
from the current Jefferson Lab experiment on ρ0 electroproduction off nuclei [Haf02].

We finally point out that the inclusion of a CT effect during the formation time for
exclusive V production is not straightforward within our model since a change of the
V N cross section during the vector meson formation will influence both the initial- as
well as the final-state interactions. This is planned for future work, when hopefully
also the HERMES data for 84Kr has become available.

6.3 Photoproduction of mesons at high energies

In the previous section we have discussed how one can reduce the coupled-channel
effects to a minimum by applying the appropriate kinematic cuts on the experimental
data. In the end, one could describe these very exclusive photoproduction cross sections
by a purely absorptive Glauber treatment of the FSI, since any interaction simply
removes the event form the experimental acceptance window. This changes if one
describes less exclusive reactions such as semi-inclusive photoproduction γA→ mX.

Semi-inclusive meson production at GeV energies has already been investigated in
Refs. [Eff99a, Eff00] for photon energies Eγ =1–7 GeV. Besides our new, improved
treatment of shadowing the main difference to the old calculations is the more real-
istic modeling of photon-nucleon interactions above the resonance region. In the old
approach of Refs. [Eff99a, Eff00] the photon was always passed as a massless ρ0 to
the event generator FRITIOF in contrast to our new method that we have outlined in
Sec. 4.4.2. Furthermore, our new calculations provide a more sophisticated treatment
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Figure 6.14: Left: Side feeding that leads to an enhancement of K+ photoproduction
on nuclei via the reaction πN → K+Y in the FSI. Right: At high energies the FSI
enhance the multiplicities of all particle species in photoproduction on nuclei.

of high-energy FSI, e.g. the elastic channel is treated independently of FRITIOF and
we use more realistic parameterizations of the various hadronic cross sections.

In this section we present our new results for semi-inclusive π− and K± photopro-
duction on 12C and 208Pb targets in the energy region 1–7 GeV as well as semi-inclusive
photoproduction of π±, K± and D± in the energy region 10–30 GeV.

Fig. 6.13 shows the result for the semi-inclusive photoproduction cross section of
negatively charged pions off 12C and 208Pb nuclei as a function of the photon energy
Eγ . The solid curve shows the result of a full BUU calculation that includes shadowing,
FSI and a hadron-formation time τf = 0.8 fm/c. To compare with the old results of
Ref. [Eff99a] we assumed no prehadronic FSI during the formation time. The produc-
tion cross section per nucleon is smaller for the heavier lead target for the following
reasons.

The dashed-dotted line represents a calculation without shadowing. The shadowing
effect seen in π− production is stronger for the 208Pb target than for the lighter 12C
nucleus. This is also the case for the (incoherent) nuclear photoabsorption cross section
shown in Fig. 6.1. In addition, one sees that shadowing is more important at high
photon energies due to the increase of the coherence lengths. Since both the strength
of the shadowing effect and the subsequent FSI depend on the position of the primary
production process, it is obvious why the effect of shadowing is different in size for
photoproduction and photoabsorption. Because of the wrong normalization of the
former shadowing factor (6.13) the shadowing effect at 7 GeV is now about 10% stronger
than in the old results of Ref. [Eff99a].

As can be seen from comparison with a calculation without FSI (dashed line), the
pion attenuation caused by the shadowing effect and the absorption of pions in the
FSI via the combined process πNN → ∆N → NN is (partly) compensated at high
energies by the production of secondary pions in FSI of the kind πN → ππN (cf. right-
hand side of Fig. 6.14). The dotted curve in Fig. 6.13 shows that this effect is even
more pronounced for a vanishing formation time since the latter increases the number
of FSI and therefore the integrated multiplicity.

So far we have only discussed the production of strongly interacting particles such
as the ρ0 or π−. In the following we discuss the special effects that appear in a coupled-
channel treatment of the FSI when a weakly interacting particle, such as the kaon, is
considered. In Fig. 6.15 we show the cross section for the reaction γA → K±X in
the photon energy range 1-7 GeV for 12C and 208Pb. This reaction had also been
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Figure 6.15: Photoproduction cross section for K±X on 12C and 208Pb plotted as a
function of the photon energy in the energy range 1–7 GeV. The solid line represents
the full calculation with no prehadronic interactions during τf = 0.8 fm/c. The dash-
dotted line shows the result without shadowing of the incoming photon, the dashed
line the result without FSI and the dotted line the calculation with formation time
τf = 0.

investigated in Ref. [Eff00], however, our explicit consideration of the φ component
increases the elementary production of K+ by about 25% and that of K− by more
than 50% at 7 GeV. Furthermore, by comparing to a calculation without shadowing
(dash-dotted line) one finds that the shadowing in K± production is about 10% smaller
than the shadowing in pion production observed in Fig. 6.13. This was not the case
in the old results of Ref. [Eff99a]. The reason for this is the different coherence length
and the different attenuation of the photon’s φ and ρ0 components shown in Fig. 6.3
which has not been accounted for in Ref. [Eff99a].

The importance of a coupled-channel treatment of the FSI becomes clear when
comparing the full calculation with the one without FSI (dashed line). Since the s̄
quark cannot be absorbed in the nuclear medium, the FSI can just increase the K+

yield via processes like the one shown on the left-hand side of Fig. 6.14, πN → K+Y
(Y = Σ,Λ). With decreasing formation time the primarily produced pions have a
greater chance to produce K+ in the FSI. As a consequence of this, a shorter formation
time leads to an increase of the nuclear K+ photoproduction cross section, as can be
seen from the dotted line. The effect is more enhanced for the heavier lead target.
An enhancement of the K+ production cross section due to FSI cannot be explained
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Figure 6.16: Comparison of the FRITIOF and PYTHIA results for the elementary
photoproduction cross section of π±X, K±X and D±X in the photon energy range
10–30 GeV. The solid line represents the FRITIOF+VMD result using the method
described in Sec. 4.4.2 and the dashed line shows the cross sections of the PYTHIA
model.

by purely absorptive FSI as in simple Glauber theory where it would necessarily be
interpreted as being due to a longer formation time of the K+.

In contrast to the K+, the K− may also get absorbed in the nuclear medium via
reactions like K−N → πY . For the light 12C nucleus theK− absorption is compensated
by K− production in the pionic FSI. In the case of 208Pb, absorption exceeds and the
FSI reduce the K− yield. Setting the formation time to zero (dotted line) leads to less
changes than in K+ photoproduction since now both the absorption of K− and the
production through pions in the FSI is increased.

Finally, we take a look at photoproduction of π±, K± and D± on 208Pb for photon
energies Eγ = 10–30 GeV. Like in the transition energy region discussed in Sec. 4.4.2,
we use the FRITIOF model together with VMD to describe the γN reactions above
the resonance region.

In Fig. 6.16 we compare our FRITIOF+VMD recipe with the elementary production
cross sections of the PYTHIA model. Since the hadronic interaction of real photons is
dominated by VMD, we do not see much difference between the two approaches except
for the charmed mesons. By comparing to experimental SLAC data on open charm



6.3. Photoproduction of mesons at high energies 137

Figure 6.17: Photoproduction cross section for π±X, K±X and D±X on 208Pb plotted
as a function of the photon energy in the energy range 10–30 GeV. The solid line
represents the full calculation with no prehadronic interactions during τf = 0.8 fm/c.
The dashed line shows the result without FSI and the dotted line a calculation with
zero formation time.

photoproduction at Eγ = 20 GeV [Abe86]:

σ(γp→ DD̄X)exp = 17 ± 8 nb

σ(γp→ DD̄X)FRITIOF = 145 nb

σ(γp→ DD̄X)PYTHIA = 38 nb

and data from FNAL [Bin82] on inclusive J/ψ production at Eγ = 67.5 GeV:

σ(γp→ J/ψX)exp = 26 ± 3 nb

σ(γp→ J/ψX)FRITIOF = 393 nb

σ(γp→ J/ψX)PYTHIA = 33 nb

we see that our FRITIOF+VMD recipe overestimates the cross sections for charm
production by one order of magnitude. Since the massive charmed quarks are not
produced in the string fragmentation due to their large suppression factor (4.19), we
conclude that Eqs. (3.5) and (4.32) yield too large a J/ψ (cc̄) contribution to the
hadronic interactions of the photon.
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Fig. 6.17 shows the results for semi-inclusive meson photoproduction on a 208Pb nu-
cleus using the FRITIOF+VMD recipe. Since we overestimate the elementary charm
photoproduction cross section on a nucleon by one order of magnitude we expect that
also the production cross sections for open charm on a nucleus is one order of magni-
tude too large. The solid line in Fig. 6.17 shows the result of our BUU model assuming
a formation time τf = 0.8 fm/c for all hadrons. As can be seen from the simulation
without FSI (dashed line) the particle multiplicities and, hence, the inclusive photo-
production cross section are enhanced by FSI of the kind as shown in Fig. 6.14. As
discussed above, this effect is less pronounced for the K− whose production probability
is small because of their quark content us̄. Since we assume no prehadronic interac-
tions during the formation time, a reduction of τf (dotted line) enhances the particle
production in the FSI especially at high energies where time dilatation gives rise to
long formation lengths. Since cc̄ pairs are only produced in hard interactions and not
in the string fragmentation, the enhancement of the D+ and D− yield is mainly due
to open charm production in the FSI of ηc and J/ψ mesons that have been produced
in the primary γN interaction.

6.4 Hadron formation and attenuation in DIS

Hadron production in deep inelastic lepton-nucleus scattering offers a promising tool
to study the physics of hadronization [Kop96]. The reaction of the exchanged virtual
photon with a bound nucleon leads to the production of several hadrons. While the
primary production is determined by the fragmentation function – in medium pos-
sibly different from that in vacuo – the number of ultimately observed hadrons and
their energy distribution depends also on their rescattering in the surrounding nuclear
medium. Consequently, the particle spectrum of a lepton-nucleus interaction will dif-
fer from that of a reaction on a free nucleon. In order to explore such attenuation
effects the HERMES collaboration [Air01, Muc02, Gar02, Air03b] has investigated the
multiplicity ratio

Rh
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(
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2)

Ne(ν,Q2)

)
A

/(
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2)

Ne(ν,Q2)

)
D

(6.36)

of pions, charged kaons, protons and antiprotons in deep inelastic positron scattering
at 27.6 GeV off 2D, 14N, 20Ne and 84Kr targets. Here zh = Eh/ν is the fractional energy
of the detected hadron and pT its momentum transverse to the direction of the virtual
photon. Nh(zh, ν, pT , Q

2) denotes the number of semi-inclusive hadrons in a given
(zh, ν, pT , Q

2)-bin and Ne(ν,Q
2) the number of deep inelastically scattered leptons in

the same (ν,Q2)-bin. For the deuterium target, i.e. the nominator of Eq. (6.36), we
simply use the isospin averaged results of a proton and a neutron target. Like the other
theoretical approaches discussed in Sec. 6.4.1, we thus neglect the FSI of the produced
hadrons, shadowing and Fermi motion in case of deuterium.

To illustrate the situation shortly after the photon nucleon reaction, Fig. 6.18 shows
the excitation and fragmentation of a hadronic string in a deep inelastic scattering
process. For simplicity we do not show any gluon bremsstrahlung of the struck quark
in this figure. Note, however, that the possibility of such final state gluon radiation
plus subsequent qq̄ splitting is included in the PYTHIA part of our model and leads to
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Figure 6.18: Illustration of an electron nucleus interaction: The virtual photon γ∗

excites a hadronic string by hitting a quark q inside a bound nucleon. In our example
the string between the struck quark q and diquark qq fragments due to the creation
of two quark-antiquark pairs. One of the antiquarks combines with the struck quark
to form a premeson m, one of the created quarks combines with the diquark to form
a prebaryon b. Both the premeson m and the prebaryon b are target remnants. The
remaining partons combine to a premeson m′ that, depending on the mass of the
meson, might leave the nucleus before it hadronizes (see Eq. (5.34)). Note that in our
default approach the actual production time tp of the prehadrons that solely contain
(anti-)quarks created from the vacuum in the string fragmentation has no effect on our
results since we neglect any interaction until tf . See text for details.

the creation of additional strings as pointed out in Sec. 4.4.2. It has been emphasized in
Ref. [Cio02] that the string propagating through the nucleus is a rather short (white)
object of length ≈ 1 fm since the slow end of the string is accelerated very fast. When
the primary string fragments – due to the creation of qq̄ pairs from the vacuum – new
colorless prehadrons are produced, which we propagate in space-time.

As discussed in Sec. 4.3 the production time tp of these prehadrons has to be
distinguished from the total formation time tf of the final hadrons. Furthermore, the
’production time’ for the first constituent of the beam and target remnants is always
zero. As explained in Sec. 5.3.2 we approximate this behavior by setting the production
time tp to zero for all prehadrons in the default numerical realization of our model. In
this section we also discuss the effect of a finite production time.

Right after the photon-nucleon interaction the primary string should interact with
a hadronic cross section because its transverse size is essentially that of the original
nucleon (cf. Eq. (6.37)). Motivated by the constituent-quark model we assume that
this hadronic cross section is shared by the quark/diquark at the string ends and after
the fragmentation by the so called target remnants that contain this quark or diquark.
Our PYTHIA simulations in Fig. 4.29 show that in most cases the prehadrons with
zh ≈ 1 are such beam or target remnants that either contain constituents (valence or
sea quarks) from the target nucleon or the hadronic component of the photon. They
can therefore interact directly after the photon-nucleon interaction with a constant
effective cross section that is determined by the constituent-quark ansatz (5.35). The
cross sections of the other prehadrons, that solely contain quarks and antiquarks cre-
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ated from the vacuum, emerge at intermediate zh. According to Eq. (5.35) they are
non-interacting until tf . After the hadron-formation time tf by definition all hadrons
interact with their full hadronic cross section σh. This assures that the summed cross
section of the complete final state right after the photon-nucleon interaction is approx-
imately that of the original nucleon and that each time when a new hadron has formed,
the summed cross section rises like in the approach of Ref. [Cio02].

In Ref. [Cio02] another type of semi-inclusive process, denoted A(e, e′(A − 1))X,
has been investigated in which the deep inelastically scattered lepton e′ is detected in
coincidence with a heavy nuclear fragment, namely a nucleus A − 1 in a low energy
and momentum state. Without the presence of FSI, the momentum distribution of the
nucleus A − 1 is directly related to the momentum distribution of the struck nucleon
before the γ∗N interaction. Any rescattering of the struck nucleon debris with the
medium after the γ∗N interaction affects the momentum distribution of A−1 in a way
which is very sensitive to the details of the effective cross section. The effective cross
section of the partonic nucleon debris rises as function of time t due to the subsequent
creation of hadrons in the fragmentation of the color string as well as the production
of hadrons originating from gluon radiation:

σeff(t) = σNN + σmN (nm(t) + ng(t)) . (6.37)

In Eq. (6.37) it is assumed that, before the first breaking, the string interacts with the
nuclear medium with the nucleonic cross section σNN . With increasing time nm(t) +
ng(t) mesons are produced in the subsequent fragmentation of the string and from qq̄
splitting of the radiated bremsstrahlung gluons, respectively. In Ref. [Cio02] the time
dependence of nm(t) was estimated via the decay width of heavy resonances, while the
number ng(t) of bremsstrahlung gluons radiated by the struck quark was calculated
within pQCD.

In Fig. 6.19 we compare Eq. (6.37) with the increase of the summed cross section
in our constituent-quark concept for two values of the formation times τf = 0.5 fm/c
(solid line) and τf = 0.8 fm/c (dashed line). One sees that the two approaches yield
compatible results.

Since the lighter (intermediate zh) hadrons – due to time dilatation – have large
formation times in the target frame (see Eq. (5.34)) they may escape the nucleus
without being attenuated if they are no beam or target remnants. However, many
(≈ 2/3) of the observed hadrons with intermediate zh are not directly produced in
the string fragmentation but stem from decays of the much heavier vector mesons
with correspondingly shorter formation times (cf. Fig. 4.29). These vector mesons may
therefore form inside the nuclear volume and thus be subjected to FSI. The effect of
the FSI, finally, will depend dominantly on the nuclear geometry, i.e. the size of the
target nucleus.

We already pointed out in the introduction that the formation time also plays
an important role in studies of ultra-relativistic heavy-ion reactions. For example, the
observed quenching of high transverse momentum hadrons in Au+Au reactions relative
to p+ p collisions is often thought to be due to jet quenching in a quark gluon plasma.
However, the attenuation of high pT hadrons might at least partly be due to hadronic
rescattering processes [Gal03, Cas04].

Unfortunately, the average hadron-formation time is not well known and the number
of τf ≈ 1 fm/c as used commonly in the Bjorken estimate for the energy density [Bjo83]
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Figure 6.19: Summed cross section of the reaction products of a virtual γ∗N interaction
as a function of the propagation length z at photon energy ν = 25 GeV and virtuality
Q2 = 10 GeV2. The solid line represents the result of the prehadron concept (5.35)
using a formation proper time τf = 0.5 fm/c for all hadrons. For the dashed line we
use τf = 0.8 fm/c. The solid circles represent the result of Ref. [Cio02] which also
accounts for gluon-bremsstrahlung.

is nothing but an educated guess. The nonperturbative nature of this number – due
to time scales of ∼ 1 fm/c and hadronic size scales of 0.5–1 fm – excludes perturbative
evaluation schemes; it is hard to calculate τf from first principles and formation times
cannot be addressed in present lattice QCD simulations. As pointed out in Sec. 4.3
the rather successful Lund string model shed some light on this number, since the
intrinsic time scale τV for the qq̄-production vertex can be related to the fragmentation
function and string tension, respectively. However, the actual parameters employed
in current transport codes are not unique, with hadron-formation times ranging from
0.3–2 fm/c [Cas99], depending on the flavor, momentum and energy of the created
hadrons. In fact, the rapidity and transverse mass spectra from relativistic nucleus-
nucleus collisions are not very sensitive to the formation time τf [Cas04]. It is therefore
essential to check whether these times are compatible with constraints extracted from
reactions, where the collision geometry is much better under control.

To this aim the attenuation of antiprotons produced in pA reactions at the AGS
energies of 12.3 GeV and 17.5 GeV has been investigated on various nuclear targets
in Ref. [Cas02] and a range of values for τf = 0.4 − 0.8 fm/c has been extracted in
comparison to the data from the E910 Collaboration [Chm01].

We begin this section with a brief discussion of the various models on hadron
attenuation in Sec. 6.4.1.

We then investigate different concepts of hadron production and formation in the
framework of our probabilistic coupled-channel transport model which allows for a
realistic treatment of the FSI. We demonstrate that the coupled-channel effects in the
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FSI lead to deviations from the results of simple absorption models since particles
produced in the FSI affect the low energy part of the hadron spectra and thereby all
energy-integrated observables. A strong effect of the coupled channels becomes also
visible in the attenuation of kaons. As discussed in the Sec. 6.3 kaon absorption is
partially compensated by kaon recreation in the FSI via secondary channels like πN →
KYX. Furthermore, our event-by-event simulation allows us to investigate how the
observed attenuation ratios depend on the kinematic cuts and the detector acceptance.
We show that there is a sizable effect of the detector acceptance on the multiplicity
ratios, which does not drop out by taking the multiplicity ratio and, therefore, has to
be considered explicitly when addressing any robust interpretation of the data.

Being able to compare with almost every observable that is experimentally accessi-
ble we can test the limits of a purely hadronic model and figure out at what point an
extension becomes necessary. For this reason we also include the EMC data [Ash91] on
hadron attenuation at 100 and 200 GeV muon energy in our analysis where the hard
scale – set by the photon virtuality Q2 – is closer to that of the high pT events at RHIC
[PH03, PH04, ST03, ST03b]. Finally, we make predictions for hadron attenuation at
current and future Jefferson Lab energies in Sec. 6.4.4.

6.4.1 Existing models

(Pre-)hadronic absorption models

It was suggested in Ref. [Air01] that a phenomenological description of the ν and zh
dependence of the Rh

M data for charged hadrons can be achieved if the production
time, i.e. the time that elapses from the moment when the photon strikes the nucleon
until the reaction products start to interact, is assumed to be proportional to (1−zh)ν
in the target rest frame. This (1 − zh)ν dependence of the production time tf is
compatible with the gluon-bremsstrahlung model of Kopeliovich et al. [Kop96, Kop03].
In the investigations of Ref. [Air01] any interaction of the reaction products with the
remaining nucleus before the production time has been neglected. After the formation
time the hadrons could get absorbed according to their full hadronic cross section.

In Ref. [Kop03] it is suggested that the main source of nuclear suppression arises
from the attenuation of colorless prehadrons in the medium. After a valence quark
of the nucleon is struck by the virtual photon it starts to radiate gluons which leads
to a energy loss that is linear in time. This energy loss is also present in vacuum
and is equivalent to the string model expression (4.5). In the large Nc limit each
radiated gluon is equivalent to a qq̄ pair, and the gluon bremsstrahlung can be seen as
a production of a system of color dipoles. The leading hadron, i.e. the most energetic
one, then originates from the struck quark and the antiquark from the last radiated
gluon. Because of energy conservation the gluon radiation has to stop very early if the
struck quark forms a leading hadron with zh → 1 and the production time vanishes
proportionally to 1 − zh. Note that, like in the Lund model, the production time
of the colorless prehadron has to be distinguished from the formation time, i.e. the
time needed to form the hadronic wave function. Due to time dilatation the latter is
proportional to zh.

In Ref. [Kop03] the production time of the leading prehadron was calculated within
pQCD and its propagation through the nuclear medium was described using the light-
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cone Green-function technique that has already been applied for the description of
vector meson electroproduction off nuclei in Ref. [Kop01], cf. Sec. 6.2. All other pre-
hadrons that emerge from the initial gluon radiation have been neglected. The average
production time for the leading prehadron at zh ≈ 0.9 is more than ten times smaller
than the prehadron-production time tp2 that we extract from JETSET, cf. dotted line
in Fig. 6.20. In fact, the magnitude of the average leading prehadron-production time
in Ref. [Kop03] is rather compatible with the size of the JETSET time tp1 (dashed-dot-
dotted line in Fig. 6.20) or the average starting time of the prehadronic interactions in
our constituent-quark concept (solid squares in Fig. 6.20).

Since the gluon-bremsstrahlung model of Ref. [Kop03] only accounts for the atten-
uation of the leading prehadrons, it is useless for small values of zh. For this reason,
the authors could only compare with experimental data in the region zh > 0.5. In
this regime they achieve a good agreement with the experimental HERMES data for
the charged hadron multiplicity ratio as function of zh. Because of their restriction
to leading hadrons the authors of Ref. [Kop03] could only integrate the multiplicity
spectra down to zh = 0.5 for the calculation of the ν dependence of Rh

M , whereas exper-
imentally it is determined from all hadrons with zh > 0.2. From Fig. 4.29 one sees that
most hadrons have smaller zh and therefore dominate the behavior of the integrated
ν spectrum. Nevertheless, the authors get a satisfying description of the observed ν
dependence of the charged hadron multiplicity ratio. In Sec. 6.4.2 we show that the
basic features of the ν dependence of Rh

M are caused by the special geometry of the
HERMES detector, which is not accounted for in Ref. [Kop03]. In view of these facts,
it seems as if the correct description of Rh

M(ν) in Ref. [Kop03] is purely accidental.

Besides absorption of the prehadron in the nuclear medium, the effect of induced
gluon radiation has been calculated in Ref. [Kop03]. As pointed out by the authors,
multiple interactions of the quark during the time interval between the γ∗N interac-
tion and the production or the colorless prehadron cannot stop or absorb the quark.
Nevertheless, the additional soft kicks gained by the quark force it to radiate more
bremsstrahlung gluons. The inclusion of this induced energy loss improves the agree-
ment with HERMES data but merely gives rise to about 15–20% of the total observed
attenuation. However, it is the main source for the observed rise of Rh

M at transverse
hadron momenta pT > 1 GeV/c, cf. Fig. 6.24. Since the production time in the gluon-
bremsstrahlung model becomes smaller with increasing zh, the rise of the multiplicity
ratio at large pT should be dominated by low zh hadrons. However, like for the ν
dependence of Rh

M , the authors had to negelect all hadrons with zh < 0.5.

The approach of Ref. [Kop03] also predicts a dependence of the multiplicity ratio on
the virtuality Q2 of the photon. In the gluon-bremsstrahlung model the increase of Q2

leads to two competing effects: The prehadron-production time decreases because of
rising vacuum energy loss, and the interaction cross section of the prehadron decreases
because the initial size of the prehadron shrinks at larger Q2 (color transparency). In
total one obtains a weak increase of Rh

M with rising Q2 that is in accordance with the
experimental HERMES data [HERM].

Finally, the authors of Ref. [Kop03] predict a weaker absorption of K+ mesons
compared to pions. The intuitive explanation is that the projection to a wave function
with a larger mean radius emphasizes larger qq̄ separations in the prehadron, leading
to stronger absorption. Since the pion has a larger radius than the kaon, the former
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is expected to be attenuated stronger in the nuclear medium. The calculated K+

attenuation as a function of zh is again in satisfying agreement with experimental data
for zh > 0.5. However, the description of the ν dependence is only very poor, i.e. it
deviates by up to a factor of two from the experimental data. The latter may again
be due to the neglect of kaons with 0.2 < zh < 0.5. Since antikaons and antiprotons
do not contain valence quarks common to the target nucleon, while proton production
may be contaminated with the target nucleons, no calculations for K−, p̄ and p could
be done in Ref. [Kop03].

In Ref. [Acc03] Accardi et al. explain the attenuation of hadrons at HERMES and
EMC energies as a combined effect of a rescaling of the quark fragmentation function
in the nuclear medium and (pre-)hadronic absorption in the FSI. The fragmentation
function Dh

q (z) describes the probability that a quark of flavor q hadronizes into a
definite hadron h with energy fraction

z = Eh/Eq. (6.38)

Consequently, the semi-inclusive leptoproduction cross section in the quark model is
given as

1

σtot

dσ

dz
(eN → hX) =

∑
q e

2
qfq(x,Q

2)Dh
q (z)∑

q e
2
qfq(x,Q

2)
, (6.39)

where eq denotes the charge of the quark flavor q and fq is the quark distribution
function as measured in inclusive DIS, cf. Eq. (3.22). Both the quark distribution
function and the fragmentation function depend on the virtuality Q2 of the DIS pro-
cess, cf. Fig. 2.12. The authors of Ref. [Acc03] assume that partial deconfinement
of color modifies the gluon radiation in the nuclear medium and thus a rescaling of
the distribution function fq and fragmentation function Dq becomes necessary. This
rescaling alone is already strong enough to explain the observed attenuation on 63Cu in
the EMC experiment without any further attenuation due to (pre-)hadronic FSI. We
point out that the partial deconfinement also affects the string tension κ in the nuclear
medium. According to Ref. [Acc03] the string tension in a 14N and 131Xe nucleus is
reduced by a factor of 0.87 and 0.80, respectively.

The authors of Ref. [Acc03] extract the production times of the hadron constituents
from the Lund model using the simplified fragmentation function (4.21) which neither
depends on the hadron mass nor does it lead to a symmetric string fragmentation.
Similar to the derivations of Eqs. (4.22) and (4.23) the finite mass of the string is
neglected and the production times are calculated by averaging over infinitely many
ranks. According to our findings in Sec. 4.3, we therefore do expect deviations from
the real production and formation times in the Lund model.

In Fig. 6.20 we show the formation and production times of Ref. [Acc03] in the
kinematic regime of the HERMES experiment. For comparison we also show the
starting times of the (pre-)hadronic interactions within our constituent-quark concept,
i.e. Eq. (5.35) and τf = 0.5 fm/c. In addition we included the times tp1, tp2 and tf that
we have extracted from JETSET and averaged over all hadron species. The authors
define the smaller production time tp1 as the starting time of the prehadronic interac-
tions, whereas the Lund model intuitively suggests tp2 as the time when the colorless
prehadron is formed. Because of this different definition the prehadrons in Ref. [Acc03]
(solid line) are produced much earlier than in JETSET (dotted line). Except for the
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Figure 6.20: Average (pre-)hadron production and formation times at HERMES ener-
gies. We compare the results of Ref. [Acc03] with our constituent-quark concept (5.35)
using a formation proper time τf = 0.5 fm/c and the times extracted from JETSET.

region zh > 0.8, the production time of Ref. [Acc03] (solid line) is always larger than
the starting time of the prehadronic interactions in our constituent-quark model (solid
squares).

The (pre-)hadronic interactions are described in Ref. [Acc03] by a probabilistic
absorption model where the prehadronic cross section is either set to the full or to
half of the hadronic value. In the calculation of pion and kaon attenuation the isospin
averaged hadron-nucleon cross sections are used. For the calculation of charged hadron
attenuation an average cross section is computed as a weighted sum of individual cross
section of pions, kaons, protons and antiprotons. Obviously, this recipe allows only
for a very crude estimate of hadron attenuation even if there were no coupled-channel
effects in the FSI.

The authors find that reducing the prehadronic cross section to half the hadronic
value yields a too weak charged hadron attenuation at HERMES energies. Despite the
large prehadron-production times, the FSI increase the hadron attenuation at EMC
energies which was already described by the rescaling of the fragmentation function
alone. While the absolute strength of the charged hadron attenuation is in satisfying
agreement with both the HERMES and EMC data the shapes are not.

The calculated attenuation of charged pions and K+ mesons agrees with experi-
mental data, however, the model underestimates the attenuation of K− mesons. The
authors point out that the discrepancy between the theoretical K− attenuation and
data may point to a different formation mechanism for the negative kaons, as they do
not contain any nucleon valence quarks. This may imply a shorter formation time for
the K− than for the K+. However, as can be seen from our findings shown in Fig. 4.16,
this is not the case in the Lund model: While the production time tp2 and formation
time tf are approximately equal for K+ and K−, the production time tp1 is in average
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shorter for the K+ than for the K−. This is reasonable since the K+ meson can contain
a u quark from the nucleon and therefore may have tp1 = 0.

Partonic models

Besides the prehadronic absorption models discussed above there are alternative ex-
planations for the observed hadron attenuation in DIS off complex nuclei at HERMES
and EMC.

In Refs. [Guo00, Wan01, Wan02, Wan03] Wang et al. have assumed that there are
no prehadronic interactions at all before the actual formation time tf , and that the
struck quark propagates a large distance before the hadron is finally formed outside
the nucleus. In fact, the formation time tf of fast pions is much larger than the nuclear
radius as we have shown in Fig. 4.16. However, one has to keep in mind that many
of the pions – that are finally detected in the HERMES experiment – stem from the
decay of vector mesons that are created in the primary γ∗N interaction, cf. Fig. 4.29.
Due to their larger mass these vector mesons may already form inside the nucleus and
be subject to hadronic FSI. In Sec. 6.4.2 we show how these hadronic FSI affect the
multiplicity ratio in the HERMES experiment. For large enough formation times the
effect of hadronic FSI is indeed small at HERMES energies and certainly negligible at
EMC energies because of the larger time dilatation effects.

As discussed above, the struck quark is subject to multiple scattering in the nucleus
which induces gluon bremsstrahlung before the hadronization. The induced gluon ra-
diation may have a coherent character like in the Landau-Pomeranchuk-Migdal (LPM)
effect of QED. This coherence, in combination with the non-Abelian nature of QCD,
leads to an energy loss of the quark that is quadratic in the propagation length through
the nuclear medium. If the ad hoc assumption that the quark traverses the whole nu-
cleus before hadronization is right, the energy loss would cause a change of the fragmen-
tation function that is quadratic in the nuclear size, i.e. A2/3. Wang et al. have claimed
that this scaling is verified by the HERMES data on charged hadron production on
14N and 84Kr. However, depending on the values of ν an zh the measured multiplicity
ratios of charged hadrons on 14N and 84Kr scale with an exponent 0.6–1, as can be seen
from Fig. 6.23. Nevertheless, Wang et. al achieve an excellent description of Rh

M(ν)
and Rh

M(zh) of charged hadrons on 14N and 84Kr.
In the approach of Ref. [Arl03] the struck quark is assumed to reduce its energy from

E = ν to E = ν − ε due to medium-induced gluon radiation prior to hadronization.
This quark energy shift than leads to a rescaling of the energy fraction (6.38)

z → z∗ =
z

1 − ε/ν
(6.40)

which enters the fragmentation function (6.39). The radiated gluon spectrum has
been computed perturbatively in Refs. [Bai97, Bai98] and depends on the length of
matter covered by the struck quark and the medium gluon density which is poorly
known. Besides the extreme scenario discussed above, where hadronization always
occurs outside the nucleus, the author of Ref. [Arl03] also investigates the effect of the
prehadron-production time tp from Eq. (4.22). In the latter case any (pre-)hadronic
interactions after tp have been neglected. In fact, this is just the opposite approach as
in Ref. [Acc03] where all interactions before tp are neglected.
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The medium-modified fragmentation functions of Ref. [Arl03] yield an excellent
description of the ν and zh dependence of Rh

M for charged hadrons at EMC energies.
In this kinematic regime the neglect of (pre-)hadronic FSI after tp is not very dramatic
because the production length is in general large compared to the nuclear radius because
of time dilatation. However, because of the zh dependence of tp, which is illustrated by
the dashed line in Fig. 4.12, the results of Ref. [Arl03] become doubtful when zh → 0
or zh → 1.

The author of Ref. [Arl03] has also calculated the multiplicity ratios for positively
and negatively charged hadrons h± as well as π± and K± by using the corresponding
vacuum fragmentation functions (6.39) as input. Except for zh → 1 the results for the
attenuation of positively and negatively charged hadrons are in satisfying agreement
with the 14N and 84Kr data from the HERMES experiment. However, the attenuation
of π± is not well described neither for the 14N target nor for the 84Kr or 20Ne nuclei. The
calculated attenuation of K+ is compatible with the 84Kr data while it fails to describe
the 20Ne data. Furthermore, the attenuation of K− mesons is not much stronger than
that of K+ in contradiction with experiment. In fact, it seems as if the approach of
Ref. [Arl03] is far away from a complete description of the various HERMES data.

Common deficiencies of the existing models

In all of the above models the contribution of the resolved photon component to the
γ∗N interaction is neglected and it is assumed that DIS can be treated as electron-
quark scattering with energy transfer ν to the knocked out valence quark. However,
this assumption is questionable because the lower x-cut in the HERMES experiment is
not larger than 0.02. As indicated by Fig. 4.29, one therefore has strong contributions
from the quark sea and resolved photon interactions. The peak in the ρ0 and φ spectra
at zh ≈ 1 – due to diffractively produced vector mesons that contain the two quarks
from the resolved photon – underlines the importance of resolved events, especially at
large zh. Furthermore, the significance of sea quarks is stressed by the fact that many
antikaons contain quarks from the proton or from the resolved photon. The neglect of
resolved γ∗N interactions also implies the omission of shadowing effects. However, due
to the normalization of Nh to the number of DIS leptons Ne, shadowing yields only a
few percent correction to the multiplicity ratio (6.36).

Furthermore, the (pre-)hadronic FSI have been treated purely adsorptively, i.e. the
production of hadrons with z′h < zh, in a collision of a (pre-)hadron that carries mo-
mentum fraction zh with a nucleon inside the nucleus, has been neglected. As we show
in the following sections, these coupled-channel effects turn out to be very important,
especially for the production of weakly interacting particles like kaons.

Finally, none of the above models accounts rigorously for the kinematics of the
electron-nucleon interaction but instead calculate observables at average values of the
photon energy ν and virtuality Q2. This may indeed be a problem. For example an
average value of 〈ν〉 = 14 GeV in a certain zh bin of the HERMES experiment does not
mean that there are no photons with energy ν = 7 GeV. The corresponding Lorentz
γ’s are different by a factor of two, which has a strong effect on time dilatation. Also
the detector geometry has not been accounted for in the various approaches. As we
show in Sec. 6.4.2, the naive expectation that all detector effects cancel when taking
the ratio is not true except for the large zh-part of the hadron spectra.
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Figure 6.21: Model predictions for the average values of the kinematic variables in
charged hadron production off 84Kr in comparison with the experimental numbers at
HERMES [Muc]. For the calculation we use the formation time τf = 0.5 fm/c and
the constituent-quark concept (5.35) for the prehadronic cross sections. Left: 〈ν〉 and
〈Q2〉 as a function of zh compared to the experimental values for a 84Kr target (open
symbols). Right: Same for 〈zh〉 and 〈Q2〉 as a function of ν.

6.4.2 Hadron attenuation at HERMES energies

We start with an investigation of charged hadron attenuation in semi-inclusive DIS of
27.6 GeV positrons off nitrogen and krypton. We apply the same kinematic cuts as
in experiment [Air03b]: Q2 > 1 GeV2, W > 2 GeV, ν > 7 GeV, y < 0.85, x > 0.02
and Eh > 1.4 GeV as well as the cut zh > 0.2 for the ν and pT spectra. Furthermore,
we account for the angular acceptance of the HERMES detector, i.e. ±170 mrad hor-
izontally and ±(40 − 140) mrad vertically, for both the scattered positrons and the
produced hadrons. The left panel in Fig. 6.21 shows the average values of the photon
energy ν and the virtuality Q2 as a function of the energy fraction zh of the charged
hadrons produced on a 84Kr target; the right panel shows the average values of zh and
Q2 as a function of ν. In the simulation we use the prehadron concept (5.35) and
a formation time τf = 0.5 fm/c. Obviously, our simulation is in perfect agreement
with the experimental values for the average kinematic variables (open symbols). The
increase of 〈ν〉 at small values of zh is due to the energy cut Eh > 1.4 GeV and the
finite angular acceptance of the HERMES detector. Both require that a hadron with
low energy fraction zh is produced by a high energy photon in order to be detected.

No prehadronic interactions

Before discussing the effect of prehadronic interactions we show the modifications of
the multiplicity ratio due to the conventional hadronic FSI after the formation time τf
and explore the sensitivity of the results on τf . We, therefore, neglect any interactions
during τf and for simplicity assume that τf is a constant in the rest frame of each
hadron independent of the particle species. Due to time dilatation the formation time
tf in the laboratory frame is then proportional to the particle’s energy

tf = γ · τf =
zhν

mh

· τf . (6.41)
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Figure 6.22: Calculated multiplicity ratio of charged hadrons for the 84Kr target (at
HERMES) assuming no prehadronic interactions during the formation time τf = 0–1.5
fm/c. The data are taken from Ref. [Air03b].

Fig. 6.22 shows the result for the 84Kr target using formation times in the range τf = 0–
1.5 fm/c. For τf=0 (dashed line) we get a much too strong attenuation both in the
zh and ν spectrum. In this case all reaction products start to interact immediately
after the γ∗N interaction and there is no effect of time dilatation (tf = τf = 0). As
a consequence this limit leads to an almost flat ν dependence of Rh

M . We note that
without the cut on the hadron energy Eh and without the limitation by the HERMES
detector acceptance one would find a strong increase of the hadron multiplicity at low
zh due to particle creation in the FSI (cf. Fig. 6.25). However, after applying all cuts
one is left with a 10% effect only, as can be seen from the zh spectrum in Fig. 6.22.

A slight increase of the formation time τf from zero to 0.1 fm/c (dotted line) already
leads to a dramatic change in Rh

M . By using this unphysically small formation time
one obtains a good description of the ν dependence, but fails to reproduce the high
energy part of the spectrum in zh. The reason is that many of the high-energy particles,
which are directly created in the primary γ∗N interaction, now escape the nucleus due
to time dilatation. Especially the formation times tf of the light pions start to exceed
the dimension of the 84Kr nucleus for energies larger than Eπ ≈ 13 GeV. One also sees
that the multiplicity ratio at low zh drops below one because both the absolute number
of FSI and the energy available for particle production in the FSI is reduced. The latter
decreases the probability that the secondaries end up in the HERMES detector and
survive the experimental cut Eh > 1.4 GeV.

At larger values of τf one still has some attenuation due to the FSI of more massive
hadrons. As seen in Fig. 4.29 a large fraction of the finally detected pions stem from
the decay of neutral (and charged) ρ mesons created in the string fragmentation. Due
to their relatively large mass the latter have a smaller formation time in the lab frame
and are subject to hadronic FSI, especially if they carry only a small fraction zh of the
photon energy. For example, the formation length of a ρ meson produced by a 7 GeV
photon is always smaller than about γ · τf · c ≈ 9 · τf · c. For τf = 1.5 fm/c (short
dashed line) only the formation lengths of the massive vector mesons and nucleons with
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Figure 6.23: Calculated multiplicity ratio of charged hadrons for 14N, 84Kr and 131Xe
nuclei (at HERMES) using the constituent-quark model (5.35) for the prehadronic
cross section and different values of the formation time τf = 0–1.5 fm/c. The data are
taken from Ref. [Air03b].

zh � 0.6–0.7 are short enough to give rise to attenuation. The small deviation from
unity of Rh

M at zh ≈ 1 is due to the Fermi motion of the bound nucleons that affects
the maximum energy available for hadron production in the initial γ∗N interaction.

Constituent quark model

From Fig. 6.22 one extracts that for reasonable formation times τf � 0.5 fm/c the
prehadronic interactions have to set in quite early after the γ∗N interaction, especially
for the hadrons at large zh. We now set the production time of all prehadrons to zero
and rescale the prehadronic cross sections according to the constituent-quark concept
(5.35).

Fig. 6.23 shows the results of our simulation for 14N, 84Kr and 131Xe using formation
times τf = 0–1.5 fm/c. The dashed lines (τf = 0) coincide with the ones in Fig. 6.22
since they only involve hadronic FSI. By comparing the ν spectra of Figs. 6.23 and
6.22 for finite formation times one observes that Rh

M(ν) is reduced by the prehadronic
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FSI, which also improve the agreement of Rh
M(zh) with the experimental 84Kr data

at large zh. However, the attenuation of the zh spectra is too strong for the 14N
target which might already indicate a deficiency of our simple prehadron concept. The
experimental 84Kr data favor formation times τf �0.3 fm/c with only little sensitivity
for larger values because of the finite size of the 84Kr nucleus. These times are in line
with our simple estimate via the hadronic radius and with the values τf = 0.4–0.8
fm/c [Cas02] extracted from antiproton attenuation in pA reactions at AGS energies of
12.3 GeV and 17.5 GeV on various nuclear targets [Chm01]. A cleaner discrimination
between τf = 0.3 fm/c and larger formation times will be possible in an experimental
investigation at Jefferson Lab [WBr02, KWa04, WBr03, Arr03] with heavier targets
and lower photon energies.

In the pQCD parton model of Ref. [Guo00, Wan01, Wan02, Wan03] the multiple
parton scattering leads to a modification of the fragmentation function and predicts a
hadron attenuation ∼ A2/3. In our approach, however, the fragmentation is assumed
to be decided on time scales of the nucleon dimension itself such that only the ’free’
fragmentation function enters. All attenuation effects then are attributed to FSI of the
leading and secondary (pre-)hadrons. In order to distinguish experimentally between
the different concepts, it is thus important to get the scaling with target massA. To this
aim Fig. 6.23 also shows predictions for a 131Xe target. In accordance with the authors
of Ref. [Acc03] we predict only a small change in the multiplicity spectra compared to
the 84Kr target. From the charged hadron attenuation (1−Rh

M) for 14N, 84Kr and 131Xe
we extract a scaling exponent 0.33–0.39 at zh = 0.95. If the attenuation was simply
proportional to the distance that the particles propagate through the medium, one
would expect a scaling exponent α = 1/3. The deviation from this naive expectation is
caused by the finite formation time and the nonuniform density distribution in nuclei.
At lower values of zh or in the integrated ν spectra the scaling behavior is hidden by
the coupled-channel effects.

In Fig. 6.24 we show the transverse momentum dependence of the multiplicity ratio
(6.36), where the transverse component pT of the hadron is defined with respect to the
momentum direction of the virtual photon. In the simulation we use the constituent-
quark concept (5.35) for the prehadronic cross sections and the formation time τf = 0.5
fm/c. We expect that the pT distribution of the observed hadrons is broadened for
complex nuclei compared to deuterium due to multiple scattering of the (pre-)hadrons.
Up to p2

T ≈ 1 GeV2 the p2
T dependence of the multiplicity ratio is well reproduced

for both the nitrogen and the krypton target. However, the data of Ref. [Air03b]
show a strong increase of Rh

M for p2
T � 1 GeV2, which is not reproduced by our

(pre-)hadronic FSI even if one assumes that all elastic scattering events are isotropic
in the center-of-mass system (dashed line). This can be considered a signal for a
partonic origin of the enhancement of high-pT hadrons in eA collisions either via a
change of the parton distributions inside the nuclear medium and/or the Cronin effect
[Cro75, Kop02, Acc04].

The Cronin effect was first observed in 1975 [Cro75] via an enhancement of high-pT
hadrons in pA collisions and has become especially important recently in connection
with data from high-pT hadron production in heavy ion collisions [PH03, PH04, ST03,
ST03b]. Similar to pA collisions [Kop01], a high-energy parton produced in a direct
γ∗N interaction may be subject to soft coherent and incoherent multiple rescatterings in
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Figure 6.24: The multiplicity ratio of charged hadrons for 14N and 84Kr (at HERMES)
as a function of the transverse momentum squared p2

T . In the simulation we use the
constituent-quark concept (5.35) for the prehadronic cross sections and a formation
time τf = 0.5 fm/c. In the simulation indicated by the dashed line we additionally
assume that all elastic scatterings are isotropic in their center-of-mass frame. The data
are taken from Ref. [Air03b].

the nuclear medium which are accompanied by gluon radiation. While the incoherent
rescatterings can be interpreted intuitively as a random walk in transverse momen-
tum space [Joh01], the coherent gluon radiation from different nucleons is subject to
LPM-interference effects. The authors of Ref. [Kop03] have calculated the transverse
momentum broadening that is caused by the multiple scattering of the struck parton
before the prehadron-production time. Their calculation reproduces the strong increase
of Rh

M(pT ) for pT > 1 GeV/c and thus supports the interpretation in terms of a Cronin
effect.

In our simulation we do not find any dependence of the charged hadron multiplicity
ratio (6.36) on the photon virtuality Q2. This is no surprise since in the ratio Rh

M

the Q2 dependence of the primary electroproduction cross section cancels out and our
prehadronic cross sections (5.35) do not depend on the virtuality of the photon. There-
fore, an experimentally observed enhancement of Rh

M with Q2 could be interpreted as a
signature for color transparency [Jai96, Kop01]. We show in Sec. 6.4.3 that indeed the
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Figure 6.25: Influence of the HERMES detector geometry on the observed multiplicity
ratios for a 84Kr target. In the simulation we use the constituent-quark concept (5.35)
for the prehadronic cross sections and a formation time τf = 0.5 fm/c. The solid line
represents the result of our simulation when accounting for the geometrical acceptance
of the HERMES detector. In the simulation indicated by the dashed line no acceptance
cuts have been employed. The dotted line represents the result of a simulation where
in addition to the detector acceptance the Eh > 1.4 GeV cut has been neglected. The
data are taken from Ref. [Air03b].

simple constituent-quark ansatz for the prehadronic cross sections (5.35) overestimates
the attenuation in the kinematic regime of the EMC experiment, i.e. at larger values
of ν and Q2.

Acceptance cuts

We now discuss how the geometrical acceptance of the HERMES detector and the
kinematic cuts affect the multiplicity ratio (6.36). In Fig. 6.25 we compare the results of
our simulation using the constituent-quark concept (5.35) and a formation time τf = 0.5
fm/c for the HERMES acceptance (solid line) in comparison to a 4π-detector (dashed
line). In both calculations we still account for all kinematic cuts in the HERMES
experiment. As can be seen from the zh spectrum, a detector with full angular coverage
(dashed line) will detect many more of the low-energy particles – produced in the FSI –
which simply do not end up in the HERMES detector. As a result, the ν spectrum for
a 4π-detector is almost flat since an increase of the formation time with ν due to time
dilatation not only reduces the attenuation but also the particle production in the FSI.
According to our simulations the slope in the ν spectrum experimentally observed at
HERMES partly arises because at lower photon energies particle production in the FSI
is less forward peaked and, therefore, less particles are seen by the HERMES detector.
Note that this problem is usually neglected in other approaches [Guo00, Wan01, Wan02,
Wan03, Arl03, Acc03, Kop03] that intend to describe the observed multiplicity ratios.
The dotted line in Fig. 6.25 shows the result of a simulation where in addition to the
geometrical acceptance the Eh > 1.4 GeV cut has been neglected. As can be seen
from the low zh part of the multiplicity ratio, one now detects even more of the low-zh
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Figure 6.26: Double-hadron attenuation ratio R2 for a 14N, 84Kr and 131Xe target
as a function of the energy fraction z2 of the subleading hadron. In the simulation
we use the constituent-quark concept (5.35) for the prehadronic cross sections and a
formation time τf = 0.5 fm/c. To exclude contributions from ρ0 decay into π+π− the
charge combinations ’+−’ and ’−+’ have been excluded both in experiment and in the
simulation. The dashed line shows a calculation with a purely absorptive treatment of
the FSI. The preliminary HERMES data are taken from Ref. [Nez04].

hadrons. Without the cut zh > 0.2 the multiplicity ratio as a function of the photon
energy rises to Rh

M(ν) ≈ 1.5.

Summarizing this paragraph we stress that one has to take the geometrical accep-
tance of the HERMES detector into account if one wants to draw conclusions from
a comparison of experimental with theoretical results for the low-zh part and the ν
dependence of the multiplicity ratio.

Double hadron attenuation

Before we turn to the individual attenuation of the various identified hadrons we com-
pare our simulation with the recently measured double-hadron attenuation at HERMES
[Nez04]. In each event only the two (charged or neutral) hadrons with the highest en-
ergies are considered. In the following we denote the hadron with the highest zh as
the leading hadron and the other one as the subleading hadron. The experimental
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observable is the double-hadron attenuation ratio

R2(z2) =

N2(z2)
N1

∣∣
A

N2(z2)
N1

∣∣
D

. (6.42)

Here N2(z2) denotes the number of events where the leading and subleading hadron
carry the energy fraction z1 > 0.5 and z2 < z1, respectively, and N1 is the number of
events where at least one of them has zh > 0.5. The kinematic cuts are the same as for
charged hadrons except for the Bjorken variable x, which now has the new boundary
x > 0.01.

Fig. 6.26 shows the double-hadron multiplicity ratio (6.42) for 14N, 84Kr and 131Xe.
To exclude contributions from ρ0 decay into π+π− the charge combinations ’+−’ and
’−+’ have been excluded both in experiment and in the simulation. The solid line shows
the result of a full coupled-channel calculation using the constituent-quark concept
(5.35) and the formation time τf = 0.5 fm/c.

The shape of the spectrum is similar to that of Rh
M (zh) of the charged hadron

multiplicity ratio shown in Fig. 6.23. The reason is quite simple: For the interpretation
we discard for a moment the constant factors N1 in Eq. (6.42) and the factors Ne in
Eq. (6.36) which have no influence on the shape of the zh dependence. The only
difference between Nh(zh)|A/Nh(zh)|D and N2(z2)|A/N2(z2)|D then is that one restricts
the detected hadron to the subleading particle in the latter case. If the subleading
particle (with energy fraction z2) of the initial γ∗N reaction interacts with the nuclear
environment, it will produce a bunch of low-energy particles. The new subleading
hadron in the event then has a energy fraction z′2 < z2. As for the usual charged
hadron multiplicity spectrum the coupled-channel FSI shuffle strength from the high
zh part to the low zh part of the spectrum. This is not the case for purely absorptive
FSI (dashed line in Fig. 6.26).

As one can see, our coupled-channel calculations (solid line) – using the constituent-
quark concept (5.35) and the formation time τf = 0.5 fm/c – are again in quantitative
agreement with the experimental data apart from the last data point in the 84Kr
data, which indicates a multiplicity ratio R2(z2 = 0.5) ≈ 1. This behavior cannot be
explained within our model.

As can be seen from Fig. 6.26, our calculations predict about the same double-
hadron attenuation ratio for 131Xe and 84Kr. The reason is that the attenuation of
leading and subleading hadrons increases in the same way when going from the krypton
to the xenon target. Hence, the double-hadron attenuation ratio (6.42) stays roughly
the same. Note, that this does not necessarily imply the same hadron attenuation for
84Kr and 131Xe. As we have pointed out in the discussion of Fig. 6.23, and as one can
also see by comparing the multiplicity ratios for the two targets in Figs. 6.27 and 6.29,
the hadron attenuation in the 131Xe nucleus is on average 5% larger than for 84Kr.

Attenuation of identified hadrons

We finally consider the attenuation of π±, π0, K±, p and p̄ in DIS of 27.6 GeV positrons
off 20Ne, 84Kr and 131Xe nuclei. For the krypton and xenon target the cuts are the same
as for charged hadrons plus the momentum cuts necessary for particle identification
at HERMES [Air03b], i.e. 2.5 GeV/c < pπ,K < 15 GeV/c and 4 GeV/c < pp,p̄ < 15
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GeV/c. The following cuts are different for the neon target [Elb03]: 2 GeV< ν < 24
GeV, 0.6 GeV/c < pπ < 15 GeV/c and 2 GeV/c < pK < 15 GeV/c.

For the moment we stick again to the prehadron concept (5.35) and the formation
time τf = 0.5 fm/c in our simulation. Figs. 6.27 and 6.28 show the multiplicity ratios
on 84Kr and 20Ne, respectively. The attenuation of pions is well described for the 84Kr
nucleus while it is slightly too strong for the light 20Ne target. This is no surprise
since for 84Kr our model already reproduced the multiplicity ratio of charged hadrons
– dominated by pions – while the attenuation was too strong in the case of the lighter
14N nucleus.

The attenuation of K+ mesons is well described for the heavier krypton target
while it is in poor agreement with the 20Ne data. In the latter case the calculated
multiplicity ratio is larger than 1 at small zh in contradiction to the experimental data.
For both nuclei our simulation yields approximately the same attenuation for K− and
K+ mesons at large zh. The reason for this is directly related to the K+ and K−

spectra in Fig. 4.29, which show that due to the quark content (ūs) the K− contain
less quarks from the beam or target than the K+. The few K− that are not solely
made of quarks and antiquarks created from the vacuum in the string fragmentation
carry (anti-)quarks from the resolved photon component or the nucleon sea. According
to the constituent-quark concept (5.35) one has thus less prehadronic interactions of
K−. This is compensated by the larger K−-nucleon cross section. In total this leads
to a similar attenuation of K+ and K−. From Fig. 4.29 it can also be seen that a large
part of the kaons at high zh stem from φ decay into K+K−. The attenuation of K±

at high zh, therefore, strongly depends on the FSI of the φ meson; this is in analogy to
the attenuation of charged hadrons (pions) which are strongly affected by the FSI of
the ρ meson.

There is a further complication connected with the multiplicity ratio of kaons, which
is neglected in a purely absorptive treatment of the FSI. The initial γ∗N interaction
produces many more pions and ρ mesons than strange particles (cf. Fig. 4.29). These
high-energy particles can produce secondaryK+ andK− in the nuclear FSI and thereby
enhance the multiplicity ratio for K± at low zh. This is illustrated by the dotted lines
in Fig. 6.28 which shows the result of a purely absorptive treatment of the FSI, in
which every particle that undergoes FSI is simply removed from the simulation. One
clearly sees that kaon absorption in the FSI is compensated to a large extent by the
production of kaons in the nuclear FSI of pions and ρ mesons. For zh �0.35 the K+

production exceeds the absorption in the light 20Ne and leads to a multiplicity ratio
larger than 1. This is not the case for the 84Kr nucleus which is large enough to also
absorb some of the secondary kaons. Of course this effect strongly depends on the
strangeness production cross section used in the FSI. Unless one does not have all
these coupled-channels under control it is, therefore, hard to draw any conclusion from
the kaon attenuation in DIS off nuclei.

From Fig. 4.29 one also sees that there are only very few protons that contain
no quarks from the beam or target because diquark-antidiquark creation is strongly
suppressed in the string fragmentation due to the relatively large diquark masses. The
latter also explains why most protons contain two of the original quarks, i.e. the diquark
from the target nucleon. These remnants have a very large prehadronic cross section
according to the constituent-quark concept (5.35). As a result, the proton multiplicity
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Figure 6.27: Multiplicity ratios of π±,0, K±, p and p̄ for a 84Kr nucleus (at HERMES)
as a function of the hadron energy fraction zh = Eh/ν and the photon energy ν. The
solid line represents the result of a simulation, where we use the constituent-quark
concept (5.35) for the prehadronic cross sections and a formation time τf = 0.5 fm/c.
The dotted line in the proton spectrum indicates the result of a simulation where all
γ∗N events are created by PYTHIA. The data are taken from Ref. [Air03b].
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Figure 6.28: Multiplicity ratios of π±, K±, p and p̄ for a 20Ne nucleus (at HERMES)
as a function of the hadron energy fraction zh and the photon energy ν. The solid line
represents the result of a simulation where we use the constituent-quark concept (5.35)
for the prehadronic cross sections and a formation time τf = 0.5 fm/c. The dotted line
represent the result of a simulation with a purely absorptive treatment of the FSI. The
data are taken from Ref. [Elb03].
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Figure 6.29: Predictions for the multiplicity ratios of π±, π0, K±, p and p̄ for a 131Xe
nucleus (at HERMES) as a function of the hadron energy fraction zh and the pho-
ton energy ν. In the simulation we use the constituent-quark concept (5.35) for the
prehadronic cross sections and a formation time τf = 0.5 fm/c.
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ratio comes out too small for both the 84Kr and the 20Ne nucleus. As discussed in
Sec. 4.3, the Lund model points to a larger formation time for protons than for the
lighter pions, ρ mesons and kaons. However, as we have shown in Fig. 6.23, a further
increase of the formation time to τ > 0.5 fm/c does not change our result at large zh
as long as the production time is zero. Since proton attenuation at large zh is solely
due to prehadronic interactions this either points towards a smaller prebaryonic cross
section or a finite production time.

A further problem connected with the proton spectra is the strong increase of the
multiplicity ratio for zh < 0.4 which is seen in the experimental 84Kr data. At small
proton energies Rp

M becomes larger than 1 which might be understood in our model
by a slowing down of high-energy protons in the FSI. Alternatively, protons might be
knocked out of the nucleus in the FSI of a high-energy meson produced in the primary
γ∗N interaction. We do indeed see these effects in our simulation, however, in both
cases the experimental momentum cut pp > 4 GeV/c removes most of these protons
from the acceptance. Thus, the protons in our transport simulation loose too much
energy per collision in the (pre-)hadronic FSI scenario.

As we have pointed out in the discussion of Fig. 6.9 the use of FRITIOF in the
simulation of γ∗N events has a small effect on the proton spectra. In Fig. 6.27 we,
therefore, also show the proton attenuation in a simulation where all γ∗N interactions
above WPY = 3 GeV are simulated by PYTHIA. One observes that besides a slight
improvement at large zh and low photon energies ν this has no effect on our result.

Within our simulation the attenuation of antiprotons also comes out slightly too
large in the (pre-)hadronic FSI scenario. We find that the antiprotons with zh �
0.5 are mainly beam or target remnants that contain an antiquark from the resolved
photon or the nucleon sea, whereas most of the antiprotons with zh � 0.5 are solely
made of antiquarks that are produced in the fragmentation of the string excited in the
γ∗N interaction. According to the constituent-quark concept (5.35) the attenuation of
antiprotons with zh < 0.5 is, therefore, only caused by hadronic FSI after τf .

In Fig. 6.29 we also show predictions for the attenuation of identified hadrons on
a 131Xe target. In the simulation we have used the constituent-quark concept (5.35)
and a formation time τf = 0.5 fm/c. By comparing the multiplicity ratios Rh

M of
negatively and positively charged pions for 20Ne, 84Kr, and 131Xe nuclei, we find that
the attenuation (1 − Rh

M) scales like Aα with an exponent α = 0.22 and 0.29 at
zh = 0.95, respectively. This scaling exponent is slightly smaller than the one that
we have extracted before from the attenuation of charged hadrons in 14N, 84Kr, 131Xe
nuclei. This is no contradiction since, as pointed out before, the scaling behavior is
strongly influenced by numerous effects like the nonuniform density distributions in
nuclei, isospin asymmetries in nuclei, formation lengths of particles, etc. Consequently,
the scaling exponent is in general not unique for the various particle species as we have
just seen for π+ and π−. We note that a scaling of the attenuation with the target
mass ∼ A2/3, as predicted by Refs. [Guo00, Wan01, Wan02, Wan03], would imply an
increase of about 34% when using 131Xe instead of 84Kr.

Lund production and formation times

Before we consider the prehadron-production times extracted from the fragmentation
routines implemented in JETSET we discuss the effect of the zh dependent production
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Figure 6.30: Calculated multiplicity ratios of charged hadrons for a 84Kr target as-
suming the finite production time tp given by Eq. (4.22). For t ≥ tp the prehadrons
interact with their full hadronic cross section. The dashed line shows the result of a
simulation with a purely absorptive treatment of the FSI. The solid line represents the
coupled-channel result.

time tp (in the lab frame) of Ref. [Bia87], i.e. Eq. (4.22). We point out that in our
calculation – due to technical reasons – all particles that emerge from the primary γ∗N
interaction start to propagate from the interaction vertex, while the production time
tp only affects the beginning of their interactions with the nuclear medium. One may
therefore expect slight deviations from the real reaction geometry, where the excited
string propagates over a small distance prior to fragmentation. In the following we
assume no interaction before tp and the full hadronic cross section for prehadrons for
t ≥ tp, i.e. there is no dependence on the formation time tf anymore. The dashed
line in Fig. 6.30 represents the result of a Glauber-like treatment of the FSI where
every time a prehadron interacts with another particle it is removed from the outgoing
channel. As the authors of Ref. [Acc03] we get a good description of the zh dependence
of the multiplicity ratio. However, the ν spectrum is not attenuated strongly enough at
higher values of ν (r.h.s. of Fig. 6.30). The solid curves show the effect of the coupled
channels, i.e., a particle is not only absorbed in a collision but produces a bunch of
low energy particles, thereby shifting strength to the low zh part of the spectrum and
thereby underestimating the attenuation at low z. Similarly, the attenuation is also
too weak in the ν-spectrum. Since an additional formation time with reduced cross
sections would further enhance these discrepancies, we conclude that the data cannot
be described with the production time (4.22).

We now test the result of a simulation where both the production times of the pre-
hadrons and the formation time τf of each individual particle are explicitly extracted
from the corresponding string fragmentation in JETSET (cf. Fig. 4.16). As described
in Sec. 4.3 there are in principle three time scales involved in the Lund fragmentation
process: i) The production proper time τp1 of the hadron’s first constituent, which
is obviously zero if the hadron contains a constituent from a string end, ii) the pro-
duction proper time τp2 when the second constituent is produced and a color neutral
object is formed, and iii) the formation proper time τf when the two world lines of the
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Figure 6.31: Multiplicity ratios of π±, π0, K±, p and p̄ for a 84Kr nucleus (at HERMES)
as a function of the hadron energy fraction zh and the photon energy ν. In the simula-
tion we use the proper times τp2 (solid line), 0.2τp2 (dotted line) and τp1 (dashed line)
from the JETSET routines as the prehadron-production time. The prehadronic cross
section is set to the full hadronic cross section and interactions before the production
time are neglected.
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constituents cross for the first time.

One could now proceed and introduce two effective cross sections: σ1 which ac-
counts for the ’partonic’ interaction between τp1 and τp2, and σ2 which accounts for
the ’prehadronic’ interactions of the color neutral object between τp2 and τf . We first
neglect the ’partonic’ interactions (σ1 = 0) and set the ’prehadronic’ cross section σ2

equal to the full hadronic cross section σh. In such a scenario we are no longer sensitive
to the formation time τf but only on τp2. The solid lines in Fig. 6.31 show the result of
such a simulation for a 84Kr target. Since the resulting attenuation is much too weak
we conclude that the strong FSI have to start earlier. Note that a reduction of σ2 will
further enhance the discrepancy with experimental data. To achieve reasonable results
for the multiplicity ratio one has to rescale τp2 by about a factor of 0.2 (dotted line),
which is quite dramatic. According to the Lund model (cf. Eq. (4.28)) this has to be
interpreted as an increase of the string tension κ by an unreasonably large factor of
about five in the nuclear medium. Note that, in a partial deconfinement of color in
the nuclear medium would lead to a decrease of the string tension as pointed out in
Sec. 6.4.1. Setting σ1 to zero means implies to neglect any interaction of the nucleon
debris with the nuclear medium between the moment of the γ∗N interaction and τp2.
This might be a problem, since the hadronic string that is produced in the DIS may
interact with a hadronic cross section right from the beginning [Cio02].

The average size of the prehadron-production times of the gluon-bremsstrahlung
model [Kop03] is about a factor of ten smaller than the times tp2 extracted from
JETSET. In fact, their average size is rather compatible with tp1. If one assumes
that strong FSI already set in right after τp1 and sets σ1 = σ2 = σh one gets the result
indicated by the dashed curves in Fig. 6.31, which are in satisfactory agreement with the
experimental data. However, such a large interaction cross section σ1 is definitely not
of perturbative nature. Furthermore, this recipe again implies that all beam and target
remnants can interact right after the photon-nucleon interaction since the production
time τp1 of their first constituent is zero. In fact, this scenario is not much different from
our constituent-quark ansatz discussed before. The solid symbols in Fig. 6.20 indicate
the average starting times of the prehadronic and hadronic interactions according to
the constituent-quark model (5.35) with τf = 0.5. The zh dependence of these two
times has to be compared with tp1 (dash-dot-dotted line) and tf (dash-dotted line),
respectively. In both cases the shape looks quite similar while the average times of our
constituent-quark concept are somewhat smaller. The latter is partly compensated
by the reduced prehadronic cross section, cf. Eq. (5.35). Due to time dilatation the
production times tp1 are in general already of the order of the nuclear radius. This
explains why the beam and target remnants – for which tp1 = 0 – dominate the shape
of the spectra.

6.4.3 Hadron attenuation at EMC energies

In this section we test different space-time pictures of hadronization in comparison
to the EMC data with 100 and 200 GeV muon beams [Ash91]. In the previous sec-
tion we have seen that almost all of the HERMES data can be described with the
simple prehadron concept of Sec. 5.3.2, i.e. setting the production time τp to zero for
all hadrons and using the constituent-quark concept (5.35) for the prehadronic cross



164 6. Photon-nucleus and electron-nucleus interactions

Figure 6.32: Model predictions for the average values of the kinematic variables in
charged hadron production off deuterium at EMC energies. The shaded areas are
bounded by simulations using a 100 GeV (lower boundary) and 200 GeV (upper bound-
ary) muon beam. Left: 〈ν〉 and 〈Q2〉 as a function of zh compared to the experimental
values for a 84Kr target. Right: Same for 〈zh〉 and 〈Q2〉 as a function of ν.

sections during the formation time τf . Obviously, this picture can only represent a
rough approximation to the real hadronization process. Neither is it very likely that
the string fragments convert instantaneously into color neutral prehadrons nor do the
cross sections instantaneously jump from the rescaled values (5.35) to the full hadronic
size.

The kinematic regime of the EMC experiment, which uses a 100 GeV (200 GeV)
muon beam, is different from that of the HERMES experiment. Here, the kinematic
cuts are Q2 > 2 GeV2, W > 4 GeV, x > 0.02, 10 GeV< ν < 85 GeV (30 GeV< ν < 170
GeV) and Eh > 3 GeV. In addition we again account for the angular acceptance of
detector, i.e. ±5◦ horizontally and ±8◦ vertically [Alk81]. In Fig. 6.32 we show the
resulting values for the average kinematic variables 〈ν〉, 〈Q2〉 and 〈zh〉 as function of zh
and ν respectively. The average photon energy is about five times larger than in the
HERMES experiment. Also the average values of Q2 in the various zh bins are twice
as large as at HERMES energies. At large photon energies 〈Q2〉 increases to 17 GeV2.

In the upper panel of Fig. 6.33 we show the EMC result for the multiplicity ratio of
charged hadrons on a 63Cu target as a function of the hadron energy fraction zh. The
solid line shows the result for the simple prehadron concept (5.35) with the constant
formation time τf . The shaded area indicates the region between the results of calcu-
lations using 100 GeV and 200 GeV muon beam energy. Obviously, we get a much too
strong attenuation for zh > 0.3. This either implies that the prehadronic interactions
set in too early or that the cross sections (5.35) are too large.

The dashed line shows the result for a simulation when assuming that during τf
the prehadron cross section increases quadratically in proper time τ from zero to the
asymptotic value σh. Such an ansatz can be motivated by color transparency, which
states that the cross sections of the color neutral prehadron scales with its diameter
squared. While giving the right attenuation for EMC energies, such an ansatz fails
to explain the HERMES data as long as the initial cross section is exactly zero (see
lower panel of Fig. 6.33). For the calculation indicated by the dash-dotted line in
the lower panel of Fig. 6.33 we assumed an initial prehadronic cross section 0.3σh
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Figure 6.33: Upper panel: Multiplicity ratio of charged hadrons for a 63Cu target as a
function of the fractional energy zh in the kinematic regime of the EMC experiment.
The shaded areas are bounded by simulations using a 100 GeV (lower boundary) and
200 GeV (upper boundary) muon beam. The data are taken from Ref. [Ash91]. Lower
panel: Multiplicity ratio of charged hadrons for a 84Kr target as a function of the
fractional energy zh in the kinematic regime of the HERMES experiment. The data
are taken from Ref. [Air03b]. The solid line shows the result of our simulation using
the constituent quark concept (5.35) for the prehadronic cross sections and a formation
time τf = 0.5 fm/c. In the simulation represented by the dashed line we assumed a
prehadronic cross section increasing quadratically in proper time during τf = 0.5 fm/c
from zero up to the full hadronic size. The dash-dotted line represents a simulation
where the prehadronic cross section increases quadratically in proper time from 0.3σh
to the full hadronic cross section.

followed by a quadratic increase in proper time up to the full hadronic value σh. The
difference between the initial prehadronic cross sections at HERMES and EMC might
be explained if one assumes that the cross section right after the γ∗N interaction is
set by the resolution of the virtual photon, i.e. Q2. Indeed, the average values of Q2 in
the EMC experiment are more than twice as large as at HERMES energies. However,
the HERMES data [HERM] do not indicate a strong enough Q2 dependence of the
multiplicity ratio to explain such a dramatic difference between the two ’initial’ values
for the prehadron cross section.
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Figure 6.34: Multiplicity ratio of charged hadrons for a 63Cu target as a function of
the fractional energy zh in the kinematic regime of the EMC experiment. The shaded
areas are bounded by simulations using a 100 GeV (lower boundary) and 200 GeV
(upper boundary) muon beam. The data are taken from Ref. [Ash91]. The dashed line
shows the result of our simulation using a constant prehadron production time τp = 0.1
fm/c. In the calculation indicated by the solid line we used the Lund production time
τp = 0.2τp2, where τp2 has been directly extracted from JETSET. In both calculation
we set the prehadronic cross section equal to the full hadronic cross section and neglect
interactions before the production time.

In Sec. 6.4.2 we have shown that, as long as one neglects a strong partonic energy
loss [Guo00, Wan01, Wan02, Wan03, Arl03] right after the γ∗N interaction, the (pre)
hadronic interactions have to set in very early (cf. Fig. 6.22) to explain the various
HERMES data. Since the Lorentz γ factors involved in the EMC experiment are about
five times larger than at HERMES energies, a finite (but small) production time will
have a larger impact on the calculated multiplicity ratios. In Fig. 6.34 we, therefore,
also show the results of a calculation with a constant production time τp = 0.1 fm/c
as well as the production time τp = 0.2τp2 with τp2 extracted directly from JETSET.
For simplicity we neglect all (partonic) interactions before the production time of the
prehadrons and set the prehadronic cross to the full hadronic cross section σh.

The result for τp = 0.1 fm/c in the kinematic region of the HERMES experiment
is shown in Fig. 6.22 and yields a too weak attenuation at large zh. An additional
formation time with reduced cross sections would further enhance this discrepancy.
On the other hand, the production time τp = 0.1 fm/c is still too small to give the
right attenuation at EMC energies as can be seen from the dashed line in Fig. 6.34.

In Sec. 6.4.2 we have found that using τp1 as the prehadron production time yields
a satisfactory description of the HERMES data. However, using τp1 as the prehadron
production time leads to the same problem observed for our constituent quark concept
in Fig. 6.33, i.e. a too strong attenuation of the high-zh hadrons. The reason is again
the strong prehadronic interactions of the beam and target remnants right after the
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Figure 6.35: Model predictions for the average values of the kinematic variables in
charged hadron production off 84Kr in comparison with the experimental numbers
at HERMES [Nez04] using the 12 GeV positron beam. For the calculation we use
the formation time τf = 0.5 fm/c and the constituent-quark concept (5.35) for the
prehadronic cross sections. Left: 〈ν〉 and 〈Q2〉 as a function of zh compared to the
experimental values for a 84Kr target. Right: Same for 〈zh〉 and 〈Q2〉 as a function of
ν.

γ∗N interaction.

When setting the prehadron production time to 0.2τp2 (solid line in Fig. 6.34), we
observe again a slightly too strong attenuation. However, this concept is in better
agreement with the experimental data at EMC energies than our previous approaches.

In summary, it does not seem to be possible to simultaneously describe both the
HERMES and the EMC data with (pre-)hadronic FSI only, as long as one does not
account for additional effects like color transparency.

6.4.4 Hadron attenuation at Jefferson Lab energies

In the previous sections we have shown that most features of the HERMES data arise
because of (pre-)hadronic FSI while the EMC experiment points to new phenomenons
at higher energies. To confirm that our excellent description of the HERMES observ-
ables was not just a lucky coincidence it would be nice if we could also test our model
at lower energies.

HERMES at 12 GeV

The CLAS collaboration at Jefferson Lab is currently investigating the attenuation of
hadrons in DIS of a 5 GeV electron beam incident on various nuclear targets [WBr02,
KWa04] but there is no data available yet. However, the HERMES collaboration has
also looked into DIS off 14N and 84Kr at about half of the maximum positron-beam
energy, i.e. 12 GeV [Nez04]. This coincides with the electron beam energy that will be
reached at Jefferson Lab after the upgrade of the electron accelerator [Arr03, WBr03].

In the HERMES experiment at Ebeam = 12 GeV basically the same cuts as for the
27.6 GeV beam on 20Ne have been applied: W > 2 GeV, ν > 2 GeV, y < 0.85 as
well as zh > 0.2 except for the zh spectra. However, some of the experimental cuts
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Figure 6.36: Calculated multiplicity ratio of positively and negatively charged hadrons
(upper panel) and positive and negative pions (lower panel) for a 14N target when
using a 12 GeV electron beam at HERMES. For the calculation we use the formation
time τf = 0.5 fm/c and the constituent-quark concept (5.35) for the prehadronic cross
sections. The data are taken from Ref. [Nez04].

had to be released because of the lower statistics. The lower limit of Q2 was shifted
from 1 GeV2 to 0.5 GeV2 and the lower cut on Bjorken x was removed completely. In
addition the lower limit of the hadron momenta was required to be 1 GeV/c for all
hadron species.

We have used these cuts in a simulation at 12 GeV positron-beam energy and again
accounted for the geometrical acceptance of the HERMES detector. In our calculation
we use the prehadron concept (5.35) and a formation time τf = 0.5 fm/c which yields
an excellent description of most features of the HERMES data at higher beam energy.
In Fig. 6.35 we show the average kinematic variables 〈Q2〉, 〈ν〉 and 〈zh〉 for a krypton
target as a function of zh and ν respectively. It turns out that, also in the lower
kinematic regime, our model perfectly reproduces the kinematics. For the 14N target
we find a similar good agreement.

The calculated zh and ν dependence of the multiplicity ratios Rh
M are shown in

Figs. 6.36 and 6.37 for a 14N and a 84Kr target, respectively. We compare both with
the data on positively (solid lines) and negatively (dashed lines) charged hadrons and
pions. Considering, the fact that we did not change any aspect of our model we get
an astonishingly good description of all of the experimental data in this very different
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Figure 6.37: Calculated multiplicity ratio of positively and negatively charged hadrons
(upper panel) and positive and negative pions (lower panel) for a 84Kr target when
using a 12 GeV electron beam at HERMES. For the calculation we use the formation
time τf = 0.5 fm/c and the constituent-quark concept (5.35) for the prehadronic cross
sections. The data are taken from Ref. [Nez04].

kinematic regime. Note that both the average photon energy 〈ν〉 and the average
virtuality 〈Q2〉 are reduced by a factor of two compared to our previous calculations,
cf. Fig. 6.21.

The attenuation for both nuclei is in average about 10–15 % larger than for Ebeam =
27.6 GeV mainly because of two reasons: First of all, time dilatation is less pronounced
at smaller energies and therefore more hadrons form inside the nucleus. Since the
hadronic cross section is in general larger than the prehadronic one, the hadrons are
subject to stronger FSI. The second reason for the stronger attenuation, especially at
small zh, is the experimental ph cut which removes a large fraction of the secondary
particles from the acceptance. From Fig. 6.35 on sees that the average photon energy
is only about 6 GeV. Even if a primarily produced hadron carries a large fraction of the
photon energy, it is very unlikely that the secondaries of a FSI fly into the detector and,
in addition, have momenta larger than 1 GeV. As a result, the characteristic strong
increase of the multiplicity ratio at small zh is less pronounced as for the 27.6 GeV
positron beam.

Like before the attenuation of pions and charged hadrons is stronger for the heavier
krypton nucleus because of its larger radius. While the attenuation is the same for
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Figure 6.38: Model predictions for the average values of the kinematic variables in
charged hadron production off deuterium using a 12 GeV electron beam and the CLAS
detector. This kinematic regime corresponds to the one that will be available at Jef-
ferson Lab after its upgrade. Left: 〈ν〉 and 〈Q2〉 as a function of zh. Right: Same for
〈zh〉 and 〈Q2〉 as a function of ν. Note that as usual the cut zh > 0.2 is applied for the
ν dependence.

positive and negative pions we see a difference between the positively and negatively
charged hadrons. This is solely due to the different attenuation of protons – that
contribute to the positive hadrons spectrum – and the contamination by protons that
are knocked out of the nucleus in the FSI.

Jefferson Lab at 12 GeV

Based on our successful description of the 12 GeV HERMES data, we now go ahead
and make predictions for the observed particle spectra at Jefferson Lab after the 12
GeV upgrade. We use the same experimental cuts as before except for the photon
virtuality which will be restricted to Q2 > 1 GeV2 [WBr]. In addition we account for
the larger geometrical acceptance of the CLAS detector which covers angles from 6◦ to
147◦. We therefore expect to see many more of the low-zh particles that are produced
in the FSI and simply miss the detector in the HERMES experiment, cf. Fig. 6.25.

Before we turn to the multiplicity ratio we again discuss the average kinematic
variables 〈Q2〉, 〈ν〉 and 〈zh〉 as a function of zh and ν respectively. Fig. 6.38 shows that
the average value of Q2 is considerably larger than in the HERMES experiment at 12
GeV. The reason is not only the different lower Q2 cut but also the extension of the
detector acceptance to very large angles. In the HERMES experiment the scattering
angle θ of the electron was limited to the very forward direction which strongly affected
the maximum value of Q2, cf. Eq. (D.2). The larger geometrical coverage also decreases
the average value of zh because more of the low-energy particles reach the detector.
Note that as usual the cut zh > 0.2 is applied for the ν dependence. Otherwise we
would end up with even a larger difference between the HERMES and the Jefferson
Lab result on 〈zh〉. The different angular acceptance also gives a natural explanation
for the larger average photon energy at HERMES since the probability for a hadron to
fly into the HERMES forward detector increases with photon energy.

In Fig. 6.39 we show the calculated multiplicity ratio Rh
M for π±, π0, K±, K0
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Figure 6.39: Calculated multiplicity ratio of identified π±, π0, K±, K0 and K̄0 for
12C (dotted lines), 56Fe (dashed lines) and 208Pb nuclei (solid lines). The simulation
has been done for a 12 GeV electron beam and the CLAS detector. The dash-dotted
line represents a calculation for 56Fe without Fermi motion. In all calculations we use
the formation time τf = 0.5 fm/c and the constituent-quark concept (5.35) for the
prehadronic cross sections.
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Figure 6.40: Calculated multiplicity ratio of identified π±, π0, K±, K0 and K̄0 for 12C
(dotted lines), 56Fe (dashed lines) and 208Pb nuclei (solid lines) as a function of the
transverse momentum pT . The simulation was done for a 12 GeV electron beam and
the CLAS detector. In all calculations we use the formation time τf = 0.5 fm/c and
the constituent-quark concept (5.35) for the prehadronic cross sections.

and K̄0 production on 12C (dotted lines), 56Fe (dashed lines) and 208Pb nuclei (solid
lines). The dependence of the hadron attenuation at large zh on the nucleon number
A is not much different from the one in the HERMES experiment shown in Fig. 6.23.
The attenuation roughly increases like Aα with a scaling exponent α in the range 0.2–
0.4. A scaling with A1/3 would have been expected from the fact that the interaction
probability for a produced hadron on its way out of the nucleus is proportional to the
distance that it passes through nuclear matter. However, if the hadron is still inside the
nucleus after its formation time, the interaction probability is instantaneously increased
in our approach. This and other effects like a nonuniform density distribution lead to
a deviation from the naively expected scaling behavior.

Like our previous HERMES results the multiplicity ratio Rh
M increases as a function

of ν because of time dilatation effects and decreases with zh due to a redistribution of
spectral strength to lower energies in the FSI. Because of the lower photon energies a
part of the (anti-)kaons can form inside the nucleus and undergo hadronic FSI. The
larger interaction cross section of the K− and the K̄0 then leads to a considerably
stronger attenuation than for the K+ and the K0.

The K− and K̄0 spectrum exhibit an increase of Rh
M at low photon energies which

is absent for pions and kaons. Because of strangeness conservation the primary γ∗N
reaction can only produce an antikaon together with a kaon which means that there are
at least three particles in the final state. For kaons the reaction γN → KY is always
possible and, hence, the average momentum of kaons is larger than that of antikaons.
At the lower end of the photon-energy spectrum only very few antikaons survive the
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Figure 6.41: Model predictions for the average values of the kinematic variables in
charged hadron production off deuterium using a 5 GeV electron beam and the CLAS
detector. This kinematic regime corresponds to the one that is currently available at
Jefferson Lab. Left: 〈ν〉 and 〈Q2〉 as a function of zh. Right: Same for 〈zh〉 and 〈Q2〉
as a function of ν.

lower momentum cuts. The Fermi motion in the nuclear target increases this yield
and leads to a larger multiplicity ratio at small photon energies. For comparison, the
dash-dotted line in Fig. 6.39 shows a calculation for a 56Fe nucleus without Fermi
motion. Without Fermi motion the strong rise of the antikaon multiplicity ratio at
small photon energies is gone. As we show in the next section, a further decrease of
the photon energy further enhances the effect of Fermi motion.

In Fig. 6.40 we give a prediction for the pT dependence of the multiplicity ratio for
π±, π0, K±, K0 and K̄0 on carbon, iron and lead nuclei. The multiplicity ratio for pions
is now larger than 1 for pT > 1 GeV/c. This means that the attenuation of high-pT
pions is overbalanced by their increase due to elastic and inelastic (pre-)hadronic FSI
of low-pT hadrons. This was not the case at HERMES energies, as can be seen from
Fig. 6.24. One reason may be the fact that the initial pT distribution of pions directly
after the γ∗N reaction is not as broad as in the HERMES experiment. However, also
the average pT that the hadrons gain in the FSI may be different for the two energy
regimes.

The attenuation for the K− and K̄0 is again much stronger than for the K+ and
the K0 and, in contrast to the kaons, the K− and K̄0 do not show an increase of the
multiplicity ratio for high pT . The reason is again the quark content of the kaons (ūs
and d̄s) which leads to a larger absorption cross section and reduces the probability of
side feeding by fast pions in the FSI.

Jefferson Lab at 5 GeV

In the following we discuss hadron attenuation in the kinematic regime that is cur-
rently accessible at Jefferson Lab using a 5 GeV electron beam. As before, we use the
constituent-quark model (5.35) for the prehadronic interactions and the formation time
τf = 0.5 fm/c. The cuts in our simulation have been adjusted to the ones that will
most likely be used in the data analysis [WBr]: 2 GeV< W < 3.2 GeV, ν > 2 GeV,
y < 0.85, Q2 > 1 GeV2. Like before, we account for the geometrical acceptance of the
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CLAS detector and use the cut zh > 0.2 for all spectra except the zh dependence. We
use no cut on the final hadron momenta.

Fig. 6.41 shows the model predictions for the average kinematic variables at Jeffer-
son Lab using the cuts that have been stated above. The average value of Q2 is about
1.5 GeV2 which is quite large considering the small average photon energy 〈ν〉 ≈ 3
GeV. In contrast to the results of our previous simulations shown in Fig. 6.38 neither
〈ν〉 nor 〈Q2〉 increase at low zh. The reason is the missing lower cut on the final hadron
momentum which required large photon energies for the low-zh hadrons. The increase
of 〈Q2〉 was just a consequence of the increasing value for 〈ν〉 since higher photon en-
ergies allow for higher Q2. The latter also manifests itself in the increase of 〈Q2〉 with
photon energy ν seen in Figs. 6.38 and 6.41. Because of the constraint on Q2 which is
set by the geometry of the HERMES detector, this increase is not seen in Fig. 6.35.

The predictions for the multiplicity ratios at current Jefferson Lab energies are
shown in Fig. 6.42. Again we calculate Rh

M as a function of zh and ν for 12C (dotted
line), 56Fe (dashed line) and 208Pb (solid line).

There is not much new about the pion spectra. As before we observe an increase
of Rh

M with decreasing zh which is caused by the redistribution of energy in the (pre-)
hadronic FSI. In the narrow ν window that we are considering in Fig. 6.42 the multi-
plicity ratio stays almost constant. The explanation is the same as for the vanishing ν
dependence in Fig. 6.25 when we discussed a detector with complete angular coverage.
The CLAS detector comes very close to such a hermetic detector. Any interaction of a
pion in the FSI will produce new particles which contribute to the integrated ν spectra
if their fractional energy zh is larger than 0.2. An increase of Rh

M at larger ν due to
time dilatation is compensated by less particle production in the FSI. The constance
of Rh

M(ν) is lost if one applies an additional lower momentum cut of the order of the
photon energy as can be seen in Fig. 6.39.

Note that the average photon energy is much smaller than in our previous simula-
tions and that the maximum photon energy is only 4.25 GeV. Since the virtual photon
cannot produce antikaons without an additional strange meson, e.g. γ∗N → KK̄N
(mK=0.496 GeV), the maximum fractional energy zh is limited to 0.9 for antikaons.
Because of the energy distribution in the three body final state and the finite virtuality
of the photon (Q2 > 1 GeV2) the maximum fractional energy of antikaons is further
reduced. As a result, the zh spectra for K− and K̄0 in Fig. 6.42 do not exceed zh ≈ 0.8.
For the same reason the production of antikaons with zh > 0.2 is reduced at the lower
end of the photon spectrum. The Fermi motion in the nucleus enhances the yield of
antikaons in these two extreme kinematic regions as can be seen by comparison with
the dash-dotted line in Fig. 6.42 which represents the result of a calculation for 54Fe
where Fermi motion has been neglected. Certainly, the kaons can be produced in a
two body final state (e.g. γ∗N → KΛ), however, the accompanying hyperon has a
relatively large mass. Therefore, similar, although less pronounced, effects show also
up for the kaons. Beside the effects of Fermi motion the multiplicity ratios of kaons
and antikaons show the same features as for higher energies.

In Fig. 6.43 we present our model results for the dependence ofRh
M on the transverse

momentum pT of identified hadrons which will also be a subject of investigation at
Jefferson Lab [KWa04]. Compared to the results of Fig. 6.40 for a 12 GeV electron
beam, the enhancement of high-pT hadrons is even more pronounced. The reason
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Figure 6.42: Calculated multiplicity ratio of identified π±, π0, K±, K0 and K̄0 for
12C (dotted lines), 56Fe (dashed lines) and 208Pb nuclei (solid lines). The simulation
has been done for a 5 GeV electron beam and the CLAS detector. The dash-dotted
line represents a calculation for 56Fe without Fermi motion. In all calculations we use
the formation time τf = 0.5 fm/c and the constituent-quark concept (5.35) for the
prehadronic cross sections.
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Figure 6.43: Calculated multiplicity ratio of identified π±, π0, K±, K0 and K̄0 for 12C
(dotted lines), 56Fe (dashed lines) and 208Pb nuclei (solid lines) as a function of the
transverse momentum pT . The simulation was done for a 5 GeV electron beam and
the CLAS detector. In all calculations we use the formation time τf = 0.5 fm/c and
the constituent-quark concept (5.35) for the prehadronic cross sections.

is that we have further reduced the average photon energy and thereby the relative
number of high pT hadrons that emerge from the primary γ∗N interaction. Most
hadrons with pT > 1 GeV are produced in the FSI. The most dramatic effect is again
seen for the kaons whose attenuation is compensated by kaon production in the FSI for
a large region of pT . The fact that the strong increase of the multiplicity ratio starts
again slightly below pT = 1 GeV/c may be related to the average value of pT that the
hadrons gain in the FSI.



Chapter 7

Summary and Outlook

In the present work we have studied the hadronic interactions of high-energy protons,
photons and leptons.

Below invariant energies of about 2 GeV, hadronic interactions can be described
by the excitation and decay of resonances. At higher energies the resonant structure
of the cross section vanishes and hadronic interactions are dominated by single gluon,
Pomeron and Reggeon exchange. As we have discussed in Chap. 2, the latter two can
be interpreted as the exchange of multiple soft gluons and (anti-)quarks. At even higher
energies hard interactions between the constituents of the hadrons become important.

In Chap. 3 we have pointed out that photon and electron-induced reactions show
some striking similarities to hadron-hadron interactions because of the hadronic fluctu-
ations of the photon. Depending on the energy and virtuality of the photon, the same
event classes as in high-energy hadron-hadron interactions may occur. These events
include elastic and diffractive scattering as well as hard scatterings between the con-
stituents of the hadronic fluctuation and the target. In addition the (virtual) photon
can couple directly to a quark inside the target. The latter dominates the cross section
in deep inelastic lepton scattering at sufficiently large Bjorken x � 0.2.

The various high-energy interactions lead to the excitation of hadronic strings which
decay into hadrons due to the creation of quark-antiquark pairs from the vacuum. In
Chap. 4 we have described the fragmentation of these strings within the Lund model
which is also the basic ingredient of the Monte Carlo generators FRITIOF and PYTHIA
that are employed in our transport simulation. The advantage of the Lund model is
its capability to determine the complete final state of a fragmenting string, including
the particle species and their four-momenta.

The Lund model involves three time scales for the production of a hadron in the
fragmentation of a string. The first two are the production times of the hadron’s
first and second constituent, the third time is the formation time of the hadron, i.e. the
time when the hadronic wave function has build up. Since the production of the second
hadron constituent already leads to the creation of a colorless system, the corresponding
production time is usually called the production time of a (color neutral) prehadron.

In Sec. 4.3 we have used the Lund model to calculate the production times of the
quark-antiquark vertices in the string fragmentation as well as the formation times of
the hadrons. We thereby accounted for the finite mass of the decaying string which
limits the number of decay products to about 3–5 at the energies considered throughout
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this work. In contrast to previous investigations [Bia87], where a simplistic fragmenta-
tion function was used, we have found a non-trivial mass dependence of the production
and formation times. The tendency thereby is that the production and formation times
increase with hadron mass.

At the end of Sec. 4.3 we have directly extracted the production and formation
times of hadrons in deep inelastic positron-nucleon scattering at HERMES energies
from PYTHIA. Depending on the energy and mass of the produced hadron, the aver-
age production proper time for the first constituent lies in the range 0–0.8 fm/c while
the production proper time of the second constituent and the formation proper time
of the hadrons can become as large as 1.5–1.7 fm/c. Due to time dilatation the pro-
duction and formation lengths in the lab frame can exceed nuclear dimensions. By
using nuclear targets one can therefore learn something about the space-time picture
of hadronization.

In Chap. 5 we have given an introduction to Glauber theory and the BUU transport
model. Both models can be used for the description of high-energy nuclear reactions
with each having its pros and cons. While the Glauber model allows for a full quantum
mechanic treatment of the scattering process, its application is limited to very few
experimental observables. As we show in Chaps. 5 and 6, the main reason is the
neglect of complicated coupled channel effects that may strongly influence the outcome
of a nuclear reaction. The latter can be accounted for in our probabilistic coupled-
channel transport model. However, it is not clear how to incorporate quantum mechanic
interference effects that show up in high energy nuclear reactions, such as the AGK
cancellation or coherence length effects in photon- and electron-induced reactions.

In Sec. 5.3 we compare the results of the Glauber and the BUU model for proton-
nucleus collisions at 100 GeV incident proton energy. While the mass dependence A0.68

of the total proton-nucleus cross section in the BUU model is in perfect agreement with
experimental data, the simple Glauber model yields a too large scaling exponent. The
latter may be due to the neglect of Gribov’s inelastic corrections, cf. Appx. H. Be-
cause of the AGK cancellation the inclusive meson production cross section in the
Glauber model is proportional to the mass number A of the nucleus. This scaling
behavior is reproduced by the probabilistic coupled channel model, if one accounts
for the interactions of the beam and target remnants during the formation time. In
our default approach we therefore set the production times of all prehadrons to zero
and rescale their cross sections during the formation time τf according to a simple
constituent-quark model which determines the prehadronic cross section from the num-
ber of (anti-)quarks in the prehadron stemming from the beam or target. However, the
experimental pA data on pion and kaon production that we have used to study the A
dependence of the semi-inclusive production cross section cannot distinguish between
a scenario with and without prehadronic interactions.

A more promising tool to study the space-time picture of hadronization is provided
by photon and electron-induced reactions which have been discussed in Chap. 6. How-
ever, complications arise if a hadronic fluctuation of the photon persists over a distance
that exceeds its mean free path in the nuclear medium. In that case coherent multiple
scattering on several nucleons induces interference effects. While these coherence length
effects arise naturally within Glauber theory, it is not straight forward to account for
them in our probabilistic coupled channel model. In Sec. 6.1 we have discussed the phe-
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nomenon of nuclear shadowing in high-energy photon- and electron-induced reactions
and presented a possible implementation into our transport model.

In Sec. 6.2 we have investigated exclusive ρ0 photo- and electroproduction off nuclei
and demonstrated that our transport model indeed reproduces the coherence length ef-
fects that have been observed by the HERMES collaboration. Furthermore, we demon-
strated how the coupled-channel FSI mimic the effect of color transparency and dis-
cussed the experimental cuts that are necessary to make calculations based on Glauber
theory work. In our analysis of the experimental HERMES data we find no sign for
color transparency, i.e. an increase of the nuclear transparency during the formation
time of the ρ0. In fact, our results indicate that, in the kinematic regime of the HER-
MES experiment, the ρ0 starts to interact with its full hadronic cross section right after
its production.

In Sec. 6.3 we have investigated semi-inclusive photoproduction of charged pions,
kaons and D mesons for photon energies in the range 1–30 GeV. In these less exclusive
reactions we find a strong enhancement of the particle multiplicities due to the FSI
which cannot be explained within the Glauber model. Especially the production of
K+ mesons – that cannot be absorbed in the nuclear medium – is strongly increased
by side feeding in the FSI.

A detailed investigation of hadron attenuation in deep-inelastic lepton scattering
at HERMES, EMC and Jefferson Lab energies has been presented in Sec. 6.4. For
the space-time picture of the hadronization process we have basically considered two
different scenarios. In the first scenario we use the constituent-quark concept that
we have already employed for proton-nucleus interactions. In the second approach
we use the production and formation times that we have extracted from the Lund
model. Due to our transport description, we explicitly account for particle creation
in the interactions of the primary reaction products emerging from the initial γ∗N
interaction. These secondary particles are found to strongly influence the low-energy
part of the experimentally observed multiplicity ratios.

Furthermore, we have studied how the kinematic cuts and the finite detector ac-
ceptance influence the experimental observables. We find strong effects that have to
be taken into account in any robust interpretation of the data.

We have investigated the attenuation of charged and neutral pions, kaons, protons
and anti-protons as a function of the fractional energy zh, the photon energy ν and
the transverse momentum pT as well as the double-hadron attenuation. While in the
kinematic region of the HERMES experiment most phenomena can be attributed to
(pre-)hadronic FSI, we find limitations of our model for EMC energies and for large
pT . The latter supports a partonic origin for the Cronin effect in electron-nucleus
interactions.

Motivated by our successful description of the experimental HERMES data we have
also made predictions for the present and future Jefferson Lab experiments in Sec. 6.4.4.
Because of the considerably smaller photon energy, we find a strong influence of Fermi
motion on the multiplicity ratios. Furthermore, the hadronic FSI yield a strong enough
pT broadening to produce a multiplicity ratio larger than one at pT > 1 GeV/c.

In the following we like to draw attention to possible improvements of our model
as well as potential future physics applications:

• Event generation
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Up to now we use the event generator PYTHIA 6.2 only for the generation of
the primary γ∗N interaction and model the hadronic FSI with FRITIOF. As we
have pointed out in Chap. 4, it is in principle possible to reduce the kinematic
limit for γ∗N event simulation with PYTHIA to 3 GeV by a suitable change of
the parameter set. This may also work for hadronic interactions and has to be
tested against experimental data. The event generator FRITIOF could then be
completely removed from our transport model, and photon and hadron-induced
reactions at high energies could both be described by the same Monte Carlo
generator.

• String propagation
We have seen in Sec. 6.4 that a scenario in which any interactions before the pro-
duction of the color neutral prehadrons at proper time τp2 are neglected does not
yield enough hadron attenuation. Instead, we had to assume strong interactions
right after the production times τp1 of the hadron’s first constituent. However,
this does not necessarily imply that there is a freely interacting quark that sees
strong FSI. As pointed out in Sec. 6.4 the longitudinal dimension of the string
and its (color neutral) fragments is not expected to be larger than 1 fm [Cio02].
Therefore, one has in principle to deal with the propagation of color neutral
strings that subsequently fragment into prehadrons and color neutral remainder
strings. A collision of a (remainder) string – before its fragmentation – will most
likely lead to a different final state than an undisturbed decay.

• pQCD effects
In a direct photon-nucleon interaction at very high Q2 and energy ν the photon
is expected to knock out a highly virtual point-like quark that immediately may
radiate gluons. The gluons then can split into quark-antiquark pairs and finally
the various colored quarks and gluons combine to form the hadronic strings.
While these processes are in principle taken into account in our present simula-
tions via PYTHIA, we have completely neglected their space-time evolution so
far and assumed that they take place instantaneously at the interaction point.
This simplification may have considerable consequences at EMC energies and
possibly explain our difficulties in describing the data. Depending on the spatial
extension of this process and the density of the surrounding medium the quark
may be subject to multiple scattering before the strings are formed. We can
calculate the connected energy loss within pQCD and account for it by reducing
the invariant mass of the strings.

• Color transparency at Jefferson Lab
We plan to extend our previous investigation of incoherent vector meson produc-
tion off complex nuclei from HERMES energies to the current [WBr03] and future
[KWa04] Jefferson Lab energies. Our simulations will be useful to extract a clear
signal for color transparency from the measured nuclear transparency ratios since
they will allow us to separate the coherence length and coupled channel effects.
On the other hand we can implement different models of color transparency in
our transport description and see what signals survive after the FSI and what
experimental cuts can improve the signal. In an analogous way we can address
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the search for color transparency and nuclear filtering in pion photoproduction
off nuclei which is another anticipated experiment after the upgrade [KWa04].

Our model for high-energy photonuclear reactions will therefore provide a strong
support for the ongoing and future experiments at Jefferson Lab. In principle,
one might even think of a possible implementation of our Monte Carlo simulation
into the detector simulation at CLAS.

• Shadowing of the photon’s GVMD component
One of our next steps will be a more thorough consideration of the GVMD part of
the virtual photon [Pil00]. So far we have only accounted for the shadowing of the
photon’s vector meson fluctuations in our model and neglected the contribution
to nuclear shadowing that arises from coherent multiple scattering of its pertur-
bative quark-antiquark component. This is possible as long as we restrict our
investigations to the kinematic regime of the Jefferson Lab and the HERMES ex-
periments. Considering possible future applications of our model at EIC energies,
however, it is important to also take the modification of the GVMD part of the
photon into account. In close analogy to our treatment of the VMD component,
we can also calculate the modifications of the GVMD part within Glauber the-
ory. The complication will be that the coherence length of each quark-antiquark
fluctuation depends on its intrinsic transverse momentum so that each of the
infinitely many quark-antiquark configurations will be modified differently in the
nuclear medium.

• EMC effect
After the incorporation of shadowing for the photons’s GVMD component, our
model accounts for Fermi motion, nuclear binding as well as shadowing down
to very small values of the Bjorken scaling variable. Therefore, it contains all
ingredients that are necessary to study the EMC effect, i.e. the difference between
the nuclear and the nucleonic structure functions as measured in deep inelastic
lepton scattering at moderate Bjorken x. By comparing to inclusive DIS data
we can determine to what extent the parton distributions of the bound nucleons
are really modified in the nuclear medium. These modified parton distributions
can then be used in our model as an input for the calculations of more exclusive
reactions like hadron production.

• Photo- and electroproduction of charm
We have seen in Sec. 6.3 that by simply using VMD and Eq. (3.5) we overestimate
the charm content in the photon. Furthermore, it is questionable whether we
correctly describe the side feeding of charm in the FSI. After an improvement of
both deficiencies it will be interesting to look for subthreshold electroproduction
of charm at upgraded Jefferson Lab energies.

• EIC
After the improvements discussed above, our model may also be used for calcu-
lations at energies of the Electron-Ion Collider (EIC) [Des02] which will collide
polarized electron and (un)polarized (nuclear) nucleon beams over a wide energy
range and with a higher luminosity (L = 1033cm2s−1) than any existing collider.
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The center-of-mass energy per nucleon lies in the range from 15 GeV to 100 GeV
which corresponds to a 2.1 TeV electron beam in a fixed target configuration.
Since the accessible values of x are limited by the available collision center-of-
mass energy, the EIC will enable precision DIS measurements on nucleon and
nuclear targets in a completely new territory: 10−4 < x < 1 and 1 < Q2 < 10000
GeV2. Due to its collider geometry and dedicated hermetic detectors it will
be able to reconstruct the complete final state and to study the hadronization
process in the complete kinematic range.

• pA and πA reactions Besides photon- and electron-induced reactions also
semi-inclusive particle production in high-energy pA and πA collisions can be
studied in our model. Although the primary interaction of the hadronic projec-
tile will in general take place on the front side of the nucleus, the string and
its fragments will interact with the nuclear medium on their way through the
target prior to hadronization. A simultaneous understanding of the experimental
data obtained with electromagnetic and hadronic probes will help to distinguish
between different hadronization scenarios.

• Jet quenching at RHIC
Momentarily, we are at a stage where the ongoing DIS experiments at DESY and
Jefferson Lab are about to reveal some details about the space-time picture of
hadronization in cold nuclear matter. Meanwhile, RHIC explores the transition
from confined to deconfined matter, i.e. the quark-gluon plasma (QGP) in ultra-
relativistic heavy-ion collisions. As pointed out in the introduction, the detailed
understanding of hadron attenuation in cold nuclear matter can provide us with
essential input for the interpretation of jet quenching as a signature for the QGP.
Hence, one important task is to learn to what extent the attenuation of hadrons
in cold and hot nuclear matter are related.

Our BUU transport simulation can serve as a starting point for a unified de-
scription of electron-nucleus and heavy-ion reactions from Jefferson Lab to RHIC
energies.



Appendix A

Optical Theorem

In this chapter we derive the optical theorem from the unitarity postulate of Sec. 2.1.3:

S†S = �. (A.1)

Using Eq. (2.1) one can express the scattering matrix S in (A.1) in terms of the T
matrix:

�+ iT − iT † + T †T = �

⇔ i(T † − T ) = T †T. (A.2)

We now look at the matrix element of (A.2) for the process ab → cd and insert the
unit operator in form of a complete set of states {
pf} on the right-hand side:

〈
pc, 
pd|i(T † − T )|
pa, 
pb〉 =
∑
n

(
n∏
f=1

∫
d3pf

(2π)32Ef

)
〈
pc, 
pd|T †|{
pf}〉〈{
pf}|T |
pa, 
pb〉.

(A.3)
Eq. (A.3) can be rewritten in terms of the invariant amplitude M defined by (2.2):

(2π)4δ(4)(pa + pb − (pc + pd)) i(M∗(pc, pd → pa, pb) −M(pa, pb → pc, pd)) =∑
n

(
n∏
f=1

∫
d3pf

(2π)32Ef

)
M∗(pc, pd → {pf})M(pa, pb → {pf})

×(2π)8δ(4)(pa + pb −
n∑
f=1

pf )δ
(4)(pc + pd −

n∑
f=1

pf ). (A.4)

Using the identity

δ(4)(pa+ pb−
n∑
f=1

pf)δ
(4)(pc+ pd−

n∑
f=1

pf ) = δ(4)(pa+ pb−
n∑
f=1

pf )δ
(4)(pa+ pb− (pc+ pd))

one gets from Eq. (A.4) the following expression for the forward-scattering amplitude
(pc = pa, pd = pb):

2ImM(pa, pb → pa, pb) =
∑
n

(
n∏
f=1

∫
d3pf

(2π)32Ef

)
|M(pa, pb → {pf})|2

×(2π)4δ(4)(pa + pb −
n∑
f=1

pf ).
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Figure A.1: Pictorial representation of the optical theorem. First the definition of the
total cross section and then the completeness and in the unitarity relation have been
used.

The cross section is related to the invariant amplitude M in the following way [Pes95]:

dσ =
1

2Ea2Eb|va − vb|

(
n∏
f=1

d3pf
(2π)32Ef

)
|M(pa, pb → {pf})|2(2π)4δ(4)(pa + pb −

n∑
f=1

pf).

By expressing the flux factor either in the center-of-mass frame

2Ea2Eb|va − vb| = 4pcm

√
s

or in the laboratory frame where particle b is at rest and plab = pa

2Ea2Eb|va − vb| = 4plabmb

one ends up with the optical theorem (2.4) for the invariant amplitude M:

ImM(pa, pb → pa, pb) = 2pcm

√
s σtot(a+ b → X)

= 2plabmb σ
tot(a+ b→ X).

In Fig. A.1 we summarize the derivation of the optical theorem diagrammatically.
In this work we often deal with the classical scattering amplitude f whose absolute

value squared gives the differential cross section for elastic scattering in the laboratory
frame where particle b is at rest:(

dσel

dΩ

)
lab

= |f(plab, θlab)|2.

Here θlab denotes the scattering angle of particle a in the laboratory frame. For this
amplitude the optical theorem takes on the form:

σtot =
4π

plab

Imf(plab, θlab = 0). (A.5)

For the sake of completeness we also state the optical theorem for the amplitude fcm =
M/(8πEcm) which is related to the elastic scattering cross section in the center-of-mass
frame (

dσel

dΩ

)
cm

= |fcm(pcm, θcm)|2.

It is formally identical to Eq. (A.5):

σtot =
4π

pcm
Imfcm(pcm, θcm = 0).



Appendix B

Regge amplitude

In this chapter we sketch the derivation of the Regge amplitude (2.11) which is valid
in the Regge limit s � t. A detailed introduction to Regge theory can be found in
the work of Collins [Col77] and references therein. We start with the partial-wave
expansion of the scattering amplitude for the t-channel process ac̄→ b̄d:

Mac̄→b̄d(s, t) =

∞∑
l=0

(2l + 1)al(s)Pl(cos θcm). (B.1)

At large energies the scattering angle θcm in the center-of-mass frame can be expressed
in terms of s and t:

cos θcm ≈ 1 +
2t

s
.

In Eq. (B.1) al denotes the amplitude of the partial wave with angular momentum
l. Using the crossing symmetry relation (2.6), i.e. interchanging s and t in Eq. (B.1),
one obtains the following expansion of the s-channel amplitude in terms of Legendre
polynomials

Mab→cd(s, t) =

∞∑
l=0

(2l + 1)al(t)Pl(1 + 2s/t). (B.2)

For simplicity, we denote the s-channel amplitude by M in the following. After ana-
lytical continuation into the complex l plane one can make use of the residue theorem
[Br95] and rewrite the series (B.2) in terms of a contour integral (Sommerfeld-Watson
transformation)

M(s, t) =
1

2i

∮
C

dl (2l + 1)
al(t)

sin(πl)
Pl(1 + 2s/t). (B.3)

The contour C is depicted in Fig. B.1. It encloses all poles on the positive real axis
which arise because of the sin(πl) in the denominator:

sin(πl) l→n−−−→ (−1)n(l − n)π , n ∈ �.

We now deform the contour C into C ′ = C ′
1∪C ′

2 as shown in Fig. B.1. C ′
1 runs parallel

to the imaginary l axis at Re l = −1/2 and the contour is closed via C ′
2 at infinity. All

poles that al(t) may have in the right complex plane have to be encircled.
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Figure B.1: Contour C of the integral in Eq. (B.3). When deforming C (dotted line) to
C ′ = C ′

1∪C ′
2 (dashed line), one has to encircle all poles that al(t) may have at l = α(t)

and pick up 2πi times the residue.

Before we discuss the contributions of the poles to the integral (B.3) we check
whether al(t) vanishes for |l| → ∞. Consider the partial-wave expansion (B.2). Using
the orthogonality of the Legendre polynomials [Br95], one gets for the partial-wave
amplitude

al(t) =
1

2

∫ +1

−1

dzM(s(z), t)Pl(z)

where we have made the substitution

z = 1 + 2s/t.

We now express the invariant amplitude M via the dispersion relation (2.9) assuming
for simplicity that no subtraction is needed and obtain:

al(t) =
1

2

∫ +1

−1

dzPl(z)
1

π

(∫ ∞

z+
dz′

ImM(z′, t)
z′ − z

+

∫ z−

−∞
dz′

ImM(z′, t)
z′ − z

)

with z± = 1 + 2s±th/t. By introducing the Legendre functions of the 2nd kind [Col77]

Ql(z) =
1

2

∫ +1

−1

dz′
Pl(z

′)
z − z′

with the property
Ql(−z) = (−1)l+1Ql(z)

one ends up with the so-called Froissart-Gribov projection of the partial-wave ampli-
tude

al(t) =
1

π

(∫ ∞

z+
dz′Ql(z

′)ImM(z′, t) +

∫ z−

−∞
dz′Ql(z

′)ImM(z′, t)

)

=
1

π

(∫ ∞

z+
dz′Ql(z

′)ImM(z′, t) − (−1)l
∫ +∞

−z−
dz′Ql(z

′)ImM(−z′, t)
)

(B.4)
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In the last step we have rewritten the second integral in such a way that the argument
of the Legendre functions Ql is always positive. The asymptotic behavior of the Ql

[Col77]:

Ql(z) |l|→∞−−−→ l−
1
2 e−(l+ 1

2
) ln(z+

√
z2−1) (B.5)

then would ensure the vanishing of the partial-wave amplitude along the contour C ′
2 if

there was not the factor (−1)l in front of the second integral which diverges for l → i∞.
We can avoid this problem by introducing two different types of partial waves

a
(η=±)
l (t) =

1

π

(∫ ∞

z+
dz′Ql(z

′)ImM(z′, t) − η

∫ +∞

−z−
dz′Ql(z

′)ImM(−z′, t)
)

which are the analytic continuations of the even and odd partial-wave amplitudes:

al(t) = a
(+)
l (t) , l = 0, 2, 4, . . .

al(t) = a
(−)
l (t) , l = 1, 3, 5, . . .

and which both vanish on the contour C ′
2. From those one can construct amplitudes

of definite signature η via the Sommerfeld-Watson transformation (B.3):

M(η)(z, t) =
1

2i

∮
C′
dl (2l + 1)

a
(η)
l (t)

sin(πl)
Pl(z)

=
1

2i

∫ − 1
2
+i∞

− 1
2
−i∞

dl (2l + 1)
a

(η)
l (t)

sin(πl)
Pl(z)

+
2πi

2i

∑
nη

(2αnη(t) + 1)
βnη(t)

sin(παnη(t))
Pαnη (t)(z) (B.6)

where we have assumed isolated simple poles at positions l = αnη(t):

a
(η)
l (t) l→αnη (t)−−−−−→

βnη(t)

l − αnη(t)
.

There is no contribution from the semi-circle C ′
2 because of the well-defined behavior

of the a
(η)
l (t) (see Eq. (B.5)) and the asymptotic form of the factor [Col77]∣∣∣∣ Pl(z)sin(πl)

∣∣∣∣ < l−
1
2 f(z) for |l| → ∞.

We are interested in the Regge region s � t where the Legendre polynomials take
on the form [Col77]

Pl(z) z→∞−−−→ π− 1
2
Γ(l + 1

2
)

Γ(l + 1)
(2z)l , Re l ≥ −1

2
(B.7)

and the contribution from the first integral to the amplitude M(η) in Eq. (B.6) behaves
like s−1/2. Considering only the contribution from the leading Regge pole, i.e. the one
with the largest real part of αnη(t) = α(t) we end up with

M(η)(z, t) = π(2α(t) + 1)
β(t)

sin(πα(t))
Pα(t)(z).
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The physical amplitude M can be obtained by adding the even (η = +) and odd
(η = −) signature amplitudes in a way that ensures the right symmetry properties of
M under the exchange of the Mandelstam variables s and u [Col77]:

M(s, t) =
1

2

[M(+)(z, t) + M(+)(−z, t) + M(−)(z, t) −M(−)(−z, t)] .
Therefore, we have

M(s, t) = π(2α(t) + 1)
β(t)

sin(πα(t))

1

2

[
Pα(t)(z) + ηPα(t)(−z)

]
where η denotes the signature of the leading Regge pole. Using the equality [Col77]

Pl(−z) = e−iπlPl(z) − 2

π
sin(πl)Ql(z)

and neglecting the term proportional to Qα(t)(z) which vanishes in the large s limit
because of [Col77]

Ql(z) z→∞−−−→ π
1
2
Γ(l + 1)

Γ(l + 3
2
)
(2z)−l−1 ,

we end up with the Regge amplitude:

M(s, t) = π(2α(t) + 1)
β(t)

sin(πα(t))

(1 + ηe−iπα(t))

2
Pα(t)(z)

= −π 1
2 (2α(t) + 1)

β(t)

sin(πα(t))

(1 + ηe−iπα(t))

2

Γ(α(t) + 1
2
)

Γ(α(t) + 1)
(2z)α(t). (B.8)

In the last step we have used the asymptotic form of the Legendre polynomials (B.7)
for Reα(t) > −1/2.

Depending on the signature of the leading Regge pole, the amplitude (B.8) peaks at
even or odd positive integer values of Reα(t) due to the sin(πα(t)) in the denominator.

Since α(t) is a pole of the partial-wave amplitude M(η)
l (t), this situation corresponds

to the t-channel exchange of a resonance particle with integer spin l = Reα(t) and
mass m =

√
t.

In rewriting and combining some of the terms in (B.8) one can cast the Regge
amplitude into the commonly used form (2.11):

Mab→cd(s, t) =
γac(t)γbd(t)

Γ(α(t))

(η + e−iπα(t))

sin(πα(t))

(
s

s0

)α(t)

where a factor of Γ(α(t)) has explicitly been extracted in defining the couplings γ to
show the vanishing of the ’nonsense poles’ at negative integer values of spin α(t) =
−1,−2, . . .. The couplings γac and γbd are real functions of t and the scale factor s0 is
the hadronic mass scale s0 ≈ 1 GeV2. We discuss the structure of the factorized Regge
amplitude in Sec. 2.1.



Appendix C

Kinematics in hard parton-parton
scattering

Consider two incoming hadrons in their center-of-momentum frame. In the following
we will neglect all masses. Then each hadron has energy Ebeam and the total center-
of-mass energy squared is s = 4E2

beam. The two partons that enter the hard scattering
carry momentum fractions x1 and x2 respectively, i.e. they have four-momenta

p1 = Ebeam(x1, 0, 0, x1)

p2 = Ebeam(x2, 0, 0,−x2) ,

where we have again neglected the masses of the partons as well as any possible trans-
verse momentum component. The invariant energy squared of the two incident partons
is

ŝ = (p1 + p2)
2 = 2p1p2

= 4x1x2E
2
beam = x1x2s. (C.1)

For the scattering into two outgoing (massless) partons 3 and 4 the other two Mandel-
stam variables are given as

t̂ = (p1 − p3)
2 = (p2 − p4)

2 = − ŝ
2
(1 − cos θ̂)

û = (p1 − p4)
2 = (p2 − p3)

2 = − ŝ
2
(1 + cos θ̂)

where θ̂ is the polar angle of parton 3 in the center-of-mass frame of the hard scattering
(see Fig. C.1). As usual, û is not an independent variable since

ŝ+ t̂+ û = 0

as it must be for massless partons because of Eq. (2.3).

The transverse momentum transfer pT of the hard scattering is given according to
Fig. C.1 as

pT = Ê sin θ̂
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Figure C.1: Scattering kinematics for the process p1p2 → p3p4.

where Ê =
√
ŝ/2 denotes the energy of a parton in the center-of-mass frame of the

hard scattering. Hence, one has for the transverse momentum transfer squared

p2
T =

ŝ

4
sin2 θ̂ =

t̂ û

ŝ
(C.2)

which enters the delta function in Eq. (2.23). Since ŝ cannot be larger than the total
center-of-mass energy of the two colliding hadrons squared (cf. Eq. (C.1)) one can
determine the upper limit of the integral (2.24) directly from Eq. (C.2).



Appendix D

High-energy electron-nucleon
scattering

In this chapter we derive the high-energy form of the Lorentz-invariant electron-nucleon
scattering cross section (3.15). Let us first define some Lorentz-invariant quantities
which characterize the scattering process of Fig. 3.6:

ν =
p q

mN
, x =

Q2

2p q
, y =

p q

p k
. (D.1)

In the rest frame of the nucleon we have

p = (mN ,
0), k0 = E, q0 = (E −E ′)

and the variables (D.1) take on the form of Sec. 3.2.1

ν = E − E ′, x =
Q2

2mNν
, y =

E −E ′

E
.

The interpretation of x as the momentum fraction carried by the struck quark implies
that 0 ≤ x ≤ 1. This is indeed the case as can easily be shown: The invariant mass of
the final hadronic state X must be at least that of the nucleon which is supposed to
be the lightest baryon:

W 2 = (p+ q)2 = m2
N + 2p q −Q2 ≥ m2

N

⇒ 2p q = W 2 −m2
N +Q2 ≥ Q2

⇒ x =
Q2

2p q
≤ 1.

On the other hand, Q2 ≥ 0 as was shown in (3.10) and, hence,

2p q ≥ Q2 ≥ 0

⇒ x =
Q2

2p q
≥ 0.

Also the dimensionless variable y, which in the rest frame of the nucleon can be inter-
preted as the fraction of the electron energy E carried away by the photon, has to lie
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in the region 0 ≤ y ≤ 1:

p q ≥ 0

⇒ ν = E − E ′ =
p q

mN

≥ 0

⇒ 0 ≤ y =
E − E ′

E
≤ 1

since both energies E and E ′ are positive.
We now express the polarization parameter ε in terms of the invariant quantities

(D.1). In the rest frame of the nucleon one can write for the virtuality

Q2 = 2EE ′(1 − cos θ) = 2E2(1 − y)(1 − cos θ) (D.2)

and hence

tan2 θ

2
=

1 − cos θ

1 + cos θ
=

Q2

4E2(1 − y) −Q2
.

Inserting this into Eq. (3.13) one obtains

ε =

[
1 + 2

(
1 +

y2E2

Q2

)
Q2

4E2(1 − y) −Q2

]−1

=
1 − y − Q2

4E2

1 − y + y2/2 + Q2

4E2

.

If the electron energy is much larger than the nucleon mass mN one gets:

Q2

4E2
=

2mNx y

4E
<
mN

2E
→ 0 (D.3)

and the polarization parameter simplifies to expression (3.16):

ε ≈ 1 − y

1 − y + y2/2
. (D.4)

Making the variable transformation (E ′, cos θ) → (y,Q2) one gets

dydQ2 = 2E ′dE ′d cos θ

and

d2σ

dydQ2
=

π

E ′
d2σ

dE ′dΩ

=
π

E ′Γ(σγ
∗N
T + εσγ

∗N
L ). (D.5)

One may express the equivalent photon energy (3.14) as

K =
Q2

2mNx
(1 − x).
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Using the approximation for the polarization parameter (D.4) one writes

1

1 − ε
≈ 1 + (1 − y)2

y2
.

Inserting both into the definition of the photon flux (3.12) we end up with

π

E ′Γ ≈ αem

2π

(1 − x)

2mNEx

(
1 + (1 − y)2

y2

)

=
αem

2π

(1 − x)

Q2

(
1 + (1 − y)2

y

)
(D.6)

which together with Eq. (D.5) gives the high-energy expression for the invariant cross
section (3.15).
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Appendix E

Lund fragmentation function

In this chapter we derive the Lund fragmentation function f(z) that determines the
breakup distribution via Eq. (4.12). We thereby assume that the invariant mass W =
p+

0 p
−
0 of the fragmenting string is large so that many yoyo hadrons are produced.

Consider now a hadron that is formed in the middle of the string by a quark of vertex
A and an antiquark created at vertex B, cf. Fig. E.1. This process can be interpreted
as a result of taking many steps along the positive lightcone to reach vertex A and then
taking a further step to reach vertex B. The positive lightcone momentum remaining
before hadron m is produced is then given by W+

A = κx+
A. The probability of arriving

at vertex A can be written as

H ′(A)dx+
Adx

−
A = H(ΓA)dΓAdyA ,

where the last equality follows from the variable transformation

ΓA = κ2x+
Ax

−
A

yA =
1

2
ln

(
x+
A

x−A

)
.

Since the distribution function H should be Lorentz invariant it can only depend on
ΓA which is the only Lorentz invariant available. From Fig. E.1 it can be seen that ΓA
is proportional to the area of the rectangle below vertex A. It is directly related to the
proper time of vertex A:

ΓA = κ2x+
Ax

−
A = κ2(t2A − x2

A). (E.1)

Having arrived at vertex A, it takes a further step to vertex B to produce the hadron
with mass m. The probability therefore is given by

f(z+)dz+,

i.e. the probability of taking a fraction z+ of the remaining positive lightcone momen-
tum W+

A . The joint probability of stepping along the positive lightcone to vertex A
and then taking a final step to vertex B producing hadron m can therefore be written
as the product

H(ΓA)dΓAdyAf(z+)dz+.
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Figure E.1: Production of a hadron with mass m between two adjacent vertices A and
B.

On the other hand, one could equally well have stepped along the negative lightcone
to reach vertex B and then take a final step to vertex A. The Lund model postulates
that these two probabilities should be the same, i.e.

H(ΓA)dΓAdyAf(z+)dz+ = H(ΓB)dΓBdyBf(z−)dz−. (E.2)

From Fig. E.1 one obtains the following relations:

ΓA = W+
A (1 − z−)W−

B

ΓB = (1 − z+)W+
AW

−
B

m2 = (z+W+
A )(z−W−

B ).

After taking the two quantities dyA,B to be equal, one is therefore left with two
independent variables which we choose to be z±:

ΓA =
m2(1 − z−)

z+z−
(E.3)

ΓB =
m2(1 − z+)

z+z−
(E.4)

⇒ z−
dΓA
dz−

= z+dΓB
dz+

and which can be inserted into Eq. (E.2) to get the condition

H(ΓA(z+, z−))z+f(z+) = H(ΓB(z+, z−))z−f(z−). (E.5)

Taking the logarithm of (E.5) and defining

h(Γ) = ln(H(Γ)) (E.6)

g(z) = ln(zf(z)), (E.7)

one obtains the expression

h(ΓA) + g(z+) = h(ΓB) + g(z−) (E.8)
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which we differentiate with respect to z+ and z− to get rid of the g dependence:

∂2h(ΓA)

∂z−∂z+
= h′′(ΓA)

(
m2

z+z−2

)(
m2(1 − z−)

z−z+2

)
+ h′(ΓA)

(
m2

z−2z+2

)
∂2h(ΓB)

∂z−∂z+
= h′′(ΓB)

(
m2(1 − z+)

z+z−2

)(
m2

z+2z−

)
+ h′(ΓB)

(
m2

z−2z+2

)
∂2g(z+)

∂z−∂z+
=

∂2g(z−)

∂z−∂z+
= 0.

Using Eqs. (E.3) and (E.4), this leads to the following differential equation for h:

h′(ΓA) + ΓAh
′′(ΓA) = h′(ΓB) + ΓBh

′′(ΓB) (E.9)

which can easily be solved. Since the left-hand side of (E.9) only depends on ΓA and
the right-hand side only on the independent variable ΓB, the whole expression has to
be constant and can be integrated:

−b = h′(Γ) + Γh′′(Γ) =
d

dΓ
(Γh′(Γ))

⇒ h(Γ) = −bΓ + a ln Γ + lnC (E.10)

⇒ H(Γ) = CΓa exp(−bΓ) , (E.11)

where in the last step (E.6) has been used. Here a, b and C are constants with b being
equal for all vertices, a possibly depending on the flavor of the quark pair created at the
vertex with proper time Γ and C playing the role of a normalization constant. Because
of relation (E.1), Eq. (E.11) gives us the distribution of proper times of vertices in a
string fragmentation at very large invariant mass W = p+

0 p
−
0 .

To obtain the remaining distribution function g(z) we insert (E.10) into Eq. (E.8):

−bΓA + aA ln ΓA + lnCA + gAB(z+) = −bΓB + aB ln ΓB + lnCB + gBA(z−),

use Eqs. (E.3) and (E.4) to express ΓA,B in terms of z± and m and separate variables:

b
m2

z+
+ aA ln

(
m2

z+

)
− aB ln

(
1 − z+

z+

)
+ lnCA + gAB(z+)

= b
m2

z−
+ aB ln

(
m2

z−

)
− aA ln

(
1 − z−

z−

)
+ lnCB + gBA(z−) = lnNC .

Since the left-hand side of this equation now depends only on z+ and the other side
only on z− they must both be equal to the same constant, i.e. lnNC . Solving for gAB,
we get

gAB(z) = ln

[
NC

CAm2aA
zaA

(
1 − z

z

)aB

exp

(
−bm

2

z

)]
(E.12)

and using the definition (E.7) we finally end up with the general form of the fragmen-
tation function

fAB(z) = NAB
zaA

z

(
1 − z

z

)aB

exp

(
−bm

2

z

)



198 E. Lund fragmentation function

where the normalization constants NAB and NBA are related according to Eq. (E.12)
as

NAB =
NC

CAm2aA
, NBA =

NC

CBm2aB
. (E.13)

Phenomenologically, it has up to now not been necessary to assign different values
aA,B to adjacent vertices. If there is only a single value of the a parameter, the general
form (E.13) simplifies to Eq. (4.17) of Sec. 4.2:

f(z) = N
(1 − z)a

z
exp(−bm

2

z
).



Appendix F

Determination of τV and τO from
the decay kinematics of a Lund
string

Consider the decay of a string in its rest frame into n hadrons with four-momenta {pi}.
The invariant mass W of the original string is given as

W 2 =

(
n∑
i=1

pi

)2

= p+
0 p

−
0 ,

where p±0 denote the initial lightcone momenta of the end points of the string. If one
neglects the masses of the endpoints one gets p+

0 = p−0 = W . Let us label the hadrons
according to their rank. In case that the rank is not known one can try to number the
hadrons with decreasing ζi = p+

i /p
+
0 where p+

i = Ei + pzi. Because of Eq. (4.24) this
should in most cases be equivalent to the ordering in rank. With the help of Eq. (4.24)
one can subsequently derive the {zi}:

zi =
ζi∏i−1

j=1(1 − zj)
.

Knowing the set of {zi} allows for the reconstruction of the vertices {(x+
i , x

−
i } using

the method described in Sec. 4.2. Note that in the on-shell step (4.13) one now has
to use the transverse mass squared m2

T i = m2
i + p2

T i of the hadrons. The proper times
of the vertices and yoyo meeting points are then given by Eqs. (4.26) and (4.27). In
our actual model calculations we directly extract the proper times τV and τO from the
Lund fragmentation routines in JETSET.
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Appendix G

Glauber theory and AGK
cancellation

We now demonstrate how the AGK cancellation (5.18) arises within Glauber theory.
For a detailed investigation of the connection between Glauber theory, unitarity and
the AGK cancellation we refer the reader to Ref. [Ber77].

Let us first consider the summed elastic cross section for hA scattering where the
nucleus can be in any final state |f〉 including the ground state:

σel
hA =

∑
f

∫
dΩh|F 0→f(
qT )|2 (G.1)

with the Glauber amplitude given by Eq. (5.8):

F 0→f =
ik

2π

∫
d2bei�qT ·�bΓf0(
b)

=
ik

2π

∫
d2bei�qT ·�b

{
δ0f − 〈f |

A∏
i=1

[1 − Γ(
b− 
si)]|0〉
}
.

Insertion in Eq. (G.1) gives

σel
hA =

∑
f

∫
d2qT
k2

k2

4π2

∫
d2b

∫
d2b′ei�qT (�b−�b′)

×
(
δ0f − 〈0|

A∏
j=1

[1 − Γ∗(
b′ − 
sj)]|f〉
)(

δf0 − 〈f |
A∏
i=1

[1 − Γ(
b− 
si)]|0〉
)

=

∫
d2b

{
1 + 〈0|

A∏
i=1

|1 − Γ(
b− 
si)|2|0〉 − 2Re〈0|
A∏
i=1

[1 − Γ(
b− 
si)]|0〉
}

(G.2)

where we have used closure (
∑ |f〉〈f | = �) in the second step.

In Analogy to Eq. (5.6) the total hadron-nucleus cross section is given by the nuclear
profile function (5.8) with f = 0 as

σtot
hA = 2

∫
d2b

{
1 − Re〈0|

A∏
i=1

[1 − Γ(
b− 
si)]|0〉
}
. (G.3)
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The total inelastic cross section is given by the difference

σinel
hA = σtot

hA − σel
hA

=

∫
d2b

{
1 − 〈0|

A∏
i=1

|1 − Γ(
b− 
si)|2|0〉
}

=

∫
d2b

{
1 −

[∫
d2s

∫
dz|1 − Γ(
b− 
s)|2ρ1(
s, z)

]A}

=

∫
d2b

{
1 −

[
1 − σinel

hN T̃ (
b)
]A}

(G.4)

where we have used the independent-particle model of Sec. 5.1.1 and defined the nor-
malized nuclear thickness function

T̃ (
b) =

∫
dzρ1(
b, z).

In the last step of (G.4) we have used∫
d2s

∫
dz|1 − Γ(
b− 
s)|2ρ1(
s, z)

= 1 − T̃ (
b)

∫
d2s(2ReΓ(
s) − |Γ(
s)|2)

and the expression of the inelastic hN cross section (5.7) in terms of the profile function
Γ.

Let us now expand the total inelastic cross section (G.4)

σinel
hA =

A∑
n=1

σn (G.5)

with

σn =

(
A

n

)∫
d2b

(
σinel
hN T̃ (
b)

)n (
1 − σinel

hN T̃ (
b)
)A−n

. (G.6)

Obviously, σn corresponds to the cross section of a process where n nucleons have
undertaken production of particle m while the remaining (A − n) nucleons have only
provided inelastic absorption. Eq. (G.5) holds because

σ0 =

∫
d2b

[
1 − σinel

hN T̃ (
b)
]A

and
A∑
n=0

σn =

∫
d2b

[
σinel
hN T̃ (
b) +

(
1 − σinel

hN T̃ (
b)
)]A

=

∫
d2b.

The inclusive production cross section for particle m (including its multiplicity) can
directly be expressed in terms of σn:

σ(hA→ mX) =

A∑
n=1

nσn

= Aσinel
hN .
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which just represents the result of the AGK cancellation. The last equality can be
profen by induction. Let us define

a = σinel
hN T̃ (
b)

Since T̃ is normalized to one, we are left to show that

A∑
n=1

n

(
A

n

)
an(1 − a)A−n = Aa. (G.7)

Eq. (G.7) is obviously fulfilled for A = 1 and because of

A+1∑
n=1

n

(
A+ 1

n

)
an(1 − a)A+1−n

= a

A+1∑
n=1

(A+ 1)!

(A− (n− 1))!(n− 1)!
an−1(1 − a)A−(n−1)

= (A+ 1)a

A∑
n=0

A!

(A− n)!n!
an(1 − a)A−n

= (A+ 1)a(a+ 1 − a)A

= (A+ 1)a

it is also true for A+ 1.
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Appendix H

Inelastic corrections to σhA

Let us consider the scattering of a hadron h with energy Eh and momentum kh =√
E2
h −m2

h on an ensemble of A nucleons. In contrast to the derivation of the nuclear
profile function (5.8), we now include the possibility of diffractive excitation hN →
XN . The incoming hadron is again described by a plane wave

ψ
(0)
h (
r) = eikhz.

As before, the hadron wave directly behind the first nucleon can be written as:

ψ
(1)
h (
r) = [1 − Γh(
b− 
s1)]ψ

(0)
h (z1)e

ikh(z−z1)

= [1 − Γh(
b− 
s1)]e
ikhz.

The diffractively produced state X is concentrated in the shadow region behind the
target and is described by the wave

ψ
(1)
X (
r) = −ΓhX(
b− 
s1))ψ

(0)
h (z1)e

ikX(z−z1) (H.1)

where kX =
√
E2
h −m2

X denotes the momentum of the diffractive state X and the new
profile function ΓhX is related to the diffractive production amplitude fhX similar to
(5.3)

ΓhX(
b) =
1

2πikX

∫
d2qT e

i�qT ·�bfhX(
qT ).

Introducing the momentum difference

qX = kh − kX ,

one can rewrite Eq. (H.1) as

ψ
(1)
X (
r) = −ΓhX(
b− 
s1)e

iqXz1eikXz. (H.2)

Behind the second nucleon the two wave functions look like

ψ
(2)
h (
r) =

{
[1 − Γh(
b− 
s1)][1 − Γh(
b− 
s2)]

+ΓhX(
b− 
s1)ΓXh(
b− 
s2)e
iqX(z1−z2)

}
eikhz (H.3)

ψ
(2)
X (
r) =

{− [1 − Γh(
b− 
s1)]ΓhX(
b− 
s2))e
iqXz2

−ΓhX(
b− 
s1)[1 − ΓX(
b− 
s2)]e
iqXz1

}
eikXz. (H.4)
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From Eqs. (H.3) and (H.4) one sees that already with only one intermediate state
X the possibility of subsequent transitions hN → XN → hN → . . . make things
very complicated. By allowing for only two non-diagonal transitions hN → XN and
XN → hN one can write down the nuclear profile function for (quasi-)elastic hA
scattering:

Γf0(
b) = δf0 −
∑
X

〈f |{ A∏
i=1

[1 − Γh(
b− 
si)]

+
A∑
i,j

ΓhX(
b− 
si)ΓXh(
b− 
sj)e
iqX(zi−zj)Θ(zj − zi)

×
A∏

k �=i,j
[1 − ΓX(
b− 
sk)]Θ(zk − zi)Θ(zj − zk)

×
A∏

l �=i,j
[1 − Γh(
b− 
sl)]Θ(zi − zl)Θ(zl − zj)

}|0〉. (H.5)

The inverse of qX is the so-called coherence length lX ≈ 2Eh/(m
2
X −m2

h) which plays
an important role in the discussion of high-energy γ∗A reactions in Sec. 6.1.1.

Similarly, the nuclear profile function for diffractive production of particle X ne-
glecting multiple off-diagonal transitions is given as

Γf0
f→X(
b) = −〈f |{ A∑

i=1

ΓhX(
b− 
si)e
iqXzi

×
A∏
k �=i

[1 − Γh(
b− 
sk)]Θ(zi − zk)
A∏
l �=i

[1 − ΓX(
b− 
sl)]Θ(zl − zi)
}|0〉.



Appendix I

Incoherent V photoproduction off
nuclei

In the following we show the equality of Eqs. (6.30) and (6.32). Since the real part
of the V N scattering amplitude was neglected in the derivation of (6.32) we also set
αV = 0 in Eq. (6.30) and end up with:

σγA→V A∗ = σγN→V N

∫
d2b

∞∫
−∞

dz ρ(
b, z)e−σ
inel
V N

∫∞
z dz′ ρ(�b,z′)

×
∣∣∣∣∣∣1 −

z∫
−∞

dzi ρ(
b, zi)
σV N

2
eiqV (zi−z) exp

⎡
⎣−1

2
σV N

z∫
zi

dzk ρ(
b, zk)

⎤
⎦
∣∣∣∣∣∣
2

= σγN→V N

∫
d2b

∞∫
−∞

dz ρ(
b, z)e−σ
inel
V N

∫∞
z
dz′ ρ(�b,z′)

×
{

1 − σV N

z∫
−∞

dzi ρ(
b, zi) cos [qV (zi − z)] exp

⎡
⎣−1

2
σV N

z∫
zi

dzk ρ(
b, zk)

⎤
⎦

+
σ2
V N

4

∣∣∣∣∣∣
z∫

−∞

dzi ρ(
b, zi)e
iqV zi exp

⎡
⎣−1

2
σV N

z∫
zi

dzk ρ(
b, zk)

⎤
⎦
∣∣∣∣∣∣
2 }

= σγN→V N

∫
d2b

{ ∞∫
−∞

dz ρ(
b, z)e−σ
inel
V NTz(�b)

−σV N
∞∫

−∞

dz1 ρ(
b, z1)

∞∫
z1

dz2 ρ(
b, z2) cos [qV (z1 − z2)]

× exp

⎡
⎣−σinel

V N

∞∫
z2

dz′ ρ(
b, z′) − 1

2
σV N

z2∫
z1

dz′ ρ(
b, z′)

⎤
⎦
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+
σ2
V N

4

∞∫
−∞

dz ρ(
b, z)

×
∣∣∣∣∣∣

z∫
−∞

dzi ρ(
b, zi)e
iqV zi exp

⎡
⎣−1

2
σV N

z∫
zi

dz′ ρ(
b, z′) − 1

2
σinel
V N

∞∫
z

dz′ ρ(
b, z′)

⎤
⎦
∣∣∣∣∣∣
2 }

.

(I.1)

In the second step we have renamed the integration variables and rewritten the inte-
gration limits. The first term of (I.1) already equals the first term of Eq. (6.32). The
exponent in the second term of (I.1) yields

−σinel
V NTz2(


b) − 1

2
σV N

(
Tz1(


b) − Tz2(

b)
)

= −1

2

(
σinel
V N − σel

V N

)
Tz2(


b) − 1

2
σV NTz1(


b) (I.2)

and the exponent of the third term in (I.1) is

−1

2
σV N

(
Tzi

(
b) − Tz(
b)
)
− 1

2
σinel
V NTz(


b) = −1

2
σV NTzi

(
b) +
1

2
σel
V NTz(


b). (I.3)

We now further manipulate the last term of (I.1):

σ2
V N

4

∞∫
−∞

dz ρ(
b, z)eσ
el
V NTz(�b)

∣∣∣∣∣∣
z∫

−∞

dzi ρ(
b, zi)e
iqV zie−

1
2
σV NTzi

(�b)

∣∣∣∣∣∣
2

=
σ2
V N

4

∞∫
−∞

dz

z∫
−∞

dz1

z∫
−∞

dz2 ρ(
b, z) ρ(
b, z1) ρ(
b, z2)e
σel

V NTz(�b) cos [qV (z1 − z2)]

×e− 1
2
σV N (Tz1 (�b)+Tz2 (�b)). (I.4)

Rewriting the integral in the following form

∞∫
−∞

dz

z∫
−∞

dz1

z∫
−∞

dz2 =

∞∫
−∞

dz2

z2∫
−∞

dz1

∞∫
z2

dz +

∞∫
−∞

dz1

z1∫
−∞

dz2

∞∫
z1

dz

and using the symmetry of the integrand with respect to the variables z1 and z2 we
can rewrite (I.4) as

σ2
V N

2

∞∫
−∞

dz2 ρ(
b, z2)

z2∫
−∞

dz1 ρ(
b, z1) cos [qV (z1 − z2)]

× e−
1
2
σV N (Tz1 (�b)+Tz2 (�b))

∞∫
z2

dz ρ(
b, z)eσ
el
V NTz(�b)

= −1

2

σ2
V N

σel
V N

∞∫
−∞

dz2 ρ(
b, z1)

z2∫
−∞

dz1 ρ(
b, z2) cos [qV (z1 − z2)]

× e−
1
2
σV N (Tz1 (�b)+Tz2 (�b))

(
1 − eσ

el
V NTz2

)



209

= −1

2

σ2
V N

σel
V N

∞∫
−∞

dz1 ρ(
b, z1)

∞∫
z1

dz2 ρ(
b, z2) cos [qV (z1 − z2)] e
− 1

2
σV N (Tz1 (�b)+Tz2 (�b))

+
1

2

σ2
V N

σel
V N

∞∫
−∞

dz1 ρ(
b, z1)

∞∫
z1

dz2 ρ(
b, z2) cos [qV (z1 − z2)]

× e−
1
2
(σinel

V N−σel
V N )Tz2 (�b)− 1

2
σV NTz1 (�b). (I.5)

In the first step we have performed the integral over z. In the last step we have again
rewritten the integral over z1 and z2 to be able to combine the second term of (I.5)
with the second term of (I.1) to get the second term in (6.32). Now we only have to
show the equality of the last term in (6.32) and the first one in (I.5). Therefore, we
rewrite

−1

4

σ2
V N

σel
V N

∣∣∣∣∣∣
∞∫

−∞

dz ρ(
b, z)eiqV ze−
1
2
σV NTz(�b)

∣∣∣∣∣∣
2

= −1

4

σ2
V N

σel
V N

∞∫
−∞

dz1

∞∫
−∞

dz2 ρ(
b, z1) ρ(
b, z2) cos [qV (z1 − z2)] e
− 1

2
σV N (Tz1 (�b)+Tz2(�b))

and reformulate the integral as

∞∫
−∞

dz1

∞∫
−∞

dz2 =

∞∫
−∞

dz1

∞∫
z1

dz2 +

∞∫
−∞

dz2

∞∫
z2

dz1

= 2

∞∫
−∞

dz1

∞∫
z1

dz2

where the second equality again follows from the symmetry of the integrand with
respect to the exchange of z1 and z2. The two expressions (6.30) and (6.32) are therefore
equivalent.
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[Frö03] F. Frömel, S. Leupold, and U. Mosel,
Spectral function of quarks in quark matter,
Phys. Rev. C 67, 015206 (2003).
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Deutsche Zusammenfassung

Der Urknall-Theorie zufolge begann das Universum in einem Zustand unendlich ho-
her Dichte und Temperatur, gefolgt von einer schnellen Ausdehnung und Abkühlung
[Mis73]. Circa 10−30 Sekunden nach seinem Anfang entstanden Quarks, Leptonen und
Eichbosonen. Nur wenige Mikrosekunden später verbanden sich die Quarks zu Nu-
kleonen, ein Prozeß, der als Hadronisierung bezeichnet wird. Die sichtbare Materie im
uns heute bekannten Universum besteht fast vollständig aus Nukleonen (=Protonen,
Neutronen) und Elektronen.

Neben den Nukleonen wurden in den vergangenen 60 Jahren noch Hunderte wei-
tere instabile Bindungszustände von Quarks (und Antiquarks) in Experimenten mit
Teilchenbeschleunigern und kosmischer Strahlung entdeckt. Diese stark wechselwirken-
den Teilchen werden Hadronen genannt und können in zwei Quark-Kombinationen
eingeteilt werden [Gel64]: Baryonen (aus drei Quarks bestehende Fermionen qqq) und
Mesonen (aus Quark und Antiquark bestehende Bosonen qq̄). Da die Quarks selbst
Fermionen sind, verbietet die Fermi-Statistik die Existenz eines aus drei Quarks beste-
henden, gebundenen Spin-3/2-Zustands. Ein solcher Zustand wurde jedoch 1951 durch
Fermi und Mitarbeiter entdeckt: Das ∆++ besteht aus drei u-Quarks mit parallel aus-
gerichteten Spins. Diese Beobachtung erforderte die Einführung der Farbe als weitere
Quantenzahl für Quarks. Man nimmt an, daß Quarks in drei Farbzuständen (rot, grün
und blau) vorkommen1 und daß alle freien Teilchen farbneutral sein müssen. Letzteres
wird von der experimentellen Beobachtung gestützt, daß keine Hadronen verschiedener
Farbe existieren. Die Existenz von exakt drei Farbzuständen wird durch Experimente
zur Elektron-Positron-Paarvernichtung in Hadronen sowie dem Zwei-Photonen-Zerfall
des neutralen Pions bestätigt [Per87].

Die Forderung, daß alle freien Teilchen farbneutral sein müssen, erklärt auch, warum
man keine freien Quarks sondern nur Farb-Singulett-Kombinationen beobachtet2. Die-
ses Phänomen wird als Confinement bezeichnet und impliziert, daß die potentielle
Energie zweier farbiger Objekte mit zunehmendem Relativabstand stark anwächst.
Die Feldkonfiguration, die dem linear anwachsenden Potential entspricht, hat eine zy-
lindrische Form und ist zwischen den Farbladungen konzentriert. Sie wird daher oft
auch als String bezeichnet. Durch eine Ausdehnung des Strings um 1–2 fm erhöht sich
die Feldenergie soweit, daß Quark-Antiquark-Paare aus dem Vakuum erzeugt werden.
Diese verbinden sich dann mit den beiden farbigen Teilchen an den String-Enden und
bilden farbneutrale Hadronen.

Die Quarkstruktur der Hadronen legt es nahe, die starke Wechselwirkung auf Farb-

1Die Antiquarks tragen Antifarbe.
2Vor kurzem fand sich ein experimenteller Hinweis auf die Existenz eines farbneutralen Pentaquark-

Zustands [Nak03].
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wechselwirkungen zwischen den Quarks zurückzuführen. Die zugrundeliegende Theo-
rie ist die Quantenchromodynamik (QCD). Im Gegensatz zur Quantenelektrodyna-
mik (QED) ist die QCD eine nicht-Abelsche Eichfeldtheorie. Daraus folgt, daß die
Eichbosonen (Gluonen), welche die Farbwechselwirkung vermitteln, selbst Farbe tra-
gen und untereinander wechselwirken können. Dies führt zu einer Anti-Abschirmung
von Farbladungen, was zwei bemerkenswerte Konsequenzen in sich birgt. Für klei-
ne Abstände bzw. große Impulsüberträge wird die Kopplung klein, und die Quarks
im Inneren der Hadronen verhalten sich im wesentlichen wie freie, nicht wechselwir-
kende Teilchen (asymptotische Freiheit). In diesem kinematischen Bereich sind da-
her störungstheoretische Techniken zur Berechnung der Quark-Gluon-Wechselwirkung
anwendbar. Andererseits entspricht die Anti-Abschirmung in der QCD einem farb-
dielektrischen Medium mit verschwindend kleiner Dielektrizitätskontante ε � 1. In
einem solchen Medium hätte eine isolierte Farbladung eine extrem hohe Energie, was
das beobachtete Confinement begründet.

Da die Kopplung in der QCD mit abnehmendem Impulsübertrag anwächst, können
störungstheoretische Methoden nicht zur Beschreibung der Niederenergie-QCD heran-
gezogen werden. Daher steht bis heute ein vollständiger Beweis dafür, daß die QCD
tatsächlich Confinement bedingt, aus. Aus dem gleichen Grund können die Eigenschaf-
ten von Hadronen, wie beispielsweise Massen und Anregungspektren, nicht im Rahmen
der Störungstheorie berechnet werden. Hierzu ist man auf die numerische Lösung ei-
ner diskretisierten Version der QCD auf einem Raum-Zeit-Gitter angewiesen. Diese
Rechnungen sind jedoch mit einem erheblichen Rechenaufwand sowie vielen konzep-
tionellen Problemen verbunden, so daß man von einer vollständigen Beschreibung der
Hadronenspektren und hadronischen Wechselwirkungen noch weit entfernt ist.

Eine der großartigsten Leistungen der Hochenergiephysik der letzten 30 Jahre ist die
quantitative Bestätigung der QCD in sehr harten Kollisionen. Aufgrund der asympto-
tischen Freiheit verhalten sich die Konstituenten der Hadronen in solchen Kollisionen
wie freie Teilchen. Wie schon erwähnt, verschwindet diese Eigenschaft bei kleinen Im-
pulsüberträgen, und die Quarks und Gluonen werden durch die starke Wechselwirkung
in Hadronen gebunden. Dieser Phasenübergang von Quark- und Gluon-Freiheitsgraden
zu wechselwirkenden Hadronen – wie er im Universum kurz nach dem Urknall stattfand
– ist ein zentrales Forschungsthema der modernen Hadronenphysik. Zur Zeit werden
Experimente mit ultrarelativistischen Schwerionenkollisionen am SPS und RHIC durch-
geführt, um die Dynamik und relevanten Skalen dieses Phasenübergangs zu verstehen.
Die Komplexität von Schwerionenkollisionen, die verschiedene Dichte- und Temperatur-
phasen durchlaufen, erschwert es jedoch, Rückschlüsse auf den genauen raumzeitlichen
Ablauf des Hadronisierungsprozesses ziehen zu können.

In den frühen 70er Jahren wurde die Quarkstruktur des Nukleons in tiefinelastischer
Elektron-Proton-Streuung am SLAC nachgewiesen. In der tiefinelastischen Streuung
emittiert das Elektron ein virtuelles Photon mit hoher Energie und Impuls, welches
von einem Quark im Proton absorbiert wird. Dabei kann man den vom Quark getrage-
ne Impulsbruchteil des Protons aus dem übertragenen Viererimpuls berechnen. Durch
Variation von Energie und Impuls des virtuellen Photons können daher die Quarkver-
teilungen im Nukleon bestimmt werden. Seit dieser Pionierarbeit hat man viel über
die Quark- und Gluon-Struktur hadronischer Materie aus tiefinelastischen Streuexpe-
rimenten am CERN, DESY, FNAL und SLAC gelernt.
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Durch die tiefinelastische Streuung an Atomkernen ist die Modifikation von Quark-
und Gluonverteilungen in Kernmaterie zugänglich. Allerdings hat die Verwendung
von Atomkernen noch einen weiteren Vorteil. Wenn sich das vom Photon getroffene
Quark vom restlichen System entfernt, vergeht eine gewisse Zeit bis die Reaktionspro-
dukte hadronisieren. Aufgrund von Zeitdilatationseffekten liegen die entsprechenden
Formationslängen in der Größenordnung der Kernradien. Die Reaktionsprodukte in
Lepton-Kern-Reaktionen können daher während der Formationszeit mit der umgeben-
den Kernmaterie wechselwirken. Der Atomkern dient dabei als Mikro-Labor, das uns
mittels des Kerndurchmessers eine intrinsische (variable) Zeitskala liefert. Dies kann
man ausnutzen, um Informationen über die eigentliche Hadronisierungszeit zu erhal-
ten. Die Verwendung verschiedener Atomkerne und die Variation der Photonkinematik
ermöglichen es daher, die Propagation des Quarks und die Regeneration seines Farb-
feldes zu studieren.

Erste Experimente zur hochenergetischen Elektroproduktion von Hadronen wur-
den in den späten 70er Jahren am SLAC durchgeführt [Osb78]. Anfang der 90er Jahre
untersuchte die European Muon Collaboration (EMC) [Ash91] am CERN und das
E665 Experiment [Ada94] am FNAL die Unterdrückung schneller Hadronen in der
Streuung hochenergetischer Myonen an Atomkernen. Vor kurzem hat die HERMES-
Kollaboration am DESY eine detaillierte experimentelle Untersuchung der Hadronpro-
duktion in der tiefinelastischen Streuung von 27.7 GeV Positronen an Kernen durch-
geführt [Air01, Air03b]. Ein ähnliches Experiment mit einem 6-GeV-Elektronenstrahl
läuft zur Zeit am Jefferson Lab [WBr02, KWa04]; ein weiteres ist nach dem Upgrade auf
12 GeV Strahlenergie geplant [Arr03, WBr03]. Außerdem ist die Untersuchung der Ha-
dronisierung in Nukleonen und Kernen ein Teil des Forschungsprogramms am geplanten
Electron-Ion-Collider (EIC) [Des02], in welchem 5–10-GeV-Elektronen/Positronen mit
100-AGeV-Ionenstrahlen kollidieren.

Eng verbunden mit der Produktion von Hadronen in tiefinelastischer Streuung ist
das Phänomen der Farbtransparenz [Mue82, Bro82]. In der tiefinelatischen Streuung
überträgt das virtuelle Photon seine gesamte Energie und Impuls auf ein einzelnes
Quark im Nukleon und das Nukleon wird zerstört. Das Photon kann jedoch auch vor
der eigentlichen Wechselwirkung in ein virtuelles Quark-Antiquark-Paar fluktuieren,
welches anschließend am Nukleon streut. Dieser Streuprozeß muß nicht notwendiger-
weise hart sein. Ein bekanntes Beispiel ist die diffraktive Vektormesonproduktion, in
der eine hadronische Fluktuation des Photons durch einen kleinen Impulsaustausch mit
dem Nukleon auf seine Massenschale gesetzt wird und das Nukleon intakt bleibt. Es ist
zu erwarten, daß die geometrische Ausdehnung des ursprünglichen Quark-Antiquark-
Paares mit steigender Photonvirtualität Q2 abnimmt. Daher befindet sich das farbneu-
trale Quark-Antiquark-Paar für große Q2 anfänglich in einer räumlich kleinen Konfi-
guration und wechselwirkt vorwiegend über sein Farb-Dipolmoment. Der resultierende
Wirkungsquerschnitt ist proportional zum Quadrat des Paardurchmessers. Aufgrund
von Zeitdilatationseffekten kann das hochenergetische Quark-Antiquark-Paar in dieser
kleinen Konfiguration eine große Distanz zurücklegen. Liegt diese in der Größenordnung
des Atomkerns, führt dies zu einer gesteigerten Durchlässigkeit in Kernmaterie und da-
mit zu einem erhöhten nuklearen Vektormeson-Produktionsquerschnitt.

Die exklusive Elektroproduktion von ρ0-Mesonen an Stickstoff wurde kürzlich von
der HERMES-Kollaboration gemessen [Ack99, Air03]; ein ähnliches Experiment wird
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derzeit am Jefferson Lab durchgeführt [Haf02]. Die kohärente Mehrfachstreuung der
Vektormesonkomponente des Photons im Kern erschwert die Extraktion eines deut-
lichen Signals für Farbtransparenz aus diesen Experimenten. Die Wechselwirkungen
des Photons im Eingangskanal der Reaktion führen zum nuklearen Abschattungsef-
fekt, d.h. einer Reduzierung des Produktionsquerschnitts. Dieser Effekt wird auch im
nuklearen Photoabsorptionsquerschnitt beobachtet [Bau78] und ist die Ursache des
EMC-Effekts [EMC83, Arn94] bei kleinen Werten der Bjorken-Skalenvariable x.

Im kinematischen Bereich der EMC-, HERMES- und Jefferson Lab-Experimente
ist eine klare Trennung zwischen den direkten Photon-Quark-Wechselwirkungen und
denen, die durch die hadronischen Fluktuationen des Photons vermittelt werden, nicht
möglich. Es muß daher beiden Aspekten der Wechselwirkung hochenergetischer Pho-
tonen Rechnung getragen werden, wenn man aus diesen Experimenten etwas über das
Raum-Zeit-Verhalten des Hadronisierungsvorgangs lernen möchte.

Der raumzeitliche Ablauf des Hadronisierungsprozesses stellt allein schon eine fas-
zinierende Fragestellung dar. Außerdem vermag er auch Aufschluß über aktuelle Beob-
achtungen in Schwerionenkollisionen am RHIC [PH03, PH04, ST03, ST03b] zu geben.
Es ist unklar, in welchem Ausmaß die hier beobachtete Unterdrückung hadronischer
Jets durch hadronische [Gal03, Kop03, Cas04] oder partonische [Wan92, Wan98, Bai00,
Gyu03] Endzustandswechselwirkungen verursacht wird. Üblicherweise führt man die
Unterdrückung hochenergetischer Jets in Au+Au-Reaktionen relativ zu p+p-Kollisio-
nen auf eine Wechselwirkung der hochenergetischen Teilchen im Quark-Gluon-Plasma
zurück. Hiermit wird ein Zustand bezeichnet, bei dem nicht länger Hadronen sondern
freie Quarks und Gluonen die relevanten Freiheitsgrade darstellen. Die beobachtete
Verminderung kann jedoch auch teilweise von hadronischen Endzustandswechselwir-
kungen verursacht werden.

Elektron-Kern-Reaktionen haben den Vorteil, daß der Atomkern während der Reak-
tion mehr oder weniger im Grundzustand bleibt. Im Gegensatz zu Kern-Kern-Kollisio-
nen, in denen sich der produzierte ’Feuerball’ schnell ausdehnt, finden Lepton-Kern-
Reaktionen in einer wohldefinierten geometrischen Umgebung statt, die sich experi-
mentell gut kontrollieren läßt.

Einen üblichen theoretischen Zugang zu hochenergetischen Kernreaktionen stellt die
Glauber-Theorie [Gla59, Gla70] dar, welche die Kernreaktion auf elementare Wechsel-
wirkungen mit individuellen Nukleonen reduziert. Sie ermöglicht eine quantenmecha-
nische Beschreibung des Streuvorgangs durch eine kohärente Summation der Mehr-
fachstreuamplituden. Eine komplette quantenmechanische Beschreibung ist allerdings
nur unter vielen Näherungen möglich. Daher vernachlässigt man in der Regel alle
Gekoppelten-Kanal-Effekte in der Rechnung und beschränkt sich auf eine rein absorp-
tive Beschreibung der Endzustandswechelwirkungen der Reaktionsprodukte.

Die gekoppelten Kanäle in den Endzustandswechselwirkungen können in einem se-
miklassischen Transportmodells berücksichtigt werden. In den letzten 20 Jahren wur-
den auf der Boltzmann-Uehling-Uhlenbeck-(BUU)-Gleichung basierende Transport-
modelle [Brt84] erfolgreich zur Beschreibung der Teilchenproduktion in Schwerionen-
kollisionen eingesetzt. Ein Nachteil dieser Modelle ist die große Anzahl freier Para-
meter. Es ist daher notwendig, die Resultate des Modells mit möglichst vielen ex-
perimentellen Observablen zu vergleichen und dabei den gleichen Satz an Parame-
tern und physikalischer Annahmen zu verwenden. Unser Transportmodell wurde ur-
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sprünglich zur Beschreibung von Schwerionenkollisionen bei SIS-Energien entwickelt
[Tei96, Tei97, Hom99]. Später wurde es erweitert, um pion- [Wei99, Eff99b] sowie
photon- und elektroninduzierte Reaktionen [Eff99a, Eff96, Leh99, Leh00] in der Re-
sonanzregion zu beschreiben. Basierend auf frühere Arbeiten zu hochenergetischen
Photon-Kern-Reaktionen [Eff99c, Eff00] haben wir das Modell erweitert, um die Re-
aktionen hochenergetischer Photonen und Elektronen im kinematischen Bereich der
Jefferson Lab-, HERMES- und EMC-Experimente zu untersuchen.

Unterhalb invarianter Energien von ungefähr 2 GeV können hadronische Wechsel-
wirkungen durch die Anregung und den Zerfall von Resonanzen beschrieben werden.
Bei höheren Energien verschwindet die Resonanzstruktur im Wirkungsquerschnitt, und
die Wechselwirkung wird durch den Transfer eines Gluons, Pomerons oder Reggeons
dominiert. Die letzteren können als Austausch mehrerer weicher Gluonen und (Anti-)
Quarks interpretiert werden. Bei noch höheren Energien gewinnen auch harte Stöße
zwischen den Konstituenten der Hadronen an Bedeutung.

Aufgrund der hadronischen Fluktuationen des (virtuellen) Photons weisen photon-
und elektroninduzierte Reaktionen signifikante Ähnlichkeiten mit rein hadronischen
Wechselwirkungen auf. Abhängig von der Energie und Virtualität des Photons können
dieselben Prozesse wie in hochenergetischen Hadron-Hadron-Kollisionen auftreten. Die-
se beinhalten elastische und diffraktive Streuung sowie harte Stöße zwischen den Kon-
stituenten der hadronischen Fluktuationen und des Targets. Außerdem kann das vir-
tuelle Photon direkt an ein Quark des Targets koppeln. Dieser Prozeß dominiert den
Wirkungsquerschnitt in tiefinelastischer Leptonstreuung bei hinreichend großen Werten
der Bjorken-Skalenvariable x � 0.2.

Diverse hochenergetische Reaktionen führen zur Anregung hadronischer Strings.
Diese zerfallen durch Quark-Antiquark-Paarerzeugung aus dem Vakuum in Hadro-
nen. Die Fragmentation der Strings kann im Lund-Modell beschrieben werden, auf
dem auch die von uns verwendeten Monte-Carlo-Generatoren FRITIOF und PYTHIA
basieren. Der Vorteil des Lund-Modells liegt in seiner Möglichkeit, den kompletten
Endzustand eines fragmentierenden Strings zu bestimmen, inklusive der Teilcheniden-
titäten und Impulse. Das Lund-Modell beinhaltet drei Zeitskalen für die Produktion
eines Hadrons in der Stringfragmentation: Die ersten beiden Zeiten bestimmen die
Produktion des ersten und zweiten Hadronkonstituenten. Die dritte Zeit entspricht der
Formationszeit des Hadrons, d.h. dem Zeitpunkt, zu dem sich die hadronische Wellen-
funktion aufgebaut hat. Da schon mit der Produktion des zweiten Hadronkonstituen-
ten ein farbneutrales Objekt gebildet wird, bezeichnet man die entsprechende Zeit als
Produktionszeit des farbneutralen Prähadrons. Wir haben die Produktionszeiten der
Quark-Antiquark-Vertizes in der Stringfragmentation sowie die Formationszeiten der
Hadronen im Rahmen des Lund-Modell berechnet. Dabei wurde die endliche Masse
des fragmentierenden Strings berücksichtigt, welche die Zahl der Zerfallsprodukte in
dem von uns untersuchten Energiebereich auf ca. 3–5 beschränkt. Im Gegensatz zu
früheren theoretischen Untersuchungen [Bia87], in denen eine vereinfachte Fragmenta-
tionsfunktion verwendet wurde, finden wir eine nichttriviale Massenabhängigkeit der
Produktions- und Formationszeiten. Tendenziell beobachtet man ein Ansteigen der
Produktions- und Formationszeiten mit der Masse des produzierten Hadrons.

Des weiteren haben wir die Produktions- und Formationszeiten von Hadronen in
tiefinelastischer Positron-Nukleon-Streuung im Energiebereich des HERMES-Experi-
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ments direkt aus dem Event-Generator PYHTIA extrahiert. Je nach Masse und Energie
des produzierten Hadrons liegt die durchschnittliche Produktionseigenzeit des ersten
Konstituenten zwischen 0 und 0.8 fm/c. Im Gegensatz dazu kann die Produktions-
eigenzeit des zweiten Konstituenten und die Formationseigenzeit bis zu 1.5–1.7 fm/c
betragen.

Wir haben die Ergebnisse des Glauber- und des BUU-Modells für Proton-Kern-
Reaktionen bei 100 GeV Einschußenergie untersucht. Die durch das BUU-Modell vor-
hergesagte Massenabhängigkeit A0.68 des totalen Wirkungsquerschnitts ist in hervorra-
gender Übereinstimmung mit den experimentellen Daten. Dagegen liefert das Glauber-
Modell einen zu großen Skalierungsexponenten. Der Grund liegt möglicherweise in
der Vernachlässigung von diffraktiv angeregten Zwischenzuständen in der Glauber-
Mehrfachstreureihe.

Laut AGK-Theorem bewirken Interferenzeffekte, daß der Wirkungsquerschnitt für
inklusive Mesonproduktion am Kern proportional zur Massenzahl A ist. Diese A-
Abhängigkeit wird von unserem Transportmodell reproduziert, wenn wir die Wechsel-
wirkung der Projektil- und Targetbruchstücke während der Formationszeit berücksichti-
gen. In unserem Standardzugang setzen wir daher die Produktionszeit aller Prähadronen
auf null und skalieren ihren Wirkungsquerschnitt während der Formationszeit gemäß
einem einfachen Konstituentenquarkmodell. Letzteres bestimmt den Wirkungsquer-
schnitt eines Prähadrons aus der Anzahl der Konstituenten, die aus dem Projektil
oder Target stammen. Allerdings ermöglichen es uns die experimentellen Daten zur
Pion- und Kaonproduktion in Proton-Kern-Reaktionen nicht, zwischen einem Szenario
mit und ohne prähadronischen Endzustandswechselwirkungen zu unterscheiden.

Eine aussichtsreichere Methode zur Bestimmung des raumzeitlichen Ablaufs des
Hadronisierungsprozesses stellt die Untersuchung von photon- und elektroninduzier-
ten Kernreaktionen dar. Allerdings führen die Interferenzen in der Mehrfachstreuung
der hadronischen Photonkomponenten zu Komplikationen. Im Glauber-Modell ist die
Berücksichtigung dieser Interferenzeffekte kein Problem. Dagegen ist es nicht offen-
sichtlich, wie man ihnen in unserem semiklassischen Transportmodell Rechnung trägt.

Im Rahmen dieser Arbeit haben wir eine mögliche Implementierung des Abschat-
tungseffekt in Transportmodelle vorgestellt und gezeigt, daß sie die von der HERMES-
Kollaboration in exklusiver ρ0-Elektroproduktion beobachteten Kohärenzlängeneffekte
richtig beschreibt. Außerdem haben wir untersucht, wie die gekoppelten Kanäle das
Signal von Farbtransparenz in der ρ0-Photo- und Elektroproduktion beeinflussen und
diskutiert, welche kinematischen Schnitte Rechnungen im Glauber-Modell zulassen.
Unsere Analyse der HERMES-Daten ergaben kein Anzeichen für Farbtransparenzef-
fekte während der Formationszeit des ρ0-Mesons. Stattdessen sind unsere Resultate mit
der Annahme verträglich, daß das ρ0-Meson im kinematischen Bereich des HERMES-
Experiments sofort mit seinem vollen hadronischen Wirkungsquerschnitt wechselwirkt.

In unserem Modell haben wir ebenfalls die semi-inklusive Photoproduktion von
geladenen Pionen, Kaonen und D-Mesonen im Energiebereich von 1–30 GeV unter-
sucht. In diesen Reaktionen führen die Endzustandswechselwirkungen zu einer starken
Erhöhung der Teilchenmultiplizitäten, die im Rahmen des Glauber-Modells nicht zu
verstehen ist. Insbesondere finden wir schon bei relativ kleinen Photonenergien eine
erhöhte Produktion von K+-Mesonen, da diese aufgrund ihres Quarkinhalts nicht im
Kernmedium absorbiert werden können.
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Ein Großteil dieser Arbeit hat sich mit der Produktion von Hadronen in tiefinelasti-
scher Lepton-Kern-Streuung bei HERMES-, EMC- und Jefferson Lab-Energien befaßt.
Für den raumzeitlichen Ablauf des Hadronisierungsprozesses wurden hierbei im we-
sentlichen zwei verschiedene Szenarien betrachtet: Im ersten Fall haben wir das gleiche
Kontituentenquarkmodell wie in der Beschreibung von Proton-Kern-Reaktionen ver-
wendet. Im zweiten Zugang haben wir die Produktions- und Formationszeiten aus dem
Lund-Modell angesetzt. Unsere transporttheoretische Beschreibung ermöglicht es uns,
die Produktion von Teilchen in den Endzustandswechselwirkungen der primären Re-
aktionsprodukte zu berücksichtigen. Wir haben herausgefunden, daß diese sekundären
Teilchen einen starken Einfluß auf den Niederenergieanteil der experimentell gemesse-
nen Teilchenmultiplizitäten haben.

Im Zusammenhang mit dem HERMES-Experiment wurden die Auswirkungen der
kinematischen Schnitte sowie der geometrischen Akzeptanz des Detektors auf die Teil-
chenspektren untersucht. Unseren Resultaten zufolge ist eine Berücksichtigung dieser
Effekte für eine eindeutige Interpretation der Daten unerläßlich.

Zusätzlich wurden die Produktionsquerschnitte für Pionen, Kaonen, Protonen und
Antiprotonen als Funktion ihrer Energie, ihres Transversalimpulses sowie der Energie
des Photons betrachtet. Zudem wurde gezielt die Wechselwirkung der beiden ener-
giereichsten Hadronen untersucht. Es scheint, daß sich die meisten der im HERMES
Energiebereich beobachteten Phänomene auf prähadronische Endzustandswechselwir-
kungen zurückführen lassen. Allerdings weist unser Modell Defizite bei der Erklärung
der EMC-Spektren sowie der verstärkten Produktion von Teilchen mit hohen Transver-
salimpulsen auf. Letzteres deutet auf einen partonischen Urspung des Cronin Effekts
in Elektron-Kern-Reaktionen hin.

Motiviert durch unsere erfolgreiche Beschreibung der experimentellen HERMES-
Daten haben wir Vorhersagen für die Teilchenmultiplizitäten in jetzigen und zukünftigen
Jefferson Lab-Experimenten gemacht. Aufgrund der wesentlich kleineren Photonener-
gien beobachten wir hier einen starken Einfluß der Fermibewegung. Außerdem führen
in diesem Energiebereich schon allein die (prä-)hadronischen Endzustandswechselwir-
kungen zu einer Erhöhung der Teilchenmultiplizitäten bei hohen Transversalimpulsen.
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