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We consider an effective kinetic description for quantum many-body systems, which is not based on a
weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field
components N of the underlying scalar quantum field theory. Extending previous studies, we demonstrate
that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly
occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying
quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve
numerically the large-N kinetic equation for a highly occupied system far from equilibrium. This allows us
to compute the universal scaling form of the distribution function at an infrared nonthermal fixed point
within a kinetic description, and we compare to existing lattice field theory simulation results.
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I. INTRODUCTION

A fully microscopic description of the real-time dynam-
ics of quantum many-body systems in terms of quantum
field theory can be very demanding. Often, effective
theories with a well-defined range of validity at some
(long) time and distance scales provide an efficient alter-
native description. Awell-known example is kinetic theory,
which describes the state of the system in terms of a
classical phase-space distribution of particles, fðt;x;pÞ, at
time t with position x and momentum p [1].
Accordingly, the derivation of kinetic theory from the

underlying quantum field theory involves a series of crucial
assumptions [2–6]. An important condition is that the de
Broglie wavelength ∼1=jpj of relevant (quasi)particles
must be small compared to the mean free path between
collisions. Otherwise, a description in terms of classical
particles with a well-defined position and momentum
between collisions would not be valid. Likewise, quantum
interference effects between successive scattering events
should not spoil a description in terms of independent
scatterings. The existence of quasiparticle modes with a
well-defined dispersion relation ωðpÞ translates in the

language of quantum field theory to sufficiently narrow
peaks of the spectral function [7].
These conditions can be often met in the presence of a

sufficiently weak coupling or small diluteness parameter
controlling the strength of the scatterings. In particular,
controlled perturbative kinetic descriptions exist for fer-
mionic quantum field theories and scalar field theories
close to equilibrium where the relevant modes with
momenta of the order of the temperature have occupancies
of order 1 [2]. Likewise, perturbative descriptions exist far
from equilibrium [8–10] if the occupancies of typical
particle modes are not too high such that f ≪ 1=λ with
λ representing the relevant coupling constant or diluteness
parameter. Though gauge theories are more involved,
perturbative kinetic descriptions dealing with the problem
of quantum interference have been given [11–13].
Much less is known about effective kinetic descriptions

for general far-from-equilibrium situations. Pressing appli-
cations concern systems in which the occupancies of
relevant modes are nonperturbatively large (f ∼ 1=λ) such
that a perturbative power counting in terms of a small
coupling parameter fails.
An important example concerns the early stages of a

relativistic heavy-ion collision (for recent reviews, see
Refs. [14,15] and [11–13,16] for current perturbative
kinetic descriptions). In this situation, typical gauge boson
occupancies can become nonperturbatively large at low
momenta below the Debye mass scale. These modes may
influence the evolution of important quantities like the
longitudinal pressure PL of the expanding plasma, evidence
of which was found from real-time lattice simulations
[17–19]. Recent studies have found universal scaling
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behavior of infrared modes [20] that may be connected to
nontrivial field configurations [21]. The possible existence
and influence of an enhanced low-momentum region for
non-Abelian plasmas out of equilibrium have been exten-
sively discussed in the literature [22–29], as have methods
for accessing spectral information at the Debye scale and
below [30–33].
Remarkably, longitudinally expanding non-Abelian

plasmas and self-interacting scalar field theories are found
to share important universal aspects of their far-from-
equilibrium evolution [17,34]. Similar self-similar scaling
properties are known for a wide variety of highly occupied
systems. These include relativistic scalar systems, often
used in inflationary models of the early Universe after a
period of resonant particle production [9,35–37], and
nonrelativistic systems such as ultracold quantum gases
or other condensed matter systems after a strong quench
[38–41]. Characteristic infrared properties of these highly
occupied systems turn out to be quantitatively the same for
both relativistic and nonrelativistic models [6,42]. The
universal scaling properties are associated to a nonthermal
renormalization group fixed point [37,43] defining a
universality class out of equilibrium, which encompasses
nonrelativistic and relativistic N-component field theories
[6,44], scalar systems in different geometries [17], in
different spatial dimensions [45,46], and it can even be
observed for attractive quartic interactions as long as mean
interactions are repulsive [47]. Perturbative kinetic
approaches [48–50] break down at such large typical
occupation numbers f ≳ 1=λ and are not able to reproduce
key features of this low-momentum dynamics [6].
To describe the evolution also for nonperturbatively large

occupation numbers, we consider an effective kinetic
description for scalar systems that is not based on a
weak-coupling or diluteness expansion. Developed in
Refs. [6,45], it exploits the fact that often one describes
complex many-body problems with more than one particle
species. In this case, alternative kinetic descriptions with an
extended range of validity may be derived based on
nonperturbative expansions in the number of species
available. For scalar field theories with N species and
quartic self-interactions, this results from a large-N expan-
sion to next-to-leading order (NLO) based on a two-particle
irreducible (2PI) resummation of self-energy diagrams
[37,39,43,51,52], which translates to a vertex resummation
in the kinetic framework [6,45].
So far, the large-N kinetic theory at NLO has been

successfully applied to analytically compute the self-
similarity exponents near nonthermal fixed points at low
momenta, agreeing well with lattice results [6]. However, a
complete characterization of the nonperturbative infrared
regime involves also the scaling form of the distribution
function, which has not been established from the large-N
kinetic theory yet. In this work, we present the first
numerical solution of the large-N kinetic equation applied

to the universal low-momentum scaling regime in three
spatial dimensions. Our results are found to compare rather
well to available lattice simulation data of the underlying
field theory, in particular, establishing a ∼jpj−4 tail of the
distribution in the regime dominated by number conserva-
tion. We analyze in detail the range of validity and
quasiparticle picture of the large-N or “vertex-resummed”
kinetic theory and show how it encompasses and extends
standard perturbative descriptions.
The paper is organized as follows. In Sec. II, we consider

scalar N-component field theory. Starting from relativistic
models with quartic self-interaction, we discuss the non-
relativistic low-energy limit relevant, e.g., also for the
description of ultracold Bose gases. Section III summarizes
main aspects of perturbative kinetic theory, before we
present the large-N kinetic description in Sec. IV. The
latter has an extended range of validity based on the
inclusion of vertex corrections, which is analyzed in detail
in Secs. V and VI. We present a numerical solution of the
large-N kinetic theory for the description of a nonthermal
fixed point in Sec. VII. After concluding in Sec. VIII, we
end with two Appendixes on calculational details of the
collision integrals (Appendix A) and on integration boun-
daries (Appendix B).

II. RELATIVISTIC AND NONRELATIVISTIC
SCALAR FIELDS

We consider an OðNÞ symmetric quantum field theory
for the field components φaðt;xÞ, a ¼ 1;…; N with time t
and space variable x in three dimensions and quartic self-
interactions. For N ¼ 4, the relativistic model describes the
Higgs sector of the Standard Model of particle physics [53].
In the context of low-energy descriptions of quantum
chromodynamics, such a model encodes the three pions
and the sigma resonance. Inflaton models for early
Universe cosmology often employ related multicomponent
field theories [54]. In a nonrelativistic setting, the
Heisenberg magnet for N ¼ 3 is a prominent example,
and the case N ¼ 2 can be used to describe the two real
components of a complex Bose field in systems of ultracold
atomic gases dominated by s-wave scattering [55].
The considered relativistic quantum theory is described,

on a classical level, by the action

S½φ� ¼
Z
t;x

�
1

2
∂μφa∂μφa −

m2

2
φaφa −

λ

4!N
ðφaφaÞ2

�
ð1Þ

with the notation
R
t;x ≡

R
dt
R
d3x and the (renormalized)

mass m and coupling parameter λ. Here, summation over
repeated Lorentz indices μ ¼ 0;…; 3 and field indices
a ¼ 1;…; N is implied. We will always employ natural
units, with the speed of light, Boltzmann’s constant,
and the reduced Planck constant equal to unity,
i.e., c ¼ kB ¼ ℏ ¼ 1.
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For processes with characteristic momenta below the
mass scale m, one may expect an effectively nonrelativistic
description to become relevant even for the relativistic
microscopic model (1). More generally, the descriptions of
ultracold quantum gases or other condensed matter systems
typically employ nonrelativistic field theories. One may
have in mind the phenomenologically important case of an
N ¼ 2-component nonrelativistic field theory, which can
equivalently be described in terms of a complex field
ϕðt;xÞ. Following standard procedures [56], the effective
low-energy description may then be characterized by the
nonrelativistic action

Snr½ϕ;ϕ�� ¼
Z
t;x

�
ϕ�

�
i∂t þ

∇2

2m

�
ϕ −

g
2
ðϕ�ϕÞ2

�
: ð2Þ

Here we also introduced the effective nonrelativistic cou-
pling g, which is no longer dimensionless and may be
related to the relativistic parameters as [6]

g ∼
λ

m2
: ð3Þ

For dilute Bose systems, g can be related to the s-wave
scattering length, given by a ¼ mg=ð4πÞ [56].
For the nonrelativistic quantum theory in Eq. (2), the

expectation value of the particle density n ¼ hϕ�ϕi is
conserved, and we will consider spatially homogeneous
systems. The density n and scattering length a can be used
to define a characteristic “coherence length” of which the
inverse is the momentum scale

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16πan

p
∼

ffiffiffiffiffiffiffiffiffi
mgn

p
: ð4Þ

We also define the “diluteness parameter”

ζ ¼
ffiffiffiffiffiffiffiffi
na3

p
∼Qmg; ð5Þ

which provides a dimensionless expansion parameter for
the nonrelativistic system, similar to the dimensionless
coupling λ for the relativistic system. Specifically, with (3),
we obtain ζ ∼ ðQ=mÞλ.
We emphasize that for the relativistic theory the particle

number is not conserved in general. However, for the
highly occupied system considered in Sec. VII, an approx-
imately conserved particle number is dynamically gener-
ated at a nonthermal fixed point such that the nonrelativistic
theory and the relativistic one can be in the same univer-
sality class of infrared scaling phenomena [6].

III. PERTURBATIVE KINETIC THEORY

The derivation of perturbative kinetic equations from the
underlying quantum-statistical field theory employs an
expansion in terms of a small coupling λ ≪ 1 or small
diluteness parameter ζ ≪ 1, together with a gradient

expansion for not-too-early times [3,4]. The phase-space
distribution function of particles, fðt;pÞ, describing the
state of the spatially homogeneous system at time t and
momentum p, is obtained from the expectation value of
two-field correlators evaluated at equal times.
More precisely, for the relativistic field theory, the time

derivative of the anticommutator expectation value
hfφa;φbgi≡ hφaφb þ φbφai determines (in the absence
of external forces) the change of the distribution function
according to [45]

Z
∞

0

dω
2π

ω
∂
∂t hfφa;φbgiðt;ω;pÞ≡ ∂fðt;pÞ

∂t δab: ð6Þ

Here, the frequency ω and spatial momentum p arise
from the Fourier transform with respect to the relative
space-time arguments of the two fields, while the remaining
time dependence describes the breaking of time-translation
invariance of the spatially homogeneous system out of
equilibrium. The kinetic description involves the
projection onto positive frequency contributions by inte-
grating over ω, respectively, and we exploit OðNÞ sym-
metry assuming no spontaneous symmetry breaking such
that hfφa;φbgi ∼ δab.
The kinetic equation may then be computed perturba-

tively by taking into account interaction effects, which are
subsumed into the “collision term” C½f� to obtain

∂fðt;pÞ
∂t ¼ C½f�ðt;pÞ: ð7Þ

In its range of validity, the leading contributions to C½f� in a
coupling expansion and an expansion to lowest order in
gradients for the massive scalar field theory (1) lead to the
well-known Boltzmann equation with the collision integral
for elastic 2 ↔ 2 scatterings [56],

Crel½f�ðt;pÞ

¼
Z
l;q;r

λ2ðNþ2Þ
6N2

I2↔2½f�ðt;p;l;q;rÞ

×ð2πÞ4δð3Þðpþ l−q−rÞδðω
rel
p þωrel

l −ωrel
q −ωrel

r Þ
2ωrel

p 2ωrel
l 2ωrel

q 2ωrel
r

; ð8Þ

with the notation
R
q ≡

R
d3q=ð2πÞ3 and the relativistic

dispersion

ωrel
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
: ð9Þ

The functional I2↔2½f� contains the distribution functions
fp ≡ fðt;pÞ describing the changes by loss or gain through
scattering:
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I2↔2½f�ðt;p; l;q; rÞ
¼ ðfp þ 1Þðfl þ 1Þfqfr − fpflðfq þ 1Þðfr þ 1Þ
≈

f≫1ðfp þ flÞfqfr − fpflðfq þ frÞ: ð10Þ

In the last equation, we give the approximate expression for
large occupancies that will be useful later.
Since the overall collision term C½f� is of order λ2,

further perturbative corrections to terms appearing in the
integrand of (8) are subleading. In particular, it allows one
to employ in the integrand a well-defined dispersion
relation (9). Phrased in terms of the underlying field theory,
this leads to a quasiparticle form for the spectral function
given by the expectation value of the commutator of two
fields [8,45]:

h½φa;φb�iðω;pÞ ¼Oðλ0Þ
2 π sgnðωÞδðω2 − ðωrel

p Þ2Þ δab: ð11Þ
From higher orders in the coupling, the spectral function
would receive corrections leading to a mass shift and
nonzero width of the spectral function encoding “off-shell”
contributions to processes. However, since they are of
higher order in the perturbative power counting for the
collision term, we do not consider them here. Since there
are only elastic collisions contributing to this order, the
particle number is artificially conserved. Inelastic processes
can also be taken into account by going to higher order in
the coupling [44]. Starting from a general out-of-
equilibrium state, such inelastic processes are relevant to
describe the approach to thermal equilibrium at late times,
since otherwise a thermal distribution with chemical
potential for the particle number would appear even in
the absence of a conserved number. Essentially, neglecting
inelastic processes limits the time until which the approxi-
mation can be applied [57]. For the purposes of this section,
going beyond the given order is not necessary.1

Similarly, for the nonrelativistic dispersion ωp ¼
jpj2=2m at lowest perturbative order, the collision term
for the kinetic equation of the theory with action (2)
becomes [10]

Cnr½f�ðt;pÞ ¼
Z
l;q;r

2g2I2↔2½f�ðt;p; l;q; rÞð2πÞ4

× δð3Þðpþ l − q − rÞ
× δðωp þ ωl − ωq − ωrÞ: ð12Þ

The quadratic dispersion relation at this order can also be
viewed as arising from the low-momentum limit of the
above relativistic collision integral (8) [9,50]. We note that

taking into account subleading corrections for nonrelativ-
istic theories one generally has a Bogoliubov dispersion
relation with a quadratic dispersion at higher and a linear
dispersion at lower momenta if a Bose-Einstein condensate
exists [10], which we do not consider here.
The perturbative power counting for λ ≪ 1 leading to

(8), or (12) for ζ ≪ 1, with elastic 2 ↔ 2 scatterings as in
(10) assumes that the relevant occupancies fp for typical
momenta are not too high. More precisely, only for
fp ≪ 1=λ in the relativistic, or fp ≪ 1=ζ in the non-
relativistic case, the higher-order corrections are parametri-
cally small. Before we discuss this issue in more detail
below in Sec. VI, we will introduce in the following an
alternative kinetic description based on a large-N expansion
of the underlying quantum field theory.

IV. LARGE-N KINETIC THEORY

The standard Boltzmann equation described in the last
section is based on a weak-coupling expansion, which
restricts the range of validity of the kinetic theory to
perturbative problems. However, for the N-component
field theory, an alternative kinetic description with an
extended range of validity may be derived based on a
nonperturbative expansion in N. For details about its
derivation from the underlying quantum field theory, we
refer to Refs. [6,56]. Here, we give the relevant expressions
that are used below to solve the large-N kinetic equation.
At large N, the classical action (1) scales proportional to

N, employing φaφa ∼ N. Genuine quantum corrections due
to scatterings appear at subleading orders in a large-N
expansion; i.e., they are down by factors of 1=N compared
to classical contributions [39,52]. In particular, the spectral
function at leading order (LO) in a large-N expansion reads

h½φa;φb�iðω;pÞ ¼LOlargeN
2π sgnðωÞδðω2−ðωrel

p Þ2Þδab; ð13Þ

where, in contrast to the lowest-order perturbative Eq. (9),
the dispersion for the relativistic theory now contains an
effective mass term M2:

ωrel
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

q
: ð14Þ

At LO, the effective mass term is given by the gap equation
[6,52]

M2 ¼ m2 þ λ

6

Z
p

fðt0;pÞ
ωrel
p

ð15Þ

evaluated at some given time t0. The mass term is constant
at lowest order in the gradient expansion underlying kinetic
descriptions [4].
We will describe in the following that at NLO in the

large-N expansion there is a well-defined effective kinetic
description in terms of scatterings between quasiparticles.
Similar to the previous section, we start by considering the

1For instance, for a relativistic scalar field theory describing
interacting pions in the context of heavy-ion collisions, con-
ditions for a conserved particle number density and the time
interval in which this approximation can be trusted have been
discussed in Refs. [58–60].
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relativistic theory and extend the discussion to the non-
relativistic case in the end.
To discuss subleading corrections in the 1=N expansion,

it is convenient to employ the auxiliary field formulation of
the same model [52]. For this purpose, we rewrite the
original action (1) by introducing an auxiliary field χðxÞ as

S½φ; χ� ¼ −
Z
t;x

�
1

2
φað□þm2Þφa −

3N
2λ

χ2 þ 1

2
χφaφa

�
:

ð16Þ
Integrating out χ in the defining functional integral yields
the original action, and from the Heisenberg equations of
motion, one sees that the auxiliary field represents the
composite operator

χðxÞ ¼ λ

6N
φaðxÞφaðxÞ: ð17Þ

While the auxiliary field is not a dynamical degree of
freedom, it can be used to conveniently express scattering
corrections in terms of the expectation value

Dðx − yÞ≡ hχðxÞχðyÞi − hχðxÞihχðyÞi: ð18Þ

Since χ represents a two-point function according to (17),
the function Dðx; yÞ encodes a four-point function or
vertex. Specifically, at NLO in the 1=N expansion, scatter-
ings are mediated by (18) [52]. This is indicated in Fig. 1, in
which dashed lines represent the two-point function (18) in
Fourier space. The modified vertex at NLO is shown for
scatterings in the s, t, and u channels, respectively.
Accordingly, the effective kinetic equation at NLO is

given by the same kinetic equation (7), however with the
different collision term [6]

Crel
NLO½f �ðt;pÞ ¼

Z
l;q;r

λ2effðt;p; l;q; rÞ
6N

I2↔2½f �ðt;p; l;q; rÞ

× ð2πÞ4δð3Þðpþ l − q − rÞ

×
δðωrel

p þ ωrel
l − ωrel

q − ωrel
r Þ

2ωrel
p 2ωrel

l 2ωrel
q 2ωrel

r
: ð19Þ

In the derivation of the collision integral, the LO expression
of the spectral function (13) is used since its subleading

corrections in 1=N would result in subleading corrections
of the collision integral, which are part of the large-N
kinetic theory at next-to-next-to-leading order (NNLO),
and are thus omitted. The time- and momentum-dependent
effective coupling function

λ2effðt;p;l;q;rÞ≡λ2

3

�
1

j1þΠrel
R ðt;ωrel

p þωrel
l ;pþ lÞj2

þ 1

j1þΠrel
R ðt;ωrel

p −ωrel
q ;p−qÞj2

þ 1

j1þΠrel
R ðt;ωrel

p −ωrel
r ;p−rÞj2

�
ð20Þ

incorporates the vertex corrections for the different scatter-
ing channels according to Fig. 1. The appearance of the
renormalized one-loop retarded self-energy

Πrel
R ðt;ω;pÞ ¼ λ

12

Z
q

fðt;p−qÞ
ωrel
q ωrel

p−q

�
1

ωrel
q þωrel

p−q−ω− iϵ

þ 1

ωrel
q −ωrel

p−q −ω− iϵ
þ 1

ωrel
q −ωrel

p−qþωþ iϵ

þ 1

ωrel
q þωrel

p−qþωþ iϵ

�
ð21Þ

in the denominator of Eq. (20) is the result of a geometric
series summation of an infinite number of scattering
processes at NLO in the large-N expansion [51]. We
emphasize that Πrel

R , and thus also λ2eff , is time dependent
since it depends on the evolving distribution function.
From (20), one observes that for jΠrel

R j ≪ 1, which is the
case for weak enough coupling (λ ≪ 1) and not-too-large
typical occupancies (f ≪ 1=λ), the vertex corrections
encoded in the momentum-dependent effective coupling
become irrelevant such that λ2eff ≃ λ2. In this case, the
collision term (19) essentially describes standard perturba-
tive 2 ↔ 2 scatterings, however at large N.2 In contrast, for
high characteristic occupancies with f ∼ 1=λ, the collision
term (19) can be strongly modified if Πrel

R starts to become
of order 1. We will discuss the corresponding behavior of
the effective coupling in more detail in the following
sections, for which we will introduce the nonrelativistic
effective kinetic equation relevant at low momenta below.
Similar to the lowest-order perturbative kinetic equation

of Sec. III, the large-N kinetic theory at NLO only involves
elastic scattering processes. The lack of inelastic processes
implies conservation of the particle number density
n ¼ R

p fðt;pÞ ¼ const, which follows from the kinetic
equation (7) and

R
p C

rel
NLO½f �ðt;pÞ ¼ 0. Taking into account

inelastic processes is possible by going beyond NLO,
which is, however, beyond the scope of the present study

p p p

l l l

q qq

r rr

p+l
p-q p-r

FIG. 1. Scattering processes at next-to-leading order in the
large-N expansion, which are mediated by an effective inter-
action. While the solid lines represent particles with given 4-
momenta, the dashed line represents the function (18) in Fourier
space describing s-, t-, and u-channel exchange.

2The prefactor ðN þ 2Þ=ð6N2Þ in Eq. (8) becomes 1=ð6NÞ at
NLO in the large-N expansion.
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that aims to provide a kinetic description of number-
conserving dynamics near nonthermal fixed points
[6,44,47]. Moreover, here, the condensate formation time
diverges with volume ∼V1=α with positive scaling exponent
α as shown in lattice simulations [6]. Hence, no emergence
of a condensate is expected within a finite time for the
infinite volume considered, which is consistent with the
self-similar evolution that we will observe in numerical
calculations of the large-N kinetic theory in Sec. VII.
Therefore, we will consider the collision integral (19)
without including a condensate in the following. Further
discussions on the distinction between the perturbative and
nonperturbative regimes can be found in Ref. [61].
To simplify the following discussion and to make the

connection to ultracold atoms, we will restrict ourselves to
momenta below the (effective) mass scale jpj ≪ M and
describe the dynamics in terms of a nonrelativistic quantum
field theory.Note that also relativistic theorieswithm ¼ 0 but
M > 0may be described by the nonrelativistic limit for small
momenta. To be consistent with the nonrelativistic theory
defined by (2), we will use the symbol m for the mass.
Following along the lines of Sec. III, we consider first the

case N ¼ 2 to illustrate the effective kinetic equation for a
nonrelativistic complex scalar field, i.e., with two real field
components. The case of general N then proceeds accord-
ingly [62].
For the quadratic dispersion relation, one obtains [6]

Cnr
NLO½f�ðt;pÞ

¼
Z
l;q;r

g2eff ½f�ðt;ωp−ωq;p−qÞI2↔2½f�ðt;p;l;q;rÞ

×ð2πÞ4δð3Þðpþ l−q−rÞδðωpþωl−ωq−ωrÞ: ð22Þ
The effective coupling in the collision integral reads

g2eff ½f�ðt;ω;PÞ ¼
g2

j1þ ΠRðt;ω;PÞj2
; ð23Þ

with the one-loop retarded self-energy

ΠRðt;ω;PÞ¼ lim
ϵ→0þ

g
Z
k
fðt;P−kÞ

×

�
1

ωk−ωP−k−ω− iϵ
þ 1

ωk−ωP−kþωþ iϵ

�

ð24Þ
and the momentum difference P ¼ p − q. As for the
relativistic theory, the collision integral (22) reduces to
its perturbative expression3 for small jΠRj ≪ 1.

For later use, it is helpful to further evaluate the
expressions for Cnr

NLO and ΠR. Using magnitudes of
momenta p ¼ jpj, and similarly for q, k, and P, we find
for an isotropic system (details are given in Appendix A)

C½f�ðt; pÞ ¼ m
32π3p

Z
∞

0

dqq
Z

pþq

jp−qj
dP

× g2eff ½f�ðt;ωp − ωq; PÞ

×
Z

∞

max ðP;jp2−q2 jP Þ
du

�
u −

ðp2 − q2Þ2
u3

�

× I2↔2½f�
�
t; p;

1

2

�
u −

p2 − q2

u

�
;

q;
1

2

�
uþ p2 − q2

u

��
ð25Þ

and

ΠRðt;ω; PÞ ¼
mg

ð2πÞ2P
�Z

∞

0

dkkfðt; kÞ

× log

���� ðkþ
P
2
Þ2 − m2ω2

P2

ðk − P
2
Þ2 − m2ω2

P2

����

þ iπ
Z jP2þ2mωj

2P

jP2−2mωj
2P

dkkfðt; kÞ
	
; ð26Þ

where we have dropped the labels of Cnr
NLO to shorten the

notation. Accordingly, the effective kinetic equation (7)
depends on time t and the magnitude of the momentum p.

V. BEHAVIOR OF THE LARGE-N RESUMMED
EFFECTIVE VERTEX

To discuss the extended range of validity of large-N
kinetic theory, we first consider the effective coupling g2eff
appearing in the collision integral (25), which is a function
of the difference in energies of the in- and outgoing
particles ω ¼ ωp − ωq ¼ ðp2 − q2Þ=2m and of the magni-
tude of the momentum change P ¼ jp − qj in a scattering
event. It is beneficial to consider limiting cases of its
arguments to analyze its behavior. We distinguish three
typical collision scenarios. In the first case, the momentum
of a particle within a collision is strongly decelerated so that
p ≫ q and thus 2mω ≈ p2 ≈ P2. Similarly, q ≫ p leads to
the same effective coupling because g2eff ½f �ðt;ω; PÞ is
symmetric in ω. To ease the discussion, we will therefore
use ω ≥ 0 in the following. In the second case, the
magnitude of the momentum of the particle undergoing
the collision stays at the same order p ∼ q while it changes
its direction. The nearly collinear regime is discussed
separately and constitutes the third scenario.
The effective coupling in (23) can be calculated from the

retarded self-energy ΠRðt;ω; PÞ given in (26). For the

3The factor of 2 difference between the large-N NLO ex-
pression (22) and the perturbative collision integral in (12) is due
to an omitted term that is of order NNLO. Note that a similar
modification is found for the relativistic theory, as commented on
in footnote 2.
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distribution function fðt; kÞ that enters the integrals in ΠR,
we assume that for l ¼ 0, 1, 2 integrals of the form

Z
dkklfðt; kÞ ∼ Klþ1fðt; KÞ ð27Þ

are dominated at the possibly time-dependent momentum
scale K, if it lies within the integration limits. This scale K
can be defined as the momentum in which k2fðt; kÞ is
maximal,

k2fðt; kÞjk¼K ¼ max ðk2fðt; kÞÞ; ð28Þ

such that it provides the dominant contributions to the
particle number density

n ∝
Z

d3k
ð2πÞ3 fðt; kÞ ∼ K3fðt; KÞ: ð29Þ

For the integrals in (27) to converge between the maximal
limits of 0 and ∞, the distribution function fðt; kÞ should
fall off faster than k−3 at large momenta k≳ K and decrease
more slowly than k−1 at low momenta k≲ K, or not
decrease there at all.

A. Dispersive regime, P2 ≈ 2mω

We start with the regime p ≫ q. Then, one has P ≈ p
and ω ≈ ωp ¼ p2=2m ≈ P2=2m. The second relation states
that the energy difference of in- and outgoing momenta ω
follows the nonrelativistic dispersion relation with momen-
tum (difference) P, and we refer to this regime as
dispersive. The one-loop retarded self-energy (26) in this
limit reads

ΠR

�
t;
P2

2m
;P

�
¼ mg
ð2πÞ2P

�Z
∞

0

dkkfðt;kÞlog
����kþP
k−P

����
þ iπ

Z
P

0

dkkfðt;kÞ
	
: ð30Þ

Its real part involves an integration over all momenta, and
we can use (27) in the limiting cases of P≳ K and P≲ K.
In the first case, the integrand is dominated at low momenta
k, and we can approximate logðkþ PÞ − log jk − Pj≈
2k=PþOððk=PÞ3Þ. Similarly, the second case leads to
logðkþ PÞ − log jk − Pj ≈ 2P=kþOððP=kÞ3Þ. Hence, the
limiting expressions are

ReΠR

�
t;
P2

2m
;P

�
∼P≳KmgKfðt; KÞK

2

P2
ð31Þ

ReΠR

�
t;
P2

2m
;P

�
∼P≲KmgKfðt; KÞ: ð32Þ

For the imaginary part, large and small ingoing momenta
P≳ K and P≲ K lead to the expressions

ImΠR

�
t;
P2

2m
;P

�
∼P≳K mgKfðt; KÞK

P
ð33Þ

ImΠR

�
t;
P2

2m
;P

�
∼P≲K mgPfðt; PÞ: ð34Þ

In (34), we used that kfðt; kÞ should be a growing function
at low momenta to be consistent with (27).
To get the corresponding limiting expressions for the

effective coupling, we first assume that for typical soft
momenta K the occupation number fðt; KÞ is sufficiently
large such that for the considered momenta P the 1 in the
denominator of g2eff in (23) can be neglected, and the
effective coupling reads g2eff ≈ g2ððReΠRÞ2 þ ðImΠRÞ2Þ−1.
Since Pfðt; PÞ is limited by Kfðt; KÞ, the real part (32)
dominates at low momenta P≲ K. On the other hand, the
imaginary part (33) decreases more slowly than the real part
at high momenta P≳ K and is thus larger. With this, the
effective coupling is parametrically

g2eff ½f�
�
t;
P2

2m
;P

�
∼P≳K 1

ðmKfðt; KÞÞ2
P2

K2
ð35Þ

g2eff ½f�
�
t;
P2

2m
;P

�
∼P≲K 1

ðmKfðt; KÞÞ2 : ð36Þ

Accordingly, it is constant below K and follows the power
law P2 beyond K. We note that at even larger momenta it
becomes constant ≃g2 when the þ1 in the denominator of
its definition becomes important.
As noted above, the regime q ≫ p leads to the same

expressions (35), (36), with P ≈ q. The frequency argument
gets a minus sign −q2=2m, which does not change the
values of g2eff because of its symmetry.

B. Momentum-dominated regime, P2 ≳ 2mω

In the momentum-dominated regime, we consider the
situation in which in- and outgoing momenta are of the
same order p ∼ q. For further simplifications, we also
assume that the frequency difference is small,
ω ¼ ωp − ωq ≲ P2=2m. This occurs for most of the scat-
tering angles cos θpq ¼ pq=pq, since this assumption is
equivalent to the condition cos θpq ≲minðq=p; p=qÞ. The
remaining case of nearly collinear collisions cos θpq ∼ 1
will be discussed in Sec. V C.
In the considered regime, the imaginary and real parts of

the one-loop retarded self-energy (26) become

ReΠRðt;ω;PÞ≈
mg

ð2πÞ2P
Z

∞

0

dkkfðt;kÞ2 log
����2kþP
2k−P

���� ð37Þ

ImΠRðt;ω; PÞ ≈
mg
4π

P
2
f

�
t;
P
2

�
2mω

P2
: ð38Þ
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Expanding the logarithm of the real part and approximating
the integral as in (27), one arrives at similar expressions as
in the dispersive case

ReΠRðt;ω; PÞ ∼P≳2K
mgKfðt; KÞ ð2KÞ2

P2
ð39Þ

ReΠRðt;ω; PÞ ∼P≲2K
mgKfðt; KÞ: ð40Þ

A closer look on the logarithm of the original expression in
(26) reveals that if 2mω≲ 2KP is satisfied the estimate for
lower momenta (40) is even valid in the collinear regime
where 2mω exceeds P2. Hence, the full range of validity for
(40) is 2K ≳ P≳ 2mω=2K, which may only hold if
ð2KÞ2 ≳ 2mω. Otherwise, for ð2KÞ2 ≲ 2mω, no region
with the value (40) exists.
To compute the effective coupling, we again assume

large occupation numbers and thus neglect the 1 in the
denominator in (23), which yields g2eff ≈ g2ððReΠRÞ2þ
ðImΠRÞ2Þ−1. For both small and large momenta P, the
real part is larger than the imaginary part ReΠR ≳ ImΠR.
This follows from 2mω≲ P2 and, for small momenta
P=2≲ K, from ðP=2Þfðt; P=2Þ ≲ Kfðt; KÞ, while for
larger momenta P=2≳ K, it results from ðP=2Þ3fðt; P=2Þ≲
K3fðt; KÞ, which are both requirements for fðt; kÞ and
were formulated below Eq. (27). Hence, the effective
coupling parametrically follows

g2eff ½f�ðt;ω; PÞ ∼P≳2K 1

ðmKfðt; KÞÞ2
P4

ð2KÞ4 ð41Þ

g2eff ½f�ðt;ω; PÞ ∼P≲2K 1

ðmKfðt; KÞÞ2 : ð42Þ

The main difference from the dispersive regime is the steep
power law P4 at large momenta. Interestingly, the transition
between small- and large-momentum expressions proceeds
at the slightly larger scale 2K.

C. Collinear regime, P2 ≲ 2mω

The remaining case is when in- and outgoing momenta
are nearly collinear, cos θpq ∼ 1, i.e., the case in which
P2 ≲ 2mω. The logarithm appearing in ReΠR in (26) can be
written as

log

����1 − P2ð2kþ PÞ2
ð2mωÞ2

���� − log

����1 − P2ð2k − PÞ2
ð2mωÞ2

����
≈ −4

P4

ð2mωÞ2
2k
P
; ð43Þ

where we have expanded it in the second line. Assuming
that the integral is dominated at momenta k ∼ K as in the
cases above, this expansion is justified for large momenta

P≳ 2K, while the condition 2mω≳ 2KP is additionally
required at low momenta P≲ 2K.
With this, we can readily estimate the real and imaginary

parts of ΠR as

ReΠRðt;ω; PÞ ∼ −mgKfðt; KÞ ð2KÞ
2

ðPinvÞ2
ð44Þ

ImΠRðt;ω; PÞ ≈
mg
4π

Pinv

2
f
�
t;
Pinv

2

�
; ð45Þ

where we have introduced the inverse momentum
Pinv ¼ 2mω=P. Recall that for the real part the remaining
situation of 2mω≲ 2KP for low momenta P≲ 2K in the
collinear regime has been discussed in Sec. V B, in which it
led to the expression (40).
From this, we can compute the effective coupling in the

collinear regime. Interestingly, the real part is negative, and
1þ ReΠR in the denominator of the effective coupling (23)
may become zero, leading to a resonant increase of the
coupling. Otherwise, if fðt; KÞ is sufficiently large, the 1 in
the denominator of (23) can again be neglected, and the real
and imaginary parts of ΠR can be compared in order to
estimate g2eff ≈ g2ððReΠRÞ2 þ ðImΠRÞ2Þ−1. At first, we
consider Pinv ≳ 2K. This condition translates to 2mω≳
2KP and corresponds to the real part as given by (44).
Using ðPinvÞ3fðt; PinvÞ≲ K3fðt; KÞ for large momenta
Pinv, one finds ImΠR ≲ jReΠRj. Similarly, the case Pinv ≲
2K translates to 2mω≲ 2KP, and the real part is then given
by (40). With Pinvfðt; PinvÞ≲ Kfðt; KÞ for low momenta,
one again finds ImΠR ≲ jReΠRj. Thus, as in the momen-
tum-dominated regime, the real part dominates the effective
coupling. At low momenta P≲ 2K, it leads to (42) for
2mω≲ 2KP, while in all other cases, in the collinear
regime, one has

g2eff ½f�ðt;ω; PÞ ∼
1

ðmKfðt; KÞÞ2
ð2mωÞ4
ð2KPÞ4 : ð46Þ

Hence, different from the momentum-dominated regime,
the effective coupling decreases here as P−4.

D. Comparison to numerical results

We now compute the effective coupling g2eff numerically
as defined in (23). For the distribution function,
we use

fðt; pÞ ≃ 1

g
A

ðp=BÞκ< þ ðp=BÞκ> ; ð47Þ

which has been suggested in Ref. [6] to approximate
the distribution function at low momenta during the
self-similar regime. The parameter B is related to the
momentum scale K defined in Eq. (28) via
K ¼ Bðð2 − κ<Þ=ðκ> − 2ÞÞ1=ðκ>−κ<Þ, such that both are of
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the same order K ∼ B and, for κ< ¼ 0 and κ> ¼ 4, even
equal, K ¼ B. The function in Eq. (47) reduces to power
laws ∼p−κ> for large p≳ B and to ∼p−κ< for small p≲ B
momenta.
The effective coupling is shown in Fig. 2 for the

momentum-dominated regime (labeled ω ¼ 0) and for
the dispersive regime (labeled ω ¼ P2=2m) with κ< ¼ 0.
To show that g2eff follows the parametric estimates derived
in Secs. VA and V B and is thus insensitive to the precise
functional form of fðt; pÞ, we vary 3.5 ≤ κ> ≤ 6 and pool
the resulting curves into a band for each regime. Moreover,
the 1 in the denominator of the effective coupling (23) has
been removed to be able to follow the power laws to larger
momenta.4 One observes that, while at low momenta g2eff
stays constant, it grows as P4 in the momentum-dominated
regime and as P2 in the dispersive regime, irrespective of
the detailed form of fðt; pÞ. In addition, the transition
between constant and power-law behavior occurs roughly
at 2B in the prior and at B in the other case. We checked that
using κ< ¼ 0.5 leads to similar results. These observations
confirm the parametric expressions for the effective cou-
pling in Eqs. (35), (36), (41), and (42).
Combining these scenarios with the collinear regime, we

can also understand the functional form of the effective
coupling for any fixed 2mω ¼ p2 − q2 as a function of P.

Before showing our numerical results, we use our para-
metric estimates to illustrate the functional form of g2eff and
its relevant momentum scales in Fig. 3 for sufficiently low
frequency differences 2mω≲ ð2KÞ2, where this time we
also include the 1 in the denominator of (23). For large
momenta P≳ 2K, the coupling g2eff is in the momentum-
dominated regime and follows (41), growing as a power
law P4. In contrast, at low momenta P≲mω=K, it is in the
collinear regime and decreases as a power law P−4 due to
(46). Between these regions mω=K ≲ P≲ 2K, it takes its
minimal value g2eff ∼ ðmKfðt; KÞÞ−2 as in Eq. (42).
Additionally, it becomes g2eff ≈ g2 at very large and very
low momenta, parametrically given by

P≳ 2Q or P≲m
Q
ω; ð48Þ

respectively, where we used (41) and (46). The inverse
coherence scale Q defined in Eq. (4) enters the expressions
because of

Q2 ∼mgn ∼mgK3fðt; KÞ: ð49Þ

Therefore, the momentum-dominated regime with ω ¼ 0
shown in Fig. 2 is a special case of this functional form.
According to our considerations in Secs. V B and V C,
there is no constant region with g2eff ∼ ðmKfðt; KÞÞ−2 for
larger frequencies 2mω≳ ð2KÞ2, but the P−4 power law
changes over to P4 at the transition scale P2 ≈ 2mω
between collinear and momentum-dominated regimes.
All of this is also seen in our numerical results of g2eff for

different 2mω in Fig. 4. For low frequency differences
2mω≲ ð2KÞ2, each of the parts visualized in Fig. 3 can be
identified (blue, green, and red curves), while for larger
frequency differences ð2KÞ2 ≲ 2mω≲ ð2QÞ2, the constant
middle part is absent, and the transition between the power
laws occurs at P2 ≈ 2mω (cyan and violet curves), as
expected from parametric estimates. At large frequency
differences 2mω≳ ð2QÞ2, the conditions in (48) are true
for almost all momenta P, and thus one has g2eff ≈ g2 such

FIG. 3. Schematic illustration of the effective coupling
g2eff ½f�ðt;ω; PÞ for fixed frequency ω that summarizes typical
scales and the general functional form.

FIG. 2. Effective coupling g2eff ½f�ðt;ω; PÞ without 1 in its
denominator as a function of momentum for the momentum-
dominated regime (blue line, ω ¼ 0) and for the dispersive
regime (green line, ω ¼ P2=2m). The distribution function is
chosen as in Eq. (47) with parameters A ¼ 84100=ð4m2Þ and
B ¼ 0.0521 × ð2mÞ. These values are taken from Ref. [6], in
which this form was fitted to the distribution function in a
classical lattice simulation at time t ¼ 300=ð2mÞ. Keeping
κ< ¼ 0 fixed, we show bands for 3.5 ≤ κ> ≤ 6.

4With the correct denominator, the only difference would be
that the scaling behavior of the effective coupling would stop and
asymptotically reach the high-momentum limit g2.
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that no clear power laws are visible (yellow and black
curves).5

Besides these general features, we can also understand
the origin of the spikes that are visible in Fig. 4. The upper
spikes result from the negative ReΠR in the collinear
regime approaching −1 and thus canceling the 1 in the
denominator of g2eff . This occurs roughly at the scale when
g2eff ≈ g2 becomes constant at low momenta. Because of
ImΠR ≲ jReΠRj ≈ 1, the effective coupling becomes
g2eff ≈ g2=ðImΠRÞ2 ≳ g2 at its maximum and exceeds g2

there, which results in a peak. The lower spikes are a
consequence of the real part changing its sign between the
collinear and momentum-dominated regimes for P≳ 2K.
Then, the real part vanishes, ReΠR ≈ 0, and one again has
g2eff ≈ g2=ðImΠRÞ2. Since this occurs at P2 ≈ 2mω, we can
use the expression for the imaginary part in the dispersive
regime (33), such that the effective coupling grows as P2 in
that case. For comparison, a corresponding power-law
curve is shown in Fig. 4, which is in good accordance
with the peaks of the lower spikes.
This constitutes a detailed understanding of the func-

tional form of g2eff based on parametric estimates. It also
shows the importance of the inverse coherence scale Q. All
nontrivial values of the effective coupling g2eff < g2 occur
for momenta below this scale, such that Q can be regarded

as the separation scale between the nonperturbative infrared
region and the perturbative regime at hard momenta.
In the language of relativistic scalar theory for large

infrared occupation numbers, the inverse coherence length is
related to a mass shift contained in the effective mass M.6

Hence, one has M ≳Q, which implies that the whole low-
momentum region in which the effective coupling takes
nontrivial values is below themass scale and thus essentially
nonrelativistic. This has indeed been observed in lattice
simulations [6,17]. Therefore, our analysis of the effective
coupling should also be valid for the relativistic case.

VI. EXTENDED RANGE OF VALIDITY
OF LARGE-N KINETIC THEORY

Having understood the behavior of the effective coupling
g2eff in the previous section, we can study its consequences
for the large-N kinetic theory. Different from the perturba-
tive kinetic approach, we show here that no limitations on
the typical occupancy of the distribution function exist, and
one can therefore consider also highly occupied systems. In
particular, we demonstrate that the large-N kinetic theory
coincides with the standard perturbative description at large
N for sufficiently low typical occupancies or if only large
momenta p ≫ Q are considered.

A. Role of the effective vertex in the collision integral

Using the results of Sec. V, we first discuss which values
of g2eff actually occur in an evaluation of the collision
integral (25) for incoming momentum p. In particular, this
will allow us to identify standard perturbative descriptions
in the regime where the occupancies are not large.
The integration variables relevant for the effective

coupling are q and P. While the q integration proceeds
over all momenta, the P integration is limited by P< ¼
jp − qj and P> ¼ pþ q, and thus not all values of g2eff that
were discussed above occur for given p. The relation

2mjωj ¼ P<P> ð50Þ
provides a useful link between the frequency difference
2mω ¼ p2 − q2 and the integration limits.
In the dispersive regime, one has P2 ≈ 2mjωj, with

P ≈ p or P ≈ q, and the resulting effective coupling is
written in (35) and (36). The P integration can then be
simplified to

Z
pþq

jp−qj
dP ≈

q≪p
2qjP≈p ð51Þ

Z
pþq

jp−qj
dP ≈

q≫p
2pjP≈q: ð52Þ

FIG. 4. Effective coupling g2eff ½f�ðt;ω; PÞ including the þ1 in
its denominator as a function of momentum for different values of
2mω. The same distribution function and parameters are chosen
as in Fig. 2 with κ> ¼ 4.

5The frequency of the orange curve is of the order of
2mω ∼ ð2QÞ2, which is between the described functional forms.

6The effective mass M2 includes a term, ∼λ
R
d3p fðt;pÞ

ωp
∼

λ
m n ∼Q2, that results from local self-interactions.
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While for q ≪ p the effective coupling is approximately
g2eff ½f�ðt; p2=2m;pÞ, which stays constant during the
q-integration, the coupling g2eff ½f�ðt; q2=2m; qÞ varies
for q ≫ p.
When the momenta q ∼ p are of the same order, the

P-integration range becomes nontrivial. However, because
of (50), there is always a region with P2 ≈ 2mjωj as in the
dispersive regime for any p and q. The integration limits
P2
> > 2mjωj and P2

< < 2mjωj are thus located around
this region and correspond to the momentum-dominated
and the collinear regimes, respectively. There, the value
of the effective coupling is given by (41), (42), and (46).
We note that for the special case in which both momenta
p; q≲ K the effective coupling takes its minimal
value g2eff ∼ ðmKfðt; KÞÞ−2 for all momenta P in the
integration.
The effective coupling becomes trivial g2eff ≈ g2 at

sufficiently large frequency differences 2mjωj ≳ ð2QÞ2.
Because of 2mω ¼ p2 − q2, this statement depends on
the integration variable q in the collision integral and
may occur as part of the integration. Similarly, this
happens at small and large momentum differences P as
in (48).
In this context, an interesting case is when the

incoming momentum exceeds the inverse coherence
length p ≫ Q. Then, the effective coupling stays mostly
trivial; i.e., g2eff ≈ g2 during the q integration. For p ≫ q
and p ≪ q, this results from P ≫ Q. The q-momentum
range in which g2eff takes nontrivial values is located
around p ∼ q, and because of P ∼Q ≪ q, it is small
when compared to typical q values and to the whole
q-integration range that proceeds from 0 to ∞. This
shows that the large-N kinetic theory reduces to the
perturbative kinetic theory if dynamics at only large
momenta p ≫ Q is studied.
Furthermore, g2eff also becomes trivial when K ≳Q,

which is independent of integration parameters. This
condition is equivalent to mgKfðt; KÞ≲ 1, which, as will
be shown in Eq. (54), corresponds to ζfðt; KÞ≲ 1, where ζ
is the diluteness parameter. Hence, when typical occupation
numbers are sufficiently small, the effective coupling
becomes g2 for all values of the integration parameters,
and the large-N kinetic theory reduces to the perturbative
kinetic theory.

B. Interference terms and their
large-N resummation

The collision integrals of perturbative and large-N
kinetic theories differ in the coupling, which is constant
g2 or resummed g2eff , respectively. To understand the range
of validity of the theories due to interference, we consider a
series of diagrams that all contribute to the elastic 2 ↔ 2
channel, as depicted in Fig. 5. Since the retarded self-
energy ΠR as defined in Eq. (26) is originally a convolution
of the distribution function and the retarded propagator, it

corresponds to a “blob” connecting two vertices. With the
results of Sec. V, it can be parametrically estimated as

ΠRðt;ω; PÞ ∼mgKfðt; KÞ ∼ ðζfðt; KÞÞ2=3; ð53Þ

where we have included the diluteness parameter ζ ∼mgQ
with the scale Q2 ∼mgK3fðt; KÞ, which are defined in
Eqs. (5) and (4). As long as jΠRj ≪ 1, the series of chain
diagrams in Fig. 5 corresponds to a (perturbative) loop
expansion of which the leading term in the collision
integral is given by the coupling constant g2. Hence,

mgKfðt; KÞ≪pert1 ⇔ ζfðt; KÞ≪pert1 ð54Þ

is a necessary condition for the validity of the perturbative
kinetic theory.7 The equivalent condition on the right-hand
side restricts the occupation numbers for that case.
Otherwise, when jΠRj≳ 1, all of the considered scattering
processes are of the same order and interfere, which leads to
the breakdown of the perturbative approach.
This problem is absent in the large-N kinetic description

because of the effective coupling g2eff in (23). Its perturba-
tive expansion corresponds to the series of scattering
processes that was depicted in Fig. 5. Hence, the effective
coupling appears as a geometric series at small ΠR where
the series converges. More precisely, it resums all diagrams
emerging at NLO in a 1=N expansion [37,52].
Hence, the interference of an infinite number of scattering

processes is encoded into the vertex resummation in the
large-N kinetic theory and results in an effective coupling
g2eff . In this effective kinetic theory, characteristic occupan-
cies are not restricted. Thus, it comprises and extends the
rangeof validity of standardperturbative kinetic descriptions.

C. Cross section and mean free path

In Sec. IV, we have argued that the large-N kinetic theory
appears as a consistent quasiparticle description in the
large-N limit since the spectral function can be approxi-
mated by an on-shell form in the collision integral.
Moreover, this effective theory extends perturbative kinetic
approaches and can also be applied to highly occupied

FIG. 5. Perturbative expansion of the effective coupling g2eff .

7Although we consider a nonrelativistic theory with a quad-
ratic dispersion relation, it is enlightening to check how this
condition translates into the language of a relativistic scalar
theory. Assuming that the effective mass M is of the order of Q,
one can identify λ ∼ ζ. Hence, perturbative kinetic theory is valid
for small enough occupancies up to the inverse coupling
fðt; KÞ ≪ 1=λ, which is consistent with what is commonly
known (see, e.g., Refs. [3,56].
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systems, as we argued in this section. In addition to
these general arguments, we give here a more illustrative
explanation of the validity of the large-N kinetic theory in
terms of (perturbative) concepts as cross sections and mean
free paths.
We first get an expression for the cross section σ for

elastic scattering in the presence of the vertex corrections
encoded in the effective coupling. We start with a general
Lorentz-invariant expression of the differential cross sec-
tion for 2 ↔ 2 scatterings in the center-of-mass system
(CMS) (see, e.g., Ref. [63])

dσ
dΩ

¼ jMj2
64π2s

: ð55Þ

In the considered nonrelativistic limit, the Mandelstam
variable s simplifies to s ≈ 4m2. The matrix element
for the perturbative kinetic theory can be expressed as
jMj2 ∼m4g2=N, where we included the number of field
componentsN explicitly. For the large-N kinetic theory, the
coupling constant is replaced by the effective coupling
g2 ↦ g2eff ½f�ðt;ω; PÞ. In the CMS, in- and outgoing
momenta are equal p ¼ q, and thus one may set ω ¼ 0.
The total cross section can be obtained from (55) by

integration. For this, we substitute the integration variables
from angular variables to P2 ¼ 2p2 − 2p2 cos θpq with
dΩ ¼ 2πd cos θpq ¼ −ðπ=p2ÞdP2 and arrive at

σ ¼ 1

64πð2pÞ2m2

Z ð2pÞ2

0

dP2jMj2ðt;ω ¼ 0; PÞ: ð56Þ

Hence, for constant coupling g2 as in the standard
(perturbative) kinetic theory, one has the familiar
expression8

σpert ∼
m2g2

N
∝

λ2

m2N
; ð57Þ

where we included the relativistic coupling λ for compari-
son. The same expression σeff ≈ σpert is found for the
effective coupling whenever it reduces to g2, which occurs
at sufficiently low typical occupancies ζfðt; KÞ ≲ 1 or at
large momenta p ≫ Q (Secs. VI A and VD). Otherwise,
g2eff ½f �ðt;ω ¼ 0; PÞ is in the momentum-dominated regime
that was discussed in Sec. V B. One then has

σeff ∼Q≳p≳K 1

NðKfðt; KÞÞ2
p4

K4
ð58Þ

σeff ∼p∼K
1

NðKfðt; KÞÞ2 : ð59Þ

Let us now proceed with the mean free path L of
quasiparticles between two collisions for typical momenta
K. A condition for a valid quasiparticle picture is that the
mean free path L of quasiparticles is larger than their spatial
extent, which can be estimated by their de Broglie wave-
length λDB ∼ 1=K [5], such that

L ≫
1

K
: ð60Þ

The mean free path of classical particles is usually
estimated by means of the cross section and of the particle
number density as Lclass ∼ 1=ðσnÞ. Since the frequency of
collisions that a typical particle encounters may be
enhanced by the Bose factor ð1þ fðt; KÞÞ [16], an alter-
native estimate of the mean free path is

L ∼
1

σnð1þ fðt; KÞÞ : ð61Þ

Because of Lclass ≥ L, the quasiparticle relation (60) is
valid for Lclass whenever this is the case for L. Therefore,
we will use L in Eq. (61) for our estimates.
On general grounds, we can already compare the large-N

effective mean free path (referred to as Leff ) and the one
resulting from standard (perturbative) kinetic theory Lpert.
Because of g2eff ≤ g2, one has

σeff ≤ σpert ⇔ Leff ≥ Lpert: ð62Þ

Hence, the effective coupling leads to a reduced cross
section and an increased mean free path, counteracting in
this way even high quasiparticle densities.
To be more specific, for the perturbative case of constant

g2 interactions, the mean free path can be estimated as

Lpert ∼
N

KðmgKfðt; KÞÞ2 : ð63Þ

The same expression is encountered for the large-N kinetic
theory in the cases in which the effective coupling g2eff
reduces to g2. Otherwise, one has ζfðt; KÞ≳ 1 and

Leff ∼
p∼K N

K
: ð64Þ

For perturbative kinetic theory, the mean free path (63)
and the imposed restriction on occupation numbers
mgKfðt; KÞ ≪ 1 in (54) imply Lpert ≫ 1=K, and condition
(60) is satisfied.

8The 1=N factor is often omitted in such expressions [5], but in
our case, it is important to be consistent with large-N arguments.
Also recall that we consider here the nonrelativistic limit. For an
(ultra)relativistic theory, one would have s ≈ 4p2, with p ¼ jpj,
which would lead to σrelpert ∼ λ2=ðp2NÞ. In equilibrium, typical
momenta are of the order of the temperature scale p ∼ T, which
would lead to familiar expressions for the cross section and the
mean free path [5].
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In the case of the large-N kinetic theory, no restric-
tions on the occupation numbers have been posed.
Whenever the effective coupling reduces to the coupling
constant at momenta of the order K at vanishing ω, one
has mgKfðt; KÞ ≲ 1, and for large N, this leads to
Lpert ≳ N=K ≫ 1=K. Otherwise, we can use (64) with
Leff ∼ N=K ≫ 1=K, which is again consistent with the
underlying assumption of large N and satisfies the
condition (60).
In summary, based on the interference argument in

Sec. VI B, typical occupation numbers are restricted to
ζfðt; KÞ ≪ 1 for perturbative kinetic theory. Since fðt; KÞ
is a dynamical variable, this condition is time dependent.
On the other hand, no restrictions on occupation numbers
exist for large-N kinetic theory. In addition, Eq. (60) is
satisfied in both cases, which contributes to a consistent
quasiparticle interpretation.

VII. NONTHERMAL FIXED POINT
FROM LARGE-N KINETIC THEORY

In this section, we determine the distribution function in
the highly occupied self-similar regime at low momenta of
scalar systems [6]. For the first time, we compute the
universal scaling function fSðpÞ within the large-N kinetic
theory, performed in three spatial dimensions. This is done
numerically by solving a rescaled version of the kinetic
equation that leads to the fixed-point solution fSðpÞ. We
present our numerical approach and discuss the solution.
Although we focus here on the self-similar regime, our
numerical approach can be applied to more general
situations of the thermalization process of scalar systems.
If not stated otherwise, all dimensionful quantities in this

section are provided in suitable powers of 2m, and
occupation numbers are rescaled by 4m2g. Hence, time,
momenta, and occupation numbers are obtained by the
rescalings t ↦ 2mt, p ↦ p=ð2mÞ, and f ↦ f=ð4m2gÞ.

A. Review of lattice simulation results

It was found in classical-statistical lattice simulations
that nonrelativistic and relativistic OðNÞ symmetric scalar
field theories for different numbers of components N
approach a universal scaling regime at low momenta where
the distribution function is large ζfðt; KÞ ≳ 1 and follows a
self-similar evolution [6,44,64],

fðt; pÞ ¼ tαfSðtβpÞ: ð65Þ
The scaling exponents α and β as well as the scaling
function fSðpÞ are the same for a wide range of initial
conditions once the evolution is sufficiently close to its
nonthermal fixed point [37]. Since these properties are
universal in the sense that they are approximately the same
even in different theories, they form a far-from-equilibrium
universality class [6,34]. In three spatial dimensions, the

scaling exponents have been measured to be close to the
values

α ¼ 3

2
; β ¼ 1

2
: ð66Þ

The scaling function fSðpÞ was observed to be approx-
imately described by the functional form (47). This form
can be approximated by two power laws for large and small
momenta around a typical (stationary) infrared scale KS
being the momentum at which the particle number density
is dominated according to (28)

fSðpÞ ∼p≳KSp−κ>; fSðpÞ ∼p≲KSp−κ<: ð67Þ
The lower exponent has been observed to lie within the
range 0 ≤ κ< ≤ 1=2 [6,44]. The larger spectral exponent κ>
has been investigated in different studies and has often been
related to strong wave turbulence. Considering different
systems in d ¼ 3 spatial dimensions, exponents were found
for a range of different phenomena, ranging between 4 and
5 [6,37,39,40,44,45,65,66]. In some studies [40,65–67], the
observed exponent could be understood as a superposition
of two different power laws, associated to different physical
origins, or attributed to finite-size effects. Simulations
within the 2PI framework confirm the existence of a
nonthermal fixed point in the infrared with properties
(67) and show that it even survives at moderate couplings
[37,68].
With the observed values for the scaling exponents α and

β in (66), the dynamics can be understood as an inverse
particle cascade that occupies low momenta toward the
formation of a Bose-Einstein condensate far from equilib-
rium [69]. Since the condensate formation time grows with
volume tcond ∼ V1=α while the growth of the zero-momen-
tummode follows a power-law behavior in time fðt; 0Þ ∼ tα

[6,64,70], for an infinitely large system, no condensate is
formed.

B. Self-similar solution

Because of its large occupation numbers ζfðt; KÞ ≳ 1,
this scaling region cannot be described by perturbative
kinetic theory, the range of validity of which is restricted by
Eq. (54). Instead, the large-N kinetic theory can be applied.
Indeed, it was shown in Ref. [6] that it correctly reproduces
the observed scaling exponents (66). In the following,
we extend this calculation by also obtaining the scaling
function fS, and thus we provide a complete scaling
solution of the large-N kinetic theory in the low-momen-
tum region.
To find the scaling form of the distribution function in

the infrared, we first follow Refs. [6,9] and plug the self-
similarity ansatz (65) into the effective kinetic equation (7).
With the rescaled momentum p̃ ¼ tβp, the left-hand side
can be expressed as
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∂
∂t fðt; pÞ ¼ tα−1

�
αfSðp̃Þ þ βp̃

∂fSðp̃Þ
∂p̃

�
: ð68Þ

Similarly, one can rescale the collision integral9

C½f�ðt; pÞ ¼ tμC½fS�ðp̃Þ: ð69Þ

Using ωp ¼ p2=2m, one finds with the expressions for the
collision integral (22)–(24)

ΠRðt;ωp − ωq; PÞ ¼ tα−βΠRðωp̃ − ωq̃; P̃Þ; ð70Þ

g2eff ½f�ðt;ωp − ωq; PÞ ≈ t−2ðα−βÞg2eff ½f�ðωp̃ − ωq̃; P̃Þ; ð71Þ

which leads to the scaling exponent of the collision
integral [6]

μ ¼ α − 2β: ð72Þ

Setting α − 1 ¼ μ, we get rid of the explicit time factors on
both sides of the kinetic equation, and we arrive at β ¼ 1=2.
This value of β is even the same in different spatial
dimensions d [6]. Moreover, particle number density
conservation leads to the additional relation α ¼ 3β for
the considered case of d ¼ 3. Hence, the computed values
agree with the observations (66).
The remaining fixed-point equation then reads

3

2
fSðp̃Þ þ

1

2
p̃
∂fSðp̃Þ
∂p̃ ¼ C½fS�ðp̃Þ: ð73Þ

We solve this equation numerically for the scaling function
fSðp̃Þ. While details of our numerical approach are
postponed to the following subsections, we present its
solution here in Fig. 6. The scaling function has the
properties

fSðp̃Þ ∼p̃≲KSconst; fSðp̃Þ ∼p̃≳KSp̃−4; ð74Þ

with the transition (“bending”) scale at KS ¼ 1, where we
used its definition in Eq. (28). The exponents κi of the
distribution at larger and lower momenta compare well with
former studies (see Sec. VII A). The functional form of the
obtained fS here is so similar to Eq. (47), which was used in
Ref. [6] to approximate fS on the lattice, that it is difficult to
visually distinguish between them, as will be clearer in
Fig. 7. We yet note that there are small deviations from that
simple form in the bending region at the scale KS.

Apart from the scaling form, we can also compare
nonuniversal quantities that depend on parameters of our
system like mass or particle number density. These are the
amplitude fSðKSÞ and the typical momentum KS. To be
more specific, we compare these quantities to the classical-
statistical lattice results from nonrelativistic scalar theory
shown in Fig. 3 of Ref. [6]. There, the rescaled distribution
function within the self-similar regime fS ¼ ðt=trefÞ−αf
is plotted as a function of the rescaled momentum
p̄ ¼ ðt=trefÞβp, where we used the overline notation to
distinguish from our conventions for the scaling function
and rescaled momentum. The two notations are related by

fSðp̄Þ ¼ tαreffSðp̃Þ; p̄ ¼ t−βref p̃: ð75Þ

The reference time was set to tref ¼ 300 in the same units as
used here. With this, we can transform the typical

FIG. 6. Scaling function fSðpÞ computed by solving (73)
numerically. The error bars (see Sec. VII D) are smaller than
the line width.

FIG. 7. Rescaled distribution function f̃ ¼ t−αf as a function of
rescaled momentum p̃ ¼ tβp at different times. The system is
initialized at t ¼ 1 with the distribution function given by (47)
(gray dashed line) with parameters A ¼ 80000, B ¼ 0.867,
κ< ¼ 0, and κ> ¼ 3.9. The rescaled distribution quickly ap-
proaches its stationary form fS.

9Since we are interested in the highly occupied infrared region,
we assume f ≫ 1 and ζfðt; KÞ ≫ 1, neglecting the 1 in the
denominator of the effective coupling g2eff in (23), which enables
an exact scaling solution of the collision integral. We have
checked that including 1 only changes the distribution at large
momenta outside the scaling region where f ≲ 1=ζ, which can be
surpassed on the finite-momentum grid by taking a sufficiently
large occupation number fðt; KÞ.
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momentum KS and the amplitude fSðKSÞ obtained here
within large-N kinetic theory to the overline notation, as

KS ¼ t−βrefKS ≈ 0.0577 ð76Þ

and fSðKSÞ ¼ tαreffSðKSÞ, and compare them to the corre-
sponding quantities in Ref. [6]. Since in our prescription of
the large-N kinetic theory for very high occupation
numbers (see footnote 9) the amplitude drops out of the
kinetic equation, it can thus be adjusted arbitrarily even
after the simulation, depending on the particle number
density in the system n ∼ fSðKSÞK3

S ¼ fSðKSÞKS
3. Hence,

it is not suitable for a comparison with the lattice results. On
the other hand, being independent of n, the scaleKS (orKS)
is fixed by the mass parameter m (or by both m and the
reference time tref ) and enables a quantitative comparison
between large-N and lattice simulation results. In Fig. 3 of
Ref. [6], the transition scale KS is located within the
momentum range 0.05≲ KS ≲ 0.08. This is consistent
with our result from the large-N kinetic theory (76).
We note that the small deviations between large-N

kinetic and lattice results may have different reasons.
First of all, we use the large-N kinetic theory at NLO
and omit higher orders in 1=N. Moreover, the functional
form measured on the lattice in Ref. [6] may suffer from
finite-time effects and may slightly change at later times
beyond the simulation times shown there.10 And finally,
regarding the discussion below Eq. (67), the observed
power law on the lattice could be a superposition of power
laws with different origins. Therefore, it was of great
importance to pin down the power-law exponent 4 in
Eq. (74) that can be associated with the large-N kinetic
theory11 to be able to distinguish it from other possible
contributions.
We have seen that the large-N kinetic theory provides an

even quantitatively good description of classical-statistical
lattice data. This confirms its applicability to systems with
very high occupation numbers, extending perturbative
kinetic frameworks. The scaling function in Fig. 6 and
its properties are the main results of this section.

C. Numerical setup

Here, we discuss the numerical setup that led to the
scaling solution in Fig. 6. To solve the fixed-point equa-
tion (73), we start again with the full kinetic equation in (7)
with the collision integral C½f � as given by (25). Our
strategy is to rescale the kinetic equation such that it relaxes
to the fixed-point equation with time. With this, we follow

Ref. [26] in which this strategy was used for the self-similar
region at hard momenta in non-Abelian gauge theory.
Therefore, instead of using a self-similarity ansatz, we
rescale the distribution function and momenta according to

fðt; pÞ≡ tαf̃ðt; tβpÞ≡ tαf̃ðt; p̃Þ; ð77Þ
with the values for the scaling exponents from (66).
Comparing (77) to the self-similar evolution (65), one
finds that the scaling function is the stationary limit of this
rescaled distribution f̃ðt; p̃Þ → fSðp̃Þ.
Plugging (77) into the kinetic equation (7), one arrives at

the rescaled kinetic equation

∂f̃ðt;p̃Þ
∂ logt ¼−

�
αf̃ðt;p̃Þþβp̃

∂f̃ðt;p̃Þ
∂p̃ −C½f̃�ðt;p̃Þ

�
; ð78Þ

since the explicit time factors cancel. Note that Eq. (78) is
equivalent to the original kinetic equation (7) but reduces to
the fixed-point form (73) when f̃ becomes time indepen-
dent. Hence, a stationary solution of this equation corre-
sponds to the scaling function fSðp̃Þ, as has been noted
above. In this sense, and because of the logarithmic time
derivative ∂f̃=∂ log t, it can be regarded as a relaxation
algorithm for fSðp̃Þ in time.
Moreover, the overall amplitude of f̃ drops out of the

kinetic equation (78) because we neglect the 1 in the
denominator of the effective coupling (23) (see also foot-
note 9). This corresponds to the high-occupancy limit
f̃ðt; K̃Þ → ∞ with f̃ðt; p̃Þ=f̃ðt; K̃Þ kept fixed for each
momentum. Here, K̃ is the typical (rescaled) infrared
momentum scale in which particle number density n is
dominated with respect to the distribution f̃. Similarly, the
coupling constant g also drops out of the kinetic equation.
To numerically solve (78), we discretize time logarithmi-

cally with constant Δ log t ¼ log tkþ1 − log tk ¼ const
between successive times tkþ1 and tk. The time can then
be calculated as tk ¼ ekΔ log t. Moreover, we choose a
logarithmically spaced momentum grid for the distribution
function f̃ðt; p̃Þ, its derivative, and the collision integral, in
order to resolve the distribution function at very low
momenta. The grid involves Np momenta between ΛIR
and ΛUV such that the ratio between successive momenta is
constant p̃kþ1=p̃k ¼ const. We employed Δ log t ¼ 0.1,
ΛIR ¼ 0.017, ΛUV ¼ 17–52, and Np ¼ 100 for the plots
of this section.
For the computation of the collision integral and for the

interpolation of the distribution function, we use methods12

from the GNU Scientific Library [71]. Interpolation is
required since the integration methods need continuous10Similar finite-time artifacts have been observed for non-

Abelian gauge theory, in which a kinetic description compared
well with lattice results but showed slight differences at late times
beyond the time of lattice simulations when being closer to the
nonthermal fixed point [26].

11See also Ref. [61] for an alternative approach to this problem
and an outcome consistent with our results.

12From Ref. [71], we frequently use the integration method
GSL_INTEGRATION_CQUAD, which is particularly suitable for
singular integrands. Such occur, for instance, in the real part
of the one-loop retarded self-energy ΠR. The employed inter-
polation type is GSL_INTERP_AKIMA.
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functions for the integrand, and it is performed based on the
sampling points ðp̃k; f̃n;k ≡ f̃ðtn; p̃kÞÞ at time tn. For
momenta outside the momentum grid ½ΛIR;ΛUV�, we set
the distribution function to zero. Therefore, some terms in
the functional I2↔2½f̃� in (10) become zero when one of the
momenta is outside of the momentum interval, and the
collision integral loses its gain-minus-loss structure. To
prevent this, we additionally set the whole functional
I2↔2½f̃� to zero in such cases to reduce deviations from
particle number and energy density conservation. This leads
to simplifications of integration boundaries within the colli-
sion integral (25), which are further discussed inAppendixB.
In the numerical algorithm, we first initialize the dis-

tribution function f̃0 and its momentum derivative f̃00 at the
grid points p̃k at initial time. The time step tn → tnþ1

follows the explicit Euler method

f̃nþ1;k ¼ f̃n;k − Δ log t½αf̃n;k þ βp̃kf̃
0
n;k − C½ f̃n��: ð79Þ

Since the evaluation of the collision integral at a single
momentum point pk neither depends on nor affects the
evaluation at other momenta, we parallelize the part of our
solver in which the collision integral is computed for each
momentum on the grid.
The accuracy of our solution algorithm is mainly limited

by the interpolation of the derivative of the distribution
function f̃0. For a typical functional form as in Eq. (47), the
relative accuracy for our discretization was up to 10−2 as
compared to the analytical expression of the derivative.
Although increasing Np may improve the resolution, the
computational costs will grow, and we thus found a
compromise that still provided sufficiently accurate results.

D. Details on the computation of
the scaling function

In Fig. 7, we show the relaxation dynamics of the
rescaled distribution f̃ computed by the algorithm intro-
duced above. We start close to the stationary form by
choosing f̃0 as in Eq. (47) with κ< ¼ 0 and κ> ¼ 3.9. One
observes that f̃ quickly approaches a stationary form,
which can be understood as the scaling function fS.
Curves at times t ≥ 1.6 are already almost time indepen-
dent. Therefore, fS shown in Fig. 6 is computed as the
average over these curves, while the error bars are esti-
mated by the standard deviation in this procedure.
The functional form of fS is barely distinguishable from

its starting form (47) in Fig. 7; however, small deviations
around the scale KS exist. At low momenta p̃≲ KS and at
high momenta p̃≳ KS, the scaling function follows power
laws p̃−κ< and p̃−κ> . We have measured the spectral
exponents κi by employing power-law fits to the respective
regions in the scaling function,

κ< ¼ 0� 0.01ðsysÞ
κ> ¼ 3.95� 0.05ðsysÞ: ð80Þ

Statistical errors are much smaller than systematic errors,
which were estimated to contain possible infrared and
ultraviolet cutoff artifacts.13

To check the stability of these values, we start with
slightly larger exponents κ< ¼ 0.5 and κ> ¼ 4.5 for the
initial distribution f̃0 with the functional form (47). The time
evolution of the exponents is shown in Fig. 8, where we use
the error estimates of (80). Indeed, one observes that the
exponents approach the values (80) of the scaling function.

VIII. CONCLUSION

In this work, we have shown that the large-N kinetic
theory at NLO can be applied to highly occupied scalar
quantum field theory, which cannot be described by a
perturbative kinetic framework. On the other hand, for
sufficiently low occupancies or at large momenta, it
effectively reduces to a perturbative kinetic theory at large
N. Hence, the large-N kinetic theory extends perturbative
descriptions and constitutes a versatile tool to study the
dynamics of systems out of equilibrium in terms of
quasiparticles.
An essential ingredient for the quasiparticle picture, for

free movement between collisions and for the proper
inclusion of quantum interference effects even at high
occupancies, is the vertex resummation that appears at
NLO in the large-N expansion [6,39,45,51,52]. We ana-
lyzed the structure of the effective vertex in detail, which
enabled us to show that the mean free path L of quasi-
particles at typical momentum modes is larger than their de
Broglie wavelength. Moreover, the spectral function can be

FIG. 8. The exponents of approximate power laws p̃−κi at low
(κ<) and high (κ>) momenta of the rescaled distribution f̃ as
functions of time. The distribution has been initialized as in (47)
with A ¼ 27000, B ¼ 1.135, κ< ¼ 0.5, and κ> ¼ 4.5.

13We note that at low and high momenta close to the cutoffs the
scaling function starts to show deviations from power-law or
constant behavior, which is the main source of error in the power-
law fits. Increasing the momentum grid to lower and larger
momenta reduces the effects of these numerical artifacts but
comes at the price of increased numerical costs.
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approximated by a quasiparticle form at NLO of the large-
N theory since a peak width is suppressed by 1=N. These
arguments lead to a well-defined dispersion relation and
thus a consistent quasiparticle picture.
In a second step, we applied the large-N kinetic theory to

the highly occupied region of scalar systems at low
momenta characterized by a universal self-similar evolution
[6,44]. Surpassing former analytical estimates for the
scaling exponents α and β of the self-similar evolution
[6], we solved the effective kinetic equation numerically for
the first time. The scaling function obtained, fSðjpjÞ, agrees
well with former lattice simulation results, which is a
striking confirmation of the applicability of the large-N
kinetic theory to highly occupied systems. It reveals a
power-law behavior ∼jpj−4 at momenta higher than the
typical momentum KS that dominates particle number
density and becomes constant at low momenta.
No explicit assumption on the coupling strength has

entered the derivation of the large-N kinetic theory.
Therefore, in principle, one could use the large-N kinetic
theory also at moderate couplings for finite N. Indeed, it was
shown using 2PI equations to NLO in a 1=N expansion
[39,51,52] that the observed self-similar regime at low
momenta survives to moderate values λ ¼ 1 [68].
However, it was argued within the 2PI framework that for
a large coupling λ ¼ 10 inelastic processes may play an
important role at all times in the evolution [72]. The large-N
kinetic theory in its present form at NLO, however, lacks
such processes.
To be able to simulate a complete thermalization process

within large-N kinetic theory, starting far from equilibrium
and the evolution toward a nonthermal fixed point includ-
ing the subsequent final thermalization dynamics, one
would have to go beyond this order to capture inelastic
processes. While going to NNLO is challenging, the
description may be partially simplified at late times relevant
for the final approach to thermal equilibrium since the
typical occupancies become smaller such that standard
perturbative approximations become available again at least
for small enough couplings.
The large-N kinetic theory is an example for a kinetic

theory applicable to highly occupied systems, for which
conventional kinetic approaches fail. For non-Abelian
plasmas, multiple studies indicate strong fields and non-
trivial dynamics at low-momentum modes [17–21,29]. An
effective description thereof could be an important exten-
sion of kinetic approaches [7,11–13,16] to the evolution of
weakly coupled non-Abelian plasmas and the thermal-
ization process in ultrarelativistic heavy-ion collisions at
high energies.

ACKNOWLEDGMENTS

We thank J. P. Blaizot, I. Chantesana, T. Gasenzer,
A. Kurkela, T. Lappi, A. Piñeiro Orioli, S. Schlichting,
and R. Venugopalan for useful discussions and

collaborations on related work. K. B. gratefully acknowl-
edges support by the European Research Council under
Grant No. ERC-2015-COG-681707. This work is part of
and supported by the DFG Collaborative Research Centre
“SFB 1225 (ISOQUANT).”

APPENDIX A: TOWARD SOLVING
THE LARGE-N KINETIC EQUATION

In this Appendix, we solve some of the integrals
appearing in the collision integral of the nonrelativistic
large-N kinetic theory (22) analytically for d ¼ 3 spatial
dimensions.

1. Collision integral

We start by averaging the Boltzmann equation (7) over the
solid angle of p. Because of the isotropy of the distribution
function, the left-hand side does not change, while the right-
hand side becomes

C½f�ðt; pÞ ¼
Z

dΩp

4π
C½f�ðt;pÞ

¼ π

ð2πÞ10
Z

∞

0

dll2dqq2drr2
Z

dΓCðp; l; q; rÞ

× δðωp þ ωl − ωq − ωrÞ
× g2eff ½f�ðt;ωp − ωq;PÞ
× I2↔2½f�ðt; p; l; q; rÞ: ðA1Þ

We have introduced the momentum difference P≡ p − q
for the effective coupling g2eff . In Appendix A 2, we
will show that it only depends on the magnitude

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 − 2pq cosðθp;qÞ

q
and hence on the magni-

tudes of the momenta p ¼ jpj and q ¼ jqj and on the angle
θp;q between them. The three-dimensional momentum
integrals in (A1) have been split into radial and solid
angle parts according to

R
d3q ¼ R∞

0 dqq2
R
dΩq withR

dΩq ¼ R
2π
0 dφq

R
1
−1 d cosðθqÞ. All angular integrals have

been included in

Z
dΓCðp; l; q; rÞ≡

Z
dΩpdΩldΩqdΩrð2πÞ3

× δð3Þðpþ l − q − rÞ: ðA2Þ

Except for θp;q, there is no angular dependence in the
residual terms of the collision integral. In the following, the
respective integrals are performed analytically.
We start by using the integral representation of the delta

function

ð2πÞ3δð3Þðpþ l − q − rÞ ¼
Z

d3xeiðpþl−q−rÞx: ðA3Þ
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Exploiting
R
dΩpdΩq ¼ R

dΩqdΩp;q, where
R
dΩp;q

denotes the angular integration of p around the axis in q
direction, and performing integrations over the angles
except for θp;q, we arrive at

Z
dΓCðp;l;q;rÞ¼24ð2πÞ5

Z
1

−1
dcosðθp;qÞ

Z
∞

0

dxx2

×
sinðPxÞ
Px

sinðlxÞ
lx

sinðrxÞ
rx

; ðA4Þ

where we employed
R
1
−1 dye

�ixy ¼ 2 sinðxÞ=x. We have
used that the collision integral does not depend on the polar
angle θq of q, even after integrating over θp;q, such that the
integration

R
1
−1 d cosðθqÞ ¼ 2 can be performed in the end,

which leads to Eq. (A4). With

sinðaÞ sinðbÞ sinðcÞ ¼ 1

4
ð− sinða − b − cÞ þ sinðaþ b − cÞ

þ sinða − bþ cÞ − sinðaþ bþ cÞÞ
ðA5Þ

and

Z
∞

0

dx
sinðaxÞ

x
¼ π

2
sgnðaÞ; ðA6Þ

we obtain

Z
dΓC

�
p; l; q; rÞ ¼ ð2πÞ6

lr

Z
1

−1

d cosðθp;qÞ
P

× ðsgnðPþ l − rÞ þ sgnðP − lþ rÞ
− sgnðP − l − rÞ − sgnðPþ lþ rÞÞ:

ðA7Þ

Taking the integrals over l and r of the collision integral
(A1) into account, the sign functions in expression (A7) can
be conveniently evaluated via

Z
∞

0

dl
Z

∞

0

drðsgnðPþ l− rÞþ sgnðP− lþ rÞ

− sgnðP− l− rÞ− sgnðPþ lþ rÞÞ

¼ 2

�Z
∞

P
dr

Z
Pþr

0

dlþ
Z

P

0

dr
Z

Pþr

P−r
dl−

Z
∞

0

dl
Z

∞

Pþl
dr

�

≡ 2

Z
ΔðPÞ

dldr¼
Z

∞

P
du

Z
P

−P
dv: ðA8Þ

A change of variables from l and r to u ¼ rþ l and v ¼
r − l has been performed in the last step of Eq. (A8),
absorbing a factor of 2. Figure 9 visualizes the region
of integration ΔðPÞ. A second transformation from
d cosðθp;qÞ to dP with d cosðθp;qÞ ¼ −ðP=pqÞdP leads to

C½f�ðt; pÞ ¼ 1

64π3p

Z
∞

0

dq
Z

pþq

jp−qj
dP

Z
∞

P
du

Z
P

−P
dv

× qðu2 − v2Þδðωp þωðu−vÞ=2 −ωq −ωðuþvÞ=2Þ
× g2eff ½f�ðt;ωp −ωq; PÞ

× I2↔2½f�
�
t; p;

u− v
2

; q;
uþ v
2

�
: ðA9Þ

The next step is the evaluation of the energy-conserving
delta function. With the quadratic dispersion relation
ωp ¼ p2=2m, the delta function in the collision integral
(A9) reads

δ

�
1

2m

�
p2 þ 1

4
ðu − vÞ2 − q2 −

1

4
ðuþ vÞ2

��

¼ 2mδðp2 − q2 − uvÞ: ðA10Þ
We use the v integral to evaluate the delta function
according to

2m
Z

P

−P
dvRðvÞδðp2 − q2 − uvÞ

¼ 2m
u

R
�
p2 − q2

u

�
Θ
�
P −

jp2 − q2j
u

�
; ðA11Þ

where R represents every part of the collision
integral depending on v. The step function in (A11) can
be used to change the integration boundaries of u toR
∞
max ðP;jp2−q2j=PÞ du. The resulting form of the collision

integral is given by Eq. (25).

2. Retarded self-energy

To also simplify the computation of the effective
coupling g2eff of (23), we perform the angular integrations
of the one-loop retarded self-energyΠR in (24) analytically.

FIG. 9. The filled region ΔðPÞ represents the area of integration
in (A8). The figure is taken with adaption from Ref. [6].
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We first change the integration variable to P − k ↦ k.
Introducing y≡ cosðθP;kÞ, where θP;k is the polar angle
between the momenta P and k, one arrives at

ΠRðt;ω; PÞ ¼ lim
ϵ→0þ

g
ð2πÞ2

Z
∞

0

dkk2fðt; kÞ
Z

1

−1
dy

×

�
1

ðP2 − 2PkyÞ=2m − ω − iϵ

þ 1

ðP2 − 2PkyÞ=2mþ ωþ iϵ

�
: ðA12Þ

Note that, due to the isotropy of fðt; kÞ, ΠR only depends
on the absolute value of the momentum P ¼ jPj. Moreover,
it vanishes for P ¼ 0 since the integrand becomes identi-
cally zero. In addition, one observes that changing the
frequency from ω to −ω corresponds to complex con-
jugation of the whole expression. As a consequence, the
one-loop retarded self-energy ΠR is real for ω ¼ 0.
Rewriting (A12) as

ΠRðt;ω; PÞ ¼ lim
ϵ̃→0þ

−mg
ð2πÞ2P

Z
∞

0

dkkfðt; kÞ
Z

1

−1
dy

×

�
1

y − P2−2mω
2Pk þ iϵ̃

þ 1

y − P2þ2mω
2Pk − iϵ̃

�
;

ðA13Þ
where we have substituted ϵ̃≡mϵ=Pk, enables us to use
the principal value integral

lim
ϵ→0þ

Z
1

−1

1

xþD� iϵ
dx ¼ PV

Z
1

−1

1

xþD
dx

∓ iπ
Z

1

−1
δðxþDÞdx

¼ log

���� 1þD
−1þD

���� ∓ iπΘð1 − jDjÞ

ðA14Þ
for each fraction in Eq. (A13). This leads to

ΠRðt;ω; PÞ ¼
−mg
ð2πÞ2P

Z
∞

0

dkkfðt; kÞΓΠðω; P; kÞ ðA15Þ

with the kernel

ΓΠðω; P; kÞ ¼ log

���� ðP
2 − 2PkÞ2 − 4m2ω2

ðP2 þ 2PkÞ2 − 4m2ω2

����
− iπ

�
Θ
�
1 −

jP2 − 2mωj
2Pk

�

− Θ
�
1 −

jP2 þ 2mωj
2Pk

��
: ðA16Þ

For a numerical treatment, it is useful to know the
singular points of the real part of the integrand

ReΓΠðω; P; kÞ and the region where the imaginary part
ImΓΠðω; P; kÞ does not vanish. The singularities of the real
part are given by

ksing ¼ �P
2
�mjωj

P
; ðA17Þ

where the case P ¼ 0 is excluded since the whole integrand
is zero then. The real part can be rewritten as

ReΓΠðω; P; kÞ ¼ log

���� ðk −
P
2
Þ2 − m2ω2

P2

ðkþ P
2
Þ2 − m2ω2

P2

����: ðA18Þ

For the imaginary part ImΓΠðω; P; kÞ of the integrand
(A16), we will assume ω > 0 since the case of a negative
frequency is related to the positive frequency case by
complex conjugation as noted above. Then, ImΓΠðω; P; kÞ
is zero until the integration variable k has increased
sufficiently to fulfill the condition k ≥ jP2 − 2mωj=2P of
the first Heaviside step function but is still too small to
fulfill the condition of the second step function. After
exceeding jP2 þ 2mωj=2P, which makes the second step
function one as well, the whole expression vanishes again.
Altogether, we find

−
1

π
ImΓΠðω; P; kÞ ¼

�
1 if jP2−2mωj

2P ≤ k ≤ jP2þ2mωj
2P

0 else
:

ðA19Þ

Including also the case of negative frequency, we arrive at
the final form of the one-loop retarded self-energy
in Eq. (26).

APPENDIX B: INTEGRATION BOUNDARIES

As explained in Sec. VII C, the collision integral
C½f�ðt; pÞ as well as the distribution function fðt; pÞ are
discretized on a grid between the momenta ΛIR and ΛUV in
our numerical approach. Outside this domain, we set
fðt; pÞ ¼ 0. Making use of this, the integration boundaries
of the collision integral (25) can be further constrained.
Integrals within the real and imaginary parts of the one-

loop retarded self-energy (26) are simplified to

ReΠR∶
Z

∞

0

dk →
Z

ΛUV

ΛIR

dk; ðB1Þ

ImΠR∶
Z jP2þ2mωj

2P

jP2−2mωj
2P

dk →
Z

min ðjP2þ2mωj
2P ;ΛUVÞ

max ðjP2−2mωj
2P ;ΛIRÞ

dk: ðB2Þ

The gain-minus-loss part

LARGE-N KINETIC THEORY FOR HIGHLY OCCUPIED … PHYS. REV. D 97, 116011 (2018)

116011-19



I2↔2½f�
�
t; p;

1

2

�
u −

p2 − q2

u

�
; q;

1

2

�
uþ p2 − q2

u

��

ðB3Þ

of the integrand of the collision integral yields nonvanish-
ing contributions if

ΛIR ≤ p ≤ ΛUV;

ΛIR ≤ q ≤ ΛUV;

ΛIR ≤
1

2
ðu� p2 − q2

u
Þ ≤ ΛUV: ðB4Þ

To preserve the gain-minus-loss symmetry, we set the
whole I2↔2 to zero if one of the conditions (B4) is not
fulfilled, as explained in Sec. VII C. The first constraint is
automatically fulfilled since the momentum p is externally
set to the correct momentum range. The q integration is
changed to

Z
∞

0

dq →
Z

ΛUV

ΛIR

dq: ðB5Þ

The relation

ΛIR ≤
1

2

�
u� 2mjωj

u

�
≤ ΛUV ðB6Þ

with 2mjωj≡ jp2 − q2j is chosen to be fulfilled for plus
and minus signs simultaneously. It can be solved for u to
obtain new integration boundaries according to the follow-
ing procedure.
In a first step, we consider the left inequality of (B6), i.e.,

ðu� 2mjωj=uÞ=2 ≥ ΛIR. Using that u > 0, the inequality
can be transformed to

ðu − ΛIRÞ2 ≥ Λ2
IR ∓ 2mjωj; ðB7Þ

where the two cases of minus and plus signs on the right-
hand side are distinguished.
For the case of the minus sign, no restriction for u is

obtained if Λ2
IR ≤ 2mjωj. Otherwise, one obtains

u ≤ ΛIR −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
IR − 2mjωj

q
if u < ΛIR; ðB8Þ

u ≥ ΛIR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
IR − 2mjωj

q
if u > ΛIR: ðB9Þ

In case of the plus sign on the right-hand side of (B7), one
finds the constraints

u ≥ ΛIR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
IR þ 2mjωj

q
if u > ΛIR; ðB10Þ

u ≤ ΛIR −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
IR þ 2mjωj

q
if u < ΛIR: ðB11Þ

The latter condition (B11) excludes u < ΛIR since u always
has to be positive.
In a second step, we consider the inequality on the right-

hand side of (B6), which can be transformed to

ju − ΛUVj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV ∓ 2mjωj

q
: ðB12Þ

This leads to the four conditions

u ≥ ΛUV −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV − 2mjωj

q
if u < ΛUV; ðB13Þ

u ≤ ΛUV þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV − 2mjωj

q
if u > ΛUV; ðB14Þ

u ≤ ΛUV þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV þ 2mjωj

q
if u > ΛUV; ðB15Þ

u ≥ ΛUV −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV þ 2mjωj

q
if u < ΛUV; ðB16Þ

where the condition (B16) is no constraint, since
ΛUV −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV þ 2mjωj

p
≤ 0.

All considered cases and the successive constraints are
employed at the same time. This allows us to change the
integration range for u to

Z
∞

maxðP;2mjωj
P Þ

du

→
Z

ΛUVþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV−2mjωj

p

maxðP;2mjωj
P ;ΛIRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
IRþ2mjωj

p
;ΛUV−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV−2mjωj

p
Þ
du: ðB17Þ

To have a nontrivial integration range for u, its integra-
tion boundaries should additionally satisfy

ΛUV þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV − 2mjωj

q
≥ max

�
P;

2mjωj
P

�
; ðB18Þ

while the other two arguments of the maximum function in
the lower integration boundary of u are always smaller than
the upper integration boundary. Equation (B18) imposes
constraints on the P integration. Thus, we change the
boundaries of the P integration according to

Z
pþq

jp−qj
dP →

Z
min ðpþq;ΛUVþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV−jp2−q2j

p
Þ

max ðjp−qj;jp2−q2j=ðΛUVþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
UV−jp2−q2j

p
ÞÞ
dP:

ðB19Þ

Furthermore, u and P integrations are performed only if the
lower integration boundaries are smaller than the upper
ones. Otherwise, these integrals are set to zero.
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