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Abstract

Probing Hadroproduction Processes

with

Charm Meson Pairs

from

500 GeV �
� Interactions

by

Judy Leslie

Doctor of Philosophy in Physics

University of California at Santa Cruz

Professor Patricia Burchat, Chair

We have fully reconstructed approximately 800 DD events from data gathered by the �xed-

target hadroproduction experiment E791 at Fermi National Accelerator Laboratory | the

largest sample of charm-pair events collected to date. We �nd slight correlations between the

D and D longitudinal momenta and between the amplitudes of the transverse momenta. As

with previous charm-pair experiments, we �nd signi�cant correlations between the directions

of the D and D mesons in the plane transverse to the beam axis. We also �nd that the

di�erence between the D and D azimuthal angles, ��, is strongly correlated to the scalar

sum of the squares of the transverse momenta, �p2t . The larger �p
2
t is, the more peaked at

180� the �� distribution is. In a leading-order perturbative QCD calculation, the charm

and anti-charm particle are produced back-to-back in the plane transverse to the beam

axis. Hence, at leading-order, the �� distribution is a delta function at �� = 180�. As the

energy scale of the partonic hard-scattering that produces the charm pair increases (i.e., as

�p2t increases), we expect higher-order corrections to play a smaller role and, consequently,

we expect the leading-order prediction to become more accurate.

We compare all measured charm-pair distributions to predictions from the fully

di�erential next-to-leading calculation as well as to prediction from the PYTHIA/JETSET

Monte Carlo event generator. Due to the smallness of the charm quark mass, the theoretical
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uncertainties are large and preclude a quantitative comparison between theory and data.

Professor Patricia Burchat
Dissertation Committee Chair
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Chapter 1

Introduction and Motivation

The charm quark is the lightest of the heavy quarks. Because of its relatively small

mass, charm particles are produced copiously at energies typical of �xed-target hadropro-

duction experiments. Because of its relatively large mass, one assumes that the large

momentum-transfer processes responsible for producing cc pairs are calculable in pertur-

bative quantum chromodynamics (QCD); one also assumes that there is no interference

between these short-distance processes and the long-distance (non-perturbative) processes

responsible for binding quarks and gluons into hadrons. The consequence of the charm

quark being the lightest of the heavy quarks | more speci�cally, of having a mass that

is not signi�cantly larger than �QCD | is that there are considerable uncertainties asso-

ciated with these theoretical assumptions. Such large theoretical uncertainties combined

with con
icting experimental results from early charm hadroproduction experiments have

made systematic comparisons between theory and data di�cult.

Recent experimental and theoretical progress, however, is encouraging. In the last

decade, next-to-leading order calculations for the hadroproduction of heavy quarks have

been developed by various authors. Most recently, a next-to-leading order calculation for

the full di�erential cross section was presented by Mangano, Nason, Ridol� (MNR)[1]. On

the experimental front, the current generation of �xed-target experiments has reconstructed

an unprecedented number of charm particles. A complete set of precise measurements is not

yet available, but high statistics charm hadroproduction measurements from experiments

WA92, E769, and E791 will continue to emerge in the next few years. A summary of charm

hadroproduction experiments is shown in Table 1.1.

Typically, analyses use single-charm inclusive measurements, in which only one
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Table 1.1: A summary of �xed-target charm hadroproduction experiments, including the
number of partially and fully reconstructed single-charm and charm-pair events for each
experiment.

Beam Single-Charm Charm-Pair
Experiment [GeV] Target Full. Part. Full. Part. Ref.

NA11 '82 175 �� Be 130

NA27 '82 360 �� H2 183 53a [2]
'84 400 p H2 425 233 [3]

E743 '85 800 p H2 33 148

WA75 350 �� Emul. 288 102 [4]

NA32 '84 200 ��,K,p Si 170
'86 230 �� Cu 1300 20 557 [5, 6]

E653 '84-85 800 p Emul. 146 35 [7]
'87-88 600 �� Emul. 1000

WA82 '87-89 340 �� Si,W,Cu
'88-89 370 p Cu,W 3000

E769 '87-88 250 �� Be,Al,Cu,W 4000

WA92 '92-93 350 �� Cu 10,000 102b [8]

E791 '91 500 �� Cu,Pt 200,000 791c

aAfter the �nal selection criteria were applied, 12 fully reconstructed charm pairs remained.
bRepresents 30% of the full data sample.
cRepresents 90% of the full data sample.

charm particle in an event is reconstructed, to probe hadroproduction processes. Alterna-

tively, analyses can reconstruct both the charm and anti-charm particle in the event. The

advantage of the former approach is signi�cantly higher statistics; the advantage of latter

approach is more complete information about the hadroproduction process | speci�cally,

information regarding the correlations between the charm and the anti-charm particle in

a cc event. The focus of this dissertation is an analysis of approximately 800 fully recon-

structed DD events from data gathered by the �xed-target hadroproduction experiment

E791 at Fermi National Accelerator Laboratory. As shown in Table 1.1, this is the largest

sample of fully reconstructed, hadroproduced charm-pair events collected to date.

1.1 Charm Hadroproduction: A Theoretical Framework

Our aim in this chapter is to determine how sensitive theoretical predictions are to

variations in inputs such as the mass of the charm quark or the gluon distribution functions.

In this section, we lay out the theoretical framework used to describe the hadroproduction of
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charm pairs, focusing on the framework used by the following two packages: the FORTRAN

program HVQMNR[9] which implements the MNR next-to-leading order perturbative QCD

calculation, and the PYTHIA (Version 5.7) / JETSET (Version 7.4) Monte Carlo event

generator[10]. In the following section, we examine predictions from these two packages

using a wide range of theoretical assumptions.

Both packages use a perturbative QCD framework to obtain the di�erential cross

section for producing a cc pair:

d�cc =
X
i;j

Z
dxb dxt f

b
i (xb; �F ) f

t
j (xt; �F ) d�̂ij(xbPb; xtPt; pc; pc; mc; �R); (1.1)

where

� Pb (Pt) is the momentum of the beam (target) in the center of mass of the colliding

hadrons;

� xb (xt) is the fraction of Pb (Pt) carried by the hard scattering parton from the beam

(target);

� fi are the parton distribution functions, which give the number density of partons of

type i with momentum xP , where the parton types are gluons, light quarks, and light

anti-quarks; and, lastly,

� d�̂ is the cross section for the two hard-scattering partons to produce a pair of charm

quarks, each with mass mc, and with 4-momenta pc and pc.

The renormalization scales, �F and �R, are discussed below.

1.1.1 Leading Order Prediction

An examination of the leading-order perturbative QCD prediction for the cc cross

section demonstrates why charm-pair distributions are particularly sensitive to higher or-

der QCD e�ects. The gluon- and quark-fusion Feynman diagrams that contribute to the

leading-order partonic cross section are shown in Figure 1.1. At �xed-target energies, the

quark-fusion contribution is negligible. The leading-order charm and anti-charm quark are

produced back-to-back in the center of mass of the two hard scattering partons; that is, the

c and c momenta are completely correlated.
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Figure 1.1: Feynman diagrams that contribute to the leading order perturbative QCD
calculation of the cc cross section.

For each cc event, the partonic center-of-mass | which cannot be determined

experimentally | is boosted with respect to the (known) hadronic center-of-mass along the

beam axis. The amount of boost depends on the momentum fractions xb and xt, which are

selected randomly from the gluon distribution functions f bg and f
t
g , respectively. Hence, the

correlation between the c and c longitudinal momenta, even at leading order, is smeared.

On the other hand, the correlation between the c and c momenta transverse to the beam

axis is still perfect at leading order: ~pt;c = �~pt;c.
Typically, charm-pair analyses use the following two distributions to investigate

correlations in the transverse degrees of freedom: ��| the minimum value between j�c��cj
and 360� � j�c � �cj, where � is the azimuthal angle of the charm quark with respect to

the beam axis | and p2t;cc = j~pt;c + ~pt;cj2. The leading-order calculation predicts delta

function distributions at �� = 180� and at p2t;cc = 0 GeV2. These distributions, therefore,

are optimally sensitive to higher-order e�ects.

To investigate correlations in the longitudinal degrees of freedom, charm-pair anal-

yses can measure distributions for the variables �x � xc + xc and �x � xc � xc where xc

is the longitudinal momentum of the charm quark in the hadronic center of mass divided

by the center-of-mass beam momenta Pb. Charm-pair analyses have also used the rapidity

distributions �y � yc + yc and �y = yc � yc where

yc �
"
1

2
ln

 
Ec + pz;c
Ec � pz;c

!#
CM

: (1.2)

If the longitudinal momenta of the charm and anti-charm particles are completely uncorre-
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lated, then the �x and �x distributions (or the charm-pair rapidity distributions) contain

no more information | and signi�cantly less statistical power | than the xF distribution

from a single-charm analysis.1 Due to the random boost along the beam axis the charm and

anti-charm longitudinal momenta are not signi�cantly correlated at leading order. However,

some models of higher-order e�ects | for example, the PYTHIA/JETSET hadronization

scheme discussed below | introduce signi�cant correlations between the longitudinal mo-

menta of the charm and anti-charm hadrons.

For the transverse momenta, the degree to which correlations are smeared provides

a measure of higher-order e�ects. In contrast, for the longitudinal momenta, the degree to

which correlations are present provides a measure of higher-order e�ects.

1.1.2 Higher-Order Perturbative Corrections

The HVQMNR program and the PYTHIA/JETSET event generator use comple-

mentary methods for including higher-order perturbative corrections to the leading-order

partonic cross section. Schematically, the partonic cross section is

d�̂ =
1X
n=2

nX
m=0

cmn�
n
S lnm y

dy

y

where
p
y characterizes the energy scale of the hard-scattering process. The MNR next-

to-leading order calculation sums all �2s and �3s terms. A sample of the diagrams that

contribute to the �3s terms are shown in Figure 1.2. At next-to-leading order, processes

such as gg! ccg, in which the c and c are no longer back-to-back, smear the delta function

distribution, �(~pt;c + ~pt;c), of the leading-order prediction.

When applying Feynman rules, the loops in the higher-order diagrams introduce

in�nities into the perturbative QCD calculation. The renormalization procedure | which

transforms the QCD coupling constant and the �� and nucleon wave functions in the La-

grangian from their \bare" (in�nite) values to their physical (i.e., �nite and measurable)

values | leaves us with a �nite partonic cross section and two extra parameters. The

renormalization scale �R results from re-parameterizing the color charge g =
p
4��S ; the

factorization scale �F from re-parameterizing �� and nucleon wave functions. Any depen-

dence of a �nite-order calculation on these arbitrary scales is an indication that higher-order

corrections are important. The dependence of the next-to-leading order charm-pair distri-

butions on these scales is examined in the following section.

1Generally, single-charm analyses use the symbol xF rather than xc=c.
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Figure 1.2: A sample of the Feynman diagrams that contribute to the next-to-leading order
perturbative QCD calculation of the cc cross section.

An alternative approach to a �nite-order calculation, used by the PYTHIA/JET-

SET event generator, is a leading-log calculation in which the cross section is determined

by summing all \leading" lnn y terms: d�̂ =
P1

n=2 cnn�
n
S lnn y dy=y: This approach, re-

ferred to as parton showers, is often used in Monte Carlo event generators because it can be

implemented iteratively. Each of the two incoming and two outgoing partons, whose distri-

butions are based on leading-order matrix elements, can branch { backwards and forwards

in time, respectively { into two partons, each of which can branch into two more parton,

etc. This evolution continues until some small momentum scale is reached, at which point

a non-perturbative hadronization scheme transforms the colored partons into color-neutral

hadrons.

1.1.3 Intrinsic Transverse Momenta

The PYTHIA/JETSET event generator also allows the hard-scattering partons

to have an intrinsic transverse momentum. The distribution is assumed to be Gaussian.

One expects the variance of this distribution to be approximately 1 GeV2[9]. Fits to single-

charm and charm-pair distributions from experiments WA82, E769, WA75, and WA92 give

con
icting results for the variance, ranging from 0.5 to 2 GeV2[11]. Finding that a variance

of 2 GeV2 is necessary to �t the observed charm distributions would suggest that in processes

initiated by gluons the intrinsic transverse momentum of the hard-scattering partons is on

average larger than in processes initiated by quarks, such as the Drell-Yan process. More
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experimental information may help clarify this issue. The cause of the apparent con
ict,

however, may also be due to the choice of hadronization models used in the �t.

1.1.4 Hadronization

Fragmentation functions parameterizing the hadronization of charm quarks to ob-

servable charm hadrons have been precisely measured by several e+e� experiments. The

hadroproduction environment, however, is quite di�erent from the e+e� environment and

the role that the remnants of the colliding hadrons play in the hadronization process is not

well understood.

Leading-Particle E�ect

Almost all charm hadroproduction experiments in which a pion beam is collided

into a nuclear target observe the so-called leading-particle[12]-[16]. That is, they observe

an enhanced production at large xF of \leading" Hc charm hadrons over the production of

the charge-conjugate Hc hadrons, where the former have a valence quark (or anti-quark) in

common with the beam and the latter do not. Therefore, in contrast to results from e+e�

experiments, the hadroproduction hadronization process cannot be completely described

by simply convoluting the partonic cross section with a fragmentation function that is

independent of the quantum numbers of the incoming beam.

To quantify the leading-particle e�ect, single-charm analyses measure the asym-

metry parameter

A � �Hc � �Hc

�Hc + �Hc

as a function of xF , where �H is the single-charm inclusive cross section for charm hadrons of

type H . Results from a recent E791 analysis for Hc = D�(cd) and Hc = D+(cd) are shown

in Figure 1.3[17]. The experimental results in this �gure are compared to several theoretical

predictions. The comparison with the next-to-leading order perturbative QCD prediction

for charm quarks (i.e., with no hadronization model implemented) clearly indicates that

higher-order e�ects are responsible for the large asymmetries observed. The E791 data

suggest that at large xF there is a �nite probability for the c quark to simply coalesce

with the d valence quark from the ��(du) beam particle. Both initial-state and �nal-state

coalescence mechanisms must occur in QCD at some level. The PYTHIA/JETSET event

generator implements a �nal-state mechanism as follows: the heavy-quark pair is produced
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Figure 1.3: Recent results from an E791 analysis for the function A(xF ) =
�D���D+

�D�+�D+
, show-

ing signi�cant asymmetries between the production of inclusive D� and D+ mesons. The
next-to-leading order perturbative QCD prediction includes no hadronization mechanism;
the PYTHIA/JETSET predictions include a �nal-state coalescence mechanism; and the
Vogt-Brodsky prediction includes an initial-state coalescence mechanism.

via a leading-order perturbative QCD process (gg ! cc or qq ! cc); then, if the c quark

is moving with approximately the same velocity as the d valence quark from the �� beam

particle, this c + d color-singlet string can simply coalesce into a \leading" charm meson.

The two predictions from the PYTHIA/JETSET event generator presented in Figure 1.3

both show the same trend as data.

An initial-state coalescence mechanism is implemented by R. Vogt and S. Brod-

sky[18]. In this case, the charm and anti-charm quark are not produced from the hard

scattering of a beam parton with a target parton; but from a 
uctuation of the �� beam

particle into a jducci Fock state. The most probable 
uctuations are those in which all four

partons have approximately the same velocity (i.e., a minimum invariant mass). Hence,

during such 
uctuations, the coalescence of d+ c (or u + c) into a \leading" charm meson

is likely. As with the PYTHIA/JETSET �nal-state prediction, the Vogt-Brodsky initial-

state prediction for A(xF ) shows the same trend as data (Figure 1.3). The initial- and

�nal-state contributions to the asymmetry parameter A(xF ) cannot both be as large as pre-
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dicted, respectively, by the Vogt-Brodsky intrinsic charm model and the PYTHIA/JETSET

hadronization model. Additional high statistics single-charm analyses from a range of beam

types (��, p, �) as well as from a range of \leading" hadron types may help clarify this

issue.

One goal of this chapter is to determine if a charm-pair analysis | in particular,

an analysis of DD events produced in ��-nucleon collisions | may also help clarify this

issue. We focus only on predictions from the PYTHIA/JETSET event generator because

charm-pair predictions from the Vogt-Brodsky intrinsic charm model are not yet available.

Both the degree of correlation between the D and D longitudinal momenta as well as

asymmetries among the four types of DD pairs | D0D0; D0D�; D+D0; and D+D� |

provide information about the hadroproduction hadronization process. Below we outline the

various elements of the PYTHIA/JETSET hadronization model for heavy quarks produced

in ��-nucleon collisions.

PYTHIA/JETSET String Topology

When a gluon from a �� in the beam and a gluon from a nucleon in the target

collide to form a cc pair, the remnant �� and target nucleon are no longer color-singlet

particles. In the PYTHIA/JETSET event generator, the remnant �� is split into two

valence quarks; the remnant nucleon into and a valence quark plus a diquark. Following

simple counting rules, two-thirds of the time, a proton (neutron) is split into a u (d) quark

and a ud diquark; one-third of the time, into a d (u) quark and uu (dd) diquark. Color-

singlet strings are then formed by connecting these remnant partons with the heavy-quark

pair. Given this minimal set of partons | (c, c), (u; d)�, and (qq; q)N , there are only two

ways to make sets of color-singlet strings:

(c; u�); (c; qN ); and (d�; qqN ); or (1.3)

(c; d�); (c; qqN); and (u� ; qN ):

Figure 1.4, which shows the scatter plot of the charm and anti-charm rapidities from 100,000

PYTHIA/JETSETDD events2, demonstrates how the PYTHIA/JETSET string topologies

tend to pull one charm quark in the forward (beam) direction, the other charm quark in

the backward (target) direction. Comparing the scatter plot of the charm and anti-charm

2Default values are used for all PYTHIA/JETSET settings.
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Figure 1.4: Scatter plots, yc versus yc and yD versus yD, from 100,000
PYTHIA/JETSET DD events, showing the \forward-backward" correlation introduced
by the PYTHIA/JETSET hadronization model. As discussed in Chapter 4, we are only
able to reconstruct DD events in the region �0:5 < yD;D < 2:5.

quark rapidities (Fig. 1.4a) to the scatter plot of the D and D rapidities (Fig. 1.4b) clearly

indicates that the forward-backward correlations are introduced at the hadronization level.

In the PYTHIA/JETSET model, partons originating from parton showers, as well

as partons from the sea of either colliding hadron, are sometimes added to the strings listed

in Equation 1.3. These extra partons, however, do not change the overall topology; each

is simply added to one of the strings listed in Equation 1.3. Di�erent string topologies do

occur when the hard-scattering partons that produce the cc pair are quarks rather than

gluons { roughly 5% of the time. Allowing sea quarks to play a more dominant role in

determining the string topologies | for example, generating sets of strings in which neither

the c nor the c are associated with valence quarks or, possibly, where both are associated

with the same colliding hadron { would smear the correlations shown in Figure 1.4.

Lund String Model

In this section we describe the Lund string model: the iterative approach that

the PYTHIA/JETSET event generator uses to break color-singlet strings into hadron-sized

pieces. We note that asymmetries, such as the leading-particle e�ect discussed above, do

not arise from the Lund string model. They arise because there is a signi�cant probability

for color-singlet strings with a relatively small invariant mass to simply coalesce into a single

hadron. Coalescence is discussed below.
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To describe the highlights of the Lund string model we use the (c, u�) string from

Equation 1.3 as an example. This description is taken largely from the PYTHIA/JETSET

manual[10]. We chose the center-of-mass of the (c, u�) system where the c quark is moving

in the +zs direction and the u� quark is moving in the �zs direction as our frame of

reference. As the ends of the string move apart, the partons lose energy and the color �eld

gains energy. This color �eld is able to spontaneously produce qq pairs.3 The pairs have no

transverse momenta with respect to the zs-axis (~pts;q = �~pts;q) and the xs and ys momenta

of the q quark are selected independently from a Gaussian distribution with a mean of 0

and a width of 0.35 GeV. Beginning (arbitrarily) from the c end of the string, a cq meson

is formed leaving behind a (q, u�) string, which is iteratively broken into smaller pieces.

The transverse momentum of the cq meson with respect to the zs-axis is determined by the

transverse momentum of the q quark since the c quark contributes none. What remains to

be determine is the energy E and longitudinal momentum pzs of the charm meson. Only

one of these variables can be selected independently since the momentum of the meson is

already constrained by its mass and transverse momentum:

(E + pzs)(E � pzs) =M2 + p2xs + p2ys :

Considerations such as longitudinal boost invariance forces the Lund string model

to determine the energy and longitudinal momentum of the meson by selecting what fraction

z of (Ec+ pzs;c) contributes to the (E+ pzs) of the meson, where (Ec+ pzs;c) is the original

energy plus longitudinal momentum of the c quark. That is, (E + pzs) = z(Ec + pzs;c).

The fragmentation function f(z) gives the probability that a given z is selected. Because

the Lund string model requires that the fragmentation process looks the same whether the

iterative procedure is performed from the c end of the string or the u� end, the fragmentation

function for light quarks must be of the form:

fLund(z) / 1

z
za�

�
1� z

z

�a�
exp

 
�bm2

t

z

!
; (1.4)

where m2
t = M2 + p2xs + p2ys . The default PYTHIA/JETSET settings are a� = a� = 0:3

and b = 0:58 GeV2. For heavy quarks, Bowler has shown that fLund should be modi�ed to

fBow(z) / 1

zbm
2
Q

fLund(z); (1.5)

3The production of ss pairs is suppressed by a factor of three compared to uu or dd pairs, and heavy-quark
pairs are not allowed.
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Figure 1.5: Common fragmentation functions: The PYTHIA/JETSET default for the

hadronization of light quarks (LUND) for two values of mt �
q
M2 + p2xs + p2ys ; the

PYTHIA/JETSET default for heavy quarks (Bowler); and, lastly, the function commonly
used to analyze e+e� data (Peterson), where � = 0:135 is derived from �ts to CLEO and
ARGUS D0 data[19, 20]. See Eqs. 1.4-1.6.

where mQ is the mass of the heavy quark. By default, the PYTHIA/JETSET event gen-

erator uses this fragmentation function for the hadronization of heavy quarks. Most e+e�

experiments have used the Peterson fragmentation function:

fPet(z) / 1

z(1� 1
z � �

1�z )2
: (1.6)

These three functions, fLund , fBow, and fPet, are compared in Figure 1.5.

With e+e� experiments, at leading-order, the only color-singlet string possible

is (c, c). Hence the fragmentation function, even if it is strongly peaked at large z, can

only soften the longitudinal momentum distribution. In contrast, in the hadroproduction

hadronization process, the longitudinal momentum distribution of the charm hadrons can

be harder than the longitudinal momentum distribution of the charm quarks because of the

dragging e�ect of the valence quarks from the colliding hadrons.
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PYTHIA/JETSET Coalescence

As mentioned, in the PYTHIA/JETSET event generator a color-singlet string can

simply coalesce into a single hadron rather than breaking into several hadron-sized pieces.

To investigate the importance of coalescence in the PYTHIA/JETSET hadronization model

we generate 100,000 DD events in which a 500 GeV �� meson collides into a �x nuclear

target. We use the default PYTHIA/JETSET settings for all parameters. We only allow

events in which both the D and D rapidities are greater than �0:5 and less than 2:5

because our experimental acceptance goes to zero for rapidities outside those limits. To

simulate the E791 experiment, we assume that one-�fth of the interactions occur in a

platinum target, four-�fth in a carbon target (see Chapter 2). Since 50% of the nucleons

in carbon are neutrons and 60% of the nucleons in platinum are neutrons, we force 52%

of the PYTHIA/JETSET events interactions to be ��-neutron interactions and 48% to

be ��-proton interactions. The PYTHIA/JETSET event generator does not include any

nuclear e�ects. In other words, it assumes that the charm-pair cross section is proportional

to the number of nucleons in the target material. This assumption is supported by recent

results from experiment E769[21].

At �xed-target energies, the PYTHIA/JETSET event generator also assume that

D0,D+, D�0,D�+ and the respective charge-conjugate mesons are the only possible primary

charm mesons, where a \primary" meson is produced directly in the fragmentation process,

rather than via a decay such as D�+ ! D0�+. Contributions to the DD cross section from

decays of higher-level excited D meson states or from decays of B mesons are assumed to

be negligible. The PYTHIA/JETSET prediction for the relative production rates of the

four types of primary DD pairs is

Pnn = 0:264; Pnc = 0:332; Pcn = 0:168; Pcc = 0:236,

where, for example, Pnc is the probability for producing a neutral primary D meson and a

charged primary D meson. The probability Pnc is largest because both the primary neutral

D meson (cu) and the primary charged D meson (cd) can originate from coalescence with

a �� valence quark | that is, they are \leading" charm mesons. The primary charged

D meson (cd) can also arise from coalescence with the nucleon valence quark. In general,

such \lagging" charm mesons, however, will be have negative rapidities that are outside our

acceptance limits. The probability Pcn is the smallest because neither primary D meson
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can originate from coalescence. If there were no coalescence mechanism, we would �nd

Pnn = Pnc = Pcn = Pcc = 0:25:

Experimentally, only ground-state DD pairs can be fully reconstructed with rea-

sonable e�ciency. Because charged D�'s can decay to neutral D's, reconstructing a neutral

ground-state D does not unambiguously tell us the valence quark content of the primary

charm meson. Therefore, some information regarding the importance of coalescence is

lost when measuring the relative rate for ground-state DD pairs rather than for primary

DD pairs. The PYTHIA/JETSET prediction for the relative production rates of the four

types of ground-state DD pairs is

P
D0D0 = 0:581, PD0D� = 0:220, P

D+D0 = 0:143, PD+D� = 0:057.

Because the contribution to the DD cross section from decays of higher-level excited D

meson states or from decays of B mesons is assumed to be negligible, the DD production

rates listed above can be derived from the primary DD production rates as follows:

P
D0D0 = Pnn + fefn(Pnc + Pcn) + (fefn)

2Pcc;

PD0D� = (1� fefn)Pnc + (1� fefn)(fefn)Pcc;

P
D+D0 = (1� fefn)Pcn + (1� fefn)(fefn)Pcc;

PD+D� = (1� fefn)
2Pcc;

where fe is the fraction of primaryD mesons that are excited D mesons and fn is the fraction

of excited charged D mesons that decay to neutral D mesons. The PYTHIA/JETSET

default values are fe = 0:785 and fn = 0:650. Given no coalescence mechanism (Pnn =

Pnc = Pcn = Pcc = 0:25:), the PYTHIA/JETSET event generator would �nd:

P
D0D0 = 0:570, PD0D� = 0:185, P

D+D0 = 0:185, PD+D� = 0:060.

1.2 Theoretical Predictions for Charm-Pair Distributions

In the previous section, we introduced the theoretical framework used to describe

the hadroproduction of DD pairs. In particular, we discussed:

� the leading-order perturbative QCD description of the hadroproduction of cc pairs;

� higher-order perturbative corrections to the leading-order calculation;
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� the addition of intrinsic transverse momentum to the hard-scattering partons that

collide to form the cc pair; and, lastly,

� the hadronization of cc pairs to observable DD pairs.

Using this framework, we investigate how sensitive single-charm and charm-pair distribu-

tions are to various theoretical assumptions. All predictions discussed in this section assume

a 500 GeV �� beam is incident on a nuclear target, mimicking the E791 environment.

The PYTHIA/JETSET event generator depends on hundreds of parameters. Un-

less otherwise mentioned, we use the default settings for all parameters. The next-to-leading

order perturbative QCD calculation depends on the following six parameters:

� the mass of the charm quark, mc;

� the beam and target parton distribution functions, f� and fN , respectively;

� �QCD, the free parameter that must be determined experimentally, which roughly

de�nes the mass scale below which quarks and gluons do not behave as independent,

free partons | that is, below which perturbative QCD calculations are no longer

valid; and

� the renormalization and factorization scales, �R and �F , respectively.

The pairs of pion and nucleon parton distribution functions considered in this section,

obtained from the CERN computer library package PDFLIB [22], are listed in Table 1.2.

Parton distribution functions depend on the fraction of the hadron momentum carried by

the hard-scattering parton, x; on both the factorization and renormalization scales; and on

�QCD. Typically, collaborations extract parton distribution functions from data by �rst

assuming a simple analytic form for the function, f(x; �0), at a �xed factorization scale �0.

Perturbative QCD evolution equations then extend this 1-dimensional function f(x; �0) to

any arbitrary factorization scale �F greater than �0. The evolution equations depend both

on �QCD and on the renormalization scale �R. Each �t assumes a �xed value for �QCD.

Since the choice of scales is arbitrary, the parton distribution functions accessible from

PDFLIB have de�ned the renormalization scale to be the same as the factorization scale.

For each parton distribution function listed in Table 1.2, we specify the square

of the minimum factorization scale allowed, �20; whether the evolution equations were cal-
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Table 1.2: The pairs of pion and nucleon parton distribution functions considered in this
section, obtained from the CERN FORTRAN package PDFLIB. The functions have been
extracted from �ts to data assuming a �xed value of �QCD; and the functions are unde�ned
below the minimum scale �0

Set Name �20[GeV
2] �

(4)
QCD [MeV] Order Ref.

(1)a f� SMRS-P2 5 190 NLO [23]
fN HMRS-B (4.90) 5 190 NLO [24]

(2) f� GRV-P 0.3 200 NLO [25]
fN GRV 0.3 200 NLO [26]

(3) f� SMRS-P2 5 190 NLO [23]
fN HMRS-B (8.90) 5 100 NLO [27]

(4) f� ABFKW-P3 2 281 NLO [28]
fN HMRS-B (8.90) 5 300 NLO [27]

(5)b f� OW-P1 4 200 LO [29]
fN CTEQ 2L 4 190 LO [30]

aHVQMNR suggested default
bPYTHIA/JETSET default

culated to leading-order (LO) or to next-to-leading order (NLO)4; and the value of �
(4)
QCD

used in the �t5. Querying PDFLIB for the value of a parton distribution function at a

scale below �0 gives unde�ned results. The default set of parton distribution functions for

the PYTHIA/JETSET event generator is set (5) in Table 1.2; the default suggested by the

authors of HVQMNR is set (1).

When possible, we choose pion and nucleon distribution functions that are �t

assuming similar values for �QCD. In Set (4) from Table 1.2, however, the pion functions

were obtained assuming �
(4)
QCD = 190 GeV, whereas the nucleon functions were obtained

assuming �
(4)
QCD = 100 GeV. To date, there are no pion distribution functions available that

have been �t with �
(4)
QCD < 190 GeV. The present uncertainties, however, suggest that �

(4)
QCD

could range anywhere from 100 to 300 MeV[31]. In order to examine predictions for single-

charm and charm-pair distributions assuming �
(4)
QCD = 100 GeV, we use Set (4), ignoring

the correlation between �QCD and the pion distribution functions. For all predictions shown

4The modi�ed minimal subtraction scheme is used for all NLO parton distribution functions listed in
Table 1.2.

5�QCD depends on the energy scale of the hard-scattering interaction. If the scale is much less than the
mass of the (nf + 1)th heaviest quark and much greater than the mass of the (nf )

th heaviest quark, then

�
(nf )

QCD should be used to determine the strong coupling constant. In our case, the energy scale is of the same
order as the mass of the charm quark, making the choice more ambiguous. The MNR next-to-leading order
calculation of the partonic cc cross section uses �(3)

QCD. On the other hand, the parton distribution functions,
which are convoluted with the partonic cross section to obtain the hadroproduction cc cross section, appear
to use �(4)

QCD.
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below, the �QCD used in the next-to-leading order calculation of the partonic cross section

is de�ned to be the same as the �QCD used to extract the nucleon parton distribution

function fN .

The degree to which the charm-pair distributions are sensitive to variations in

�R and �F gives an indication of how important higher-order corrections are; that is, an

indication of how much (or little) we can trust the �3S calculation. In general, one tries to

minimize higher-order contributions by choosing �R and �F to be of the same order as the

energy scale Q of the hard-scattering process. This scale cannot be de�ned unambiguously.

One reasonable choice is

Q �
s
m2
c +

p2t;c + p2t;c
2

: (1.7)

The default setting for the PYTHIA/JETSET event generator is �R = �F = Q, leading to

factorization scales as low as the mass of the charm quarkmc, which by default is set to 1.35

GeV. The parton distribution functions used by the PYTHIA/JETSET event generator,

however, are only de�ned for scales above 2 GeV. This problem is handled by setting the

parton distribution function to f(x; �0) for all factorization scales less than �0.

The suggested default for the HVQMNR program is �R = Q and �F = 2Q. Given

the suggested default for the mass of the charm quark of mc = 1:5 GeV, this choice ensures

that the factorization scale will never go below the minimum allowed scale, �0 =
p
5 GeV.

On the other hand, this choice means that the �S used in the calculation of the partonic

cross section and the �S used the evolution equations to determine the parton distribution

function are evaluated at di�erent scales, Q and 2Q, respectively.

In Figures 1.7-1.12 we show single-charm and charm-pair distributions for a wide

range of theoretical assumptions. When obtaining these theoretical predictions, we only

allow charm-pair events in which both charm rapidities are greater than �0:5 and less than

2:5 | our experimental acceptance goes to zero for rapidities outside those limits. For the

HVQMNR generator, which does not hadronize the cc pair to charmed mesons, the cut is

on the charm quark rapidities. For the PYTHIA/JETSET generator, the cut is on the D

meson rapidities. In Table 1.3, we show which generator (HVQMNR or PYTHIA/JETSET)

and what theoretical assumptions are used in each �gure.

The same set of single-charm and charm-pair distributions are shown in each �gure.

Each charm particle in a charm-pair event can be described using three variables. A common

choice of independent variables for single-charm analyses is
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Table 1.3: The settings used by the HVQMNR and PYTHIA/JETSET generators to obtain
the single-charm and charm-pair distribution shown in Figures 1.7-1.12. The set of pion
and nucleon parton distribution functions (PDF), labeled (1) through (5), are de�ned in
Table 1.2. A \Y" indicates that parton showers (PS) are included in the PYTHIA/JETSET
event generator; an \N" indicates that they are not included.

mc �kt
Generator PDF �R=Q �F =Q [GeV] [GeV] PS Figure

MNR NLO a (1) 1.0 2.0 1.5 0 1.7 solid

MNR LO b (1) 1.0 2.0 1.5 0 dashed
P/J cc (1) 1.0 1.0 1.5 0 Y dotted
P/J cc (1) 1.0 1.0 1.5 0.44 Y solid

MNR NLO a (1) 1.0 2.0 1.5 0 1.8 solid
MNR NLO (1) 1.0 2.0 1.2 0 dashed
MNR NLO (1) 1.0 2.0 1.8 0 dotted

MNR NLO a (1) 1.0 2.0 1.5 0 1.9 solid
MNR NLO (2) 1.0 2.0 1.5 0 dashed
MNR NLO (3) 1.0 2.0 1.5 0 dotted
MNR NLO (4) 1.0 2.0 1.5 0 solid

MNR NLO (2) 0.5 0.5 1.5 0 1.10 solid
MNR NLO (2) 1.0 1.0 1.5 0 dashed
MNR NLO (2) 1.5 1.5 1.5 0 dotted

P/J DD c (5) 1.0 1.0 1.35 0.44 Y 1.11 solid

P/J cc (5) 1.0 1.0 1.35 0 Y dashed
P/J cc (5) 1.0 1.0 1.35 0.44 N dotted
P/J DD (5) 1.0 1.0 1.35 0 N solid

P/J DD
c

(5) 1.0 1.0 1.35 0.44 Y 1.12 solid
P/J DD (5) 1.0 1.0 1.35 0.7 Y dashed
P/J DD (5) 1.0 1.0 1.35 1.0 Y dotted
P/J DD (5) 1.0 1.0 1.35 1.5 Y solid

aDefault next-to-leading order HVQMNR distributions
bDefault leading-order HVQMNR distributions
cDefault PYTHIA/JETSET DD distributions

� the longitudinal momentum of the charm particle in the center of mass of the colliding

hadrons divided by the momentum of the beam hadron, xF ;

� the square of the transverse momentum of the charm particle, p2t ; and

� the azimuthal angle of the charm particle with respect to the beam axis, �.

We ignore the latter variable because all theoretical predictions give a 
at � distribution.

Another common variable used in analyses is the rapidity in the center of mass of the
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colliding hadrons

y �
�
1

2
ln

�
E + pz
E � pz

��
CM

:

This variable is approximately related to xF and p2t as follows:

y � sinh�1
0
@ p

s xF

2
q
M2 + p2t

1
A ;

where
p
s is the center-of-mass energy of the colliding hadrons and M is the mass of the

charm particle. Although xF and y are very correlated, we show predictions for both

distributions.

For each single-charm variable v, we obtain predictions for two charm-pair distri-

butions: �v = vc � vc and �v = vc + vc. (�� is de�ned to be the minimum of j�c � �cj
and 360� � j�c � �cj.) As with the single-charm � variable, we ignore the charm-pair ��

variable because all theoretical predictions give a 
at �� distribution. We do not, however,

ignore the �� distribution which is very sensitive to theoretical assumptions. Two other

commonly used charm-pair distributions that we examine are the square of the transverse

momenta of the charm-pair, p2t;cc = j~pt;c + ~pt;cj2, and the invariant mass of the charm-pair,

Mcc.

The vertical axis of each distribution shown in Figures 1.7-1.12 gives the fraction

of single-charm (charm-pair) events per variable v interval, 1
N
dN
dv , where N is the total

number of single-charm (charm-pair) events generated. The number of single-charm events

generated is, of course, just twice the number of charm-pair events generated.

Sensitivity to Higher-Order Perturbative Corrections

In Figure 1.7, we the compare the complementary methods used by the HVQMNR

program and the PYTHIA/JETSET event generator to include higher-order perturba-

tive corrections to the leading-order partonic cross section. As discussed in the previous

section, the PYTHIA/JETSET event generator, beginning with leading-order matrix el-

ements, uses parton showers to include higher-order perturbative e�ects. Whereas, the

HVQMNR program calculates the next-to-leading order cc cross section. To more directly

compare these two approaches, we change three of the default PYTHIA/JETSET settings

| mc, f
� and fN | to match the default HVQMNR settings (See Table 1.3). We obtain

PYTHIA/JETSET cc distributions assuming no intrinsic transverse momentum, as well as
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assuming �kt = 0:44 GeV which is the PYTHIA/JETSET default. As argued by T. Sjos-

trand, the intrinsic transverse momentum may, at least in part, be seen as a replacement

for gluon emission that is truncated in the parton shower approach due to the introduction

of an energy scale below which the parton shower evolution is stopped[32]. In Figure 1.7,

we also show the HVQMNR leading-order distributions to emphasize which distributions

are, and which are not, sensitive to higher-order corrections.

Figure 1.7 shows that higher-order perturbative corrections do not signi�cantly

a�ect the shapes of most of the single-charm and charm-pair distributions. That is, the

HVQMNR leading-order and next-to-leading predictions for all distributions are very similar

| except for the j�p2t j, ��, and p2t;cc distributions. In the leading-order calculation, these

latter distributions are delta functions | at 0 GeV, 180� and 0 GeV, respectively | because

the leading-order charm and anti-charm quark are back-to-back in the plane transverse to

the beam axis.

The next-to-leading order predictions and the parton shower prediction are also

quite similar. The slight di�erence between the HVQMNR and the PYTHIA/JETSET

longitudinal (xF and y) distributions may derive from cutting on the D meson rapidities

(�0:5 < yD < 2:5) rather than the charm quark rapidities for the PYTHIA/JETSET

events. The j�p2t j and �� PYTHIA/JETSET distributions with no intrinsic transverse

momentum included, indicate that the parton shower evolution is playing a very small

role. The �� parton shower distribution, in particular, is closer to the leading-order delta-

function prediction than to the next-to-leading order prediction. Adding intrinsic transverse

momentum, with �kt = 0:44 GeV, brings the PYTHIA/JETSET prediction very close to

the next-to-leading order HVQMNR prediction. This result implies that the amount of

intrinsic transverse momentum needed to agree with experimental results will depend on

the method used to include higher-order perturbative corrections.

Sensitivity to the Mass of the Charm Quark

In Figure 1.8, we investigate the degree to which the single-charm and charm-pair

distributions are sensitive to variations in the mass of the charm quark. All distributions

are obtained from HVQMNR next-to-leading order calculations using the default values

for all parameters | except for mc. Higher-order e�ects play a larger role as the charm-

quark mass decreases because the ratio Q=�QCD, where Q gives the energy scale of the
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Figure 1.6: Comparison of the gluon distribution functions for Sets (1) through (4), de�ned
in Table 1.2. The pion and nucleon functions for each set are obtained from PDFLIB after
imposing the constraint

p
x�xN � 2mc

ECM
, where ECM is the center-of-mass energy of the

colliding hadrons.

interaction (Eq. 1.7), decreases. Formc = 1:2 GeV, the single-charm xF and p2t distributions

are steepest because the outgoing charm quark can more easily radiate gluons; the single-

charm y distribution is less central (y = 0); and the invariant mass of the charm-pair is

signi�cantly steeper than the higher mass predictions. The increase in higher-order e�ects

for smaller mc is also evident in the �� distribution, which is 
attest for mc = 1:2 GeV.

Sensitivity to Parton Distribution Functions

In Figure 1.9, we investigate the degree to which the single-charm and charm-

pair distributions are sensitive to variations in the parton distribution functions and �QCD.

All distributions are obtained from HVQMNR next-to-leading order calculations using the

default values for all parameters | except for the parton distribution functions. We examine

predictions for four pairs of pion and nucleon parton distribution functions, sets (1) through

(4) de�ned in Table 1.2.

At �xed-target energies, the dominant contribution to the cc cross section is from

gluon fusion. In Figure 1.6, we compare the gluon distribution functions, f
Set(n)
g , for Sets

(1) through (4). By energy conservation, the energy of the two colliding partons must be at

least twice the mass of a charm quark to produce a cc pair, that is,
p
x�xN � 2mc

ECM
where

ECM = 30:6 GeV is the center-of-mass energy of the colliding hadrons. Hence, for each set,

the pion and nucleon functions are obtained after imposing the constraint x�xN � 4m2
c

E2
CM

.

We impose this constraint because we want to investigate how the four sets compare in the

region of x that we explore, not in the very low x region where the functions are largest.

Although the four sets of parton distribution functions di�er signi�cantly, the
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single-charm and charm-pair distributions shown in Fig. 1.9 are not very sensitive to these

di�erences. The sensitivity of the �� distribution is due to the variation in �QCD in

Sets (1) through (4) (See Table 1.2). As the value of �QCD increases, the ratio Q=�QCD,

where Q gives the energy scale of the interaction (Eq. 1.7), decreases, causing higher-order

e�ects to play a larger role. Hence, the 
attest �� distribution results from using Set (4)

(�
(4)
QCD = 300 Gev); the steepest �� distribution, from using Set (3) (�

(4)
QCD = 100 Gev).

Sensitivity to Factorization and Renormalization Scales

In Figure 1.10, we investigate the degree to which the single-charm and charm-pair

distributions are sensitive to variations in the renormalization and factorization scales. All

distributions are obtained using the HVQMNR next-to-leading order calculation. We set

the two arbitrary scales equal to each other, � � �F = �R, and obtain distributions for

� = Q=2, Q, and 2Q, where Q gives the energy scale of the interaction (Eq. 1.7). We use the

GRV parton distribution functions for both the pion and the nucleon (Set (2) in Table 1.2),

which have been evolved down to �20 = 0.3 GeV2. With this choice, the factorization

scale � can go as low as mc=2 without going below �0. As mentioned, the degree to

which the distributions are sensitive to variations in the renormalization and factorization

scales gives an indication of how much (or little) we can trust the �3S calculation. As

expected, the distributions that are most sensitive to variations in � are those distributions

that are trivial at leading-order: j�p2t j, ��, and p2t;cc. The smaller the factorization and

renormalization scales are, the broader these distributions are. That is, the higher-order �3

terms play a larger role, compared to the leading-order �2 terms, as renormalization and

factorization scales decrease. The sensitivity to these arbitrary scales indicates that a next-

to-leading order calculation is insu�cient for obtaining accurate theoretical predictions for

these transverse distributions.

Sensitivity to Higher-Order Non-perturbative E�ects

In Figure 1.11, we look separately at the e�ects of parton showers, intrinsic trans-

verse momentum, and hadronization. All distributions are obtained using the PYTHIA/JETSET

event generator. The distributions obtained using the default settings (solid) include all

three e�ects. We compare these default distributions to three set of distributions that are

obtained by including
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� only hadronization, but no parton shower evolution or intrinsic transverse momentum

(solid);

� only the parton shower evolution, but no intrinsic transverse momentum or hadroniza-

tion (dashed);

� only intrinsic transverse momentum, but no hadronization or parton shower evolution

(dotted).

For the longitudinal momentum distributions (xF , �xF , �xF , y, �y, �y), the determining

factor is whether or not hadronization is included. The two sets of distributions that include

hadronization e�ects are quite similar; the two sets of distributions that do not include

hadronization e�ects are similar; but the latter two sets of distributions are signi�cantly

di�erent than the former two sets. In the PYTHIA/JETSET hadronization model, the

broadening of the longitudinal momentum distribution is the result of color-connecting the

charm quark to a valence quark from one the colliding hadrons and the anti-charm quark

to a valence quark from the other colliding hadron.

All three higher-order e�ects broaden the leading-order delta function prediction

for the �� distribution. The broadening due to the parton shower evolution, however,

is signi�cantly smaller than the broadening due to either the hadronization process or the

addition of intrinsic transverse momentum (�kt = 0:44 GeV). The latter two e�ects broaden

the �� distribution by roughly the same amount.

All three higher-order e�ects also broaden the leading-order delta function pre-

diction for the p2t;cc distribution. In this case, however, the broadening due to the parton

shower evolution is larger than the broadening due to either hadronization e�ects or the

addition of intrinsic transverse momentum (�kt = 0:44 GeV).

Sensitivity to Intrinsic Transverse Momentum

In Figure 1.12 we investigate the degree to which the single-charm and charm-pair

distributions are sensitive to variations in the amount of intrinsic transverse momenta added

to the hard-scattering partons that collide to form a cc pair. All distributions are obtained

using the PYTHIA/JETSET event generator, with default settings for all parameters except

for the width of the Gaussian intrinsic transverse momentum distribution, �kt .

When intrinsic transverse momentum is included, the hard-scattering partons from
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the colliding hadrons are no longer necessarily moving parallel to the colliding hadrons.

The plane that is transverse to the axis of the parton-parton collision | which cannot

be determined experimentally | is no longer the same as the plane that is transverse

to the beam axis. Hence, including intrinsic transverse momentum smears the leading-

order prediction, ~pt;c = �~pt;c. Not surprisingly, the distributions that are most sensitive to
variations in �kt are those transverse distributions that are trivial at leading-order: j�p2t j,
��, and p2t;cc. As the width, �kt , increase, these distributions become 
atter.

Summary

In this section, we brie
y summarize the results of the comparisons shown in

Figures 1.7-1.12.

The longitudinal momentum distributions | xF , �xF , �xF , y, �y, and �y |

are relatively insensitive to all variations considered above, except for including, or not,

the PYTHIA/JETSET hadroproduction hadronization (Figure 1.11). The steepness of the

invariant mass distribution is also sensitive to the whether or not hadronization is included,

as well as to the mass of the charm quark (Figure 1.8). Therefore, the measured distributions

for these physics variables, discussed in Chapter 5, provide a test of the PYTHIA/JETSET

hadronization model; in particular, a test of the string topology scheme that color-connects

the charm quark to a valence quark from one the colliding hadrons and the anti-charm

quark to a valence quark from the other colliding hadron.

The transverse distributions j�p2t j, �p2t , ��, and p2t;cc are sensitive to almost all

variations considered above because they are sensitive to degree of correlation between the

charm and anti-charm transverse momenta. Varying mc (Fig. 1.8), �QCD (Fig. 1.9), or �R

(Fig. 1.10) in the next-to-leading order calculation changes the de�nition of the running

coupling constant �S , which is approximately proportional to 1= ln(�R=�QCD). As the

coupling constant increases | that is, as mc decreases, �QCD increases, or �R decreases |

higher-order e�ects play a larger role, and consequently the charm and anti-charm transverse

momenta become less correlated. The other methods we discussed for including higher-order

e�ects were parton showers, intrinsic transverse momentum, and hadronization.

In Chapter 5, we quantify the degree of correlation between the transverse mo-

menta of the D and D mesons from our DD data sample. Precise comparisons with

next-to-leading order predictions, however, are not yet possible. The sensitivity of the
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next-to-leading order predictions to the arbitrary renormalization and factorization scales

(Fig. 1.10) indicates that higher-order perturbative corrections are important. In principal,

one could determine the sets of theoretical parameters that generate predictions that are

in good agreement with the full range of experimental results. Given the present theoret-

ical uncertainties, however, such results would be di�cult to interpret. The �t values of

physical parameters (e.g. the mass of the charm quark) would depend on the values of the

non-physical renormalization and factorization scales. For example, if a renormalization

scale of Q=2, rather than Q, is assumed, then a smaller value for �kt or a larger value for

mc would be required to �t the data.

Our goal in this analysis is to quantify the degree of correlation between the

D and D mesons from our sample of approximately 800 DD signal events. In Chap-

ter 5, we present our experimental results and compare them to the default HVQMNR and

PYTHIA/JETSET predictions. Before presenting our results, we �rst introduce the E791

experiment (Chapter 2); discuss our event-selection methodology (Chapter 3); and describe

how we obtain acceptance-corrected signal DD distributions (Chapter 4).
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Figure 1.7: Sensitivity of single-charm and charm-pair distributions to higher-order pertur-
bative corrections. The leading-order (LO) and next-to-leading order (NLO) distributions
are obtained from the HVQMNR generator; the parton-shower (PS) distributions from the
PYTHIA/JETSET generator. Table 1.3 shows the settings used for each set of distributions.
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Figure 1.8: Sensitivity of single-charm and charm-pair distributions to variations in the mass
of the charm quark. All distributions are obtained from HVQMNR next-to-leading order
calculations using the default values for all parameters | except for mc (see Table 1.3).
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Figure 1.9: Sensitivity of single-charm and charm-pair distributions to variations in the
parton distribution functions. Sets (1) through (4) are de�ned in Table 1.2. All distributions
are obtained from HVQMNR next-to-leading order calculations using the default values for
all parameters | except for the parton distribution functions (see Table 1.3).
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Figure 1.10: Sensitivity of single-charm and charm-pair distributions to variations in the
factorization and renormalization scales. All distributions are obtained using HVQMNR
next-to-leading order calculation. Equation 1.7 de�nes the energy scale Q. Rather than
using the default set of parton distribution functions, we use the GRV functions, which are
evolved down to �20 = 0.3 GeV2. See Tables 1.2 and 1.3.
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Figure 1.11: Sensitivity of the single-charm and charm-pair distributions to the parton
shower evolution, the addition of intrinsic transverse momentum, and the hadronization
process. All distribution are obtained using the PYTHIA/JETSET event generator. The
solid distributions include all three e�ects; the dashed distributions include only the parton
shower evolution: the dotted distributions include only intrinsic transverse momentum; the
solid distributions include only hadronization. See Table 1.3
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Figure 1.12: Sensitivity of single-charm and charm-pair distributions to variations in the
amount of intrinsic transverse momenta added to the hard-scattering partons. All distribu-
tions are obtained using PYTHIA/JETSET event generator, using default settings for all
parameters except �kt (see Table 1.3).
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Chapter 2

The E791 Experiment

Experiment 791 is the fourth in a series of �xed-target charmed-particle experi-

ments conducted at Fermi National Accelerator Laboratory's Tagged Photon Laboratory:

E516, E691, E769, and E791. During a six-month period ending in January 1992, E791

recorded 20 billion ��-nucleon interactions, producing 50 Terabytes of data. The goal,

which has been realized and surpassed by a factor of 2, was to reconstruct 100,000 charmed

particles | an order of magnitude more than any previous experiment [33].

In this chapter we discuss the characteristics of the E791 pion beam and the target

used to produce charmed particles; the detectors of the Tagged Photon Spectrometer that

allow us to detect the decay products of these charmed particles; and the data acquisition,

reconstruction, and data reduction systems.

2.1 The Beam

During �xed-target runs, the 800 GeV proton beam from Fermilab's Tevatron is

redirected to three �xed-target experimental stations approximately once per minute. With

each spill from the Tevatron, 1012 protons are incident on a beryllium target upstream

from the Tagged Photon Laboratory (TPL). The particles from this interaction | after

being separated into positively and negatively charged particles, momentum �ltered, and

collimated by a series of magnets | result approximately in a 94% pure beam of negatively

charged (500 � 20) GeV pions. During the 23-second proton spills from the Tevatron,

occuring once per minute, 2 million pions per second are incident on the E791 target.

\Photon" in the name Tagged Photon Laboratory comes from the previous use
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of the TPL spectrometer, discussed below, for the photoproduction experiments E516 and

E691. Although the charm cross section relative to the light-quark cross section is higher

for high-energy photons than for pions, this advantage is out-weighed by the inability to

produce the high beam rates possible with hadron beams. The E791 beam energy was twice

that of the previous hadroproduction experiment at TPL, E769, increasing the charm cross

section by approximately 80% [34].

2.2 The Target

The E791 target consists of �ve thin, circular foils oriented perpendicular to the

beam axis and separated by approximately 1.5 cm. The most upstream foil is platinum; the

four downstream foils are industrial diamond. The foils were chosen to be thin | 0.052 cm

for the platinum foil and approximately 0.15 cm for the diamond foils | and separated by

relatively large distances to maximize the volume of free space where the decay vertices of

short-lived charmed particles are more easily reconstructed. A D0, for example, produced

in the primary interaction with a momentum of 100 GeV travels, on average, 0.7 cm beyond

the primary vertex before decaying. Hence, it is very likely to decay outside the primary

interaction foil and before the subsequent foil. Although not as relevant for ourDD analysis,

the thin foils are especially important for the reconstruction of �+c and �+c , which have mean

lifetimes one half and one quarter, respectively, of the lifetime of the D0.

With such thin foils, obtaining the necessary interaction rate required dense ma-

terials. The density of the platinum and diamond foils is approximately 21 and 3 grams per

cubic centimeter, respectively, resulting in a 0.4% chance of a pion interacting in any given

foil (or a 2% chance of interaction in the entire target for each pion).

Using two types of foils with signi�cantly di�erent atomic masses (A = 195 for

platinum, A = 12 for diamond) allows for the possibility of measuring how the charm cross

section depends on the nuclear target. If charm quarks are produced from hard parton-

parton interactions, then one expects the cross section to be proportional to the number

of partons and, therefore, to the atomic mass, � = A��0 with � = 1. Early indirect

measurements by WA78 and E613 found � � 0:75, but more recent direct measurements

�nd � to be consistent with 1 [21]. In this charm-pair analysis, we do not analyze the events

originating from the platinum foil separately from events originating from the diamond foils.
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Figure 2.1: The E791 Tagged Photon Spectrometer

2.3 The Spectrometer

The Tagged Photon spectrometer, illustrated in Figure 2.1, is typical for a �xed-

target experiment. Because the hard scattering that produces the charmed hadrons is

boosted forward from its center of mass, almost all the detectors are positioned downstream

of the target, approximately centered on the beam axis.

The downstream detectors perform three main functions:

� Vertexing both the primary interaction vertex and the secondary charm vertices;

� Tracking and determining the momenta of the charged particles; and

� Identifying the particle type of both neutral and charged particles.

Upstream detectors (not shown in Figure 2.1) track the �� beam before it reaches the

target. We discuss each of these functions separately in the following four sections. The
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role that the calorimeters play in the E791 trigger is discussed in Section 2.4.

2.3.1 Tracking the �
� Beam

Eight planes of proportional wire chambers (PWC) and six planes of silicon mi-

crostrip detectors (SMD) are used to precisely track the transverse position and slope of the

incoming pion beam. The PWC planes are located tens of meters upstream of the target to

provide good angular resolution while the SMD planes are located tens of centimeters from

the target to provide good spatial resolution.

In the E791 coordinate system, the x-axis points eastward, the y-axis upward, and

the z-axis northward. In Figure 2.1, the arrow going into the target foils points along the

z-axis. The origin of this coordinate system is just downstream of the target.

The path of the �� beam varies slightly from event to event, but is always very

close to the z-axis. The roughly Gaussian distribution of the x position of the beam has

a mean and sigma of �0:2 � 0:2 cm; and, for the y position, �0:7 � 0:2 cm. The roughly

Gaussian distribution of the beam angles in the xz plane has a mean and sigma of �0:3�0:3
milliradians; and, for angles in the yz plane, 0:9� 0:1 milliradians.

2.3.2 Vertexing

Almost all E791 analyses depend on the ability to reconstruct the decays of short-

lived charmed particles. The seventeen SMD planes positioned directly downstream from

the target were designed for this purpose. Because of their proximity to the target |

positioned from 3 to 50 cm from the last target foil | and their �ne spatial resolution,

this set of SMD planes is able to reconstruct secondary vertices with a z-position resolution

of several hundred microns. Given a similar resolution for the primary interaction vertex,

the decay vertex of a 100 GeV D0, for example, decaying to K��+ in its mean lifetime |

that is, 0.7 cm downstream of the primary interaction | is measured to be signi�cantly

separated from the primary vertex. That is, the separation is �z = 0.7 cm = 7000 �m and

the error on this separation is on the order of � � p
3002 + 3002�m � 400�m, resulting in

�z=� � 18.

All the SMD planes are oriented perpendicular to the z-axis, with the strips in

a given plane perpendicular to the x, y, or v axis which is rotated from the x-axis 20:5�

counter-clockwise about the z-axis. The dimensions are 5 cm by 5 cm for the �rst two
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downstream planes, and 10 cm by 10 cm for the remaining 15 downstream planes, providing

an overall geometric acceptance of approximately �100 milliradians.
Each SMD plane is a 300-�m-thick p-n junction diode operated at reverse bias,

where the p-type silicon and the adjacent electrode have been segmented into strips to

provide spatial resolution. The thinness of these planes ensures a minimum of multiple

scattering. A relativistic charged particle passing through an SMD plane ionizes the n-type

silicon producing, on average, 25,000 electron-hole pairs. The voltage drop across the diode

forces the holes to drift towards the p-side electrode and the electrons towards the n-side

electrode. This produces a signal (or a \hit") on one or more strips near the particle's

trajectory. The spatial resolution of the detector depends on the strip pitch; the e�ciency

(i.e., the probability of registering a hit when a particle traverses the detector); the noise

level (i.e., how often a hit is registered when no particle traverses); and the cross-talk (i.e.,

when a particle passing through one strip produces hit(s) on neighboring strip(s)). The

e�ciency for all 23 SMD planes in the E791 spectrometer ranges from 83% to 99%. The

inner strip pitch ranges from 25 to 50 �m; the outer strip pitch from 50 to 200 �m. The

resulting spatial resolution, in the direction perpendicular to the given strip, ranges from 7

to 15 �m.

2.3.3 Tracking and Determining the Momenta of Charged Particles

Downstream of and complementing the SMD tracking and vertexing system, are

two PWC planes, 35 drift chamber (DC) planes, and two magnets (Fig. 2.1). The long

distance from the target, ranging from approximately 1 meter to almost 20 meters, allows

charged tracks to be reconstructed with good angular resolution. The placement of DC

planes before and after each magnet allows the momenta of charged tracks to be measured.

The DC planes are oriented perpendicular to the z-axis with the wires in a given

plane perpendicular to the x, u, or v axis. The u and v axes are rotated about the z-

axis �20:5� beginning from the x-axis. The 35 drift chamber planes are divided into four

modules, labeled D1 through D4 in Figure 2.1. Each module is made up of 1 to 4 assemblies;

and each assembly is made up of 3 to 4 DC planes and is surrounded by a gas mixture which

is 89% Argon, 10% Carbon, 1% CF4,

Each DC plane alternates between sense wires maintained at 0 Volts, and �eld

wires maintained at -2 kVolts. In between every two DC planes is a high voltage �eld plane
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maintained at -2.4 Volts. A charged particle traversing a chamber ionizes gas molecules,

producing free electrons that are then collected at the sense wires. Measuring the time it

takes for the electrons to reach a given sense wire precisely indicates how far from that

wire the particle passed. The spatial resolution for the DC planes ranges from 250 to 350

microns. Given three to four DC planes each with a di�erent orientation and spaced closely

together along the z-axis, an assembly is able to determine one point, in three-space, along

the trajectory of a charged particle.

The two downstream PWC planes operate similarly to the DC planes. Each PWC

plane, oriented perpendicular to the z-axis, is actually two planes, surrounded by a gas

mixture which is 82.7% Argon, 17% CO2, and 0.3% Freon. One plane with evenly-spaced

wires which are perpendicular to the y-axis and maintained at a high, positive voltage is

opposite another solid, grounded plane. Just as with a DC plane, a traversing charged

particle will ionize gas molecules, producing free electrons that are collected at the nearest

PWC wire(s). With the PWC detectors, we record only which wire(s) is hit, not any

timing information. With the spacing between the wires at 2mm, the resulting resolution

is approximately 600 microns.

The major component of the magnetic �eld for both of the large-aperture copper-

coil magnets, labeled M1 and M2 in Figure 2.1, points vertically downward. A charged

particle traveling in the +z direction, therefore, accelerates horizontally; positive particles

eastward and negative particles westward. The upstream magnet M1, with a maximum

strength of about 5 kG, gives charged particles a transverse momentum kick of approxi-

mately 0.212 GeV/c; the downstream magnet M2, with a maximum strength of about 7

kG, gives a 0.324 GeV/c pT kick. Given tracking information both upstream and down-

stream of each magnet and given a mapping of the magnetic �eld everywhere, the o�-line

reconstruction code can determine the momenta of charged particles.

2.3.4 Identifying particles

The particle-identi�cation detectors of the Tagged Photon spectrometer consist

of two �Cerenkov counters, an electromagnetic calorimeter, a hadronic calorimeter and two

muon walls. This charm-pair analysis only makes use of the particle-identi�cation informa-

tion from the two �Cerenkov counters. References [35, 36] provide more details about the

latter detectors.
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A charged particle radiates �Cerenkov radiation if its velocity is greater than the

local phase velocity of light. The threshold velocity for such radiation to be emitted, there-

fore, depends on the mass of the particle and on the index of refraction of the medium

the particle is traversing. The chambers of the two �Cerenkov counters, labeled C1 and C2

in Figure 2.1, have di�erent gas mixtures (and, therefore, di�erent indices of refraction):

C1 contains 100% Nitrogen and C2 contains 20% Nitrogen and 80% Helium. Assuming

100% e�ciency for collecting the �Cerenkov radiation, a charged kaon, for example, can be

uniquely identi�ed in the momentum range 20-36 GeV/c because no other charged particle

produces radiation in both counters.

The �Cerenkov radiation in each counter is collected by a plane of spherical mirrors

which is perpendicular to the z-axis and downstream of the gas chamber. The light incident

on each mirror is re
ected into a di�erent light-collecting Winston cone. Each Winston cone

is coupled to a photomultiplier tube. The C1 plane is segmented into 28 mirrors and the

C2 plane into 32 mirrors, with �ner segmentation near the beam axis.

For each charged-particle type, we know the number of photons we expect to collect

as a function of momentum for each �Cerenkov counter. During o�-line reconstruction, we

are therefore able to assign to each charged particle, using Poisson statistics, the probability

for being an electron, a muon, a pion, a kaon, or a proton.

2.4 Data Acquisition

As with the two preceding �xed-target experiments at TPL, the triggering philos-

ophy of E791 was to use very loose constraints, recording as many events as possible with a

minimum bias due to the triggering requirements. The tighter selection criteria necessary

for obtaining signi�cant charm signals are applied after the data is recorded, when time and

computing resources are more available [37].

Speci�cally, an event is recorded if the following criteria are met:

� Only one �� beam particle is detected in a scintillation counter upstream of the target;

� At least four charged tracks are detected in a scintillation counter downstream of the

target; and

� A minimum of approximately 4.7 GeV of energy is deposited transverse to the beam

line in the electromagnetic and hadronic calorimeters.
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This choice is based on the desire for an unbiased trigger and on the ability of the

data acquisition (DA) system, upgraded from the E769 experiment, to collect and record

data very quickly. During the 23-second spills from the Tevatron, data from the detectors

discussed in the previous section are digitized by various electronics systems. Data from

one event, approximately 3 kbytes, is sent to memory bu�ers along eight parallel paths in

approximately 10 microseconds.

The data, however, cannot be reassembled into events, compressed, and written

to tape at 3 kbytes per 100 �seconds, i.e., 30 Mbytes per second. First-in-�rst-out (FIFO)

memory bu�ers, able to hold 80 Mbytes of data each, feed the data more slowly (�9.5
Mbytes per second) to processors (CPU) housed in six VME crates during both the 23

second spill period and the 34 second interspill period. The processors assemble events in

parallel and the events are written to tape in parallel. Seven Exabtye 8200 tape drives are

controlled from each VME crate, resulting in a total of 42 tape drives each recording 0.24

Mb of data per second[38]. E791 ultimately wrote 50 Terabytes of data onto 24,000 2-Gbyte

8-mm tapes.

2.5 Data Processing

The 24,000 tapes of raw data which were collected during a six month period ending

in January 1992 were processed in several stages. Figure 2.2 illustrates the pyramid-like

structure of the data processing and Table 2.1 lists the number of distinct output streams

as well as the number of tapes and events per output stream at each level (I-V) in the

pyramid.

Table 2.1: The number of di�erent output streams, as well as the number of tapes and
events per output, at each level in the E791 data-processing scheme.

Outputs Tapes per Events per
Level per Level Output Output/103

I. Raw Data 1 24,000 20,000,000
II. Reconstruction/Filtering 1 13,000 3,000,000
III. Stripping 2 3,500 1,000,000
IV. Substripping 15 100-1,000 60,000a

V. Analyses 30 1-10 4b

aRefers to the substrip used in this charm-pair analysis.
bRefers to the number of thousands of events, including background events, that passed the �nal charm-

pair selection criteria (discussed in Chapter 4.)



40

Level

I. Raw Data

?

II. Reconstruction/Filtering
����9
XXXXz

III. Strip A Strip B
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IV. SSA1
: : : SSAN SSB1
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V. A A : : : A A A A : : : A A

Figure 2.2: The E791 data-processing scheme, beginning with 24,000 raw data tapes and
ending with approximately 30 di�erent analyses processing 1 to 10 tapes each. See Table 2.1.

The �rst stage of data processing takes us from raw data to reconstructed and

�ltered data (i.e., from level I to level II, in Table 2.1). \Raw data" for an event is the

compressed digitized output from each of the detector systems described in Section 2.3;

for example, each SMD strip that was hit or the number of photons gathered from each

�Cerenkov counter mirror. \Reconstructed data" is the result of o�-line processing of the

raw data. For example, using all the SMD and DC hits, as well as a detailed map of the

magnetic �eld for both magnets, a list of the positions, slopes and momenta, as well as the

errors on these values, of all charged-track candidates is obtained.

Once the charged tracks have been reconstructed, including the �� beam upstream

of the target, the o�-line reconstruction code searches for the primary interaction vertex and

any secondary decay vertices downstream of this primary vertex. The E791 �lter requires

that the �� beam is reconstructed and that at least one secondary decay vertex is found.

This �lter retains most events containing charmed particles while eliminating approximately

85% of the data.

The second stage of data processing, called stripping, is a search for all recon-

structable charm decay modes. The stripping algorithm is a simple Boolean OR of sixteen

physics �lters, in which all events passing any of the �rst ten �lters are saved on the so-called

Stream A output and all events passing any of the latter six �lters are saved on the Stream

B output. Generally, Stream A corresponds to events with a secondary vertex signi�cantly

separated from the primary vertex while Stream B events contain a long-lived particle such

as a K0
S or ��. Our charm-pair analysis begins from the Stream A output.
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For this analysis, the most signi�cant physics �lter is the one which searches for

a pair of charged tracks in which at least one of the tracks has a signi�cant probability,

based on �Cerenkov information, of being a kaon or a proton. The pair is required to form

a vertex in which the �2 for the vertex �t is less than seven. In addition, the vertex must

be downstream of and relatively well-separated from the primary vertex.

Both the �rst and second stage of data processing, discussed above, occured at four

large computer \farms" | dedicated, parallel processing systems | at Kansas State Uni-

versity, The University of Mississippi, Fermi National Accelerator Laboratory, and Centro

Brasileiro de Pesquisas F��sicas in Brasil.

For our charm-pair analysis, the next stage of data processing (substripping in

Table 2.1) was conducted at Fermi National Accelerator Laboratory. In this substrip,

which uses a candidate-driven approach1, we search for the following decay modes (and

the respective charge conjugate modes): D0 ! K��+, K��+�0, �+���+��, K��+���+,

K�K+���+, K�K+K��+; and D+ ! K��+�+. The �nal stage of data processing, in

which we search for fully reconstructable charm-pair decays, is discussed in detail in the

following chapter.

1The di�erence between a \candidate-driven" approach and a \topology-driven" approach is discussed
in Section 3.1.
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Chapter 3

Event Selection

3.1 Philosophy and Methodology

Our charm-pair search focuses exclusively on Cabibbo-favored decay modes of D

mesons that can be fully reconstructed with relatively high e�ciencies: D+ ! K��+�+,

D0 ! K��+, D0 ! K��+�+��, and the respective charge conjugate modes. In this

section, we motivate our event-selection philosophy, provide an overview of our methodology,

and discuss how our approach di�ers from previous charm-pair searches.

3.1.1 Candidate-Driven Approach

Most E791 analyses use a \topology-driven" approach to reconstruct charm decays

where secondary vertices are found topologically, after reconstructing the primary interac-

tion vertex, without considering the e�ective mass of the reconstructed vertex. Instead,

we use a \candidate-driven" approach, working on the premise that topological constraints

can possibly be loosened if we use information about the masses of the charmed particles

for which we are searching. In particular, we search for combinations of two, three, or four

charged tracks | including tracks nominally from the primary interaction vertex | that

have an e�ective mass within a window centered around the mass of real D mesons with

a width roughly twenty times the expected experimental mass resolution. After �nding

two D candidates, the primary vertex is re-�t with any tracks now associated with either

candidate removed.

The main disadvantage of a candidate-driven approach is that it is much more
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CPU intensive than the topological approach. This approach also would not be e�ective for

partially reconstructing charm vertices in which one or more of the decay products (e.g.,

a neutrino) cannot be reconstructed. The conclusion of an E791 candidate-driven single-

charm analysis, which reconstructed charged D mesons decaying to K�����, was that the

most signi�cant signal was obtained only after applying the tight topological constraints of

the topology-driven method.

A charm-pair event, however, has many more variables to discriminate signal from

background events than a single-charm event. If, in a single-charm search, we use the

variables (V1; V2; :::; VN), then in a charm-pair search we use (V 1
1 ; V

1
2 ; :::; V

1
N) for the �rst

D meson candidate and (V 2
1 ; V

2
2 ; :::; V

2
N) for the second. In addition, variables describing

the separation of the vertices of the two candidates are also e�ective. This abundance of

parameters that can be used to separate signal events from background events was our

primary motivation for choosing the more CPU intensive, but more 
exible, candidate-

driven approach.

3.1.2 Parallel Search Algorithm

One algorithm used to �nd charm-pairs is to use tight selection criteria to �nd

the �rst charmed meson candidate, followed by looser criteria to �nd the second candidate.

Schematically, ~V 1 > ~h and ~V 2 > ~l; where ~V is a set of discrimination variables, ~h is a set

of stringent or \hard" selection criteria, and ~l is a set of less restrictive or \loose" selection

criteria. Rather than using this sequential approach, we search for the two charmed particles

in parallel. Speci�cally, for m � n pronged candidates, where Dm ! K (m � 1)� and

Dn ! K (n � 1)� and m 6= n, we iteratively select the \best" pair of selection criteria of

the form

V m
i > pi and=or V n

j > qj : (3.1)

We clarify what \best" means in Section 3.1.3 and the variables ~V used in this analysis are

de�ned in Section 3.2.1. Equation 3.1 allows for the more traditional selection criteria of

the form (~Vm > ~h and ~V n > ~l); as well as many other possible types of selection criteria.

For n � n pronged pairs, we require symmetric selection criteria:

V n
i and=or V n

i > pi: (3.2)

As illustrated in Figure 3.1, Equation 3.2 allows n�n pronged pairs to have selection criteria

of the form (~VMAX > ~h and ~VMIN > ~l) | along with many other possibilities | where
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Figure 3.1: An illustration of how selection criteria of the form V n and=or V n > p, which
are symmetric between the two D candidates, can lead to cuts of the form (~VMAX >
~h and ~VMIN > ~l).

VMAX
i is the maximum of the D and D discrimination variables V n

i and V n
i and VMIN

i

is the minimum of these two variables. The di�erence between this form and the more

traditional form (~V 1 > ~h and ~V 2 > ~l) is that the former allows the more stringent cuts to

be distributed between the D and the D candidates, whereas the latter requires that either

the D or the D candidate survive all the hard cuts ~h.

3.1.3 Iterative Optimization Procedure

The starting point of this analysis is a sample of \substripped" (Section 2.5) events,

in which each event has at least one D candidate decaying to one of several modes: K�,

K��, K���, KK��, KKK�, and ����. Consistent with our candidate-driven approach,

the selected candidates have an e�ective mass in the approximate range 1.7 to 2 GeV and

are subject to only very loose topological constraints. Our analysis focuses on the Cabibbo-

favored modes: K�, K��, and K���. At this substrip level, our signal-to-background ratio

in the signal region is on the order of 10�5.

In this section, we discuss how we iteratively proceed from this initial sample to

the �nal sample shown in Figure 3.2, for which the signal-to-background ratio is greater

by approximately �ve orders of magnitude. This �gure shows a scatter plot of the mass of

the D candidate, MK�n� , versus the mass of the D candidate, MK+n� , in each event, for

candidate masses in the range 1.7 to 2.0 GeV. The number of pions n is not necessarily the

same for the D and D in a given event. There are four types of events in this plot:

� Combinatoric background events consisting of a fake D and a fake D.
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Figure 3.2: Scatter plot of MK�n� versus MK+n� for the �nal data sample of DD candi-
dates. The plot contains four types of events: combinatoric background events spread over
the entire region; D- and D-ridge events, containing one real D and one fake D meson; and
real DD events in the central signal region.

� D-ridge background events consisting of a real D and a fake D. These events lie along

a horizontal ridge in Fig. 3.2.

� D-ridge background events consisting of a real D and a fake D. These events lie along

a vertical ridge in Fig. 3.2.

� Signal events consisting of a real D and a real D.

The combinatoric events are spread over the entire 2-dimensional mass window. Most of

the D-ridge events, clearly seen as a horizontal band in Figure 3.2, are in the region

MD � 2�MD
< MK�n� < MD + 2�MD

;

where MD is the mean and �MD
is the resolution of the mass distribution of real D's. Most

of the D-ridge events are in the region

MD � 2�M
D
< MK+n� < MD + 2�M

D
:
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Finally, most of the signal events are in the so-called \signal region:"

MD � 2�MD
< MK�n� < MD + 2�MD

and MD � 2�M
D
< MK+n� < MD + 2�M

D
:

Along with signal events, this region contains all three types of background events.

Given an initial sample of data with a signal-to-background ratio on the order of

10�5, we cannot reliably use our data to determine the distribution of discrimination vari-

ables for real DD events. Instead, we use the PYTHIA/JETSET Monte Carlo event gener-

ator, introduced in Chapter 1, to estimate our signal distributions, and use the data only to

determine our background distributions. The events generated by the PYTHIA/JETSET

Monte Carlo are passed through a simulation of the various E791 detectors discussed in

Chapter 2, producing simulated \raw" data. With one exception, which we discuss in Sec-

tion 3.2.2, we process the simulated Monte Carlo raw data and the real raw data in exactly

the same manner. As discussed below, we explicitly exclude the signal region of our data to

determine the background distributions once the signal-to-background ratio is on the order

of 10�2.

At any given level (e.g., the substrip level), we begin with NMC Monte Carlo

\signal" events and NBK background events from data. We then test all possible pairs of

selection criteria (Equation 3.1 or 3.2), applying each to both the Monte Carlo and the real

data events. For each pair of selection criteria, we determine how many Monte Carlo and

how many background events survive: N 0
MC and N 0

BK, respectively. We consider only the

subset of selection criteria that remove no more than � 5% of the Monte Carlo signal events.

Speci�cally, we require �NMC=NMC = (NMC �N 0
MC)=NMC to fall within a �xed, narrow

window; typically, �NMC=NMC = 0:05 � 0:01. From this subset of selection criteria, we

choose the one that yields the signal with maximum signi�cance; i.e., with the maximum

N 0
MC=

q
N 0
BK.

1 The shape ofN 0
MC=

q
N 0
BK as a function of all possible cuts does not depend

on the relative size of the Monte Carlo and data samples.

We then apply the selection criteria which maximized the signi�cance to both

the Monte Carlo and data events and begin again, continuing the iterative procedure un-

til further iterations decrease the statistical signi�cance of the signal (N 0
MC=

q
N 0
BK �

NMC=
p
NBK). We test the same set of discrimination variables ~V at every iteration, allow-

ing a given variable Vi to be selected more than once as the most signi�cant variable. We

1This formula for the signi�cance is an approximation that is discussed in more detail below.
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do this optimization procedure separately for each type of m � n pronged pair: 2-2, 2-3,

2-4, 3-3, 3-4 and 4-4.

The optimization method described above attempts to maximize the signi�cance

S = NS=�NS of our DD signal, where NS is the number of signal events and �NS is the

statistical uncertainty on that number. We assume for a given sample of events that we

are able to obtain a near perfect estimate of the number of background events in the signal

region, NB, by using the size and shape of the mass distribution outside the signal region.

The number of signal events is then NS = NSR �NB, where NSR is the number of events

in the signal region, and

�NS =
q
�2NSR + �2NB �

q
�2NSR =

p
NSR =

p
NS +NB:

For most iterations, the number of background events is much larger than the number of

signal events, allowing the statistical signi�cance S = NS=�NS = NS=
p
NS +NB to be

approximated by NS=
p
NB.

As more and more selection criteria are applied to our data sample, the charm

signal (both theD-ridge andD-ridge single-charm signal and the charm-pair signal) becomes

more signi�cant. When these signals become noticeable (�1% of the events), we explicitly

exclude both the signal region and the two ridge regions in the 2-dimensional mass plot

(see Fig. 3.2) to obtain a sample of relatively pure combinatoric background events for

determining our background distributions. When we begin to be dominated by the ridge

background rather than the combinatoric background, we then exclude only the signal region

when obtaining our background sample. Lastly, when the charm-pair signal in data becomes

signi�cant with respect to the backgrounds (NS=NB � 0:1), at each iteration we maximize

N 0
MC=

q
N 0
MC +N 0

BK rather than N 0
MC=

q
N 0
MC. This requires properly normalizing the

sample size of the background events with respect to Monte Carlo events.

When we begin to see a charm-pair signal in data, we also require that the se-

lection criteria chosen at any given iteration does not degrade the true signi�cance of our

charm-pair signal (i.e., the signi�cance obtained using the signal from data rather than

the signal from the Monte Carlo).2 Given the relatively small sample of real charm-pair

events, we risk tuning on statistical 
uctuations if we use the signal from data to optimize

the selection criteria. Hence, we only use the true signi�cance to determine whether the

chosen selection criteria should be loosened slightly. This additional step during the later

2Section 4.1.3 describes how to determine the signi�cance of the charm-pair signal from our data sample.
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part of our optimization procedure helps avoid the possible problem of the Monte Carlo

inaccurately simulating the detector, usually producing distribution that are \too good",

and, therefore, selection criteria that are too stringent.

3.1.4 Comparison with Other Approaches to Signal Optimization

A standard method of signal optimization is to �rst select a set of discrimination

variables ~V and then examine, for each variable Vi, the statistical signi�cance of the signal

as a function of pi, where background and signal events survive if Vi > pi. The selection

criteria that maximizes the signi�cance is applied to both the signal and background samples

and the procedure is repeated, until the signi�cance no longer increases.

Geometrically, the signi�cance of a signal is a multi-dimensional function of all

possible selection criteria and selecting a set of discrimination variables determines the

axes along which we explore this function. In the standard signal optimization method

described above, one iteratively projects the signi�cance onto each axis, determining for a

given iteration the axis Vi and the value pi that maximizes the signi�cance of the signal.

The optimization method we use in this DD analysis is slightly more elaborate

than the standard method. As well as making 2-dimensional projections in discrimination-

variable space (i.e., examining both charm candidates simultaneously) and allowing both

or- and and-type cuts, we also explicitly take smaller steps along the discrimination-variable

axes by selecting the most signi�cant cut at a �xed �NS=NS , with �NS=NS � 0:05: Taking

smaller step sizes, in principal, allows us to stay closer to the path of steepest ascent which

may be, for example, along a linear combination of cut variable axes. Smaller step sizes also

allow us to distribute the selection criteria among more discrimination variables, making

us less dependent on the predictions of the Monte Carlo event generator for a particular

discrimination variable.

One limitation of both the standard optimization method and our method is that

each iteration e�ectively eliminates an entire region of discrimination-variable space from

further exploration. Other optimization methods that are becoming more and more popular,

based for example on neural-network or binary-decision-tree algorithms[39], allow a more

systematic exploration of the entire multi-dimensional space of possible selection criteria.

We believe such algorithms could be e�ectively applied to future charm-pair searches.
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3.2 Highlights of the Event Selection Procedure

In this section, we �rst de�ne the variables used in our charm-pair search to dis-

criminate signal events from background. We then discuss selection criteria applied early

in the charm-pair search to the primary vertex, to all candidate decay tracks, and to all

single-charm D candidates. Lastly, we show results from the �rst iteration of choosing

charm-pair selection criteria of the form shown in Equations 3.1 and 3.2.

3.2.1 De�nition of Discrimination Variables

The fourteen variables used in our charm-pair search are de�ned below. Each

variable name is followed either by (>), indicating that a candidate passes the criteria if

the variable is greater than some minimum value; or by (<), indicating that a candidate

passes if the variable is less than some maximum value. The variables that begin with

\S" are so-called \scaled" variables, constructed by dividing a variable, estimated from

the reconstructed positions and/or momenta of particles in an event, by the one-standard-

deviation experimental uncertainty on the measurement of that variable.

CHIS (<) �2 per degree of freedom for the �t of the tracks in a candidate D decay to a

common vertex.

DIP (<) The distance, in a plane transverse to the beam axis, between the primary inter-

action vertex and the projection of the candidate D momentum vector back to the

z-position of the primary vertex.

SDIP (<) DIP, de�ned above, divided by the uncertainty on DIP.

KPRB (>) Probability that the candidate kaon track is a kaon, based on �Cerenkov infor-

mation.

PTB (<) The component of the candidate-D momentum vector that is perpendicular to

the candidate's line-of-
ight, as determined by the positions of the primary and sec-

ondary vertices.

PTDK (>) Scalar sum, over the decay tracks of the D candidate, of the square of the

momentum transverse to the candidate-D momentum vector.
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SDZ (>) The separation, along the z-axis, of the primary vertex and the candidate D

vertex, divided by the uncertainty on the separation.

SDISO (>) The smallest SDCA1 of all the tracks from the primary vertex to the candidate-

D vertex.

SPISO (>) The smallest SDCA1 of all the decay tracks of a D candidate to the primary

vertex.

SPRAT (<) The product of the SDCA1 of the decay tracks of a D candidate to its own

vertex divided by the product of the SDCA of these tracks to the primary vertex.

SSISO (>) The smallest SDCA1 of all the decay tracks of a D candidate to the vertex of

the other D candidate. Given an m� n pronged charm-pair candidate, SSISOm uses

the tracks of the m-pronged candidate and the vertex of the n-pronged candidate.

SSRAT (<) The product of the SDCA1 of the decay tracks of a D candidate to its own

vertex divided by the product of the SDCA of these tracks to the vertex of the otherD

candidate. Given an m � n pronged charm-pair candidate, SSRATm uses the tracks

of the m-pronged candidate and, in the denominator, the vertex of the n-pronged

candidate.

STRG (>) Separation, along the beam direction, of the candidate-D vertex from the near-

est edge of a target, divided by the uncertainty on the separation.

TAU (>;<) Lifetime of the D candidate. The lifetime distribution for real D events is

exponential. Background events cluster both at very small lifetimes, when the primary

vertex is split into a primary plus a fake D vertex; and at very large lifetimes when

interactions in target foils downstream of the primary interaction mimic D decay

vertices.

3.2.2 Preliminary Selection Criteria

Prior to the iterative procedure to �nd the optimum charm-pair selection crite-

ria, constraints are imposed (1) on the primary vertex, (2) on the tracks used to form D

1SDCA is the distance of closest approach of a particular track to a particular vertex, divided by the
uncertainty in that distance.
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candidate vertices, and (3) on the single-charm candidates used to form the charm-pair

candidates. For the primary vertex, which is re-�t after removing any tracks from either of

the two candidate-D decay vertices that were originally associated with the primary vertex,

we require:

� at least three tracks;

� the z-position to be consistent with an interaction occurring inside a target foil; and

� the �2 per degree of freedom of the vertex �t to be less than 15.

For the candidate-D decay tracks, we require:

� tracking information (i.e., hits) in the silicon microstrip detectors downstream of the

target and, for momentum determination, in the drift chamber planes both upstream

and downstream of the �rst magnet.

� the �2 per degree of freedom of the track �t to be less than 6; and

� the measured momentum to be between 1 and 300 GeV.

For the single-charm candidates, we require:

� the e�ective mass to be between 1.7 and 2 GeV;

� the �2 per degree of freedom of the vertex �t to be less than 25;

� the momentum to be less than 500 GeV; and

� SDZ (de�ned in Section 3.2.1) to be greater than 1.

From these three sets of selection criteria, applied to our sample of substripped

events, we obtain our initial sample of charm-pair candidates. For each three-pronged D

candidate, the sum of the charges of the candidate decay tracks must be either +1 or �1,
and the kaon is de�ned to be the oddly charged tracked. For each two- and four-pronged

D candidate, the sum of the charges must be 0 and the kaon is de�ned to be the track with

the greatest probability for being a kaon, based on �Cerenkov information.

Given such loose criteria, �nding multiple DD candidates per event is possible.

For our data sample, which we use to determine the distribution of discrimination variables

for background events, we allow multiple candidates per event | until near the end of
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the optimization procedure. For our Monte Carlo sample, allowing multiple candidates per

event smears the estimate of the real DD distributions. That is, only one candidate is the

true signal candidate; the others are background. For each charged-particle Monte Carlo

track, we have both reconstructed track parameters | obtained from simulated raw data

in exactly the same way as real data | and the original track parameters from the physics

simulation. We allow only one Monte Carlo candidate per event by choosing the candidate

for which the track parameters of the reconstructed D meson decay tracks and the original

simulated decay tracks are in the best agreement. The track parameters we consider in our

comparison are the slopes with respect to the z-axis | dx/dz and dy/dz | and the x and

y intercepts at z=0. Also we only accept Monte Carlo candidates with the same number of

decay tracks, for both D mesons, as produced in the physics simulation.

Before beginning the iterative search for the optimum charm-pair selection criteria

described in Section 3.1, for a few iterations, we optimize our single-charm signal. Specif-

ically, we form three sub-samples of single-charm D candidates (with two such candidates

per charm-pair candidate) from both data and Monte Carlo events: all 2-pronged (K���)

candidates, all 3-pronged candidates, and all 4-pronged candidates. For each sample, we test

all possible selection criteria of the form Vi > pi or Vi < pi where ~V = (CHIS, DIP, PTDK,

PTB, SDIP, SDZ, STRG, SPISO, SPRAT, SDISO, TAU). At each iteration, just as with

the charm-pair search, we select the criteria that maximizes the signi�cance, N 0
MC=

q
N 0
BK,

while eliminating only � 5% of the signal, �NMC=NMC = 0:05� 0:01.

Results from the �rst iteration of selecting the optimum criteria for the K� candi-

dates are shown in Figure 3.3. Figure 3.3a shows N 0
MC=

q
N 0
BK, given �NMC=NMC � 0:05,

for each discrimination variable Vi; i = 1 : : :11. We arbitrarily normalize the number of

Monte Carlo signal events to 1 and the number of background events to 10,000. Hence,

N 0
MC=

q
N 0
BK < 1=

p
10000 = 0:01 implies that imposing the selection criteria worsens the

signi�cance of the signal. In this �gure, results are shown for both \unweighted" and

\weighted" background candidates, where the latter are weighted according to the inverse

of the number of D candidates in the given event. We were concerned in the early stages of

the optimization procedure that a few events with anomalously large numbers of candidates

would distort the background distributions. We �nd, however, that weighting the events

never signi�cantly a�ects which criteria are selected. Figure 3.3a indicates that PTDK is

the variable that maximizes the signi�cance given �NMC=NMC � 0:05. As discussed in

Sec. 3.2.1, PTDK is the scalar sum, over the decay tracks of the D candidate, of the square
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Figure 3.3: Results from the �rst iteration of optimizing 2-pronged single-charm selection

criteria: (a) N 0
MC=

q
N 0
BK (given �NMC=NMC � 0:05) vs. Cut Variable, indicating that

PTDK is the best cut variable for the �rst iteration. The constraint �NMC=NMC � 0:05
determines the value at which the cut is made. (b) PTDK distributions, normalized to
the same area, for both the Monte Carlo signal events and the weighted and unweighted
background events (c) Scatter plot of PTDK versus the reconstructed mass of the 2-prong
D meson from the Monte Carlo sample, indicating that PTDK is not signi�cantly correlated
to the mass of the D meson for PTDK < 0:45 GeV2.

of the momentum transverse to the candidate-D momentum vector. Figure 3.3b shows the

distributions, normalized to the same area, for both the Monte Carlo signal events and

the weighted and unweighed background events. The optimum cut PTDK > 0.45 GeV2,

consistent with �NMC=NMC � 0:05, is indicated.

The variable PTDK is e�ective at discriminating signal events from background

events because decay products of heavy charmed mesons are produced at large transverse

momenta with respect to the direction of the charmed meson, whereas background candi-

dates, often formed from random tracks from the ��-nucleon interaction, are more likely

to have the candidate parent momentum vector and decay tracks all aligned very closely to
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Table 3.1: Selection criteria applied to all D candidates before beginning the charm-pair
optimization procedure. Variables are de�ned in Sec. 3.2.1.

Selection Criteria K� K�� K���

CHIS < 25 25 15

DIP [�m] < 45 45

PTDK [GeV2] > 0.45 0.25

SDIP < 1.8

SDZ > 1 1 3.5

SPRAT < 0.1 0.055

STRG > 1

the z-axis. We are careful, however, not to choose selection criteria that e�ectively make

a cut on the mass of the D candidates. Imposing such criteria would distort the linear

mass distribution of background events. As discussed in Chapter 4, understanding the dis-

tribution of background events is essential for determining the number of signal events. In

Figure 3.3c, we demonstrate that, although PTDK is correlated to the mass of D meson,

the correlation is not signi�cant below 0.45 GeV2 where the cut is made.

Imposing a few single-charm selection criteria before beginning our charm-pair

search dramatically reduces the computer processing time involved in selecting a sample of

charm-pair candidates from our data. The �nal single-charm selection criteria are listed in

Table 3.1.

3.2.3 First Iteration Results

After imposing the preliminary selection criteria discussed in the previous section,

we begin our optimization of charm-pair selection criteria of the form

Vm
i > pi and=or V n

j > qj

for m� n pronged pairs with m 6= n, and

V n
i and=or V n

i > pi

for n�n pronged pairs, where ~V = (CHIS, DIP, PTDK, PTB, SDIP, SDZ, STRG, SPISO,

SPRAT, SDISO, TAU, KPRB, SSRAT, SSISO). (See Sec. 3.2.1 for variable de�nitions.) As

discussed in Sec. 3.1.3, for each type of m�n pronged pair, we iteratively select the criteria

that maximizes the signi�cance, N 0
MC=

q
N 0
BK, while eliminating only � 5% of the signal.
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�lled circles, respectively. We �nd that for �NMC=NMC � 0:05, an or-type cut on SDZ

is the optimum cut: SDZ3 or SDZ3 > 10; where SDZ is the separation, along the z-axis,

between the primary vertex and the candidate D vertex, divided by the uncertainty on the

separation.

Figure 3.5 shows the SDZ distributions for signal and background events, indicat-

ing which candidates are discarded by applying this cut. Or-type cuts remove charm-pair

candidates in which neither single-D candidate looks like a real D, whereas and-type cuts

accept candidates in which both single-D candidates looks like a real D. In the early stages

of the optimization procedure, when we are dominated by combinatoric backgrounds, or-

type cuts are often found to be more e�ective than and-type cuts. As the D- and D-ridge

background events become more signi�cant, and-type cuts become more e�ective. For ex-

ample, after several iterations, the and-type cut (SDZ3 and SDZ3) > 4 is determined to be

the most signi�cant, e�ectively removing D- and D-ridge background events. The combi-

nation of the two cuts, SDZMAX > 10 and SDZMIN > 4, e�ectively removes all three types

of background events.

Each iteration in the optimization procedure for m�n pronged pairs with m 6= n

requires testing 14� 14 = 196 combinations of discrimination variables:

V m
i > pi and=or V n

j > qj ; i; j = 1; : : : ; 14:

We show the �rst-iteration result for the 2-3 pronged candidates in Figure 3.6 for a 9 � 9

subset of variables:

~V2; ~V3 = (SDZ; SPISO; SPRAT; STRG; SDIP;PTB;TAU;SSRAT; SSISO)

(The variable combinations not shown were among the least e�ective in optimizing the

signi�cance of the signal.) There are nine plots, one for each of the nine 2-pronged variables

~V2. Each plot shows N 0
MC=

q
N 0
BK, given �NMC=NMC � 0:05, for each of the nine 3-

pronged variables ~V3. The cut (TAU2 > 0:25 psec or SDZ3 > 10) is found to be the most

signi�cant �rst iteration cut.

3.3 Final Selection Criteria

As discussed in Section 3.1.3, we continue the iterative procedure to optimize

the charm-pair selection criteria until applying further selection criteria does not improve
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Figure 3.6: Results from the �rst iteration of optimizing 2-3 pronged charm-pair selection

criteria. Each plot shows N 0
MC=

q
N 0
BK (given �NMC=NMC � 0.05) versus the 3-pronged

cut variables. And each plot is associated with a particular 2-pronged cut variable. Open
circles show results for or-type cuts and solid circles for and-type cuts. The left-most open
circle in the bottom left-hand plot, for example, indicates that applying the cut (TAU2 > p

or SDZ3 > q) brings the signi�cance, N 0
MC=

q
N 0
BK, to approximately 0.025. The values of

p and q, not shown in the plot, meet the requirement that �NMC=NMC � 0.05. The Monte
Carlo and data samples are normalized such that NMC=

p
NBK = 0:01 before any cuts are

applied.

the signi�cance. The �nal results, for all six types of m � n pronged pairs, are shown in

Tables 3.2-3.5. The symmetric n � n pronged criteria are in Table 3.2, the 2-3 pronged

criteria in Table 3.3, the 2-4 criteria in Table 3.4, and the 3-4 criteria in Table 3.5.

In Figures 3.7-3.9, we test the validity of our optimization procedure by comparing

the shapes of the Monte Carlo distributions of cut variables (de�ned in 3.2.1) to the shapes
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Table 3.2: Charm-pair selection criteria for n � n pronged events. The entry \90" in the
�rst row, for example, means all 4-4 pronged candidates must pass the cut (DIP4 < 90�m
AND DIP4 < 90 �m). Variables are de�ned in Section 3.2.1.

K� K�� K���

Selection Criteria 2� 2 3� 3 4� 4

DIP [�m] < AND 90

PTB [GeV] < AND 1.4 0.85
OR 0.4 0.4

PTDK [GeV2] > AND 0.17

SDIP < OR 1.

SDZ > AND 4.3
OR 10 8

SPISO > OR 4.9 4.9

SPRAT < OR 0.024 0.01

SSRAT < AND 0.004 0.002
OR 0.001

STRG > OR 5.2 5.0

TAU [psec] > AND 0.214
OR 0.25

of the background-subtracted distributions from data3. This test is not fool-proof: We

can obtain statistically signi�cant distributions from data only after applying all selection

criteria, and having similar Monte Carlo and data distributions after applying the selection

criteria does not guarantee that the distributions are similar before applying the selection

criteria. It is encouraging, nonetheless, that the Monte Carlo signal distributions and

the data signal distributions are in good agreement for all cut variables. In addition,

the Monte Carlo and data signal distributions for most variables are signi�cantly di�erent

from the distribution for the combinatoric background events (i.e., events for which neither

candidate-D mass is in the region MD � 2�D < MKn� < MD + 2�D). Not surprisingly,

the optimization procedure does not �nd variables in which the combinatoric background

distribution is very similar to the signal distributions (e.g., CHIS) to be very e�ective at

discriminating signal from background. We do not show the distributions for the variable

SDISO because it is not selected as an optimum cut variable at any iteration. For the

variable PTDK, we show the distributions for the 2-, 3-, and 4-pronged candidates separately

because the distribution is so dependent on the number of decay tracks.

3We use the method discussed in Section 4.1.2 to obtain background-subtracted distributions.
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Table 3.3: Charm-pair selection criteria for 2-3 pronged events. The third entry \1 OR
5.4" in the �rst row, for example, means all 2-3 pronged candidates must pass the cut
(PTB2 < 1 GeV OR STRG3 > 5:4). Variables are de�ned in Section 3.2.1.

V 3 PTB PTDK SDIP SDZ SPISO SPRAT STRG
[GeV] [GeV2]

V 2 < > < > > > <

PTB 0.3 5 5.4
[GeV] OR AND OR
< 0.33 2.3 1

SPISO 0.01
OR

> 7

SSISO 4
OR

> 4

SSRAT 0.4 0.2
AND AND

< 0.06 0.1

STRG 1
AND

> 1

TAU 10 2
[psec] OR OR
> 0.25 0.15

For several variables (e.g., SPRAT shown in Figure 3.8), although the shape of the

data signal distribution resembles the Monte Carlo distribution more than the combinatoric

background distribution, the shape of the data signal distribution is somewhat intermediary

between the background and Monte Carlo signal distributions. As discussed Section 3.1.3,

such di�erences between the Monte Carlo and the real data distributions can lead to the

optimization procedure suggesting selection criteria that are too stringent. As mentioned,

this problem is dealt with during the latter part of the optimization procedure by loosening

a selected cut if that cut degrades the true signi�cance of the charm-pair signal (i.e., the

signi�cance obtained using the signal from data rather than the signal from the Monte

Carlo).

In Figures 3.10-3.12 we organize the �nal selection criteria by cut variable, rather

than by the type of DD candidate. Although these �gures contain much of the same
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Table 3.4: Charm-pair selection criteria for 2-4 pronged events. The entry \0.18 OR
0.01" in the �rst row, for example, means all 2-4 pronged candidates must pass the cut
(KPRB2 > 0:18 OR SSRAT4 < 0:01). Variables are de�ned in Section 3.2.1.

V 4 DIP KPRB PTB SPISO SPRAT SSRAT STRG TAU TAU
[�m] [GeV] [psec] [psec]

V 2 < > < > < < > > <

KPRB 0.01
OR

> 0.18

PTB 5.4
[GeV] OR
< 0.4

PTDK 0.3
[GeV2] OR
> 0.81

SDIP 0.15 0.85
OR AND

< 1 2

SDZ 45
AND
2

32
OR

> 7

SSRAT 0.02
AND

< 0.03

SSISO 5
OR

> 5.6

STRG 0.17
OR

> 2

TAU 0.003 2.14
[psec] OR OR
> 0.3 0.1

information as Tables 3.2-3.5, they allow us to more easily see patterns in the selection

criteria. Each of the plots in these �gures contains information regarding one cut variable.

The x-axes of plots indicate at what value a cut is made. The y-axes indicate on what

type of candidate a cut is made (e.g., the y label\4-2" indicates that a cut is made on
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Table 3.5: Charm-pair selection criteria for 3-4 pronged events. The entry \23 OR 0.4" in the
�rst row, for example, means all 3-4 pronged candidates must pass the cut (DIP3 < 23 �m
OR PTB4 < 0:4 GeV). Variables are de�ned in Section 3.2.1.

V 4 DIP KPRB PTB SPRAT SSISO SSRAT STRG
[�m] [GeV]

V 3 < > < < > < >

DIP 0.4
[�m] OR
< 23

PTB 0.001
[GeV] OR
< 0.3

PTDK 0.9
[GeV2] AND
> 0.22

SDIP 1.2
AND

< 1.3

SDZ 98 0.001
AND OR

> 5 3

SPISO 0.28 5
OR OR

> 3.8 6

SPRAT 0.4 0.002
OR AND

< 0.0004 0.004

SSRAT 6
OR

< 0.003

STRG 0.25
OR

> 1.4

the 4-pronged candidates from the 4-2 pronged pairs). The symbols on the plots indicate

whether the cut is an and-type (solid circle), an or-type (open circle), or a single-charm

(star) cut, where the latter cuts are applied to all n-pronged D candidates regardless of the

number of decay tracks of the companion D candidate. We group the plots into several

categories according to how the cut variables (de�ned in Section 3.2.1) discriminate signal

from background:
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Figure 3.7: Normalized distributions of cut variables for the Monte Carlo sample (solid),
the background-subtracted data sample (dashed), and the combinatoric background sample
(dotted) after all selection criteria have been applied. The distributions of both D candi-
dates from each DD candidate are added. The cut variables are de�ned in Section 3.2.1.

DIP, SDIP, PTB Is the D candidate consistent with originating from the primary inter-

action vertex? (Top plots in Figure 3.10.)

SDZ, STRG, TAU Is the vertex of the D candidate well separated from the primary

interaction vertex? The latter two variables also indicate whether the D candidate

looks like a secondary interaction in a foil downstream of the primary interaction foil.

(Bottom plots in Figure 3.10.)

SPISO, SPRAT Do any of the decay tracks of the D candidate look like they originate

from the primary vertex? (Top plots in Figure 3.11.)
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Figure 3.8: Normalized distributions of cut variables for the Monte Carlo sample (solid),
the background-subtracted data sample (dashed), and the combinatoric background sample
(dotted) after all selection criteria have been applied. The distributions of both D candi-
dates from each DD candidate are added. The cut variables are de�ned in Section 3.2.1.

SSISO, SSRAT Do any of the decay tracks of one D candidate look like they originate

from the other D candidate vertex? (Bottom plots in Figure 3.11.)

PTDK Are the transverse momenta of the candidate-D decay tracks, with respect to

the candidate-D trajectory, indicative of a heavy meson decay? (Right plot in Fig-

ure 3.12.)

KPRB Based on �Cerenkov information, is the candidate kaon likely to be a real kaon?

(Left plot in Figure 3.12.)

CHIS Do the decay tracks of the D candidate form a good vertex? (Middle plot in Fig-
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Figure 3.9: Normalized distributions of cut variables for the Monte Carlo sample (solid),
the background-subtracted data sample (dashed), and the combinatoric background sample
(dotted) after all selection criteria have been applied. The distributions of both D candi-
dates from each DD candidate are added. The cut variables are de�ned in Section 3.2.1.

ure 3.12.)

All categories, except the latter two, seem to be important for discriminating signalDD events

from background. We do not show the cut variable SDISO, which quanti�es whether any

tracks from the primary look like they could be associated with a candidate-D vertex,

because it is never chosen as an optimum cut variable at any iteration.

The main conclusion from Figures 3.10-3.12 is that results look reasonable:

� For any given cut variable the range of selected cuts is fairly narrow compared to the

widths of the distributions shown in Figures 3.7-3.9.

� The cut values for or-type cuts are generally more stringent than the values for and-
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Figure 3.10: The distribution of selection criteria for the cut variables DIP, SDIP, PTB,
SDZ, TAU, and STRG. The x-axes indicate the value at which a cut is made; the y-axes
indicate on what type of candidate a cut is made. For example, the y label \4-2" indicates
that a cut is made on the 4-pronged candidates from the 4-2 pronged pairs. The symbols
on the plots indicate whether the cut is an and-type (solid circle), an or-type (open circle),
or a single-charm (star) cut. The cut variables are de�ned in Section 3.2.1.

type cuts because the area of the cut-variable space removed by or-type cuts is smaller

than the area removed by and-type cuts (See Figure 3.1).

� There are several examples of a less stringent and-type cut combined with a more

stringent or-type cut (e.g., the PTB cuts on the 2-pronged candidates from 2-2 and

2-3 pronged pairs, and the SDZ cuts on the 3-pronged candidates from 3-2 and 3-3

pronged pairs). As discussed in the previous section, this pattern is reasonable because

our sample of DD candidates contains two types of background events: combinatoric

events in which neither D candidate is real, and ridge events in which one of the two
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Figure 3.11: The distribution of selection criteria for the cut variables SPISO, SPRAT,
SSISO and SSRAT. The x-axes indicate the value at which a cut is made; the y-axes
indicate on what type of candidate a cut is made. For example, the y label \4-2" indicates
that a cut is made on the 4-pronged candidates from the 4-2 pronged pairs. The symbols
on the plots indicate whether the cut is an and-type (solid circle), an or-type (open circle),
or a single-charm (star) cut. The cut variables are de�ned in Section 3.2.1.

D candidates is a real D.

� The PTDK cuts selected for 2-pronged candidates is looser that the cuts selected for

3-pronged candidates, consistent with the PTDK distributions shown in Figure 3.9.

Other comments regarding Figures 3.10-3.12 are:

� Or-type cuts are selected almost twice as often as and-type cuts.

� There are two examples of selection criteria that become obsolete because another cut

selected later in the optimization procedure is more stringent: the SDZ cuts on the
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Figure 3.12: The distribution of selection criteria for the cut variables KPRB, CHIS, and
PTDK. The x-axes indicate the value at which a cut is made; the y-axes indicate on what
type of candidate a cut is made. For example, the y label \4-2" indicates that a cut is made
on the 4-pronged candidates from the 4-2 pronged pairs. The symbols on the plots indicate
whether the cut is an and-type (solid circle), an or-type (open circle), or a single-charm
(star) cut. The cut variables are de�ned in Section 3.2.1.

3-pronged candidates from 3-4 pronged pairs, and the SSRAT cuts on the 2-pronged

candidates from the 2-3 pronged pairs.

� Comparing the variables SDZ and TAU, SDZ seems more e�ective for 3-pronged D

candidates, whereas TAU seems more e�ective for 2-pronged candidates.

� The SxRAT variables appear to be more e�ective than the SxISO variables at dis-

criminating signal from background events.

� The variables CHIS and KPRB are not found to be very important in this analysis.

Applying the �nal selection criteria discussed in this section to our data sample

gives us the DD signal evident in the scatter plot of Figure 3.2. In the following chapter,

we discuss how to extract the number of real DD events from this scatter plot, and, �nally,

in Chapter 5 we present the results of this DD analysis.
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Chapter 4

Data Analysis

To obtain physics distributions (e.g., the transverse momentum of the DD pair),

we need a method for determining the number of charm-pair signal events in each bin of

a given physics variable, and for correcting our distributions to account for the acceptance

and smearing e�ects of the reconstruction and data selection processes. These two issues

are discussed in Sections 4.1 and 4.2, respectively.

4.1 Determining Yields and Signi�cances

4.1.1 Normalized Mass

In the previous chapter, we show the results from our �nal data sample as a scatter

plot of the reconstructed mass of each D candidate versus the reconstructed mass of each

D candidate (Figure 3.2). To analyze our data, we use normalized masses Mn rather than

reconstructed massesM , whereMn � (M �MD)=�MD
. If we correctly determine the mean

MD and resolution �MD
for the reconstructed mass distribution, then the distribution of

Mn for reconstructed D mesons will be Gaussian with a mean of 0 and a variance of 1.

The motivation for using normalized masses is that the mass resolution for D

mesons decaying to Kn� in the E791 spectrometer depends on both the number of decay

tracks and on the xF of the D meson, where xF is the longitudinal momentum of the D in

the center of mass of the ��-nucleon system divided by the maximum possible longitudinal

momentum. In addition, the experimental means | slightly di�erent from the Particle

Data Group values[40] | range from 1.866 to 1.872 GeV. In other words, the distribution



69

Figure 4.1: One-dimensional measured mass distributions from the �nal data sample with
�ts to a Gaussian plus linear distribution superimposed. The parameters of the Gaussians
extracted from the �ts are given in Table 4.1.

of D (and D) meson masses in Figure 3.2 is approximately a superposition of Gaussians

with a discrete number of means and a continuum of variances. As described below, we

use our higher statistics single-charm one-dimensional mass distributions to measure the

parameters that transform these D and D reconstructed mass distributions to normalized

mass distributions that are approximately Gaussian with means of 0 and variances of 1.

Then, as discussed in Section 4.1.3, when �tting to the two-dimensional charm-pair mass

distribution (MK�n�
n vs. MK+n�

n ) we can �x the D signal distributions to be Gaussian with

a mean of 0 and a variance of 1.

As shown in Figure 4.1, to make the transformation to normalized masses, we

�rst �t the following four single-charm mass distributions from our �nal data sample to a

Gaussian distribution for the signal D events, plus a linear distribution for the background

events: all 2-pronged D0=D0 candidates, all 4-pronged D0=D0 candidates, all D� candi-
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Table 4.1: The parameters of the Gaussian extracted from the �ts to the one-dimensional
measured mass distributions from the �nal data sample shown in Figure 4.1

Decay Mode Mean, MD [GeV] �MD
[MeV]

D ! K��� 1:866� 0:001 12:7� 0:5

D ! K������� 1:866� 0:001 8:4� 0:6

D+ ! K��+�+ 1:872� 0:001 13:1� 0:7

D� ! K+���� 1:867� 0:001 12:8� 0:6

Table 4.2: The sigma �MD
, in MeV, of the Gaussian extracted from the �ts to the one-

dimensional measured mass distributions from the �nal data sample. The means of the
Gaussians are �xed to the values shown in Table 4.1.

K� K�� K���

xF < 0:0 10:6� 0:9 14:9� 3:5

0:0 < xF < 0:1 11:1� 0:7 10:7� 0:5

0:1 < xF < 0:2 14:1� 0:9 14:1� 0:8

0:2 < xF 23:9� 2:4 19:8� 1:9

xF < 0:15 7:6� 0:6

xF > 0:15 13:7� 1:8

dates, and lastly all D+ candidates. The D� and D+ signal distributions have slightly

di�erent experimental means because of a small asymmetry in the E791 spectrometer be-

tween the reconstruction of positively and negatively charged tracks. Table 4.1 shows the

parameters of the Gaussian extracted from each �t. We then divide the 2-pronged and both

3-pronged single-charm samples into four xF bins. Due to the small number of events, we

divide the 4-pronged sample into only two xF bins. We again �t each mass distribution to

Table 4.3: The parameters of the Gaussian extracted from the �ts to the one-dimensional
normalized mass Mn distributions from the �nal data sample shown in Figure 4.2, where
Mn = (M �MD)=�MD

and MD and �MD
are taken from Tables 4.1 and 4.2, respectively.

Decay Mode Mean Sigma

D ! K��� �0:01� 0:04 1:08� 0:05

D ! K������� 0:07� 0:08 0:99� 0:08

D+ ! K��+�+ 0:09� 0:05 0:95� 0:06

D� ! K+���� 0:03� 0:06 1:00� 0:05
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Figure 4.2: One-dimensional normalized mass distributions from the �nal data sample with
�ts to a Gaussian plus linear distribution superimposed. The parameters of the Gaussians
extracted from the �ts are given in Table 4.3.

a Gaussian signal distribution plus a linear background distribution, but we �x the means

of the Gaussian using the values from the previous four �ts (Table 4.1). The widths of the

Gaussians extracted from these �ts are shown in Table 4.2. Although the means of the D+

and D� distributions di�er, we do not expect the resolutions to di�er. Hence, in Table 4.2,

we show the averages of the D+ and D� mass resolutions, which were all consistent within

one standard deviation.

To check this procedure, we transform the four initial single-charm reconstructed

mass distributions (Figure 4.1) to normalized mass distributions, Mn � (M �MD)=�MD
,

usingMD from Table 4.1 and �MD
from Table 4.2. Once again, as shown in Figure 4.2, we �t

each distribution to a Gaussian plus a linear distribution. The parameters of the Gaussians

extracted from the �ts are given in Table 4.3. The means and the sigmas extracted from

all four �ts are within 0.1 of 0 and 1, respectively. We expect this level of accuracy because
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both the means and the sigmas of the measured-mass �ts are known to approximately 1

MeV. For example, if we have a Gaussian distribution for which the true mean is 1870 MeV

and the true sigma is 10 MeV, but we transform to a normalized distribution assuming a

mean of 1871 GeV and a sigma of 11 MeV, then the normalized mass distribution will have

a mean of 1
11 and a sigma of 1011 . That is, if we assume

Mn =
M � (MD + �MD)

�MD
+ ��MD

;

then the distribution that we �t to is proportional to

exp

 
�1

2

�
(�MD

+��MD
)Mn + (MD +�MD)�MD

�MD

�2!
=

exp

 
�1

2

�
Mn +�MD=(�MD

+��MD
)

�MD
=(�MD

+��MD
)

�2!
:

4.1.2 Binned Method for Background Subtraction

As discussed in the following section, we ultimately use an unbinned maximum-

likelihood �t to estimate the number of signal DD events in our data sample. In this

section, we describe a simpler binned method for subtracting background events in order

to emphasize the di�erence between the two approaches.

Figure 4.3 shows the two-dimensional normalized mass distribution for our �nal

sample of DD candidates. In this �gure, four regions are de�ned according to their cross-

hatching:

� Region 1, with N1 events, contains mostly combinatoric background events;

� Region 2, with N2 events, contains both combinatoric background events and D-ridge

background events;

� Region 3, with N3 events, contains both combinatoric background events and D-ridge

background events; and, lastly,

� Region 4 | the signal region | with N4 events, contains signal events as well as all

three types of background events.

In order to determine the number of signal events in the signal region, we must be able

to estimate the number of each type of background event in this region. Region 1, which
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Figure 4.3: Distribution of normalized masses for the �nal sample of DD candidates. (The
length, not the area, of the boxes in each bin is proportional to the number of events in the
bin.)

symmetrically surrounds the signal region, contains N1 combinatoric background events

and covers an area of 4 � 3.5 GeV � 3.5 GeV = 49 GeV2. Hence, assuming that the

distribution of combinatoric events is linear in both MK�n� and MK+n� , the number of

combinatoric events in the signal region, which covers an area of 4 GeV � 4 GeV = 16 GeV2,

is approximately 16/49 N1. Region 2 covers an area of 2 � 4 GeV � 3.5 GeV = 28 GeV2.

Hence, the number of D-ridge events in the signal region is approximately 16/28N2 - 16/49

N1, where the number of combinatoric events in the signal region is subtracted because

Region 2 contains both D-ridge events and combinatoric events. Similarly, the number of

D-ridge events in the signal region is 16/28 N3 - 16/49 N1. Therefore, an estimate for the

number of signal events is

NS = N4 � 16=49N1� (16=28N2� 16=49N1)� (16=28N3� 16=49N1); or

NS = N4 � 4=7(N2 +N3) + 16=49N1;
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and the error on this estimate is

�NS =
q
N4 + (4=7)2(N2 +N3) + (16=49)2N1:

4.1.3 Unbinned Maximum Likelihood Fit

A more powerful method for determining the number of signal events is an un-

binned maximum-likelihood �t. Using every event in the determination of the shape and

dominance of both the signal and the three types of background distributions allows us to

estimate our backgrounds more precisely than the simple binned method discussed above.

That is, we are able to reduce �NS from
p
N4 + (4=7)2(N2 +N3) + (16=49)2N1, to approx-

imately
p
N4.

In general, the maximum likelihood method assumes we have N independent mea-

surements of one or more quantities and that these quantities ~z are distributed according

to some probability distribution function f(~z; ~�) where ~� is an unknown set of parameters

to be determined. To determine the set of values �̂ that maximizes the joint probability for

all events, we solve the set of likelihood equations[40]:

@ lnL(~�)

@�j
= 0 where L(~�) =

NY
i=1

f(~zi; ~�):

In this analysis, the quantities that we measure for each event are the normalized

mass of both the D and D candidate; i.e., ~z = (MK�m�
n ,MK+m�

n ). (The number of pions

m is not necessarily the same for the D candidate and the D candidate.) The unknown

parameters that we want to determine are the number of signal events, combinatoric events,

D-ridge events, and D-ridge events | NS , NC , ND, and ND, respectively | and the slopes

of the background K�m� and K+m� distributions | SD and SD, respectively. That is,

~� = (NS ; NC; ND; ND; S
D; SD):

We construct our probability distribution function using the following two assump-

tions: (i) the normalized mass distribution for background K�m� and K+m� is linear in

MK�m�
n and MK+m�

n , and (ii) the normalized mass distribution of real D's and real D's

is Gaussian with mean of 0 and sigma of 1. Under these assumptions, the probability dis-

tribution functions | normalized to unit area in the two-dimensional window de�ned by

jM (K�m�)
n j < 6:5 and jM (K+m�)

n j < 6:5 | for each class of events is:
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Combinatoric background events: PC = 1=169 + SDMK�m�
n + SDMK+m�

n ;

D-Ridge background events: PD = ( 1
13
p
2�

+ NC
ND

SDMK+m�
n ) e�(MK�m�

n )2=2;

D-Ridge background events: PD = ( 1
13
p
2�

+ NC
N
D
SDMK�m�

n ) e�(M
K+m�
n )2=2;

Signal events: PS = 1
2�e

�((MK�m�
n )2+(MK+m�

n )2)=2:

The overall probability distribution function is then:

f(~z; ~�) =
NCPC +NDPD +NDPD +NSPS

NC +ND +ND +NS
:

In this analysis, we use the extended maximum likelihood method[41, pg. 249]

in which the number of DD candidates found, NDD, is considered one more measurement

with a Gaussian probability distribution G(NDD) of mean � = NC +ND +ND + NS and

� =
p
�. Our likelihood function is then

L = G(NDD; �)

N
DDY
i=1

f(~zi; ~�): (4.1)

To solve the likelihood equation, we use the function minimization and error anal-

ysis FORTRAN package MINUIT [42]. Figure 4.4 shows the function NDDf(~z; �̂) that

maximizes the likelihood function for the �nal sample of DD candidates shown in Fig-

ures 3.2 and 4.3. In Figure 4.5, to qualitatively demonstrate how well this function �ts our

data we show various one-dimensional projections of both the data and the �t function.

4.2 Acceptance and Smearing Corrections

Using the �tting method described above, we can now obtain distributions of

variables describing the correlations between the two charmed mesons. For example, to

determine the distribution of the invariant mass of the DD pairs, we divide the charm-pair

candidates into N samples where each candidate in the ith sample has ki < MDD < ki+1.

We then do N likelihood �ts as described in the previous section, obtaining an estimate

for the number of DD signal events for each range of MDD. The resulting distribution
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Figure 4.4: The function NDDf(~z; �̂) that maximizes the likelihood function for the �nal
sample of DD candidates shown in Figures 3.2 and 4.3.

of MDD, however, may be distorted from the true MDD distribution for two reasons: (i)

the e�ciency for reconstructing an event may vary with MDD, and (ii) an event produced

with an invariant mass MDD may actually be reconstructed at a slightly di�erent invariant

mass. We use the PYTHIA/JETSET Monte Carlo event generator, combined with the

E791 detector simulation, to quantify these acceptance and smearing e�ects.

We generate approximately two million DD Monte Carlo events, where each D

decays to Kn�, n = 1, 2, or 3. We pass these events through the detector simulation, pro-

ducing \raw" data (hits in silicon microstrip detectors, energy depositions in the calorimeter,

etc.). We then pass this simulated raw data through the same reconstruction code and event

selection criteria as real data. We are left with approximately 7000 Monte Carlo events.

This sample size is roughly eight times the number of signal DD events found in our �nal

data sample.

Throughout this chapter and in the following chapter (where we present our re-

sults), we explicitly remove all data DDcandidates and Monte Carlo events in which the

center-of-mass rapidity is less than �0:5 or greater than 2.5. Our acceptance in this region

is approximately zero because of the limited coverage of our spectrometer. This cut removes
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Figure 4.5: One-dimensional projections of charm-pair normalized mass distributions for
both the maximum-likelihood �t function (dashed histogram) and the �nal data sample
(solid histogram). The top plots are projections of the full data sample shown in Figure 3.2.
The bottom plots include only the data from the D-ridge region (left plot) and the D-ridge
region (right plot).

approximately 60% of the original Monte Carlo events, 4% of the Monte Carlo events that

survive all selection criteria, and less than 2% of all DD candidates from our �nal data

sample.

From our two Monte Carlo samples | generated events and accepted events |

we have three distributions of the physics parameters ~x:

� PMC(~x), the original generated distribution for DD events;

� QMC(~x), the generated distribution for accepted DD events; and
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� RMC(~x), the reconstructed distribution for accepted DD events.

Through the relationship

RMC(~x0) =
Z
S(~x; ~x0) QMC(~x) d~x where QMC(~x) = A(~x)PMC(~x);

the two Monte Carlo samples can be used to determine the acceptance function A(~x), which

gives us the probability for a DD event generated at ~x to be accepted, and the smearing

function S(~x; ~x0), which gives us the probability for an accepted DD event generated at ~x

to be reconstructed at ~x0.

4.2.1 One-Variable Case

If a DD pair could be fully described using only one variable x and we divide the

appropriate range of x into N bins, then

2
6664
RMC
1
...

RMC
N

3
7775 =

2
6664

S11A1 � � � S1NAN

...
. . .

...

SN1A1 � � � SNNAN

3
7775
2
6664
PMC
1
...

PMC
N

3
7775 ;

or RMC = TPMC ;

where Ai is the fraction of DD events originating in the ith bin that survive all selection

criteria; Sji is the fraction of the surviving DD events originating in the ith bin that are

reconstructed in the jth bin (
P

j Sji = 1); and the transformation matrix Tji equals SjiAi

(
P

j Tji = Ai). Applying the inverse transformation matrix T�1 to the x distribution

measured from data would provide an estimate for the true x distribution.

Although this method does rely on the E791 detector simulation, in this simpli�ed

example in which we assume that a DD pair can be described using one variable, this

method does not depend on the generated distribution of x being the same in the Monte

Carlo and data | as long as the simulated events span at least the range of x spanned by

real DD events.

To illustrate the technique discussed above, we assume for the moment that a

DD event can be completely described using just the invariant mass of the DD pair,MDD.

Figure 4.6(a) shows the three MDD distributions from the two Monte Carlo samples |

PMC , QMC , and RMC | each normalized to unit area. The last bin of these distributions

is an \over
ow" bin containing all events with MDD > 6:6 GeV. (There are no events
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Figure 4.6: (a) Normalized Monte Carlo distributions of the invariant mass of DD pairs:
the original generated distribution (PMC), the generated distribution for accepted DD
events (QMC), and the reconstructed distribution for accepted DD events (RMC). (b) The
acceptance as a function of the invariant mass (arbitrary vertical scale). (c) Reconstructed
MDD vs. generated MDD for the subset of Monte Carlo events that survive all selection
criteria. (d) The smearing matrix (� 100) for the invariant mass, obtained from (c) by
normalizing each column to 1.

with MDD < 2MD = 3:6 GeV.) We construct the acceptance function A(MDD), shown in

Figure 4.6(b), by dividing QMC by PMC . This acceptance function is also normalized to

unit area because in this analysis we determine only the shapes, not the absolute value, of

the physics distributions.

In Figure 4.6(c) we show, for the subset of Monte Carlo events that survive all

selection criteria, the reconstructed invariant mass MREC
DD

versus the generated invariant

mass MGEN
DD

. By normalizing each column of the distribution in Figure 4.6(c) to 1, we

obtain the smearing function S(MREC
DD

;MGEN
DD

) shown in Figure 4.6(d). By normalizing

each column of S(MREC
DD

;MGEN
DD

) to A(MDD), we obtain the transformation matrix
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Figure 4.7: Distributions of the invariant mass of the DD pair from the �nal data sam-
ple: uncorrected distribution (solid circle), acceptance corrected distribution (open circle),
acceptance and smearing corrected distribution (triangle).
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that transforms the generated distribution of DD invariant masses for the original Monte

Carlo sample of events (PMC in Fig. 4.6a) into the reconstructed distribution of invariant

masses for the sample of accepted Monte Carlo events (RMC in Fig. 4.6a). Because smearing

e�ects are small, S is approximately the identity matrix and T is approximately a diagonal
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matrix with Tii � Ai.

Figure 4.7 shows three MDD distributions obtained from our �nal data sample,

all normalized to the same area: the uncorrected distribution R(MDD), obtained from

doing a maximum likelihood �t for the sample of events in each MDD bin; the acceptance

corrected distribution R(MDD)=A(MDD); and lastly, the smearing and acceptance-corrected

distribution T�1R(MDD). The di�erence between these latter two distributions is quite

small compared to the statistical errors because the smearing e�ects are not signi�cant. We

�nd that the smearing e�ects are negligible for all the physics distributions considered in

this analysis. For all �nal corrected distributions, shown in Chapter 5, we assume that the

smearing matrix S is the identity matrix.

4.2.2 Two-Variable Toy Model

A DD event cannot be fully described using one variable. Six parameters are

necessary to describe the momenta of both D candidates and two (discrete) parameters are

necessary to specify the number of decay tracks of each candidate. In this section, using a

simple two-variable toy model, we illustrate why one must be careful when correcting data

distributions for acceptance e�ects when more than one variable is required to fully describe

an event.

In this hypothetical example, a DD event can be completely described using two

independent, but correlated, parameters | x and y where �1 < (x; y) < 1. From our

imaginary data sample, we obtain the uncorrected distribution of the variable x, D(x). We

want to correct this distribution for acceptance e�ects to obtain an estimate for the true x

distribution, T (x). Suppose the original distribution of Monte Carlo events is

PMC(x; y) =
3

4(1 + c2)
(x� cy)2 (4.2)

which is normalized to unit area in the two-dimensional window de�ned by �1 < (x; y) < 1.

Further suppose that the distribution of Monte Carlo events that survive all selection criteria

is

QMC(x; y) = (1� y2=2)PMC(x; y): (4.3)

That is, the acceptance function A(x; y) = QMC(x; y)=PMC(x; y) equals (1� y2=2) | that

is, 
at in x and varying in y by a factor of two over the range �1 < y < 1). Figure 4.8a

shows PMC(x; y) for c = 1 and Figure 4.8b show the acceptance function A(x; y).
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Figure 4.8: Two-variable toy model discussed in Section 4.2.2. (a) Monte Carlo probability
distribution function for parameters x and y. (b) Acceptance function for parameters x and
y.

If we assume that the variables x and y are uncorrelated in the true data distribu-

tion of DD events, then no acceptance correction in x is necessary because the acceptance

function is 
at in x. The true x distribution T (x) is simply proportional to the measured x

distribution D(x). On the other hand, if we assume that the variables x and y are correlated

in the true data distribution of DD events just as they are in the Monte Carlo distribution

of events, then we obtain T (x) by dividing D(x) by the acceptance function

AMC(x) =

R 1
�1Q

MC(x; y)dyR 1
�1 PMC(x; y)dy

=

R 1
�1A(x; y)P

MC(x; y)dyR 1
�1 PMC(x; y) dy

=
1

10

25x2 + 7c2

3x2 + c2
: (4.4)

This acceptance correction depends on the physics assumption of the Monte Carlo. Given

that one of the goals of this analysis is to experimentally determine the correlations between

the D and D in a DD event, we do not want our acceptance corrections to depend on ad

hoc assumptions regarding correlations among the variables that describe a DD event. We

emphasize that the function AMC(x) can depend on the physics assumptions of the Monte
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Carlo if either PMC(x; y) or A(x; y) does not factorize into a function of x times a function

of y.

Event-Weighting Technique

We can correct distributions from data for acceptance e�ects without making such

ad hoc assumptions by using an event-weighting technique[41, pg. 253]. We assign each

candidate a weight w that is proportional to the inverse of the acceptance function, w /
1=A(x; y), where the weights are normalized such that

PN
DD

i=1 wi = NDD where NDD is the

number of DD candidates. Just as we did to obtain the uncorrected distribution D(x),

we �rst divide our sample of NDD candidates into N samples where each candidate in the

ith sample has ki < x < ki+1. We then do N likelihood �ts, but rather than using the

likelihood function L from Eq. 4.1, we use

L = G(NDD; ~�)

N
DDY
i=1

f(~zi; ~�)
wi ; (4.5)

where the probability distribution function f is taken to the power wi. In other words, one

candidate with a weight of w = 2 is e�ectively counted as two candidates. The distribution

obtained using this method gives an estimate of the acceptance-corrected x distribution T (x)

that does not depend on whether, or to what degree, the variables x and y are correlated

in data.

4.2.3 From the Two-Variable Toy Model to Eight-Variable Reality

As mentioned above, a real DD event cannot be fully described using one or

even two variables. In this section, we discuss how we obtain an estimate for the eight-

dimensional acceptance function A(~x) using the Monte Carlo distributions PMC(~x) (the

original generated distribution for DD events) and QMC(~x) (the generated distribution for

accepted DD events). As discussed in Section 4.2.1, the smearing that occurs in going from

the generated distribution QMC(~x) to the reconstructed distribution is negligible.

We use the eight variables ~x = ((y; pt; �; n)D; (y; pt; �; n)D) to describe the D and

D degrees of freedom, where y is the rapidity of theD in the center of mass of the ��-nucleon

system (Eq. 1.2), pt is the transverse momentum of the D with respect to the beam axis, �

is the angle of the D in the plane transverse to the beam axis, and lastly n is the number

of decay tracks of the D meson. Given an estimate for the acceptance function A(~x), we
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can then assign a weight w / 1=A(~x) to each DD candidate from our data sample and, as

discussed above, obtain an acceptance-corrected distribution for any physics variable (i.e.,

any function of ~x, such as the invariant mass of the DD pair).

Ideally, we would obtain an estimate for the acceptance function A(~x) by dividing

the events from both Monte Carlo samples into 9N6 bins (i.e., N bins for each of the 6

continuous physics variables and 3 values for each of the 2 discrete variables). The value

of the acceptance function in the ith bin would be the number of Monte Carlo events in

that bin that survived all selection criteria divided by the original number generated in

that bin. The problem with this method is that the fractional statistical uncertainty on the

acceptance function must be added in quadrature to the fractional statistical error from our

data sample. With 9N6 bins, even with N = 3, the number of accepted Monte Carlo events

necessary for obtaining reasonable statistical errors is beyond our computing capacity.

In order to reduce the statistical uncertainties due to the acceptance correction

without introducing large systematic uncertainties, we need to understand both how the

acceptance function A(~x) and how the original Monte Carlo distribution of events PMC(~x)

factorize. If we could establish, for example, that these distributions factorize as follows:

PMC(~x) = PMC
0 ((y; pt; �; n)D) P

MC
1 ((y; pt; �; n)D) and

A(~x) = A0((y; pt; �; n)D) A1((y; pt; �; n)D)

then, rather than 9N6 bins, we would need only 2(3N3) = 6N3 bins to obtain an estimate

of the acceptance function A(~x) that does not depend on the physics assumptions of the

Monte Carlo.

Correlations in Original Monte Carlo Distribution

Each Monte Carlo DD event can be described by eight independent, but possibly

correlated, variables. One measure of the correlation between any two of these variables is

the linear correlation coe�cient[41, pg. 40] �(xi; xj) = Vij=(�i�j) where the mean of xi is

�i, the variance �2i is the mean of the square of (xi � �i), and the covariance matrix Vij is

the mean of (xi��i)(xj ��j). The correlation coe�cient measures how well a straight line

describes the relationship between two variables. It is positive if an increase in one variable

corresponds to an increase in the other, and negative if an increase in one corresponds

to a decrease in the other. These coe�cients are bounded between �1 and 1, and two
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Table 4.4: Correlation coe�cients �(xi; xj) = Vij=(�i�j) for the variables ((y; pt; �; n)D,
(y; pt; �; n)D) from the original Monte Carlo sample of events.

yD yD pt;D pt;D �D �D nD nD
yD 1.00
yD -.32 1.00
pt;D -.04 -.11 1.00
pt;D -.05 -.09 .10 1.00

�D .00 .00 .00 -.01 1.00
�D .01 -.01 .01 .00 -.27 1.00
nD .02 -.01 .00 .00 .00 .00 1.00
nD .02 -.03 .00 .00 .00 .00 .00 1.00

random variables with �(xi; xj) = +1(�1) are said to be completely positively (negatively)

correlated.

The correlation coe�cients for the variables ~x = ((y; pt; �; n)D; (y; pt; �; n)D) from

the original Monte Carlo sample are shown in Table 4.4. Given the discussion in Chapter 1,

the results are not surprising. The most signi�cant correlations are between the variables yD

and yD, and between the variables �D and �D, with �(yD; yD) and �(�D; �D) approximately

equal to �0:3. We ignore the slight correlations between the rapidities and the transverse

momenta.

From Chapter 1 and Table 4.4, we conclude that to a good approximation the

distribution of Monte Carlo events factorizes as follows:

PMC(~x) = BnDnD
CnDnD(yD; yD) E(pt;D) F (pt;D) G(�D; �D) (4.6)

where the functions CnDnD , E, F , and G are normalized (e.g.,
R R

CnDnD (yD; yD) dyD dyD

= 1) and where BnDnD
gives the number of each type of event. The correlations between

yD and yD depend on the type of DD event; that is, on whether the event is a D0D0, a

D0D�, a D+D0, or a D+D� event.

Correlations in the Acceptance Function

In the previous section, we determined approximately how the distribution of

Monte Carlo events PMC(~x) factorizes. In this section, we want to determine how the

acceptance function A(~x) factorizes. We are, of course, in a catch-22: How can we determine

how A(~x) factorizes without knowing what A(~x) is?
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As an approximation, we determine, for each variable xi, whether the function

AMC(xi) depends signi�cantly on the value of any other variable xj , where, for a restricted

range of xj ,

AMC(xi; a < xj < b) =

R b
a dxj

Q
k 6=i;j(

R
dxk) Q

MC(~x)R b
a dxj

Q
k 6=i;j(

R
dxk) PMC(~x)

: (4.7)

As discussed in Section 4.2.2, the function AMC(xi) may depend on the physics assumptions

of the Monte Carlo. We emphasize that AMC(xi; a < xj < b) is not the same as a projection

of the the eight-dimensional acceptance function A(~x) onto the xi axis,

A(xi; a < xj < b) =
Z b

a
dxj

Y
k 6=i;j

(
Z
dxk)

QMC(~x)

PMC(~x)
:

We use AMC only as a gross indication of whether the acceptance as a function of variable

xi depends on the value of xj .

Figure 4.9 shows AMC as a function of rapidity, y; Fig. 4.10, as a function of

the transverse momenta, pt; Fig. 4.11, as a function of the azimuthal angle, �; and, lastly,

Fig. 4.12, as a function of the number of decay tracks, n In each of these four �gures, we

show six plots. For example, in Figure 4.9 we show

(a) AMC(yD) and AMC(yD),

(b) AMC(yD; a < yD < b) for two ranges of yD;

(c) AMC(yD; a < yD < b) for two ranges of yD,

(d) AMC(yD; a < pt;D < b) +AMC(yD; a < pt;D < b) for three ranges pt;

(e) AMC(yD; a < �D < b) + AMC(yD; a < �D < b) for three ranges of �; and

(f) AMC(yD;nD = i) +AMC(yD;nD = i) for i = 2, 3, and 4.

As we are interested only in the shapes of the distributions, all functions are normalized to

the same area.

The conclusions we draw from these �gures are:

� With a few exceptions, which are noted below, the acceptance as a function of any

variable xi does not depend signi�cantly on the value of any other variable xj . That

is, the eight dimensional acceptance function, to a good approximation, factorizes

completely.
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solid (a.) AMC(yD) (b.) AMC(yD; �0:5 < yD < 1:0) (c.) AMC(yD; �0:5 < yD < 1:0)

dashed AMC(yD) AMC(yD; 1:0 < yD < 2:5) AMC(yD; 1:0 < yD < 2:5)

solid (d.) AMC(yD; pt;D < 0:5 GeV) + AMC(yD; pt;D < 0:5 GeV)

dashed AMC(yD; 0:5 < pt;D < 1:5 GeV) + AMC(yD; 0:5 < pt;D < 1:5 GeV)

dotted AMC(yD; 1:5 < pt;D < 3:0 GeV) + AMC(yD; 1:5 < pt;D < 3:0 GeV)

solid (e.) AMC(yD; 0� < �D < 120�) + AMC(yD; 0� < �D < 120�)

dashed AMC(yD; 120� < �D < 240�) + AMC(yD; 120� < �D < 240�)

dotted AMC(yD; 240� < �D < 360�) + AMC(yD; 240� < �D < 360�)

solid (f.) AMC(yD; nD = 2) + AMC(yD; nD = 2)

dashed AMC(yD; nD = 3) + AMC(yD; nD = 3)

dotted AMC(yD; nD = 4) + AMC(yD; nD = 4)

Figure 4.9: AMC , de�ned in Eq. 4.7, as a function of rapidity. The meaning of the solid,
dashed, and dotted curves is given in the table below the �gures. All distributions are
normalized to the same area.

� Not surprisingly, the acceptance function does not depend on the azimuthal angle of

either the D or D meson, thereby reducing our eight-dimensional acceptance function

to a six-dimensional function.

� The dependence of the acceptance function on the transverse momenta of the D

mesons is relatively 
at, varying by approximately 30% over the entire range of trans-

verse momenta. The steepness depends on the number of decay tracks n of the D

meson.
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solid (a.) AMC(pt;D) (b.) AMC(pt;D; pt;D < 1 GeV) (c.) AMC(pt;D; pt;D < 1 GeV)

dashed AMC(pt;D) AMC(pt;D; 1 < pt;D < 3 GeV) AMC(pt;D; 1 < pt;D < 3 GeV)

solid (d.) AMC(pt;D; �0:5 < yD < 0:5) + AMC(pt;D; �0:5 < yD < 0:5)

dashed AMC(pt;D; 0:5 < yD < 1:5) + AMC(pt;D; 0:5 < yD < 1:5)

dotted AMC(pt;D; 1:5 < yD < 2:5) + AMC(pt;D; 1:5 < yD < 2:5)

solid (e.) AMC(pt;D; 0� < �D < 120�) + AMC(pt;D; 0� < �D < 120�)

dashed AMC(pt;D; 120� < �D < 240�) + AMC(pt;D; 120� < �D < 240�)

dotted AMC(pt;D; 240� < �D < 360�) + AMC(pt;D; 240� < �D < 360�)

solid (f.) AMC(pt;D; nD = 2) + AMC(pt;D; nD = 2)

dashed AMC(pt;D; nD = 3) + AMC(pt;D; nD = 3)

dotted AMC(pt;D; nD = 4) + AMC(pt;D; nD = 4)

Figure 4.10: AMC , de�ned in Eq. 4.7, as a function of transverse momentum. The mean-
ing of the solid, dashed, and dotted curves is given in the table below the �gures. All
distributions are normalized to the same area.

� The acceptance for 2- and 3-pronged D mesons is approximately �ve times the ac-

ceptance for 4-pronged D mesons. This relative acceptance among the three types of

decay modes does not depend signi�cantly on any other variables.

� The dependence of the acceptance function on the rapidity of D mesons is quite

steep. In addition, the shapes of the projections AMC(yD) and AMC(yD) are slightly

di�erent; and the shape of AMC(y) for 2- and 3-pronged D mesons di�ers from the

shape of AMC(y) for 4-pronged D mesons.
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solid (a.) AMC(�D) (b.) AMC(�D; �D < 180�) (c.) AMC(�D; �D < 180�)

dashed AMC(�D) AMC(�D; �D > 180�) AMC(�D; �D > 180�)

solid (d.) AMC(�D; �0:5 < yD < 0:5) + AMC(�D; �0:5 < yD < 0:5)

dashed AMC(�D; 0:5 < yD < 1:5) + AMC(�D; 0:5 < yD < 1:5)

dotted AMC(�D; 1:5 < yD < 2:5) + AMC(�D; 1:5 < yD < 2:5)

solid (e.) AMC(�D; pt;D < 0:5 GeV) + AMC(�D; pt;D < 0:5 GeV)

dashed AMC(�D; 0:5 < pt;D < 1:5 GeV) + AMC(�D; 0:5 < pt;D < 1:5 GeV)

dotted AMC(�D; 1:5 < pt;D < 3:0 GeV) + AMC(�D; 1:5 < pt;D < 3:0 GeV)

solid (f.) AMC(�D; nD = 2) + AMC(�D; nD = 2)

dashed AMC(�D; nD = 3) + AMC(�D; nD = 3)

dotted AMC(�D; nD = 4) + AMC(�D; nD = 4)

Figure 4.11: AMC , de�ned in Eq. 4.7, as a function of azimuthal angle. The meaning of the
solid, dashed, and dotted curves is given in the table below the �gures. All distributions
are normalized to the same area.

From these �gures, we assume that to a good approximation the acceptance factorizes as

follows:

A(~x) = bnD bn
D
cDnD(yD) c

D
n
D
(yD) enD(pt;D) enD(pt;D): (4.8)
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solid (a.) AMC(nD) (b.) AMC(nD; nD = 2) (c.) AMC(nD; nD = 2)

dashed AMC(nD) AMC(nD; nD = 3) AMC(nD; nD = 3)

dotted AMC(nD; nD = 4) AMC(nD; nD = 4)

solid (d.) AMC(nD; �0:5 < yD < 0:5) + AMC(nD; �0:5 < yD < 0:5)

dashed AMC(nD; 0:5 < yD < 1:5) + AMC(nD; 0:5 < yD < 1:5)

dotted AMC(nD; 1:5 < yD < 2:5) + AMC(nD; 1:5 < yD < 2:5)

solid (e.) AMC(nD; pt;D < 0:5 GeV) + AMC(nD; pt;D < 0:5 GeV)

dashed AMC(nD; 0:5 < pt;D < 1:5 GeV) + AMC(nD; 0:5 < pt;D < 1:5 GeV)

dotted AMC(nD; 1:5 < pt;D < 3:0 GeV) + AMC(nD; 1:5 < pt;D < 3:0 GeV)

solid (f.) AMC(nD; 0� < �D < 120�) + AMC(nD; 0� < �D < 120�)

dashed AMC(nD; 120� < �D < 240�) + AMC(nD; 120� < �D < 240�)

dotted AMC(nD; 240� < �D < 360�) + AMC(nD; 240� < �D < 360�)

Figure 4.12: AMC , de�ned in Eq. 4.7, as a function of the number of decay tracks. The
meaning of the solid, dashed, and dotted curves is given in the table below the �gures. All
distributions are normalized to the same area.

An Estimate for the Eight-Dimensional Acceptance Function

We now need estimates for the functions bn, c
D
nD
(yD), c

D
n
D
(yD), and en(pt). Given

our estimates for how the distribution of Monte Carlo events factorizes:

PMC(~x) = BnDnD
CnDnD (yD; yD) E(pt;D) F (pt;D) G(�D; �D);
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and how the acceptance function factorizes:

A(~x) = bnD bn
D
cDnD(yD) c

D
n
D
(yD) enD(pt;D) enD(pt;D);

obtaining an estimate for en is straight-forward. For example, AMC(pt;D; nD = 2) equals

R R R R R
(
P

n
D
b2 bn

D
cD2 cDn

D
e2 en

D
B2n

D
C2n

D
E F G ) dyD dyD dpt;D d�D d�DR R R R R

(
P

n
D
B2n

D
C2n

D
E F G ) dyD dyD dpt;D d�D d�D

= e2(pt;D)
E

E
b2

R R R
cD2 F (

P
n
D
bn

D
cDn

D
en

D
B2n

D
C2n

D
) dyD dyD dpt;DR R R

F (
P

n
D
B2n

D
C2n

D
) dyD dyD dpt;D

R R
G d�D d�DR R
G d�D d�D

:

Nothing to the right of e2(pt;D) depends on pt;D; that is, A
MC(pt;D; nD = 2) / e2(pt;D).

Hence, the solid-, dashed-, and dotted-lined AMC(pt) functions shown in Figure 4.10f are

good estimates for e2, e3, and e4, respectively.

Obtaining estimates for bn, c
D
nD
, and cDn

D
is a little less straight-forward because

the yD and yD distributions in the original Monte Carlo are correlated and because the

functions B, C, cD, cD, and e all depend on the number of decay tracks. For example,

AMC(yD;nD = 2) equals

cD2 (yD)

R R
F (

P
n
D
bn

D
en

D
B2n

D
cDn

D
(yD) C2nD(yD; yD) ) dyD dpt;DR R

F (
P

n
D
B2n

D
C2n

D
(yD; yD) ) dyD dpt;D

where the term to the right of cD2 (yD) does depend on yD. To obtain estimates for bn, c
D

and cD that do not depend signi�cantly on the physics assumptions of the Monte Carlo,

we examine the two-dimensional functions AMC(yD; yD; nD; nD) for each of the nine com-

binations of nDnD pairs, where AMC(yD; yD; nD; nD) equals

bnD bn
D
cDnD(yD) c

D
n
D
(yD) BnDnD

CnDnD(yD; yD)

BnDnD
CnDnD(yD; yD)

R
enD E dpt;DR
E dpt;D

R
en

D
F dpt;DR

F dpt;D

= bnD bn
D
cDnD(yD) c

D
n
D
(yD)

R
enD E dpt;DR
E dpt;D

R
en

D
F dpt;DR

F dpt;D
:

Because the en functions are relatively 
at, ignoring their slight dependence on the number

of decay tracks does not introduce large errors. Therefore, to a good approximation

AMC(yD; yD; nD; nD) / bnD bn
D
cDnD(yD) c

D
n
D
(yD):

In other words, to a good approximation, the nine AMC(yD; yD; nD; nD) functions, shown

in Figure 4.13, do not depend on the physics assumptions of the Monte Carlo.
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Figure 4.13: The nine AMC(yD; yD; nD; nD) projections (one for each nDnD combination).
Each projection is normalized to the same area and plotted on the same scale.

To obtain estimates for bnD and bn
D
, we integrate each of the nine functions over

both yD and yD and sum over nD and nD , respectively:

bDnD =
X
n
D

Z Z
AMC(yD; yD; nD; nD) dyD dyD

= (0:427� 0:011; 0:466� 0:012; 0:107� 0:002); (4.9)

and

bDn
D

=
X
nD

Z Z
AMC(yD; yD; nD; nD) dyD dyD

= (0:440� 0:012; 0:472� 0:011; 0:088� 0:003); (4.10)

where the functions are arbitrarily normalized such that

X
nD

X
n
D

Z Z
AMC(yD; yD; nD ; nD) dyD dyD = 1:

We note that

bn
D

 bnD =

2
6664
0:440

0:472

0:088

3
7775


h
0:427 0:466 0:107

i
=

2
6664
0:188 0:205 0:047

0:202 0:223 0:050

0:038 0:041 0:009

3
7775
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Figure 4.14: Using the estimates for the cDnD(yD) and cDn
D
(yD) distributions in Figure 4.15,

we construct nine two-dimensional functions: cDnD(yD)c
D
n
D
(yD), one for each nDnD combi-

nation. Comparing these distributions to the nine distributions in Figure 4.13 con�rms that
AMC(yD; yD; nD ; nD) approximately factorizes.

is approximately equal to

Z Z
AMC(yD; yD; nD ; nD) dyD dyD =

2
6664
0:187 0:205 0:048

0:202 0:223 0:047

0:038 0:038 0:012

3
7775 ;

con�rming that, to a good approximation,

Z Z
AMC(yD; yD; nD; nD) dyD dyD;

which is a function of both nD and nD, factorizes into a function of nD times a function of

nD.

Our estimates for bnD and bn
D
are very similar to the projections AMC

nD
and AMC

n
D

shown in Figure 4.12a. We emphasize, however, that we could not simply assume, for

example, that the one-dimensional projection AMC
nD

, which is approximately proportional to

bnD

R R P
n
D
BnDnD

bn
D
cDnD(yD) c

D
n
D
(yD) CnDnD(yD; yD) dyD dyDR R P

n
D
BnDnD

CnDnD (yD; yD) dyD dyD
;
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Figure 4.15: Estimates for cDnD(yD) and c
D
n
D
(yD) obtained by summing and integrating over

the two-dimensional projection AMC(yD; yD; nD; nD).

is the same as summing and integrating over the nine two-dimensional projections. De-

termining bn, cDnD , and cDn
D
from the nine two-dimensional projections in Figure 4.13, we

explicitly avoid obtaining estimates that depend on the physics assumptions of the Monte

Carlo.

To �nd estimates for cDnD and cDn
D
, we �rst normalize each of the nine projections:

Z Z
AMC(yD; yD; nD ; nD) dyD dyD = 1:

and then sum over nD (nD) and integrate over yD (nD):

cDnD(yD) =

Z X
n
D

AMC(yD; yD; nD ; nD) dyD

and

cDn
D
(yD) =

Z X
nD

AMC(yD; yD; nD; nD) dyD :

The resulting six distributions are shown in Figure 4.15. In Figure 4.14 we show the nine

two-dimensional distributions obtained by multiplying each of the three cDnD(yD) distribu-

tions with each of the three cDn
D
(yD) distributions. These nine distributions are very similar

to the nine AMC(yD; yD; nD; nD) projections shown in Figure 4.13, con�rming that the

projections AMC(yD; yD; nD ; nD), to a good approximation, factorize.
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Weighting the DD Candidates from the Data Sample

We now have an estimate for our acceptance function:

A(~x) = bDnD bDn
D
cDnD(yD) c

D
n
D
(yD) enD(pt;D) enD(pt;D);

where the bDnD and bDn
D
distributions are given in Equations 4.9-4.10; the cDnD(yD) and

cDn
D
(yD) distributions are shown in Figure 4.15; and the en(pt) distributions are shown in

Figure 4.10f. We transform the c(y) and e(pt) functions into piece-wise linear functions,

making straight lines from the center of each bin to the center of the neighboring bins.

As discussed above, we can obtain acceptance corrected distributions from our �nal data

sample by assigning a weight w / 1=A(~x) to each DD candidate and using the weighted

likelihood function (Equation 4.5) when executing the unbinned maximum likelihood �ts.

As shown in Eqs. 4.9-4.10, the acceptance for D mesons that decay to K3� is

roughly 4.5 times smaller than the acceptance for either 2- or 3-pronged decays. Hence,

the acceptance for 4-4 pronged decays is approximately 20 times smaller than n-m decays,

where both n and m are equal to 2 or 3. That is, we have very few 4-4 candidates with

very large weights. For most charm-pair distributions, discussed in the following chapter,

eliminating the 4-4 pronged candidates from our data sample improves the signi�cance of

our signal distributions. All the results in the next chapter, therefore, are obtained after

eliminating all 4-4 pronged candidates.

The weights w must also be proportional to 1
B(D)B(D)

where, for neutral D candi-

dates, B is the sum of the branching fractions of the twoD0 modes we reconstruct, and, for

charged D candidates, B is branching fraction to K��. The relevant branching fractions

are[40]

B(D+ ! K��+�+) = (9:1� 0:6)%,
B(D0 ! K��+���+) = (8:1� 0:5)%, and
B(D0 ! K��+) = (4:01� 0:14)%.

Because we eliminate 4-4 pronged candidates, the branching fraction for D0D
0
candidates

is actually

B(D0 ! K��+)B(D0 ! K��+) + 2B(D0 ! K��+)B(D0 ! K��+���+);

or (0:81�0:05)%. Weighting events by the inverse of the the branching fraction is necessary

because, for example, the distribution of invariant masses for D0D0 may di�er from the
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Figure 4.16: (a) The distribution of weights, w / 1
A(~x)B(D)B(D)

, for the �nal sample of

DD candidates. The mean of the distribution, by construction, is one; the standard devia-
tion about the mean is 1.3, with the largest weight (not shown) at 23. (b) The distribution
of the fractional errors on the weights, with a mean of 12%.

distribution for D+D�. Such weighting ensures that DD distributions extracted from our

data sample, shown in Chapter 5, re
ect the true production rates for the four types of

DD pairs (D0D0, D0D�, D+D0, and D+D�), rather than the production rates for the

subset of DD pairs in which both D mesons decay to K���, K�����, or K�������.

The distribution of weights for all DD candidates in the two-dimensional nor-

malized mass window de�ned by jM (K�N�)
n j < 6:5 and jM (K+N�)

n j < 6:5 is shown in

Figure 4.16a. The weights w, proportional to 1
A(~x)B(D)B(D)

, are normalized such thatPN
DD

i=1 wi = NDD where NDD is the number of DD candidates. Given the choice of nor-

malization, the mean of this distribution is 1; the standard deviation about the mean is 1.3.

Less than 2% of the candidates lie beyond the range shown in Figure 4.16a and 23 is the

largest weight. The distribution of the fractional errors of the weights, �wi=wi, is shown in

Figure 4.16b, where �wi is

wi

vuuut
 
�bD
bDnD
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:

This error accounts for the Monte Carlo statistical error and the uncertainties on the branch-

ing fractions, but not for possible systematic errors due to the Monte Carlo not accurately

representing the detector.
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The �rst step in obtaining acceptance-corrected distributions for any given physics

variable z(~x) is to divide our sample of NDD candidates into N sub-samples where each

candidate in the ith sub-sample has ki < z < ki+1. Although the sum of the weights of all

DD candidates, by de�nition, equalsNDD, the sum of the weights of a particular sub-sample

of events may not equal the true (unweighted) number of events in that sample NSMPL. The

error on the number of signal events �NS obtained from each weighted likelihood �t re
ects

the number of reconstructed candidates in the sample, NSMPL, and must be rescaled to

re
ect the estimate for the number of generated candidates,
PNSMPL

i=1 wi. That is,

�NS !
sPNSMPL

i=1 wi
NSMPL

�NS :

All of the acceptance-corrected DD distributions shown in the following chapter

are obtained using the weighted maximum likelihood �ts discussed in this chapter. We

currently do not account for the statistical errors �w on the weights w.
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Chapter 5

Results and Conclusions

In this chapter, we present charm-pair results from approximately 90% of the full

E791 data sample. As discussed in the previous chapter, all distributions, experimental

and theoretical, are obtained after excluding any candidates in which the center-of-mass

rapidity of either the D or D is less than �0:5 or greater than 2.5. In addition, all 4-4

pronged DD candidates are eliminated from the data sample because the large weights of

these candidates degrade the signi�cance of the signal distributions.

For the experimental results, the acceptance-corrected distributions are obtained

from maximizing the weighted likelihood function (Section 4.2); the uncorrected distribu-

tions, from maximizing the unweighted likelihood function (Section 4.1.3). The errors on

the acceptance-corrected results do not yet include the errors associated with each weight;

nor are systematic errors included. The total number of signal DD events found in the

unweighted �t is Ns = 791� 44. For the weighted likelihood �t, we �nd Ns = 910� 45.1

This chapter is divided into �ve sections. Before comparing with theoretical pre-

dictions, we �rst use two methods to examine the degree of correlation between the D and

D mesons from our DD signal events. If the two charmed mesons in each DD event are

completely uncorrelated, then the charm-pair distributions contain no more information

than the single-charm distributions. In Section 5.1, we use the single-charm distributions

to predict what the charm-pair distributions would be if the D and D were uncorrelated.

Comparing the measured charm-pair distributions to these single-charm predictions pro-

1Since the sum over all weights is normalized to equal the number of DD candidates, the fact that the
number of signal events is signi�cantly larger for the weighted data sample than for the unweighted sample
indicates that, on average, the weights for signal events are larger than for background events.
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vides one measure of the degree of correlation between the D and D. In Section 5.2, we

look directly for correlations by examining several two-dimensional distributions. For ex-

ample, by �nding the number of signal DD events per yD interval per yD interval, where

y is the rapidity of the charm particle, we can determine whether the shape of the yD

distribution depends on the value of yD .

In Section 5.3, we compare our experimental distributions to three sets of theoret-

ical predictions:

� the distribution of cc pairs from the MNR next-to-leading order perturbative QCD

calculation,

� the distribution of cc pairs from the PYTHIA/JETSET event generator, which uses

a parton-shower model to include higher-order perturbative e�ects, and

� the distribution of DD pairs from the PYTHIA/JETSET event generator, which uses

the LUND string model to transform cc pairs to DD pairs.

In Section 5.4, we look for production asymmetries among the four types of DD pairs

| D0D0; D0D�; D+D0; and D+D� | and compare our experimental results to the

predictions from the the PYTHIA/JETSET event generator For all theoretical predictions,

we use the default settings for all parameters (see Table 1.3).

Finally, in Section 5.5 we summarize the results of this DD analysis.

5.1 Single-Charm Predictions

In Figure 5.1 we show the measured single-charm distributions for xF , y, p
2
t and

�, which are de�ned in Section 1.2. Each distribution is obtained from summing the D and

D distributions from signal DD events. The contribution to the single-charm signal from

the D- and D-ridge events is not included. The vertical axis of each distribution gives the

fraction of signal mesons per variable v interval, P (v) = 1
ND

dND
dv , where the total number

of signal D mesons ND is simply twice the number of signal DD events Ns. Table 5.1

shows the integrals,
R vmax
vmin

P (v)dv, for all single-charm and charm-pair acceptance-corrected

distributions discussed in this section, showing that only a very small fraction of the signal

events lie outside any of the domains (vmin < v < vmax) used in Figures 5.1-5.6.

For each single-charm variable v, we obtain two measured charm-pair distributions:

�v = vD � vD and �v = vD + vD. (�� is de�ned to be the minimum of j�D � �Dj and
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Figure 5.1: Single-charm distributions for the variables xF , y, p
2
t and �, obtained from

summing the D and D distributions from our signal DD events. The total number of signal
D mesons, ND, is simply twice the number of signal DD events Ns.

360� � j�D � �D j, and �� is de�ned to be �D + �D modulo 360�.) In Figures 5.2-5.5, we

compare these measured charm-pair distributions to the following single-charm predictions:

Q(�v) = �(�v � vD + vD)P (vD)P (vD)� (5.1)8>>><
>>>:

vmax�vmin�j�vj
(vmax�vmin)2 if vmin � vmax < �v < vmax � vmin

0 if j�vj > vmax � vmin

and

Q(�v) = �(�v � vD � vD)P (vD)P (vD)� (5.2)
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Table 5.1: The integrals,
R vmax
vmin

P (v)dv, for all single-charm and charm-pair acceptance-
corrected distributions shown in Figures 5.1-5.6, showing the fraction of signal events within
the domain vmin < v < vmax.

v vmin vmax
R vmax
vmin

P (v)dv Figure

xF �0:1 0.5 0:99 5.1
y �0:5 2.07 0:99 5.1
p2t 0 12 GeV2 0:99 5.1
� 0 360 deg. 1:00 5.1

�xF -0.5 0.5 0:97 5.2
�xF -0.1 0.64 0:97 5.2
�y -2 2 1:00 5.3
�y -0.8 3.3 1:00 5.3
j�p2t j 0 6 GeV2 0:96 5.4
�p2t 0 12 GeV2 0:98 5.4
�� 0 180 deg. 0:99 5.5
�� 0 360 deg. 1:00 5.5
p2
t;DD

0 12 GeV2 0:99 5.6

MDD 3.7 7.5 GeV 0:99 5.6

8>>>>>>>><
>>>>>>>>:

�v�2vmin
(vmax�vmin)2 if 2vmin < �v < vmax + vmin

�v�2vmax
(vmax�vmin)2 if vmax + vmin < �v < 2vmax

0 if �v < 2vmin or �v > 2vmax

where P (v) refers to the single-charm distributions shown in Figure 5.1. The triangular

functions to the right of P (vD)P (vD) in Equation 5.1 and 5.2 give the probability distribu-

tion functions for vD � vD assuming a 
at probability distribution function for vD and vD

within the domain vmin < v < vmax and zero probability outside this domain.

If the D and D from our signal DD events are completely uncorrelated, then

the measured charm-pair distributions for �v and �v would agree with the single-charm

predictions. With the exception of the �� distribution (Figure 5.5), the measured distribu-

tions are quite similar to the single-charm predictions, indicating both that the correlation

between the D and D longitudinal momenta is small and that the correlation between the

amplitudes of the D and D transverse momenta is small. The measured �xF , �y, and

�p2t distributions, however, are somewhat more peaked near zero than the single-charm
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Figure 5.2: Charm-pair distributions for �xF = xF;D � xF;D and �xF = xF;D + xF;D. The

single-charm predictions for �xF and �xF are de�ned in Eqs. 5.1 and 5.2.

Figure 5.3: Charm-pair distributions for �y = yD�yD and �y = yD+yD . The single-charm
predictions for �y and �y are de�ned in Eqs. 5.1 and 5.2.

predictions, indicating slight correlations.

Two other commonly used charm-pair variables are the square of the transverse

momenta of the charm-pair, p2
t;DD

= j~pt;D+~pt;Dj2, and the invariant mass of the charm-pair
MDD. The measured distributions and the single-charm predictions for these two variables

are shown in Figure 5.6. Obtaining single-charm predictions for p2
t;DD

and MDD is slightly

more involved than for the �v and �v variables because p2
t;DD

and MDD are not linear
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Figure 5.4: Charm-pair distributions for j�p2t j = jp2t;D � p2
t;D
j and �p2t = p2t;D + p2

t;D
. The

single-charm predictions for �p2t and �p2t are de�ned in Eqs. 5.1 and 5.2.

functions of xF;D, xF;D, �D, �D, p
2
t;D, and p2

t;D
. Rather, in terms of these single-charm

variables,

p2
t;DD

= p2t;D + p2
t;D

+ 2
q
p2t;Dp

2
t;D

cos(�D � �D); and

MDD =

r
2M2

D + 2EDED � 2
q
p2t;Dp

2
t;D

cos(�D � �D)�
s xF;D xF;D

2
;

where the D meson energy E is
q
M2

D + p2t +
s x2F
4 , and s is the square of the center-of-mass

energy of the colliding hadrons. We obtain single-charm predictions by randomly generating

108 DD events in which all three variables (xF , �, and p2t ) for both D mesons from each

DD event are selected independently and randomly from a probability distribution function

that is 
at within the domains shown in Figure 5.1 and zero elsewhere. Each event is

weighted by
1

jJ jP (xF;D)P (�D)P (p
2
t;D)P (xF;D)P (�D)P (p

2
t;D

);

where P (v) refers the single-charm distributions shown in Figure 5.1 and jJ j is the Jacobian
determinant of the transformation from the complete and independent set of variables (xF;D,

xF;D, �D , �D, p
2
t;D, and p

2
t;D

) to the set (xF;D, xF;D, �D, �D, p
2
t;DD

, andMDD). Speci�cally,

jJ j �
������
@(xF;D; xF;D; �D; �D; p

2
t;DD

;MDD)

@(xF;D; xF;D; �D; �D; p
2
t;D; p

2
t;D

)

������ (5.3)
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Figure 5.5: Charm-pair distributions for �� = (minimum of j�D��Dj and 360��j�D��D j)
and �� = (�D+�D modulo 360�). The single-charm predictions for �� and �� are de�ned
in Eqs. 5.1 and 5.2.

=

�����������

1 +

s
p2
t;D

p2t;D
cos(�D � �D) 1 +

s
p2t;D
p2
t;D

cos(�D � �D)

1
2
p
2M

DD

0
@E

D
ED

�
s

p2
t;D

p2
t;D

cos(�D � �D)

1
A 1

2
p
2M

DD

 
ED
E
D
�
s

p2t;D
p2
t;D

cos(�D � �D)

!
�����������
:

The measured distribution forMDD agrees quite well with the single-charm predic-

tion. The measured distribution for p2
t;DD

, however, is noticeably steeper than the single-

charm prediction, indicating signi�cant correlations between ~pt;D and ~pt;D. The dashed

histogram in Figure 5.6 demonstrates that this lack of agreement is not due to the correla-

tions between �D and �D evident in the �� distribution in Figure 5.5. This latter prediction

is obtained by assuming that xF;D and xF;D are uncorrelated and that p2t;D and p2
t;D

are

uncorrelated, but that �D and �D are correlated as shown in Figure 5.5. The following

section investigates correlations between ~pt;D and ~pt;D in more detail.

5.2 Two-Dimensional Distributions

A direct method for investigating whether two variables, vD and vD, are correlated

is to determine the number of DD signal events per vD interval per vD interval. Such two-

dimensional distributions show us whether the vD distribution depends on the value of

vD, and vice-versa. Given our limited statistics, we must use very course binning. In
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Figure 5.6: Charm-pair distributions for p2
t;DD

and MDD . The solid histograms show the

single-charm predictions. The dashed p2
t;DD

histogram assumes that xF;D and xF;D are

uncorrelated and that p2t;D and p2
t;D

are uncorrelated, but that �D and �D are correlated

as shown in Figure 5.5.

Figures 5.7-5.9, we show the results for v = xF ; y; and p2t , respectively. In each �gure,

we �rst show the number of acceptance-corrected DD signal events reconstructed in nine

(vD; vD) bins | three vD bins times three vD bins. Using the information in this 2-

dimensional plot, several normalized 1-dimensional plots are created, facilitating our ability

to detect di�erences in the shapes of the distributions. In particular, plot (b) in each �gure

shows the vD distribution for each vD bin, Ni
dNs
dvD

, where Ni is chosen such that the integral

over each vD distribution equals one. Similarly, plot (c) in each �gure shows the normalized

vD distribution for each vD bin. Lastly, plots (d)-(f) simply rearrange the information shown

in (b) and (c). Plot (d) shows the normalized vD and vD distribution for the �rst vD and

vD bin, respectively; plot (e) shows results for the second bins; and plot (f) shows results

for the third bins. We reiterate that the two-dimensional plots show the actual number

of acceptance-corrected DD signal events in each bin; whereas, the one-dimensional plots,

proportional to dNs
dvD

, take into account the variation in bin size.

Figure 5.7 indicates some correlation between xD and xD. In particular, the �rst-

bin distributions are more peaked at low xF than the second- and third-bin distributions.

This result is consistent with Figure 5.2, discussed above, which shows that the measured

�xF distribution is somewhat steeper than the single-charm prediction. Because xF and y
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Figure 5.7: (a) Number of acceptance-corrected DD signal events dNs found in nine (xF;D,
xF;D) bins. (b) xF;D distribution Ni(dNs=dxF;D) for each xF;D bin, where Ni is chosen such
that the integral over xF;D equals one. (c) xF;D distribution for each xF;D bin. (d)-(f) xF;D
(xF;D) distribution for the �rst, second and third xF;D (xF;D) bins, respectively. The open

symbols show the xD distributions; the closed symbols the xD distributions.

are quite correlated, Figure 5.8 shows the same trends as Figure 5.7. Figure 5.9 indicates

that p2t;D and p2
t;D

are also slightly correlated: The second-bin p2t;D and p2
t;D

distributions

are enhanced in the second bin; and the third-bin p2t;D and p2
t;D

distributions are enhanced

in the third bin. This result is consistent with Figure 5.4, discussed above, which shows

that the measured �p2t distribution is somewhat steeper than the single-charm prediction.

In all three �gures (5.7-5.9), the shapes of the three vD distributions are remarkably similar

to the shapes of the respective vD distributions.

In Figure 5.10 we investigate whether the separation in azimuthal angle between

the D and D is correlated to the amplitude of the transverse momenta of the D and D. In

particular, we determine the number of signal DD events per �� interval per �p2t interval

and the number of signal DD events per �� interval per j�p2t j interval. Although we �nd

no signi�cant correlation between �� and j�p2t j, we do �nd that �� and �p2t are quite

correlated. The �� distribution is more peaked at large �p2t and the �p2t distribution is


atter at large ��. A theoretical explanation for these correlations is discussed in the

following section.
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Figure 5.8: (a) Number of acceptance-corrected DD signal events dNs found in nine (yD,
yD) bins. (b) yD distribution Ni(dNs=dyD) for each yD bin, where Ni is chosen such that
the integral over yD equals one. (c) yD distribution for each yD bin. (d)-(f) yD (yD)
distribution for the �rst, second and third yD (yD) bins, respectively.

Figure 5.9: (a) Number of acceptance-corrected DD signal events dNs found in nine (p2t;D,

p2
t;D

) bins. (b) p2t;D distribution Ni(dNs=dp
2
t;D) for each p2

t;D
bin, where Ni is chosen such

that the integral over p2t;D equals one. (c) p2
t;D

distribution for each p2t;D bin. (d)-(f) p2t;D

(p2
t;D

) distribution for the �rst, second and third p2
t;D

(p2t;D) bins, respectively.
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Figure 5.10: (a) Number of acceptance-corrected DD signal events dNs found in nine (��,
�p2t ) bins. (b) �� distribution Ni(dNs=d��) for each �p2t bin, where Ni is chosen such
that the integral over �� equals one. (c) �p2t distribution for each �� bin. (d) Number of
acceptance-corrected DD signal events dNs found in 9 (��,j�p2t j) bins. (e) �� distribution
for each j�p2t j bin. (f) j�p2t j distribution for each �� bin.
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5.3 Comparisons with Theory

In this section, we compare all the acceptance-corrected distributions discussed in

the previous two sections (Figs. 5.1-5.10) to three sets of theoretical predictions:

� the distribution of cc pairs from the MNR next-to-leading order perturbative QCD

calculation,

� the distribution of cc pairs from the PYTHIA/JETSET event generator, which uses

a parton-shower model to include higher-order perturbative e�ects, and

� the distribution of DD pairs from the PYTHIA/JETSET event generator, which uses

the LUND string model to transform cc pairs to DD pairs.

For all theoretical predictions, we use the default parameters suggested by the respective

authors, which are discussed in Chapter 1 (Table 1.3). All distributions are obtained after

excluding any candidates in which the center-of-mass rapidity of either the D or D is less

than �0:5 or greater than 2.5.

Single-Charm Distributions

Lack of agreement between an experimental charm-pair distribution and a theo-

retical prediction can arise if the theory does not model the correlations between the two

charm particles correctly. Lack of agreement, however, can also arise if the theory mod-

els the correlations correctly but does not correctly model the single-charm distributions.

Hence, in Figure 5.11, before comparing our experimental charm-pair distributions to the-

ory, we �rst compare our acceptance-corrected single-charm distributions (xF , y, p
2
t and �)

to theory.

For the longitudinal momentum distributions, xF and y, the experimental results

and theoretical predictions do not agree. The experimental distributions are most simi-

lar to the NLO and PYTHIA/JETSET cc distributions, but are narrower than all three.

The di�erence between the PYTHIA/JETSET cc and the PYTHIA/JETSET DD longi-

tudinal distributions shows the e�ect of the hadronization scheme that color-attaches one

charm quark to the remnant beam and the other to the remnant target, broadening out the

longitudinal distributions.

The experimental p2t distribution agrees quite well with all three theoretical distri-

butions. The PYTHIA/JETSET cc distribution is slightly too 
at; the PYTHIA/JETSET
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Figure 5.11: Experimental single-charm distributions for xF , y, p
2
t and � compared to three

sets of theoretical predictions: the next-to-leading order perturbative QCD prediction, the
PYTHIA/JETSET charm quark prediction, and the PYTHIA/JETSET D meson predic-
tion. All distributions are obtained from summing the charm and anti-charm distributions
from charm-pair events.

DD distribution, slightly too steep. As expected, both the theoretical and experimental �

distributions are 
at.

Longitudinal Distributions

Given the lack of agreement between the experimental and theoretical single-charm

longitudinal distributions, it is not surprising that the experimental �xF and �xF distri-

butions (Figure 5.12) and the �y and �y distributions (Figure 5.13) do not agree with
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Figure 5.12: Experimental �xF and �xF distributions compared to three sets of theoretical
predictions: the next-to-leading order perturbative QCD prediction, the PYTHIA/JETSET
cc prediction, and the PYTHIA/JETSET DD prediction.

theoretical predictions. As with the single-charm distributions, the experimental results

are much closer to the two cc predictions than to the PYTHIA/JETSET DD prediction,

but narrower than all three predictions. As discussed in Chapter 1, the PYTHIA/JETSET

hadronization scheme introduces a strong correlation between the D and D which sig-

ni�cantly broadens the �y distribution. In other words, as shown in Figure 5.14, the

PYTHIA/JETSET DD �y distribution is broader than the single-charm prediction

QMC(�y) = PMC(yD)PMC(yD)�(�y � yD + yD)� (5.4)8>>><
>>>:

ymax�ymin�j�yj
(ymax�ymin)2 if ymin � ymax < �y < ymax � ymin

0 if j�yj > ymax � ymin

where PMC(y) refers to the PYTHIA/JETSET DD single-charm rapidity distribution from

Figure 5.11. In contrast, the experimental �y distribution is slightly narrower than its

single-charm prediction (Fig. 5.3).

Transverse Distributions

In Figures 5.15-5.17, we compare experimental distributions to theoretical predic-

tions for the following transverse variables: j�p2t j, �p2t , ��, ��, and p2t;DD. The discrepancy
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Figure 5.13: Experimental �y and �y distributions compared to three sets of theoretical
predictions: the next-to-leading order perturbative QCD prediction, the PYTHIA/JETSET
cc prediction, and the PYTHIA/JETSET DD prediction.

Figure 5.14: PYTHIA/JETSET DD prediction for �y compared to the PYTHIA/JET-
SET single-charm prediction, which is obtained by assuming that the D and D mesons are
completely uncorrelated (See Eq. 5.4).

between theory and data for the j�p2t j, ��, and p2
t;DD

distributions is noteworthy because

the single-charm p2t and � experimental distributions agree quite well with theory. The

discrepancy, therefore, must derive from the theory modeling the correlation between ~pt;D

and ~pt;D incorrectly.

If ~pt;D and ~pt;D were completely uncorrelated, then the single-charm predictions

(Figures 5.4-5.6) would provide good estimates for these three distributions. At the opposite
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Figure 5.15: Experimental j�p2t j and �p2t distributions compared to three sets of theoretical
predictions: the next-to-leading order perturbative QCD prediction, the PYTHIA/JETSET
cc prediction, and the PYTHIA/JETSET DD prediction.

Figure 5.16: Experimental �� and �� distributions compared to three sets of theoretical
predictions: the next-to-leading order perturbative QCD prediction, the PYTHIA/JETSET
cc prediction, and the PYTHIA/JETSET DD prediction.

extreme, if ~pt;D and ~pt;D were completely, negatively correlated | as in the leading-order

perturbative QCD prediction | then the �p2t distribution would be a delta function at

�p2t = 0 GeV2; the p2
t;DD

distribution a delta function at p2
t;DD

= 0 GeV2; and the ��

distribution a delta function at �� = 180�. Both the experimental distributions and the
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Figure 5.17: Experimental p2
t;DD

and Mt;DD distributions compared to three sets of

theoretical predictions: the next-to-leading order perturbative QCD prediction, the
PYTHIA/JETSET cc prediction, and the PYTHIA/JETSET DD prediction.

three sets of theoretical predictions lie between these two extremes. None of the three

experimental distributions, however, are as steep as any of the theoretical predictions. The

next-to-leading order predictions are the steepest | that is, the next-to-leading calculation

predicts the most correlation between ~pt;D and ~pt;D.

The PYTHIA/JETSET hadronization scheme broadens the �� distribution, bring-

ing it closer to the experimental result. The same hadronization scheme, however, softens

the p2
t;DD

and �p2t distributions, taking them further from the experimental results. One

mechanism that would both 
atten the �� distribution and harden the p2
t;DD

and �p2t

distributions would be more intrinsic transverse momenta for the partons in the colliding

hadrons.

Charm-Pair Invariant Mass

In Figure 5.17, we compare the experimental charm-pair invariant mass distribu-

tion to theoretical predictions. The cc invariant mass predictions are shifted to the left

because the mass of the charm quark is less than the mass of the D meson.2 We expect the

experimental MDD distribution to be steeper than the theoretical predictions because the

2The default settings for the charm quark mass are 1.5 Gev for the MNR NLO calculation and 1.35 GeV
for the PYTHIA/JETSET event generator.
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experimental single-charm xF (or y) distribution is steeper than the theoretical predictions.

In addition, the correlations introduced by the PYTHIA/JETSET hadronization scheme

broaden the invariant mass distribution.

Two-Dimensional Distributions

In Figures 5.18-5.22, we examine the same two-dimensional experimental distribu-

tions discussed in Section 5.2. We now compare these experimental results to the three sets

of theoretical predictions. In each �gure, the top row shows the NLO perturbative QCD

prediction; the middle row, the PYTHIA/JETSET cc prediction; and the bottom row, the

PYTHIA/JETSET DD prediction. The experimental results are repeated in each row.

The longitudinal distributions, xF and y, are shown in Figures 5.18 and 5.19,

respectively. The three theoretical predictions are quite di�erent. The NLO cc predictions

show no signi�cant correlation between xF;D and xF;D (or between yD and yD) and the xF;D

and xF;D distributions are quite similar. The PYTHIA/JETSET cc predictions show a slight

correlation and, surprisingly, the xF;D and xF;D distributions are somewhat di�erent. Due to

the PYTHIA/JETSET hadronization scheme, the PYTHIA/JETSET DD prediction shows

the strongest correlation between xF;D and xF;D . Interestingly, in the PYTHIA/JETSET

DD prediction, xF;D and xF;D are negatively correlated; whereas, in PYTHIA/JETSET

cc prediction they are positively correlated. The correlation patterns in the experimental

results, although inconsistent with any of the theoretical predictions, are closest to the

PYTHIA/JETSET cc predictions.

Figure 5.20 investigates the correlations between p2t;D and p2
t;D

. The three theo-

retical predictions and the experimental results all show similar trends. Although all the

distributions are broader than the leading-order perturbative QCD prediction | a delta

function at p2t;D = p2
t;D

| they all shows signs of an enhancement in the p2t;D = p2
t;D

bins.

The PYTHIA/JETSET cc distributions and the PYTHIA/JETSET DD distributions are

very similar and resemble the experimental results more so than the NLO cc distributions.

All of the third bin theoretical distributions are signi�cantly 
atter than the experimental

third bin distributions. In contrast to the longitudinal distributions, all the p2t;D are very

similar to the respective p2
t;D

distributions.

In Figure 5.21, we investigate correlations between �� and �p2t . For the �� depen-

dence, a leading-order perturbative QCD calculation predicts a delta function at �� = 180�.
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Figure 5.18: (a) The NLO perturbative QCD prediction for the number of cc events in 9
(xF;D,xF;D) bins, normalized such that the number of generated NLO events equals the

number of acceptance-corrected DD signal events. (b) Experimental xF;D distribution for
each xF;D bin compared to the NLO perturbative QCD predictions. Each xF;D distribution
is normalized such that the integral over xF;D equals one. (c) Same as (b) for the xF;D
distributions. (d)-(f) Same as (a)-(c) for the PYTHIA/JETSET cc prediction. (g)-(i) Same
as (a)-(c) for the PYTHIA/JETSET DD prediction.

We expect the leading-order prediction to be more accurate as the energy scale Q of the

partonic hard scattering increases (See Eq. 1.7). That is, we expect the �� distribution to

be more peaked at 180� for DD events with larger �p2t . This behavior is clearly evident

in our experimental distributions as well as in all three theoretical predictions. The theo-

retical �� distributions, however, for all three �p2t bins, are signi�cantly steeper than the
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Figure 5.19: (a) The NLO perturbative QCD prediction for the number of cc events in 9
(yD,yD) bins, normalized such that the number of generated NLO events equals the number
of acceptance-corrected DD signal events. (b) Experimental yD distribution for each yD bin
compared to the NLO perturbative QCD predictions. Each yD distribution is normalized
such that the integral over yD equals one. (c) Same as (b) for the yD distributions. (d)-
(f) Same as (a)-(c) for the PYTHIA/JETSET cc prediction. (g)-(i) Same as (a)-(c) for the
PYTHIA/JETSET DD prediction.

respective experimental distributions. The NLO cc �� distributions are the steepest. The

experimental and theoretical �p2t distributions are in fairly good agreement, with the �p2t

distribution broadening as �� increases. In Figure 5.22, we show that �� and j�p2t j are
not signi�cantly correlated in either theory or data.
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Figure 5.20: (a) The NLO perturbative QCD prediction for the number of cc events in
9 (p2t;D,p

2
t;D

) bins, normalized such that the number of generated NLO events equals the

number of acceptance-corrected DD signal events. (b) Experimental p2t;D distribution for

each p2
t;D

bin compared to the NLO perturbative QCD predictions. Each p2t;D distribution

is normalized such that the integral over p2t;D equals one. (c) Same as (b) for the p2
t;D

distributions. (d)-(f) Same as (a)-(c) for the PYTHIA/JETSET cc prediction. (g)-(i) Same
as (a)-(c) for the PYTHIA/JETSET DD prediction.

5.4 Asymmetries Among the Four Types of DD Pairs

Yields

In Table 5.2, we compare the experimental yields for each type of DD pair to

the predictions from the PYTHIA/JETSET event generator. The experimental results are
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Figure 5.21: (a) The NLO perturbative QCD prediction for the number of cc events in
9 (��,�p2t) bins, normalized such that the number of generated NLO events equals the
number of acceptance-corrected DD signal events. (b) Experimental �� distribution for
each �p2t bin compared to the NLO perturbative QCD predictions. Each �� distribution
is normalized such that the integral over �� equals one. (c) Same as (b) for the �p2t
distributions. (d)-(f) Same as (a)-(c) for the PYTHIA/JETSET cc prediction. (g)-(i) Same
as (a)-(c) for the PYTHIA/JETSET DD prediction.

obtained by maximizing the weighted likelihood function where the weights account for

both acceptance e�ects and for the relative branching fractions of the reconstructed decay

modes (Section 4.2). In this analysis, we do not determine absolute cross sections; hence,

for ease of comparison, we normalize the sum of the four yields to one for both theory and

data. The experimental results and PYTHIA/JETSET predictions agree on the ordering
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Figure 5.22: (a) The NLO perturbative QCD prediction for the number of cc events in
9 (��,j�p2t j) bins, normalized such that the number of generated NLO events equals the
number of acceptance-corrected DD signal events. (b) Experimental �� distribution for
each j�p2t j bin compared to the NLO perturbative QCD predictions. Each �� distribution
is normalized such that the integral over �� equals one. (c) Same as (b) for the �p2t
distributions. (d)-(f) Same as (a)-(c) for the PYTHIA/JETSET cc prediction. (g)-(i) Same
as (a)-(c) for the PYTHIA/JETSET DD prediction.

of the relative rates | with the greatest production rate for D0D0 pairs and the lowest

for D+D� pairs. The PYTHIA/JETSET event generator, however, predicts a signi�cantly

smaller D+D� production rate than is found in data, and a larger D0D0 rate.

At �xed-target energies, the PYTHIA/JETSET event generator assumes that the

contribution to the DD cross section from the decays of B mesons or from the decays
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Table 5.2: Experimental yields for the four types of DD pairs compared to predictions
from the PYTHIA/JETSET event generator. Both experimental and theoretical yields are
obtained after excluding any candidates in which the center-of-mass rapidity of either the
D or D is less than �0:5 or greater than 2.5.

Normalized

Data PYTH/JET Data PYTH/JET

D0D0 460� 34 58086 0:50� 0:04 0:581� 0:002

D0D� 185� 19 22012 0:20� 0:02 0:220� 0:001

D+D0 160� 19 14250 0:18� 0:02 0:1425� 0:001

D+D� 106� 16 5652 0:12� 0:02 0:0565� 0:001

Totals 911 100,000 1.00 1.00

of hyper-excited D meson states (i.e., D mesons more massive than D�(2010 MeV)�) is

negligible. As discussed in Section 1.1.4, if this assumption is correct, then the relative

yields for the four types of DD pairs can be parameterized using the following variables:

� The fraction fe of primary D mesons that are excited D mesons, where \primary"

means produced directly in the fragmentation process, rather than via a decay such

as D�+ ! D0 + �+.

� The fraction fn of excited charged D mesons that decay to neutral D mesons. Kine-

matically, excited neutral D mesons cannot decay to charged D mesons.

� The relative probabilities for producing each of the four types of primary charm pairs

| Pnn, Pnc, Pcn, and Pcc | where, for example, Pnc is the probability for producing

a neutral primary charm meson and a charged primary anti-charm meson; and Pnn +

Pnc + Pcn + Pcc = 1. As discussed in Chapter 1, if coalescence does not occur at any

signi�cant level, then Pnn = Pnc = Pcn = Pcc = 0:25:

The measured relative yields are related to these parameters as follows:

P
D0D0 = Pnn + fefn(Pnc + Pcn) + (fefn)

2Pcc;

PD0D� = (1� fefn)Pnc + (1� fefn)(fefn)Pcc;

P
D+D0 = (1� fefn)Pcn + (1� fefn)(fefn)Pcc;

PD+D� = (1� fefn)
2Pcc;
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Figure 5.23: Several 2-dimensional projections onto the (Pnn, Pnc, Pcn, Pcc, f) parameter
space, showing the regions that are one (solid line), two (dashed), and three (dotted) stan-
dard deviations from our experimental results. The default PYTHIA/JETSET prediction
and the no-coalescence prediction are also shown.

where P
D0D0 + PD0D� + P

D+D0 + PD+D� = 1. Because the variables fe and fn always

appear as a product, the relative yields can only provide information about f � fefn.

Given four independent parameters and only three independent measurements, we cannot

use the measured yields to obtain a unique prediction for Pnn, Pnc, Pcn, Pcc, and f . We can,

however, determine which regions of parameter space are consistent with our experimental

measurements.

In Figure 5.23, for several 2-dimensional projections onto this �ve dimensional

parameter space, we show the regions that are within one (solid line), two (dashed), and

three (dotted) standard deviations from our experimental results. In each plot, we also

mark where the default PYTHIA/JETSET prediction lies and where the no-coalescence
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prediction (Pnn = Pnc = Pcn = Pcc = 0:25) lies. In the (Pcn, f), (Pcc, f), and (Pcn,

Pcc) projections the PYTHIA/JETSET prediction is more than two standard deviations

away from the experimental results, possibly indicating that the default PYTHIA/JETSET

settings for f and Pcn are somewhat too large, and that the setting for Pcc is somewhat too

small. The no-coalescence prediction is within approximately 1.5 standard deviations from

our experimental results. If the PYTHIA/JETSET assumption fefn = 0:785�0:651 = 0:511

is correct, then the data suggest that the probability that both primary charmed mesons

are charged, Pcc, is larger than the other three probabilities. This would be di�cult to

explain in terms of a simple coalescence model, in which the probability Pcn should be the

largest because both the primary neutral D meson (cu) and the primary charged D meson

(cd) can originate from coalescence with a �� valence quark.

Correlations Between the D and D Longitudinal Momenta

As shown in Figure 5.24, in the PYTHIA/JETSET hadronization scheme, the

correlation between yD and yD is quite di�erent for each of the four types of DD pairs. In

Figure 5.25, we investigate whether this is also true for data. Given the limited statistics of

our data sample, we can only search for gross asymmetries in the (yD, yD) distribution. We

obtain the four plots in Figure 5.25 by bisecting the 2-dimensional (yD, yD) distribution

along the following four lines, respectively (v = a): �y = 0, �y = 1:2, yD = 0:6, and

yD = 0:6. These four lines are indicated by dashed lines in Figure 5.24.

To search for possible asymmetries, we determine whether the fraction of signal

events on one side of a given line depends on the type of DD pair. Speci�cally, for both

theory and data we show

Av(i) =
Ni(v > a)�Ni(v < a)

Ni(v < a) +Ni(v < a)
(5.5)

where i = (D0D0; D0D�; D+D0; D+D�) and Ni is the number of signal DD events of

type i. The PYTHIA/JETSET A�y distribution is fairly 
at, indicating no signi�cant

asymmetries among the four DD types for the �y distribution. The PYTHIA/JETSET

A�y , AyD , and Ay
D
distributions, however, indicate signi�cant asymmetries, all of which are

easily interpreted in terms of the PYTHIA/JETSET coalescence mechanism discussed in

Chapter 1. Unfortunately, the degree of asymmetry in the PYTHIA/JETSET predictions

is of the same order as our experimental errors. The experimental AyD distribution, for
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Figure 5.24: PYTHIA/JETSET prediction for the (yD, yD) distribution for each of the four
types of DD pairs. The dashed lines help de�ne the asymmetry functions Av(i) (Eq. 5.5)
which are shown, for both theory and data, in Fig. 5.25.

example, is consistent with the PYTHIA/JETSET prediction, but it is also consistent with

being 
at. Similarly, the experimental A�y distribution is fairly consistent with the 
at

PYTHIA/JETSET prediction, but it also shows some indication of an asymmetry between

D0D0 and D+D�. The most signi�cant di�erence between the experimental results and

the PYTHIA/JETSET predictions occurs for the DD types D0D0 and D+D� in the Ay
D

distribution. Both theory and data indicate an asymmetry between D0D0 and D+D�; but

the experimental result �nds Ay
D
(D0D0) > Ay

D
(D+D�), whereas, the PYTHIA/JETSET

model �nds Ay
D
(D+D�) > Ay

D
(D0D0).
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Figure 5.25: The asymmetry function Av(i) =
Ni(v>a)�Ni(v<a)
Ni(v<a)+Ni(v<a)

, where i =(D0D0, D0D�,
D+D0 ,D+D�) and Ni is the number of signal DD events of type i, for (v, a) = (�y,
0), (�y, 1:2), (yD, 0:6), and (yD, 0:6). All functions are obtained after excluding any
PYTHIA/JETSET DD events and DD candidates from data in which the center-of-mass
rapidity of either the D or D is less than �0:5 or greater than 2.5.

5.5 Conclusions

In this analysis, we fully reconstructed 791� 44 DD events, the largest sample of

charm-pair events collected to date. We thoroughly investigated the degree of correlation

between the D and D momenta. We also compared the measured charm-pair distributions

to predictions from the fully di�erential next-to-leading calculation as well as to prediction

from the PYTHIA/JETSET Monte Carlo event generator.
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Longitudinal Correlations

Our measurements indicate that the longitudinal momenta of the D and D from

charm-pair events are slightly correlated. The measured �xF and �y distributions (Figs. 5.2-

5.3) are somewhat narrower than the single-charm predictions; and the xF;D (yD) distribu-

tion depends slightly on the value of xF;D (yD), and vice-versa (Figs. 5.7-5.8).

The single-charm xF and y distributions from all three sets of theoretical predic-

tions (Figs. 5.11) do not agree with each other nor with the measured distributions. In

addition, all three sets have di�erent predictions for the correlation between the charm and

anti-charm longitudinal momenta (Figs. 5.18-5.19). The next-to-leading order calculation

predicts no signi�cant correlation; the PYTHIA/JETSET cc prediction indicates a slight

positive correlation; and the PYTHIA/JETSET DD prediction indicates a strong negative

correlation. The data agrees best with the PYTHIA/JETSET cc prediction. The measured

longitudinal distributions suggest that the string topology scheme of the PYTHIA/JETSET

hadroproduction hadronization model | which color-connects the charm quark to a valence

quark from one the colliding hadrons and the anti-charm quark to a valence quark from the

other colliding hadron | is incorrect.

Transverse Correlations

Our measurements indicate that the transverse momenta of the D and D from

charm-pair events are correlated in several ways. The square of the amplitudes of the D

and D transverse momenta are slightly correlated (Fig 5.9). The directions of the D and

D in the plane transverse to the beam axis are signi�cantly correlated (Fig. 5.5), which has

been observed by several experiments[3, 4, 6, 7, 8]. Lastly, we �nd that the separation in

azimuthal angle �� is signi�cantly correlated to the sum of the squares of the D and D

transverse momenta �p2t (Fig. 5.10). Although all three sets of theoretical predictions show

the same correlation trends as we �nd in data, none are consistent with the experimental

results. The theories predict that the transverse momenta of the D and D are signi�cantly

more correlated than we �nd in data, indicating that the theories do not include enough

higher-order e�ects.
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