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Abstract

We have calculated the singlet (1S0) and triplet (3S1) Nucleon - Nucleon (NN)
interaction potential in the SU(2) nonrelativistic quark model (NRQM) using the
resonating group method (RGM). The Hamiltonian consists of the kinetic en-
ergy of the quarks, harmonic confinement potential and quark-quark interaction
potentials. The interaction potentials include the one-gluon exchange potential
(OGEP), the instanton induced interaction (III) potential and the one-pion ex-
change potential (OPEP). We have studied the contributions of the various parts
of the interaction potentials to the NN interaction. We have also examined the
effects of the OPEP on the NN interaction.

The RGM treats the nucleons as clusters of three quarks. The exchange of the
quarks between the clusters leads to the interaction between these clusters. The
RGM divides each component of the Hamiltonian into two components - direct
and exchange. The direct component of the Hamiltonian is present everywhere
in space - at all nucleon separations, while the exchange components are present
only in a short interval of space - at small nucleon separations, where the wave
functions overlap significantly. Thus the interaction between the nucleons is de-
scribed by the exchange part of the Hamiltonian. To obtain the NN interaction
potential, we subtract the residual energy at asymptotic distances from the energy
obtained. This approximation is called the Born-Oppenheimer approximation or
the adiabatic approximation.

The present model successfully reproduces the short range repulsion, interme-
diate range attraction and the long range saturation properties of the NN interac-
tion. The short range repulsion in the model is primarily due to the color magnetic
interactions between the quarks and the kinetic energy of the quarks. The color
magnetic interactions arise from one-gluon exchange as well as the III and they
distinguish between the 1S0 and the 3S1 states. The total contribution of the III
is attractive in the short and the intermediate ranges. The total contribution of
the OGEP is repulsive in the short and the intermediate ranges. The OPEP gives
state independent repulsion in the short and the intermediate ranges. The color
electric terms do not contribute to the interaction because the contribution of the
color electric terms is nearly the same for the (0s)6 configuration as well as the
2(0s)3 configuration of quarks.

The direct part of the Hamiltonian leads to state independent attraction in the
short and the intermediate ranges. The contribution of the exchange part of the
Hamiltonian to the triplet state shows a small attraction in the intermediate range
where as for the singlet state it is completely attractive. The presence of OPEP



removes the intermediate range attraction from the 1S0 state. Thus, in the pres-
ence of OPEP, only the triplet (3S1) state exhibits intermediate range attraction
where as in the absence of the OPEP both the states exhibit intermediate range
attraction.



Chapter 1

Introduction

The field of nuclear physics is as old as the discovery of nucleon itself. Ernst
Rutherford’s alpha scattering experiment established the presence of nucleus in an
atom. However, it was not until a few years that the constituents of the nucleus
were to become clear. The discovery of neutrons by Chadwick in 1932 brought in
new challenges.

A proton is positively charged while a neutron is neutral. This raised questions
about the stability of the nucleus. Gravitational force was too weak to hold the
electrically repelling protons together. The question of nuclear stability needed a
completely unorthodox explanation. This question - even though we know a lot
more about the nuclear force today - remains unanswered.

Soon after the neutrons were discovered, Werner Heisenberg introduced the
first model of a “Nucleon”. It was formulated that the protons and neutrons were
multiplets of a degree of freedom similar to that of spin - called the “isospin”.
This explained the known properties of the nucleons at that time. The protons
and neutrons having nearly equal mass was seen as the consequence of them being
isospin doublets. But the difference in their charge remained unexplained. We
now know through various experiments that the nucleons are made up of strongly
interacting particles called quarks which have remained fundamental to the energy
scales available at present [1].

1.1 Nucleon-Nucleon Interaction

Various models were proposed to explain the known properties of the nuclei [2].
The models could explain the mass of the nucleons and their electromagnetic
moments. But, the real test for these models was the nucleon-nucleon (NN) inter-
action. The NN interaction potential is calculated from the cross section in the
following way:
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1. The scattered wave is characterized by the wave function,

ψ(r) = eik.r + f(θ)
eikr

r

where f(θ) is the scattering amplitude is given by

f(θ) =
∑
l

(2l + 1)fl(k)Pl(cos θ)

where the partial amplitudes fl(k) = eiδl
k
sinδl and δl is the phase shift. The

differential scattering cross section is,

dσ

dΩ
= |f(θ)|2

Integrating over all Ω and making use of the above expressions, one arrives
at the total cross section as,

σT =
4π

k2

∑
l

(2l + 1) sin2(δl(k))

Thus by decomposing the total cross section into the angular momentum
components one can find the corresponding phase shifts.

2. The phase shift can then be used to get the scattering length. Scattering
length is defined as,

a0 = − lim
k→0

1

k
sin δ(k)

Scattering length gives the radius of the equivalent hard sphere from which
a point particle is scattered.

3. The NN system has a bound state if the scattering length is positive. If
the scattering length is negative, the state could either be a bound state or
a scattering state. From the scattering data, one finds that the scattering
length is positive in the triplet channel and negative in the singlet channel.

The NN interaction potential was found to exhibit three major properties:

1. Short range repulsion for separation r . 1fm,

2. Intermediate range attraction for 1fm ≤ r ≤ 2fm, and

3. long range saturation for r & 2fm.
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In addition, NN system resulted in a bound state in the triplet (3S1) channel
and not in the singlet (1S0) channel. This bound state is called the deuteron.
The deuteron possesses interesting properties. It has a binding energy of ∼
−2.224MeV. Deuteron is not a pure state - it is a mixture of 3S1 and the 3D1

states. This is evident as the quadrupole moment of deuteron is non-zero.
The problem of NN interaction has been studied extensively in the past. The

various models used to explain the characteristics of NN interaction can be grouped
into: potential models, Boson exchange models, and Effective Field Theories.

1.2 Phenomenological models

Potential models used to explain NN interaction can be broadly divided into phe-
nomenological potential models and QCD inspired potential models. These po-
tentials are either derived from the QCD Lagrangian or constructed based on the
symmetries of the NN system. The combined system of two nucleons must possess
translational, rotational, spin, and isospin symmetries. Thus any potential con-
structed to obey these symmetries will contain a central part that depends only
on the separation between the nucleons, terms with spin - spin interaction, terms
with isospin - isospin interaction, and terms that give spin - orbit coupling and
tensor interactions. Of these, the first three preserve rotational, spin, and isospin
symmetries. the long range part of the interaction is usually attributed to the
tensor terms. One - Pion Exchange (OPE) interaction is assumed to give rise to
the long range part of the interaction.

The first theory of NN interaction was given by Hideki Yukawa [3]. Yukawa
argued that the protons and neutrons interacted with each other by exchanging
virtual pions. That the pions are massive implied that the nuclear force is a
short range force. The theory predicted that the long range behavior of the NN
interaction was due to One - Pion Exchange whereas the short and intermediate
range behaviors were due to the exchange of multiple pions. Even though this
model failed to predict the physical properties and the dynamics of the pions
satisfactorily, the long range behavior of NN interaction derived from this model
matched the observed behavior. Various modifications were proposed to this model
[4, 5, 6, 7], but all these models failed to reproduce behavior of the NN interaction
in the short and the intermediate range as the multi - pion exchange potentials
lacked spin - orbit potentials.

It was later shown by Okubo and Marshak that the most general NN interaction
potential must contain a central term, a spin - spin interaction, a spin - orbit
interaction, a tensor term, a quadratic spin orbit term, a momentum dependent
term and the corresponding terms with isospin dependent parts [8].

The first set of potentials that were relatively successful in explaining the NN
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scattering cross section were the Hamada - Johnston [9] and the Yale group [10]
potentials. The Hamada - Johnston potential consisted of central, spin - orbit,
and tensor terms. In the limit of large r, position dependent part of the potential
was given by the Yukawa potential. The parameters in the potential were fitted to
reproduce the scattering cross section. The potential contained a hard core. This
potential was later modified to one with a soft core and to include the difference in
the mass of the pions. This modification reproduced the results satisfactorily and
eliminated the need for the hard cores. The Yale group potentials consisted of the
OPEP in addition to the central, spin - orbit, tensor and the quadratic spin - orbit
terms. This potential too has a hard core. Both the above potentials behaved like
OPE for orbital angular momentum l > 5. The presence of hard core and the very
form of these potentials made them unsuitable for many body calculations. The
Reid68 [11] and the Reid - Day [12] potentials were proposed to overcome these
disadvantages. These potentials were local and static and had soft cores. The
Reid68 potential was primarily aimed to solve the two nucleon scattering problem.
The Reid - Day potential was the extension of the Reid68 potential to the three
nucleon systems. This potential too was a local static potential with a soft core.
However, both the potentials failed to satisfactorily reproduce the scattering data
as well as the deuteron propeties.

To overcome the above limitations, the Paris group potentials were proposed
[13]. The Paris group potentials were derived from the dispersion relations and
included two pion exchange in addition to OPE and the ρ−meson exchange. The
short range part was given by a constant soft core. The pion exchanges were
derived from the pion - pion and pion - Nucleon scattering. The model consisted
of 12 parameters, all fitted to the existing data. The model failed to explain the
short range part of the scattering data and was hard to apply for many body
calculations. The modifications introduce later also failed to explain the very low
energy scattering (< 10MeV).

The Urbana V14 potential used TPE for the intermediate range, OPE for the
long range, and the Wood - Saxon potential for the short range part of the interac-
tion [14]. The model had 14 free parameters. The Argonne potentials [15] were an
attempt by the Argonne group to explain the NN interaction. The V14 potential
by the Argonne group was a modified version of the Urbana V14 potential. The
modification introduced could explain the short range phase shifts more accurately
than its predecessor. The V28 potential by the same group included the ∆ degrees
of freedom in the potential and hence had 28 parameters. This resulted in the
inclusion of the πN∆, π∆∆, N∆, and the ∆∆ channels in addition to the πNN
and the NN channels of the V14 potential. The V18 potential introduced later
included the charge - dependence and charge - asymmetry terms in addition to the
electromagnetic terms.
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The discovery of more heavy mesons led to the introduction of the Boson
Exchange models [16]. The short range repulsion was attributed to vector meson
(ρ, ω, φ) exchanges where as the intermediate range attraction was modeled by
the exchange of the scalar σ mesons. The vector mesons were studied in detail
theoretically by Breit [17] and Sakurai [18] and their predictions for the mass of
the ω meson were confirmed by experiments later. The OBE models explain the
short range repulsion between nucleons as the effect of the spin-orbit interaction
of the vector meson exchange potential.

The Bonn-group potentials were derived from field theoretic analysis of the NN
scattering [19, 20, 21]. The potential included terms arising from the exchange of
meson below the pion - production threshold. The exchange of π, ω, δ, ρ, 2π,
and πρ were taken into account. The potential was derived in the momentum
space and was energy dependent. To overcome the complexity of the potential
in the configuration space, the 2π + ρ exchange was replaced by the exchange of
the σ meson and the πρ exchange was removed. Also η exchange was introduced
to improve the 3P1 phase shift. The parameters were fitted to explain the np
scattering. The model reproduced the NN scattering data accurately up to 300
MeV. The salient features of the model were multiple. Nucleons and mesons were
treated on an equal footing in the model. The model also included the meson
retardation effects and the off shell behavior of the nucleon. The model could be
expanded to analyze the medium effects on NN interaction, the electromagnetic
propeties of the nuclei and the charge symmetry and charge independence breaking
of the interaction. The potential was derived in the momentum space and the
parameters were fitted to np scattering only.

Another set of successful potentials were the Nijmegen group potentials [22, 23,
24]. These potentials use meson exchange and QCD degrees of freedom in addition
to the phenomenological potentials. The potentials are general in the sense that
these potentials describe not only NN interaction but also other baryon - baryon
and baryon - anti-baryon interactions.

The success of these potential models led to the development of a family of
such potential models which reproduce the experimental phase shift data [25]. All
these phenomenological potential models use OPE and OBE to explain the various
properties of the interaction.

All these potential models had the following lacunae:

1. The existence of the scalar σ meson is controversial [1]. The scalar mesons
have very large decay widths and thus the signal from the scalar mesons
overlaps with those from the resonances and the background. These decay
widths are further complicated by the presence of the KK̄ and ηη decay
channels in the vicinity of the scalar meson decays and due to the presence
of the non-qq̄ states like glue-balls.
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2. These models were developed assuming the nucleons to be fundamental par-
ticles. But, the Deep Inelastic Scattering (DIS) experiments provided over-
whelming evidence against the idea that nucleons were fundamental [26]. It
was clear from the DIS experiments that the nucleons had a structure. The
above potential models do not incorporate the structure of the nucleons.

1.3 Deep Inelastic Scattering (DIS)

The Deep Inelastic Scattering (DIS) experiments were a series of electron - pro-
ton scattering experiments conducted in the 1960’s to study the structure of the
nucleons. Electrons were scattered off of the protons at energies between 7 GeV
and 17 GeV. The experiments measured the scattering cross section as a function
of the angle of scattering. The results were compared with the cross sections for
Rutherford and Mott scattering. Rutherford scattering corresponds to the elastic
scattering of spinless point particles and the differential cross section is given by,

dσR
dω
∝ cosec4(

θ

2
)

Mott scattering formula gives the differential cross section for the inelastic

scattering of spin-
1

2
point - particles

dσM
dω
∝ 1

E2
cosec4(

θ

2
) cos2(

θ

2
)

Both the formulas above correspond to scattering of point particles. Thus if the
nucleons were fundamental particles, the DIS cross section would have had a form
similar to the Mott cross sections. But the DIS cross section deviated from it to a
great extent and thus proved conclusively that the nucleons were not fundamental.
Further, the differential cross section for the detection of the electrons gives the
nucleon form factor as [27],

F (q) = G2 + 2G1 tan2(
θ

2
)

where, G2 and G1 are the electric and magnetic form factors and the left hand
side of the equation represents the ratio of the observed differential cross section

to the Mott cross section. The ratio of the form factors,
G2

G1

, is in fact proportional

to
Q2

ν2 +Q2
where Q2 is the momentum transfer and ν is the electron energy loss.

Bjorken suggested [28] that the structure functions could depend on ν and Q2 as
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G2 =
1

ν
F2(x)

where x =
2Mν

Q2
. This dependence of the structure functions on ratio of the

energy loss to the momentum transfer is called the Bjorken scaling. Thus the
function F2(x) is a universal function. This scaling behavior was approximately
followed in the electron - proton scattering.

However, subsequent works showed that the none of the fields known at the time
exhibited this behavior. In fact, it was proved that the theories violated Bjorken
scaling order by order when perturbatively calculated. It was also shown that the
Bjorken scaling is mildly violated in asymptotically free theories [29, 30, 31]. This
gave credibility to Quantum Chromodynamics (QCD).

By the time DIS experiments were conducted, the accelerators around the
world had found more than 40 types of hadrons nearly half of which were ground
state particles and hence relatively stable. This posed a new puzzle: were all these
particles fundamental? Was there a smaller set of particles which were fundamental
and various combinations of which resulted in this zoo of hadrons?

1.4 Quantum Chromodynamics (QCD)

It was the work of Murray Gell-Mann [32, 33] and others [34, 35, 36] that resulted in
a fundamental theory of the nucleons in particular and the hadrons in general called
the Quantum Chromodynamics (QCD). Gell-Mann proposed that the nucleons -
and all other hadrons - were made up of fundamental particles called quarks. The
QCD Lagrangian is,

LQCD =
∑
f

(ψ̄f iγ
µDµψf −mψ̄fψ)− 1

4
Ga
µνG

µνa (1.1)

where, ψf is the quark field, the index f represents the flavour of the quarks, and
Ga
µν is the field strength tensor given by,

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν

The index a represents the color degrees of freedom.
The interaction between the quarks obeys SU(3)c local symmetry and the

quarks possess, in addition to electric charge, color and flavor charges. The color
charges came in three types - red, green, and blue. The quarks transform as triplets
under this symmetry and all states that are physically observable can only trans-
form as singlets. Thus, physically observable strongly interacting systems must be
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color neutral. It is known that most of the mesons form the [36] representation
and the baryons form the S− and P−waves form the [56] and [70] representations
of the SU(6)q × SU(6)q̄ symmetry respectively.

The gluons, likewise, transform as the octets of SU(3)c local symmetry. The
symmetry being exact implies that the gluons do not carry electric charges. An
interesting consequence of the symmetry of QCD is that unlike the photons, gluons
can interact with each other and form bound states because they are not color
neutral.

In addition, QCD possesses the following properties:

1. QCD exhibits confinement:

SU(3) color symmetry is a non-Abelian gauge symmetry obeyed by the
quarks and gluons. This symmetry demands that all physically observable
states be color neutral states. Thus one cannot observe free quarks in nature.
This property is called confinement.

Confinement arises because of the nature of the interaction between colored
particles. The energy of interaction shows an incremental behavior as the
distance between two colored particles is increased. Thus, it is energetically
impossible to separate two quarks or it is energetically favorable to create
additional quark - anti - quark pairs as the distance between the quarks
increases, thereby, preserving the color neutrality of the physically observable
state.

2. QCD exhibits asymptotic freedom:

The QCD coupling constant falls off with energy. This makes the theory
perturbative in the high energy regime. The scale one compares the energy
regime with is the mass of the vector mesons. Since the lightest of the vector
mesons are as light as ∼ 1GeV, at all energies above this scale QCD of these
quarks is perturbative. This property is called asymptotic freedom [37].
One should note that QCD is non - perturbative only at very low energies.
Asymptotic freedom implies that the theory displays infrared slavery where,
the strong coupling constant αs decreases as the energy increases.

3. Being an asymptotically free theory, strongly interacting systems - bound
states of colored particles - approximately follow Bjorken scaling. Thus the
left hand side of the equation below is non - zero, which confirms the presence
of Bjorken scaling in the system, where as, F2(x) is not strictly independent
of Q2. Thus QCD follows Bjorken scaling only approximately.

lim
Q2→∞, ν

Q2 fixed
νG2(x) = MF2(x)
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However, in spite of the knowledge of the existence of asymptotic freedom
and confinement, these properties have not been explicitly included in the QCD
Lagrangian. This is one of the most fundamental and unsolved problems of QCD.
It is for this reason that all attempts at describing the properties of hadrons either
involve free parameters or are effective theories.

1.5 QCD inspired Nuclear Models

The discussions of the previous section clearly imply that any attempt at explaining
NN interaction must be rooted firmly in QCD. In this section, we review the various
models of the nucleon inspired by QCD. The primary difference between these
models and other phenomenological models is that the QCD inspired models use
quarks and gluons as the fundamental degrees of freedom instead of the nucleons
and mesons. These models use One - Gluon Exchange (OGE) for the short range
and meson exchange for the intermediate and the long range interactions. The
quark models - both relativistic and nonrelativistic - have been employed to study
NN interaction.

Quark model becomes necessary even in case of meson exchange models. Since
the charge radius of the nucleon and the theoretical rms radius of the mesons are
almost identical (∼ 0.6 fm), the structure of the mesons becomes important when
discussing the meson exchange at scales less than ∼ 2 fm. Thus, the short range
interactions can only be described by QCD. It was shown by Shimizu and Yamazaki
[38] that the pΣ+ interaction potential is highly non-local. The non-locality arises
only in the quark model calculations and thus can be attributed to the nucleon
substructure. Hence the short range interaction cannot be explained using the
conventional meson exchange potentials. Isgur and Maltman [39] studied the NN
interaction using the OGE as the interacting potential. This study showed that
the short range repulsion arises entirely due to the spin - spin interaction between
the quarks.

All the QCD based quark models discussed above have a confining potential in
addition to the interaction potential. The Hamiltonian is of the form,

H =
∑
i

(
p2
i

2mi

) +
∑
i<j

(V conf
ij + V int

ij )− Ecom

where mi and pi are respectively the mass and the momentum of the ith quark, Vij
are the potentials between the ith and the jth quarks and Ecom is the center of mass
energy. The center of mass energy can be subtracted by making a transformation
to the Jacobi coordinates.

One assumes the ground state solution of the harmonic oscillator as the quark
wave function and treats the interaction as a perturbation. The strong coupling
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constant (αs) of the interaction potential is treated as a parameter and so is the
oscillator size. These models are all nonrelativistic quark models (NRQM) and
they treat quarks as constituent particles with an effective mass ∼ 300MeV.

Another class of the quark models are the so called bag models. These mod-
els tried to overcome the deficiency of the NRQM where quarks were treated as
nonrelativistic particles. The quarks in addition to having a constituent mass of
∼ 300MeV, because of the small volume of the nucleons, possess a momentum of
the same order, there by making them relativistic. These relativistic effects are
bundled into the coupling constants in the NRQM. But the bag models try to deal
with the quarks in the relativistic way. One of the earliest and most successful
bag model is the MIT bag model (for a good review see [40]). The bag models
conjecture that the quarks and the gluons are confined to a “bubble” or a “bag”.
These “bags” are tiny regions in the QCD vacuum. Since the quarks and the
gluons possess large momenta inside these bags, they interact rather weakly with
one another because of the asymptotic freedom of QCD. Thus, one can treat the
interaction between the quarks in the bag perturbatively. The quarks and the
gluons need to obey certain boundary conditions to preserve color neutrality of
the baryons. However, the bag models lack translational invariance and exhibit
spurious center of mass motion. Hence, the bag models are unsuitable for calculat-
ing the NN interaction. In addition to the above difficulties, the MIT bag model
cannot explain the long range properties of the NN interaction.

The massless QCD Lagrangian possess chiral symmetry which is spontaneously
broken. This spontaneous symmetry breaking leads to the creation of an octet of
pseudoscalar Nambu - Goldstone bosons. These mesons constitute the partially
conserved axial-vector current (PCAC) (for a review, see [41]). This symmetry
breaking and the PCAC can be taken into account by including the OBE poten-
tials. Since pion is the lightest of the mesons, the range of OPE is the largest
among the OBEs. Since the short and intermediate range interactions cannot be
described using OBEs, the only meson exchange one can include in NN interaction
is the OPE for the long range part of the NN interaction.

10



Chapter 2

The Model

In the present work, we aim to calculate the adiabatic NN interaction potential
for the singlet (1S0) and the triplet (3S1) states in the framework of the SU(2)
NRQM using RGM. The contributions of the kinetic energy of the quarks, the
confinement potential and the various components of the interaction potentials
are investigated. A comparison of these components of the Hamiltonian gives
insights in to the behavior of the NN interaction and the physics underlying the
interaction.

2.1 The Hamiltonian

The Hamiltonian used in the present work is,

H = K −KCM + VOGEP + VIII + VOPEP + VCONF (2.1)

In the Hamiltonian, VOGEP represents the OGEP, VIII represents the Instanton
Induced Interaction, VOPEP represents the OPEP, and VCONF the confinement
potential. The kinetic energies are,

K =
1

2mq

6∑
i=1

p2
i (2.2)

KCM =
1

12mq

P 2
CM (2.3)

The forms of the potentials are given below.

VOGEP =
αs
4

∑
i<j

(
1

rij
− π

m2
q

(1 +
2

3
σi.σj)δ(rij))λi.λj (2.4)

11



VIII = −
∑
i<j

1

2
Wij(1− P f

ij)[1−
1

5
(σi.σj)]δ(rij) (2.5)

VOPEP =
f 2
Q

3

∑
i<j

e−mπrij

rij
(σi.σj)(τi.τj) (2.6)

VCONF = −acr2
ijλi.λj (2.7)

where the indices i and j run from 1 to 6. In the above expressions, ri is the
position of the ith quark, σi is the spin of the ith quark, τi is the isospin of the ith

quark, λ′is are the Gell-mann matrices, mq is the mass of the quarks, mπ is the
mass of the pion, αs is the quark - gluon coupling constant, ac is the confinement

strength parameter, Wij are the III coefficients, and f 2
Q =

f2πNN
4π

[42]. The number
of III coefficients depends on the number of flavors of quarks in the model. In the
SU(2) NRQM, there are only two flavors of quarks and hence there is only one III
coefficient W .

In the next section, we discuss the individual potentials.

2.2 One-Gluon Exchange Potential (OGEP)

Conventionally, NN interaction has been explained using meson exchange models.
However, for the reasons explained in the previous chapter, it is imperative that
the NN interaction models must be based on QCD. The QCD Lagrangian is given
in 1.1.

The mechanism of one gluon exchange was proposed by Wilson [43], Kogut
and Susskind [44] using the technique of lattice gauge theory. In lattice gauge
theory, the quark fields are defined at lattice points and the gluon fields act as the
links between the lattice points. The interaction energy can be expanded in the
powers of 1

αs
where αs is the quark-gluon coupling constant. It was shown that

this interaction energy increases with the lattice spacing and that the leading term
in the expansion depends on the number of lattice point between the two quarks.
Hence, the force between the quarks remains constant at large distances. Further,
the spin-spin interaction decreases with increase in distance. Hence, the spin-spin
interactions are short range forces or in other words, the short range behavior of the
quark interaction must arise from spin-spin interactions [44]. These observations
were used by de Rujula et. al. to derive the OGEP [45].

OGEP is derived from the tree level quark-quark interaction. In fact, it is the
simplest possible interaction between the quarks. The Feynman diagram corre-
sponding to one gluon exchange is given in fig.2.1

The amplitude for the above diagram is given by
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Figure 2.1: Tree level diagram for one gluon exchange.

Mfi = g2ū(p4)γµ
λa

2
u(p2)

(
gµν + (ξ − 1)

(p3 − p1)µ(p3 − p1)ν
(p3 − p1)2

)
ū(p3)γµ

λa

2
u(p1)

The bispinor amplitude u up to 1
c2

is given by

u(p) =
√

2m


(1− p2

8m2c2
)w(p)

( σ.p
2mc

)w(p)


where w is the Schrödinger amplitude for the free particle. Using this in the
expression for the amplitude, we get,

Mfi = −2m12m2(w∗(p4)w∗(p3)U(p1 ,p2 , q)w(p2)w(p1))

where,

U(p1 ,p2 , q) =
g2

4π
{ 1

q2
− 1

8m2
1c

2
− 1

8m2
2c

2
− (σ1.σ2)

4m1m2c2

+
(q.p1)(q.p2)

m1m2q2
− (p1.p2)

m1m2q2
+ · · ·}λ1.λ2

4
(2.8)

This represents the one gluon exchange potential in the momentum space. Taking
the Fourier transform of the above equation gives the OGEP between two quarks
in the coordinate space. The central and the color magnetic part of the OGEP is
given by eq. (2.4). We see that αs = g2

4π
. The details of this derivation in the Breit

frame can be found in [46]
The Coulomb-like part of the OGEP gives the long range behavior of quark -

quark interactions and is independent of the quark masses and spins as the phe-
nomenon of confinement is observed across all quark flavors. But, the color mag-
netic and color electric interactions depend on quark mass. These forces are short
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range forces and arise from one gluon exchange. The color magnetic interaction
also provides the hyperfine splitting of the hadron masses.

However, the OGEP does not take into account the spontaneous symmetry
breaking of the QCD Lagrangian. The dynamical breaking of the chiral symmetry
in the OGEP model is due to the finite mass of quarks and the OGEP does not
provide an explanation for the existence of the pseudoscalar mesons and hence is
incomplete.

2.3 Instanton Induced Interaction (III)

Consider the case of massless free quarks. The Lagrangian is given by,

Lfreemassless =
∑
f

(ψ̄f iγ
µ∂µψf ) (2.9)

The Lagrangian possesses the global SU(Nf ) × U(1) symmetry. The quark
spinors ψ can be decomposed in to ψ = ψL + ψR. Upon substituting this decom-
position, the Lagrangian above reduces to (the flavor index f is suppressed and
the summation over f is implied)

Lfreemassless = ψ̄Liγ
µ∂µψL + ψ̄Riγ

µ∂µψR (2.10)

The decomposition of the bispinor in to ψL and ψR can be achieved using the
projection operators PL = 1

2
(1− γ5) and PR = 1

2
(1 + γ5).

PLψ = 1
2
(1− γ5)ψ = ψL , PRψ = 1

2
(1 + γ5)ψ = ψR

The Lagrangian in eq.2.9 possesses SU(Nf )V × SU(Nf )A × U(1)V × U(1)A
symmetry - it can be decomposed completely in to the “left” and the “right”
components as shown in eq. 2.10. However, the Lagrangian (eq.2.9) describes
massless free quarks. The introduction of mass into eq.2.9 destroys the chiral
symmetry as the mass terms gives rise to the mixing of the “left” and “right”
components of the quark field. The presence of mass of the quarks breaks the
chiral symmetry dynamically.

It was shown that the chiral symmetry is broken not only dynamically by the
non-zero mass of the quarks but also spontaneously [47, 48]. The U(1)A symmetry
shows anomalous behavior and the corresponding axial vector current j5

µ is not
conserved. This spontaneous symmetry breaking leads to the existence of Nambu-
Goldstone pseudoscalar mesons in the theory. These mesons in the QCD are
massive because the constituent quarks are massive. The spontaneous breaking of
chiral symmetry is believed to be due to instantons [49].
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Instantons are a class of pseudo-particles which form the solutions to the QCD
Lagrangian in the asymptotic limit. Instanton fields satisfy the equation of motion
Dab
µ F

µν b = 0 in the Euclidean space. They also serve as a mechanism for chiral
symmetry breaking, which results in the light quarks acquiring a dynamical mass
[50, 51]. This results in the mass of any physically observable system made up
of light quarks being much greater than the sum of the current masses of the
constituent quarks. This can also be thought of as the quarks acquiring dynamical
mass due III. Thus the III play a major role in the properties of light hadrons and
their interactions.

The instanton solutions were first proposed by Belavin et. al. in 1975 [52].
The properties of instantons and their influence on hadron spectra were studied
extensively by Kochelev [51] and Shuryak [50]. The influence of III on NN inter-
action was first studied by Oka and Takeuichi [53]. The III potential they used
had the form

VIII = −
∑
i<j

Wij(1− P f
ij)[1−

1

5
σi.σj]δ(rij) (2.11)

where, P f
ij denotes flavor exchange. Evidently, III exists only between those quark

pairs which are antisymmetric under flavor exchange. The flavor exchange op-
eration is equivalent to color and spin exchange and hence can be written as
P f
ij = −P s

ijP
c
ij. The coefficient Wij is related to the quark condensate and is in-

versely proportional to the product of the masses of the interacting quarks. In the
SU(2) NRQM, the potential is given by

VIII = −W
2

∑
i<j

(
16

15
+

2

5
λi.λj +

1

10
σi.σjλi.λj

)
δ(rij) (2.12)

The color magnetic part leads to the hyperfine splitting of the baryon and me-
son spectra. The III also overcomes another drawback of the OGEP. With OGEP
as the quark-quark interaction potential, faithful reproduction of the hyperfine
splitting of the baryon spectra demands that the quark coupling constant αs ∼ 1.6
[53]. This would make the perturbative expansion of the quark-quark interaction
in terms of αs divergent and hence invalid. Also, lattice QCD simulations show
that the predicted values for hyperfine splitting in the quenched approximation
are only half of the observed values [54]. These problems can be overcome by
using III. Since III also contains color magnetic terms which will contribute to
hyperfine splitting, the value of αs can be reduced to half the original value, there
by rendering the pertubative expansion convergent, if we assume that the color
magnetic terms of the OGEP and the III contribute equally to the mass splittings.
Also, the color magnetic terms of the III will ensure that the mass splittings are
of correct magnitude.
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2.4 One-Pion Exchange Potential (OPEP)

The divergence of the axial vector current corresponding to the SU(3)A symme-
try is proportional to the quark masses. In the limit of vanishing quark masses,
SU(Nf )A transformations form a symmetry of the quark Lagrangian. Thus, these
currents are called Partially Conserved Axial-vector Currents (PCAC). As dis-
cussed above, the chiral symmetry breaking leads to presence of pseudo-scalar
Nambu-Goldstone mesons and the PCACs are nothing but these mesonic cur-
rents. In the present model, we consider the SU(2) quarks only and hence, the
only possible PCACs are the pion currents. Thus, from the symmetry breaking
perspective, it is important that the model contains interactions between nucle-
ons mediated by pions. It has also been shown in numerous models earlier that
the long range behavior of the NN interaction is satisfactorily explained by the
potential arising due to the exchange of one pion (for example [55]).

However, one cannot consider the pions in the model as qq̄ pairs for the following
reasons:

• Pair production and annihilation is not allowed in a nonrelativistic theory.
Since the model is nonrelativistic, production of qq̄ pairs i.e., pions cannot
be justified. However, it is possible to derive the interaction potential of
one pion exchange if one considers the pions to be fundamental fields which
couple to the quarks.

• The π−N coupling constant fπNN derived from NN scattering data does not
match the values calculated from the models if the pions used in the model
are treated as qq̄ pairs. In fact the observed value of the coupling constant
is nearly thrice that predicted by the model. If the value for fπNN is fitted
into the model, then the mean square radius 〈r2〉 of the nucleon from the
model turns out to be very large. Thus one cannot match both fπNN and
〈r2〉 simultaneously in a model that assumes pions to be qq̄ pairs.

For the reasons described above, it is absolutely essential to include OPEP in
the model and to treat the pions as fundamental fields [56]. This also enables us to
treat pions as point particles and there by eliminate a cut off parameter that has to
be introduced otherwise. The form of the OPEP is given in eq.2.6. The potential
has two parameters in the form of pion mass mπ and the coupling constant f 2

Q.

The later is related to fπNN via the Goldberger-Treimann relation f 2
Q =

f2πNN
4π

[42].
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2.5 Resonating Group Method (RGM)

In this section, we discuss the method used to evaluate the Hamiltonian matrix
elements. We use RGM developed by Wheeler in the year 1937 [57] (for reviews of
NN interaction using RGM see [58, 59]). For the sake of evaluation we designate
the two nucleons as A and B. We further label the quarks belonging to nucleon
A as 1, 2, and 3 and those belonging to nucleon B as 4, 5, and 6. We begin by
constructing the single nucleon wave function.

2.5.1 Wave function of a Nucleon

The nucleon has orbital (O), spin (S), isospin (T), and color (C) degrees of freedom.
Since nucleons are fermions, their wave functions must be antisymmetric. The color
wave function is a totally antisymmetric wave function because the nucleon is a
color singlet. In the NRQM study of the NN interaction, the interaction potentials
VOGEP , VIII and VOPEP are considered to be perturbations acting on the system
of quarks moving in the harmonic oscillator like confinement potential. Thus in
the ground state, the orbital part of the quark wave function is given by

φ(ri) =
1

(πb2)3/4
exp(− 1

2b2
(ri)

2)

where b is the oscillator size parameter, and ri is the position of the ith quark. The
ground state is characterized by zero angular momentum, (l = 0) and even parity.
Thus the orbital wave function of the three quark ground state is

φ(ri) =
1

(πb2)9/4

3∏
i=1

exp(− 1

2b2
(ri)

2) (2.13)

This wave function is symmetric under the exchange of quarks.
In the SU(2) NRQM, the spin - isospin symmetry of the the multi quark state

is defined by the irreducible representations of the SU(2)spin×SU(2)isospin group.
Since each quark is a spin-1

2
and isospin-1

2
particle, the nucleon spin and isospin

wave functions can only be either mixed symmetric or mixed antisymmetric. The
mixed symmetric (MS) wave functions of a proton are

φspinMS =
1√
6

[(↑↓ + ↓↑) ↑ −2 ↑↑↓] (2.14)

φisospinMS =
1√
6

[(ud+ du)u− 2uud] (2.15)

The corresponding mixed antisymmetric (MA) wave functions are,
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φspinMA =
1√
2

(↑↓ − ↓↑) ↑ (2.16)

φisospinMA =
1√
2

(ud− du)u (2.17)

Thus the spin-isospin wave function of the proton is

|P 〉 =
1√
2

[φspinMS φ
isospin
MS + φspinMAφ

isospin
MA ]

Hence, the spin-isospin wave function of a nucleon is symmetric under the exchange
of quarks.

The color wave function of a nucleon is given by,

1√
6

[RGB −RBG+BRG−BGR +GBR−GRB]

where, R, G, and B represent the three colors - red, green, and blue respectively.
One can easily note that the color wave function is totally antisymmetric under
the exchange of two quarks. Thus the total wave function of a single nucleon has
the form,

ψ = 1 2 3
O
⊗ 1√

2
[ 1 2

3

S

MS

1 2
3

T

MS

⊕ 1 2
3

S

MA

1 2
3

T

MA

]⊗ 1
2
3

C

2.5.2 Wave function of a two Nucleon system

To construct the eigenfunction of a two nucleon system we look at its symmetries.
Each nucleon is made up of three quarks in their ground state and hence each
nucleon belongs to the [3] representation of the orbital symmetry. Thus the orbital
symmetry of the two nucleon system is

[3]⊗ [3] = [6]⊕ [42]⊕ [51]⊕ [33]

⊗ = ⊕ ⊕ ⊕

The ST wave function also possesses the symmetry mentioned above. The
color wave function is totally antisymmetric and hence the two nucleon color wave
function has the following symmetry

⊗ = = [222]
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Since each nucleon has a totally antisymmetric color wave function, the product
of the two wave functions does not necessarily yield a totally antisymmetric state.
Imposing this condition on the two nucleon state makes the wave functions with
the following symmetries are admissible for a two nucleon system:

1. [6]O ⊗ [33]ST ⊗ [222]c

2. [42]O ⊗ [51]ST ⊗ [222]c

3. [42]O ⊗ [33]ST ⊗ [222]c

Hence the totally antisymmetric wave function describing a two nucleon system
is

ψTOT = ψc[a[6]O[33]ST + b[42]O[51]ST + c[42]o[33]ST ]

where the superscripts O, ST , and c imply orbital, spin-isospin, and color respec-
tively. The coefficients a, b, and c are the Clebsch-Gordon coefficients. With this
setup, we move on to discuss the RGM for a two nucleon system.

In the RGM formalism, nucleons are considered as clusters of 3 quarks. Thus a
two nucleon system is treated as a system of two clusters with 3 quarks each. The
two nucleon wave function is nothing but the product of the wave functions of each
nucleon. The interaction between the nucleons arises because of the exchange of
quarks between the clusters. The exchange of quarks is possible only if the wave
functions of the two nucleons overlap. The wave function of the two nucleon system
when the nucleons are well separated is given by

ψ = A[φAφBχ] (2.18)

where, the clusters are named A and B and φA and φB are their wave functions re-
spectively. χ is the relative wave function. A is the anti-symmetrization operator.
The orbital part of the wave function is given by

φ(rA) =
1

(πb2)9/4

3∏
i=1

exp(− 1

2b2
(ri −

sI
2

)2)

φ(rB) =
1

(πb2)9/4

6∏
i=4

exp(− 1

2b2
(ri +

sI
2

)2)

where sI is the generator coordinate. The difference in the sign of the generator
coordinates of the two clusters implies that the clusters are separated by a distance
sI . To write the total wave function ψ in the above form, we employ the following
transformations.
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ξ1 = r1 − r2 , ξ2 = r3 − r1+r2
2

,RA = 1
3
(r1 + r2 + r3)

ξ3 = r4 − r5 , ξ4 = r6 − r4+r5
2

,RB = 1
3
(r4 + r5 + r6)

RAB = RA −RB , RG = 1
2
(RA +RB)

Here, ri gives the position of the ith quark; ξi , i = 1, 2(3, 4) are the internal
coordinates of the cluster A(B) respectively. RAB is the relative coordinate and
RG is the coordinate of the center of mass of the system. From this we can write
the RGM wave function as

ψ(ξ1 , ξ2 , ξ3 , ξ4 ,RAB) = A[φA(ξ1 , ξ2)φB(ξ3 , ξ4)χ(RAB)]

where, φA and φB are the internal wave functions of the two clusters and χ is the
relative wave function. The anti-symmetrization operator is given by

A = 1−
∑

i∈A ,j∈B

POSTC
ij

The following arguments are to be kept in mind while constructing the operator.
When the nucleons are sufficiently close, their wave functions overlap to a consider-
able extent. When this happens, any one or more quarks belonging to one nucleon
can be exchanged with an equal number of quarks of the other nucleon. Three
quark exchange results in the interchange of the nucleons themselves; two quarks
exchange can be thought of as one quark exchange plus an interchange of nucleons.
Thus only one quark exchanges matter. Since quarks are identical indistinguish-
able particles, only the number of quarks exchanged needs to be considered and
there are 9 ways of exchanging one pair of quarks between two nucleons. Thus the
anti-symmetrization operator is

A =
1

10
(1− 9POSTC

36 ) (2.19)

where the operator POSTC
36 exchanges the orbital, spin, isospin and color quantum

numbers of the quarks 3 and 6.
To calculate the NN potential, one finds the solution to the equation

〈ψ| (H − E)A |ψ〉 = 0

The following kernels can be calculated from the above equation:

1. Normalization kernel: N = 〈ψ| A |ψ〉

2. Kinetic energy kernel: K = 〈ψ| (K −KCM)A |ψ〉, and
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3. Potential energy kernel: V = 〈ψ| (VInt + VConf )A |ψ〉

where, VInt represents the interaction potential between the quarks. Thus the
energy of the interaction is given by

E =
〈ψ|HA |ψ〉l
〈ψ| A |ψ〉l

where the subscript l implies that the matrix elements have been projected to the
angular momentum channel l. In terms of the kernels,

E =
(K + V )l

Nl

In terms of the internal and relative coordinates, the above equations can be
rewritten as

LlIJ =
∫

[φ+
A(ξA)φ+

B(ξB)
χlI(RAB)

RAB
Y ∗lm(R̂AB)]φ(RG)(H − E)⊗

A[φA(ξA)φB(ξB)
χlI(RAB)

RAB
Ylm(R̂AB)]φ(RG)dRGdRABdξAdξB

where ξA and ξB represent the internal coordinates of the two clusters. In the
quark coordinates, the above equation can be written as

LlIJ =
∫

[φ+
A(r1 , r2 , r3 ; sI

2
)φ+

B(r4 , r5 , r6 ; −sI
2

)Y ∗lm(ŜI)](H − E)⊗
A[φA(r1 , r2 , r3 ; sJ

2
)φB(r4 , r5 , r6 ; −sJ

2
)Ylm(ŜJ)]

∏6
k=1 d

3rkdŜIdŜJ

(2.20)

The presence of the anti-symmetrization operator A splits the Hamiltonian in
to two - direct and exchange. The direct part of the Hamiltonian is 〈ψ| 1

10
H |ψ〉l

and the exchange part is given by 〈ψ| −9
10
HPOSTC

36 |ψ〉l. The direct part of the
Hamiltonian has the following components: the kinetic energy of the individual
quarks, the kinetic energy of the center of mass of the system, and the potential
energy of the interaction between the quarks belonging to the same cluster. The
inter-cluster direct interactions vanish because of the vanishing color interactions
as per the Wigner - Eckart theorem. On the other hand, the exchange part of
the Hamiltonian involves, in addition to the components mentioned above, inter-
cluster interactions also. It is the exchange part of the Hamiltonian that gives
rise to the NN interaction potential. The various components of the exchange
part of the potential kernel are: V EX

12 , V EX
13 , V EX

14 , V EX
16 , and V EX

36 . The rest of
the components of the interaction are equal to one of the components mentioned
above. For example, V EX

12 is the same as V EX
45 , V EX

14 is the same as V EX
15 , V EX

24 , and
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V EX
25 . Thus the components of the potentials add up as 2V EX

12 + 4V EX
13 + 4V EX

14 +
4V EX

16 + V EX
36 . One can notice that there are 15 possible exchange components.

The direct part of the potential kernel has only two unique components: V D
12 and

V D
36 of which the latter vanishes. Since there can be 6 components of the former

type, V D
12 is multiplied by a factor of 6. The exchange part of the kinetic energy

has two types of components: KEX
1 and KEX

3 . There are two components of the
latter type and 4 components of the former type. Thus the exchange part of the
kinetic energy kernel is 4KEX

1 + 2KEX
1 . The direct part has a similar structure.

The various components of the different kernels are listed in the appendix A.1.3.
Since the quarks are lighter than the nucleons themselves, their kinetic energy

is much greater than that of the nucleons. Thus the kinetic energy of the nucleons
does not contribute to the NN interaction. To remove this component from the
Hamiltonian, we use the Born - Oppenheimer approximation [60]. The exchange
interactions lead to the NN potential. In the asymptotic limit of sI → ∞, the
Hamiltonian mentioned above gives the kinetic energies of the nucleons and their
masses. The exchange part of the interactions vanish in this limit as the overlap
between the wave functions is minimal. Thus, we subtract the total energy in
the asymptotic limit from the total energy to obtain the NN interaction potential.
This procedure is called the adiabatic approximation.
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Chapter 3

Results and Discussion

In this chapter, we discuss in detail the results of the present work.

3.1 Hamiltonian and the Matrix elements

The Hamiltonian used in the present calculation is given in eq.(2.1). The total
energy of the NN system has the direct and exchange parts of the following com-
ponents:

1. Kinetic energy of quarks,

2. Coulomb part of the OGEP,

3. Color electric part of the OGEP,

4. Color magnetic part of the OGEP,

5. Confinement part,

6. Color electric part of III,

7. Color magnetic part of III,

8. Color independent part of III, and

9. One pion exchange potential.

To analyze the contributions of the various components of the Hamiltonian, we
have plotted the diagonal elements of the various kernels of the singlet and triplet
NN potentials as a function of the relative distance between the nucleons (sI).
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The adiabatic potential is calculated using the Born - Oppenheimer approximation
given by,

V Ad
12 = 〈ψ1(sI)|H |ψ2(sI)〉 − 〈ψ1(∞)|H |ψ2(∞)〉 (3.1)

where H is the Hamiltonian (eq.2.1) and ψi(sI) is the normalized two nucleon wave
function in the state i.

The contribution of the kinetic energy of the quarks to NN interaction is given
in fig.B.1. Figs.B.2 and B.3 give the direct and the exchange part of the kinetic
energy kernel respectively. The kinetic energy of quarks provides a state indepen-
dent repulsion in the short range. Both the direct and the exchange components of
the kinetic energy are repulsive in the short range. We note that the total kinetic
energy of the quarks in the long range is approximately 160 MeV which is in the
same range as the mass of the quarks which is ∼ 300 MeV. This is in agreement
with the previous results.

The contribution of the Coulombic part of the OGEP is given in fig.B.4 and
its direct and exchange components in fig.B.5 and fig.B.6 respectively. The direct
part of the interaction is attractive and the exchange part is repulsive. The net
contribution is state independent attraction in the short range. We note that
the depth of the attractive part is < 1MeV. The color electric part of OGEP is
plotted in fig.B.7 and its direct and exchange components in fig.B.8 and fig.B.9
respectively. The direct part of the interaction is repulsive and the exchange part
is attractive in the short range. The net contribution is independent attraction in
the short range. The contributions of the color magnetic part of OGEP is plotted
in fig.B.10. The corresponding direct and exchange components are plotted in
figs.B.11 and B.12 respectively. The direct part of the color magnetic part of
OGEP gives a state independent attraction in the short range. The exchange part
of the color magnetic interaction is repulsive and distinguishes between the singlet
and triplet states. We note that the height of the repulsion is lesser for the triplet
state (∼ 45 MeV) than for the singlet state (∼ 70 MeV). The distinction between
the singlet and the triplet states arises from the spin-spin interaction present in
the color magnetic part of the OGEP.

The III potential consists of three components - color independent part, color
electric part, and the color magnetic part. The color independent part of the III
is plotted in fig.B.13. Fig.B.14 and fig.B.15 give the plots of the direct and the
exchange parts of the color independent part of III. The contribution of the color
independent part of the III is attractive in the short range. Both the direct and the
exchange parts are attractive. The color electric part of III is plotted in fig.B.16
and its direct and exchange components in fig.B.17 and fig.B.18 respectively. This
part of III provides state independent attraction in the short range. The direct
part is marginally repulsive (∼ 0.3 MeV) in the short range whereas the exchange
part is attractive. The contributions of the color magnetic part of III is plotted
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in fig.B.19. The corresponding direct and exchange components are plotted in
figs.B.20 and B.21 respectively. The direct part of the color magnetic part of III
gives a state independent attraction in the short range. The exchange part of the
color magnetic interaction is repulsive and distinguishes between the singlet and
triplet states. We note that the height of the repulsion is lesser for the triplet
state (∼ 3 MeV) than for the singlet state (∼ 6 MeV). We also note that the
height of repulsion for both the singlet and the triplet states are nearly an order
of magnitude lesser compared to the corresponding contribution from the OGEP.

The total contributions of OGEP and III are plotted in fig.B.22 and fig.B.23
respectively. Both the potentials distinguish between the singlet and the triplet
states as both of them contain color magnetic interactions. The contribution of
OGEP for the NN interaction is repulsive in the short range. This repulsion arises
solely from the color magnetic interactions. Contrastingly, the contribution of
III to the NN interaction is attractive in the short range. This attraction arises
primarily due to the color independent interaction (first term in eq.2.12). We also
note that the depth of attraction from III for the singlet state is smaller than the
height of repulsion from OGEP whereas the depth of attraction for the triplet
state is larger than the height of repulsion. Thus the combined contribution of
the OGEP and the III for the singlet state is repulsive whereas that for the triplet
state it is attractive.

The contributions of the OPEP is plotted in fig.B.24. The corresponding direct
and exchange components are plotted in figs.B.25 and B.26 respectively. Both the
direct and the exchange part of the OPEP give rise to state independent repulsion
in the short range. The total contribution of the OPEP, hence, is repulsive in the
short range.

The contributions of the confinement potential is plotted in fig.B.27. The
corresponding direct and exchange components are plotted in figs.B.28 and B.29
respectively. The direct part of the confinement potential gives a small repulsion
(< 1 MeV) in the short range but the exchange part of the potential dominates
with a short range attraction.

The direct and exchange parts of the Hamiltonian are plotted in fig.B.30. The
direct part provides a state independent attraction in the short and intermediate
ranges. The exchange part distinguishes between the singlet and the triplet states
and is repulsive for the singlet state and shows a small amount of attraction in
the intermediate range for the triplet state. The direct part of the Hamiltonian
corresponds to the self energy of the nucleons and hence is state independent.
Since the exchange part of the Hamiltonian represents the interaction between the
nucleons, the distinction between the singlet and the triplet states must arise from
the exchange terms of the Hamiltonian. In fact, the distinction between the singlet
and triplet states arises from the exchange part of the color magnetic terms of the
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OGEP and III (fig.B.10 and fig.B.19).
The adiabatic potential for singlet and triplet states with and without OPEP

are plotted in fig.B.31 and fig.B.32 respectively. In the absence of OPEP, the
singlet potential exhibits a short range repulsion and an intermediate range at-
traction. The intermediate range attraction in the singlet state is removed when
OPEP is introduced. The depth of attraction for the triplet potential decreases
with the introduction of the OPEP. This is because the OPEP provides state in-
dependent repulsion in the short and the intermediate range (fig.B.24). One can
also note that in the presence of OPEP, the short range repulsion is increased in
both the singlet and the triplet states.

3.1.1 Parameters

The model has 7 parameters - oscillator size parameter (b), strong coupling con-
stant (αs), instanton induced interaction strength (W ), mass of the quarks (mq),
confinement strength parameter (ac), mass of the pion (mπ), and the OPEP
strength parameter (fQ). The values of these parameters have been chosen in
the following way:

1. Strong coupling constant (αs) and III parameter (W ): The color magnetic
parts of both OGEP and III contribute to the hyperfine splitting of the
baryon mass. In the SU(2) NRQM, nucleons and the ∆-resonances are
the only allowed baryons in the l = 0 channel. These two particles differ
only in their spin. The nucleons are spin-1

2
particles where as ∆ are spin-3

2

particles. Hence the difference between their masses must arise purely out
of the spin-spin interactions. Thus, if we assume that the color magnetic
forces of OGEP and III contribute equally to the N −∆ mass splitting, we
arrive at the following expressions for αs and W using the single nucleon
wave functions given in eq.2.13

αs =
3m2

qb
3

√
8π

(
∆m

2
) (3.2)

W =
5b3

3
√

2π
(
∆m

2
) (3.3)

where, ∆m is the N −∆ mass difference.

2. Mass of the quark (mq): As discussed in the previous chapter, the dynamical
breaking of the chiral symmetry of the QCD Lagrangian results in the quarks
acquiring a constituent mass. The electric and magnetic moments of the up
and the down quarks gives an estimate of the constituent mass as ∼ 330
MeV [61, 62]. In the present model, we have used the mass of the quarks as
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a free parameter. It should be noted that the strong coupling constant αs
is sensitive to the value of the mq. The strong coupling constant increases
as the square of the mass of the quarks (eq.3.2). Also of importance is
the observation that W does not depend on the mass of the quarks even
though the quarks acquire the constituent mass due to the coupling with the
instanton vacuum.

3. Oscillator size parameter (b): The oscillator size parameter is related to the
r.m.s. radius of the nucleon as

√
r2 = b. NN scattering data suggest that

the r.m.s value of the radius of the proton is close to 0.6 fm. We observe
immediately that both αs and W depend on the third power of b.

The values of the parameters used are tabulated below.

b αS W ac mq mπ f 2
q

(fm) (MeV fm3) (MeV fm−2) (MeV) (MeV)

0.6 0.713 67.67 40.5 300.0 140.0 12.6

Table 3.1: List of parameters
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Chapter 4

Summary and Conclusions

In this section we summarize the model described in the previous sections and the
results obtained.

4.1 Summary of the work

We have constructed an SU(2) nonrelativistic quark model to explain the central
part of the NN interaction in the l = 0 state. The Hamiltonian consists of the
kinetic energy of the quarks, a harmonic oscillator like confinement potential and
the quark-quark interaction potentials. The quark-quark interaction potential in-
clude one-gluon exchange potetnial, instanton induced interaction potential and
the one-pion exchange potential.

We have used the RGM to calculate the NN interaction potential. We find
that the NN potential derived from this model follows qualitatively the potential
derived from the NN scattering data. The NN potential derived from our model
exhibits a short range repulsion, intermediate range attraction and long range
saturation behavior. The model distinguishes between the spin singlet and triplet
states in the short and intermediate ranges.

The interaction potentials form the perturbative interactions of the 6 quark
NN system described by the kinetic energy and the harmonic confining potential.
Hence, we have chosen the orbital part of the trial wave function as the ground state
wave function of a harmonic oscillator. The spin, isospin and color wave functions
have been constructed from the symmetry of the NN system. The interaction
between the nucleons takes place because of the exchange of the quarks between
the nucleons. To incorporate the fermionic nature of the NN system, we have
constructed a suitable anti symmetrization operator.

The OGEP consists of a Coulombic term, a color electric term and a color mag-
netic term. The III contains a color independent term, a color electric term and
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a color magnetic term. The OPEP consists of the central Yukawa-like potential.
The short range repulsion is provided by the kinetic energy of the quarks and the
color magnetic part of the OGEP and the III. The color magnetic interactions be-
tween the quarks differentiate between the spin singlet and the triplet states. The
repulsive contributions of the color magnetic interactions to the spin singlet state
is larger than that for the triplet state. Thus the intermediate range attraction for
the triplet state is larger than that for the singlet state. The OPEP also provides
state independent repulsion.Thus, the intermediate range attraction in the singlet
state is absent in the presence of the OPEP. The III provides a strong attractive
contribution in the short range. The strength of the attraction is comparable to
the strength of the repulsion provided by the OGEP in the short range. The di-
rect part of the Hamiltonian is attractive in the short and intermediate ranges
while the exchange part is repulsive in the short range. The exchange part of the
Hamiltonian exhibits a small amount of attraction in the intermediate range.

4.2 Scope for future works

In this thesis, we have explained qualitatively the NN interaction potential in the
framework of NRQM using RGM. The model successfully reproduces the qualita-
tive features of the interaction potential. However, potentials are not the measur-
able quantities. The measurable quantity in any scattering reaction is the scatter-
ing cross-section. We have not attempted to calculate the scattering cross-section
for the singlet and triplet NN scattering. Also of importance will be to calculate
the mass spectrum of the SU(2) baryons and their decay widths. The parameters
of our model can then be used to re-calculate the NN potential and the scattering
cross-section and also probe the importance of the ∆ and the hidden color channel
in the NN scattering. These calculations will provide valuable insights into the
physics behind the NN scattering and hence the strong interactions.
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Appendix A

Appendix: Matrix elements

In this section, we detail the procedure used to calculate the Hamiltonian matrix
elements and list the various matrix elements.

A.1 Calculating the Matrix elements in RGM.

The RGM equation is given by

〈ψ| (H − E)A |ψ〉 = 0

where, H and A are the Hamiltonian (eq.2.1) and the anti-symmetrization
(eq.2.19) operator respectively. The orbital part of the matrix elements can then
be calculated as,

Oij =

∫ 6∏
i=1

d3riφ
†(ri)Oijφ(ri) (A.1)

where Oij is any operator belonging to the orbital part of the Hamiltonian,
and φ(ri) is the orbital part of the wave function.

As an example we calculate the matrix element corresponding to the direct and
the exchange part of the Coulomb part of the OGEP with i = 1 and j = 2 i.e.,

the matrix element of
αs
4

1

r12

of the OGEP. We designate the matrix elements as

V D
12Coul and V E

12Coul where D and E imply direct and exchange respectively.
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V D
12Coul =

αs
4

∫ 3∏
i=1

1

(πb2)(−3/4)
exp(− 1

2b2
(ri −

sI
2

)2)
1

r12

1

(πb2)(−3/4)
exp(− 1

2b2
(ri +

sI
2

)2)

⊗
6∏
i=4

1

(πb2)(−3/4)
exp(− 1

2b2
(ri −

sJ
2

)2)
1

(πb2)(−3/4)
exp(− 1

2b2
(ri +

sJ
2

)2)
6∏

k=1

d3rk

The integrals on ri , i = 3, 4, 5, 6 reduces to the normalization integral and are
together denoted as d4 where, d = exp( −1

16b2
(sI − sJ)2). Thus,

V D
12Coul =

αs
4
d4 1

(πb2)−3

∫
d3r1d

3r2
1

r12

exp(− 1

2b2
(r1 −

sI
2

)2) exp(− 1

2b2
(r2 −

sI
2

)2)

⊗ exp(− 1

2b2
(r1 −

sJ
2

)2) exp(− 1

2b2
(r2 −

sJ
2

)2)

To solve the above integral, we make the transformation r1 − r2 = r and
R = r1+r2

2
. The integral is then given by,

V D
12Coul =

αs
4

d6

b3
√

8π3

∫
1

r
exp(− r2

2b2
)d3r

=
αs
4

d6

b

√
2

π

The corresponding exchange matrix element is calculated as,

V E
12Coul =

αs
4

∫ 3∏
i=1

1

(πb2)(−3/2)
exp(− 1

2b2
(ri −

sI
2

)2)
POSTC

36

r12

exp(− 1

2b2
(ri +

sI
2

)2)

⊗
6∏
i=4

1

(πb2)(−3/2)
exp(− 1

2b2
(ri −

sJ
2

)2) exp(− 1

2b2
(ri +

sJ
2

)2)
6∏

k=1

d3rk

The operator POSTC
36 exchanges r3 with r6. The integrals on ri , i = 3, 4, 5, 6 re-

duce to the normalization integrals and are denoted by d2e2 where, d = exp( −1
16b2

(sI−
sJ)2) and e = exp( −1

16b2
(sI + sJ)2). The matrix element reduces to,

V E
12Coul =

αs
4
d2e2 1

(πb2)−3

∫
d3r1d

3r2
1

r12

exp(− 1

2b2
(r1 −

sI
2

)2) exp(− 1

2b2
(r2 −

sI
2

)2)

⊗ exp(− 1

2b2
(r1 −

sJ
2

)2) exp(− 1

2b2
(r2 −

sJ
2

)2)
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Using the transformations r1 − r2 = r and R =
r1 + r2

2
, the integral reduces

to,

V E
12Coul =

αs
4

d4e2

b3
√

8π3

∫
1

r
exp(− r2

2b2
)d3r

=
αs
4

d4e2

b

√
2

π

These are projected onto the orbital angular momentum l = 0 state using the
equation,

Oij|l =

∫
dŝIdŝJ Y

∗
lm(ŝI)Oij Ylm(ŝJ)

Thus, the l = 0 projection of V D
12Coul would be,

V D
12Coul|l=0 =

∫
dŝIdŝJ Y

∗
00(ŝI)

αs
4

d6

b

√
2

π
Y00(ŝJ)

=
αs
4

1

b

√
2

π

∫
dŝIdŝJ Y

∗
00(ŝI) d

6 Y00(ŝJ)

=
αs
4

1

b

√
2

π

∫
dŝIdŝJ exp(

−1

16b2
(s2
I − s2

J))

=
αs
4

1

b

√
2

π
e(−3

8

s2I+s
2
J

b2
) sinh(

3sIsJ
4b2

)
4b2

3sIsJ

=
αs
4

√
2

π
e(−3

8

s2I+s
2
J

b2
) sinh(

3sIsJ
4b2

)
4

3bsIsJ

Similarly,

V E
12Coul|l=0 =

αs
4

√
2

π
e(−3

8

s2I+s
2
J

b2
) sinh(

sIsJ
4b2

)
4

bsIsJ

Following the above procedure, we see that the projections of ND(= d6) and NE(=
d4e2) are,

ND|l=0 = 4πe−
3
8

s2I+s
2
J

b2 sinh(
3sIsJ
4b2

)
4b2

3sIsJ

NE|l=0 = 4πe−
3
8

s2I+s
2
J

b2 sinh(
sIsJ
4b2

)
4b2

sIsJ
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A.1.1 Spin and Isospin matrix elements

The spin-isospin state of the NN system is given by,

|NN〉 =
1

2

∑
s , t

|(s , 1

2
); (t ,

1

2
);S,MS〉 ⊗ |(s ,

1

2
); (t ,

1

2
);T,MT 〉

The spin-isospin matrix elements are,

〈NN |OSTP S
36P

T
36 |NN〉 =

1

4

∑
s1 , t1;s2 , t2

〈(s1 ,
1

2
); (s2 ,

1

2
);S,MS|OSP S

36 |(s1 ,
1

2
); (s2 ,

1

2
);S,MS〉

⊗ 〈(t1 ,
1

2
); (t2 ,

1

2
);T,MT |OTP T

36 |(t1 ,
1

2
); (t2 ,

1

2
);T,MT 〉

For OT = 1, the isospin matrix element reduces to the product of the 9J symbols.
In the presence of OT , The exchange operator Pij can be written as,

P T
ij =

1

2
+
τi.τj

2
Hence the isospin operator can be written as,

τi.τj = 2(P T
ij − 1)

Similarly the spin operator can be written as,

σi.σj = 2(P S
ij − 1)

The values of the spin-isospin matrix elements for different values of i and j are
given in table A.2

A.1.2 Color matrix elements

The color wave function is given by,

|C〉 = [222] =

The color permutation operator PC
ij can written as,

PC
ij =

1

3
+
λi.λj

2
Thus the color operator is,

λi.λj = 2PC
ij −

2

3
Hence the color matrix elements are given by,

〈C|λi.λjPC
36 |C〉 = 〈C| (2PC

ij −
2

3
)PC

36 |C〉

The values of the color matrix elements for different values of i and j are listed in
table A.2
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A.1.3 Lists of Matrix elements.

The matrix elements corresponding to the above mentioned operators are listed in
this section. A list of these operators is given in table A.1.

The kinetic energy of the quarks is given by,

K =
−1

2m2

6∑
i=1

(∇2
i −

−1

12m2
∇2
R)

where, ∇2
R is the Laplacian with respect to the center of mass. The matrix ele-

ments are split into direct (D) and exchange (E) parts and the kinetic energy is
further split into: KD , KE1 , KE3 , K

CM
D , and KCM

E . The matrix elements before
projection are,

KD =
3

2mb2
(1− 1

24

(sI − sJ)2

b2
)ND

KE1 =
3

2mb2
(1− 1

24

(sI − sJ)2

b2
)NE

KE3 =
3

2mb2
(1− 1

24

(sI + sJ)2

b2
)NE

KCM
D =

3

2mb2
ND

KCM
E =

3

2mb2
NE

where, ND = d6 and NE = d4e2. The matrix elements after projection are,

KD = 4π
3

2mb2
exp(−s

2
I + s2

J

b2
)(sinh(

3sIsJ
4b2

)
4b2

3sIsJ
− 1

24

(sI − sJ)2

b2
sinh(

3sIsJ
4b2

)
4b2

3sIsJ

+
sIsJ
12b2

(
x cosh(x)− sinh(x)

x2
))

KE1 = 4π
3

2mb2
exp(−s

2
I + s2

J

b2
)(sinh(

3sIsJ
4b2

)
4b2

sIsJ
− 1

24

(sI − sJ)2

b2
sinh(

sIsJ
4b2

)
4b2

sIsJ

+
sIsJ
12b2

(
y cosh(y)− sinh(y)

x2
))

KE3 = 4π
3

2mb2
exp(−s

2
I + s2

J

b2
)(sinh(

3sIsJ
4b2

)
4b2

sIsJ
− 1

24

(sI − sJ)2

b2
sinh(

sIsJ
4b2

)
4b2

sIsJ

−sIsJ
12b2

(
y cosh(y)− sinh(y)

x2
))

KCM
D =

3

2mb2
ND|l=0

KCM
E =

3

2mb2
NE|l=0
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where, x =
3

4

sIsJ
b2

and y =
1

4

sIsJ
b2

The Coulomb part of OGEP,

VCoul =
αs
4

∑
i<j

1

rij

Before projection

V D
12 =

αs
4

1

b

√
2

π
ND

V E
12 =

αs
4

1

b

√
2

π
NE

V E
13 =

αs
4

2

sJ
Erf(

sJ√
8b

)NE

V E
16 =

αs
4

2

sI
Erf(

sI√
8b

)NE

V E
14 =

αs
4

2

sI + sJ
Erf(

sI + sJ√
8b

)NE

V E
36 =

αs
4

2

sI − sJ
Erf(

sI − sJ√
8b

)NE

where the error function Erf(x) is defined as,

Erf(x) =
2√
π

∫ x

0

e−y
2

dy

After projection

V D
12 =

αs
4

1

b

√
2

π
ND|l=0

V E
12 =

αs
4

1

b

√
2

π
NE|l=0

V E
13 =

αs
4

2

sJ
Erf(

sJ√
8b

)NE|l=0

V E
16 =

αs
4

2

sI
Erf(

sI√
8b

)NE|l=0

V E
14 =

αs
4

2

sI + sJ
Erf(

sI + sJ√
8b

)NE|l=0

V E
36 =

αs
4

2

sI − sJ
Erf(

sI − sJ√
8b

)NE|l=0
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The color electric part of OGEP is

VCE = −αs
4

π

m2

∑
i<j

δ(rij)

Before projection

V D
12 =

αs
4

π

m2

1

b3

√
2

π3
ND

V E
12 =

αs
4

π

m2

1

b3

√
2

π3
NE

V E
13 =

αs
4

π

m2

1

b3

√
2

π3
e(− s2J

8b2
)NE

V E
16 =

αs
4

π

m2

1

b3

√
2

π3
e(− s2I

8b2
)NE

V E
14 =

αs
4

π

m2

1

b3

√
2

π3
e(− (sI+sJ )2

2b2
)NE

V E
36 =

αs
4

π

m2

1

b3

√
2

π3
e(− (sI−sJ )2

2b2
)NE

After projection

V D
12 =

αs
4

π

m2

1

b3

√
2

π3
ND|l=0

V E
12 =

αs
4

π

m2

1

b3

√
2

π3
NE|l=0

V E
13 =

αs
4

π

m2

1

b3

√
2

π3
exp(− s2

J

8b2
)NE|l=0

V E
16 =

αs
4

π

m2

1

b3

√
2

π3
exp(− s2

I

8b2
)NE|l=0

V E
14 =

4

π

αs
4

π

m2

1

b3

√
2

π3
exp(−s

2
I + s2

J

b2
) sinh(

sIsJ
b2

)
b2

sIsJ

V E
36 =

4

π

αs
4

π

m2

1

b3

√
2

π3
exp(−s

2
I + s2

J

b2
) sinh(

3sIsJ
2b2

)
2b2

3sIsJ
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The corresponding color magnetic elements are to be multiplied by
−2

3
. The

orbital matrix elements of the III potential are similar to the ones listed above.

The color independent part of the III have the multiplier −W
2

16

15
, the color electric

matrix elements have −W
2

2

5
and the color magnetic components −W

2

1

10
instead

of
αs
4

π

m2
of the OGEP.

The OPEP potential is,

VOPEP =
f 2
Q

3

∑
i<j

e−mπrij

rij

Before projection

V D
12 =

f 2
Q

3

ND

b

√
2

π

(
1−mπb

√
π

2
em

2
π
b2

2 Erfc

[
mπb√

2

])
V D

36 =

(
e2(

sI+sJ
4

)mπErfc

[
2( sI+sJ

4
) +mπb

2

√
2b

]
− e−2(

sI+sJ
4

)mπErfc

[−2( sI+sJ
4

) +mπb
2

√
2b

])
⊗
f 2
Q

3

ND

( sI+sJ
4

)

√
2em

2
π
b2

2

V E
12 =

f 2
Q

3

NE

b

√
2

π

(
1−mπb

√
π

2
em

2
π
b2

2 Erfc

[
mπb√

2

])
V E

36 =

(
e2(

sI−sJ
4

)mπErfc

[
2( sI−sJ

4
) +mπb

2

√
2b

]
− e−2(

sI−sJ
4

)mπErfc

[−2( sI−sJ
4

) +mπb
2

√
2b

])
⊗
f 2
Q

3

NE

( sI−sJ
4

)

√
2em

2
π
b2

2

V E
13 =

f 2
Q

3

NE

sJ
4
√

2em
2
π
b2

2

(
e
sJmπ

2 Erfc

[ sJ
2

+mπb
2

√
2b

]
− e−

sJ
2
mπErfc

[− sJ
2

+mπb
2

√
2b

])
V E

16 =
f 2
Q

3

NE

sI
4
√

2em
2
π
b2

2

(
e
sImπ

2 Erfc

[ sI
2

+mπb
2

√
2b

]
− e−

sI
2
mπErfc

[− sI
2

+mπb
2

√
2b

])
V E

14 =

(
e2(

sI+sJ
4

)mπErfc

[
2( sI+sJ

4
) +mπb

2

√
2b

]
− e−2(

sI+sJ
4

)mπErfc

[−2( sI+sJ
4

) +mπb
2

√
2b

])
⊗
f 2
Q

3

NE

( sI+sJ
4

)

√
2em

2
π
b2

2
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After projection

V D
12 =

f 2
Q

3

ND

b

√
2

π

(
1−mπb

√
π

2
em

2
π
b2

2 Erfc

[
mπb√

2

])
|l=0

V D
36 =

(
e2(

sI+sJ
4

)mπErfc

[
2( sI+sJ

4
) +mπb

2

√
2b

]
− e−2(

sI+sJ
4

)mπErfc

[−2( sI+sJ
4

) +mπb
2

√
2b

])
⊗
f 2
Q

3

ND

( sI+sJ
4

)

√
2em

2
π
b2

2 |l=0

V E
12 =

f 2
Q

3

NE

b

√
2

π

(
1−mπb

√
π

2
em

2
π
b2

2 Erfc

[
mπb√

2

])
|l=0

V E
36 =

(
e2(

sI−sJ
4

)mπErfc

[
2( sI−sJ

4
) +mπb

2

√
2b

]
− e−2(

sI−sJ
4

)mπErfc

[−2( sI−sJ
4

) +mπb
2

√
2b

])
⊗
f 2
Q

3

NE

( sI−sJ
4

)

√
2em

2
π
b2

2 |l=0

V E
13 =

f 2
Q

3

NE

sJ
4
√

2em
2
π
b2

2

(
e
sJmπ

2 Erfc

[ sJ
2

+mπb
2

√
2b

]
− e−

sJ
2
mπErfc

[− sJ
2

+mπb
2

√
2b

])
|l=0

V E
16 =

f 2
Q

3

NE

sI
4
√

2em
2
π
b2

2

(
e
sImπ

2 Erfc

[ sI
2

+mπb
2

√
2b

]
− e−

sI
2
mπErfc

[− sI
2

+mπb
2

√
2b

])
|l=0

V E
14 =

(
e2(

sI+sJ
4

)mπErfc

[
2( sI+sJ

4
) +mπb

2

√
2b

]
− e−2(

sI+sJ
4

)mπErfc

[−2( sI+sJ
4

) +mπb
2

√
2b

])
⊗
f 2
Q

3

NE

( sI+sJ
4

)

√
2em

2
π
b2

2 |l=0

The confinement potential is,

VCONF = ac
∑
i<j

r2
ijλi.λj

Before projection

V D
12 = ac3b

2ND

V E
12 = ac3b

2NE

V E
13 = ac3b

2(1 +
s2
J

12b2
)NE

V E
16 = ac3b

2(1 +
s2
I

12b2
)NE

V E
14 = ac3b

2(1 +
(sI + sJ)2

12b2
)NE

V E
36 = ac3b

2(1 +
(sI − sJ)2

12b2
)NE
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After projection

V D
12 = ac3b

2ND|l=0

V E
12 = ac3b

2NE|l=0

V E
13 = ac3b

2(1 +
s2
J

12b2
)NE|l=0

V E
16 = ac3b

2(1 +
s2
I

12b2
)NE|l=0

V E
14 = ac3b

24π[(1 +
(sI + sJ)2

12b2
)NE|l=0

+(
sIsJ
6b2

e(− 3(s2I+s
2
J )

8b2
) 8b2

sIsJ
(cosh(

sIsJ
4b2
− 4b2

sIsJ
sinh(

sIsJ
4b2

))))]

V E
36 = ac3b

24π[(1 +
(sI + sJ)2

12b2
)NE|l=0

−(
sIsJ
6b2

e(− 3(s2I+s
2
J )

8b2
) 8b2

sIsJ
(cosh(

sIsJ
4b2
− 4b2

sIsJ
sinh(

sIsJ
4b2

))))]

The direct matrix elements are multiplied by 1
10

and the exchange matrix ele-
ments by −9

10
. The sum of all the matrix elements must be divided by the normal-

ization kernel 1
10

(ND − 9NE)|l=0. This gives the NN potential as a function of the
NN separation sI .
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Operator Oij

Kinetic energy
∇2
i

2mq

Coulomb part of OGEP
αs
4

1

rij

Color electric part of OGEP
αs
4

π

m2
q

δ(rij)

Color magnetic part of OGEP −2

3

αs
4

π

m2
q

δ(rij)

Color independent part of III −W
2

16

15
δ(rij)

Color electric part of III −2

5

W

2
δ(rij)

Color magnetic part of III − 1

10
2
3

W

2
δ(rij)

Confinement acr
2
ij

OPEP
f2Q
3

exp(−mπrij)
rij

Table A.1: Different operators of the Hamiltonian
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λi.λj σi.σj τi.τj P
STC
36 S = 0 S = 1

T = 1 T = 0

1 243 243

λ1.λ2 -648 -648

λ3.λ6 0 0

λ1.λ2 σ1.σ2 648 648

λ3.λ6 σ3.σ6 0 0

P STC
36 -3 -3

λ1.λ2 P
STC
36 8 8

λ1.λ3 P
STC
36 8 8

λ1.λ6 P
STC
36 8 8

λ1.λ4 P
STC
36 -4 -4

λ3.λ6 P
STC
36 -16 -16

λ1.λ2 σ1.σ2 P
STC
36 -136 -136

λ1.λ3 σ1.σ3 P
STC
36 56 56

λ1.λ6 σ1.σ6 P
STC
36 56 56

λ1.λ4 σ1.σ4 P
STC
36 0 8

λ3.λ6 σ3.σ6 P
STC
36 496 304

σ1.σ2 τ1.τ2 1215 1215

σ3.σ6 τ3.τ6 -225 -225

σ1.σ2 τ1.τ2 P
STC
36 -333 -333

σ1.σ3 τ1.τ3 P
STC
36 99 99

σ1.σ6 τ1.τ6 P
STC
36 99 99

σ1.σ4 τ1.τ4 P
STC
36 27 27

σ3.σ6 τ3.τ6 P
STC
36 531 531

Table A.2: Color, spin and isospin matrix elements
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Appendix B

Appendix: Plots
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Figure B.1: Total kinetic energy.
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Figure B.2: Direct part of the kinetic
energy.
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Figure B.3: Exchange part of the ki-
netic energy.
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Figure B.4: Total Coulomb energy from OGEP.
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Figure B.5: Direct part of the
Coulomb energy from OGEP.
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Figure B.6: Exchange part of the
Coulomb energy from OGEP.
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Figure B.7: Total color electric energy from OGEP.
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Figure B.8: Direct part of the color
electric energy from OGEP.
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Figure B.9: Exchange part of the
color electric energy from OGEP.
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Figure B.10: Total color magnetic energy from OGEP.
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Figure B.11: Direct part of the color
magnetic energy from OGEP.
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Figure B.12: Exchange part of the
color magnetic energy from OGEP.
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Figure B.13: Total energy from color independent part of III.
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Figure B.14: Direct part of the color
independent part of III.
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Figure B.15: Exchange part of the
color independent part of III.
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Figure B.16: Total color electric energy from III.
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Figure B.17: Direct part of the color
electric energy from III.
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Figure B.18: Exchange part of the
color electric energy from III.
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Figure B.19: Total color magnetic energy from III.
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Figure B.20: Direct part of the color
magnetic energy from III.
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Figure B.21: Exchange part of the
color magnetic energy from III.
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Figure B.22: Total contribution from
OGEP.
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Figure B.23: Total contribution from
III.
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Figure B.24: Total OPEP energy.
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Figure B.25: Direct part of the
OPEP energy.
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Figure B.26: Exchange part of the
OPEP energy.
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Figure B.28: Direct part of the con-
finement energy.
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Figure B.29: Exchange part of the
confinement energy.
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Adiabatic Direct and Exchange Energy
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Figure B.30: Direct and exchange parts of the Hamiltonian in the adiabatic limit.
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Adiabatic N-N potential with OPEP
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Figure B.31: NN potential with OPEP.

Adiabatic N-N Potential without OPEP
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Figure B.32: NN potential without OPEP.
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