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Abstract

Non-integrable special geometric structures in
dimensions six and seven

Alberto Raffero – XXVIII ciclo

Scuola di Dottorato in Scienze della Natura e Tecnologie Innovative

Università degli Studi di Torino – March 4th, 2016

Six-dimensional manifolds admitting an SU(3)-structure and seven-dimensional man-

ifolds endowed with a G2-structure are the main object of study in this thesis.

In the six-dimensional case, we consider SU(3)-structures (ω, ψ+) satisfying the

condition dω = c ψ+, c ∈ R− {0}, known in literature as coupled. They are half-flat

and generalize the class of nearly Kähler SU(3)-structures. We study their properties

in the general case and in relation with the rôle they play in supersymmetric string

theory, the conditions under which the associated metric is Einstein, their behaviour

with respect to the Hitchin flow equations and various classes of examples.

In the seven-dimensional case, we focus on G2-structures defined by a stable 3-

form ϕ which is locally conformal equivalent to a closed one. We study the restrictions

arising when the underlying metric is Einstein, we use warped products and the

mapping torus construction to provide noncompact and compact examples of 7-

manifolds endowed with such a structure starting from 6-manifolds with a coupled

SU(3)-structure and, finally, we prove a structure result for compact 7-manifolds.

We conclude studying a generalization of the Hitchin flow equations and a geomet-

ric flow of spinors on 6-manifolds. The latter gives rise to a flow of SU(3)-structures.

iii





Acknowledgements

First of all, I wish to thank Anna Fino, who supervised my work during these years.

I am indebted to her for all fruitful conversations and for her continued support.

Approaching the world of research might not be easy, but doing this under a good

guidance makes things less tricky.

I would also like to thank Marisa Fernández, with whom I had the opportu-

nity and pleasure to work, and Ilka Agricola for her hospitality in the Mathematics

Department in Marburg and for useful conversations.

Moreover, I would like to thank Luigi Vezzoni and Thomas Bruun Madsen for

useful discussions and for the appreciated comments on my research topics.

Finally, I want to thank all people I have met during these three years, especially

Jakob, Michele, Paolo, Roberta (in rigorous alphabetical order!), the Ph.D. students

and the post-docs of the Mathematics Department in Torino.

Un ringraziamento particolare ai miei genitori, che mi hanno sempre sostenuto

nelle scelte fatte in questi anni, e a Ginevra, per tutto.

v





Contents

Abstract iii

Introduction xi

1 Preliminaries 1

1.1 Basics, notations and conventions . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Smooth manifolds, vector bundles and tensor fields . . . . . . . 1

1.1.2 Principal bundles and connections . . . . . . . . . . . . . . . . 5

1.1.3 The holonomy group of a connection . . . . . . . . . . . . . . . 7

1.2 G-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Definition, properties and examples . . . . . . . . . . . . . . . 9

1.2.2 The intrinsic torsion of a G-structure . . . . . . . . . . . . . . . 14

1.2.3 Riemannian holonomy groups . . . . . . . . . . . . . . . . . . . 17

1.3 Homogeneous Riemannian manifolds . . . . . . . . . . . . . . . . . . . 21

1.4 Einstein and Ricci soliton metrics . . . . . . . . . . . . . . . . . . . . . 27

1.4.1 Einstein metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Einstein solvmanifolds . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.3 Ricci soliton metrics . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.4 Ricci soliton metrics on nilpotent Lie groups . . . . . . . . . . 33

2 Special half-flat SU(3)-structures 37

2.1 SU(n)-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Almost complex manifolds . . . . . . . . . . . . . . . . . . . . . 37

2.1.2 The group SU(n) as stabilizer of tensors on R2n . . . . . . . . . 40

vii



2.1.3 Special almost Hermitian manifolds . . . . . . . . . . . . . . . 42

2.2 SU(3)-structures and their classification . . . . . . . . . . . . . . . . . 46

2.2.1 SU(3)-structures revisited . . . . . . . . . . . . . . . . . . . . . 46

2.2.2 The classification of SU(3)-structures . . . . . . . . . . . . . . . 51

2.2.3 The Ricci tensor of an SU(3)-structure . . . . . . . . . . . . . . 56

2.3 Nearly Kähler SU(3)-structures . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Coupled SU(3)-structures . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.2 Coupled SU(3)-structures and the Hitchin flow . . . . . . . . . 78

2.4.3 Coupled SU(3)-structures and supersymmetry . . . . . . . . . . 82

2.5 Half-flat SU(3)-structures and Einstein metrics . . . . . . . . . . . . . 90

2.5.1 S3 × S3 and its Ad(S1)-invariant Einstein metrics . . . . . . . 91

2.5.2 Twistor spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.5.3 Six-dimensional Einstein solvmanifolds . . . . . . . . . . . . . . 102

3 Locally conformal calibrated G2-manifolds 111

3.1 G2-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.1.1 The group G2 as stabilizer of tensors on R7 . . . . . . . . . . . 111

3.1.2 G2-structures and their classification . . . . . . . . . . . . . . . 115

3.1.3 The Ricci tensor of a G2-structure . . . . . . . . . . . . . . . . 120

3.2 The relation between G2- and SU(3)-structures . . . . . . . . . . . . . 123

3.2.1 Hypersurfaces of 7-manifolds with a G2-structure . . . . . . . . 123

3.2.2 Construction of G2-structures from SU(3)-structures . . . . . . 127

3.3 Locally conformal calibrated G2-structures . . . . . . . . . . . . . . . . 131

3.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.4 Einstein locally conformal calibrated G2-structures . . . . . . . . . . . 146

3.5 A structure result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.5.1 dθ-exact G2-structures . . . . . . . . . . . . . . . . . . . . . . . 153

3.5.2 The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . 158

4 Perspectives on flows 167

4.1 Generalized Hitchin flow . . . . . . . . . . . . . . . . . . . . . . . . . . 167

viii



4.1.1 An example from physics . . . . . . . . . . . . . . . . . . . . . 169

4.2 Geometric flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.3 A spinor flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.3.1 Spin structures on Riemannian manifolds . . . . . . . . . . . . 181

4.3.2 The spinors - SU(3)-structures correspondence . . . . . . . . . 187

4.3.3 The (−D2)-flow . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Bibliography 197

ix





Introduction

“If I have seen further,

it is by standing on the shoulders of Giants”

I. Newton

In Riemannian geometry, the study of special geometric structures is closely related

to holonomy theory. Let (M, g) be an m-dimensional Riemannian manifold, it is well-

known that the Riemannian holonomy group Hol(g), namely the holonomy group of

the Levi Civita connection∇g associated with the Riemannian metric g, is a subgroup

of the orthogonal group O(m).

The classification of the possible Riemannian holonomy groups when (M, g) is

simply connected and complete began with Cartan’s classification of simply con-

nected Riemannian symmetric spaces [36, 37] in the twenties of the last century and

was achieved with the results of de Rham [58] and Berger [21] in the 1950s. In [58], it

was shown that (M, g) is isometric to a product (M0×M1×· · ·×Mk, g0×g1×· · ·×gk)
of simply connected and complete Riemannian manifolds such that (M0, g0) is flat,

Hol(gi) acts irreducibly on the tangent spaces of Mi for every i = 1, . . . , k, and

Hol(g) is isomorphic to Hol(g1) × · · · × Hol(gk), while in [21] the list of all possi-

ble holonomy groups for irreducible and non-symmetric Riemannian manifolds was

obtained. In detail, Hol(g) must be one of SO(m),U(n),SU(n) when m = 2n ≥ 4,

Sp(n)Sp(1),Sp(n) when m = 4n ≥ 8, G2 when m = 7 and Spin(7) when m = 8.

The proof that all of the groups appearing in Berger’s list actually occur as Rieman-

nian holonomy groups was completed in the 1980s with Bryant and Salamon’s first

examples of (complete) metrics with holonomy G2 and Spin(7) [29, 32].
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Given a Lie subgroup G of GL(m,R), a G-structure on M is by definition a

reduction of the structure group of the frame bundle FM from GL(m,R) to G, that

is, a principal subbundle Q of FM with typical fiber G. If G is one of the groups

appearing in Berger’s list except SO(m), the corresponding G-structures are called

special geometric structures.

Whenever G ⊆ O(m), a G-structure Q on M gives rise to a Riemannian metric g

on it and some extra geometric data, which are usually represented by certain tensor

fields on M whose common stabilizer at each point of the manifold is G. Actually,

the existence of such tensor fields is equivalent to a reduction of the structure group

of FM to G. This is exactly what happens for every special geometric structure.

The obstruction for the Riemannian holonomy group Hol(g) to reduce to G is

represented by the so-called intrinsic torsion τ of the G-structure, which is a section

of a vector bundle over M with typical fiber the G-module (Rm)∗ ⊗ g⊥, being g⊥

the orthogonal complement of the Lie algebra g of G in so(m) with respect to the

Killing form. More precisely, such a reduction is characterized by the vanishing of

τ . Furthermore, when the G-structure is defined by some tensor fields, τ can be

identified with their covariant derivatives with respect to the Levi Civita connection

∇g and, consequently, the holonomy reduction holds when they are all ∇g-parallel.

A G-structure with identically vanishing intrinsic torsion is called torsion-free, while

it is said to be non-integrable otherwise.

In this thesis, we are mainly interested in 6-manifolds endowed with an SU(3)-

structure, evolution equations of SU(3)-structures and 7-manifolds admitting a G2-

structure. In the following, we briefly review these topics explaining the motivations

of our study.

An SU(3)-structure on a six-dimensional manifold M can be defined by the data

of a 2-form ω and a 3-form ψ+ which are stable in the sense of [101, 161]: at each

point p of M their orbit under the action of the general linear group GL(TpM) is

open and there exists a basis (e1, . . . , e6) of the cotangent space T ∗pM such that

ω = e12 + e34 + e56, ψ+ = e135 − e146 − e236 − e245,

where eijk··· is a shorthand for the wedge product ei ∧ ej ∧ ek ∧ · · · of 1-forms.
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On the manifold M, the pair (ω, ψ+) gives rise to an almost complex structure

J, to a complex volume form Ψ = ψ+ + iψ− of nonzero constant length, where

ψ− := Jψ+, and to a Riemannian metric defined by g(·, ·) = ω(·, J ·).
The intrinsic torsion τ of an SU(3)-structure (ω, ψ+) is a section of a rank 42

vector bundle W over M with typical fiber (R6)∗ ⊗ su(3)⊥ and can be identified

with the covariant derivatives ∇gω, ∇gΨ. The decomposition of the SU(3)-module

(R6)∗ ⊗ su(3)⊥ into SU(3)-irreducible summands induces a splitting

W =W+
1 ⊕W

−
1 ⊕W

+
2 ⊕W

−
2 ⊕W3 ⊕W4 ⊕W5

and the intrinsic torsion decomposes accordingly. This gives rise to 128 classes of

SU(3)-structures, which are defined in terms of the identically vanishing components

of τ and can be characterized by the expressions of dω, dψ+ and dψ−, as shown by

Chiossi and Salamon in [40]. When ω, ψ+ and ψ− are all closed, the SU(3)-structure

is torsion-free, the Riemannian holonomy group Hol(g) is a subgroup of SU(3) and

g is Ricci-flat, i.e., its Ricci tensor Ric(g) vanishes identically.

One of the most remarkable classes of SU(3)-structures is defined by the equations

dω ∧ ω = 0, dψ+ = 0,

which constrain the intrinsic torsion to lie in the rank 21 vector bundle W−1 ⊕W
−
2 ⊕

W3. Since the rank is exactly half of the rank of W, such structures have been

named half-flat [40] or half-integrable [42]. By [40, 102], every oriented hypersurface

of a Riemannian 7-manifold with holonomy in G2 is naturally endowed with a half-flat

SU(3)-structure and, conversely, a six-dimensional manifold with a real analytic half-

flat SU(3)-structure can be realized as a hypersurface of a 7-manifold with holonomy

in G2 [31, 102]. The latter result is proved studying the following system of evolution

equations for an SU(3)-structure (ω(t), ψ+(t)) depending on a parameter t ∈ I ⊆ R ∂
∂tψ+(t) = dω(t)

∂
∂tω(t) ∧ ω(t) = −dψ−(t)

.

Such evolution equations, introduced by Hitchin in [102] and now commonly known

as Hitchin flow equations, are not a geometric flow in the usual sense, as the evolution
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of ω(t) and ψ+(t) is not described by partial differential equations of the form

∂

∂t
ω(t) = Lt(ω(t)),

∂

∂t
ψ+(t) = Kt(ψ+(t)),

where Lt,Kt are certain differential operators depending smoothly on t. In fact, to

our knowledge, up to now in literature there are no known examples of geometric

flows evolving SU(3)-structures.

An almost Hermitian manifold (M, g, J) is said to be strict nearly Kähler if

(∇gXJ)X = 0,

for every X ∈ X(M), and ∇gXJ 6= 0 for all non-vanishing X ∈ X(M). By [162], in

dimension six the structure group of FM admits a natural reduction to SU(3) and

the corresponding SU(3)-structure (ω, ψ+) can be characterized by the conditions

dω = 3ψ+, dψ− = −2ω2.

Since ψ+ is exact and the compatibility condition ω ∧ ψ+ = 0 always holds, nearly

Kähler SU(3)-structures are half-flat and their intrinsic torsion belongs toW−1 . More-

over, the associated Riemannian metric g is Einstein [90, 144], that is, Ric(g) = µg

for some real number µ.

Nearly Kähler manifolds have been widely studied in literature, for instance in

[88, 90], and the relevance of the six-dimensional case is evident from the results of

[149, 150], where the author proved that a complete and simply connected nearly

Kähler manifold is locally a Riemannian product of Kähler manifolds, twistor spaces

over Kähler manifolds and six-dimensional nearly Kähler manifolds.

Up to now, very few examples of manifolds endowed with a nearly Kähler SU(3)-

structure are known. In the homogeneous case there are only finitely many of them

by [34], namely the 6-sphere S6, the product of 3-spheres S3 × S3, the complex

projective space CP3 and the flag manifold F(1, 2), and each one carries a unique

invariant nearly Kähler SU(3)-structure up to homothety. Moreover, the existence

of new non-homogeneous examples was recently proved on S6 and S3 × S3 in [73].

Because of the rareness of examples, one may weaken the defining conditions of

the classW−1 and study the resulting SU(3)-structures in relation to the properties of
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nearly Kähler SU(3)-structures. In the half-flat class there are two natural subclasses

allowing to do this: the class W−1 ⊕W3 of double half-flat and the class W−1 ⊕W
−
2

of coupled SU(3)-structures.

Properties and explicit examples of double half-flat SU(3)-structures were studied

for instance in [42, 137, 165, 167]. By [42, 167], they are defined by the conditions

dψ+ = 0, dψ− = k ω2,

for some nonzero real number k, and can be characterized as the half-flat SU(3)-

structures having totally skew-symmetric Nijenhuis tensor.

Natural spaces motivating the study of coupled SU(3)-structures, named in this

way in [164], are S3 × S3 and the twistor spaces over self-dual Einstein 4-manifolds

of positive scalar curvature, where also nearly Kähler SU(3)-structures exist [147].

Moreover, a further motivation comes from supersymmetric string theory, since a

necessary and sufficient condition for N = 1 compactifications of Type IIA string

theory on spaces of the form AdS4 ×M, where AdS4 is the four-dimensional anti-de

Sitter space, is that the internal compact 6-manifold M is endowed with a coupled

SU(3)-structure satisfying some additional properties [118, 136]. We will see later

that coupled SU(3)-structures are also useful to construct examples and to study the

properties of manifolds endowed with a certain class of G2-structures.

A G2-structure on a seven-dimensional manifold M is defined by a stable 3-form

ϕ which can be pointwise written as

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245,

with respect to a basis (e1, . . . , e7) of T ∗pM. Such a 3-form induces a Riemannian

metric gϕ and a volume form dVϕ on the manifold via the identity

gϕ(X,Y )dVϕ =
1

6
(ιXϕ) ∧ (ιY ϕ) ∧ ϕ,

for every pair of vector fields X,Y on M.

The intrinsic torsion of a G2-structure ϕ can be identified with the covariant

derivative ∇gϕϕ. In [67], Fernández and Gray showed that the G2-module X of

tensors satisfying the same symmetries as ∇gϕϕ decomposes into a direct sum of
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four G2-irreducible submodules

X = X1 ⊕X2 ⊕X3 ⊕X4,

allowing to divide G2-structures into 16 classes characterized by the identically van-

ishing components of ∇gϕϕ. Denoted by ∗ϕ the Hodge operator determined by gϕ

and dVϕ, it is also possible to show that each class can be completely character-

ized by the expressions of dϕ and d ∗ϕ ϕ, as they contain the same informations on

the intrinsic torsion as ∇gϕϕ [30, 40, 141]. Torsion-free G2-structures ϕ are then

equally defined by the condition ∇gϕϕ = 0 or by dϕ = 0, d∗ϕϕ = 0, their underlying

Riemannian metric gϕ has holonomy contained in G2 and is Ricci flat [26].

Noncompact examples of 7-manifolds endowed with a G2-structure can be con-

structed starting from a 6-manifold M endowed with an SU(3)-structure (ω, ψ+) and

considering the warped product M × I endowed with the metric f(t)g + dt2, where

g is the metric induced by (ω, ψ+), t is the coordinate on the interval I ⊆ R and

f is a positive real-valued function defined on I. For instance, M × R admits the

G2-structure

ϕ = ω ∧ dt+ ψ+

inducing the cylindrical metric gϕ = g+dt2, while M × (0,+∞) is endowed with the

G2-structure

ϕ = t2 ω ∧ dt+ t3 ψ+,

whose underlying metric is the conical one, namely gϕ = t2 g + dt2.

Compact examples can be obtained considering the mapping torus of a diffeo-

morphism ν of a compact 6-manifold M, that is, the compact 7-manifold Mν defined

as the quotient of M × R by the infinite cyclic group of diffeomorphisms generated

by

ν̃ : M × R −→ M × R
(p, t) 7−→ (ν(p), t+ 1)

.

In detail, when ν is an automorphism of an SU(3)-structure (ω, ψ+) on M , i.e., when

ν∗ω = ω and ν∗ψ+ = ψ+, then a 2-form ω̃ and a 3-form ψ̃+ are naturally induced

by ω and ψ+ on the mapping torus Mν and the 3-form

ϕ = ω̃ ∧ η + ψ̃+
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defines a G2-structure on it, where η is the closed 1-form on Mν induced by the

1-form dt on R. In this case, Mν is the total space of a fibration over the circle S1

and each fiber is endowed with an SU(3)-structure. Observe that if ν is the identity

diffeomorphism, then Mν is none other than the product M × S1.

The intrinsic torsion of a G2-structure defined by a closed 3-form ϕ lies in X2. In

this case, the G2-structure is called closed or calibrated, as it defines a calibration on

the manifold by [95], and can be seen as the G2-analogue of an almost Kähler struc-

ture, i.e., an almost Hermitian structure (g, J) whose fundamental form ω is closed.

The first example of compact 7-manifold endowed with a calibrated G2-structure was

given by Fernández in [64], while, more recently, examples of invariant calibrated

G2-structures were obtained in [50] on compact nilmanifolds, i.e., compact quotients

of simply connected nilpotent Lie groups by a lattice. Examples of calibrated G2-

structures on mapping tori of 6-manifolds endowed with an SU(3)-structure whose

defining forms ω and ψ+ are both closed, known as symplectic half-flat, were con-

structed in [140].

The geometry of calibrated G2-structures was studied in [47] by Cleyton and

Ivanov. Furthermore, Bryant proved in [30] that the scalar curvature of the metric

underlying a calibrated G2-structure is nonpositive and vanishes identically if and

only if the G2-structure is torsion-free.

A G2-structure ϕ is said to be Einstein if the underlying Riemannian metric gϕ

is Einstein. As an analogous of Goldberg conjecture for almost-Kähler manifolds

[83], in [30, 47] it was proved that on a compact manifold every Einstein calibrated

G2-structure is necessarily torsion-free. In the noncompact homogeneous case, it was

recently shown that a seven-dimensional solvmanifold cannot admit any left-invariant

Einstein calibrated G2-structure unless gϕ is flat [65].

A G2-structure whose defining 3-form ϕ is locally conformal equivalent to a closed

stable 3-form is called locally conformal calibrated and is characterized by the condi-

tion

dϕ = −θ ∧ ϕ,

for a unique closed 1-form θ, known as the Lee form of ϕ. In this case, the intrinsic

torsion belongs to X2 ⊕ X4 and the G2-structure generalizes both calibrated and
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locally conformal parallel G2-structures, namely those satisfying

dϕ = −θ ∧ ϕ, d ∗ϕ ϕ = −4

3
θ ∧ ∗ϕϕ

and whose intrinsic torsion lies in X4. Seven-dimensional manifolds endowed with a

locally conformal calibrated G2-structure are called locally conformal calibrated G2-

manifolds and represent the G2-analogue of locally conformal symplectic manifolds

[176], that is, even-dimensional manifolds endowed with a non-degenerate 2-form ω

which is locally conformal equivalent to a symplectic 2-form. In literature, properties

of locally conformal calibrated G2-manifolds were studied in [69].

Because of the local conformal equivalence between 3-forms defining a calibrated

G2-structure and those defining a locally conformal calibrated one, it is natural to ask

whether the results of [30, 47, 65] previously recalled extend to manifolds endowed

with an Einstein locally conformal calibrated G2-structure. It is also interesting to

study the conditions for which the mapping torus of a 6-manifold endowed with an

SU(3)-structure is a locally conformal calibrated G2-manifold and to describe the

geometry of a compact locally conformal calibrated G2-manifold. Known results

motivating this are for instance those of [104], where a characterization of compact

locally conformal parallel G2-manifolds as fiber bundles over S1 with compact nearly

Kähler fiber was obtained, and those of [13, 176], where fibration results for compact

locally conformal symplectic manifolds were established.

We now summarize the content of the thesis, describing the main results.

The first chapter is mainly an overview of well-known topics on which the con-

tent of the thesis is based. We begin recalling basic definitions and properties about

manifolds, vector bundles, principal bundles and holonomy theory, in order to fix

the notations and clarify some conventions we use. We then review G-structures,

explaining more in detail the results outlined in the first part of this introduction

and describing some explicit examples. After doing this, we consider homogeneous

Riemannian manifolds, focusing our attention on the properties of (compact) nil-

manifolds and solvmanifolds. Moreover, we introduce the notations used for real Lie

algebras and we make some observations on metric Lie algebras. We conclude the

chapter with a review of Einstein and Ricci soliton metrics. Related results by Heber
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[98] and Lauret [127] on Einstein solvmanifolds and by Lauret [124, 125] on Ricci

nilsolitons, i.e., left-invariant Ricci soliton metrics on simply connected nilpotent Lie

groups, are also recalled.

In the second chapter, we consider 6-manifolds endowed with an SU(3)-structure.

General results on this topic are reviewed in detail in the first part, while in the second

part we focus on special half-flat SU(3)-structures, namely SU(3)-structures whose

class is contained in W−1 ⊕ W
−
2 ⊕ W3. In Section 2.3, we discuss the results on

nearly Kähler manifolds previously sketched and we add some details for those on

double half-flat. Then, in Section 2.4, we consider the class W−1 ⊕W
−
2 of coupled

SU(3)-structures, proving that on a connected manifold M it is characterized by the

condition

dω = c ψ+

for some real constant c (Proposition 2.4.2). It is then evident that coupled SU(3)-

structures with nonzero coupled constant c are a natural generalization of nearly

Kähler SU(3)-structures and, as it happens for nearly Kähler, they are completely

determined by the 2-form ω. Consequently, a diffeomorphism ν of M such that

ν∗ω = ω is an automorphism of the coupled SU(3)-structure (Corollary 2.4.3). More-

over, the almost Hermitian structure (g, J) underlying a coupled structure is quasi

Kähler, i.e., its fundamental form ω is ∂-closed (Proposition 2.4.6). In Section 2.4.1,

we look for examples of manifolds endowed with a coupled SU(3)-structure. We clas-

sify six-dimensional non-Abelian nilpotent Lie algebras admitting a coupled SU(3)-

structure, showing that up to isomorphism only two cases occur (Theorem 2.4.12).

One of them, namely the real Lie algebra underlying the complex Heisenberg group

of complex dimension three, is endowed with a coupled SU(3)-structure whose as-

sociated metric is a Ricci nilsoliton. We prove that this is the unique example of

this kind (Proposition 2.4.14). We conclude giving an example of left-invariant cou-

pled SU(3)-structure on the Lie group SU(2) × SU(2). As the half-flat condition is

preserved by the Hitchin flow equations, in Section 2.4.2 we examine the behaviour

of coupled SU(3)-structures with respect to this flow. We characterize solutions

of the Hitchin flow equations starting from a coupled SU(3)-structure and remain-

ing coupled as long as they exist (Proposition 2.4.17), we review a known example
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in the light of this characterization and we prove that such solutions need not to

exist in general (Proposition 2.4.19). In Section 2.4.3, we study the properties of

coupled SU(3)-structures which are of interest in supersymmetric string theory, dis-

cussing also explicit examples. The chapter ends with Section 2.5, where we consider

the problem of finding (special) half-flat SU(3)-structures whose associated metric

is Einstein. We begin with the homogeneous manifold S3 × S3 identified with the

Lie group SU(2) × SU(2), proving that it does not admit any left-invariant coupled

SU(3)-structure inducing one of the currently known Einstein metrics existing on it

(Theorem 2.5.5) and giving an example of a left-invariant half-flat SU(3)-structure

with intrinsic torsion in W−1 ⊕W
−
2 ⊕W3 and whose associated metric is Einstein.

Then, we consider twistor spaces over oriented Riemannian 4-manifolds, reviewing

some known results which allow to prove the existence of coupled SU(3)-structures

whose underlying metric is Einstein. Finally, we move to the noncompact homoge-

neous case, where we prove that there are no coupled SU(3)-structures inducing the

Einstein metric on Einstein solvmanifolds (Theorem 2.5.16) and on homogeneous

Einstein manifolds of nonpositive sectional curvature (Corollary 2.5.19). In some

cases, the result is stronger and holds for all half-flat SU(3)-structures.

The third chapter is devoted to the study of locally conformal calibrated G2-

manifolds. After reviewing the general properties of G2-structures, their classifica-

tion and their relation with SU(3)-structures in Sections 3.1 and 3.2, we focus our

attention on the class X2 ⊕ X4. In Section 3.3, we discuss the main properties of

locally conformal calibrated G2-structures and we look for new examples. We show

that noncompact examples of locally conformal calibrated G2-manifolds can be con-

structed on the cylinder over a 6-manifold endowed with a coupled SU(3)-structure

and also on the cone when the coupled constant c is not 3, generalizing known results

for nearly Kähler SU(3)-structures (Proposition 3.3.8). We then study the conditions

under which the mapping torus of an automorphism of an SU(3)-structure is a locally

conformal calibrated G2-manifold, proving that it suffices to consider a 6-manifold

M endowed with a coupled SU(3)-structure (ω, ψ+) and a diffeomorphism ν of M

such that ν∗ω = ω to obtain the result (Proposition 3.3.11). When the coupled

SU(3)-structure is nearly Kähler, we prove that the same hypothesis gives rise to

a mapping torus endowed with a locally conformal parallel G2-structure (Proposi-
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tion 3.3.14). Finally, we state necessary and sufficient conditions guaranteeing the

existence of a locally conformal calibrated G2-structure on seven-dimensional Lie

algebras obtained as rank-one extensions of six-dimensional Lie algebras endowed

with a coupled SU(3)-structure (Propositions 3.3.17 and 3.3.20). Using these results,

we are able to give two new examples of invariant locally conformal calibrated G2-

structures on compact solvmanifolds, namely compact quotients of simply connected

solvable Lie groups by a lattice. In Section 3.4, we study the restrictions imposed

by requiring that the Riemannian metric underlying a locally conformal calibrated

G2-structure ϕ is Einstein. In the compact case, we show that the scalar curvature

of gϕ is nonpositive (Theorem 3.4.4) and, as a consequence, we prove that a seven-

dimensional compact homogeneous manifold cannot admit any invariant Einstein

locally conformal calibrated G2-structure unless the underlying metric is flat (Corol-

lary 3.4.5). In contrast to the compact case, we construct a noncompact example

of left-invariant Einstein (non-flat) locally conformal calibrated G2-structure on a

seven-dimensional solvmanifold and we give a noncompact example of a locally con-

formal calibrated G2-structure whose associated metric is Ricci-flat. The geometry

of compact locally conformal calibrated G2-manifolds is studied in Section 3.5. Here,

we first discuss the conditions under which the 3-form ϕ defining a locally conformal

calibrated G2-structure with Lee form θ can be expressed as ϕ = dβ + θ ∧ β for

some 2-form β. This requirement, which implies in particular that dϕ = −θ ∧ ϕ, is

motivated by the results of [13, 176] mentioned earlier, as they are proved for locally

conformal symplectic manifolds whose non-degenerate 2-form ω satisfies a similar

identity. Then, we prove that a compact locally conformal calibrated G2-manifold

(M,ϕ) with non-vanishing Lee form θ such that Lθ]ϕ = 0 is fibered over S1 and each

fiber is endowed with a coupled SU(3)-structure (Theorem 3.5.17). This is a partial

converse of the mapping torus construction stated above.

In the last chapter, we study evolution equations of SU(3)-structures. In Section

4.1, we consider a generalization of the Hitchin flow equations introduced in the

physical paper [57] and we show that it can be used to define a system of evolution

equations for an SU(3)-structure preserving the class W−1 ⊕W
−
2 of coupled SU(3)-

structures (Proposition 4.1.7). Geometric flows are reviewed in Section 4.2, where we

recall the fundamental definitions and a result guaranteeing the short-time existence
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and uniqueness of solutions of an initial value problem. In Section 4.3, we explain

some ideas which could be useful to study the open problem regarding the existence of

geometric flows evolving SU(3)-structures, we summarize them here. It is well-known

that a Riemannian 6-manifold (M, g) is endowed with an SU(3)-structure if and only

if it is orientable and admits a spin structure [129]. As a consequence, it is possible

to consider the spinor bundle ΣM over M, which is a complex vector bundle with

typical fiber C8, and show that there is a correspondence between the differential

forms (ω, ψ+) defining an SU(3)-structure and unit real spinor fields φ ∈ Γ(ΣM).

Since the correspondence is one-to-one up to a sign in the definition of φ, instead of

studying evolution equations for the differential forms ω and ψ+, we look for flows

evolving φ. The advantage of this approach is that we have to control only one

object instead of two objects and the compatibility conditions they have to satisfy.

The evolution equation we consider is the following

∂

∂t
φ(t) = −D2φ(t),

where D is the Dirac operator of the Riemannian spin manifold (M, g). As −D2 is a

strongly elliptic second-order differential operator, the previous equation is strictly

parabolic and the short-time existence and uniqueness of solutions for a given unit

real spinor field φ0 ∈ Γ(ΣM) is guaranteed on compact manifolds (Theorem 4.3.16).

The solution φ(t) is non-vanishing as long as it exists, as it depends smoothly on

t and being non-vanishing is an open condition. It is then possible to normalize

it using the real metric of ΣM and get an SU(3)-structure on M depending on t.

Therefore, the flow at the spinor level translates into a flow of SU(3)-structures on

M leaving the metric g fixed. This argument fails when φ0 is an eigenspinor of

the Dirac operator with constant eigenfunction. Indeed, in this case the solution

φ(t) is just a rescaling of φ0 and the normalization is φ0 itself (Proposition 4.3.18).

This happens, for instance, when φ0 corresponds to a coupled SU(3)-structure with

coupled constant c, as it satisfies

Dφ0 = −c φ0.

We conclude the section discussing two examples of solutions on Lie algebras.
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The computations on Lie algebras have been done with the aid of the software

Maple 18, its packages difforms, LinearAlgebra, PolynomialIdeals (only for the proof

of Theorem 2.5.5), and some Maple procedures written by the author.

The original results collected in this thesis are contained in the papers [66, 70,

71, 160] and in the work-in-progress [72].
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Chapter 1

Preliminaries

In this chapter, we review the main topics on which the content of this thesis is

based. After recalling some basic facts about manifolds and fiber bundles, we describe

the foremost properties of G-structures and of homogeneous Riemannian manifolds,

paying particular attention to the case of nilmanifolds and solvmanifolds. Finally, we

consider two classes of Riemannian metrics satisfying remarkable properties, namely

Einstein and Ricci soliton metrics, and we discuss some related results.

Since most of the results appearing here are well-known, instead of proving every

assertion, we will suggest one or more references where the reader can find the proofs

and more details on the topics.

1.1 Basics, notations and conventions

This section is mainly a summary of fundamental definitions and properties in dif-

ferential and Riemannian geometry. Several notations and conventions used in this

thesis are introduced here.

1.1.1 Smooth manifolds, vector bundles and tensor fields

A smooth manifold M of dimension m is an m-dimensional topological manifold

admitting a (maximal) differentiable atlas of class C∞. The manifolds considered in

this thesis will be always assumed to be smooth.

1
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A vector bundle E of rank k over M is a fiber bundle π : E → M whose fibers

are vector spaces of the same dimension k. In particular, each point p of M has an

open neighborhood U ⊆ M such that π−1(U) is diffeomorphic to U × V, where the

k-dimensional vector space V is the typical fiber of E. The space of (smooth) sections

of E, i.e., the smooth maps σ : M → E such that σp := σ(p) belongs to the fiber

Ep := π−1(p) of E over p, is denoted by Γ(E). A section σ ∈ Γ(E) is said to be

vanishing at a point p of M if σ(p) = 0, identically vanishing if it is vanishing at each

point of the manifold and non-vanishing if it is nowhere vanishing.

TpM denotes the tangent space to M at a point p, while T ∗pM denotes the

cotangent space at p, namely the dual vector space of TpM. The bundle T rsM of r-

contravariant s-covariant tensors, or (r, s)-tensors for short, is the vector bundle over

M whose fiber over each point p is the vector space T rs (TpM) = (TpM)⊗r⊗ (T ∗pM)⊗s

of (r, s)-tensors on TpM. The tangent bundle is TM = T 1
0M and the cotangent bundle

is T ∗M = T 0
1M , while T 0

0M = M × R.

The space Γ(T rsM) of smooth sections of T rsM is alternatively denoted by Trs(M)

and its elements are called (r, s)-tensor fields on M. In particular, X(M) := T1
0(M) is

the space of vector fields on M and Ω1(M) := T0
1(M) is the space of covector fields (or

1-forms) on M. More in general, it is possible to consider the vector bundle Λk(T ∗M)

of antisymmetric (0, k)-tensors over M for each 0 ≤ k ≤ m, where Λ0(T ∗M) = M×R
and Λ1(T ∗M) = T ∗M , and define the space of differential k-forms on M as Ωk(M) :=

Γ(Λk(T ∗M)). Clearly, a 0-form is just a smooth real valued function defined on M,

thus Ω0(M) = C∞(M). The wedge product of two differential forms ω ∈ Ωk(M) and

η ∈ Ωl(M) is a (k + l)-form ω ∧ η on M defined by

(ω ∧ η)p = ωp ∧ ηp =
(k + l)!

k! l!
Alt (ωp ⊗ ηp) ,

being Alt : T 0
k (TpM) → Λk(T ∗pM) the alternating projection sending a (0, k)-tensor

σp on TpM to its antisymmetric part

Alt(σp) =
1

k!

∑
ζ∈Sk

sgn(ζ) ζσp,

where sgn(ζ) is the sign of the permutation ζ ∈ Sk and, for any k vectors Xi1 , . . . , Xik



1.1. Basics, notations and conventions 3

of TpM, ζσp (Xi1 , . . . , Xik) = σp

(
Xiζ(1) , . . . , Xiζ(k)

)
. We use the notation

ωn = ω ∧ · · · ∧ ω︸ ︷︷ ︸
n

as a shortening for the wedge product of a k-form ω by itself for n-times.

The vector bundle of symmetric (0, k)-tensors is denoted by Sk(T ∗M) and the

space of its sections by Sk(M). Given two symmetric tensor fields α ∈ Sk(M) and

β ∈ S l(M), their symmetric product is the symmetric tensor field αβ ∈ Sk+l(M)

defined as

(αβ)p = αpβp = Sym(αp ⊗ βp),

where Sym : T 0
k (TpM)→ Sk(T ∗pM) is the symmetrization

Sym(σp) =
1

k!

∑
ζ∈Sk

ζσp.

The shortening

(α)n = α · · ·α︸ ︷︷ ︸
n

is used to denote the symmetric product of a symmetric tensor by itself for n-times.

The differential at p ∈ M of a smooth map F : M → N between two manifolds

M and N is denoted by F∗p : TpM → TF (p)N , while the pullback is denoted by

F ∗ : T ∗F (p)N → T ∗pM . If ω is a (0, s)-tensor field on N, then its pullback by F is a

(0, s)-tensor field on M defined in the following way

(F ∗ω)p(X1, . . . , Xs) = ωF (p)(F∗pX1, . . . , F∗pXs), p ∈M, Xi ∈ TpM.

A (linear) connection on a vector bundle E over M is an R-linear map∇ : Γ(E)→
Γ(T ∗M ⊗ E) such that for all f ∈ C∞(M) and σ ∈ Γ(E)

∇(fσ) = f∇σ + df ⊗ σ.

Given X ∈ X(M), the covariant derivative of σ ∈ Γ(E) in the direction of X is

∇Xσ := ∇σ(X) ∈ Γ(E).
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A connection ∇ on the tangent bundle TM over M induces a connection on

every vector bundle T rsM , which is denoted by the same symbol. In particular, it is

possible to compute the covariant derivative of any tensor field on M .

The torsion T (∇) of a connection ∇ on TM is the (1, 2)-tensor field on M defined

by

T (∇)(X,Y ) := ∇XY −∇YX − [X,Y ],

for all X,Y ∈ X(M). Since T (∇)(X,Y ) = −T (∇)(Y,X), it is actually a section

of the bundle Λ2(T ∗M) ⊗ TM . A connection ∇ is said to be torsion-free if T (∇)

vanishes identically.

A Riemannian metric on M is a symmetric tensor field g ∈ S2(M) such that gp

is an inner product on the vector space TpM for each point p of M. The pair (M, g)

is called Riemannian manifold. On its tangent bundle there always exists a unique

connection ∇g, the Levi Civita connection, which is metric (or compatible with g),

i.e., (
∇gXg

)
(Y,Z) = ∇gX(g(Y, Z))− g

(
∇gXY,Z

)
− g

(
Y,∇gXZ

)
= 0,

for all X,Y, Z ∈ X(M), and has identically vanishing torsion T (∇g).
The Riemannian curvature endomorphism of (M, g) is the (1,3)-tensor field de-

fined by

Rg(X,Y )Z := ∇gX
(
∇gY Z

)
−∇gY

(
∇gXZ

)
−∇g[X,Y ]Z,

for all X,Y, Z ∈ X(M). The manifold (M, g) is flat, i.e., locally isometric to the

Euclidean space Rm, if and only if Rg vanishes identically.

The Ricci curvature tensor of g is the symmetric (0, 2)-tensor field on M

Ric(g)(Y, Z) := tr(X 7→ Rg(X,Y )Z).

Moreover, it is possible to define a (1, 1)-tensor field Rc(g) from Ric(g), called Ricci

operator, via the identity

Ric(g)(Y,Z) = g(Rc(g)(Y ), Z).

Finally, the scalar curvature of g is a smooth function obtained taking the trace of

Ric(g) with respect to the metric g

Scal(g) := trg(Ric(g)).
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A Riemannian metric g can be extended to a fiber metric on each tensor bundle

T rsM over M. It is defined in any local coordinate system by

g(σ, β) = gi1j1 · · · gisjsσk1···kri1···is β
l1···lr
j1···jsgk1l1 · · · gkrlr ,

for all σ, β ∈ Trs(M), where the Einstein summation convention is used. The norm

induced by this metric is denoted by

|σ| := g(σ, σ)
1
2 .

Remark 1.1.1. Unless specified otherwise, we always use the Einstein summation

convention over repeated indices.

If the Riemannian manifold (M, g) is oriented and dVg denotes its Riemannian

volume form, that is, the unique m-form on M satisfying dVg(e1, . . . , em) = 1 when-

ever (e1, . . . , em) is an oriented orthonormal basis of TpM, then it is possible to

introduce the Hodge operator

∗ : Ωk(M)→ Ωm−k(M), k = 0, 1, . . . ,m,

uniquely defined in such a way that for each pair of forms ω, η ∈ Ωk(M)

ω ∧ ∗η = g(ω, η)dVg.

The Hodge operator is an R-linear map satisfying ∗(∗ω) = (−1)k(m−k)ω. As a

consequence, it is also an isometry with respect to the fiber metric induced by g

on Λk(T ∗M).

Let d : Ωk(M)→ Ωk+1(M) denote the exterior derivative on M , the coderivative

d∗ : Ωk(M)→ Ωk−1(M) is d∗ := (−1)km+m+1 ∗ d ∗. It obviously satisfies (d∗)2 = 0.

For more details on the topics of this section, the reader may refer for example

to [110, 130, 131].

1.1.2 Principal bundles and connections

Let G be a Lie group, a principal G-bundle over a manifoldM is the data of a manifold

P , on which G acts smoothly and freely on the right, and a smooth projection
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π : P → M such that (P, π,M) is a locally trivial fibration with fibers the orbits of

the G-action. Each fiber is then diffeomorphic to the group G, which is called the

structure group of the principal bundle, and the base manifold M is diffeomorphic

to the orbit space P/G of the G-action on P. As customary, we refer equally to

(P, π,M), π : P →M or, simply, to P as the principal G-bundle over M .

A reduction of the structure group G of P to a closed subgroup K ⊆ G is a

principal subbundle Q of P with structure group K, that is, a submanifold Q of P

which is invariant under the restriction to K of the G-action on P and such that

(Q, π|Q,M) is a principal K-bundle over M .

Consider a principal G-bundle P over M and suppose that G also acts smoothly

on the left on a manifold N. Then, G acts smoothly on the right on the product

manifold P ×N as

(u, p) · a = (u · a, a−1 · p),

for all a ∈ G, u ∈ P and p ∈ N, where the symbol · denotes indifferently the various

actions. The quotient space of P × N by this action is denoted by P ×G N, it is

the total space of a fiber bundle over M with standard fiber N and structure group

G. P ×G N is called the fiber bundle associated with P with standard fiber N. If π

denotes the projection of this bundle, a cross section of P ×G N is a smooth map

σ : M → P ×G N such that π ◦ σ is the identity map of M .

As a particular case of the previous construction, we can consider a vector space

V and a representation ρ : G→ GL(V ), that is, a Lie group homomorphism between

G and the Lie group GL(V ) of invertible linear transformations of V. G acts on the

left on V via the representation as a · v = ρ(a)(v), for all a ∈ G and v ∈ V. We

can then construct the fiber bundle ρ(P ) := P ×G V, which turns out to be a vector

bundle over M with fiber V. If Q is a reduction of the structure group G of P to K,

then the vector bundle ρ|K(Q) associated with Q using the restriction to K of the

representation ρ is isomorphic to ρ(P ) (see for instance [17, Thm. 2.14]).

The vector bundle with fiber the Lie algebra g of G obtained starting from the

adjoint representation Ad : G → GL(g) is called adjoint bundle of P over M and is

usually denoted by Ad(P ) or by g(P ).

If π : P →M is a principal G-bundle, it is possible to define the vertical subbundle
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C of TP as the vector subbundle of TP obtained taking the union of the vector spaces

Cu := ker(π∗u) = Tu(π−1(p)) ⊂ TuP, where u ∈ P and π(u) = p. A G-principal

connection on P is a vector subbundle H of TP , called the horizontal subbundle,

which is invariant under the action of G on P and satisfies TuP = Cu ⊕ Hu for

each u ∈ P. The map π∗u : TuP → TpM induces an isomorphism between Hu and

TpM , while the Lie algebra g of G is isomorphic to Cu via the map sending A ∈ g

to A∗u := d
dt

∣∣
t=0

(u · exp(tA)). If (Q, π|Q,M) is a principal K-subbundle of P, a

connection H on P reduces to Q if H is a subbundle of TQ.

Let X be a vector field on M, there is a unique vector field X̃ on P which is

horizontal, i.e., X̃u ∈ Hu, and satisfies π∗u(X̃u) = Xπ(u) for each u ∈ P. X̃, called

horizontal lift of X, is invariant under the action of G (see for example [116, Ch. II,

Prop. 1.2]).

Given a principal G-bundle π : P → M and a representation ρ of G on a

vector space V, there exists a correspondence between G-principal connections on

P and connections on the vector bundle ρ(P ). In order to make this explicit,

we first observe that there exists a C∞(M)-module isomorphism identifying every

σ ∈ Γ(ρ(P )) with the G-equivariant smooth map σP : P → V defined uniquely by

σ(π(u)) = [(u, σP (u))] ∈ ρ(P ) (see e.g. [17, Thm. 2.8]). Then, if H is a connection

on P, the corresponding connection ∇H on ρ(P ) is defined in the following way for

every u ∈ P with π(u) = p

(
∇HXσ

)
p

= σP∗u

(
X̃u

)
.

Therefore, a map H 7→ ∇H from the set of G-principal connections on the principal

G-bundle P to the set of connections on the vector bundle ρ(P ) is defined. In general,

this map is not a bijection.

We refer the reader to [17, 110, 116] for more informations on principal bundles

and principal connections.

1.1.3 The holonomy group of a connection

Let E be a vector bundle of rank k over M with a connection ∇. The set of parallel

transport maps Pγ : Ep → Ep along loops γ : [0, 1] → M based at a point p of M
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is a subgroup of GL(Ep) called the holonomy group of ∇ based at p and denoted by

Holp(∇). If M is connected, Holp(∇) can be viewed as a subgroup of GL(k,R) =

GL(Rk) defined up to conjugation. In this sense, it does not depend on the base point

and we can refer to it as the holonomy group Hol(∇) of the connection ∇. If M is

also simply connected, Hol(∇) is a connected Lie subgroup of GL(k,R). More in

general, we can consider the restricted holonomy group Hol0(∇), first defined at each

point p considering only the contractible loops at p, and then viewed as a subgroup

of GL(k,R) defined up to conjugation. Hol0(∇) is always a connected Lie subgroup

of GL(k,R). In particular, it is the connected component of Hol(∇) containing the

identity and coincides with it when M is simply connected.

If we consider a principal G-bundle π : P →M with a connection H, we can define

an equivalence relation ∼ on P by declaring two points u1, u2 ∈ P to be equivalent

if and only if there exists a piecewise smooth horizontal curve γ : [0, 1] → P such

that γ(0) = u1 and γ(1) = u2, where horizontal means that γ̇(t) := d
dtγ(t) ∈ Hγ(t)

for each t belonging to the open and dense subset of [0, 1] where γ is smooth. The

holonomy group of (P,H) based at u ∈ P is then defined as the subgroup Holu(P,H)

of G whose elements are the a ∈ G such that u ∼ u · a. When M is connected,

the holonomy groups of (P,H) based at two different points of P are conjugated by

an element of G. Thus, we can define the holonomy group Hol(P,H) of (P,H) as

the equivalence class of these subgroups under conjugation. The restricted holonomy

group Hol0u(P,H) of (P,H) at a point u ∈ P is defined in a similar way, requiring in

addition that the piecewise smooth horizontal curve γ appearing in the definition of

∼ is such that π ◦ γ is contractible in M . The restricted holonomy group Hol0(P,H)

of (P,H) is then defined as the equivalence class of subgroups Hol0u(P,H) of G under

conjugation. It is a connected Lie subgroup of G and the connected component of

Hol(P,H) containing the identity. The groups Hol0(P,H) and Hol(P,H) coincide

when M is simply connected.

The two definitions of holonomy group of a connection are closely related. Indeed,

if P is a principal G-bundle over M, ρ is a representation of G on a vector space V

and ρ(P ) is the vector bundle over M with fiber V, then given a connection H on

P and considered the corresponding connection ∇H on ρ(P ), the holonomy groups

Hol(P,H) and Hol(∇H) are subgroups of G and GL(V ), respectively, both defined
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up to conjugation, and ρ(Hol(P,H)) = Hol(∇H).

More details on the holonomy group of a (principal) connection and the proofs

of the properties we have just described can be found for instance in [110, 116, 163].

1.2 G-structures

1.2.1 Definition, properties and examples

Let M be a connected manifold of dimension m. A linear frame at p ∈ M is an

ordered basis (E1, . . . , Em) of the tangent space TpM or, equivalently, an isomorphism

u : Rm → TpM sending each vector ei of the canonical basis (e1, . . . , em) of Rm to

the vector Ei. Let FMp denote the set of all these isomorphisms, there is a free and

transitive right action of the Lie group GL(m,R) on FMp given by

u · a = u ◦ a, (1.1)

for all u ∈ FMp and a ∈ GL(m,R). If we consider the matrix associated with

a ∈ GL(m,R) with respect to the canonical basis of Rm and we denote by aik its

entries, this right action on any ordered basis (E1, . . . , Em) of TpM reads

(E1, . . . , Em) · a =
(
Eia

i
1, . . . , Eia

i
m

)
. (1.2)

As a consequence of the previous equivalence, there exists a bijection between the

GL(m,R)-orbit of the action (1.1) on FMp and the GL(m,R)-orbit of the action

(1.2) on the set of ordered basis of the tangent space TpM. The smooth structure of

M induces a smooth structure on the set

FM :=
∐
p∈M

FMp,

which is therefore a smooth manifold. Together with the smooth projection π :

FM → M sending each u ∈ FMp to the point p, (FM, π,M) becomes a principal

GL(m,R)-bundle over M, called the frame bundle of M .

Definition 1.2.1. Let G be a closed subgroup of GL(m,R). A G-structure on M is

a reduction of the structure group GL(m,R) of FM to G.
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Observe that if Q is a G-structure on M, then each fiber Qp := (π|Q)−1(p) is a

G-orbit in FMp with respect to the restriction of the action (1.1) to G. Equivalently,

Qp can be thought as a G-orbit in the space of ordered basis of TpM with respect to

the restriction of the action (1.2) to G.

It follows from a general result of principal bundles theory (see for example [116,

Ch. I, Prop. 5.6]) that G-structures on M are in one-to-one correspondence with

cross sections of the bundle FM ×GL(m,R) (GL(m,R)/G) ∼= FM/G associated with

FM with standard fiber GL(m,R)/G. Moreover, the existence of such cross sections

is usually a topological matter. It is guaranteed, for instance, whenever GL(m,R)/G

is diffeomorphic to some Euclidean space Rk (cf. [116, Ch. I, Thm. 5.7]).

Before giving the statement of the next result, we first need to recall some def-

initions. Let us consider the vector space Rm with canonical basis (e1, . . . , em) and

let us denote by (e1, . . . , em) its dual basis. The group GL(m,R) acts linearly on the

left on the space T rs (Rm) of (r, s)-tensors on Rm via the action uniquely defined on

any basis tensor β = ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs by

a · β = a(ei1)⊗ · · · ⊗ a(eir)⊗
(
ej1 ◦ a−1

)
⊗ · · · ⊗

(
ejs ◦ a−1

)
,

for every a ∈ GL(m,R). The usual linear maps a∗ and a∗ from T rs (Rm) to itself

induced by a can be defined uniquely in terms of this action in the following way

a · β = a∗(β) =
(
a−1
)∗

(β).

The stabilizer of a tensor σ0 ∈ T rs (Rm) in GL(m,R) is the subgroup of GL(m,R)

defined equivalently as

{a ∈ GL(m.R) | a · σ0 = σ0} = {a ∈ GL(m,R) | a∗σ0 = σ0} .

When G is the stabilizer of one or more tensors defined on Rm, the existence of

a G-structure is related to the existence of certain global tensor fields defined on M.

Proposition 1.2.2. Let a closed subgroup G ⊆ GL(m,R) be the stabilizer of a

tensor σ0 ∈ T rs (Rm). Then, σ0 gives rise to a one-to-one correspondence between

G-structures on M and tensor fields σ ∈ Trs(M) such that at each point p of M there

exists u ∈ FMp satisfying u∗(σp) = σ0.
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Proof. First, suppose that Q is a G-structure on M, where G is the stabilizer of σ0.

Then, we can define the (r, s)-tensor field σ on M as

σ : p 7→ σp =
(
u−1

)∗
σ0,

where u ∈ Qp. The definition does not depend on the choice of u. Indeed, any other

element of the fiber Qp is of the form u ◦ a, for some a ∈ G, and
(
(u ◦ a)−1

)∗
σ0 =(

u−1
)∗

(a · σ0) =
(
u−1

)∗
σ0.

Conversely, we can define the principal G-bundle Q as the disjoint union of the

G-invariant sets

Qp = {u ∈ FMp | u∗(σp) = σ0} , p ∈M.

With this choice, (Q, π|Q,M) becomes a G-structure on M (we omit the details).

When a G-structure is defined by a tensor field as in the previous proposition,

each tangent space to M has a distinguished basis.

Definition 1.2.3. Let σ ∈ Trs(M) be a tensor field on M and let u : Rm → TpM be

an isomorphism such that u∗(σp) = σ0, where σ0 ∈ T rs (Rm) has stabilizer G. Then,

the basis (u(e1), . . . , u(em)) of TpM is called adapted basis for σ or G-basis.

The previous results can be easily extended to the case where G is the common

stabilizer of a finite number of tensors on Rm. We can then refer to the corresponding

family of tensor fields σ1, . . . , σk on M as a G-structure and to the tensors on Rm

from which they are defined as their model tensors. This motivates the

Definition 1.2.4. Let Q be a G-structure on M which can be defined by a family

of tensor fields σ1, . . . , σk in the sense described above. An automorphism of the

G-structure is an automorphism of the principal fiber bundle Q or, equivalently, a

diffeomorphism ν : M →M such that ν∗σi = σi, for every i = 1, . . . , k.

We describe now some examples of G-structures for G = O(m), SO(m) and

G = GL(n,C), Sp(2n,R), when m = 2n, while in the next chapters we study more

in depth the cases G = U(n),SU(n) and G = G2. The description is based essentially

on the result of Proposition 1.2.2 and the details can be worked out following its proof.

In what follows, (e1, . . . , em) still denotes the canonical basis of Rm and (e1, . . . , em)

denotes its dual basis.
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Example 1.2.5. Consider the inner product on Rm given by

g0 =

m∑
i=1

(ei)2,

where (ei)2 = eiei is the symmetric product of covectors. The basis (e1, . . . , em) is

orthonormal with respect to g0 and the stabilizer of g0 is the orthogonal group

O(m) = {a ∈ GL(m,R) | g0(a·, a·) = g0(·, ·)} .

O(m)-structures on a manifold M are then in one-to-one correspondence with Rie-

mannian metrics defined on it. If Q denotes an O(m)-structure and g is the cor-

responding metric, then for each p ∈ M the fiber Qp consists of all isomorphisms

sending the canonical basis of Rm to a g-orthonormal basis of TpM and the model

tensor of g is g0.

Remark 1.2.6. Since GL(m,R)/O(m) is diffeomorphic to the space Rk, with k =
m(m+1)

2 , it follows from a result previously recalled that a manifold M always admits

an O(m)-structure, that is, a Riemannian metric.

Example 1.2.7. The common stabilizer of the inner product g0 on Rm introduced

in the previous example and of the volume form

dV0 = e1 ∧ · · · ∧ em

is the special orthogonal group

SO(m) = {a ∈ O(m) | det(a) = 1} = O(m) ∩ SL(m,R).

Therefore, a manifold M admits an SO(m)-structure if and only if it is an oriented

Riemannian manifold, that is, if and only if there exist on it a Riemannian metric g

and a nowhere vanishingm-form dV whose model tensors are g0 and dV0, respectively.

Example 1.2.8. We recall that a 2-form ω on a vector space V of dimension 2n is

non-degenerate if ω(v, w) = 0 for all v ∈ V implies w = 0 or, equivalently, if ωn 6= 0.

A 2-form ω ∈ Ω2(M) is non-degenerate if ωp is non-degenerate at each point p of M .



1.2. G-structures 13

Consider on R2n the non-degenerate 2-form

ω0 =
n∑
k=1

e2k−1 ∧ e2k,

its stabilizer is the symplectic group

Sp(2n,R) = {a ∈ GL(2n,R) | ω(a·, a·) = ω(·, ·)} .

Moreover, every a ∈ Sp(2n,R) fixes the volume form
ωn0
n! = e1∧· · ·∧e2n on which acts

as multiplication by det(a), realizing in this way the inclusion Sp(2n,R) ⊂ SL(2n,R).

An Sp(2n,R)-structure on a 2n-dimensional manifold M is then a non-degenerate

differential form ω ∈ Ω2(M) with model tensor ω0.

Example 1.2.9. A complex structure on Rm is an endomorphism J : Rm → Rm such

that J2 = −I, where I is the identity isomorphism. From the equation (det(J))2 =

(−1)m, we get that m = 2n is necessarily even.

The real vector space R2n endowed with J admits a natural structure of complex

vector space obtained by defining the multiplication of a vector v ∈ R2n by a complex

number x + iy ∈ C as (x + iy) v = x v + y J(v). An isomorphism a ∈ GL(2n,R) is

then a complex linear isomorphism of the complex vector space (R2n, J) if and only

if it belongs to the group

GL(n,C) =
{
a ∈ GL(2n,R) | a J

(
a−1·

)
= J(·)

}
.

Observe that J can be thought as a (1, 1)-tensor on R2n whose stabilizer is exactly

GL(n,C). From this follows that a GL(n,C)-structure on a manifold M of dimension

2n is none other than an almost complex structure J on M, that is, an endomorphism

J : TM → TM such that J2 = −Id.

If (e1, . . . , e2n) is the canonical basis of the vector space R2n, we can choose as

model tensor for J the complex structure J0 on R2n defined on the basis vectors with

odd index by

J0(e2k−1) = e2k, 1 ≤ k ≤ n,

and on the remaining basis vectors in such a way that (J0)2 = −I.
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Remark 1.2.10. With the choice of J0 just described, at the matrix level the in-

clusion GL(n,C) ⊂ GL(2n,R) can be realized associating to a nonsingular complex

n × n matrix a with complex entries ajk the real 2n × 2n matrix â obtained by

replacing each entry of the first one with the 2× 2 matrix(
<(ajk) −=(ajk)

=(ajk) <(ajk)

)
.

Their determinants satisfy the identity det(â) = |det(a)|2 = det(a)det(a).

1.2.2 The intrinsic torsion of a G-structure

Consider the frame bundle FM over M, if ρ is the standard representation of

GL(m,R) on Rm, then ρ(FM) is a vector bundle over M isomorphic to the tangent

bundle TM. In this case, the correspondence between GL(m,R)-principal connections

on FM and connections on ρ(FM) = TM described in Section 1.1.2 is one-to-one

and the holonomy group of a GL(m,R)-principal connection on FM coincides, as

subgroup of GL(m,R) defined up to conjugation, with the holonomy group of the

corresponding connection on TM.

Since the correspondence between connections on TM and connections on FM

is one-to-one, it makes sense to introduce the

Definition 1.2.11. Let Q be a G-structure on M. A connection ∇ on TM is called

a G-connection (or compatible with the G-structure) if the corresponding connection

on FM reduces to Q.

If H is a G-principal connection on Q, then there exists a unique connection

on FM which reduces to H on Q (see for instance [17, Thm. 4.1]) and the set of

G-principal connections on Q is an affine space modeled on Γ(T ∗M ⊗g(Q)) (cf. [163,

p. 16]), where g(Q) is the adjoint bundle of Q over M . Thus, G-connections on TM

always exist.

Remark 1.2.12. From the general theory of principal bundles, we know that if ρ is

the standard representation of GL(m,R) on Rm and Q is a G-structure on M, then

the vector bundle with fiber Rm associated with Q with respect to ρ|G is isomorphic

to ρ(FM) = TM (see also Section 1.1.2).
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It follows from [163, Lemma 1.3] that when a G-structure is defined by one or more

tensor fields σ1, . . . , σk on M as described in Proposition 1.2.2, then a connection ∇
on TM is a G-connection if and only if the σi are parallel with respect to ∇, that is,

∇σi = 0 for i = 1, . . . , k.

Example 1.2.13. Let Q be an O(m)-structure on M. Then, M is endowed with a

Riemannian metric g (see Example 1.2.5) and a connection ∇ on TM is an O(m)-

connection if and only if it is metric.

The tensor fields which are parallel with respect to a given connection ∇ on TM

can be characterized in terms of the holonomy group Hol(∇) in the following way

(cf. [110, Prop. 2.5.2]).

Proposition 1.2.14. Let M be a connected manifold and let ∇ be a connection on

TM. Fix a point p of M, the holonomy group Holp(∇) is a subgroup of GL(TpM)

and there exists a natural representation of it on each fiber T rs (TpM) of the bundle of

(r, s)-tensors over M. If a tensor field σ ∈ Trs(M) is parallel with respect to ∇, then

σ(p) is fixed by the action of Holp(∇) on T rs (TpM). Conversely, if σp ∈ T rs (TpM)

is fixed by the action of Holp(∇), then there exists a unique tensor field σ ∈ Trs(M)

which is parallel with respect to ∇ and whose value at p is exactly σp.

The previous result, known in literature as the holonomy principle, has the fol-

lowing important consequence

Corollary 1.2.15. Let p ∈ M be a given point and let G∇ be the subgroup of

GL(TpM) that fixes σp for all tensor fields σ on M which are parallel with respect to

∇. Then, Holp(∇) is a subgroup of G∇.

Thus, if a G-structure on M is defined by certain tensor fields σ1, . . . , σk and ∇ is

a connection on TM , the non-vanishing of the covariant derivatives ∇σi constitutes

an obstruction for ∇ to be a G-connection and for Hol(∇) to be a subgroup of G.

When ∇ is torsion-free, the latter obstruction can be also expressed in terms

of the so-called intrinsic torsion of a G-structure. To introduce this object, we

begin considering the adjoint representation of the group GL(m,R) on its Lie algebra

gl(m,R) ∼= (Rm)∗⊗Rm. We can construct the adjoint bundle gl(m,R)(FM), which is
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isomorphic to the space End(TM) ∼= T ∗M⊗TM . Furthermore, if Q is a G-structure

on M , we can also consider the adjoint bundle g(Q), which is clearly a subbundle of

T ∗M⊗TM . It then makes sense to define the map δ : T ∗M⊗g(Q)→ Λ2(T ∗M)⊗TM
which acts as antisymmetrization in the first two arguments.

Definition 1.2.16. Let Q be a G-structure on M and let ∇ be a G-connection on

TM. Denoted by T (∇) its torsion tensor, the intrinsic torsion τ(Q) of Q is defined

by

τ(Q) := [T (∇)] ∈ Γ
(
Λ2(T ∗M)⊗ TM/Im(δ)

)
.

Q is said to be torsion-free if τ(Q) vanishes identically.

Observe that the previous definition is well-posed. Indeed, if ∇, ∇̃ are two G-

connections on TM, then ∇−∇̃ is a smooth section of T ∗M⊗g(Q) ⊆ T ∗M⊗T ∗M⊗
TM and, using this fact, the difference of their torsion tensors T (∇)−T (∇̃) is easily

seen to belong to Im(δ), since for every X,Y ∈ X(M) it holds

(T (∇)− T (∇̃))(X,Y ) = (∇X − ∇̃X)Y − (∇Y − ∇̃Y )X

= −(T (∇)− T (∇̃))(Y,X).

By [163, Prop. 1.6], the existence of a G-connection with identically vanishing

torsion is guaranteed when the G-structure Q is integrable, that is, when around each

point of M there exists a local coordinate frame
{

∂
∂x1

, . . . , ∂
∂xm

}
which is also a local

section of Q. This motivates the

Definition 1.2.17. A G-structure Q on M is called non-integrable if τ(Q) 6= 0.

We can now give the statement of the aforementioned result, for the proof we

refer the reader to [110, Prop. 2.6.5].

Proposition 1.2.18. M admits a torsion-free G-structure if and only if there exists

a connection ∇ on TM with identically vanishing torsion such that Hol(∇) is a

subgroup of G.

Example 1.2.19. Consider an O(m)-structure on M. As we saw in Example 1.2.13,

∇ is an O(m)-connection on TM if and only if it is compatible with the Riemannian
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metric g on M. The existence of a unique O(m)-connection with identically vanishing

torsion on M, the Levi Civita connection ∇g, implies that every O(m)-structure is

torsion-free.

1.2.3 Riemannian holonomy groups

Let (M, g) be a connected Riemannian manifold with Levi Civita connection ∇g.
By definition, ∇gg = 0, therefore the holonomy group of ∇g is a subgroup of O(m)

uniquely defined up to conjugation by Proposition 1.2.14.

Definition 1.2.20. The (Riemannian) holonomy group Hol(g) of g is the holonomy

group of the Levi Civita connection ∇g. It is a subgroup of O(m) defined up to

conjugation in O(m). The restricted holonomy group Hol0(g) of g is the restricted

holonomy group Hol0(∇g), it is a connected Lie subgroup of SO(m) defined up to

conjugation in O(m).

Suppose now that G is a closed subgroup of O(m). Then, a G-structure Q on M

gives rise to a Riemannian metric g on M and some extra geometric data (think for

instance about Example 1.2.7, where we saw that an SO(m)-structure is equivalent

to the existence of a Riemannian metric g and a volume form dV on the manifold).

In particular, each point u ∈ Q, which is (in correspondence with) a linear frame of

TpM for some p ∈M, is g-orthonormal and the principal O(m)-bundle corresponding

to g can be reconstructed from Q as Q ·O(m). For sake of simplicity, let us denote

it by O(M).

In this situation, the Lie algebra so(m) of O(m) can be decomposed as so(m) =

g ⊕ g⊥, where g⊥ is the subspace of so(m) orthogonal to g = Lie(G) with respect

to the Killing form. The restriction to G of the adjoint representation of O(m) on

so(m) induces an action of G on the spaces g and g⊥ and, as a consequence, we can

construct the vector bundle associated with Q with fiber g⊥, which we denote by

g⊥(Q). The bundle so(m)(O(M)) associated with O(M) with respect to the adjoint

representation of O(m) on so(m) splits according to the decomposition of so(m) as

g(Q) ⊕ g⊥(Q). Moreover, it follows from the isomorphism so(m) ∼= Λ2((Rm)∗) that

the map δ introduced in the previous section is an isomorphism between the vector
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bundles T ∗M⊗so(m)(O(M)) and Λ2(T ∗M)⊗TM . We then get the following bundle

isomorphisms

T ∗M ⊗ g⊥(Q) ∼=
T ∗M ⊗ so(m)(O(M))

T ∗M ⊗ g(Q)
∼=

Λ2(T ∗M)⊗ TM
δ(T ∗M ⊗ g(Q))

.

Consequently, the intrinsic torsion τ(Q) of Q can be seen as a section of T ∗M⊗g⊥(Q),

the vector bundle over M associated with Q with respect to the action of G on

(Rm)∗ ⊗ g⊥. Moreover, there exists a unique metric G-connection ∇, called the

minimal connection of Q, such that

τ(Q) = ∇−∇g,

where ∇g is the Levi Civita connection of the Riemannian metric g induced by the

G-structure Q. Using this result, it is possible to prove the

Proposition 1.2.21. Let a closed subgroup G ⊆ O(m) be the stabilizer of a tensor

σ0 ∈ T rs (Rm), let Q be a G-structure on M and denote by σ ∈ Trs(M) the correspond-

ing tensor field with model tensor σ0. Then, there exists an injective vector bundle

homomorphism

F : T ∗M ⊗ g⊥(Q)→ T ∗M ⊗ T rsM

mapping the intrinsic torsion τ(Q) of Q to −∇gσ, where ∇g is the Levi Civita con-

nection of the Riemannian metric g induced by the G-structure.

Proof. Consider the map

f : O(m)→ T rs (Rm), f(a) = a · σ0,

its differential is a linear map f∗ : so(m)→ T rs (Rm) with kernel g. Thus, it induces

an injective map f∗|g⊥ : g⊥ → T rs (Rm) which can be used to construct an injective

vector bundle homomorphism

F : T ∗M ⊗ g⊥(Q)→ T ∗M ⊗ T rsM.

Now,

F (τ(Q)) = (∇−∇g)σ = ∇σ −∇gσ = −∇gσ,

since the minimal connection ∇ of Q is a G-connection.
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A first consequence of the previous proposition is the possibility to classify the

G-structures on a manifold M in two standard ways when G ⊆ O(m). The first

one consists in decomposing the G-module (Rm)∗ ⊗ g⊥ into the direct sum of G-

irreducible submodules. This induces a decomposition of the bundle T ∗M ⊗ g⊥(Q)

and the intrinsic torsion τ(Q) can be decomposed accordingly. The G-structures

can then be divided into classes according to the vanishing components of τ(Q).

The second way works in a similar manner, starting with the decomposition into

G-irreducible summands of the G-module of tensors satisfying the same identities as

∇gσ and then defining the classes of G-structures according to the vanishing of the

components of ∇gσ. This result extends in the obvious way to the case where the

G-structure is defined by a finite number of tensor fields σ1, . . . , σk on M.

Furthermore, an immediate consequence of propositions 1.2.14 and 1.2.21 is the

following

Proposition 1.2.22. Let G ⊆ O(m) be a closed subgroup and let Q be a G-structure

on M defined by the tensor fields σ1, . . . , σk and inducing a Riemannian metric g.

Then, τ(Q) = 0 if and only if ∇gσi = 0 for all i = 1, . . . , k. Whenever this happens,

Hol(g) is a subgroup of G.

Remark 1.2.23. When a G-structure is defined by certain tensor fields σ1, . . . , σk,

we denote the intrinsic torsion simply by τ and the corresponding bundle by T ∗M ⊗
g⊥, being understood that there exists a reduction Q of GL(m,R) to G such that

τ = τ(Q) and T ∗M ⊗ g⊥ = T ∗M ⊗ g⊥(Q).

A natural question arising for Riemannian manifolds is which subgroups of O(m)

can occur as holonomy groups of a Riemannian metric. A classification of the possi-

ble holonomy groups for simply connected and complete Riemannian manifolds was

achieved with the results of Cartan [36, 37], de Rham [58] and Berger [21]. We recall

it here.

First of all, observe that Hol(g) = Hol0(g) ⊆ SO(m) when M is simply connected.

A Riemannian manifold (M, g) is said to be irreducible if it is not locally isometric

to a Riemannian product (M1×M2, g1×g2), where (Mi, gi) are Riemannian manifolds

of dimension at least one. In this case, the natural representations of Hol(g) and

Hol0(g) on Rm are irreducible. By [58], a simply connected, complete Riemannian
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manifold (M, g) is isometric to a product (M0 ×M1 × · · · ×Mk, g0 × g1 × · · · × gk)
of simply connected and complete Riemannian manifolds such that (M0, g0) is flat,

thus Hol(g0) = {1}, the representation of Hol(gi) on the fiber of TMi is irreducible

for every i = 1, . . . , k, and Hol(g) is isomorphic to Hol(g1)× · · · ×Hol(gk).

A Riemannian manifold (M, g) is called locally symmetric if ∇gRg = 0 and non-

symmetric otherwise. When a simply connected and complete (M, g) is locally sym-

metric and irreducible, Hol(g) is isomorphic to its isotropy group [22, Prop. 10.79]

and the classification follows from Cartan’s classification of simply connected Rie-

mannian symmetric spaces [36, 37] (see e.g. [110, Sect. 3.3] for more details).

In view of the previous results, to complete the classification it is sufficient to

study the problem when (M, g) is irreducible and non-symmetric.

Theorem 1.2.24 ([21]). Let (M, g) be a complete, simply connected, irreducible,

non-symmetric Riemannian manifold of dimension m. Then, Hol(g) is one of the

following groups:

i) SO(m);

ii) U(n), with m = 2n ≥ 4;

iii) SU(n), with m = 2n ≥ 4;

iv) Sp(n)Sp(1), with m = 4n ≥ 8;

v) Sp(n), with m = 4n ≥ 8;

vi) G2, with m = 7;

vii) Spin(7), with m = 8.

Remark 1.2.25. The list of groups in the previous theorem originally contained

also Spin(9) for m = 16. However, it was proved later that a Riemannian manifold

with Hol(g) = Spin(9) is symmetric (see [3, 28]).

Remark 1.2.26. After the publication of [21], it took about thirty years to complete

the proof that all of the groups appearing in Berger’s Theorem actually occur as

holonomy group of a Riemannian metric g. For an exhaustive list of references on

this topic, the reader may refer to [110, Sect. 3.4.1].
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1.3 Homogeneous Riemannian manifolds

Consider a connected m-dimensional Riemannian manifold (M, g), it is a classical

result (see for instance [115, 148]) that the group of isometries of M

Isom(M, g) = {ν ∈ Diff(M) | ν∗g = g}

is a Lie group of dimension at most m(m+1)
2 which acts smoothly on M and is compact

if M is compact as well. Moreover, the isotropy subgroup (or stabilizer) at a point p

of M

Ip(M, g) = {ν ∈ Isom(M, g) | ν(p) = p}

is a closed, compact subgroup of Isom(M, g).

Definition 1.3.1. A Riemannian manifold (M, g) is homogeneous if the group of

isometries Isom(M, g) acts transitively on M, that is, for each pair of points p, q of

M there exists an isometry ν ∈ Isom(M, g) such that ν(p) = q.

If (M, g) is homogeneous, then all isotropy subgroups are isomorphic via the map

sending γ ∈ Ip(M, g) to ν◦γ◦ν−1 ∈ Iq(M, g), where ν ∈ Isom(M, g) satisfies ν(p) = q.

In general, the group Isom(M, g) may contain proper subgroups acting transi-

tively on M, this motivates the following

Definition 1.3.2. If G is a closed subgroup of Isom(M, g) acting transitively on M,

then (M, g) is said to be G-homogeneous.

If (M, g) is G-homogeneous, then it is diffeomorphic to the quotient G/Gp, where

Gp = {ν ∈ G | ν(p) = p} is a compact subgroup of Ip(M, g).

The homogeneous manifolds we will be mostly interested in are the (compact)

nilmanifolds and solvmanifolds. To introduce them, we first need to recall the defi-

nitions of nilpotent and solvable Lie groups.

Definition 1.3.3. Consider a Lie group G with Lie algebra g and define

C1(g) = [g, g]

Ci(g) = [g, Ci−1(g)], i ≥ 2.
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Each Ci(g) is an ideal in Ci−1(g). G is called (k-step) nilpotent if there exists an

integer k such that Ck(g) = {0} and Ci(g) 6= {0} if i < k.

Define now

D1(g) = [g, g],

Di(g) =
[
Di−1(g),Di−1(g)

]
, i ≥ 2.

Also in this case each Di(g) is an ideal in Di−1(g). G is called (k-step) solvable if

there exists an integer k such that Dk(g) = {0} and Di(g) 6= {0} for i < k.

Clearly, since for each i it holds Di(g) ⊆ Ci(g), every nilpotent Lie group is also

solvable, but the converse is not true in general.

If g is a real Lie algebra of dimension m with Lie bracket [·, ·], we can consider

a basis (e1, . . . , em) of it and define its structure equations with respect to this basis

by

[ei, ej ] = crijer.

The real numbers crij = −crji are called the structure constants of g. If we consider

the dual basis (e1, . . . , em) of g∗ and compute the exterior derivative of each basis

1-form (thought as a left-invariant 1-form on G), we get

der(ei, ej) = ei(e
r(ej))− ej(er(ei))− er([ei, ej ]) = −er([ei, ej ]) = −crij .

As a consequence, the structure equations can also be written in the following way

der = −1

2
crij e

i ∧ ej =
∑

1≤i<j≤m
(−crij)ei ∧ ej .

This defines a linear map d : Λ1(g∗)→ Λ2(g∗), which can be extended to linear maps

d : Λk(g∗)→ Λk+1(g∗), 2 ≤ k ≤ m− 1, by requiring that

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ), α ∈ Λk(g∗), β ∈ Λs(g∗).

From the Jacobi identity for the Lie bracket [·, ·] and the previous rule, it follows that

d ◦ d = 0 always holds. Therefore, {Λ·(g∗), d} is a differential complex which can

be naturally identified with the complex of left-invariant forms on G. {Λ·(g∗), d} is
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usually called the Chevalley-Eilenberg complex of g and d is known as the Chevalley-

Eilenberg differential.

If (e1, . . . , em) is a basis of g, we denote the structure equations with respect to

its dual basis (e1, . . . , em) by(
−1

2
c1
ij e

i ∧ ej , . . . ,−1

2
cmij e

i ∧ ej
)
.

For example, (0, . . . , 0) are the structure equations of the m-dimensional Abelian Lie

algebra, while (0, . . . , 0, e12) means that dei = 0 for i = 1, . . . ,m− 1, and dem = e12,

where e12 = e1 ∧ e2.

Remark 1.3.4. From now on, we use the notation ei1···ik as a shortening for the

wedge product ei1 ∧ · · · ∧ eik of the covectors ei1 , . . . , eik .

A connected Riemannian manifold (M, g) is called homogeneous nilmanifold if

the group Isom(M, g) contains a nilpotent Lie subgroup acting transitively on M . It

follows from the proof of [180, Thm. 3] that (M, g) can be identified with a simply

connected nilpotent Lie group endowed with a left-invariant metric. This motivates

the following

Definition 1.3.5. A (homogeneous) nilmanifold is a simply connected, nilpotent Lie

group N endowed with a left-invariant Riemannian metric g.

Solvmanifolds are defined in a similar way

Definition 1.3.6. A solvmanifold is a simply connected, solvable Lie group S en-

dowed with a left-invariant Riemannian metric g.

Observe that when G is a Lie group endowed with a left-invariant Riemannian

metric g, by definition for every a ∈ G and any pair of vectors X,Y ∈ TaG it holds

ga(X,Y ) = ge((La−1)∗X, (La−1)∗Y ),

where La : G→ G is the left-multiplication map La(b) = ab and e ∈ G is the identity

element. Then, a left-invariant Riemannian metric is completely determined by the

inner product ge on the Lie algebra g ∼= TeG of G and, if G is simply connected, the
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pair (G, g) can be identified with the metric Lie algebra (g, ge). The same result holds

more in general for left-invariant tensor fields on G, which can then be identified with

tensors of the same type defined on g. For brevity, we may use the same symbol to

denote a tensor on g and the left-invariant tensor it defines on G. That being so, a

nilmanifold (N, g) can be identified with its metric nilpotent Lie algebra (n, g) and a

solvmanifold (S, g) can be identified with its metric solvable Lie algebra (s, g).

A classical problem consists in classifying nilpotent and solvable Lie algebras up

to isomorphism. For instance, the solution is known in dimension seven and lower

in the real nilpotent case (see [84, 138]), and up to dimension six in the real solvable

case, while in higher dimensions the problem is still open and only some partial

results are known. Since the result will be useful later, we recall that in dimension

six there are 34 non-isomorphic real nilpotent Lie algebras overall (including the

Abelian one). They are listed with their structure equations with respect to a given

basis in Table 1.1.

Besides the definition of nilmanifolds, we can introduce the compact nilmanifolds

as follows

Definition 1.3.7. Let N be a simply connected, nilpotent Lie group and Γ a cocom-

pact discrete subgroup (lattice) of N. The compact quotient manifold N/Γ is called

compact nilmanifold.

In this case, every left-invariant tensor on N passes to the quotient defining an

invariant tensor on the compact nilmanifold N/Γ. In particular, if (N, g) is a nil-

manifold and we denote by π : N → N/Γ the projection (universal covering) to the

quotient, then the left-invariant metric g on N induces an invariant metric on N/Γ

whose pullback by π is exactly g.

Example 1.3.8. Consider the Heisenberg group

H =




1 z1 z3

0 1 z2

0 0 1

 , zk ∈ C, k = 1, 2, 3

 ,

it is a complex Lie group of complex dimension 3. H can be seen as a real Lie group:

a real basis (e1, . . . , e6) of h∗, the dual space of the Lie algebra h of H, can be obtained
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by setting

e1 + ie2 = dz1, e3 + ie4 = dz2, e5 + ie6 = −dz3 + z1dz2,

where the forms appearing in the right-hand side of the identities are all left-invariant

on H. The structure equations of h can then be computed from this definition,

obtaining (
0, 0, 0, 0, e13 − e24, e14 + e23

)
.

In particular, h is a 2-step nilpotent Lie algebra (it is exactly the algebra n28 of Table

1.1). Moreover, H admits a cocompact discrete subgroup Γ, defined as the subgroup

for which the zk are Gaussian integers, that is, zk = xk + i yk with xk, yk ∈ Z.

The quotient space H/Γ is then a compact nilmanifold, known in literature as the

Iwasawa manifold. The left-invariant 1-forms ek on H pass to the quotient defining

a frame of invariant 1-forms on H/Γ. A tensor on H/Γ is then invariant if it can be

expressed in terms of this frame using constant coefficients.

The following result of Malčev gives a necessary and sufficient condition for the

existence of a lattice of a nilpotent Lie group.

Proposition 1.3.9 ([139]). Let N be a simply connected, nilpotent Lie group with

Lie algebra n. Then, there exists a basis of n such that the structure constants are

rational numbers if and only if there exists a lattice Γ of N such that N/Γ is a compact

nilmanifold.

For instance, six-dimensional compact nilmanifolds can be constructed from all

of the non-isomorphic six-dimensional nilpotent Lie algebras, since they all satisfy

the hypothesis of the previous proposition, as one can check directly in Table 1.1.

A further result, proved by Nomizu in [155], states that the de Rham cohomology

of a compact nilmanifold N/Γ is completely determined by the cohomology of the

Chevalley-Eilenberg complex {Λ·(n∗), d}. More in detail

Theorem 1.3.10 ([155]). Let N/Γ be a compact nilmanifold. Then, the natural

inclusion {Λ·(n∗), d} ⊆ {Ω·(N/Γ), d} induces an isomorphism between every de Rham

cohomology group Hk
dR(N/Γ) of the compact nilmanifold and the cohomology group

Hk(n∗) of the Chevalley-Eilenberg complex of n.
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n· (de1, de2, de3, de4, de5, de6)

n1 (0, 0, e12, e13, e14+e23, e34−e25)

n2 (0, 0, e12, e13, e14, e34 − e25)

n3 (0, 0, e12, e13, e14, e15)

n4 (0, 0, e12, e13, e14+e23, e24+e15)

n5 (0, 0, e12, e13, e14, e23 + e15)

n6 (0, 0, e12, e13, e23, e14)

n7 (0, 0, e12, e13, e23, e14 − e25)

n8 (0, 0, e12, e13, e23, e14 + e25)

n9 (0, 0, 0, e12, e14 − e23, e15 + e34)

n10 (0, 0, 0, e12, e14, e15 + e23)

n11 (0, 0, 0, e12, e14, e15 + e23 + e24)

n12 (0, 0, 0, e12, e14, e15 + e24)

n13 (0, 0, 0, e12, e14, e15)

n14 (0, 0, 0, e12, e13, e14 + e35)

n15 (0, 0, 0, e12, e23, e14 + e35)

n16 (0, 0, 0, e12, e23, e14 − e35)

n17 (0, 0, 0, e12, e14, e24)

n· (de1, de2, de3, de4, de5, de6)

n18 (0, 0, 0, e12, e13 − e24, e14 + e23)

n19 (0, 0, 0, e12, e14, e13 − e24)

n20 (0, 0, 0, e12, e13 + e14, e24)

n21 (0, 0, 0, e12, e13, e14 + e23)

n22 (0, 0, 0, e12, e13, e24)

n23 (0, 0, 0, e12, e13, e14)

n24 (0, 0, 0, e12, e13, e23)

n25 (0, 0, 0, 0, e12, e15 + e34)

n26 (0, 0, 0, 0, e12, e15)

n27 (0, 0, 0, 0, e12, e14 + e25)

n28 (0, 0, 0, 0, e13 − e24, e14 + e23)

n29 (0, 0, 0, 0, e12, e14 + e23)

n30 (0, 0, 0, 0, e12, e34)

n31 (0, 0, 0, 0, e12, e13)

n32 (0, 0, 0, 0, 0, e12 + e34)

n33 (0, 0, 0, 0, 0, e12)

n34 (0, 0, 0, 0, 0, 0)

Table 1.1: Non-isomorphic, real nilpotent Lie algebras of dimension six.

Similarly to the definition of compact nilmanifolds, we have the

Definition 1.3.11. Let S be a simply connected, solvable Lie group and Γ a cocom-

pact discrete subgroup (lattice) of S. The compact quotient manifold S/Γ is called

compact solvmanifold.

The results previously recalled for compact nilmanifolds do not extend in general

to the case of compact solvmanifolds. For instance, there are no sufficient conditions

guaranteeing the existence of a lattice of a simply connected solvable Lie group.
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Anyway, a general result [145, Lemma 6.2] states that if a Lie group G admits a

lattice, then it must be unimodular, i.e., the trace of the adjoint operator

adX : g→ g, adX(Y ) = [X,Y ]

has to be zero for every X ∈ g.

Moreover, as shown by Hattori in [96], if a Lie group S is completely solvable,

that is, if adX has only real eigenvalues for every X ∈ s = Lie(S), then a result

similar to Nomizu’s Theorem can be proved for compact solvmanifolds obtained as

the quotient of simply connected, completely solvable Lie groups by a lattice.

We conclude this section with some observations on metric Lie algebras. Consider

two metric Lie algebras (g1, g1) and (g2, g2), they are said to be isometric if the

corresponding simply connected Lie groups are isometric as Riemannian manifolds

endowed with the left-invariant Riemannian metrics induced by g1 and g2, while they

are called isomorphic if there exists a Lie algebra isomorphism f : g1 → g2 satisfying

f∗g2 = g1. Clearly, isomorphic metric Lie algebras are isometric, but the converse

is not true in general (cf. [5]). However, by [4], if g1 and g2 are completely solvable,

then (g1, g1) and (g2, g2) are isometric if and only if they are isomorphic. This is the

case, for instance, of metric nilpotent Lie algebras, since nilpotent Lie algebras are

in particular completely solvable.

1.4 Einstein and Ricci soliton metrics

In Riemannian geometry there exist some types of Riemannian metrics whose prop-

erties distinguish them from others. In this section, we consider two cases, namely

Einstein and Ricci soliton metrics, reviewing also related results on solvmanifolds

and nilmanifolds.

1.4.1 Einstein metrics

Definition 1.4.1. A Riemannian metric g on a manifold M is said to be an Einstein

metric if it is proportional to its Ricci tensor at each point of M. In this case, (M, g)

is called Einstein manifold.
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Thus, if g is an Einstein metric, there exists a smooth function f ∈ C∞(M) such

that

Ric(g) = fg.

Taking the trace of both sides of the previous identity with respect to the metric,

one easily gets that g is Einstein if and only if

Ric(g) =
1

m
Scal(g) g. (1.3)

The property of being Einstein for a Riemannian metric is relevant in dimension

m ≥ 3. Indeed, in dimension m = 1 the Ricci curvature is zero, while in dimension

m = 2 the identity (1.3) always holds. Moreover, when m ≥ 3, taking the covariant

derivative of both sides of (1.3) and tracing it with respect to g in a proper way gives

d(Scal(g)) = 0. This proves the

Proposition 1.4.2. Let (M, g) be a connected Einstein manifold of dimension m ≥
3. Then, Scal(g) is constant.

On a connected manifold of dimension m ≥ 3 it is then possible to write the

Einstein condition (1.3) as

Ric(g) = µg, (1.4)

for the real constant µ := 1
mScal(g), usually called Einstein constant. In particular,

when µ = 0 the metric g is Ricci-flat.

The rôle of Einstein metrics was widely discussed in [22], where the reader can

find more details on the subject and some good motivations explaining why they can

be considered as “best” or “distinguished” metrics on a Riemannian manifold.

In the general case, Einstein metrics may not exist. The following result by

Milnor describes a typical example where this happens (see also [108]).

Theorem 1.4.3 ([145]). Let G be a Lie group with nilpotent, non-Abelian Lie algebra.

Then, for every left-invariant metric on G there exists a direction of strictly negative

Ricci curvature and a direction of strictly positive Ricci curvature.

Remark 1.4.4. We stress that the non-existence of Einstein metrics in the setting

of the previous theorem follows from the obvious fact that for any Einstein metric

g and any non-vanishing vector field X, the quantity Ric(g)(X,X) = µ|X|2 has a

definite sign.
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1.4.2 Einstein solvmanifolds

Milnor’s result does not extend to the solvable case and, moreover, the simply con-

nected solvable Lie groups endowed with a left-invariant Einstein metric, or Einstein

solvmanifolds for short, are of particular interest. Indeed, they constitute the only

currently known examples of noncompact homogeneous Einstein manifolds and a

conjecture attributed to D.V. Alekseevskĭı states that every noncompact homoge-

neous Einstein manifold might be of this kind when the group acting transitively on

it is linear (cf. [22, 7.57]). As reviewed in [107], this conjecture is known to be true in

several cases, like for instance the case of homogeneous Einstein spaces of negative

sectional curvature, the case of four- and five-dimensional noncompact homogeneous

Einstein manifolds and also in dimension up to ten if the Einstein manifold is G-

homogeneous with G non-semisimple, as shown in [8, 9]. For more details on this

problem and the most recent results concerning it, we refer the reader to the works

just cited and the references therein.

Consider now an Einstein solvmanifold (S, g) and identify it with its Einstein

metric solvable Lie algebra (s, g). In [127], Lauret showed that every Einstein solv-

manifold is standard, i.e., the orthogonal complement a to n := [s, s] is always an

Abelian subalgebra of s = n ⊕ a, whose dimension is called the (algebraic) rank of

(s, g).

The properties of standard Einstein solvmanifolds were studied earlier by Heber

in [98], who proved many structural and uniqueness results for them. By the afore-

mentioned result of Lauret, they are valid for every Einstein solvmanifold.

Unlike what happens in the compact homogeneous case, if a simply connected

solvable Lie group admits a left-invariant Einstein metric, then this is unique up

to isometry and scaling [98, Thm. 5.1]. Moreover, since any unimodular Einstein

solvmanifold is flat by [60], we can restrict our attention to the nonunimodular

case, where it is possible to prove that any nonunimodular standard Einstein metric

solvable Lie algebra (s = n ⊕ a, g) is an Iwasawa-type algebra up to isometry [98,

Thm. 4.10]. This means that every adA is symmetric with respect to g and nonzero

for each A ∈ a − {0} and that there exists some A0 ∈ a such that the restriction

adA0 |n is positive definite. As a consequence, n = [s, s] is the maximal nilpotent
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ideal of s. A canonical choice of A0 is the vector H ∈ a defined by requiring that

tr(adX) = g(X,H) holds for all X ∈ s, since there exists a positive number k such

that the eigenvalues of adkH |n are all positive integers n1, . . . , nr with multiplicities

d1, . . . , dr, respectively, and without common divisors (cf. [98, Thm. 4.14]). The col-

lection (n1 < · · · < nr; d1, . . . , dr) is called the eigenvalue type of (S, g), it is invariant

under isometries and scaling and in each dimension only finitely many eigenvalue

types occur. Finally, by [98, Thm. 4.18], the study of standard Einstein metric solv-

able Lie algebras can be reduced to the rank-one case. Indeed, if (s = n ⊕ a, g)

is the metric solvable Lie algebra of an Einstein solvmanifold (S, g), then the solv-

able metric Lie algebra (s0 := n ⊕ RH, g) is Einstein of Iwasawa-type and S can be

reconstructed from it.

Remark 1.4.5. Observe that an Iwasawa-type algebra (s, g) is nonunimodular, since

tr(adA0) 6= 0, and completely solvable. Consequently, two metric solvable Lie alge-

bras of Iwasawa-type are isometric if and only if they are isomorphic.

1.4.3 Ricci soliton metrics

A natural generalization of Einstein metrics is given by Ricci soliton metrics. To

define them, we first need to recall briefly some results about the Ricci flow. The

reader can find more details on this topic for example in the introductory book [46],

in its sequels [43–45] and in the references cited in this section.

Let g0 be a fixed Riemannian metric on a manifold M, the Ricci flow is the second

order, non-parabolic flow  ∂
∂tg(t) = −2 Ric(g(t))

g(0) = g0

. (1.5)

A solution of the Ricci flow is a family of Riemannian metrics g(t) defined on M

and depending on a real parameter t, the time, which satisfies the PDE in (1.5) with

initial condition g(0) = g0. The Ricci flow was introduced in [94] by Hamilton, who

developed a program, later completed by Perelman’s works [157–159], aiming to solve

Thurston’s Geometrization Conjecture for compact 3-manifolds using it.
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Remark 1.4.6. Unless stated otherwise, compact manifolds are always assumed to

have empty boundary.

Although the flow equation is not strictly parabolic, it is possible to prove local

existence and uniqueness for solutions of (1.5) on compact manifolds.

Theorem 1.4.7 ([94]). Let (M, g0) be a compact Riemannian manifold. Then, there

exists a unique solution for the Ricci flow defined on some interval [0, ε) and such

that g(0) = g0.

This theorem was first proved by Hamilton in [94] using the complex machinery

of Nash-Moser inverse function Theorem, while an alternative proof of it was given

shortly after by DeTurck in [59]. The latter consists in modifying the flow equation

by adding on the right-hand side the Lie derivative of the metric with respect to a

suitable vector field. The new equation is a strictly parabolic PDE for which the local

existence and uniqueness of solutions is guaranteed by standard PDEs theory (see

also Section 4.2); the unique local solution of the Ricci flow is then obtained by pulling

back the solution of the modified flow by an appropriate family of diffeomorphisms

depending on t. Furthermore, the solution can be extended to a unique one, called

singular solution, defined on a maximal time interval [0, T ), where T ≤ +∞ is the

singularity time (see [43, Thm. 6.45]).

Even if short-time existence and uniqueness of solutions of (1.5) on an arbi-

trary Riemannian manifold cannot be proved, they still hold in the case of complete

noncompact manifolds with bounded curvature (see [39, 170]). Moreover, in the

Riemannian homogeneous case there always exists a homogeneous solution of (1.5)

starting at a given homogeneous metric and which is unique among homogeneous

metrics. For a proof the reader may refer to [106, 128].

A distinguished family of solutions of the Ricci flow is given by the so called self-

similar solutions, which are obtained by rescaling and pulling back the initial metric

g0 by a family of diffeomorphisms of M depending on t. More formally

Definition 1.4.8. A solution g(t) of the Ricci flow with initial metric g0 is said

to be self-similar if there exist a positive real valued smooth function σ(t) and a
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1-parameter family of diffeomorphisms νt : M →M such that

g(t) = σ(t)ν∗t (g0). (1.6)

Observe that differentiating a solution of the form (1.6) with respect to t and

evaluating the result in t = 0, we get

Ric(g0) = µg0 + LXg0, (1.7)

where µ = −1
2 σ̇(0) and X = −1

2σ(0)X̂(0), being X̂(t) the time-dependent vector

field such that X̂νt(p) = d
dt(νt(p)). Conversely, if we consider a Riemannian metric

g0 satisfying (1.7), define σ(t) = 1 − 2µt, Y (t) = − 2
σ(t) X, and let νt denote the

1-parameter family of diffeomorphisms generated by Y (t) with ν0 = IdM , then

g(t) = σ(t)ν∗t (g0)

is a solution of the Ricci flow. These results can be summarized as follows.

Proposition 1.4.9. g(t) is a self-similar solution of the Ricci flow with initial con-

dition g0 if and only if g0 satisfies

Ric(g0) = µg0 + LXg0,

for some real constant µ and some vector field X ∈ X(M).

In light of the previous proposition, it is possible to introduce the

Definition 1.4.10. A Riemannian metric g on a manifold M is said to be a Ricci

soliton if there exist a real number µ and a vector field X ∈ X(M) such that

Ric(g) = µg + LXg.

If the vector field X appearing in the definition of a Ricci soliton g is everywhere

zero or if it is a Killing vector field for it, i.e., LXg = 0, then g is actually an Einstein

metric. Therefore, Ricci soliton metrics are a generalization of Einstein metrics,

which can be considered as trivial Ricci solitons.
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Example 1.4.11. Let g0 be an Einstein metric with Ric(g0) = µg0. It is a trivial

Ricci soliton and the self-similar solution of (1.5) associated with it starting at g0 is

g(t) = (1− 2µt)g0.

The interest for Ricci solitons is motivated not only by the fact that they are (in

correspondence with) self-similar solutions of the Ricci flow and they generalize the

Einstein condition (1.4), but also because they are singularity models for the Ricci

flow, namely complete non-flat solutions of (1.5) which occur as limits of dilations

of a singular solution. The reader can find further details and properties of Ricci

solitons for example in [43, Ch. 1].

1.4.4 Ricci soliton metrics on nilpotent Lie groups

We now focus our attention on left-invariant metrics on nilpotent Lie groups. As

we already recalled, if the nilpotent Lie algebra is not Abelian, then there are no

left-invariant Einstein metrics on the Lie group. Since Ricci solitons are a natural

generalization of Einstein metrics, it makes sense to consider left-invariant Ricci soli-

tons as distinguished left-invariant metrics on nilpotent Lie groups. Lauret studied

the properties of these metrics in [124], we recall here some of his results.

Consider a simply connected nilpotent Lie group N endowed with a left-invariant

Riemannian metric g, which we identify with (n, g) as explained in Section 1.3. Ob-

serve that the Ricci operator Rc(g) of the inner product g on n is the restriction to

n ∼= TeN of the Ricci operator on N. If g is a left-invariant Ricci soliton on N, Lauret

proved that its Ricci operator on n differs from a constant multiple of the identity

automorphism I : n → n only by a derivation of n, that is, an element belonging to

the Lie algebra Der(n) of the Lie group Aut(n) of automorphisms of n, where

Aut(n) = {A ∈ GL(n) | A[·, ·] = [A·, A·]},

Der(n) = {D ∈ End(n) | D[·, ·] = [D·, ·] + [·, D·]}.

More in detail

Proposition 1.4.12 ([124]). A left-invariant Riemannian metric g on a simply con-

nected nilpotent Lie group N is a Ricci soliton if and only if the Ricci operator on n
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has the following form

Rc(g) = µI +D, (1.8)

for some µ ∈ R and some derivation D ∈ Der(n).

Proof. First, suppose that Rc(g) = µI +D. Then, for every pair X,Y ∈ n we have

Ric(g)(X,Y ) = g(Rc(g)X,Y ) = µg(X,Y ) + g(DX,Y ).

Now, if νt ∈ Aut(N) denotes the unique t-depending automorphism of N such that

(νt)∗e = exp
(
− t

2D
)

for each t, and X ∈ X(N) is the vector field defined by Xp =
d
dt

∣∣
t=0

νt(p), p ∈ N, then it follows from the definition of Lie derivative that

LXg(·, ·) =
d

dt

∣∣∣∣
t=0

ν∗t g = g(D·, ·).

Therefore, g is a Ricci soliton.

Conversely, if g is a Ricci soliton, then there exist a family νt of diffeomorphisms of

N and a real valued function σ(t) such that g(t) = σ(t)ν∗t (g) is a self similar solution

of the Ricci flow with g(0) = g. By the uniqueness of solutions of (1.5), ν∗t (g) has

to be left-invariant for all t. Using this fact and the results of [180, Thm. 2], it

follows that there exists a family of automorphisms %t of N such that ν∗t (g) = %∗t (g)

for all t. In particular, %∗e = exp
(
− t

2D
)

for some derivation D ∈ Der(n). Now, a

computation similar to the previous one proves the assertion.

Remark 1.4.13. It follows from the proof that an inner product satisfying (1.8)

on a Lie algebra g always induces a left-invariant Ricci soliton metric on the simply

connected Lie group G with Lie(G) = g, while the converse is not true in general. In

literature, a detailed study of Ricci solitons in the more general setting of homoge-

neous Riemannian manifolds was carried out by many authors, the interested reader

may refer to the works [97, 105, 106, 121, 122] and the references therein for more

details on this topic.

Motivated by the previous result, it is possible to give the

Definition 1.4.14. A left-invariant Riemannian metric g on a nilmanifold N is said

to be a nilsoliton if its Ricci operator on n belongs to the space RI ⊕Der(n).
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The existence of a nilsoliton metric on a simply connected nilpotent Lie group

N clearly implies the existence of a nonzero symmetric derivation of its Lie algebra

n. This provides an obstruction to the existence of nilsoliton metrics. For instance,

if N is characteristically nilpotent, i.e., Der(n) consists only of nilpotent elements,

then there are no symmetric derivations of n and N cannot admit nilsoliton met-

rics. Therefore, in the general case nilsolitons may not exist. However, when they

exist, they are unique up to isometry and scaling among left-invariant metrics [124,

Thm. 3.5].

We conclude this section recalling a characterization of Einstein solvmanifolds in

terms of nilsolitons proved in [125]. Consider an Einstein solvmanifold of dimension

m + 1, it is standard and we can always suppose that it has rank one (cf. Section

1.4.2). Let n be a vector space of dimension m and consider an inner product

vector space (s = n ⊕ RH, g̃) with g̃(H, n) = 0 and g̃(H,H) = 1. Then, the metric

Lie algebra of any (m + 1)-dimensional rank-one solvmanifold S can be modeled

on (s = n ⊕ RH, g̃) for some nilpotent Lie bracket [·, ·]n on n and some symmetric

derivation D ∈ Der(n). Indeed, using them it is possible to define a solvable Lie

bracket [·, ·]s on s by

[H,X]s = DX, [X,Y ]s = [X,Y ]n,

for all X,Y,∈ n. The rank-one solvmanifold S is then obtained as the simply con-

nected solvable Lie group with solvable Lie algebra (s, [·, ·]s) endowed with the left-

invariant Riemannian metric determined by g̃.

Proposition 1.4.15 ([125]). Let D be a symmetric derivation of (n, [·, ·]n), let (S, g̃)

be the solvmanifold with metric solvable Lie algebra (s = n ⊕ RH, g̃) and denote by

g the restriction of the inner product g̃ on n. Then, (S, g̃) is Einstein if and only if

the Ricci operator of g on n satisfies

Rc(g) = µI + tr(D)D,

where µ = tr(Rc(g)2)
tr(Rc(g)) . In that case, the Ricci operator of g̃ on s equals µI.

Remark 1.4.16. When the solvmanifold corresponding to the metric solvable Lie al-

gebra (s = n⊕RH, g̃) is Einstein, its eigenvalue type is determined by the eigenvalues

of the operator adkH |n = kD, for some k > 0.
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In the setting of the previous theorem, s is said to be a rank-one solvable extension

of the nilpotent Lie algebra n. Using a variational method developed in [125], the

existence of a rank-one solvable extension for every nilpotent Lie algebra of dimension

less or equal than five was proved in [126], while in the six-dimensional case it was

proved in [179]. Thus, all non-isomorphic nilpotent Lie algebras of dimension up to

six admit a unique nilsoliton metric and their rank-one solvable extensions admit an

Einstein metric. As an example, we write the details in the case of the Lie algebra

of the Iwasawa manifold examined in Example 1.3.8.

Example 1.4.17. Consider the Lie algebra

h = n28 =
(
0, 0, 0, 0, e13 − e24, e14 + e23

)
and endow it with the inner product g for which the basis (e1, . . . , e6) is orthonormal.

A simple computation shows that with respect to the basis (e1, . . . , e6) we have

Rc(g) = −3I + 4 diag

(
1

2
,
1

2
,
1

2
,
1

2
, 1, 1

)
,

and D = diag
(

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
is a symmetric derivation of h with tr(D) = 4. Thus,

the rank-one solvable extension s := h ⊕ Re7 endowed with the inner product g̃ =

g+ (e7)2, where e7 is the covector of s∗ dual to e7, is Einstein with Rc(g̃) = −3I. In

particular, its structure equations with respect to the basis (e1, . . . , e6, e7) are(
1

2
e17,

1

2
e27,

1

2
e37,

1

2
e47, e13 − e24 + e57, e14 + e23 + e67, 0

)
and the eigenvalue type of the corresponding solvmanifold is (1 < 2; 4, 2).
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Special half-flat SU(3)-structures

Six-dimensional manifolds endowed with an SU(3)-structure are the subject of this

chapter. We begin in a more general setting, recalling the definition of U(n)- and

SU(n)-structures on manifolds of dimension 2n and some related results, which will be

useful in the sequel. Then, we focus on the six-dimensional case, describing equivalent

definitions of SU(3)-structures and the classification in terms of the intrinsic torsion.

Among all of the classes, we consider the one of half-flat SU(3)-structures and certain

special subclasses, namely nearly Kähler, double half-flat and coupled. For the first

two we recall some known results, while for the third we describe the results obtained

in the papers [70, 71, 160] and we discuss further properties.

2.1 SU(n)-structures

2.1.1 Almost complex manifolds

In Example 1.2.9 of Chapter 1, we introduced almost complex structures on manifolds

as GL(n,C)-structures. We recall the definition here.

Definition 2.1.1. An almost complex structure on an even-dimensional manifold M

is a vector bundle endomorphism J : TM → TM such that J2 = −Id, where Id is

the identity map. The pair (M,J) is called almost complex manifold.

As we observed in the same example, the structure group of the frame bundle of

37
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a 2n-dimensional almost complex manifold (M,J) reduces to GL(n,C). Moreover,

at each point p of M it is always possible to find a real basis (e1, . . . , e2n) of TpM

which is adapted for J , i.e., such that at p

J(e2k−1) = e2k

J(e2k) = −e2k−1

, 1 ≤ k ≤ n.

A manifold M of real dimension 2n is said to be complex if it admits a holomorphic

atlas, that is, an atlas {(Uk, φk)} whose charts are of the form φk : Uk → φk(Uk) ⊆ Cn

and whose transition functions are holomorphic maps between open sets of Cn. A

complex manifold always admits an almost complex structure (see for example [103,

Prop. 2.6.2]), while the presence of an almost complex structure is not sufficient to

guarantee the existence of a holomorphic atlas. Indeed, by Newlander-Nirenberg

Theorem [152], an almost complex manifold (M,J) is complex if and only if the

Nijenhuis tensor NJ ∈ T1
2(M), defined for every X,Y ∈ X(M) as

NJ(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ], (2.1)

vanishes identically. In this case, the almost complex structure J is said to be

integrable or complex.

For every almost complex manifold (M,J), the complexification of the tangent

bundle TCM := TM ⊗R C splits into a direct sum T 1,0M ⊕ T 0,1M , where the two

summands are complex vector bundles over M whose fibers over each point p of M

are the eigenspaces of the C-linear extension of J :

T 1,0
p M := {X ∈ TpM ⊗ C | JX = iX},

T 0,1
p M := {X ∈ TpM ⊗ C | JX = −iX} = T 1,0

p M.

As a consequence, the vector bundles Λk(TCM
∗) of complex k-forms admit the nat-

ural decomposition

Λk(TCM
∗) =

⊕
r+s=k

Λr,s(T ∗M), (2.2)

where Λr,s(T ∗M) := Λr
((
T 1,0M

)∗) ⊗C Λs
((
T 0,1M

)∗)
. The sections of Λr,s(T ∗M)

are called (r, s)-forms or forms of type (r, s) (with respect to J) and the space of (r, s)-

forms is denoted by Ωr,s(M). According to (2.2), the space Ωk
C(M) := Γ(Λk(TCM

∗))
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splits as

Ωk
C(M) =

⊕
r+s=k

Ωr,s(M)

and Ωr,s(M) = Ωs,r(M). Every complex form α ∈ Ωk
C(M) decomposes accordingly

and the symbol (α)r,s is used to indicate its component in Ωr,s(M).

The bundles Λr,s(T ∗M) ⊕ Λs,r(T ∗M), for r 6= s, and Λr,r(T ∗M) are complexifi-

cations of real vector bundles, denoted by JΛr,s(T ∗M)K and [Λr,r(T ∗M)], respec-

tively. A real differential form is said to be of type (r, s) + (s, r) if it belongs

to JΩr,s(M)K := Γ(JΛr,s(T ∗M)K), while it is called of type (r, r) if it belongs to

[Ωr,r(M)] := Γ([Λr,r(T ∗M)]). In particular, the spaces of real differential forms on

M can be written as

Ω2r(M) =

r−1⊕
j=0

q
Ω2r−j,j(M)

y
⊕ [Ωr,r(M)] , r = 1, . . . , n,

Ω2r+1(M) =

r⊕
j=0

q
Ω2r+1−j,j(M)

y
, r = 0, . . . , n− 1.

The almost complex structure J extends to an operator on real k-forms as

(Jα)(X1, . . . , Xk) = α(JX1, . . . , JXk),

for α ∈ Ωk(M) and Xj ∈ X(M). Furthermore, it is possible to intoduce the operators

J(l) : Ωk(M)→ Ωk(M), for l = 1, . . . , k, defined by(
J(l)α

)
(X1, . . . , Xk) = α(X1, . . . , JXl, . . . , Xk).

Using them, a characterization of real forms of type (r, s) + (s, r) and (r, r) can be

given. For instance, [
Ω1,1(M)

]
=
{
α ∈ Ω2(M) | Jα = α

}
and

q
Ωr,0(M)

y
=
{
α ∈ Ωr(M) | J(k)

(
J(l)α

)
= −α, for all k 6= l

}
.

The C-linear extension of the exterior derivative d : Ωk
C(M)→ Ωk+1

C (M) satisfies

d : Ωr,s(M)→ Ωr+2,s−1(M)⊕ Ωr+1,s(M)⊕ Ωr,s+1(M)⊕ Ωr−1,s+2(M).
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Consequently, it decomposes in the obvious way as d = A + ∂ + ∂ + A and the

following result can be proved (see for instance [103, Prop. 2.6.15] and subsequent

results).

Proposition 2.1.2. Let (M,J) be an almost complex manifold. Then, the following

are equivalent:

i) J is integrable;

ii) dα = ∂α+ ∂α for all α ∈ Ωr,s(M);

iii) Aα = (dα)0,2 = 0 for all α ∈ Ω1,0(M).

When one of the previous conditions holds, the identity d2 = 0 gives ∂2 = 0, ∂
2

= 0

and ∂∂ = −∂∂.

2.1.2 The group SU(n) as stabilizer of tensors on R2n

As matrix group, the special unitary group SU(n) is defined as the subgroup of the

unitary group U(n) whose elements are n × n unitary matrices having determinant

equal to 1. SU(n) is a compact, connected, simply connected, real Lie group of real

dimension n2 − 1, subgroup of SO(2n). Here, following the philosophy of Section

1.2.1, we describe SU(n) as the stabilizer of certain tensors defined on R2n.

We recall that an inner product g on the vector space R2n is said to be compatible

with a complex structure J : R2n → R2n if J is g-orthogonal, i.e., g(J ·, J ·) = g(·, ·).
In this case, the tensor

ω(·, ·) := g(J ·, ·) (2.3)

is skew-symmetric and, thus, ω ∈ Λ2((R2n)∗).

Let us consider the canonical basis (e1, . . . , e2n) of R2n with dual basis (e1, . . . , e2n).

It is orthonormal with respect to the inner product

g0 =
2n∑
i=1

(ei)2.

As we did in the first chapter, we can choose

J0(e2k−1) = e2k

J0(e2k) = −e2k−1

, 1 ≤ k ≤ n.
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and it is easy to check that g0 is compatible with J0. From (2.3), we then get the

2-form

ω0 =
n∑
k=1

e2k−1 ∧ e2k,

which is exactly the non-degenerate 2-form of Example 1.2.8 whose stabilizer is the

symplectic group Sp(2n,R).

On the complex vector space (R2n, J0), we can define a positive Hermitian inner

product

h0(·, ·) := g0(·, ·)− iω0(·, ·).

Since its stabilizer is the unitary group U(n), it follows from this description that

U(n) = O(2n) ∩ Sp(2n,R)

is the stabilizer of the pair (g0, ω0). Moreover, from the fact that any two objects

in the triple (g0, J0, ω0) determine the third via (2.3), it is possible to obtain these

further equivalent descriptions of the unitary group

U(n) = O(2n) ∩GL(n,C) = GL(n,C) ∩ Sp(2n,R)

and, from the inclusion Sp(2n,R) ⊂ SL(2n,R), it is clear that U(n) can be embedded

into SO(2n) as

U(n) = {a ∈ SO(2n) | ω0(a·, a·) = ω0(·, ·)}.

Summarizing, the stabilizer of the triple (g0, J0, ω0) constituted by the inner

product g0, the g0-orthogonal complex structure J0 and the non-degenerate 2-form

ω0 is the unitary group U(n).

Allowing complex coefficients via the usual identification R2n ∼= Cn, the form

Ψ0 = (e1 + ie2) ∧ (e3 + ie4) ∧ · · · ∧ (e2n−1 + ie2n)

is a complex form of type (n, 0) with respect to J0 and an element a ∈ GL(n,C)

acts on it by multiplication with det(a), making evident that the stabilizer of Ψ0 in

GL(n,C) is the group SL(n,C). The common stabilizer of the tensors (g0, J0, ω0,Ψ0)

is then the special unitary group

SU(n) = U(n) ∩ SL(n,C),

which is clearly a subgroup of SO(2n).
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Remark 2.1.3. When R2n is identified with Cn, using the common notation dzk =

e2k−1 + ie2k, k = 1, . . . , n, for the standard basis of complex linear 1-forms on Cn, it

is also possible to write

ω0 =
i

2

n∑
k=1

(
dzk ∧ dzk

)
,

Ψ0 = dz1 ∧ . . . ∧ dzn, (2.4)

g0 =

n∑
k=1

(
dzkdzk

)
.

2.1.3 Special almost Hermitian manifolds

We are now ready to define U(n)- and SU(n)-structures.

Definition 2.1.4. An almost Hermitian structure or U(n)-structure on a real mani-

fold M of dimension 2n is the data of a Riemannian metric g and an almost complex

structure J satisfying

g(JX, JY ) = g(X,Y ), (2.5)

for any pair of vector fields X,Y on M . A manifold M endowed with an almost

Hermitian structure (g, J) is called almost Hermitian manifold and is denoted by

(M, g, J).

If follows from (2.5) that the tensor

ω(·, ·) := g(J ·, ·) (2.6)

is a real 2-form of type (1, 1) with respect to J, that is, ω ∈
[
Ω1,1(M)

]
. The 2-form

ω is moreover non-degenerate, since g is, and it is called fundamental form or Kähler

form of the almost complex structure (g, J). Its exterior power ωn is proportional to

the Riemannian volume form dVg of g

dVg =
1

n!
ωn.

Clearly, any two of the three tensors g, J , ω determine the remaining one via the

relation (2.6). Thus, an almost Hermitian structure can be alternatively defined as

the data of any two of them.



2.1. SU(n)-structures 43

The minimal connection ∇ of an almost Hermitian structure (g, J) on M is given

by [63, 82]

∇XY = ∇gXY −
1

2
J
(
∇gXJ

)
Y, (2.7)

for every pair of vector fields X,Y on M . It is metric, satisfies ∇J = 0 (cf. Section

1.2.2) and, consequently, ∇ω = 0. The intrinsic torsion of (g, J) is then τ = ∇ −
∇g ∈ Γ(T ∗M ⊗ u(n)⊥) and it can be identified with the covariant derivative of the

fundamental form ω with respect to the Levi Civita connection of g by the general

result recalled in Proposition 1.2.21. As a consequence, it is possible to classify almost

Hermitian manifolds in terms of ∇gω, which is exactly what Gray and Hervella did

in [91]. In detail, starting from a real vector space V of dimension 2n endowed with

an inner product g compatible with an almost complex structure J, they considered

the subspace of (V ∗)⊗3

W := {α ∈ (V ∗)⊗3 | α(X,Y, Z) = −α(X,Z, Y ) = −α(X, JY, JZ)}, (2.8)

whose dimension as subspace of (V ∗)⊗3 is 2n2(n − 1) = dim((R2n)∗ ⊗ u(n)⊥), and

showed that it decomposes under the action of U(n) into the direct sum of irreducible

U(n)-representations

W = W1 ⊕W2 ⊕W3 ⊕W4,

where the summands W1,W3 are trivial if n = 2 and W = {0} for n = 1. Then,

on an almost Hermitian manifold (M, g, J), they considered the space W of tensors

satisfying the same identities as ∇gω. This space is pointwise given by the subspace

Wp of (T ∗pM)⊗3, defined as in (2.8) with (V, g, J) replaced by (TpM, gp, Jp), and splits

according to the decomposition of Wp as

W =W1 ⊕W2 ⊕W3 ⊕W4.

When n ≥ 3, this decomposition allows to divide almost Hermitian manifolds into

sixteen classes. For instance, W1 denotes the set of all almost Hermitian manifolds

such that (∇gω)p ∈ Wp1 for all p ∈ M , and so on. Moreover, the classes can be all

alternatively described in terms of the exterior derivative dω and of the Nijenhuis

tensor NJ , since they contain the same informations on the intrinsic torsion as ∇gω.
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This result follows from the identity (see e.g. [151, Prop. 2.2])

2(∇gXω)(Y,Z) = dω(X,Y, Z)− dω(X, JY, JZ)− g(JX,NJ(Y,Z)). (2.9)

For our purposes, we recall the definition of only six classes in Table 2.1. Usually,

the name appearing in the table is used to indicate both the manifold and the almost

Hermitian structure.

Class Name Defining conditions

{0} Kähler ∇gω = 0 or ∇gJ = 0 or dω = 0 and NJ = 0

W1 nearly Kähler (∇gXJ)X = 0 or dω = 3∇gω

W2 almost Kähler dω = 0

W1 ⊕W2 quasi Kähler ∂ω = 0 or (∇gXJ)(Y ) = −(∇gJXJ)(JY )

W3 ⊕W4 Hermitian NJ = 0

W1 ⊕W3 ⊕W4 G1 g(NJ(X,Y ), X) = 0

Table 2.1: Some classes of almost Hermitian manifolds for n ≥ 3.

It is worth observing here that the manifolds (M, g, J) in the class W = {0},
known as Kähler manifolds in literature, have a torsion-free U(n)-structure and,

then, Hol(g) ⊆ U(n) by Proposition 1.2.22. The equivalence between the defining

conditions can be proved using (2.9), the identities(
∇gXω

)
(Y, Z) = g

((
∇gXJ

)
Y,Z

)
, (2.10)

dω(X,Y, Z) = SX,Y,Z(∇gXω)(Y,Z) (2.11)

= (∇gXω)(Y, Z) + (∇gY ω)(Z,X) + (∇gZω)(X,Y ),

and the expression of the Nijenhuis tensor in terms of the covariant derivative ∇gJ

NJ(X,Y ) = (∇gJY J)X + J(∇gXJ)Y − (∇gJXJ)Y − J(∇gY J)X. (2.12)

For the complete classification of almost Hermitian manifolds, the description of

the summands Wi and more details on the construction, we refer the reader to the
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paper [91]. The properties of some classes of manifolds appearing in Table 2.1 were

also studied by Gray in [86, 89], where it is possible to find explicit examples.

We can now introduce SU(n)-structures, also known as special almost Hermitian

structures in literature.

Definition 2.1.5. An SU(n)-structure on a real manifold M of dimension 2n is the

data of an almost Hermitian structure (g, J) and a complex (n, 0)-form Ψ of nonzero

constant length satisfying the normalization condition

Ψ ∧Ψ = (−1)
n(n+1)

2
(2i)n

n!
ωn,

where ω is the fundamental form of (g, J).

Since ω is of type (1, 1) and Ψ is of type (n, 0), their wedge product is zero. The

equation ω∧Ψ = 0 is sometimes called the compatibility condition between ω and Ψ.

Remark 2.1.6. Observe that given an SU(n)-structure, we can take the tensors

g0, J0, ω0,Ψ0 introduced in the previous section as model tensors for g, J, ω and Ψ,

respectively.

The intrinsic torsion of an SU(n)-structure (g, J,Ψ) is a section of the vector

bundleW = T ∗M⊗su(n)⊥ and is completely determined by the covariant derivatives

∇gω and ∇gΨ. The decomposition ofW into SU(n)-irreducible components depends

on n. In [40], Chiossi and Salamon studied the case n = 3, while in [142], Mart́ın

Cabrera described the case n ≥ 4, generalizing some results of [40]. When n ≥ 4,

the SU(n)-irreducible decomposition is

W =W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5,

where the first four summands are exactly those appearing in Gray and Hervella’s

description previously recalled and W5
∼= T ∗M . When n = 3, the spaces W1 and

W2 further decompose into the direct sum of two SU(3)-irreducible components. We

describe this situation more in detail in the next section, while we refer the reader

to [142] for the case n ≥ 4.
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2.2 SU(3)-structures and their classification

2.2.1 SU(3)-structures revisited

Let M be a six-dimensional manifold endowed with an SU(3)-structure. M admits

an almost Hermitian structure (g, J) with fundamental form ω and a complex (3, 0)-

form Ψ of nonzero constant length. We can write

Ψ = ψ+ + iψ−,

where ψ+ := <(Ψ) and ψ− := =(Ψ) are real forms of type (3, 0) + (0, 3). The

compatibility condition then reads

ω ∧ ψ± = 0,

the normalization condition is

ψ+ ∧ ψ− =
2

3
ω3 = 4 dVg,

and the 3-forms ψ+ and ψ− are related by

ψ− = Jψ+, ψ− = −Jψ+.

Moreover, the metric g and the volume form dVg = ω3

6 determine the Hodge operator

∗ : Ωk(M)→ Ω6−k(M), k = 0, . . . , 6, which is an isometry of the metric induced by

g on Λk(T ∗M), satisfies ∗2α = (−1)kα for every α ∈ Ωk(M) and commutes with the

almost complex structure J

J∗ = ∗J.

At each point p ofM, it is always possible to find a g-orthonormal basis (e1, . . . , e6)

of TpM with dual basis (e1, . . . , e6) which is adapted for the SU(3)-structure. This

means that at p one can always write

ω = e12 + e34 + e56 = 1
2ωjke

jk,

ψ+ = e135 − e146 − e236 − e245 = 1
6ψjkle

jkl,

ψ− = e136 + e145 + e235 − e246,

(2.13)
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where the symbols ωjk and ψjkl are skew-symmetric in their indices and uniquely

defined via the previous identities, and

J(e2k−1) = e2k, J(e2k) = −e2k−1, k = 1, 2, 3. (2.14)

In particular, Ψ = ψ+ + iψ− = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) at p.

We call equally the basis (e1, . . . , e6) and its dual (e1, . . . , e6) an SU(3)-basis for

the SU(3)-structure at the point p.

Using the local expressions (2.13), it is easy to show that the Riemannian metric

g can also be described in terms of ω and ψ+ as

g(X,Y )
ω3

6
= −1

2
(ιXω) ∧ (ιY ψ+) ∧ ψ+,

for all X,Y ∈ TpM , where ι denotes the contraction of differential forms by vectors,

and that for every α ∈ Ω1(M) and X ∈ X(M)

α ∧ ω = 0 ⇐⇒ α = 0, (2.15)

α ∧ ω2 = 0 ⇐⇒ α = 0, (2.16)

α ∧ ψ± = 0 ⇐⇒ α = 0, (2.17)

ιXψ± = 0 ⇐⇒ X = 0. (2.18)

Furthermore, the Hodge operator applied to ω and to ψ+ gives

∗ω =
1

2
ω2,

∗ψ+ = ψ−,

from which follows in particular that |ψ+|2 = |ψ−|2 = 4. Indeed, the norms of ψ+

and ψ− are the same, since ∗ is an isometry, and

|ψ+|2 dVg = g(ψ+, ψ+)dVg = ψ+ ∧ ∗ψ+ = ψ+ ∧ ψ− = 4 dVg.

The Riemannian metric g is not the only tensor depending on ω and ψ+. In fact,

the whole SU(3)-structure is completely determined by these differential forms. This

is a long-standing result, which follows from Reichel’s thesis [161] of 1907 and which

was later reformulated by Hitchin in [101]. The starting point is the observation that

the differential forms ω and ψ+ are stable in the sense of the following
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Definition 2.2.1. Let V be a real vector space of dimension m, a k-form σ ∈ Λk(V ∗)

is stable if its orbit under the action of GL(V ) is open in Λk(V ∗). A k-form σ ∈ Ωk(M)

on a manifold M is stable if the k-form σ(p) on TpM is stable for every p ∈M.

Stability occurs in very few cases, namely for k = 2,m − 2 when m is even and

k = 3,m− 3 when m = 6, 7, 8. Moreover, given a stable form it is always possible to

define a volume form from it. We shall describe the case m = 6 in what follows and

m = 7 in the next chapter. The reader may refer to [53, 102] for a complete picture.

Stable 2-forms on a six-dimensional vector space represent a special case of a

more general situation: a 2-form on a 2n-dimensional vector space V is stable if and

only if it is non-degenerate. Indeed, Λ2(V ∗) contains only one open orbit, which

must coincide with the orbit GL(2n,R)/Sp(2n,R) of a non-degenerate 2-form by

dimension counting. Given a 2n-manifold M, this implies that ω ∈ Ω2(M) is stable

if and only if ωn 6= 0. The volume form defined by ω is the so-called Liouville volume

form 1
n! ω

n.

Suppose now that V is an oriented, six-dimensional real vector space with volume

form Ω ∈ Λ6(V ∗). There is a canonical isomorphism

A : Λ5(V ∗)→ V ⊗ Λ6(V ∗),

defined for every α ∈ Λ5(V ∗) by A(α) = v ⊗ Ω, where v ∈ V is the unique vector

such that ιvΩ = α. Fix a 3-form ρ ∈ Λ3(V ∗) and define

Kρ : V → V ⊗ Λ6(V ∗), Kρ(v) = A((ιvρ) ∧ ρ)

and

λ : Λ3(V ∗)→
(
Λ6(V ∗)

)⊗2
, λ(ρ) =

1

6

(
trK2

ρ

)
.

λ(ρ) is said to be positive and is denoted by λ(ρ) > 0 if there exists β ∈ Λ6(V ∗) such

that λ(ρ) = β ⊗ β, while λ(ρ) < 0 if −λ(ρ) is positive. By [101],

ρ is stable⇐⇒ λ(ρ) 6= 0.

In this case, the positively oriented squared root
√
|λ(ρ)| ∈ Λ6(V ∗) defines a volume

form on V. Moreover, the space Λ3(V ∗) contains an invariant quartic hypersurface
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λ(ρ) = 0 which divides it into the open subsets

O+ = {ρ ∈ Λ3(V ∗) | λ(ρ) > 0},
O− = {ρ ∈ Λ3(V ∗) | λ(ρ) < 0}.

If (v1, . . . , v6) is an oriented basis of V ∗, O− is the open GL(V )-orbit of the 3-form

v135 − v146 − v236 − v245

and the identity component of the stabilizer of a 3-form lying in it is conjugated to

SL(3,C). As a consequence, ρ ∈ O− defines a complex structure Jρ on V, which is

given by

Jρ = − 1√
|λ(ρ)|

Kρ. (2.19)

Moreover, ρ is the real part of the complex (3,0)-form

ρ+ i(Jρρ).

Remark 2.2.2. Observe that the complex structure induced by a stable 3-form

ρ ∈ O− does not change if ρ is rescaled by a nonzero real constant, i.e., Jρ = Jrρ for

every r ∈ R− {0}.

Remark 2.2.3. The expression (2.19) for Jρ differs from that given in the papers

[53, 101, 102] by a sign. This is due to the fact that here we are using a convention

in the definition of SU(3)-structures which is slightly different from the one used by

the authors in the aforementioned papers.

Given a stable 2-form ω and a stable 3-form ρ on V, it is possible to consider the

orientation defined by the volume form Ω := 1
6 ω

3 and define Jρ in the way previously

described. The forms ω and ρ are said to be compatible if

ω ∧ ρ = 0⇐⇒ ω ∈
[
Λ1,1(V ∗)

]
and normalized if

ρ ∧ (Jρρ) =
2

3
ω3.

When the symmetric tensor g(·, ·) := ω(·, Jρ·) is positive definite, the pair of com-

patible and normalized stable forms (ω, ρ) defines an SU(3)-structure on the vector

space V.
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Referring to the description of the group SU(n) given in Section 2.1.2 and using

the previous results, we shall see in the next example that for n = 3 the 2-form ω0

and the 3-form <(Ψ0) on R6 are sufficient to determine the data (g0, J0, ω0,Ψ0). As

a consequence, the group SU(3) can be described as

SU(3) = Sp(6,R) ∩ SL(3,C).

Example 2.2.4. On the vector space R6 with canonical basis (e1, . . . , e6) and dual

basis (e1, . . . , e6), consider the stable 2-form ω0 = e12 + e34 + e56 and the 3-form

ρ0 = <(Ψ0) = e135 − e146 − e236 − e245.

The pair (ω0, ρ0) is compatible, ω0 induces the volume form Ω = 1
6 ω

3
0 = e123456 and

a simple computation shows that for k = 1, 2, 3

Kρ0(e2k−1) = −2 e2k ⊗ Ω, Kρ0(e2k) = 2 e2k−1 ⊗ Ω,

from which follows

λ(ρ0) = −4 Ω⊗ Ω < 0.

Then, the 3-form ρ0 is stable, it defines the volume form
√
|λ(ρ0)| = 2 Ω and the

complex structure Jρ0 given on the basis vectors by

Jρ0(e2k−1) = e2k, Jρ0(e2k) = −e2k−1, k = 1, 2, 3.

Therefore, g0(·, ·) = ω0(·, Jρ0 ·) is the inner product

g0 =
6∑

k=1

(ek)2,

and

Jρ0ρ0 = e136 + e145 + e235 − e246 = =(Ψ0).

The previous construction extends in the obvious way to the manifold level with

V replaced by the tangent spaces. Thus, if a 6-manifold M is endowed with a pair

of stable forms ω ∈ Ω2(M) and ρ ∈ Ω3(M), with λ(ρ(p)) < 0 for each p ∈ M ,

then J : TM → TM , Jp = Jρ(p), defines an almost complex structure on it and

the following alternative definition of SU(3)-structures can be given (see also [167,

Prop. 3.3])
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Definition 2.2.5. Let M be a six-dimensional manifold. An SU(3)-structure on

M is a pair of stable forms (ω, ρ) ∈ Ω2(M) × Ω3(M), with λ(ρ(p)) < 0 for each

point p of M , which are compatible, normalized and induce a Riemannian metric

g(·, ·) := ω(·, Jρ·).

To be consistent with the notations introduced earlier, form now on we use ψ+

instead of ρ to denote the stable 3-form appearing in the definition of an SU(3)-

structure. The almost complex structure associated with (ω, ψ+) is then J = Jψ+ ,

the complex (3, 0)-form is Ψ = ψ+ + iψ−, where ψ− = Jψ+, and the Riemannian

metric is g(·, ·) = ω(·, J ·).
As observed in [165], since the construction of the tensors J, ψ− and g from the

pair (ω, ψ+) defining an SU(3)-structure is invariant, a diffeomorphism ν : M → M

preserving the stable forms ω and ψ+ preserves also J, ψ− and g. Thus, it is an

automorphism of the SU(3)-structure and, in particular, an isometry.

In this thesis, when we consider SU(3)-structures we mainly refer to Definition

2.2.5. Nevertheless, it is worth mentioning here that an alternative description

of SU(3)-structures can be given using the spinorial approach. Indeed, any six-

dimensional Riemannian manifold (M, g) admits an SU(3)-structure if and only if it

is orientable and has a spin structure [129]. It is then possible to consider the spinor

bundle ΣM over (M, g), which is a complex vector bundle with typical fiber C8, and

show that there is a correspondence between SU(3)-structures and unit real spinor

fields, that is, global sections φ ∈ Γ(ΣM) of length one satisfying φ = φ. Moreover,

up to a sign in the choice of φ, the correspondence is one-to-one. We will review

this result in detail in Section 4.3.2 of Chapter 4. For more informations on spin

structures and related topics, the reader may refer for instance to [16, 18, 76, 129].

2.2.2 The classification of SU(3)-structures

Let M be a 6-manifold endowed with an SU(3)-structure (ω, ψ+). The intrinsic

torsion τ of (ω, ψ+) is a section of the rank 42 vector bundle W pointwise modeled

on the space W = (R6)∗ ⊗ su(3)⊥, which by [40] decomposes into SU(3)-irreducible

summands as

W = W+
1 ⊕W

−
1 ⊕W

+
2 ⊕W

−
2 ⊕W3 ⊕W4 ⊕W5,
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where W±1
∼= R, W±2

∼= su(3), W3
∼= JΛ2,1

0 ((R6)∗)K, the space of real forms of type

(2, 1)+(1, 2) whose wedge product with ω0 is zero, and W4,W5
∼= (R6)∗. Accordingly,

W =W+
1 ⊕W

−
1 ⊕W

+
2 ⊕W

−
2 ⊕W3 ⊕W4 ⊕W5.

Moreover, by [40, Thm. 1.1], τ is completely determined by the exterior derivatives

of ω, ψ+ and ψ−. In detail, the irreducible decompositions of the SU(3)-modules

Λ3((R6)∗) and Λ4((R6)∗) induce on (M,ω, ψ+) the g-orthogonal decompositions

Ω3(M) = C∞(M)ψ+ ⊕ C∞(M)ψ−︸ ︷︷ ︸
(3,0)+(0,3)

⊕
r

Ω2,1
0 (M)

z
⊕ Ω1(M) ∧ ω︸ ︷︷ ︸

(2,1)+(1,2)

,

Ω4(M) = C∞(M)ω2 ⊕
[
Ω1,1

0 (M)
]
∧ ω︸ ︷︷ ︸

(2,2)

⊕Ω1(M) ∧ ψ+︸ ︷︷ ︸
(3,1)+(1,3)

,
(2.20)

where r
Ω2,1

0 (M)
z

=
{
α ∈

q
Ω2,1(M)

y
| α ∧ ω = 0

}
is the space of primitive real forms of type (2, 1) + (1, 2) and[

Ω1,1
0 (M)

]
=
{
β ∈

[
Ω1,1(M)

]
| β ∧ ω2 = 0

}
is the space of primitive real forms of type (1, 1). Consequently (see also [19]), there

exist unique differential forms w±1 ∈ C∞(M), w±2 ∈
[
Ω1,1

0 (M)
]
, w3 ∈

r
Ω2,1

0 (M)
z

,

w4 ∈ Ω1(M) and w5 ∈ Ω1(M), such that

dω = −3
2w
−
1 ψ+ + 3

2w
+
1 ψ− + w3 + w4 ∧ ω,

dψ+ = w+
1 ω

2 − w+
2 ∧ ω + w5 ∧ ψ+,

dψ− = w−1 ω
2 − w−2 ∧ ω + Jw5 ∧ ψ+,

(2.21)

and the component of τ in W(±)
k vanishes identically if and only if w

(±)
k does.

Definition 2.2.6. The differential forms w
(±)
k , uniquely defined via (2.21), are called

intrinsic torsion forms of the SU(3)-structure (ω, ψ+).

The classification of SU(3)-structures can then be stated in terms of the identi-

cally vanishing intrinsic torsion forms. This gives rise to 27 = 128 classes overall,
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which are denoted by the corresponding decomposition of W. When w
(±)
k = 0 for all

k = 1, . . . , 5, the intrinsic torsion vanishes identically and the class is W = {0}. The

next proposition, whose proof follows from the previous observations and Proposition

1.2.22, summarizes the equivalent defining properties of this class.

Proposition 2.2.7. Let M be a connected six-dimensional manifold endowed with

an SU(3)-structure (ω, ψ+) inducing a Riemannian metric g. Then, the following

are equivalent:

i) the SU(3)-structure is torsion-free;

ii) the intrinsic torsion forms w
(±)
k vanish identically;

iii) the differential forms ω, ψ+, ψ− are closed;

iv) the differential forms ω and Ψ are parallel with respect to ∇g.

When one of the previous conditions holds, Hol(g) ⊆ SU(3).

A further property of a torsion-free SU(3)-structure is that the Riemannian metric

g induced by it is Ricci-flat, that is, Ric(g) = 0. This result holds true for all metrics

with holonomy in SU(n), as shown for instance in [110, Prop. 7.1.1]. In the case

n = 3, a simple proof can be obtained using the description of the Ricci tensor in

terms of the intrinsic torsion forms given in [19]. We shall recall it later.

As one would expect from the more general case of almost Hermitian manifolds

(cf. Table 2.1), the integrability of the almost complex structure Jψ+ depends on the

intrinsic torsion forms w±1 and w±2 . Indeed, w±1 = 0 and w±2 = 0 if and only if the

(2, 2) part of the exterior derivatives of ψ+ and ψ− is zero and this happens if and

only if AΨ = (dΨ)2,2 = 0. The assertion then follows from

Proposition 2.2.8. Let (ω, ψ+) be an SU(3)-structure on a 6-manifold M. The

almost complex structure J = Jψ+ is integrable if and only if AΨ = 0.

Proof. We know from Proposition 2.1.2 that J is integrable if and only if Aα = 0

for every α ∈ Ω1,0(M). Since Ψ ∈ Ω3,0(M), α ∧ Ψ = 0 and applying the exterior

derivative d to both sides of this identity we obtain

Aα ∧Ψ = α ∧AΨ.
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Since Aα ∧ Ψ = 0 implies Aα = 0, we get that Aα = 0 for all α ∈ Ω1,0(M) if and

only if AΨ = 0.

Furthermore, from the description of Gray and Hervella’s class W1 ⊕W3 ⊕W4

given in [91], it is possible to deduce the following property

Proposition 2.2.9. Let (ω, ψ+) be an SU(3)-structure on a 6-manifold M and let

NJ be the Nijenhuis tensor of the corresponding almost complex structure J = Jψ+.

Then, the intrinsic torsion forms w±2 vanish identically if and only if NJ is totally

skew-symmetric, namely g(NJ(·, ·), ·) is a 3-form on M .

Proof. By [91], we have that the component of the intrinsic torsion in W2 vanishes

identically if an only if g(NJ(X,Y ), X) = 0 for all X,Y ∈ X(M). Thus, g(NJ(·, ·), ·)
is a 3-form, since NJ(X,Y ) = −NJ(Y,X) (see (2.1)).

The next definition was introduced in [40] to denote a distinguished class of

SU(3)-structures.

Definition 2.2.10 ([40]). A six-dimensional almost Hermitian manifold is half-flat

if its structure group admits a reduction to SU(3) for which dψ+ = 0 and dω2 = 0.

In this case, the SU(3)-structure (ω, ψ+) is called half-flat.

Using the expressions of the exterior derivatives of ω and ψ+, it is easy to

show that the half-flat condition is equivalent to require that the only possibly

non-identically vanishing intrinsic torsion forms are w−1 , w−2 and w3. Indeed, from

dψ+ = 0 we get that the forms w+
1 , w

+
2 and w5 vanish identically, while from

0 = dω ∧ ω = w4 ∧ ω2

and (2.16) we obtain w4 = 0. Thus, the intrinsic torsion of a half-flat SU(3)-structure

is a section of the vector bundle W−1 ⊕ W
−
2 ⊕ W3, whose rank 1 + 8 + 12 = 21 is

exactly half of the rank of W. In this sense the name half-flat refers to the fact that

the SU(3)-structure is “half torsion-free” or “half-integrable”.

Half-flat SU(3)-structures can be used to construct metrics with holonomy in G2.

This remarkable property was first observed in [102] by Hitchin, who introduced a

system of evolution equations for the differential forms ω and ψ+ which allows to
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prove it. To explain how this system is obtained, we need to recall some facts about

G2-structures, therefore we will do this in the next chapter (see Section 3.2.1). For

the moment, we review the definition and the main properties.

Suppose that the forms ω, ψ+, ψ− defining an SU(3)-structure on a 6-manifold

M depend on a real parameter t. Then, the system is the following ∂
∂tψ+(t) = dω(t)

∂
∂tω(t) ∧ ω(t) = −dψ−(t)

(2.22)

and the equations are usually called Hitchin flow equations in literature. (2.22) is

not a geometric flow in the usual sense (cf. Section 4.2), but it can be obtained as

the Hamiltonian flow of a certain functional (see [102]).

A solution of (2.22) starting from a given SU(3)-structure (ω, ψ+) at t0 ∈ R is a

one-parameter family of SU(3)-structures (ω(t), ψ+(t)) with parameter t belonging to

an interval I ⊆ R containing t0, which solves the Hitchin flow equations and satisfies

(ω(t0), ψ+(t0)) = (ω, ψ+). If the initial condition is half-flat, then the solution is

half-flat as long as it exists. Indeed, differentiating d (ψ+(t)) with respect to t and

using the first evolution equation of (2.22) we get

∂

∂t
(dψ+(t)) = d

(
∂

∂t
ψ+(t)

)
= d(dω(t)) = 0,

from which follows d (ψ+(t)) = d (ψ+(t0)) = 0, while differentiating d(ω(t))2 with

respect to t and using the second evolution equation we obtain

∂

∂t
(d(ω(t))2) = 2 d

(
∂

∂t
ω(t) ∧ ω(t)

)
= −2d(dψ−(t)) = 0,

and, then, d(ω(t))2 = d(ω(t0))2 = 0. Moreover, a family of stable forms (ω(t), ψ+(t))

defined for t in a real interval I and satisfying the Hitchin flow equations is an SU(3)-

structure for all t ∈ I if the initial condition (ω(t0), ψ+(t0)) = (ω, ψ+) is a half-flat

SU(3)-structure. This result was proved in [102] for compact 6-manifolds and was

later generalized in [53] in the noncompact case. Finally, it is possible to show that a

solution of (2.22) with initial condition a given SU(3)-structure (ω, ψ+) exists when

the latter is half-flat and analytic, but may not exist when the analytic hypothesis

is dropped (see [31]).
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Clearly, torsion-free SU(3)-structures trivially satisfy the equations defining a

half-flat SU(3)-structure. Thus, we may refer to them as trivial half-flat. Moreover,

we may call special half-flat the SU(3)-structures belonging to a subclass of W−1 ⊕
W−2 ⊕W3, since they satisfy the conditions dψ+ = 0 and dω2 = 0 but have smaller

intrinsic torsion. For instance, the symplectic half-flat structures introduced in [56]

and defined by dω = 0 and dψ+ = 0 are special half-flat, as their class is W−2 . We

will consider further special half-flat structures and study their properties in the next

sections.

Remark 2.2.11. When SU(3)-structures are described using the spinorial formalism

outlined at the end of Section 2.2.1, the classification can be stated in terms of the

unit real spinor field and the spinorial field equations it satisfies, as shown in [2].

Some results will be recalled in Section 4.3.2.

2.2.3 The Ricci tensor of an SU(3)-structure

As shown by Bedulli and Vezzoni in [19], the Ricci tensor and the scalar curvature of

the Riemannian metric g induced by an SU(3)-structure (ω, ψ+) can be completely

expressed in terms of the intrinsic torsion forms and their derivatives. We recall here

their results.

Theorem 2.2.12 ([19]). The scalar curvature of the metric g induced by an SU(3)-

structure is expressed in terms of the intrinsic torsion forms as

Scal(g) =
15

2

(
w+

1

)2
+

15

2

(
w−1
)2 − 1

2

∣∣w−2 ∣∣2 − 1

2

∣∣w+
2

∣∣2 − 1

2
|w3|2

+2d∗w5 + 2d∗w4 − |w4|2 + 4g(w4, w5).

It is then possible to obtain informations on the scalar curvature of certain classes

of manifolds admitting an SU(3)-structure. For example

Corollary 2.2.13 ([19]). The scalar curvature of a symplectic half-flat manifold is

Scal(g) = −1
2 |w
−
2 |2. Thus, it is everywhere nonpositive and vanishes identically if

and only if the SU(3)-structure is torsion-free.

The Ricci tensor belongs to the space S2(M) of symmetric 2-covariant tensor

fields on M, whose decomposition, induced by the SU(3)-irreducible decomposition
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of S2((R6)∗), is

S2(M) = C∞(M) g ⊕ S2
+(M)⊕ S2

−(M),

where

S2
+(M) =

{
σ ∈ S2(M) | Jσ = σ and trgσ = 0

}
,

S2
−(M) =

{
σ ∈ S2(M) | Jσ = −σ

}
.

We can write

Ric(g) =
1

6
Scal(g)g + Ric0(g),

and the traceless part Ric0(g) of the Ricci tensor belongs to S2
+(M)⊕S2

−(M). Using

the map i+ : S2
+(M) →

[
Ω1,1

0 (M)
]

induced by the pointwise SU(3)-module isomor-

phism

i+

(
σjke

jek
)

= σjrωrke
jk,

the map i− : S2
−(M) →

r
Ω2,1

0 (M)
z

induced by the pointwise SU(3)-module isomor-

phism

i−

(
σjke

jek
)

= σjrψrkle
jkl,

and the projections E1 : Ω2(M)→
[
Ω1,1

0 (M)
]

and E2 : Ω3(M)→
r

Ω2,1
0 (M)

z
defined

as

E1(β) =
1

2
(β + Jβ)− 1

18
∗ ((∗(β + Jβ) + (β + Jβ) ∧ ω) ∧ ω)ω,

E2(α) = α− 1

2
∗ (Jα ∧ ω) ∧ ω − 1

4
∗ (α ∧ ψ−)ψ+ −

1

4
∗ (ψ+ ∧ α)ψ−,

the result for the Ricci tensor can be stated as follows

Theorem 2.2.14 ([19]). The traceless part of the Ricci tensor of the metric g induced

by an SU(3)-structure is

Ric0(g) = i−1
+ (E1(Φ1)) + i−1

− (E2(Φ2)), (2.23)
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where the 2-form Φ1 and the 3-form Φ2 are given by

Φ1 = − ∗ (w4 ∧ Jw3) +
1

4
∗
(
w+

2 ∧ w
+
2

)
+

1

4
∗
(
w−2 ∧ w

−
2

)
+d(Jw5) +

1

2
d∗w3 +

1

2
d∗(w4 ∧ ω)− 1

4
d∗
(
w+

1 ψ+

)
+

1

4
d∗
(
w−1 ψ+

)
,

Φ2 = −2w−1 w3 − 4w−2 ∧ w4 − 2Jdw+
2 − 2 ∗ Jdw−2 − 4d ∗ (w4 ∧ ∗ψ+)

−2d ∗ (Jw5 ∧ ψ+) + 2w+
1 Jw3 − 2Jd ∗ (w5 ∧ ψ+)− 4w+

2 ∧ Jw5

+4w4 ∧ ∗(Jw5 ∧ ψ+)− 2(Jw4) ∧ ∗(w4 ∧ ψ+)− 1

2
Q(w3, w3),

and Q :
r

Ω2,1
0 (M)

z
×

r
Ω2,1

0 (M)
z
→ Ω3(M) is the bilinear map defined by Q(α, η) =

ψjkl(ιekιejα) ∧ (ιelη), being (e1, . . . , e6) an adapted basis for (ω, ψ+).

From this description of Ric(g) and Proposition 2.2.7, the following result is

immediate

Proposition 2.2.15. Let M be a 6-manifold endowed with a torsion-free SU(3)-

structure. Then, the associated Riemannian metric is Ricci-flat.

Moreover, using (2.23) it is possible to characterize the Einstein condition for g

in terms of the intrinsic torsion forms. Indeed, g is Einstein if and only if Ric0(g)

vanishes identically and this happens if and only if both E1(Φ1) and E2(Φ2) are

zero. In the general case, these conditions are not very useful to draw conclusions.

Nevertheless, some interesting results can be obtained for certain classes of SU(3)-

structures. For instance

Proposition 2.2.16 ([19]). A symplectic half-flat manifold is Einstein if and only

if its intrinsic torsion vanishes identically.

2.3 Nearly Kähler SU(3)-structures

We recall that an almost Hermitian manifold (M, g, J) of dimension 2n is said to be

nearly Kähler if (
∇gXJ

)
X = 0, (2.24)
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for all X ∈ X(M) (cf. Table 2.1). The Gray and Hervella’s class of nearly Kähler

manifolds is W1 and, using identity (2.10), the defining condition is easily seen to be

equivalent to (
∇gXω

)
(X,Y ) = 0.

Since Kähler manifolds, defined by ∇gJ = 0, satisfy (2.24) trivially, it is usual to call

strict nearly Kähler those manifolds in W1 for which ∇gXJ 6= 0 for all non-vanishing

X ∈ X(M).

Remark 2.3.1. In literature, nearly Kähler manifolds are also called K-spaces (see

for instance [114]) or almost Tachibana spaces (see e.g. [144]).

In [90], Gray proved that every complete, simply connected, nearly Kähler man-

ifold is the Riemannian product of a Kähler and a strict nearly Kähler manifold. In

particular, in dimension two and four nearly Kähler manifolds are actually Kähler

[87], while in dimension six are either Kähler or strict nearly Kähler satisfying∣∣(∇gXJ)Y ∣∣2 = r
(
|X|2|Y |2 − g(X,Y )2 − g(JX, Y )2

)
, X, Y ∈ X(M),

for some positive constant r (see also [88]). Moreover, the Riemannian metric of

a strict nearly Kähler manifold of dimension six is always Einstein [90, 144]. The

relevance of the six-dimensional case is clear from the results of [149, 150], where it

was proved that any complete, simply connected, nearly Kähler manifold is locally a

Riemannian product of Kähler manifolds, twistor spaces over Kähler manifolds and

six-dimensional nearly Kähler manifolds.

As noticed by Reyes Carrión in [162], in dimension six the structure group of the

frame bundle of a strict nearly Kähler manifold always admits a reduction from U(3)

to SU(3) and the intrinsic torsion of the corresponding SU(3)-structure is constrained

to lie in W−1 . We give an idea of the proof here. First, using (2.10) and the identity(
∇gXJ

)
JY = −J

(
∇gXJ

)
Y, (2.25)

from which follows that (
∇gXω

)
(JY, JZ) = −

(
∇gXω

)
(Y, Z), (2.26)

it is possible to prove the following



60 Chapter 2. Special half-flat SU(3)-structures

Proposition 2.3.2. Let (M, g, J) be a 2n-dimensional almost Hermitian manifold

with fundamental form ω. Then, the following conditions are equivalent and define

a nearly Kähler manifold:

i) (∇gXJ)X = 0 for all X ∈ X(M);

ii) dω = 3∇gω;

iii) dω is of type (3, 0) + (0, 3) and NJ is totally skew-symmetric.

Proof. Observe that condition i) is equivalent to

(∇gXJ)Y = −(∇gY J)X

and also to (∇gXω)(Y,Z) = −(∇gY ω)(X,Z) by (2.10). Then, the equivalence between

i) and ii) follows from (2.11).

Assume now that i) holds. Then, using (2.26) and the equivalence between i) and

ii), we get that

dω(X, JY, JZ) = 3(∇gXω)(JY, JZ) = −dω(X,Y, Z).

Thus, dω is a real form of type (3, 0) + (0, 3). Moreover, from the expression of the

Nijenhuis tensor in (2.12) and identity (2.25), it follows that

NJ(X,Y ) = −2(∇gXJ)JY + 2(∇gY J)JX = 4J(∇gXJ)Y.

Consequently, g(NJ(·, ·), ·) is a 3-form, since NJ(X,Y ) = −NJ(Y,X) and

g(NJ(X,Y ), Z) = 4g(J(∇gXJ)Y,Z)

= −4(∇gXω)(Y, JZ)

= −g(NJ(X,Z), Y ).

Conversely, if iii) holds, then using both the expressions of NJ in (2.1) and (2.12)

and identity (2.26), we have

0 = g(NJ(JX, JY ), JX)

= −g(NJ(X,Y ), JX)

= (∇gXω)(JY, JX)− (∇gJY ω)(X, JX) + (∇gJXω)(Y, JX)− (∇gY ω)(JX, JX)

= (∇gXω)(X,Y ) + (∇gJXω)(Y, JX),
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since (∇gJY ω)(X, JX) = 0 for all X,Y ∈ X(M). Now, using (2.26) again,

0 = dω(X,X, Y )

= −dω(X, JX, JY )

= −(∇gXω)(JX, JY )− (∇gJXω)(JY,X)− (∇gJY ω)(X, JX)

= (∇gXω)(X,Y )− (∇gJXω)(Y, JX).

Comparing these two results, we obtain that (∇gXω)(X,Y ) = 0 for all X ∈ X(M)

and the equivalence between i) and iii) is proved.

Furthermore, the covariant derivative ∇gω of the fundamental form of a nearly

Kähler manifold is parallel with respect to the minimal connection ∇ defined in (2.7)

(see for instance [20]).

Lemma 2.3.3. Let (M, g, J) be a nearly Kähler manifold and consider the minimal

connection ∇. Then,

∇(∇gω) = 0.

As a consequence, by condition ii) of Proposition 2.3.2 and the compatibility of

∇ with the Riemannian metric g, the real form dω of type (3, 0)+(0, 3) has constant

norm. When the nearly Kähler manifold is strict, there is then a natural way to

define ψ+, namely

ψ+ =
1

3
dω.

With this choice, the (3, 0)-form Ψ = ψ+ + iJψ+ defines a reduction of the structure

group of the nearly Kähler manifold to SU(3). The corresponding SU(3)-structure

is half-flat, indeed ψ+ is obviously closed and dω ∧ ω = 0, since ω is of type (1, 1).

Moreover, by Proposition 2.2.9, the Nijenhuis tensor NJ is totally skew-symmetric if

and only if the intrinsic torsion forms w±2 vanish identically. Consequently,

dψ− = aω2,

for some a ∈ R. Applying now the exterior derivative to both sides of the identity

ω ∧ ψ− = 0 and requiring that the normalization condition is satisfied, we obtain

a = −2. Thus, (ω, ψ+) is characterized by the following differential system

dω = 3ψ+,

dψ− = −2ω2,
(2.27)



62 Chapter 2. Special half-flat SU(3)-structures

and the only non-identically vanishing intrinsic torsion form is w−1 = −2. Observe

now that an SU(3)-structure (ω, ψ+) with only non-identically vanishing intrinsic

torsion form w−1 can be rescaled to obtain (2.27). Indeed, in this case the exterior

derivatives of ω, ψ+, ψ− are

dω = −3

2
w−1 ψ+,

dψ+ = 0,

dψ− = w−1 ω
2,

and w−1 is constant on connected manifolds, since

0 = d(dω) = −3

2
dw−1 ∧ ψ+

and wedging 1-forms by ψ+ is injective by (2.17). We can then consider the pair ω̂ =
(w−1 )2

4 ω, ψ̂+ = − (w−1 )3

8 ψ+, which defines an SU(3)-structure satisfying the differential

system (2.27) (see the proof of Lemma 2.4.5 for more details). This motivates the

Definition 2.3.4. An SU(3)-structure (ω, ψ+) is called nearly Kähler if the intrinsic

torsion forms w+
1 , w±2 , w3, w4 and w5 vanish identically.

Nearly Kähler SU(3)-structures belong then to the class W−1 and are special

half-flat in the sense of the definition introduced earlier. Observe that the intrinsic

torsion form w−1 is a real constant on connected manifolds and that it is equal to

zero if and only if the nearly Kähler SU(3)-structure is torsion-free. Moreover, when

w−1 is nonzero the almost Hermitian structure (g, J) underlying a nearly Kähler

SU(3)-structure is strict nearly Kähler. Indeed, dω is of type (3, 0) + (0, 3), since

it is proportional to ψ+, and NJ is totally skew-symmetric, as w±2 = 0. Then, by

Proposition 2.3.2, the almost Hermitian structure (g, J) is nearly Kähler and ∇gω is

proportional to ψ+. Now, from identity (2.10) and the fact that ιXψ+ = 0 implies

X = 0 (cf. (2.18)), we get that ∇gXJ 6= 0 for all non-vanishing X ∈ X(M). This

result together with the previous discussion proves the

Proposition 2.3.5. Let M be a connected six-dimensional manifold endowed with

an almost Hermitian structure (g, J) with fundamental form ω. Then, M is strict

nearly Kähler if and only if there is a reduction Ψ = ψ+ + iψ− to SU(3) such that

(ω, ψ+) is a nearly Kähler SU(3)-structure with nonzero w−1 .
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We already recalled that the Riemannian metric g of a nearly Kähler manifold is

Einstein by [90, 144]. A simple proof of this fact for nearly Kähler SU(3)-structures

can be obtained using the expression (2.23) of Ric0(g). Indeed

Ric0(g) = i−1
+ (E1(Φ1)) + i−1

− (E2(Φ2)),

where

Φ1 =
1

4
d∗
(
w−1 ψ+

)
= −1

2
(w−1 )2 ω,

Φ2 = 0.

Thus, E1(Φ1) = 0, Ric0(g) = 0 and g is an Einstein metric. In particular, the scalar

curvature is non-negative,

Scal(g) =
15

2

(
w−1
)2
,

and vanishes identically if and only if the SU(3)-structure is torsion-free.

As shown by Grunewald in [93], the existence of a strict nearly Kähler structure

on a Riemannian 6-manifold (M, g) is related to the existence of a real Killing spinor,

that is, a non-vanishing spinor field φ ∈ Γ(ΣM) solving the equation

∇Xφ = lX · φ,

for every vector field X on M, where l ∈ R, ∇ is the lifting of the Levi Civita

connection ∇g to the spinor bundle and the dot denotes the Clifford multiplication

(cf. Section 4.3.1). In detail, every real Killing spinor defines an almost complex

structure J on (M, g) such that (M, g, J) is strict nearly Kähler and, conversely, on

every connected, simply connected strict nearly Kähler 6-manifold (M, g, J) there

exists a real Killing spinor.

Up to now, in literature only few examples of nearly Kähler manifolds are known.

In [34], Butruille showed that they are finitely many in the homogeneous case.

Theorem 2.3.6 ([34]). Six-dimensional, nearly Kähler homogeneous Riemannian

manifolds are isomorphic to one of the following spaces:

i) the 6-sphere S6 = G2/SU(3);

ii) the product of 3-spheres S3 × S3 = SU(2)× SU(2);
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iii) the complex projective space CP3 = Sp(2)/SU(2)U(1);

iv) the flag manifold F(1, 2) = U(3)/U(1)×U(1)×U(1).

Moreover, each of these spaces admits a unique invariant nearly Kähler structure up

to homothety.

Observe that the manifolds appearing in the previous theorem are all compact.

There are different ways to define the homogeneous nearly Kähler structure on S6,

some of them are summarized in [34]. We will describe one of the possible construc-

tions in Example 3.2.1 of next chapter. The manifolds CP3 and F(1, 2) are the twistor

spaces of the self-dual Einstein manifolds S4 and CP2 endowed with their standard

metrics. As we will see in detail in Section 2.5.2, they admit a non-integrable almost

complex structure J, a one-parameter family of metrics gt compatible with J for

each positive real number t, and for a suitable choice of t the pair (gt, J) defines a

nearly Kähler structure on them. An alternative description in terms of real Killing

spinors on the homogeneous spaces Sp(2)/SU(2)U(1) and U(3)/U(1)× U(1)× U(1)

can be found for instance in [18, Sect. 5.4]. Finally, the left-invariant nearly Kähler

structure on the Lie group SU(2)× SU(2) will be described in Section 2.5.1.

Remark 2.3.7. Recently, the existence of new non-homogeneous examples on S6

and S3 × S3 was proved by Foscolo and Haskins in [73].

Among special half-flat structures there are two classes which generalize the class

W−1 of nearly Kähler. The corresponding SU(3)-structures can be defined as follows

Definition 2.3.8. Let (ω, ψ+) be a half-flat SU(3)-structure on a 6-manifold M . It

is called coupled if w3 = 0, while it is called double half-flat, or co-coupled, if w−2 = 0.

Thus, coupled structures belong to the classW−1 ⊕W
−
2 , double half-flat structures

belong to W−1 ⊕W3 and the nearly Kähler can be thought as the half-flat structures

which are are both coupled and double half-flat.

Remark 2.3.9. To our knowledge, the name coupled was introduced by Salamon in

[164], while the names double half-flat and co-coupled were used in [167] and [137],

respectively. In physical literature, coupled structures were also called restricted

half-flat in [123].
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As it happens in the nearly Kähler case, the intrinsic torsion form w−1 ∈ C∞(M)

of coupled and double half-flat structures is constant on connected manifolds.

Lemma 2.3.10. Let M be a six-dimensional, connected manifold endowed with a

coupled or a double half-flat SU(3)-structure (ω, ψ+). Then, the intrinsic torsion

form w−1 is constant.

Proof. If (ω, ψ+) is coupled, the proof is the same as in the case of nearly Kähler

SU(3)-structures. Indeed, taking the exterior derivative of both sides of

dω = −3

2
w−1 ψ+

and using the fact that ψ+ is closed, we obtain 0 = dw−1 ∧ ψ+. Therefore, dw−1 = 0,

since wedging 1-forms by ψ+ is injective by (2.17), and the thesis follows from the

connectedness of M. In the double half-flat case, we can argue in a similar way:

starting from

dψ− = w−1 ω
2,

we take the exterior derivative of both sides obtaining

0 = dw−1 ∧ ω
2 + w−1 dω

2

and conclude observing that dω2 = 0 and that wedging 1-forms by ω2 is injective by

(2.16).

The rareness of examples of six-dimensional nearly Kähler manifolds provides

a first motivation to study manifolds endowed with a coupled or a double half-flat

SU(3)-structure, as both generalize nearly Kähler structures.

Double half-flat SU(3)-structures were considered for instance in [42, 137, 165,

167], where also explicit examples on compact nilmanifolds and on S3 × S3 were

provided. By [167], they can be characterized as the half-flat structures having totally

skew-symmetric Nijenhuis tensor. Thus, as nearly Kähler manifolds, 6-manifolds

endowed with a double half-flat structure admit a U(3)-connection whose torsion is

totally skew-symmetric by the general result
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Theorem 2.3.11 ([78]). Let (M, g, J) be a 2n-dimensional almost Hermitian man-

ifold. Then, there exists a U(n)-connection with totally skew-symmetric torsion if

and only if the Nijenhuis tensor NJ is totally skew-symmetric. In this case, the

connection is unique.

Remark 2.3.12. In the case of 2n-dimensional nearly Kähler manifolds, the con-

nection is exactly the minimal connection given in (2.7) (see for instance [1, Lemma

2.2] and the references therein).

Natural spaces motivating the study of coupled SU(3)-structures are S3×S3 and

the twistor spaces over self-dual Einstein 4-manifolds of positive scalar curvature,

since they all admit such structures. Moreover, further motivations come from su-

persymmetric string theory in physics. In the remaining part of this chapter, we

shall discuss the properties of manifolds endowed with a coupled structure, explain

in detail the previous motivations and study some additional problems. Most of the

content is based on the papers [70, 71, 160].

2.4 Coupled SU(3)-structures

Let us consider a six-dimensional connected manifold M endowed with a coupled

SU(3)-structure (ω, ψ+). The exterior derivatives of ω, ψ+ and ψ− = Jψ+ are

dω = −3
2w
−
1 ψ+,

dψ+ = 0,

dψ− = w−1 ω
2 − w−2 ∧ ω,

(2.28)

where w−1 is a real constant and w−2 a primitive real 2-form of type (1, 1). The former

is zero if and only if the coupled structure is symplectic half-flat, while the latter van-

ishes identically if and only if the coupled structure is nearly Kähler. Consequently,

using Proposition 2.2.9, we get

Proposition 2.4.1. Let (ω, ψ+) be a coupled SU(3)-structure. Then, it is nearly

Kähler if and only if the Nijenhuis tensor of the corresponding almost complex struc-

ture J = Jψ+ is totally skew-symmetric.
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The previous observations clarify which are the possible subclasses of W−1 ⊕W
−
2

and how they are characterized in terms of the intrinsic torsion forms w−1 and w−2 .

That being so, instead of using the adjective strict as in the nearly Kähler case,

from now on we reserve the name coupled for those SU(3)-structures satisfying the

differential system (2.28) with nonzero w−1 and non-identically vanishing w−2 . They

can be described as follows

Proposition 2.4.2. Let (ω, ψ+) be an SU(3)-structure on a connected 6-manifold

M . Then, it is coupled if and only if there exists a nonzero real constant c such that

dω = c ψ+. In particular, a coupled SU(3)-structure is completely determined by ω

and the almost complex structure J induced by it is never integrable.

Proof. If (ω, ψ+) is coupled, then by Lemma 2.3.10 the nonzero real constant is

c = −3
2w
−
1 . Conversely, if there exists a nonzero real constant c such that dω = c ψ+,

then the 3-form ψ+ is closed and the SU(3)-structure is coupled.

Since ψ+ is proportional to dω, the 2-form ω determines the whole SU(3)-structure

and, by the discussion preceding Proposition 2.2.8, the almost complex structure in-

duced by it is not integrable.

An immediate consequence is the next result, which was observed in [165].

Corollary 2.4.3. Let (ω, ψ+) be a coupled SU(3)-structure such that dω = c ψ+,

where c 6= 0. Then, a diffeomorphism ν : M → M such that ν∗ω = ω is an

automorphism of the SU(3)-structure and, in particular, an isometry.

For the sake of brevity, we introduce the

Definition 2.4.4. Let (ω, ψ+) be a coupled SU(3)-structure such that dω = c ψ+.

The nonzero real number c is called coupled constant.

Observe that it is alway possible to rescale a coupled structure in order to obtain

a different coupled constant.

Lemma 2.4.5. Let (ω, ψ+) be a coupled SU(3)-structure with coupled constant c,

denote by g the associated Riemannian metric and fix a nonzero real number r.

Then, the pair ω̂ := r2 ω, ψ̂+ := r3 ψ+ is a coupled structure with coupled constant

ĉ = c
r . Moreover, J

ψ̂+
= Jψ+ and the Riemannian metric ĝ induced by ω̂, ψ̂+ is r2 g.



68 Chapter 2. Special half-flat SU(3)-structures

Proof. First, notice that the forms ω̂ and ψ̂+ are still stable, since ω̂3 = r6 ω3 6= 0

and λ(ψ̂+) = r12 λ(ψ+) < 0. As we observed in Remark 2.2.2, the almost complex

structure J
ψ̂+

induced by ψ̂+ is the same as the one induced by ψ+, thus

ψ̂− = J
ψ̂+
ψ̂+ = Jψ+(r3 ψ+) = r3 ψ−.

The forms ω̂ and ψ̂+ are clearly compatible and the normalization condition is sat-

isfied, indeed

ψ̂+ ∧ ψ̂− = r6 ψ+ ∧ ψ− = r6 2

3
ω3 =

2

3
ω̂3.

Moreover,

ĝ(·, ·) = ω̂
(
J
ψ̂+
·, ·
)

= r2 ω
(
Jψ+ ·, ·

)
= r2 g(·, ·)

is a Riemannian metric. Thus, the pair ω̂, ψ̂+ defines an SU(3)-structure. It is

moreover coupled with coupled constant ĉ = c
r , since

dω̂ = r2 dω = cr2 ψ+ =
c

r
ψ̂+.

In Proposition 2.3.5, we reviewed that the almost Hermitian structure (g, J)

underlying a nearly Kähler SU(3)-structure with nonzero w−1 is strict nearly Kähler.

When (ω, ψ+) is coupled, we only have that the exterior derivative of ω is a real form

of type (3, 0) + (0, 3). Therefore:

Proposition 2.4.6. The almost Hermitian structure (g, J) underlying a coupled

SU(3)-structure (ω, ψ+) is quasi-Kähler, i.e., ∂ω = (dω)1,2 = 0.

Unlike the nearly Kähler and the symplectic half-flat case, the scalar curvature

of the Riemannian metric g induced by a coupled structure does not have a definite

sign, indeed

Scal(g) =
15

2

(
w−1
)2 − 1

2

∣∣w−2 ∣∣2 . (2.29)

Moreover, we know that nearly Kähler SU(3)-structures always induce an Einstein

metric, while symplectic half-flat structures induce an Einstein metric if and only

if they are torsion-free. Thus, since coupled structures generalize both, a natural

question is to ask under which conditions on the torsion forms w−1 and w−2 the
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metric induced by a coupled structure is Einstein. In this case, the differential forms

appearing in the traceless part of the Ricci tensor are

Φ1 = 1
4 ∗ (w−2 ∧ w

−
2 ) + 1

4w
−
1 d
∗ψ+

= 1
4 ∗ (w−2 ∧ w

−
2 )− 1

2(w−1 )2 ω − 1
4w
−
1 w

−
2 ,

Φ2 = −2 ∗ Jdw−2 ,

(2.30)

where we have used the identity

∗ (w−2 ∧ ω) = −w−2 , (2.31)

which holds for every 2-form belonging to
[
Ω1,1

0 (M)
]
. A straightforward computa-

tions gives then

E1(Φ1) =
1

4
∗
(
w−2 ∧ w

−
2

)
− 1

4
w−1 w

−
2 +

1

12
|w−2 |

2 ω,

while E2(Φ2) depends on the component of dw−2 in
r

Ω2,1
0 (M)

z
. From the de-

composition of the space Ω3(M) given in (2.20), we know that there exist unique

h+, h− ∈ C∞(M), η1 ∈ Ω1(M) and σ3 ∈
r

Ω2,1
0 (M)

z
such that

dw−2 = h+ ψ+ + h− ψ− + η1 ∧ ω + σ3, (2.32)

and we can prove the

Lemma 2.4.7. Let (ω, ψ+) be a coupled SU(3)-structure on a 6-manifold M . Then,

the intrinsic torsion form w−2 is co-closed. Moreover, the function h− appearing in

(2.32) vanishes identically, while the function h+ vanishes identically if and only if

the SU(3)-structure is nearly Kähler.

Proof. Taking the exterior derivative of both sides of

dψ− = w−1 ω
2 − w−2 ∧ ω

and using (2.31) and dω2 = 0, we get d∗w−2 = 0. Moreover, since the decomposition

(2.20) of Ω3(M) is g-orthogonal, using ∗ψ+ = ψ−, dψ+ = 0, w−2 ∧ψ± = 0, w−2 ∧ω2 = 0
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and ∗w−2 = −w−2 ∧ ω, we have

4h− dVg = g(h−ψ−, ψ−)dVg = g(dw−2 , ψ−)dVg

= dw−2 ∧ ∗ψ− = −dw−2 ∧ ψ+

= −d(w−2 ∧ ψ+) + w−2 ∧ dψ+ = 0

and

4h+ dVg = g(h+ψ+, ψ+)dVg = g(dw−2 , ψ+)dVg

= dw−2 ∧ ∗ψ+ = dw−2 ∧ ψ−

= d(w−2 ∧ ψ−)− w−2 ∧ dψ− = w−2 ∧ w
−
2 ∧ ω

= −w−2 ∧ ∗w
−
2 = −|w−2 |2dVg.

Then, h− = 0 and h+ = − |w
−
2 |2
4 vanishes identically if and only if w−2 does.

Thus, in the general case coupled structures inducing Einstein metrics can be in

principle characterized by two equations involving the intrinsic torsion forms w−1 and

w−2 .

In Section 2.4.3, we will see that a under the (well-justified) hypothesis dw−2 ∝ ψ+,

the characterization is rather simple, while in Section 2.5.2 we will discuss an explicit

example of coupled SU(3)-structure inducing an Einstein metric and satisfying that

hypothesis.

Remark 2.4.8. In [146], the authors proved that when an SU(3)-structure is nearly

Kähler, then every co-closed α ∈
[
Ω1,1

0 (M)
]

is such that dα ∈
r

Ω2,1
0 (M)

z
. This

result does not extend to the coupled case, since from Lemma 2.4.7 we would get

that every coupled structure is nearly Kähler.

2.4.1 Examples

We can now look for examples of coupled SU(3)-structures. We begin with the

classification of invariant coupled structures on compact nilmanifolds and, then, we

describe an example of left-invariant coupled structure on the manifold S3×S3, while

we shall give further examples in the next sections.
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First of all, we recall that an SU(3)-structure (ω, ψ+) on a Lie group G is left-

invariant if the differential forms ω, ψ+ (and, consequently, the tensors J, ψ−, g) are

left-invariant. In this case, the pair (ω, ψ+) determines an SU(3)-structure on the

Lie algebra of G. Conversely, an SU(3)-structure on a six-dimensional Lie algebra g

is defined by a pair of compatible and normalized stable forms (ω, ψ+) ∈ Λ2(g∗) ×
Λ3(g∗), with λ(ψ+) < 0, such that g(·, ·) = ω(Jψ+ ·, ·) is an inner product, and it

induces a left-invariant SU(3)-structure on the corresponding simply connected Lie

group. Thus, there is a one-to-one correspondence between left-invariant SU(3)-

structures on six-dimensional simply connected Lie groups and SU(3)-structures on

the corresponding Lie algebras. Clearly, an SU(3)-structure (ω, ψ+) on g is half-

flat if and only if dω2 = 0 and dψ+ = 0, where d denotes the Chevalley-Eilenberg

differential on g, while it is coupled if and only if ω and dω are stable and ψ+ is

proportional to dω.

In Section 1.3, we defined a compact nilmanifold as the quotient of a simply

connected nilpotent Lie group N by a lattice Γ ⊂ N. In the six-dimensional case, a

left-invariant SU(3)-structure (ω, ψ+) on N passes to the quotient, defining an invari-

ant SU(3)-structure on the compact nilmanifold N/Γ. Moreover, up to isomorphism,

there exist 34 six-dimensional nilpotent Lie algebras and each of them gives rise to

a compact nilmanifold. Consequently, there is a one-to-one correspondence between

invariant SU(3)-structures (ω, ψ+) on compact nilmanifolds and pairs (ω, ψ+) defin-

ing an SU(3)-structure on their nilpotent Lie algebras. Thus, the classification of

six-dimensional compact nilmanifolds admitting an invariant SU(3)-structure of a

certain type can be obtained working only with SU(3)-structures on nilpotent Lie

algebras.

By Milnor’s result stated in Theorem 1.4.3, it follows that there are no strict

nearly Kähler SU(3)-structures defined on non-Abelian nilpotent Lie algebras, since

the metric induced by a nearly Kähler is always Einstein.

In [49], Conti classified six-dimensional nilpotent Lie algebras admitting a half-

flat SU(3)-structure up to isomorphism. In detail, starting from the list of 34 non-

isomorphic six-dimensional nilpotent Lie algebras, he gave an explicit example of a

half-flat SU(3)-structure on 24 of them and introduced an obstruction to the existence

of half-flat structures on Lie algebras, which allowed him to show that the remaining
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10 cases do not admit any. The obstruction was later refined by Freibert and Schulte-

Hengesbach in [74]. We recall it here.

Proposition 2.4.9 ([74]). Let g be a real six-dimensional Lie algebra with volume

form Ω ∈ Λ6(g∗). If there exists a nonzero α ∈ g∗ such that

α ∧ J̃ρα ∧ σ = 0

for all closed 3-forms ρ ∈ Λ3(g∗) and closed 4-forms σ ∈ Λ4(g∗), where for every

X ∈ g

J̃ρα(X)Ω = α ∧ (ιXρ) ∧ ρ,

then g does not admit any half-flat SU(3)-structure.

Referring to the list of six-dimensional nilpotent Lie algebras given in Table 1.1,

we can state the result of Conti as follows

Theorem 2.4.10 ([49]). Let n be a six-dimensional nilpotent Lie algebra admit-

ting a half-flat SU(3)-structure. Then, n is isomorphic to nk for k = 4, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34.

Further classifications of six-dimensional nilpotent Lie algebras admitting special

half-flat SU(3)-structures were studied in literature. For instance, in [42] the authors

classified those admitting a double half-flat SU(3)-structure, while the result for

symplectic half-flat structures was obtained in [52]. The more general classification

of six-dimensional Lie algebras admitting half-flat SU(3)-structures was obtained in

[74, 168] in the decomposable case and in [75] for indecomposable Lie algebras with

five-dimensional nilradical.

We now focus on the case of coupled SU(3)-structures on nilpotent Lie algebras.

Since coupled are in particular half-flat, to classify six-dimensional nilpotent Lie

algebras admitting a coupled structure we start from the list given in Theorem 2.4.10

and use the following obstruction, which holds in the more general case of Lie algebras

and whose proof is immediate.

Lemma 2.4.11. Let g be a six-dimensional real Lie algebra with volume form Ω ∈
Λ6(g∗). If λ(dσ) ≥ 0 for all σ ∈ Λ2(g∗), then g does not admit any coupled SU(3)-

structure.
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Observe that on the six-dimensional Abelian Lie algebra every differential form

is closed with respect to the Chevalley-Eilenberg differential. Thus, if we look for

coupled SU(3)-structures on nilpotent Lie algebras, we have to exclude the Abelian

case. We are now ready to prove the classification result.

Theorem 2.4.12 ([71]). Let n be a six-dimensional, non-Abelian, nilpotent Lie al-

gebra admitting a coupled SU(3)-structure. Then, n is isomorphic to one of the

following

n9 = (0, 0, 0, e12, e14 − e23, e15 + e34), n28 = (0, 0, 0, 0, e13 − e24, e14 + e23).

Proof. Let n be one of the six-dimensional, non-Abelian, nilpotent Lie algebras ad-

mitting a half-flat SU(3)-structure and denote by (e1, . . . , e6) the basis of n∗ for which

the structure equations of n are those given in Table 1.1. A 2-form ω on n can be

written with respect to the corresponding basis of Λ2(n∗) as

ω = b1e
12 + b2e

13 + b3e
14 + b4e

15 + b5e
16 + b6e

23 + b7e
24 + b8e

25

+b9e
26 + b10e

34 + b11e
35 + b12e

36 + b13e
45 + b14e

46 + b15e
56,

where bi ∈ R, i = 1, . . . , 15. We fix the volume form Ω = e123456 and compute the

quartic invariant λ(dω) for each nilpotent Lie algebra (observe that the sign of λ(dω)

does not depend on the choice of Ω). The expression of λ(dω) in each case is given in

Table 2.2. Among the 24 nilpotent Lie algebras admitting a half-flat SU(3)-structure

we have:

- 1 case (n28) for which λ(dω) < 0 if b15 6= 0,

- 2 cases (n4 and n9) for which the sign of λ(dω) depends on ω,

- 21 cases for which λ(dω) cannot be negative.

Therefore, the 21 algebras having λ(σ) ≥ 0 do not admit any coupled SU(3)-structure

by Lemma 2.4.11.

Consider n4, it has structure equations

(0, 0, e12, e13, e14 + e23, e24 + e15),
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the sign of λ(dω) depends on the coefficients bi and, thus, we cannot apply the

obstruction used before. However, we can show that there are no coupled structures

on n4 in the following way. From the expression of λ(dω), we get that dω is stable

if and only if b15 6= 0 and b15(b12 + b13) > b214. Imposing the compatibility condition

dω ∧ω = 0, we obtain four polynomial equations in the bi which can be solved using

the constraint b15 6= 0. We can now compute J = Jdω, the matrix associated with

g(·, ·) = ω(J ·, ·) with respect to the basis (e1, . . . , e6) and observe that for the nonzero

vector v = e4 − b14
b15
e5 + b13

b15
e6 it holds g(v, v) = 0. Therefore, g cannot be an inner

product and, as a consequence, it is not possible to find a coupled SU(3)-structure

on n4.

The Lie algebra n9 has structure equations

(0, 0, 0, e12, e14 − e23, e15 + e34)

and the pair of stable forms

ω = −e13 − e24 + e26 + e56,

ψ+ = −e125 − e146 + e236 + e234 + e345,

defines a coupled SU(3)-structure on it with ψ+ = −dω.

On the Lie algebra n28, whose structure equations are

(0, 0, 0, 0, e13 − e24, e14 + e23),

the pair of stable forms

ω = e12 + e34 − e56,

ψ+ = e136 − e145 − e235 − e246,

defines a coupled SU(3)-structure such that ψ+ = −dω. In particular, it induces the

inner product

g = (e1)2 + · · ·+ (e6)2,

which is a nilsoliton (cf. Example 1.4.17).
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n· λ(dω) Sign of λ(dω)

n4 4b215(−b15(b12 + b13) + b214)

n6 b415 ≥ 0

n7 (b214 − b215)2 ≥ 0

n8 (b214 − b215)2 ≥ 0

n9 4b215(−b15(b9 + b13) + b214)

n10 b415 ≥ 0

n11 b415 ≥ 0

n12 0 0

n13 0 0

n14 b414 ≥ 0

n15 (b214 − b215)2 ≥ 0

n16 (b214 + b215)2 ≥ 0

n21 0 0

n22 b415 ≥ 0

n24 0 0

n25 b415 ≥ 0

n27 0 0

n28 −4b415 ≤ 0

n29 0 0

n30 b415 ≥ 0

n31 0 0

n32 0 0

n33 0 0

Table 2.2: Expression of λ(dω) for six-dimensional nilpotent Lie algebras admitting

a half-flat SU(3)-structure.
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Remark 2.4.13. The examples of half-flat SU(3)-structures on n9 and n28 given in

[49] are of type W−1 ⊕W
−
2 ⊕W3 and W3, respectively. Thus, the two examples of

coupled structures contained in the proof of the previous theorem did not appear in

[49]. Moreover, the fact that n28 admits a coupled structure was also noticed in the

physical paper [136], we will discuss this later in Section 2.4.3.

Observe that the coupled SU(3)-structure on n28 described before induces an in-

variant coupled structure on the Iwasawa manifold (Example 1.3.8) whose associated

Riemannian metric is a Ricci soliton (cf. Section 1.4.4). It is the unique example of

this kind by the next result.

Proposition 2.4.14 ([71]). Let n be a six-dimensional, non-Abelian, nilpotent Lie

algebra admitting a coupled SU(3)-structure inducing a nilsoliton. Then, n is iso-

morphic to n28.

Proof. It is clear from the classification of nilpotent Lie algebras admitting a coupled

SU(3)-structure that to prove the assertion it suffices to show that n9 does not admit

any coupled structure inducing a nilsoliton inner product. If we consider the basis

(e1, . . . , e6) of n∗9 for which the structure equations are(
0, 0, 0,

√
5

2
e12, e14 − e23,

√
5

2
e15 + e34

)
,

then by [179] the inner product g =
∑6

i=1(ei)2 is a nilsoliton on n9 and by [124] it

is unique up to isometry and scaling. Let ω be a generic 2-form on n9, we can write

it with respect to the basis
{
eij
}

of Λ2(n∗9) as in the proof of the previous theorem.

Using this expression, we compute λ(dω) and impose that it is negative, obtaining the

constraints b15 6= 0 and
√

5b214−2b15b9−2b15b13 < 0. From the compatibility condition

dω∧ω = 0, we get three polynomial equations in the unknowns bi which can be solved

using b15 6= 0. We then compute Jdω and the matrix G associated with ω(Jdω·, ·) with

respect to the considered basis. By the uniqueness of the nilsoliton up to scaling,

we have to impose that G is proportional to the identity matrix. The associated

equations do not have solutions under the constraints on the bi imposed by λ(dω),

as one can check considering for instance the equations G5,6 = 0, G4,6 = 0, G2,5 = 0,

where Gi,j = ω(Jdωei, ej).
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Since it is usually more convenient to work with an adapted frame for the SU(3)-

structure, we observe that for the nilpotent Lie algebras n9 and n28 there exists a basis

(e1, . . . , e6) of their dual spaces which is adapted for the coupled SU(3)-structure and

such that the structure equations become

n9 =
(
0, 0, 0, e13, e14 + e23, e13 − e15 − e24

)
, (2.33)

n28 = (0, 0, 0, 0, e14 + e23, e13 − e24). (2.34)

In both cases, ω and ψ+ can be written as in (2.13) and dω = −ψ+.

We give now an example of left-invariant coupled SU(3)-structure on the homo-

geneous manifold S3×S3. As a Lie group, it is SU(2)×SU(2) and any left-invariant

SU(3)-structure on it can be identified with a pair of stable forms (ω, ψ+) defining

an SU(3)-structure on its Lie algebra su(2) ⊕ su(2). The standard basis of su(2) is

given by the matrices

e1 =

(
i
2 0

0 − i
2

)
, e2 =

(
0 −1

2
1
2 0

)
, e3 =

(
0 i

2
i
2 0

)
,

and it is easy to check that the only non-vanishing structure constants are c3
12 =

c1
23 = −1 = −c2

13.

Consider su(2)⊕ su(2), denote by (e1, e2, e3) the standard basis of the first copy

of su(2), by (e4, e5, e6) the standard basis of the second copy and by (e1, e2, e3) and

(e4, e5, e6) their dual bases. Then, the Lie algebra su(2) ⊕ su(2) has the following

structure equations:

de1 = e23, de2 = e31, de3 = e12,

de4 = e56, de5 = e64, de6 = e45.

Example 2.4.15. The pair

ω = −
√

3 e16 − e24 − e25 − e35,

ψ+ =
4
√

3 (−
√

3e236 +
√

3e145 + e134 + e256 + e135 − e246 − e125 − e346),

defines a coupled SU(3)-structure on su(2)⊕ su(2) such that ψ+ = 4
√

3 dω.
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2.4.2 Coupled SU(3)-structures and the Hitchin flow

As we observed earlier, a solution of the Hitchin flow equations starting from a half-

flat SU(3)-structure is half-flat as long as it exists. We may rephrase this by saying

that the torsion classW−1 ⊕W
−
2 ⊕W3 is preserved by the Hitchin flow equations. When

we restrict our attention to special half-flat structures, in general it is not possible to

show that their torsion class is preserved. Anyway, there are some examples proving

that in certain situations this happens. For instance, if we consider a nearly Kähler

SU(3)-structure (ω, ψ+) with w−1 = −2 and we look for solutions of the Hitchin flow

equations starting from it at t = 0 and preserving the nearly Kähler condition, then

we always find

ω(t) = (t+ 1)2 ω,

ψ+(t) = (t+ 1)3 ψ+,

which is however quite trivial, since it evolves only by a rescaling of the starting

condition. Moreover, in the double half-flat case a solution preserving the torsion

class W−1 ⊕ W3 was given on the manifold S3 × S3 in [137]. It is then a natural

question to ask whether there exist examples of solutions of the Hitchin flow equations

preserving the torsion class W−1 ⊕W
−
2 , which we may call coupled solutions. More

precisely, we introduce the

Definition 2.4.16. Let (ω(t), ψ+(t)) be a solution of the Hitchin flow equations

defined on an interval I ⊆ R containing 0 and starting from a coupled structure at

t = 0. If (ω(t), ψ+(t)) is a coupled structure for each t ∈ I, that is,

dω(t) = c(t)ψ+(t)

for some smooth and nowhere zero function c : I→ R, we call it a coupled solution.

Coupled solutions can be easily characterized and induce an almost complex

structure not depending on t. Indeed

Proposition 2.4.17 ([70]). Let M be a connected 6-manifold and suppose that there

exists on it a solution (ω(t), ψ+(t)) of the Hitchin flow equations starting from a

coupled structure (ω(0), ψ+(0)) and defined on some interval I ⊆ R containing 0.
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If (ω(t), ψ+(t)) is a coupled solution, then there exists a smooth, non-constant and

nowhere zero function f : I→ R such that

ψ+(t) = f(t)ψ+(0).

Conversely, if the pair (ω(t), ψ+(t)) is a solution of the Hitchin flow equations with

ψ+(t) = f(t)ψ+(0), then it is a coupled solution.

Proof. If (ω(t), ψ+(t)) is a solution of the Hitchin flow equations with ψ+(t) =

f(t)ψ+(0) and non-constant, nowhere zero f(t), then from ∂
∂tψ+(t) = dω(t) we obtain

dω(t) =
∂

∂t
(f(t)ψ+(0)) =

(
d

dt
f(t)

)
ψ+(0).

Thus, the solution is a coupled structure with c(t) = d
dt(ln f(t)). Suppose now that

the solution is coupled, dω(t) = c(t)ψ+(t). Then, from the flow equation we obtain

∂

∂t
ψ+(t) = c(t)ψ+(t).

Working in local coordinates on M, it is easy to show that

ψ+(t) = f(t)ψ+(0),

where f(t) = e
∫ t
0 c(s)ds.

Corollary 2.4.18. Let (ω(t), ψ+(t)) be a coupled solution of the Hitchin flow equa-

tions on a connected 6-manifold M. Then, the associated almost complex structure

is J(t) = J(0). Thus, it does not depend on t.

Proof. We know that ψ+(t) = f(t)ψ+(0), therefore

J(t) = Jψ+(t) = Jf(t)ψ+(0) = Jψ+(0) = J(0),

since the almost complex structure induced by ψ+ does not change if this 3-form is

rescaled by a real constant.

The case of six-dimensional nilpotent Lie algebras allows us to conclude that

coupled solutions may not exist. Indeed, if we consider the nilpotent Lie algebras n9
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and n28 with the structure equations given in (2.33) and (2.34), respectively, then in

both cases the pair

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,
(2.35)

is a coupled SU(3)-structure with dω = −ψ+ and we can prove the following

Proposition 2.4.19 ([70]). Consider the Hitchin flow equations on the nilpotent Lie

algebras n9 and n28. Then, on n28 there exists a coupled solution starting from (2.35)

at t = 0, while on n9 there are no coupled solutions starting from (2.35).

Proof. First of all, observe that in the case of Lie algebras the Hitchin flow equations

become a system of ordinary differential equations.

Let us start with n28, a solution of the Hitchin flow equations which is coupled in

the sense of our definition was given in [41], we recover it in our setting starting from

a suitable pair (ω(t), ψ+(t)) and using our previous observations. From Proposition

2.4.17, we know that (ω(t), ψ+(t)) is a coupled solution if and only if

ψ+(t) = f(t)ψ+(0) = f(t)(e135 − e146 − e236 − e245),

with f(0) = 1. It is also clear that ψ−(t) = f(t)
(
e136 + e145 + e235 − e246

)
. More-

over, we consider three smooth functions a1(t), a2(t), a3(t) with ai(0) = 1 and such

that

ω(t) = a1(t)e12 + a2(t)e34 + a3(t)e56.

From now on, we omit the t-dependence of the functions for sake of brevity. The

forms ω(t) and ψ±(t) are compatible for each t and from the normalization condition,

we get

f2 = a1a2a3. (2.36)

From the first Hitchin flow equation in (2.22) we obtain

d

dt
f = −a3, (2.37)
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while from the second one we have

d

dt
(a1a3) = 0, (2.38)

d

dt
(a2a3) = 0, (2.39)

d

dt
(a1a2) = −4f. (2.40)

From (2.38), (2.39) and the initial conditions at t = 0 we deduce that

a1 = a2 =
1

a3
.

Using this result and (2.36), it holds necessarily

f =
1
√
a3
.

Thus, the ODE (2.37) becomes

d

dt
a3 = 2a2

3

√
a3

and solving it with initial condition a3(0) = 1 we get

a3 = (1− 3t)−
2
3 .

It is then easy to check that also (2.40) is satisfied. Then, the pair

ω(t) = (1− 3t)
2
3 e12 + (1− 3t)

2
3 e34 + (1− 3t)−

2
3 e56,

ψ+(t) = (1− 3t)
1
3 (e135 − e146 − e236 − e245),

is a coupled solution of the Hitchin flow equations.

Consider now n9, we shall show that there are no coupled solutions starting from

(2.35). Also in this case, we need

ψ+(t) = f(t)ψ+(0) = f(t)(e135 − e146 − e236 − e245),

with f(0) = 1, while we introduce 15 smooth real valued functions bij = bij(t),

1 ≤ i < j ≤ 6, such that

ω(t) =
∑

1≤i<j≤6

bij(t)e
ij ,



82 Chapter 2. Special half-flat SU(3)-structures

b12(0) = b34(0) = b56(0) = 1 and bij(0) = 0 for the remaining functions. We first

impose that the equations resulting from the compatibility condition ω(t)∧ψ+(t) = 0

are satisfied. Then, we consider the Hitchin flow equations and we compute the ODEs

deriving from them. From d
dtψ+(t) = dω(t) we obtain

b24 = b26 = b45 = b46 = 0

and
d

dt
f = −b56.

Among the ODEs coming from d
dtω(t) ∧ ω(t) = −dψ−(t), we have

d

dt
(b23 b56) = 0, (2.41)

d

dt
(b25 b34) = 0, (2.42)

d

dt
(b23 b25) = −f. (2.43)

(2.41) and (2.42) give b23 b56 = 0 and b25 b34 = 0 for all t, since b23(0) = b25(0) = 0

and b34(0) = b56(0) = 1. From these results and the expression

(ω(t))3 = 6 b12 b34 b56 e
123456,

we get that b23 and b25 are identically zero, since b34 and b56 must be nowhere

vanishing. That being so, (2.43) becomes f(t) = 0, which is not possible.

2.4.3 Coupled SU(3)-structures and supersymmetry

Starting from the seminal work [173] of Strominger, six-dimensional manifolds en-

dowed with a non-integrable SU(3)-structure have been frequently considered in su-

persymmetric string theory, giving rise to a broad literature in this area. We do not

claim here to give a rigorous introductory description of this theory, but just some

hints which are useful to understand how coupled SU(3)-structures appear in this

setting. The reader may refer to the references we cite for more informations.

The space-time of the five consistent superstring theories existing in theoretical

physics is modeled on a real ten-dimensional pseudo-Riemannian manifold (M10, g10)
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endowed with a spin structure and certain spinor fields. This manifold splits into

the product of a four-dimensional Lorentzian manifold (M4, g4) and a compact six-

dimensional manifold M6 through a process called compactification. The requirement

that part of the supersymmetry is preserved implies the existence of a globally-defined

complex spinor field on the internal manifold M6, which provides a reduction of the

structure group of FM6 to SU(3). The spinor field has to solve certain equations,

which constrain the intrinsic torsion of the corresponding SU(3)-structure to lie only

in some subclasses of W. The classes of SU(3)-structures which are relevant in the

various theories were recently reviewed in [123], among these we findW−1 ⊕W
−
2 , i.e.,

coupled SU(3)-structures.

In [136], the authors considered the problem of finding necessary and sufficient

conditions for N = 1 compactifications of Type IIA string theory on spaces of the

form AdS4 × M6, where AdS4 is the four-dimensional anti-de Sitter space. As a

result, they obtained a set of constraints that the intrinsic torsion forms of the

SU(3)-structure (ω, ψ+) on the internal manifold have to satisfy. We recall them

here briefly. Supersymmetry equations and the so-called Bianchi identities constrain

the intrinsic torsion to lie in W−1 ⊕ W
−
2 . Furthermore, in absence of sources, the

Bianchi identities provide a further constraint on the exterior derivative of w−2 :

dw−2 ∝ ψ+, (2.44)

and the norms of w−1 and w−2 have to satisfy the following inequality [118]

3(w−1 )2 ≥ |w−2 |
2, (2.45)

where | · | denotes the norm with respect to the metric g induced by the SU(3)-

structure. In the massless limit, the solutions reduce to AdS4 ×M6, being M6 a

compact 6-manifold endowed with a coupled SU(3)-structure for which only (2.44)

holds. Moreover, it was observed in [118] that the conditions (2.44) and (2.45) can

be relaxed in the presence of sources. A remarkable property of this result is that

the constraints are not only necessary, as usually happens, but also sufficient to

guarantee the existence of solutions to the problem.

It is then worth studying the properties of 6-manifolds endowed with coupled

SU(3)-structures satisfying (2.44) and (2.45) and look for possible examples. The
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forthcoming discussion is based on the first part of our work [70]. As we did before,

we always assume that the considered manifolds are connected.

First, using Lemma 2.4.7, it is possible to show that condition (2.44) forces the

proportionality factor between dw−2 and ψ+ to be constant and proportional to the

squared norm of w−2 .

Proposition 2.4.20. Let M be a 6-manifold endowed with a coupled SU(3)-structure

(ω, ψ+) such that dw−2 is proportional to ψ+. Then, it holds

dw−2 = −|w
−
2 |2

4
ψ+.

Moreover, the norm of w−2 is constant.

Proof. The identity dw−2 = − |w
−
2 |2
4 ψ+ follows directly from the proof of Lemma 2.4.7

and the hypothesis on dw−2 . Thus, we only need to prove that |w−2 | is constant. To

do this, observe that if dw−2 = f ψ+ for some function f ∈ C∞(M), then f has to be

constant. Indeed, taking the exterior derivatives of both sides and using that ψ+ is

closed, we get

df ∧ ψ+ = 0,

which implies df = 0 since wedging 1-forms by ψ+ is injective.

Remark 2.4.21. The expression of the proportionality factor between dw−2 and ψ+

given in the previous result was also obtained in [136] in terms of certain quantities

coming from the physical situation.

From Proposition 2.4.20 and the fact that w−1 is constant, we obtain the following

constraint.

Proposition 2.4.22. Let M be a 6-manifold endowed with a coupled SU(3)-structure

(ω, ψ+) such that dw−2 is proportional to ψ+. Then, the scalar curvature of the metric

g induced by (ω, ψ+) is constant.

Proof. Consider the expression (2.29) of the scalar curvature of g and conclude using

the fact that both w−1 and |w−2 | are constant.
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Consider now condition (2.45), this implies a further constraint on the scalar

curvature.

Proposition 2.4.23. Let M be a 6-manifold endowed with a coupled SU(3)-structure

(ω, ψ+) whose intrinsic torsion forms satisfy 3(w−1 )2 ≥ |w−2 |2. Then, the scalar

curvature of the associated metric g is positive. Moreover, it is also constant if dw−2

is proportional to ψ+.

Proof. Using (2.29) and the inequality 3(w−1 )2 ≥ |w−2 |2, we get

Scal(g) =
15

2
(w−1 )2 − 1

2
|w−2 |

2 ≥ 2|w−2 |
2 > 0.

Moreover, if dw−2 is proportional to ψ+, then the scalar curvature is constant by

Proposition 2.4.22.

Finally, when dw−2 is proportional to ψ+, an easy characterization for coupled

structures inducing an Einstein metric can be given.

Proposition 2.4.24. Let M be a 6-manifold endowed with a coupled SU(3)-structure

(ω, ψ+) such that dw−2 is proportional to ψ+. Then, the induced metric g is Einstein

if and only if the following identity holds

∗(w−2 ∧ w
−
2 ) = w−1 w

−
2 −

|w−2 |2

3
ω.

Proof. From the expression of Φ1 in (2.30), we already got that

E1(Φ1) =
1

4
∗ (w−2 ∧ w

−
2 )− 1

4
w−1 w

−
2 +

1

12
|w−2 |

2 ω.

When dw−2 is proportional to ψ+, from (2.30) we obtain

Φ2 = −2 ∗ J(dw−2 ) = −|w
−
2 |2

2
ψ+

and E2(Φ2) = 0, since ψ+ does not have components in
r

Ω2,1
0 (M)

z
. Therefore, g

is Einstein if and only if Ric0(g) = i−1
+ (E1(Φ1)) is zero, and from this the assertion

follows.
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In physical literature, examples of manifolds endowed with coupled structures

satisfying the conditions (2.44) and (2.45) were studied for instance in [38, 118, 136,

175]. The case of compact nilmanifolds is a bit scattered through the literature

and only some partial results are stated, sometimes without proofs. Therefore, we

consider the problem of finding invariant coupled structures on compact nilmanifolds

satisfying (all or in part) the conditions (2.44) and (2.45) and we give a unified

description of its solution.

From the classification of nilpotent Lie algebras admitting a coupled structure

obtained in Theorem 2.4.12, we know that we have to study only two cases, namely

n9 and n28. Since every nilpotent Lie group is solvable, the following result by Milnor

holds in the case we are considering.

Theorem 2.4.25 ([145]). Let S be a solvable Lie group. Then, every left-invariant

metric on S is either flat or has strictly negative scalar curvature.

In particular, if a nilpotent Lie algebra is endowed with an inner product g, then

Scal(g) is nonpositive. Consequently, using Proposition 2.4.23 it is immediate to

show the

Proposition 2.4.26. There are no six-dimensional nilmanifolds admitting an in-

variant coupled structure whose intrinsic torsion forms satisfy 3(w−1 )2 ≥ |w−2 |2.

Thus, we can only look for nilpotent Lie algebras endowed with a coupled struc-

ture (ω, ψ+) having dw−2 proportional to ψ+. Let us examine the two examples on

n9 and n28 obtained earlier.

Example 2.4.27. Consider the Lie algebra n28, its structure equations with respect

to an adapted basis for the coupled SU(3)-structure are

n28 = (0, 0, 0, 0, e14 + e23, e13 − e24).

The pair

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,
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defines then a coupled SU(3)-structure and its coupled constant is c = −1. The only

non-vanishing intrinsic torsion forms are

w−1 =
2

3
,

w−2 = −4

3
e12 − 4

3
e34 +

8

3
e56,

and it is easy to check that condition (2.44) is satisfied:

dw−2 = −8

3
ψ+.

Moreover, −1
4 |w
−
2 |2 = −8

3 , as we expected from Proposition 2.4.20. Finally, the inner

product g induced by (ω, ψ+) is such that the considered basis is orthonormal and

its scalar curvature is Scal(g) = −2.

Example 2.4.28. The structure equations of the Lie algebra n9 with respect to an

adapted basis for the coupled SU(3)-structure are

n9 =
(
0, 0, 0, e13, e14 + e23, e13 − e15 − e24

)
.

Thus, the pair

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,

is a coupled SU(3)-structure on n9 and satisfies dω = −ψ+. The only non-vanishing

intrinsic torsion forms are

w−1 =
2

3
,

w−2 = −4

3
e12 − 4

3
e34 + e36 − e45 +

8

3
e56,

and dw−2 is not proportional to ψ+. Moreover, the inner product induced by (ω, ψ+)

is g =
∑6

k=1(ek)2 and Scal(g) = −3.

The coupled structure on n28 gives rise to an invariant coupled structure on the

Iwasawa manifold and, as we recalled in Remark 2.4.13, the fact that this manifold

admits an invariant coupled structure was also observed in [136], where the authors
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wrote it was the unique nilmanifold admitting a coupled structure they knew. From

Theorem 2.4.12, we know that the non-Abelian nilpotent Lie algebras admitting a

coupled structure are, up to isomorphism, n9 and n28. Moreover, as observed in

Example 2.4.27, the coupled structure on n28 satisfies condition (2.44), i.e., dw−2

is proportional to ψ+. Thus, we may ask whether n9 admits a coupled structure

satisfying (2.44) or not. In [38], the authors looked for the possible nilmanifolds

admitting an invariant coupled structure satisfying (2.44) and concluded (without

giving an explicit proof) that a systematic scan of all of the possible six-dimensional

nilmanifolds yields two possibilities: the six-torus and the Iwasawa manifold. The

six-torus has Abelian Lie algebra, so it is not considered in Theorem 2.4.12, since

every differential form defined on it is closed. Anyway, this result seems to answer

negatively our question and we can prove this is actually what happens.

Proposition 2.4.29. There are no coupled SU(3)-structures on n9 for which the

exterior derivative of the intrinsic torsion form w−2 is proportional to ψ+.

Proof. The idea is to describe all of the possible coupled SU(3)-structures on n9 and

see whether there exists one whose intrinsic torsion form w−2 satisfies the required

condition. We begin considering the frame (e1, . . . , e6) of n∗9 for which the structure

equations of n9 are those written in Example 2.4.28. Let ω ∈ Λ2(n∗9) be a generic

2-form on n9, we can write it as

ω =
∑

1≤i<j≤6

bije
ij ,

where bij are real numbers. We may think the 15-tuple (b12, . . . , b56) =: (bij) as a

point in the affine space A15
R − {0}. The homogeneous polynomial Pω of degree 3

in the unknowns bij appearing as coefficient of e123456 in the expression of ω3 has

to be non-vanishing, this gives a first constraint for (bij). Since we want a coupled

structure, we consider a 3-form ψ+ on n9 given by ψ+ = cdω, for some nonzero real

number c. Assuming

λ(ψ+) = −4c4b256(b36b56 − b45b56 − b246 + b256) < 0,

that is, b56 6= 0 and B := b36b56 − b45b56 − b246 + b256 > 0, we can compute the almost

complex structure J induced by the stable form ψ+. Now, we change the basis from



2.4. Coupled SU(3)-structures 89

(e1, . . . , e6) to a basis (E1, . . . , E6) which is adapted for J . To do this, it suffices

to define Ei = ei and Ei+1 = Jei for i = 1, 3, 5. With respect to (E1, . . . , E6),

the matrix associated with J is skew-symmetric with non-vanishing entries given by

J2
1 = 1 = J4

3 = J6
5. We can then compute the new structure equations with

respect to the dual basis (E1, . . . , E6), obtaining

dEi = 0, i = 1, 2, 3

dE4 =
b56√
B
E13,

dE5 = −b46

b56
E13 +

√
B

b56

(
E14 + E23

)
,

dE6 = −b26

b56
E12 − b46

b56
E14 − b56√

B
E15 −

√
B

b56
E24

−b36b56 + b45b56 − b246 − b256

b56

√
B

E13.

Moreover, we have

ψ+ = −c B
b56

(
E135 − E146 − E236 − E245

)
,

ψ− = −c B
b56

(
E136 + E145 + E235 − E246

)
.

We can write ω with respect to the new basis and impose it is of type (1, 1) with

respect to J , obtaining 3 equations in the variables bij which can be solved under the

constraint λ(ψ+) < 0. We can then consider the symmetric matrix G associated with

g(·, ·) = ω(·, J ·) with respect to the basis (E1, . . . , E6) and denote by P ⊂ A15
R the set

on which it is positive definite. It is immediate to check that Pω 6= 0 when (bij) ∈ P.

Now, if we let (bij) vary in the non-empty setQ := P∩{(bij) | λ(ψ+) < 0}, we have all

of the possible non-normalized coupled SU(3)-structures on n9. The intrinsic torsion

form w−1 is always − 2
3c , while w−2 can be computed from its defining properties and

the expression of dψ−. We are interested in the coupled structures having dw−2

proportional to ψ+. Thus, we can start with a generic 2-form w of type (1, 1) with

respect to J and write it as

w = w12E
12 + w34E

34 + w56E
56 + w13(E13 + E24) + w14(E14 − E23)

+w15(E15 + E26) + w16(E16 − E25) + w35(E35 + E46) + w36(E36 − E45),
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where wij are real numbers. Then, we have to impose that w is primitive with respect

to ω, i.e., w ∧ ω2 = 0, and fulfills

dψ− = − 2

3c
ω2 − w ∧ ω

and that dw is proportional to ψ+. The last condition gives rise to a set of polynomial

equations in the variables wij with coefficients depending on bij which can be solved

in Q. The condition on dψ− gives thirteen equations of the same kind as before.

We can solve four of them, namely those obtained comparing the coefficients of

E3456, E2356, E1256, E2345, but then we get that some of the remaining equations can

be solved only if c = 0 or λ(ψ+) = 0. The assertion is then proved.

The previous results can be summarized as follows

Proposition 2.4.30. Let n be a six-dimensional, non-Abelian, nilpotent Lie alge-

bra endowed with a coupled SU(3)-structure (ω, ψ+) having dw−2 proportional to ψ+.

Then, n is isomorphic to the Lie algebra n28.

2.5 Half-flat SU(3)-structures and Einstein metrics

As we saw in Section 2.2.3, requiring that the Riemannian metric induced by an

SU(3)-structure is Einstein gives rise to some constraints on the intrinsic torsion

and, in certain cases, allows to obtain non-existence results, like the one recalled in

Proposition 2.2.16.

In literature, conjectures regarding the existence of certain classes of manifolds

endowed with special geometric structures inducing an Einstein metric have been

formulated. For instance, it was conjectured by Goldberg in [83] that every compact

almost Kähler manifold (M, g, J) whose metric is Einstein is actually Kähler. In

[169], Sekigawa showed that this is true when the scalar curvature is non-negative.

Moreover, there exists a noncompact example of Einstein almost Kähler manifold

with negative scalar curvature [7], which is the unique example of six-dimensional

Einstein almost Kähler (non-Kähler) solvmanifold by the results contained in [99]

and [65].
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Motivated by the fact that the metric induced by a strict nearly Kähler structure

is always Einstein, we may look for examples of double half-flat and coupled SU(3)-

structures inducing Einstein metrics and see whether obstructions to the existence

occur. Using some results already appeared in literature together with ours contained

in [160], we are able to conclude that in both cases it is possible to find such examples,

but there are various situations in which coupled Einstein structures cannot exist.

2.5.1 S3 × S3 and its Ad(S1)-invariant Einstein metrics

In this section, based on [160, Sect. 3], we consider the problem of finding left-

invariant special half-flat structures inducing Einstein metrics on S3 × S3, identified

with the Lie group SU(2)× SU(2).

As we discussed in Section 2.4.1, every left-invariant SU(3)-structure on S3 × S3

can be identified with an SU(3)-structure defined on the Lie algebra su(2) ⊕ su(2),

whose structure equations with respect to a certain basis (e1, . . . , e6) of its dual space

are

(e23, e31, e12, e56, e64, e45).

By Butruille’s result recalled in Theorem 2.3.6, we know that on S3 × S3 there

exists an example of left-invariant nearly Kähler SU(3)-structure which is unique

up to homothety. With respect to the considered basis of su(2) ⊕ su(2), it can be

described as follows

Example 2.5.1. The pair of compatible and normalized stable forms on su(2)⊕su(2)

ω = −
√

3

18

(
e14 + e25 + e36

)
,

ψ+ =

√
3

54

(
−e234 + e156 + e135 − e246 − e126 + e345

)
,

defines a nearly Kähler SU(3)-structure, since dω = 3ψ+ and dψ− = −2ω2.

The inner product g induced by the nearly Kähler SU(3)-structure on su(2)⊕su(2)

gives rise to a left-invariant Einstein metric on S3×S3, known in literature as Jensen

metric. With respect to the basis (e1, . . . , e6) of su(2) ⊕ su(2) and up to a scalar
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constant, the matrix associated with the Jensen metric is

2 0 0 −1 0 0

0 2 0 0 −1 0

0 0 2 0 0 −1

−1 0 0 2 0 0

0 −1 0 0 2 0

0 0 −1 0 0 2


. (2.46)

Together with the standard metric
∑6

i=1(ei)2, they constitute the unique known ex-

amples of left-invariant Einstein metrics on S3×S3 and the problem of classifying all

of the left-invariant Einstein metrics existing on this manifold is still open. Moreover,

these two examples are unique in the following sense

Theorem 2.5.2 ([154]). Let g be a left-invariant Einstein metric on the Lie group

SU(2)× SU(2) which is Ad(S1)-invariant for some embedding S1 ⊂ SU(2)× SU(2).

Then, g is isometric up to homothety either to the standard metric or to the Jensen

metric.

In [167], the author gave an example of left-invariant double half-flat SU(3)-

structure on S3 × S3 inducing the standard metric, we recall it here.

Example 2.5.3 ([167]). The pair of compatible, normalized stable forms on su(2)⊕
su(2)

ω = −e14 − e25 − e36,

ψ+ =
1√
2

(
e123 − e156 + e246 − e345 + e126 − e135 + e234 − e456

)
,

induces the standard metric. Thus, it defines an SU(3)-structure. Moreover, dψ+ =

0, dω2 = 0, dψ− = 1√
2
ω2 and dω is not proportional to ψ+, i.e., it is a double half-flat

SU(3)-structure.

Moreover, in [160] we gave an example of half-flat SU(3)-structure of class W−1 ⊕
W−2 ⊕W3 inducing the Jensen metric.
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Example 2.5.4 ([160]). The pair

ω =
3
√

4 6
√

3

2

(
−e14 + e25 + e36

)
,

ψ+ = e123 + e135 − e246 − e126 + e345 − e456,

defines an SU(3)-structure on su(2) ⊕ su(2) and induces a metric which is (propor-

tional to) the Jensen metric. Moreover, this SU(3)-structure is half-flat, since both

ψ+ and ω2 are closed, and it is neither coupled nor double half-flat, since dω is not

proportional to ψ+ and dψ− is not proportional to ω2.

Summarizing, on S3×S3 there exist left-invariant half-flat (W−1 ⊕W
−
2 ⊕W3) and

nearly Kähler SU(3)-structures (W−1 ) inducing the Jensen metric and left-invariant

double half-flat SU(3)-structures (W−1 ⊕ W3) inducing the standard metric. It is

then natural to ask whether there are left-invariant coupled structures inducing any

of the two Ad(S1)-invariant Einstein metrics existing on this manifold. The answer

is negative and it is possible to show this using the theory of algebraic varieties. We

shall introduce the objects which are useful for our aim directly in the proof, the

reader may refer for instance to [55] for more details.

Theorem 2.5.5 ([160]). S3×S3 does not admit left-invariant coupled SU(3)-structures

(ω, ψ+) inducing an Ad(S1)-invariant Einstein metric.

Proof. Let us consider a left-invariant coupled SU(3)-structure (ω, ψ+) on S3 × S3,

which we identify with a 2-form ω and a 3-form ψ+ defined on su(2)⊕su(2) and such

that ψ+ = c dω, c ∈ R− {0}. Since ω2 is closed and the Lie algebra su(2) is simple,

it follows that ω ∈ su∗(2)⊗ su∗(2) (cf. [167, Ch. 5, Lemma 1.1]). Thus,

ω = a14e
14 + a15e

15 + a16e
16 + a24e

24 + a25e
25 + a26e

26 + a34e
34 + a35e

35 + a36e
36,

where aij are real coefficients. From this expression, we obtain that of ψ+ = c dω and

from the closedness of ω2, we know that the compatibility condition ω∧ψ+ = 0 holds.

It is now possible to compute λ = λ(ψ+), which turns out to be a homogeneous

polynomial of degree 4 in the coefficients aij , the almost complex structure J =

Jψ+ and g(·, ·) = ω(·, J ·). With respect to the basis (e1, . . . , e6), the matrix G

associated with g is symmetric. Moreover, up to a global sign depending on whether
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the considered basis is positively oriented or not and not affecting the computations

afterwards, the nonzero entries are the following:

Gi,i = −2c2√
−λ(a14a25a36 − a14a26a35 − a15a24a36

+a15a26a34 + a16a24a35 − a16a25a34), i = 1, . . . , 6

G1,4 = −c2√
−λ(a3

14 + a14a
2
15 + a14a

2
16 + a14a

2
24 − a14a

2
25 − a14a

2
26 + a14a

2
34 − a14a

2
35

−a14a
2
36 + 2a15a24a25 + 2a15a34a35 + 2a16a24a26 + 2a16a34a36),

G1,5 = −c2√
−λ(a2

14a15 + 2a14a24a25 + 2a14a34a35 + a3
15 + a15a

2
16 − a15a

2
24 + a15a

2
25

−a15a
2
26 − a15a

2
34 + a15a

2
35 − a15a

2
36 + 2a16a25a26 + 2a16a35a36),

G1,6 = −c2√
−λ(a2

14a16 + 2a14a24a26 + 2a14a34a36 + a2
15a16 + 2a15a25a26 + a3

16

+2a15a35a36 − a16a
2
24 − a16a

2
25 + a16a

2
26 − a16a

2
34 − a16a

2
35 + a16a

2
36),

G2,4 = −c2√
−λ(a2

14a24 + 2a14a15a25 + 2a14a16a26 − a2
15a24 − a2

16a24 + a3
24 + a24a

2
25

+a24a
2
26 + a24a

2
34 − a24a

2
35 − a24a

2
36 + 2a25a34a35 + 2a26a34a36),

G2,5 = c2√
−λ(a2

14a25 − 2a14a15a24 − a2
15a25 − 2a15a16a26 + a2

16a25 − a2
24a25

−2a24a34a35 − a3
25 − a25a

2
26 + a25a

2
34 − a25a

2
35 + a25a

2
36 − 2a26a35a36),

G2,6 = c2√
−λ(a2

14a26 − 2a14a16a24 + a2
15a26 − 2a15a16a25 − a2

16a26 − a2
24a26

−2a24a34a36 − a2
25a26 − 2a25a35a36 − a3

26 + a26a
2
34 + a26a

2
35 − a26a

2
36),

G3,4 = −c2√
−λ(a2

14a34 + 2a14a15a35 + 2a14a16a36 − a2
15a34 − a2

16a34 + a2
24a34

+2a24a25a35 + 2a24a26a36 − a2
25a34 − a2

26a34 + a3
34 + a34a

2
35 + a34a

2
36),

G3,5 = c2√
−λ(a2

14a35 − 2a14a15a34 − a2
15a35 − 2a15a16a36 + a2

16a35 + a2
24a35

−2a24a25a34 − a2
25a35 − 2a25a26a36 + a2

26a35 − a2
34a35 − a3

35 − a35a
2
36),

G3,6 = c2√
−λ(a2

14a36 − 2a14a16a34 + a2
15a36 − 2a15a16a35 − a2

16a36 + a2
24a36

−2a24a26a34 + a2
25a36 − 2a25a26a35 − a2

26a36 − a2
34a36 − a2

35a36 − a3
36),

where Gi,j = g(ei, ej). Observe that up to multiplication by
√
−λ, the nonzero terms

are all homogeneous polynomials of third degree in the aij .

We are looking for coupled SU(3)-structures inducing either the standard metric

or the Jensen metric, which with respect to the considered basis can be written as

the identity matrix and as (2.46), respectively. Thus, since ω ∧ψ+ = 0, dψ+ = 0 and

dω2 = 0, we first have to solve the system obtained by imposing that the matrix G

is proportional to the identity matrix or to the matrix (2.46) under the assumption

λ < 0 and then, if we find solutions of it, we need to impose that the normalization
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condition is satisfied in order to obtain what we want.

Case 1: the standard metric.

Since rescaling a metric with a positive constant does not change the Ricci tensor,

we are looking for solutions of the equation

G = rI,

where r is a positive real number.

Since the entries in the diagonal of G are all equal, we only have to solve the

system of equations

Gi,j = 0, i = 1, 2, 3, j = 4, 5, 6,

under the assumptions G1,1 6= 0 and λ < 0.

For i, j = 1, . . . , 6, we let

G̃i,j :=
√
−λGi,j .

Then, as already observed, G̃i,j are homogeneous polynomials of degree 3 in aij and,

under our assumptions, Gi,j = 0 if and only if G̃i,j = 0 for i = 1, 2, 3, j = 4, 5, 6.

Since we have a system of equations involving homogeneous polynomials of the

same degree and we are looking for solutions defined up to a multiplicative constant,

let us consider the projective space CP8 with coordinate ring

C[a14, a15, a16, a24, a25, a26, a34, a35, a36]

and the homogeneous ideals

P :=
〈
G̃1,1

〉
,

Q :=
〈
G̃1,4, G̃2,4, G̃3,4, G̃1,5, G̃2,5, G̃3,5, G̃1,6, G̃2,6, G̃3,6

〉
.

What we are looking for is the set of points [a14 : . . . : a36] lying in the projective

variety

V (Q) =
{

[a14 : . . . : a36] ∈ CP8 | G̃i,j(a14, . . . , a36) = 0, i = 1, 2, 3, j = 4, 5, 6
}

but not in

V (P ) =
{

[a14 : . . . : a36] ∈ CP8 | G̃1,1(a14, . . . , a36) = 0
}
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and for which λ < 0. By [55, Ch. 4, Thm. 7], we know that

V (Q)− V (P ) ⊆ V (Q : P ),

where Q : P is the ideal quotient of Q by P . In our case,

Q : P = 〈a14, a15, a16, a24, a25, a26, a34, a35, a36〉.

Therefore, V (Q : P ) = ∅. This proves that on S3 × S3 there are no left-invariant

coupled SU(3)-structures inducing the standard metric.

Case 2: the Jensen metric.

Following the same idea of the previous case and looking at the entries of the matrix

(2.46), we have now to consider the ideals P and

R :=
〈
G̃1,5, G̃1,6, G̃2,4, G̃2,6, G̃3,4, G̃3,5, G̃2,5 − G̃3,6, G̃3,6 − G̃1,4, G̃1,1 + 2G̃1,4

〉
and look for those points lying in the projective variety V (R) but not in V (P ) and

for which λ < 0. Now,

R : P = 〈a15, a16, a24, a26, a34, a35, a25 − a14, a36 − a14〉,

then

V (R : P ) = {[γ : 0 : 0 : 0 : γ : 0 : 0 : 0 : γ] | γ ∈ C− {0}}

is a point in CP8 and, since C is algebrically closed and R is a radical ideal,

V (R : P ) = V (R)− V (P )

by [55, Ch. 4, Thm. 7]. Moreover, the requested condition on λ is satisfied, indeed

λ = −3 c4γ4 < 0.

The coupled SU(3)-structures we are interested in are defined when γ is a negative

real number. In this case, we have

ω = γ(e14 + e25 + e36),

ψ+ = c γ(e234 − e156 − e135 + e246 + e126 − e345),

ψ− =
c γ√

3
(2e123 − e126 + e135 − e156 − e234 + e246 − e345 + 2e456).
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The forms ω and ψ+ are stable and the normalization condition implies

c = ±

√
−2γ√

3
.

In both cases, the SU(3)-structure is nearly Kähler.

2.5.2 Twistor spaces

The theory of twistor spaces is not new and there are several long-standing results on

this topic in literature. In this section, we recall those which are useful to show that

examples of coupled SU(3)-structures arise from this construction, paying particular

attention to their properties.

Let (M4, g) be an oriented, four-dimensional Riemannian manifold and denote

by (Q, πQ,M
4) the corresponding principal SO(4)-bundle. The set of all almost

complex structures on M4 which are compatible with g and preserve the orientation

is parametrized by the bundle Z := Q ×SO(4) SO(4)/U(2) associated with Q with

fiber SO(4)/U(2).

Definition 2.5.6. Z is called the twistor space of (M4, g).

Remark 2.5.7. The twistor space Z can be equivalently defined as the 2-sphere

bundle over M4 consisting of the unit (−1)-eigenvectors of the Hodge operator acting

on Λ2(T ∗M) (see for instance [147] for the details).

Denote by π : Z → M4 the bundle projection. The vertical subbundle TVZ =

ker(π∗) of TZ inherits a complex structure JV from the canonical complex structure

on the fiber SO(4)/U(2) ∼= CP1. Moreover, the Levi Civita connection ∇g on (M4, g)

induces a decomposition TZ = THZ ⊕ TVZ of the tangent bundle TZ into hori-

zontal and vertical subbundles and the former is endowed with a tautological almost

complex structure JH defined at the point (p, J) of Z by JH(p,J) = π−1
∗ ◦ J ◦ π∗ :

TH(p,J)Z → TH(p,J)Z. It is then possible to define two almost complex structures on Z
preserving the considered decomposition of TZ: the first one is [10]

J1 = JH + JV ,
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and the second one is [61]

J2 = JH − JV .

By [10], J1 is integrable if and only if (M4, g) is a self-dual Riemannian manifold,

i.e., the negative part of the Weyl tensor W vanishes identically, while it was shown

in [61] that J2 is never integrable.

The decomposition of TZ into horizontal and vertical subbundles also allows to

define a 1-parameter family of Riemannian metrics on Z given by

gt = π∗g + tgV , t > 0.

where gV is the standard metric of constant curvature 1 on the fiber CP1.

It is immediate to check that gt is compatible with the almost complex structures

J1, J2 for all t > 0, thus both (Z, gt, J1) and (Z, gt, J2) are six-dimensional almost

Hermitian manifolds. Their possible types in Gray and Hervella’s classification were

determined in some particular cases in [10, 61] and were completely described by

Muškarov in [147], who characterized them in terms of the properties of the Rie-

mannian manifold (M4, g). For instance, (Z, gt, J2) is quasi Kähler, i.e., belongs to

W1 ⊕W2, if and only if (M4, g) is a self-dual Einstein manifold.

In [77], the authors studied the conditions for which the Riemannian manifold

(Z, gt) is Einstein, obtaining the following result.

Theorem 2.5.8 ([77]). Let (M4, g) be an oriented self-dual Einstein 4-manifold

with positive scalar curvature Scal(g) > 0. If t = 48
Scal(g) or t = 24

Scal(g) , then gt is an

Einstein metric on the twistor space Z. Conversely, if the twistor space (Z, gt) of a

four-dimensional, oriented Riemannian manifold (M4, g) is Einstein, then (M4, g)

is a self-dual Einstein manifold with positive scalar curvature and either t = 48
Scal(g)

or t = 24
Scal(g) .

Moreover, it was proved independently in [81] and in [100] that the twistor space

(Z, gt, J1) is Kähler if and only if (M4, g) is Einstein self-dual with positive scalar

curvature and t = 48
Scal(g) , while it was shown in [147] that (Z, gt, J2) is nearly Kähler if

and only if (M4, g) is Einstein self-dual with positive scalar curvature and t = 24
Scal(g) .

Observe that, using the properties of the scalar curvature, the identity t = r
Scal(g)
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can be rewritten as Scal
(g
t

)
= r for every real number r and t > 0. Thus, since

gt = t
(
π∗
(g
t

)
+ gV

)
,

instead of seeing g as a fixed metric on M4, we may think of it as a varying metric

on the base 4-manifold and restate the previous results as follows

Proposition 2.5.9. The twistor space (Z, gt, J2) over a self-dual Einstein 4-manifold

(M4, g) with positive scalar curvature is quasi Kähler. Moreover, it is nearly Kähler

if the metric g is rescaled so that Scal
(g
t

)
= 24, while for the rescaling Scal

(g
t

)
= 48

the corresponding Riemannian metric is Einstein.

By [61, Prop. 8.1], for every oriented Riemannian 4-manifold (M4, g), the first

Chern class of the almost complex manifold (Z, J2) is zero. Therefore, there exists

on Z a globally defined (3, 0)-form and, using this, it is possible to define a reduction

of the structure group of (Z, gt, J2) from U(3) to SU(3) (see also [163, Ch. 7]). When

(M4, g) is self-dual Einstein with positive scalar curvature, the corresponding SU(3)-

structure is coupled for all values of t > 0 but the one giving Scal
(g
t

)
= 24, which

is exactly the nearly Kähler case. There are different ways to show this, a simple

one consists in considering the principal SU(3)-bundle over Z and working with the

first structure equations determined by Xu in [181]. This was done for instance in

[175] and reviewed in our work [70] with some additional details. Let us now write

explicitly the computations.

Denote by πP : P → Z the SU(3)-structure on the twistor space. For every u ∈ P
such that πP (u) = p ∈ Z, we can consider u−1 : TpZ → R6 ∼= C3 and define

εk(u) =
((
u−1

)∗
(dzk)

)
◦ (πP )∗u , k = 1, 2, 3,

where (dz1, dz2, dz3) is the standard basis of complex linear 1-forms on C3 intro-

duced in Remark 2.1.3. This gives three differential 1-forms ε1, ε2, ε3 on P called

tautological 1-forms. In particular, if ω(·, ·) = gt(J2·, ·) and Ψ are the differential

forms associated with the SU(3)-structure on Z, then their pullbacks on P have the

following expressions in terms of the frame (ε1, ε2, ε3)

ω := π∗P (ω) =
i

2

(
ε1 ∧ ε1 + ε2 ∧ ε2 + ε3 ∧ ε3

)
,

Ψ := π∗P (Ψ) = i
(
ε1 ∧ ε2 ∧ ε3

)
.
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Remark 2.5.10. The imaginary unit i appearing in the expression of Ψ is due to

the fact that we are using a convention which is different from the one used in [181].

In detail, −<(Ψ) here is =(Ψ) there and =(Ψ) here is <(Ψ) there.

When the base manifold
(
M4, gt

)
is self-dual and Einstein, the first structure

equations of P are [181]

d


ε1

ε2

ε3

 = −

(
α 0

0 −tr(α)

)
∧


ε1

ε2

ε3

+


ε2 ∧ ε3

ε3 ∧ ε1

σ ε1 ∧ ε2

 ,

where α is a 2×2 skew-Hermitian matrix of 1-forms and σ := tScal(g)
24 . The pullbacks

w
(±)
k of the intrinsic torsion forms w

(±)
k can then be computed from dω and dΨ.

By a straightforward computation, we get that only two of them are non-identically

vanishing, namely

w−1 =
2

3
(σ + 2),

w−2 = −2

3
i (σ − 1)

(
ε1 ∧ ε1 + ε2 ∧ ε2 − 2ε3 ∧ ε3

)
,

and that it holds

dw−2 = −8

3
(σ − 1)2<(Ψ).

Therefore, the SU(3)-structure (ω, ψ+) on Z is nearly Kähler for σ = 1 and is coupled

for the remaining positive values of σ. In the second case, the intrinsic torsion form

w−2 is proportional to ψ+ and this result can be used to provide examples of manifolds

satisfying the conditions discussed in Section 2.4.3, as it was observed in the physical

paper [175].

Let us now go back to Z. At each point p ∈ Z, we can consider the linear

frame u ∈ π−1
P (p) and the basis (e1, . . . , e6) of T ∗pZ defined in such a way that

(u−1)∗(dzk) = e2k−1 + i e2k, k = 1, 2, 3. It is adapted for the SU(3)-structure and at

p the differential forms ω, ψ+, ψ− can be written as follows

ω = e12 + e34 + e56,

ψ+ = e246 − e136 − e145 − e235,

ψ− = e135 − e146 − e236 − e245.
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Moreover, ψ+ induces the almost complex structure J2, the complex 1-forms e1 + ie2,

e3 + ie4, e5 + ie6 are of type (1, 0) with respect to it and the Riemannian metric gt is

such that the considered frame is orthonormal. Using the results of [19] recalled in

Section 2.2.3, we can then compute the Ricci and the scalar curvature of gt in terms

of the non-vanishing intrinsic torsion forms. We obtain the following expression for

the scalar curvature

Scal(gt) = −2σ2 + 24σ + 8,

while the matrix associated with the traceless part of the Ricci tensor of gt with

respect to the basis (e1, . . . , e6) is

Ric0(gt) = −2

3
(σ − 1)(σ − 2) diag(1, 1, 1, 1,−2,−2).

Thus, the metric gt is Einstein if and only if σ = 1 or σ = 2, that is, if and only

if the scalar curvature of the Riemannian metric g
t on M4 is 24 or 48, respectively.

These results are consistent with Theorem 2.5.8. As we noticed before, the coupled

structure is nearly Kähler for σ = 1, while for σ = 2 we get an example of a coupled

SU(3)-structure inducing an Einstein metric. More in detail, with respect to the

adapted frame, the latter has the following non-identically vanishing intrinsic torsion

forms

w−1 =
8

3
,

w−2 = −4

3

(
e12 + e34 − 2e56

)
,

the coupled constant is c = −4 and the scalar curvature is Scal(gt) = 48. Working

with this frame, it is also easy to check that this example satisfies the characterization

given in Proposition 2.4.24.

When (M4, g) is compact, there exist essentially two examples of manifolds sat-

isfying the properties considered in the previous discussion. Indeed

Theorem 2.5.11 ([81, 100]). Let (M4, g) be a four-dimensional, compact, self-dual

Einstein manifold with positive scalar curvature. Then, it is isometric either to the

sphere S4 or to the complex projective plane CP2, both endowed with their standard

metric.
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Consequently, the possible manifolds admitting a coupled SU(3)-structure arising

from this construction are the complex projective space Z = CP3 when M4 = S4 and

the flag manifold Z = F(1, 2) when M4 = CP2. When the coupled SU(3)-structure

is nearly Kähler, we obtain the two examples already mentioned in Theorem 2.3.6

(see also the detailed discussion in [34]).

Remark 2.5.12. An alternative way to show that the SU(3)-structure defined via

the twistor construction on CP3 and F(1, 2) is coupled consists in considering the

associated spinor field and determine its spinor field equations. The computations

were worked out in [2, Ex. 3.15].

2.5.3 Six-dimensional Einstein solvmanifolds

The homogeneous examples of (special) half-flat structures inducing Einstein metrics

we considered until this moment are all defined on compact manifolds. Now, we move

to the noncompact case, where the only currently known examples of homogeneous

Einstein manifolds are Einstein solvmanifolds. We discussed the main results on this

topic in Section 1.4.2, here we concentrate on the six-dimensional case.

Six-dimensional Einstein solvmanifolds were classified by Nikitenko and Nikonorov

in [153]. The result is recalled in the next theorem. Instead of the Lie algebra

structure equations given (in the original formulation of [153]) by the nontrivial Lie

brackets of the basis vectors, we write here the structure equations in terms of the

Chevalley-Eilenberg differential of the basis 1-forms, since we will use these in our

next computations.

Theorem 2.5.13 ([153]). Let (s, g) be a six-dimensional nonunimodular metric solv-

able Lie algebra with Einstein inner product g such that Ric(g) = −r2g, where r > 0.

Then, (s, g) is isomorphic to one of the metric Lie algebras contained in Table 2.3.

For each Lie algebra, (e1, . . . , e6) is a g-orthonormal basis with dual basis (e1, . . . , e6).

Remark 2.5.14. All of the metric solvable Lie algebras appearing in Table 2.3 are

of Iwasawa-type. In particular, the rank of sk is equal to 1 for k = 1 . . . 9, to 2 for

k = 10, 11, 12 and to 3 for k = 13. It is worth emphasizing here that for each si, the

inner product g, with respect to which the basis (e1, . . . , e6) is orthonormal, is the

only one having the property of being Einstein up to scaling (cf. Section 1.4.2).
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s Structure equations (de1, de2, de3, de4, de5, de6)

s1

(
r

2
√
2
e16, r

2
√
2
e26, r

2
√
2
e36, r

2
√
2
e46,− r√

2
e12− r√

2
e34+ r√

2
e56,0

)

s2

(
2r
√

2
105

e16,r
√

3
70
e26,− 2r√

7
e12+r

√
7
30
e36,2r

√
3
70
e46,−r

√
2
7
e14− 2r√

7
e23+r

√
10
21
e56,0

)

s3

(
r√
55
e16, 2r√

55
e26,−r

√
6
11
e12+ 3r√

55
e36,−r

√
6
11
e13+ 4r√

55
e46,− 2r√

11
e14− 2r√

11
e23+ 5r√

55
e56,0

)

s4

(
r
√

6
30

e16, 3r
√

6
20

e26,− r√
2
e12+ 11r

√
6

60
e36,−r

√
2
3
e13+ 13r

√
6

60
e46,− r√

2
e14+ r

√
6

4
e56,0

)

s5

(
r

3
√
2
e16, r

2
√

2
e26, r

2
√

2
e36,− r√

2
e12+ 5r

6
√
2
e46,− r√

2
e13+ 5r

6
√
2
e56,0

)

s6

(
r

2
√
6
e16, r

2
√
6
e26,−r

√
2
3
e12+ r√

6
e36,− r√

2
e13+r

√
6

4
e46,− r√

2
e23+r

√
6

4
e56,0

)

s7

(
r√
39
e16, 2r√

39
e26,−r

√
2
3
e12+ 3r√

39
e36,−r

√
2
3
e13+ 4r√

39
e46, 3r√

39
e56,0

)

s8

(
r
√

2
21
e16,r

√
2
21
e26,−r

√
2
3
e12+2r

√
2
21
e36,r

√
3
14
e46,r

√
3
14
e56,0

)

s9

(
r√
5
e16, r√

5
e26, r√

5
e36, r√

5
e46, r√

5
e56,0

)

s10

(
2r√
33
e15+rte16+r

√
1
2
−11t2e26, 2r√

33
e25+r

√
1
2
−11t2e16+rte26,−r

√
2
3
e12+ 4r√

33
e35+2rte36, 3r√

33
e45−4rte46,0,0

)

s11

(
r√
30
e15+ 3r√

30
e16, 2r√

30
e25− 4r√

30
e26,−r

√
2
3
e12+ 3r√

30
e35− r√

30
e36,−r

√
2
3
e13+ 4r√

30
e45+ 2r√

30
e46,0,0

)

s12

(
r
2
e15+r 1+s+t

2
√

1+t2+s2
e16, r

2
e25+r 1−s−t

2
√

1+t2+s2
e26, r

2
e35+r t−s−1

2
√

1+t2+s2
e36, r

2
e45+r s−t−1

2
√

1+t2+s2
e46,0,0

)

s13

(
r√
3
e14− 2r√

6
e16, r√

3
e24+ r√

2
e25+ r√

6
e26, r√

3
e34− r√

2
e35+ r√

6
e36,0,0,0

)

Table 2.3: Six-dimensional nonunimodular metric solvable Lie algebras with Einstein

inner product g =
∑6

i=1(ei)2. The Lie algebra s10 depends on a real parameter

0 ≤ t ≤ 1√
22

and s12 depends on two real parameters 0 ≤ s ≤ t ≤ 1.
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Since every connected, simply connected homogeneous Riemannian space of non-

positive sectional curvature is isometric to a standard solvmanifold by [5], the previ-

ous classification allowed the authors to prove the

Theorem 2.5.15 ([153]). Let (M, g) be a six-dimensional connected, simply con-

nected homogeneous Einstein manifold of nonpositive sectional curvature. Then, it

is symmetric or isometric to one of the solvmanifolds of negative sectional curvature

generated by the metric Lie algebras s5, s8. Moreover, in the symmetric case, (M, g)

is obtained as the solvmanifold corresponding to the metric Lie algebras s1, s9, s10 for

t = 1√
22
, s11, s12 for (s, t) = (0, 0) and (s, t) = (1, 1) and s13.

Now, we focus on the problem of finding left-invariant half-flat structures on

six-dimensional Einstein solvmanifolds inducing the Einstein, non Ricci-flat, metric.

They are in one-to-one correspondence with half-flat structures inducing the Einstein

inner product on six-dimensional nonunimodular metric solvable Lie algebras.

In [74, 75], the authors completely classified the left-invariant half-flat structures

on six-dimensional decomposable Lie groups (using also the classification contained

in [168]) and on six-dimensional indecomposable Lie groups with five-dimensional

nilradical. These classifications will be useful in the proof of the following

Theorem 2.5.16 ([160]). There are no half-flat SU(3)-structures inducing the Ein-

stein metric on the rank 1 metric solvable Lie algebras sk, k = 1 . . . 9, and on the rank

2 metric solvable Lie algebra s12. Moreover, there are no coupled SU(3)-structures

inducing the Einstein metric on the rank 2 metric solvable Lie algebras s10, s11 and

on the rank 3 metric solvable Lie algebra s13.

Proof. We prove the theorem as follows: in the list of Einstein metric solvable Lie

algebras we first exclude those not admitting a half-flat structure using the results

of [74, 75], then we show the result by direct computations in the remaining cases.

The rank 1 metric Lie algebra s9 is indecomposable and has Abelian nilradical,

therefore it does not admit any half-flat structure by [75, Prop. 4]. This happens also

for the 2-parameter family of metric Lie algebras s12, since it satisfies the hypothesis

of Proposition 2.4.9 with α = e6. Using the same notations of [74, 75], we have the
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following isomorphisms of Lie algebras

s1
∼= A1,0,0

6,82 =
(
2f16 + f24 + f35, f26, f36, f46, f56, 0

)
,

s2
∼= A

4/3
6,94 =

(
10
3 f16 + f25 + f34, 7

3 f26 + f35, 4
3 f36, 2f46, f56, 0

)
,

s3
∼= A6,99 =

(
5f16 + f25 + f34, 4f26 + f35, 3f36 + f45, 2f46, f56, 0

)
,

s4
∼= A

9/2
6,71 =

(
15
2 f16 + f25, 13

2 f26 + f35, 11
2 f36 + f45, 9

2 f46, f56, 0
)
,

s5
∼= A

2/5,1
6,54 =

(
f16 + f35, f26 + f45, 3

5 f36, 3
5 f46, 2

5 f56, 0
)
,

s6
∼= A1

6,76 =
(
3f16 + f25, 2f26 + f45, f24 + 3f36, f46, f56, 0

)
,

s7
∼= A3,2

6,39 =
(
3f16 + f45, f15 + 4f26, 3f36, 2f46, f56, 0

)
,

s8
∼= A

2/3,2/3,1
6,13 =

(
4
3 f16 + f23, 2

3 f26, 2
3 f36, f46, f56, 0

)
,

s13
∼= r2 ⊕ r2 ⊕ r2 =

(
0, f12, 0, f34, 0, f56

)
,

where in each case the structure equations are written with respect to a basis

(f1, . . . , f6) of the dual Lie algebra. Consequently, by [75, Thm. 2] the Lie alge-

bras sk with k = 1, 2, 4, 5, 7, 8 do not admit any half-flat structure, whereas the Lie

algebras s3, s6 do. Moreover, by [74, Thm. 1], on s13 there exist half-flat structures,

too.

We can now start with the second part of the proof. For k = 3, 6, let ω ∈ Λ2(s∗k)

and ψ+ ∈ Λ3(s∗k) be generic forms. With respect to the basis (e1, . . . , e6) given in

Theorem 2.5.13, we can write

ω = b1e
12 + b2e

13 + b3e
14 + b4e

15 + b5e
16 + b6e

23 + b7e
24 + b8e

25

+b9e
26 + b10e

34 + b11e
35 + b12e

36 + b13e
45 + b14e

46 + b15e
56

(2.47)

and

ψ+ = a1e
123 + a2e

124 + a3e
125 + a4e

126 + a5e
134 + a6e

135 + a7e
136

+a8e
145 + a9e

146 + a10e
156 + a11e

234 + a12e
235 + a13e

236 + a14e
245

+a15e
246 + a16e

256 + a17e
345 + a18e

346 + a19e
356 + a20e

456,

(2.48)

where ai and bj are real constants.
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Let βi1...i5 and γi1...i5 denote the components of the 5-forms ω ∧ ψ+ and dω2,

respectively, so that

ω ∧ ψ+ =
∑

1≤i1<i2<...<i5≤6

βi1...i5e
i1...i5 ,

dω2 =
∑

1≤i1<i2<...<i5≤6

γi1...i5e
i1...i5 .

Observe that the non-vanishing β are always homogeneous polynomials of degree 2

in ai, bj , while the non-vanishing γ are always homogeneous polynomials of degree 2

in bj .

For each Lie algebra sk, we impose the conditions the forms (2.47) and (2.48)

have to satisfy in order to be a half-flat SU(3)-structure inducing the Einstein metric.

What we have to do is to solve the equations obtained from
ω ∧ ψ+ = 0

dψ+ = 0

dω2 = 0

(2.49)

under the assumptions λ = λ(ψ+) < 0, ω3 6= 0. Moreover, since we are considering a

basis which is orthonormal with respect to the Einstein metric (see Theorem 2.5.13),

we have also to impose that the entries Gi,j = g(ei, ej) of the matrix G associated

with g(·, ·) = ω(·, Jψ+ ·) with respect to the basis (e1, . . . , e6) satisfy

Gi,j = 0, for 1 ≤ i, j ≤ 6 and i 6= j,

Gi,i −Gi+1,i+1 = 0, for 1 ≤ i ≤ 5,
(2.50)

with Gi,i > 0. These conditions give us a system of polynomial equations in 35

unknowns to solve under some constraints on them we will specify case by case.

Since the expressions of the unknowns we obtain solving the equations are often too

long to be written down, in what follows we will point out only from which equation

a certain unknown is obtained, specifying its value only if it is zero.

Let us start with the Lie algebra s6, whose structure equations are given in Table

2.3. We solve all of the linear equations in the ai deriving from dψ+ = 0. Then,

looking at the expression of λ, we deduce that a6 6= 0. We can then solve all of the
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equations obtained from ω∧ψ+ = 0, dω2 = 0 and Gi,j = 0 for i 6= j using a6 6= 0 and

comparing case by case each equation with Gi,i and ω3. After doing this, G becomes

a diagonal matrix and we have to solve the remaining five equations of (2.50), which

do not have any solution under the constraints Gi,i 6= 0 and λ 6= 0.

For the Lie algebra s3, we can argue in a similar way, but instead of working

on it, we can show the result on the Lie algebra A6,99
∼= s3, since the computations

are less involved. In this case, we consider the generic forms ω and ψ+ as in (2.47)

and (2.48) with ei replaced by fi. Observe that the matrix G associated with the

Einstein inner product with respect to the basis (f1, . . . , f6) is not proportional to the

identity anymore, but it is still diagonal. Thus, we still have to solve the equations

Gi,j = 0 for i 6= j. First of all, we solve the linear equations in the ai obtained from

dψ+ = 0. Then, we observe that having b1 = 0 or a6 = 0 leads to a contradiction

after solving some equations: if b1 = 0 we can use G1,1, G2,2 6= 0 to solve G1,2 = 0,

G1,3 = 0, β12345 = 0, γ12346 = 0, γ12356 = 0, β12346 = 0, but then γ12456 cannot be

zero; if a6 = 0 we use G1,1, G2,2 6= 0 to solve G1,2 = 0, G1,3 = 0, β12345 = 0, G1,5 = 0,

β12356 = 0, γ12356 = 0, G2,3 = 0, β12346 = 0 and obtain that γ12346 = 0 if and only

if G1,1G3,3 = 0. Thus, we assume b1 6= 0 and a6 6= 0. Under these constraints

and comparing case by case the polynomial we want to be zero with Gi,i and λ, we

can get the expression of b4 from the equation G1,2 = 0, b9 from G2,3 = 0, b7 from

β12345 = 0, b10 from γ12346 = 0, b11 from γ12356 = 0, a18 from β12346 = 0, b2 = 0 from

β12356 = 0, b6 = 0 from G1,3 = 0, a8 = 0 from G3,4 = 0, a14 = 0 from G3,5 = 0,

a17 = 0 from G3,6 = 0, a10 = 0 from G1,4 = 0, a19 = 0 from G1,6 = 0, b14 = 0 from

β13456 = 0, a20 from G1,5 = 0, b3 from G2,4 = 0, b8 from G2,6 = 0. Now, G4,6 = 0

implies ω3 = 0.

We can now turn our attention to the Lie algebras s10, s11 and s13, we shall show

that none of these admits a coupled structure inducing the Einstein metric. The way

in which we proceed is similar to the one followed for s6 and s3, but in this case,

we consider a generic ω of the form (2.47) and ψ+ = cdω for c ∈ R − {0}. Observe

that the second condition of (2.49) is satisfied, since ψ+ is now an exact 3-form, and

that the first and the third condition are actually the same. For each Lie algebra,

we consider the structure equations given in Table 2.3.

Consider s10, this is a 1-parameter family of Lie algebras depending on a real
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parameter t ∈
[
0, 1√

22

]
. Since G3,3 cannot be zero, we have that b10 6= 0, b2 6= ±b6

and t 6= 1√
22

. The way in which we solve the equations depends on whether t = 7
2
√

330

or not. If t 6= 7
2
√

330
, we can use b10 6= 0 to obtain b1 from γ12345 = 0, b15 from

γ12456 = 0, b5 from γ13456 = 0 and b9 from γ23456 = 0. Then, b12 from G3,4 = 0,

b3 = 0 from G1,3 = 0, b7 = 0 from G2,3 = 0, b11 = 0 from G4,5 = 0, b8 from G1,4 = 0,

b4 from G2,4 = 0, b13 = 0 from G3,5 = 0. Now, G3,6 = 0 if and only if λ = 0. If

t = 7
2
√

330
, the computations are the same until we arrive to the equation G2,4 = 0,

which has no solutions since G2,4 is proportional to λ.

For s11 we have that b10 6= 0 and
√

5b3b7 − b10b13 − 3b10b14 6= 0, since otherwise

G4,4 = 0. Using b10 6= 0, we can obtain b1, b4, b8, b15 from γ12345 = 0, γ13456 =

0, γ23456 = 0, γ12456 = 0, respectively, b11 from G3,4 = 0, b9 from G2,4 = 0 and b5

from G1,4 = 0. Then, using also the other constraint, we get b12 from G4,6 = 0. Now,

G4,5 = 0 if and only if b7 = 0 or b14 = −2b13. If b7 = 0, from G2,5 = 0 and λ 6= 0 we

have b3 = 0 but then G1,2 = 0 only if either λ = 0 or G1,1 = 0. Thus, b7 6= 0 and

b14 = −2b13. Moreover, b6 6= 0, otherwise λ would be proportional to G2,3. Thus,

we can solve G2,3 = 0 to get b3 and use λ 6= 0 to solve G1,2 = 0 and obtain b6. Now,

G3,5 is proportional to λ, therefore it cannot be zero.

In the last case s13, we can see that b1, b2, b6 6= 0 and b3 6=
√

2 b5 from the fact

that the entries in the diagonal of G cannot be zero. Solving the equations γ12456 =

0, γ12345 = 0, γ12346 = 0, γ13456 = 0, γ23456 = 0 under the previous constraints, we

obtain the expressions of b14, b8, b9, b13, b15, respectively. Then, we get b12 fromG1,2 =

0, b10 from G1,3 = 0, b11 from G1,5 = 0, b5 from G2,5 = 0 and b4 = 0 from G2,6 = 0.

Now, G2,4 = 0 if and only if λ = 0.

Remark 2.5.17. In the previous proof, it is in principle possible to use the properties

of algebraic varieties to find solutions as we did in the proof of Theorem 2.5.5.

However, the computations here are more involved, since we have more unknowns

(35 or 15 instead of 9) and more equations arising from the fact that some defining

conditions for an SU(3)-structure that were easily verified in the case of S3×S3 have

to be imposed in this case.

From the fact that the class of coupled SU(3)-structures is a subclass of the half-

flat one, we can use the result of the previous theorem together with Theorem 2.5.13
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to obtain the

Corollary 2.5.18. Let (s, g) be a six-dimensional nonunimodular metric solvable Lie

algebra with g Einstein. Then, on s there are no coupled SU(3)-structures inducing

the Einstein inner product.

Moreover, from the previous theorem and the Theorem 2.5.15, we obtain a con-

straint for the existence of coupled structures inducing Einstein metrics on homoge-

neous spaces.

Corollary 2.5.19. Let (M, g) be a six-dimensional connected, simply connected ho-

mogeneous Einstein manifold of nonpositive sectional curvature. Then, there are no

left-invariant coupled SU(3)-structures on M inducing the Einstein metric.





Chapter 3

Locally conformal calibrated

G2-manifolds

In this chapter, we focus on seven-dimensional manifolds endowed with a G2-structure.

The main properties are reviewed in the first part, while the second part is devoted

to the study of locally conformal calibrated G2-manifolds, for which we show the

results obtained in the papers [66, 70, 71].

3.1 G2-structures

3.1.1 The group G2 as stabilizer of tensors on R7

Let us begin considering the real vector space R7 endowed with an inner product g

inducing the norm |v| = g(v, v)
1
2 , v ∈ R7. On (R7, g) there exists an analogue of the

usual vector cross product defined on three-dimensional vector spaces:

Definition 3.1.1. A two-fold vector cross product on (R7, g) is a bilinear map P :

R7 × R7 → R7 satisfying the following properties for every v, w ∈ R7

i) g(P(v, w), v) = 0 = g(P(v, w), w);

ii) |P(v, w)|2 = |v|2|w|2 − g(v, w)2.

111
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It follows from the definition that P is skew-symmetric in its two entries, i.e.,

P(v, w) = −P(w, v), and that the 3-covariant tensor ϕ defined as

ϕ(v, w, z) = g(P(v, w), z), v, w, z ∈ R7,

is a 3-form on R7, called the fundamental 3-form of P. Moreover, the inner product

on R7 is completely determined by the two-fold vector cross product. Indeed, from

the identity [67, Cor. 2.2]

P(v,P(v,P(v, w))) = −|v|2 P(v, w), v, w ∈ R7,

it is possible to obtain |v|2 by choosing v and w linearly independent and, then, to

get the inner product g by means of

g(v, w) =
1

4

(
|v + w|2 − |v − w|2

)
.

Unlike the three-dimensional case, a two-fold vector cross product on R7 is not

unique up to sign. For instance, R7 can be endowed with the inner product g0 for

which the canonical basis (e1, . . . , e7) is orthonormal and with the two-fold vector

cross product P0 described in Table 3.1.

P0(↓,→) e1 e2 e3 e4 e5 e6 e7

e1 0 e7 e5 −e6 −e3 e4 −e2

e2 −e7 0 −e6 −e5 e4 e3 e1

e3 −e5 e6 0 e7 e1 −e2 −e4

e4 e6 e5 −e7 0 −e2 −e1 e3

e5 e3 −e4 −e1 e2 0 e7 −e6

e6 −e4 −e3 e2 e1 −e7 0 e5

e7 e2 −e1 e4 −e3 e6 −e5 0

Table 3.1: Example of two-fold vector cross product on R7.

With this choice of P0, the fundamental 3-form ϕ0 associated with it is

ϕ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245, (3.1)
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where (e1, . . . , e7) is the dual basis of (e1, . . . , e7), and if we introduce the symbol

ϕijk which is skew-symmetric in its three indices and whose values are uniquely

determined via the identity

ϕ0 =
1

6
ϕijke

ijk,

then with respect to the considered basis we have

P0(ei, ej) =
7∑

k=1

ϕijkek.

The group G2 can be defined equivalently in terms of P0 or in terms of ϕ0 as

follows.

Definition 3.1.2 ([30, 67]).

G2 =
{
a ∈ O(7) | aP0

(
a−1·, a−1·

)
= P0(·, ·)

}
= {a ∈ GL(7,R) | a∗ϕ0 = ϕ0} .

By [29], G2 is a connected, simply connected, compact, simple Lie group of

dimension 14 and it is a subgroup of SO(7). In particular, G2 preserves the inner

product g0 and the volume form dV0 on R7 for which (e1, . . . , e7) is an oriented

orthonormal basis, and the 4-form

∗ϕ0ϕ0 = e3456 + e1256 + e1234 − e2467 + e2357 + e1457 + e1367 =
1

24
ϕijkle

ijkl,

where ∗ϕ0 is the Hodge operator determined by g0 and dV0 and ϕijkl is the skew-

symmetric symbol uniquely defined via the previous identity.

The GL(7,R)-orbit Λ3
+((R7)∗) of ϕ0 in Λ3((R7)∗) is open, since it is isomorphic to

GL(7,R)/G2. Thus, ϕ0 is a stable form in the sense of Definition 2.2.1. The volume

form determined by it is dV0, which can be obtained together with g0 from

g0(v, w) dV0 =
1

6
(ιvϕ0) ∧ (ιwϕ0) ∧ ϕ0, v, w ∈ R7.

Moreover, every stable 3-form belonging to Λ3
+((R7)∗) defines an inner product and

a volume form as above and has stabilizer isomorphic to G2.



114 Chapter 3. Locally conformal calibrated G2-manifolds

Remark 3.1.3. We recalled in the previous chapter that in dimension seven stability

occurs for 3-forms and 4-forms. In the setting we are considering, ∗ϕ0ϕ0 is a stable

4-form with open GL(7,R)-orbit Λ4
+((R7)∗). The stabilizer of any element in this

orbit is isomorphic to G2 ∪ {a ◦ (−IdR7) | a ∈ G2} and, consequently, every stable

4-form belonging to Λ4
+((R7)∗) defines an inner product but not an orientation. This

is due to the fact that the map Λ3
+((R7)∗)→ Λ4

+((R7)∗) given by σ 7→ ∗σσ is a double

covering.

G2 acts irreducibly on R7 and, then, also on Λ1((R7)∗) and Λ6((R7)∗), while the

action is not irreducible on Λk((R7)∗), k = 2, 3, 4, 5. The G2-irreducible decomposi-

tions of these spaces are completely described by the irreducible decompositions of

Λ2((R7)∗) and Λ3((R7)∗), since the Hodge operator ∗ϕ0 is an isomorphism between

the G2-modules Λk((R7)∗) and Λ7−k((R7)∗). By [29, 67], it holds

Λ2((R7)
∗
) = Λ2

7((R7)
∗
)⊕ Λ2

14((R7)
∗
),

Λ3((R7)
∗
) = Λ3

1((R7)
∗
)⊕ Λ3

7((R7)
∗
)⊕ Λ3

27((R7)
∗
),

where Λkr ((R7)∗) denotes an irreducible G2-module of dimension r and the irre-

ducible summands in the cases k = 4, 5 are obtained from these as Λkr ((R7)
∗
) =

∗ϕ0(Λ7−k
r ((R7)

∗
)). The G2-modules appearing in the decompositions above can be

described as follows.

Λ2
7((R7)∗) =

{
κ ∈ Λ2((R7)∗) | ∗ϕ0 (κ ∧ ϕ0) = 2κ

}
=

{
κ ∈ Λ2((R7)∗) | ∗ϕ0 (∗ϕ0ϕ0 ∧ (∗ϕ0(∗ϕ0ϕ0 ∧ κ))) = 3κ

}
,

Λ2
14((R7)∗) =

{
κ ∈ Λ2((R7)∗) | κ ∧ ∗ϕ0ϕ0 = 0

}
=

{
κ ∈ Λ2((R7)∗) | ∗ϕ0 (κ ∧ ϕ0) = −κ

}
,

and

Λ3
1((R7)∗) = 〈ϕ0〉 = Rϕ0,

Λ3
7((R7)∗) =

{
∗ϕ0(α ∧ ϕ0) | α ∈ Λ1((R7)∗)

}
=

{
β ∈ Λ3((R7)∗) | ∗ϕ0 (ϕ0 ∧ ∗ϕ0(ϕ0 ∧ β)) = −4β

}
,

Λ3
27((R7)∗) =

{
β ∈ Λ3((R7)∗) | β ∧ ϕ0 = 0, β ∧ ∗ϕ0ϕ0 = 0

}
.

Moreover, Λ2
14((R7)∗) is isomorphic to the Lie algebra g2 of G2 and Λ3

27((R7)∗) is

isomorphic to the space of traceless symmetric (0, 2)-tensors S2
0 ((R7)∗) (see [30]).
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3.1.2 G2-structures and their classification

Let M be a seven-dimensional manifold. A G2-structure on M is by definition a

reduction of the structure group of the frame bundle FM from GL(7,R) to G2.

By the results of the previous section and Proposition 1.2.2, the existence of a G2-

structure on M is equivalent to the existence of a 3-form ϕ which is a global section

of the open subbundle Λ3
+(T ∗M) ⊂ Λ3(T ∗M) defined as the union of the spaces

Λ3
+(T ∗pM). This motivates the following

Definition 3.1.4. A G2-structure on a seven-dimensional manifold M is a stable

3-form ϕ ∈ Ω3
+(M) := Γ(Λ3

+(T ∗M)). A 7-manifold M endowed with a G2-structure

ϕ is denoted by (M,ϕ).

Since G2 is a connected, simply connected subgroup of SO(7), every 7-manifold M

endowed with a G2-structure is orientable and has a spin structure (see for instance

[110, Prop. 3.6.2]). Moreover, using an observation due to Gray [87], it is possible

to prove that these two necessary conditions are also sufficient, as shown in [30].

In particular, there is a one-to-one correspondence between G2-structures and real

spinor fields of length one on M. For more details on the description of G2-structures

from the spinorial point of view we refer the reader to [2, 80].

Starting from a G2-structure ϕ, it is possible to define a Riemannian metric gϕ

and a volume form dVϕ on M via

gϕ(X,Y ) dVϕ =
1

6
(ιXϕ) ∧ (ιY ϕ) ∧ ϕ, (3.2)

for every pair of vector fields X,Y ∈ X(M). The Hodge operator determined by

gϕ and dVϕ is denoted by ∗ϕ. Moreover, on M there exists a two-fold vector cross

product P ∈ T1
2(M) defined from ϕ and gϕ in the following way

ϕ(X,Y, Z) = gϕ(P(X,Y ), Z), X, Y, Z ∈ X(M).

Remark 3.1.5. Clearly, the existence of a two-fold vector cross product P on a

seven-dimensional Riemannian manifold (M, g) provides a reduction of the structure

group of FM from O(7) to G2. This yields an equivalent definition of G2-structures.
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The 3-form ϕ0 on R7 described in (3.1) can be chosen as model tensor of ϕ.

Thus, at each point p of M there exists a basis (e1, . . . , e7) of TpM with dual basis

(e1, . . . , e7) which is adapted for ϕ, i.e., at p we can write

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245

and gϕ =
∑7

i=1(ei)2. We call equally (e1, . . . , e7) and (e1, . . . , e7) a G2-basis for the

G2-structure ϕ at the point p. A simple computation with respect to such a basis

proves that for every α ∈ Ω1(M) the following useful identities hold

∗ϕ(∗ϕ(α ∧ ϕ) ∧ ϕ) = −4α, (3.3)

∗ϕ(∗ϕϕ ∧ ∗ϕ(∗ϕϕ ∧ α)) = 3α. (3.4)

Furthermore, for every α ∈ Ω1(M) and κ ∈ Ω2(M)

α ∧ ϕ = 0 ⇐⇒ α = 0, (3.5)

κ ∧ ϕ = 0 ⇐⇒ κ = 0, (3.6)

α ∧ ∗ϕϕ = 0 ⇐⇒ α = 0. (3.7)

The decompositions of the spaces Λk((R7)∗) into irreducible G2-modules induce

the following decompositions of the spaces of differential forms on the manifold

Ω2(M) = Ω2
7(M)⊕ Ω2

14(M),

Ω3(M) = Ω3
1(M)⊕ Ω3

7(M)⊕ Ω3
27(M),

where Ωk
r (M) is the space of sections of the bundle Λkr (T

∗M) defined as the union

of the spaces Λkr (T
∗
pM). For instance,

Ω2
14(M) =

{
κ ∈ Ω2(M) | κ ∧ ∗ϕϕ = 0

}
=

{
κ ∈ Ω2(M) | ∗ϕ (κ ∧ ϕ) = −κ

}
,

and

Ω3
27(M) =

{
β ∈ Ω3(M) | β ∧ ϕ = 0, β ∧ ∗ϕϕ = 0

}
.

The decompositions of the spaces Ω4(M) and Ω5(M) are obtained applying the

Hodge operator ∗ϕ to Ω3(M) and Ω2(M), respectively.
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The classification of manifolds endowed with a G2-structures was first described

by Fernández and Gray in [67], where the authors considered the space X of tensors

satisfying the same symmetries as ∇gϕϕ, which is pointwise the subspace of T ∗pM ⊗
Λ3(T ∗pM)

Xp =
{
α ∈ T ∗pM ⊗ Λ3(T ∗pM) | α(X,Y, Z, P (Y,Z)) = 0,∀X,Y, Z ∈ TpM

}
,

and showed that, according to the decomposition of Xp into the sum of irreducible

G2-modules, it splits as

X = X1 ⊕X2 ⊕X3 ⊕X4,

where X1p,X2p,X3p,X4p have dimension 1, 14, 27 and 7, respectively. The covariant

derivative of ϕ can then be decomposed accordingly and 7-manifolds endowed with

a G2-structure are divided into sixteen classes depending on which summands of

∇gϕϕ vanish identically. For instance, (M,ϕ) belongs to the class X1 if and only if

(∇gϕϕ)p ∈ X1p for every p ∈M . In this case, ϕ is said to be of G2-type X1.

In a similar way to what happens for SU(3)-structures, the components of ∇gϕϕ
are completely determined by those of dϕ and d ∗ϕ ϕ arising from the irreducible

decompositions of Ω4(M) and Ω5(M), let us see how. Following Bryant’s notations

of [30], we have

Proposition 3.1.6 ([30]). Let ϕ be a G2-structure on a 7-manifold M . Then, there

exist unique differential forms τ0 ∈ C∞(M), τ1 ∈ Ω1(M), τ2 ∈ Ω2
14(M) and τ3 ∈

Ω3
27(M) such that

dϕ = τ0 ∗ϕ ϕ+ 3 τ1 ∧ ϕ+ ∗ϕτ3,

d ∗ϕ ϕ = 4 τ1 ∧ ∗ϕϕ+ τ2 ∧ ϕ,
(3.8)

Proof. The only non-trivial part consists in proving that the 1-form τ1 appears in

both dϕ and d∗ϕϕ. A priori, dϕ = τ0∗ϕϕ+α∧ϕ+∗ϕτ3 and d∗ϕϕ = β∧∗ϕϕ+τ2∧ϕ,

for unique τ0 ∈ C∞(M), α, β ∈ Ω1(M), τ2 ∈ Ω2
14(M) and τ3 ∈ Ω3

27(M). Using the

identity [29]

∗ϕϕ ∧ ∗ϕ(d ∗ϕ ϕ) + ∗ϕ(dϕ) ∧ ϕ = 0,

together with (3.3) and (3.4), it follows that 3β = 4α. Thus, τ1 := 1
4β = 1

3α.
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Moreover, it is possible to show (see e.g. [141]) that dϕ = s4(∇gϕϕ) and d ∗ϕ ϕ =

s5(∇gϕϕ), where s4 and s5 are induced by the G2-equivariant maps

s4 : (R7)∗ ⊗ Λ3((R7)∗) −→ Λ4((R7)∗), ei ⊗ ejkl 7−→ eijkl

and

s5 : (R7)∗ ⊗ Λ3((R7)∗) −→ Λ5((R7)∗), ei ⊗ ejkl 7−→ ∗(δij ekl − δik ejl + δile
jk),

being (e1, . . . , e7) a G2-basis of R7 for ϕ0. Applying now Schur’s Lemma to the

restrictions of s4 and s5 to X , it follows that the component of∇gϕϕ in X1 corresponds

to τ0, the component in X2 to τ2, the component in X3 to τ3 and the component in

X4 to τ1. This motivates the

Definition 3.1.7. The differential forms τ0, τ1, τ2, τ3 uniquely defined by (3.8) are

called intrinsic torsion forms of the G2-structure ϕ.

By the correspondence above, the sixteen classes of manifolds endowed with a

G2-structure ϕ can be completely characterized in terms of dϕ and d ∗ϕ ϕ, that is, in

terms of the identically vanishing intrinsic torsion forms. The full list can be found

in [67, 141], while in Table 3.2 are summarized the classes of G2-structures appearing

in this thesis. We conclude this section with some remarks on them.

From general results on G-structures (see Section 1.2.3), the correspondence be-

tween the components of ∇gϕϕ and the intrinsic torsion forms and [87, Thm. 4.1],

we obtain the following equivalent defining properties for the class X = {0}.

Proposition 3.1.8. Let M be a connected 7-manifold endowed with a G2-structure

ϕ with Riemannian metric gϕ and two-fold vector cross product P. Then, denoted by

∇gϕ the Levi Civita connection of gϕ, the following are equivalent:

i) the G2-structure is torsion-free;

ii) the intrinsic torsion forms vanish identically;

iii) the differential forms ϕ and ∗ϕϕ are closed;

iv) the differential form ϕ is parallel with respect to ∇gϕ;
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v) the tensor P is parallel with respect to ∇gϕ;

vi) Hol(gϕ) is a subgroup of G2.

Manifolds endowed with a G2-structure satisfying one of the previous properties

are usually called G2-manifolds and the corresponding G2-structure is called parallel.

By a result of Bonan [26], every G2-manifold (M,ϕ) is Ricci-flat, i.e., Ric(gϕ) = 0.

In literature, the first examples of complete metrics with holonomy G2 were con-

structed by Bryant and Salamon in [32], while compact examples of Riemannian

manifolds with holonomy G2 were obtained first by Joyce [109] and then by Kovalev

[119] and by Corti, Haskins, Nordström, Pacini [54]. As we mentioned in the previ-

ous chapter, noncompact examples of G2-manifolds can also be constructed starting

from 6-manifolds endowed with a half-flat SU(3)-structure. We will examine this

construction in detail in Section 3.2.1.

Class Name Defining conditions

{0} Parallel
dϕ = 0

d ∗ϕ ϕ = 0

X1 Nearly parallel
dϕ = τ0 ∗ϕ ϕ

d ∗ϕ ϕ = 0

X2 Closed, calibrated dϕ = 0

X4 Locally conformal parallel
dϕ = 3 τ1 ∧ ϕ

d ∗ϕ ϕ = 4 τ1 ∧ ∗ϕϕ

X1 ⊕X4 Locally conformal nearly parallel
dϕ = τ0 ∗ϕ ϕ+ 3 τ1 ∧ ϕ

d ∗ϕ ϕ = 4 τ1 ∧ ∗ϕϕ

X2 ⊕X4 Locally conformal calibrated dϕ = 3 τ1 ∧ ϕ

X1 ⊕X3 Co-closed, co-calibrated d ∗ϕ ϕ = 0

X1 ⊕X3 ⊕X4 G2 with (skew) torsion d ∗ϕ ϕ = 4 τ1 ∧ ∗ϕϕ

Table 3.2: Some classes of manifolds endowed with a G2-structure.
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The function τ0 is the only possibly non-identically vanishing intrinsic torsion

form of a nearly parallel G2-structure ϕ. Using (3.5), it is immediate to show that

τ0 is constant on connected manifolds, since

0 = d(dϕ) = dτ0 ∧ ∗ϕϕ.

As we will see later, the Riemannian metric underlying a nearly parallel G2-structure

is always Einstein. Moreover, it is Ricci-flat if and only if τ0 vanishes identically.

The name calibrated for the G2-structures of type X2 is due to the fact that a

closed 3-form ϕ ∈ Ω3
+(M) defines a calibration on M by [95]. This means that for

every p ∈M and for all oriented three-dimensional subspaces Wp of TpM, it holds

ϕ
∣∣
Wp ≤ dV,

where dV is the volume form of Wp. Properties of manifolds endowed with a cali-

brated G2-structure were studied for instance in [30, 47] and examples were provided

in [50, 64, 140]. We will recall some results in Section 3.1.3.

By [78], a G2-structure ϕ on a 7-manifold is of G2-type X1⊕X3⊕X4 if and only

if there exists a linear connection with totally skew-symmetric torsion preserving ϕ.

Moreover, such a connection is unique. This class of manifolds can then be seen as

the G2-analogue of the class G1 of almost Hermitian manifolds (see Table 2.1 and

Theorem 2.3.11).

Finally, it is possible to prove that a manifold (M,ϕ) belonging to one of the

classes X4, X1 ⊕ X4 and X2 ⊕ X4 has closed intrinsic torsion form τ1. Consequently,

by Poincaré Lemma, on a neighborhood U of each point p of M there exists a local

function f ∈ C∞(U) such that τ1 = df and the local conformal change ϕ̂ = e−3fϕ

gives rise to a G2-structure on U which is parallel if (M,ϕ) ∈ X4, nearly parallel if

(M,ϕ) ∈ X1 ⊕ X4 and calibrated if (M,ϕ) ∈ X2 ⊕ X4. This motivates the names of

the structures having these G2-types. In the second part of this chapter we study

more in depth the class X2 ⊕X4.

3.1.3 The Ricci tensor of a G2-structure

In [30], Bryant proved that the Ricci tensor and the scalar curvature of the Rieman-

nian metric gϕ induced by a G2-structure ϕ can be expressed in terms of the intrinsic
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torsion forms and their derivatives. More precisely

Theorem 3.1.9 ([30]). Let M be a 7-manifold endowed with a G2-structure ϕ. Then,

the scalar curvature and the Ricci tensor of the Riemannian metric gϕ are expressed

in terms of the intrinsic torsion forms as

Scal(gϕ) = 12d∗τ1 +
21

8
τ2

0 + 30|τ1|2 −
1

2
|τ2|2 −

1

2
|τ3|2,

Ric(gϕ) = −
(

3

2
d∗τ1 −

3

8
τ2

0 + 15|τ1|2 −
1

4
|τ2|2 +

1

2
|τ3|2

)
gϕ

+j

(
−5

4
d(∗ϕ(τ1 ∧ ∗ϕϕ))− 1

4
dτ2 +

1

4
∗ϕ dτ3

+
5

2
τ1 ∧ ∗ϕ(τ1 ∧ ∗ϕϕ)− 1

8
τ0 τ3 +

1

4
τ1 ∧ τ2

+
3

4
∗ϕ (τ1 ∧ τ3) +

1

8
∗ϕ (τ2 ∧ τ2) +

1

64
Q(τ3, τ3)

)
,

where d∗ = − ∗ϕ d ∗ϕ on 1-forms, the map j : Ω3(M) → S2(M) is defined for every

β ∈ Ω3(M) and X,Y ∈ X(M) as

j(β)(X,Y ) = ∗ϕ ((ιXϕ) ∧ (ιY ϕ) ∧ β) ,

and Q : Ω3(M)× Ω3(M)→ Ω3(M) is given for α, β ∈ Ω3(M) by

Q(α, β) := ∗ϕ
(
ϕijkl

(
ιej (ιei ∗ϕ α)

)
∧ (ιel (ιek ∗ϕ β))

)
,

being (e1, . . . , e7) a G2-basis for ϕ.

Remark 3.1.10. The description of the Ricci tensor of an SU(3)-structure in terms

of the intrinsic torsion forms obtained in [19] and recalled in Section 2.2.3 is the

SU(3)-analogue of the previous theorem and was obtained following Bryant’s ap-

proach in the G2-case.

As a consequence, using Proposition 3.1.8, it is immediate to get an alternative

proof of Bonan’s result mentioned earlier.

Proposition 3.1.11 ([26]). Let (M,ϕ) be a G2-manifold. Then, gϕ is Ricci-flat.
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Further properties of the metric underlying non-integrable G2-structures and non-

existence results can be obtained using these expressions of Ric(gϕ) and Scal(gϕ). For

instance

Proposition 3.1.12. Let ϕ be a nearly parallel G2-structure. Then, gϕ is an Einstein

metric, as

Ric(gϕ) =
3

8
τ2

0 gϕ.

Moreover, it is Ricci-flat if and only if the G2-structure is parallel.

Proposition 3.1.13 ([30]). Let (M,ϕ) be a manifold endowed with a calibrated G2-

structure ϕ. Then, the scalar curvature of the associated metric gϕ is nonpositive,

Scal(gϕ) = −1

2
|τ2|2,

and vanishes identically if and only if the G2-structure is parallel.

Moreover, as an analogous of Goldberg conjecture in almost Kähler geometry

(cf. Section 2.5), one may ask whether there exist compact seven-dimensional man-

ifolds endowed with a calibrated G2-structure whose underlying Riemannian metric

is Einstein. In [47], Cleyton and Ivanov showed that the answer is negative.

Proposition 3.1.14 ([30],[47]). Let M be a compact 7-manifold endowed with a

calibrated G2-structure ϕ. If gϕ is Einstein, then d∗ϕϕ = 0, that is, the G2-structure

is parallel.

An alternative proof was given by Bryant in [30] using the above description of

the Ricci tensor. In detail, the metric gϕ induced by a calibrated G2-structure ϕ is

Einstein, i.e., Ric0(gϕ) = 0, if and only if the intrinsic torsion form τ2 satisfies

dτ2 =
3

14
|τ2|2 ϕ+

1

2
∗ϕ (τ2 ∧ τ2),

from which follows that

d

(
1

3
τ3

2

)
=

2

7
|τ2|4 dVϕ,

since |τ2 ∧ τ2|2 = |τ2|4. When M is compact, Stokes’ Theorem gives∫
M
|τ2|4 dVϕ =

∫
M
d

(
7

6
τ3

2

)
= 0,
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as ∂M = ∅. Consequently, τ2 must vanish identically and the G2-structure is parallel.

By [47], the previous result can be extended to the noncompact case under the ad-

ditional assumption that the Einstein metric induced by the calibrated G2-structure

is also ∗-Einstein, that is, the traceless part of the ∗-Ricci tensor ρ∗ vanishes identi-

cally, where

ρ∗rs := Rijkl ϕijr ϕkls. (3.9)

Up to now, there are no known examples of (even incomplete) Einstein non-Ricci-

flat metrics underlying calibrated G2-structures. Recently, some negative results

were proved in the case of noncompact homogeneous spaces in [65], where the au-

thors showed that a seven-dimensional solvmanifold cannot admit any left-invariant

calibrated G2-structure ϕ inducing an Einstein metric gϕ unless gϕ is flat.

3.2 The relation between G2- and SU(3)-structures

In this section, we review the relation between 6-manifolds endowed with an SU(3)-

structure and 7-manifolds endowed with a G2-structure. In order to make no confu-

sion with the symbols, from now on we use the following

Notation. A six-dimensional manifold endowed with an SU(3)-structure (ω, ψ+) is

denoted by M . The Riemannian metric induced by (ω, ψ+) is denoted by g, the

associated almost Hermitian structure by J and ψ− = Jψ+ is the imaginary part

of the complex volume form Ψ = ψ+ + iψ−. The Riemannian volume form of g is

dVg = ω3

6 and the corresponding Hodge operator is denoted by ∗.
A seven-dimensional manifold endowed with a G2-structure ϕ is denoted by M,

the underlying Riemannian metric and volume form are gϕ and dVϕ, respectively,

and the associated Hodge operator is ∗ϕ.

3.2.1 Hypersurfaces of 7-manifolds with a G2-structure

It is well-known that the group G2 acts transitively on the 6-sphere S6 ⊂ R7 with

isotropy subgroup SU(3), reflecting the fact that S6 = G2/SU(3) as G2-homogeneous

space. Here, considering R7 = R6 ⊕ R with basis (e1, . . . , e6) for R6 and e7 for R,
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SU(3) is embedded into G2 as the subgroup whose elements fix e7, since

ϕ0 =
(
e12 + e34 + e56

)
∧ e7 + e135 − e146 − e236 − e245

= ω0 ∧ e7 + <(Ψ0)

and SU(3) can be defined as the stabilizer in GL(6,R) of the pair (ω0,<(Ψ0)) by

the results of Section 2.2.1. As a consequence of this fact, a G2-structure on a

seven-dimensional manifold induces an SU(3)-structure on every oriented hypersur-

face. This is a long-standing result, due to Calabi [35] and Gray [86, 87]. In their

papers, the authors studied the properties of the almost Hermitian structure under-

lying the SU(3)-structure, while a detailed study of the latter was carried out by

Mart́ın Cabrera in [143], where some of the possible classes of G2-structures on the

ambient manifold were described in relation with the classes of SU(3)-structures on

the hypersurfaces and the second fundamental form.

To see how the SU(3)-structure is defined, let us consider a seven-dimensional

manifold M endowed with a G2-structure ϕ with associated Riemannian metric gϕ

and two-fold vector cross product P. Let M be an oriented hypersurface of M,

dim(M) = 6, denote by ι : M → M the inclusion map and by N a unit normal

vector field to M with respect to gϕ. Then, M is a Riemannian manifold with

Riemannian metric g = ι∗(gϕ), the almost complex structure on it is defined by

JX = P(N, ι∗X),

for all X ∈ X(M), the fundamental form associated with (g, J) is

ω = ι∗(ιNϕ) (3.10)

and the real and imaginary part of the complex volume form are

ψ+ = ι∗ϕ,

ψ− = −ι∗(ιN ∗ϕ ϕ).

(3.11)

Furthermore, the following identity holds

ω2 = 2 ι∗(∗ϕϕ). (3.12)
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The proof that the previous data define an SU(3)-structure on M consists in consid-

ering at each point p of M ⊂M a G2-basis (e1, . . . , e7) of TpM such that Np = e7 and

observing that, with respect to the previous definitions, (e1, . . . , e6) is an SU(3)-basis

of TpM .

As an example, we describe the invariant nearly Kähler SU(3)-structure on the

6-sphere S6 = G2/SU(3) appearing in Butruille’s Theorem 2.3.6.

Example 3.2.1. Consider the vector space R7 and let (xk) = (x1, . . . , x7) denote its

standard coordinates. The G2-structure on R7 is then given by the 3-form

ϕ = dx127 + dx347 + dx567 + dx135 − dx146 − dx236 − dx245,

where dxjkl is a shorthand for the wedge product dxj ∧ dxk ∧ dxl, and induces the

Riemannian metric gϕ =
∑7

k=1(dxk)2. The 6-sphere is embedded in R7 as the set

S6 =
{
x ∈ R7 |

(
x1
)2

+ · · ·+
(
x7
)2

= 1
}
,

and the unit normal N at each point x of S6 is the restriction of the radial vector

field of R7 to the 6-sphere, i.e.,

Nx = xi
∂

∂xi
.

If ι : S6 → R7 is the standard embedding, then the differential forms

ω = ι∗(ιNϕ), ψ+ = ι∗ϕ, ψ− = −ι∗(ιN ∗ϕ ϕ),

obtained as pullback of G2-invariant forms on R7, define the invariant SU(3)-structure

on S6. A straightforward computation in coordinates on R7 gives

d(ιNϕ) = 3ϕ, d(ιN ∗ϕ ϕ) = 4 ∗ϕ ϕ.

Consequently,

dω = d ι∗(ιNϕ) = ι∗d(ιNϕ) = 3 ι∗ϕ = 3ψ+

and

dψ− = −d ι∗(ιN ∗ϕ ϕ) = −ι∗d(ιN ∗ϕ ϕ) = −4 ι∗ ∗ϕ ϕ = −2ω2.

Thus, the SU(3)-structure is nearly Kähler.
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Among the results of [143] mentioned before, we recall that when (M,ϕ) is a G2-

manifold, its oriented hypersurfaces are endowed with a half-flat SU(3)-structure, as

one can check immediately using the definitions (3.11), (3.12) and the fact that both

ϕ and ∗ϕϕ are closed. Moreover, special half-flat SU(3)-structures arise from this

construction and are characterized by the scalar second fundamental form s(X,Y ) =

−gϕ(∇gϕX N,Y ) of the hypersurface. For instance, the SU(3)-structure on a hyper-

surface M of a G2-manifold is coupled if and only if the second fundamental form is

J-invariant, it is double half-flat if and only if s+ Js = 2Hg, where H is the mean

curvature, while it is nearly Kähler if and only if M is totally umbilic, that is, if and

only if the shape operator s] is pointwise a multiple of the identity on the tangent

space to M.

At this point, the obvious question is whether every SU(3)-structure on a six-

dimensional manifold M is induced by an embedding into a G2-manifold M. In the

general case the answer is negative and some additional hypothesis on the SU(3)-

structure are needed.

As observed by Bryant in [31], when M is an embedded and normally oriented

hypersurface of M, there is an open neighborhood U ⊂ M of M which can be

identified with M × I, being I an open interval of R containing 0. Consequently, at

least locally the G2-structure ϕ on M can be thought as a 1-parameter family of

SU(3)-structures on M. Indeed, if t denotes the coordinate on I and h : M × I→ U
is the map defined by h(p, t) = expp(tNp), then from (3.10) and (3.11) we get

h∗(ϕ) = ω ∧ dt+ ψ+, h∗(∗ϕϕ) =
1

2
ω2 + ψ− ∧ dt,

where ω, ψ+ and ψ− are differential forms on M depending on t. Now, requiring

that the G2-structure is parallel for each t fixed, we have

0 = dh∗(ϕ) = dψ+, 0 = dh∗(∗ϕϕ) =
1

2
dω2

and the SU(3)-structure is half-flat. If we let t vary, then the same request gives

0 = dh∗(ϕ) = dω ∧ dt− ∂

∂t
ψ+ ∧ dt

and

0 = dh∗(∗ϕϕ) =
∂

∂t
ω ∧ ω ∧ dt+ dψ− ∧ dt,
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from which we obtain the Hitchin flow equations introduced in Section 2.2.2 ∂
∂tψ+(t) = dω(t)

∂
∂tω(t) ∧ ω(t) = −dψ−(t)

.

A solution of the previous system starting from a given SU(3)-structure gives then

rise to a parallel G2-structure on M × I and can be interpreted as an SU(3)-structure

induced on an oriented hypersurface of a G2-manifold (M,ϕ) by the parallel G2-

structure ϕ. Such a solution exists when the initial condition (ω(0), ψ+(0)) is a

real-analytic half-flat SU(3)-structure by [31, Thm. 4], while it need not to exist

when (ω(0), ψ+(0)) is non-analytic and half-flat by [31, Thm. 5].

3.2.2 Construction of G2-structures from SU(3)-structures

Until now, we have considered SU(3)-structures induced on hypersurfaces of 7-

manifolds by a G2-structure. It is possible to reverse the point of view, starting

from a 6-manifold endowed with an SU(3)-structure and constructing examples of

7-manifolds with a G2-structure, possibly with non-identically vanishing torsion.

Noncompact examples can be achieved in the following way (see for instance

[113], paying attention to the different convention used for (3.2)).

Proposition 3.2.2. Let M be a six-dimensional manifold endowed with an SU(3)-

structure (ω, ψ+) with associated Riemannian metric g and complex volume form

Ψ = ψ+ + iψ−. Consider an open interval I ⊆ R and two smooth functions F : I→
C− {0} and G : I→ (0,+∞). Then, the following 3-form defines a G2-structure on

M × I

ϕ = G|F |2 ω ∧ dt+ <
(
F 3 Ψ

)
, (3.13)

where t is the coordinate on I and |F |2 = F F . Moreover,

gϕ = |F |2 g +G2 dt2,

dVϕ = G |F |6 dVg ∧ dt,

∗ϕϕ = G=
(
F 3Ψ

)
∧ dt+

1

2
|F |4 ω2,

where dVg = ω3

6 .
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Remark 3.2.3. Observe that the situation in the previous definition is different

from the one described at the end of Section 3.2.1. Indeed, here the differential

forms defining the SU(3)-structure do not depend on t.

For suitable choices of the interval I and the functions F and G, the following

noncompact manifolds endowed with the G2-structure (3.13) are obtained:

- the cylinder Cyl(M) over M with metric gϕ = g + dt2, if I = R and G(t) = 1,

F (t) = 1, where

ϕ = ω ∧ dt+ ψ+;

- the cone C(M) over M with metric gϕ = t2 g + dt2, if I = (0,+∞) and G(t) = 1,

F (t) = t, where

ϕ = t2 ω ∧ dt+ t3 ψ+;

- the sine-cone SC(M) over M with metric gϕ = sin2(t) g + dt2, if I = (0, π) and

G(t) = 1, F (t) = sin(t)ei
t
3 , where

ϕ = sin2(t)ω ∧ dt+ sin3(t) cos(t)ψ+ − sin4(t)ψ−.

Clearly, the intrinsic torsion of the G2-structure defined via this construction depends

on the intrinsic torsion of the SU(3)-structure. Thus, it is in principle possible to get

plenty of examples of non-integrable G2-structures.

Remark 3.2.4. The correspondence between the irreducible components of the in-

trinsic torsion of an SU(3)-structure (ω, ψ+) on M and the irreducible components of

the intrinsic torsion of the G2-structure induced by (ω, ψ+) on Cyl(M) was described

in [40, Thm. 3.1].

Observe that with the choice G(t) = 1, the manifold M×I with metric |F |2 g+dt2

is the warped product of M and I with warping function |F |. Using the expression of

the Ricci tensor of a warped product metric [156], it is possible to show the following

general properties (see also [27]).

Proposition 3.2.5. Let (Mm, g) be a Riemannian manifold of dimension m. Then,

the cone metric t2 g + dt2 is Ricci-flat if and only if the metric g is Einstein with

Ric(g) = (m− 1) g.
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Proposition 3.2.6. Let (Mm, g) be a Riemannian manifold of dimension m with

Einstein metric g such that Ric(g) = (m−1) g. Then, the sine-cone metric sin2(t)g+

dt2 is Einstein with Einstein constant m.

As we will see, these results are useful to provide noncompact examples of non-

integrable G2-structures inducing Einstein metrics.

Compact examples can be obtained, for instance, starting from a compact 6-

manifold M endowed with an SU(3)-structure (ω, ψ+) and considering the product

manifold M × S1 with the G2-structure

ϕ = ω ∧ dt+ ψ+,

where t denotes the angle coordinate on the circle defined by identifying each point

of S1 ⊂ C with e2πit. This example can be seen as a particular case of a more general

construction, let us introduce it.

Definition 3.2.7. Let M be a connected manifold of dimension m, let ν : M →M

be a diffeomorphism and let Γν̃ denote the infinite cyclic group of diffeomorphisms

of M × R generated by

ν̃ : M × R −→ M × R
(p, t) 7−→ (ν(p), t+ 1)

.

Γν̃ acts freely and proper discontinuously on the product manifold M × R, thus the

quotient

Mν := (M × R) /Γν̃

is a smooth manifold of dimension m+ 1, called the mapping torus of ν.

Observe that when ν = IdM , then Mν = M ×S1. The properties of the mapping

torus are summarized in the next

Proposition 3.2.8. Let M be a connected manifold and let Mν be the mapping torus

of a diffeomorphism ν : M →M . Then,

i) If M is compact, then also Mν is compact.



130 Chapter 3. Locally conformal calibrated G2-manifolds

ii) Mν is the total space of a locally trivial fiber bundle over S1 with typical fiber

M, monodromy ν and projection π : Mν → S1 defined by π(p, t) = e2πit. In

particular, we have the following diagram

M
p1←− M × R q−→ Mν

↓ p2 ↓ π

R Π−→ S1

where p1 and p2 are the projections from M × R onto the first and the second

factor, respectively, q is the quotient map, and Π(t) = e2πit is the universal

covering map.

iii) Every differential form α ∈ Ωk(M) which is ν-invariant, i.e., ν∗α = α, defines a

differential form α̃ ∈ Ωk(Mν), since the pullback p∗1α ∈ Ωk(M × R) is invariant

by the diffeomorphism ν̃.

iv) The 1-form p∗2(dt) on M × R is invariant by ν̃, thus it induces a closed 1-

form η ∈ Ω1(Mν), called characteristic 1-form of Mν . Moreover, there exists a

distinguished vector field ξ ∈ X(Mν) induced by the vector field d
dt on R and such

that η(ξ) = 1.

Using these properties, we can prove the following result (see also [140]).

Proposition 3.2.9. Let M be a six-dimensional connected manifold endowed with an

SU(3)-structure (ω, ψ+) and let ν : M →M be a diffeomorphism such that ν∗ω = ω

and ν∗ψ+ = ψ+. Then, the 3-form

ϕ̃ = ω̃ ∧ η + ψ̃+

defines a G2-structure on the mapping torus Mν with associated metric gϕ̃ = g̃+ η2.

Proof. We recalled in Section 2.2.1 that a diffeomorphism ν preserving the stable

forms ω and ψ+ is an automorphism of the SU(3)-structure and preserves, in partic-

ular, the associated Riemannian metric g. We also know that on the product M ×R
there is a G2-structure defined by the 3-form

ϕ = ω ∧ dt+ ψ+
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and inducing the Riemannian metric gϕ = g+dt2. Now, both ϕ and gϕ are invariant

by ν̃, thus they define a 3-form ϕ̃ = ω̃∧η+ ψ̃+ and a Riemannian metric g̃ϕ = g̃+η2

on Mν , respectively. Moreover, at each point of M ×R there exists a G2-basis for ϕ,

which gives rise to a G2-basis for ϕ̃ on the corresponding point of Mν . Consequently,

ϕ̃ is a G2-structure on Mν inducing the Riemannian metric gϕ̃ = g̃ϕ.

3.3 Locally conformal calibrated G2-structures

We now focus on the class of locally conformal calibrated G2-structures and study

some related problems. Let us start recalling the

Definition 3.3.1. A G2-structure ϕ is called locally conformal calibrated if the in-

trinsic torsion forms τ0 and τ3 vanish identically.

A 7-manifold endowed with a locally conformal calibrated G2-structure is said to

be a locally conformal calibrated G2-manifold.

Every locally conformal calibrated G2-manifold (M,ϕ) belongs then to Fernández

and Gray’s class X2 ⊕ X4 and its only possibly non-identically vanishing intrinsic

torsion forms are τ1 ∈ Ω1(M) and τ2 ∈ Ω2
14(M). When τ1 = 0 the G2-structure

is calibrated (G2-type X2), while when τ2 = 0 the G2-structure is locally conformal

parallel (G2-type X4). Thus, we may sometimes emphasize when the intrinsic torsion

forms τ1 and τ2 are both non-identically vanishing to distinguish this case from X2

and X4.

The condition given in Definition 3.3.1 can be completely characterized in terms

of the exterior derivative of ϕ. Before writing the precise statement of the result, it

is convenient to introduce the

Definition 3.3.2. The Lee form of a G2-structure ϕ is the 1-form

θ :=
1

4
∗ϕ (∗ϕdϕ ∧ ϕ).

Using identity (3.3) and the definition of Ω3
27(M), a simple computation shows

that θ = −3 τ1 for every G2-structure ϕ. It is then immediate to prove the
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Proposition 3.3.3. Let M be a 7-manifold endowed with a G2-structure ϕ. Then,

ϕ is locally conformal calibrated if and only if

dϕ = −θ ∧ ϕ, (3.14)

where θ is the Lee form of ϕ. In this case, θ is closed.

Proof. The characterization follows comparing (3.8) with (3.14). Taking the exterior

derivative of both sides of (3.14), we get

0 = d(dϕ) = −dθ ∧ ϕ+ θ ∧ dϕ = −dθ ∧ ϕ

and by (3.6) the previous identity holds if and only if dθ = 0.

Corollary 3.3.4.

i) The Lee form of a locally conformal parallel G2-structure is closed.

ii) A locally conformal calibrated G2-structure is calibrated if and only if the Lee

form vanishes identically.

Remark 3.3.5. In view of Proposition 3.3.3, locally conformal calibrated G2-structures

represent the G2-analogue of locally conformal symplectic structures on even-dimensional

manifolds, i.e., Sp(n,R)-structures whose defining non-degenerate 2-form ω satisfies

the identity dω = −θ ∧ ω for some closed 1-form θ (see for instance [176]).

As we mentioned in Section 3.1.2, the name locally conformal calibrated refers

to the fact that, at least locally, the G2-structure is conformally equivalent to a

calibrated one. Let us see the computation in detail. Since the Lee form of a locally

conformal calibrated G2-structure ϕ on a 7-manifold M is closed, by Poincaré Lemma

we have that for each point p of M there exist an open neighborhood U ⊆M of p and

a smooth function f ∈ C∞(U) such that θ = df on U . Now, considering ϕ̂ := efϕ,

which is a stable form defined on U , we have

dϕ̂ = efdf ∧ ϕ+ efdϕ = efθ ∧ ϕ− ef (θ ∧ ϕ) = 0

and the claim is proved.
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When we consider a conformal change ϕ̂ = efϕ of the stable 3-form ϕ defining

a G2-structure, the Riemannian metric and orientation of the G2-structure ϕ̂ can

be obtained from those of ϕ by an appropriate conformal change, as the next result

shows.

Lemma 3.3.6. Let M be a 7-manifold endowed with a G2-structure ϕ inducing a

Riemannian metric gϕ and volume form dVϕ and consider a smooth function f ∈
C∞(M). Then, the 3-form

ϕ̂ := efϕ

is still stable and the associated Riemannian metric gϕ̂ and volume form dVϕ̂ are

related to those of ϕ via

gϕ̂ = e
2
3
fgϕ,

dVϕ̂ = e
7
3
fdVϕ.

Proof. First, observe that for every X,Y ∈ X(M) we have

gϕ̂(X,Y ) dVϕ̂ = 1
6(ιX ϕ̂) ∧ (ιY ϕ̂) ∧ ϕ̂

= e3f gϕ(X,Y ) dVϕ.

(3.15)

From this relation, working in local coordinates we get(
det(gϕ̂)

) 1
2 gϕ̂ = e3f (det(gϕ))

1
2 gϕ.

Taking the determinant of both sides, it follows that(
det(gϕ̂)

) 1
2 = e

7
3
f (det(gϕ))

1
2 .

Thus, dVϕ̂ = e
7
3
fdVϕ and from (3.15) we obtain gϕ̂ = e

2
3
fgϕ.

Remark 3.3.7. By [79, Thm. 3.1], given a compact 7-manifold M admitting a G2-

structure ϕ, there exists a unique (up to homothety) conformal G2-structure e3fϕ

such that the corresponding Lee form is co-closed. A G2-structure with co-closed

Lee form is also called a Gauduchon G2-structure.
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Properties of locally conformal calibrated G2-manifolds were studied for instance

by Fernández and Ugarte in [69], where such manifolds were characterized as those

endowed with a G2-structure ϕ for which the following sequence is a complex, called

G2-coeffective complex,

0 −→ B3(M)
d̃−→ B4(M)

d̃−→ Ω5(M)
d−→ Ω6(M)

d−→ Ω7(M) −→ 0,

where Bk(M) = {α ∈ Ωk(M) | α ∧ ϕ = 0} and d̃ denotes the restriction to Bk(M)

of the exterior derivative d for k = 3, 4. Moreover, in the same paper the ellipticity

of the G2-coeffective complex was studied and the relations between its cohomology

groups and the de Rham cohomology groups were established.

3.3.1 Examples

We now use the constructions described in Section 3.2.2 to provide examples of locally

conformal calibrated G2-manifolds. As we will see, coupled SU(3)-structures play a

central rôle.

Proposition 3.3.8. Let M be a connected 6-manifold endowed with a coupled SU(3)-

structure (ω, ψ+) with coupled constant c ∈ R − {0} and intrinsic torsion form w−2

non-identically vanishing. Then

i) The G2-structure ϕ = ω ∧ dt + ψ+ defined on the cylinder Cyl(M) is locally

conformal calibrated of type X2 ⊕ X4. Its Lee form is θ = −3 τ1 = c dt and the

intrinsic torsion form τ2 is −w−2 .

ii) The G2-structure ϕ = t2 ω ∧ dt + t3 ψ+ defined on the cone C(M) has intrinsic

torsion forms τ1 = 3−c
3 t dt, τ2 = −t w−2 , τ0 = 0, τ3 = 0. Thus, it is locally

conformal calibrated when c 6= 3, while it is calibrated when c = 3.

Proof. In order to distinguish the exterior derivative on M and on the 7-manifolds

Cyl(M) and C(M), we use a subscript containing the dimension. For instance, the

coupled condition reads d6 ω = c ψ+.

Let us begin our computations with the cylinder Cyl(M).

d7 ϕ = d7(ω ∧ dt+ ψ+) = d6 ω ∧ dt+ d6 ψ+

= c ψ+ ∧ dt = −c dt ∧ ϕ.
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Thus, by Proposition 3.3.3, ϕ is locally conformal calibrated with Lee form θ = c dt.

Moreover,

d7 ∗ϕ ϕ = d7

(
ψ− ∧ dt+ 1

2 ω
2
)

= d6 ψ− ∧ dt+ 1
2 d6 ω

2

=
(
−2

3c ω
2 − w−2 ∧ ω

)
∧ dt = −4

3 θ ∧ ∗ϕϕ− w
−
2 ∧ ϕ,

from which follows that τ2 = −w−2 .

Consider now the cone C(M).

d7 ϕ = d7(t2 ω ∧ dt+ t3 ψ+) = t2 d6 ω ∧ dt+ 3t2 dt ∧ ψ+

= c t2 ψ+ ∧ dt+ 3t2 dt ∧ ψ+ = − c−3
t dt ∧ ϕ

and

d7 ∗ϕ ϕ = d7

(
t3 ψ− ∧ dt+ 1

2 t
4 ω2

)
= t3 d6 ψ− ∧ dt+ 2 t3 dt ∧ ω2

= t3
(

6−2c
3 ω2 − w−2 ∧ ω

)
∧ dt = −4

3
c−3
t dt ∧ ∗ϕϕ− t w−2 ∧ ϕ.

Consequently, ϕ is locally conformal calibrated with Lee form θ = c−3
t dt and intrinsic

torsion form τ2 = −t w−2 . Moreover, the G2-structure is calibrated if c = 3.

Since a coupled SU(3)-structure with nonzero coupled constant c and identically

vanishing w−2 is nearly Kähler with w−1 = −2
3 c, the following result can be seen as a

consequence of the previous proposition.

Corollary 3.3.9. Let M be a connected six-dimensional manifold endowed with a

nearly Kähler SU(3)-structure (ω, ψ+). Then

i) The G2-structure ϕ = ω ∧ dt + ψ+ defined on the cylinder Cyl(M) is locally

conformal parallel.

ii) The G2-structure ϕ = t2 ω ∧ dt + t3 ψ+ defined on the cone C(M) is locally

conformal parallel if w−1 6= −2, while it is parallel otherwise.

Remark 3.3.10. In fact, it is possible to prove (cf. [14, Lemma 7]) that an SU(3)-

structure (ω, ψ+) on a 6-manifold M is nearly Kähler with w−1 = −2, i.e., satisfies

dω = 3ψ+, ψ− = −2ω2,

if and only if the G2-structure induced by it on the cone C(M) is parallel.
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If we consider the mapping torus construction, we can provide compact examples

of locally conformal calibrated G2-manifolds.

Proposition 3.3.11 ([66]). Let M be a six-dimensional compact, connected manifold

endowed with a coupled SU(3)-structure (ω, ψ+) with nonzero coupled constant c and

let ν : M →M be a diffeomorphism such that ν∗ω = ω. Then, the mapping torus Mν

admits a locally conformal calibrated G2-structure ϕ̃ with Lee form θ = cη. Moreover,

Lξϕ̃ = 0 and the vector field ξ is the gϕ̃-dual of the closed 1-form η.

Proof. By Corollary 2.4.3, we know that a diffeomorphism preserving the 2-form ω

is an automorphism of the coupled SU(3)-structure
(
ω, 1

c dω
)
. Thus, by Proposition

3.2.9, the 3-form

ϕ̃ = ω̃ ∧ η + ψ̃+

defines a G2-structure on the mapping torus Mν with associated metric gϕ̃ = g̃+ η2.

Observe that ω̃ and ψ̃+ are obtained gluing up the pullbacks p∗1(ω) ∈ Ω2(M ×R)

and p∗1(ψ+) ∈ Ω3(M × R), as ν preserves both ω and ψ+. Consequently, since

d(p∗1ω) = cp∗1ψ+, we have

dω̃ = c ψ̃+,

and using this identity we get

dϕ̃ = dω̃ ∧ η + ω̃ ∧ dη + dψ̃+ = −cη ∧ ψ̃+ = −cη ∧ ϕ̃.

Therefore, ϕ̃ is locally conformal calibrated with Lee form θ = cη. Moreover, since

both ω̃ and ψ̃+ derive from differential forms defined on M, we have ιξω̃ = 0 and

ιξψ̃+ = 0. From these conditions, it follows that

ιξϕ̃ = ιξω̃ ∧ η + ω̃ η(ξ) + ιξψ̃+ = ω̃.

Then,

Lξϕ̃ = ιξ(dϕ̃) + d(ιξϕ̃) = ιξ(−c η ∧ ϕ̃) + d ω̃

= −c ϕ̃+ c η ∧ (ιξϕ̃) + c ψ̃+ = −c ϕ̃+ c (η ∧ ω̃ + ψ̃+) = 0.
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Remark 3.3.12. In [140], Manero showed that the mapping torus of a diffeomor-

phism preserving a symplectic half-flat SU(3)-structure is endowed with a closed

G2-structure. This situation corresponds to the case c = 0 in the previous proposi-

tion.

The previous result can be applied, for instance, to compact nilmanifolds admit-

ting an invariant coupled SU(3)-structure.

Example 3.3.13 ([66]). Let us consider the Iwasawa manifold H/Γ introduced in

Example 1.3.8, where

H =




1 z1 z3

0 1 z2

0 0 1

 , zk ∈ C, k = 1, 2, 3


is the complex Heisenberg group and Γ is the lattice defined as the subgroup of H

for which zi are Gaussian integers. H can be seen as a real Lie group of dimension

six with basis of left-invariant 1-forms (e1, . . . , e6) obtained from

e1 + ie2 = dz1, e3 + ie4 = dz2, e5 + ie6 = −dz3 + z1 ∧ dz2,

and the pair

ω = e12 + e34 − e56, ψ+ = e136 − e145 − e235 − e246,

defines an invariant coupled SU(3)-structure on the compact nilmanifold H/Γ with

coupled constant c = −1, as we saw in the proof of Theorem 2.4.12. It is easy to

check that the automorphism

ν : H→ H,


1 z1 z3

0 1 z2

0 0 1

 ν7→


1 z1 −iz3

0 1 −iz2

0 0 1

 ,

is such that

ν∗e1 = e1, ν∗e2 = e2, ν∗e3 = e4, ν∗e4 = −e3, ν∗e5 = e6, ν∗e6 = −e5.

Consequently, ν∗ω = ω and it is possible to apply Proposition 3.3.11 obtaining

that the mapping torus (H/Γ)ν is a compact manifold admitting a locally conformal

calibrated G2-structure with Lee form θ = −η.
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If we start with a 6-manifold endowed with a nearly Kähler SU(3)-structure and

we consider the mapping torus of a certain diffeomorphism preserving the defining

differential forms, we obtain the following

Proposition 3.3.14 ([66]). Let M be a six-dimensional compact, connected manifold

endowed with a nearly Kähler SU(3)-structure (ω, ψ+) with w−1 = −2 and let ν : M →
M be a diffeomorphism such that ν∗ω = ω. Then, the mapping torus Mν admits a

locally conformal parallel G2-structure.

Proof. As in the proof of Proposition 3.3.11, we can define the differential forms

ω̃ ∈ Ω2(Mν) and ψ̃± ∈ Ω3(Mν), which in this case satisfy the relations

dω̃ = 3 ψ̃+,

dψ̃− = −2 ω̃2.

The stable 3-form

ϕ̃ = ω̃ ∧ η + ψ̃+

defines a G2-structure on Mν with Hodge dual

∗ϕ̃ϕ̃ = ψ̃− ∧ η +
1

2
ω̃2.

It follows from computations that

dϕ̃ = 3(−η) ∧ ϕ̃,
d ∗ϕ̃ ϕ̃ = 4(−η) ∧ ∗ϕ̃ϕ̃.

Therefore, ϕ̃ is a locally conformal parallel G2-structure defined on Mν .

Example 3.3.15 ([66]). In Example 2.5.1, we described the left-invariant nearly

Kähler SU(3)-structure on SU(2)×SU(2). It is induced by the nearly Kähler structure

ω = −
√

3
18

(
e14 + e25 + e36

)
,

ψ+ =
√

3
54

(
−e234 + e156 + e135 − e246 − e126 + e345

)
,

defined on the Lie algebra su(2)⊕ su(2) and having w−1 = −2.

Let ν : SU(2)× SU(2)→ SU(2)× SU(2) be the diffeomorphism such that

ν∗e1 = e1, ν∗e2 = e3, ν∗e3 = −e2, ν∗e4 = e4, ν∗e5 = e6, ν∗e6 = −e5,
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it preserves the 2-form ω. Therefore, the mapping torus (SU(2)×SU(2))ν is endowed

with a locally conformal parallel G2-structure by the previous proposition.

We consider now locally conformal calibrated G2-structures defined on seven-

dimensional Lie algebras. We will show that they are closely related to coupled

SU(3)-structures on six-dimensional Lie algebras, generalizing the result proved in

[140] for calibrated G2-structures obtained from symplectic half-flat structures on

Lie algebras. As we did before, we fix the notations to distinguish easily the six-

dimensional case from the seven-dimensional one in what follows:

Notation. ĝ denotes a six-dimensional real Lie algebra and d̂ its Chevalley-Eilenberg

differential, while g denotes a seven-dimensional real Lie algebra with Chevalley-

Eilenberg differential d.

From the discussion at the beginning of Section 2.4.1, we know that an SU(3)-

structure on a six-dimensional Lie algebra ĝ is a pair (ω, ψ+) ∈ Λ2(ĝ∗) × Λ3(ĝ∗) of

differential forms which can be expressed as

ω = e12 + e34 + e56, ψ+ = e135 − e146 − e236 − e245,

with respect to some basis
(
e1, . . . , e6

)
of the dual space ĝ∗, called SU(3)-basis for

(ω, ψ+). An SU(3)-structure (ω, ψ+) on ĝ is coupled if

d̂ω = c ψ+,

for some nonzero real constant c.

Similarly, a G2-structure on a seven-dimensional Lie algebra g is a 3-form ϕ ∈
Λ3(g∗) which can be written as

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245,

with respect to some basis
(
e1, . . . , e7

)
of g∗, called G2-basis for ϕ. ϕ is a locally

conformal calibrated G2-structure on g if

dϕ = −θ ∧ ϕ,

for some d-closed 1-form θ on g.
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If ĝ is a six-dimensional Lie algebra with Lie bracket [·, ·]ĝ and D ∈ Der(ĝ) is a

derivation of ĝ, then the vector space

g = ĝ⊕D Rξ

is a Lie algebra with the Lie bracket [·, ·]g given by

[X,Y ]g = [X,Y ]ĝ, [ξ,X]g = DX, (3.16)

for every X,Y ∈ ĝ. It is useful to observe how the Chevalley-Eilenberg differential

of g is related to that of ĝ.

Lemma 3.3.16. Let ĝ be a six-dimensional real Lie algebra with Chevalley-Eilenberg

differential d̂, consider D ∈ Der(ĝ) and let d denote the Chevalley-Eilenberg differ-

ential of g = ĝ⊕D Rξ. Then, for every α ∈ Λk(g∗)

dα = d̂α+ β ∧ η,

for a certain β ∈ Λk(ĝ∗), where η is the 1-form on g such that η(X) = 0 for all

X ∈ ĝ and η(ξ) = 1.

Proof. Let (e1, . . . , e6) denote a basis of ĝ with dual basis (e1, . . . , e6). Then, the

7-tuple (e1, . . . , e6, ξ) is a basis of g with dual basis (e1, . . . , e6, η). To simplify the

computations, let e7 := ξ and e7 := η. If we denote by cjkl the structure constants

of g with respect to the considered basis and by ĉjkl those of ĝ, it follows from (3.16)

that cj7k = Dj
k for every j, k = 1, . . . , 6, since

[e7, ek] = Dek = Dj
kej ,

and that for all j, k, l = 1, . . . , 6

cjkl = ĉjkl, c7
kl = 0.

Consequently,

de7 = 0

and for j = 1, . . . , 6,

dej =
∑

1≤k<l≤7(−cjkl)e
kl =

∑
1≤k<l≤6(−cjkl)e

kl +
∑6

k=1(−cjk7)ek7

= d̂ej +
(∑6

k=1D
j
ke
k
)
∧ e7.
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The assertion follows then writing every α ∈ Λk(g∗) with respect to the considered

basis of g∗ and applying the properties of the differential d together with the previous

expressions.

It is clear from the discussion in Remark 1.2.10 that there exists a real represen-

tation of 3× 3 complex matrices

ρ : gl(3,C) −→ gl(6,R)

which sends a matrix a ∈ gl(3,C) to the matrix ρ(a) obtained by replacing each

complex entry ajk of a with the 2× 2 real matrix(
<(ajk) −=(ajk)

=(ajk) <(ajk)

)
.

Now, suppose that (ω, ψ+) is a coupled SU(3)-structure on a six-dimensional Lie

algebra ĝ and let D be a derivation of ĝ such that D = ρ(a), where a ∈ sl(3,C).

Then, the matrix associated with D with respect to an SU(3)-basis (e1, . . . , e6) of ĝ

for (ω, ψ+) is of the form

D =



b11 −b12 b13 −b14 b15 −b16

b12 b11 b14 b13 b16 b15

b21 −b22 b23 −b24 b25 −b26

b22 b21 b24 b23 b26 b25

b31 −b32 b33 −b34 −b11 − b23 b12 + b24

b32 b31 b34 b33 −b12 − b24 −b11 − b23


, (3.17)

where bjk ∈ R. This gives a sufficient condition for the existence of a locally conformal

calibrated G2-structure on ĝ⊕D Rξ:

Proposition 3.3.17 ([66]). Let (ω, ψ+) be a coupled SU(3)-structure on a Lie algebra

ĝ of dimension six and let D = ρ(a), a ∈ sl(3,C), be a derivation of ĝ whose matrix

representation with respect to an SU(3)-basis (e1, . . . , e6) of ĝ∗ for (ω, ψ+) is as in

(3.17). Then, the Lie algebra

g = ĝ⊕D Rξ,

with the Lie bracket given by (3.16), has a locally conformal calibrated G2-structure.
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Proof. On g = ĝ⊕D Rξ consider the 3-form

ϕ = ω ∧ η + ψ+, (3.18)

where η is the 1-form on g introduced in Lemma 3.3.16 and defined in such a way

that η(X) = 0 for all X ∈ ĝ and η(ξ) = 1. ϕ defines a G2-structure on g, since

(e1, . . . , e6, η) is a G2-basis of g∗. We shall see that

dϕ = dω ∧ η + dψ+ = −cη ∧ ϕ,

where c is the coupled constant of the coupled SU(3)-structure on ĝ, i.e., d̂ω = c ψ+.

Suppose that X,Y, Z,W ∈ ĝ. Then, it is clear that

(dω ∧ η)(X,Y, Z,W ) = 0.

Consequently, by Lemma 3.3.16, we have

dϕ(X,Y, Z,W ) = dψ+(X,Y, Z,W ) = d̂ψ+(X,Y, Z,W ) = 0,

as ψ+ is d̂-closed. Let us consider X,Y, Z ∈ ĝ. Using (3.18), we obtain

dϕ(X,Y, Z, ξ) = −ϕ([X,Y ], Z, ξ) + ϕ([X,Z], Y, ξ)− ϕ([X, ξ], Y, Z)

−ϕ([Y,Z], X, ξ) + ϕ([Y, ξ], X, Z)− ϕ([Z, ξ], X, Y )

= −ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X)

−ψ+([X, ξ], Y, Z) + ψ+([Y, ξ], X, Z)− ψ+([Z, ξ], X, Y )

= ψ+(D(X), Y, Z) + ψ+(X,D(Y ), Z) + ψ+(X,Y,D(Z))

+dω(X,Y, Z).

Taking into account the expressions of D and ψ+ in terms of the SU(3)-basis, it is

easy to check that

ψ+(D(ej), ek, el) + ψ+(ej , D(ek), el) + ψ+(ej , ek, D(el)) = 0,

for every triple {ej , ek, el} of elements of the SU(3)-basis. Therefore,

dϕ(X,Y, Z, ξ) = dω(X,Y, Z) = d̂ω(X,Y, Z) = c ψ+(X,Y, Z).
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Using (3.18) again, we get

dϕ(X,Y, Z, ξ) = −(cη ∧ ϕ)(X,Y, Z, ξ),

which completes the proof that the 3-form ϕ given by (3.18) defines a locally confor-

mal calibrated G2-structure on g.

As an application of the previous proposition, we describe two examples of non-

isomorphic solvable Lie algebras endowed with a locally conformal calibrated G2-

structure. They are obtained considering two different derivations on the nilpotent

Lie algebra n28 (cf. Table 1.1).

Example 3.3.18 ([66]). Consider the six-dimensional nilpotent Lie algebra n := n28.

We know that it admits a coupled SU(3)-structure and that its structure equations

with respect to the corresponding SU(3)-basis (e1, . . . , e6) of n∗ are (see (2.34))

(0, 0, 0, 0, e14 + e23, e13 − e24).

The coupled SU(3)-structure is then defined by the pair

ω = e12 + e34 + e56, ψ+ = e135 − e146 − e236 − e245,

and has coupled constant c = −1.

Let D be the derivation of n defined as follows

De1 = −e3, De2 = −e4, De3 = e1, De4 = e2, De5 = 0, De6 = 0.

The Lie algebra s = n⊕D Re7 has the following structure equations with respect to

the basis
(
e1, . . . , e6, e7

)
of s∗(

e37, e47,−e17,−e27, e14 + e23, e13 − e24, 0
)
.

By Proposition 3.3.17, the 3-form

ϕ = ω ∧ e7 + ψ+

defines a locally conformal calibrated G2-structure on s with Lee form θ = −e7.
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Let S denote the simply connected solvable Lie group with Lie algebra s, let N

denote the simply connected nilpotent Lie group such that Lie(N) = n and let e ∈ N

denote the identity element. Observe that S = RnµN, where µ is the unique smooth

action of R on N such that µ(t)∗e = exp(tD), for every t ∈ R, and where exp denotes

the map exp : Der(n) → Aut(n). Hence, being S the semi-direct product of R and

its nilradical N, it is almost nilpotent in the sense of [85].

Now, in order to show a lattice of S we proceed as follows. The considered

SU(3)-basis (e1, . . . , e6) is a rational basis of n and with respect to it we have

exp(tD) =



cos(t) 0 sin(t) 0 0 0

0 cos(t) 0 sin(t) 0 0

− sin(t) 0 cos(t) 0 0 0

0 − sin(t) 0 cos(t) 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

In particular, exp(πD) is an integer matrix. Therefore, denoted by expN : n → N

the exponential map, expN(Z〈e1, . . . , e6〉) is a lattice of N preserved by µ(π) and,

consequently,

Γ = πZ nµ expN(Z〈e1, . . . , e6〉) (3.19)

is a lattice in S (see [25]). Thus, the compact quotient S/Γ is a compact solvmanifold

endowed with an invariant locally conformal calibrated G2-structure ϕ.

Example 3.3.19 ([66]). Let us consider the coupled SU(3)-structure (ω, ψ+) on

n := n28 described in the previous example and the derivation D ∈ Der(n) given by

De1 = 2e3, De2 = 2e4, De3 = e1, De4 = e2, De5 = 0, De6 = 0,

with respect to the SU(3)-basis (e1, . . . , e6) of n. Then, the Lie algebra q = n⊕DRe7

has the following structure equations with respect to the basis
(
e1, . . . , e6, e7

)
of q∗(

e37, e47, 2e17, 2e27, e14 + e23, e13 − e24, 0
)
.
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The 3-form

ϕ = ω ∧ e7 + ψ+

defines a locally conformal calibrated G2-structure on q with Lee form θ = −e7 by

Proposition 3.3.17.

As in the previous example, we have an almost nilpotent Lie group Q = Rnµ N,

where Q is the simply connected Lie group with solvable Lie algebra q and µ is the

unique smooth action of R on N such that µ(t)∗e = exp(tD), for every t ∈ R. With

respect to the rational basis (X1, . . . , X6) of n given by X1 = − 1√
2
e2 + e4, X2 =

− 1√
2
e1 + e3, X3 = 1√

2
e1 + e3, X4 = 1√

2
e2 + e4, X5 =

√
2e5, X6 =

√
2e6, the matrix

associated with exp
(√

2D
)

is integer. More in detail, we have

exp
(√

2D
)

= diag(−2,−2, 2, 2, 0, 0).

Thus, expN(Z〈X1, . . . , X6〉) is a lattice of N preserved by µ
(√

2
)

and, as a conse-

quence,

Γ =
√

2 Z nµ expN(Z〈X1, . . . , X6〉)

is a lattice in Q. The compact quotient Q/Γ is then a compact solvmanifold endowed

with an invariant locally conformal calibrated G2-structure ϕ.

Further results on the existence of locally conformal calibrated G2-structures on

Lie algebras can be obtained using Lemma 3.3.16 also when the derivation D is not

of the form ρ(a) for some a ∈ sl(3,C). In detail

Proposition 3.3.20 ([71]). Let ĝ be a six-dimensional Lie algebra admitting a cou-

pled SU(3)-structure (ω, ψ+) with coupled constant c ∈ R−{0} and let D be a deriva-

tion of ĝ. Consider the seven-dimensional Lie algebra g = ĝ⊕D Rξ with Lie bracket

given by (3.16) and Chevalley-Eilenberg differential d. Then, the 3-form

ϕ = ω ∧ η + ψ+

defines a G2-structure on g. Moreover, there exists β ∈ Λ3(ĝ∗) such that dψ+ = β∧η
and

i) β = 0 if and only if ϕ is locally conformal calibrated with Lee form θ = cη.
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ii) β = −2 c ψ+ if and only if ϕ is locally conformal calibrated with Lee form θ =

−cη.

Proof. We already know from the proof of Proposition 3.3.17 that ϕ is a G2-structure

on g = ĝ⊕D Rξ. By Lemma 3.3.16, there exists β ∈ Λ3(ĝ∗) such that

dψ+ = d̂ψ+ + β ∧ η = β ∧ η,

since d̂ψ+ = 0. Moreover,

dϕ = dω ∧ η + dψ+ = d̂ω ∧ η + β ∧ η
= c ψ+ ∧ η + β ∧ η = −cη ∧ ϕ+ β ∧ η

(3.20)

and from this the first point follows immediately.

Let us now prove the second point. First, suppose that β = −2 c ψ+. Then, from

(3.20) we obtain

dϕ = −cη ∧ ϕ+ β ∧ η = −(−cη) ∧ ϕ.

Conversely, if dϕ = −θ ∧ ϕ with θ = −cη, then from (3.20) we get

cη ∧ ϕ = dϕ = −cη ∧ ϕ+ β ∧ η,

which implies β = −2 c ψ+.

3.4 Einstein locally conformal calibrated G2-structures

From the results recalled in Section 3.1.3, we know that calibrated G2-structures

inducing an Einstein metric cannot exist on compact 7-manifolds [30, 47] and that

the same holds true in the noncompact case for left-invariant calibrated G2-structures

inducing an Einstein non-flat metric on solvmanifolds [65]. It is then natural to ask

whether these results extend to manifolds endowed with an Einstein locally conformal

calibrated G2-structure, that is, a G2-structure of type X2 ⊕ X4 whose underlying

metric is Einstein.

A useful tool to study the problem is the conformal Yamabe constant, let us recall

its definition.
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Definition 3.4.1. Let (M, g) be a Riemannian manifold of dimension m ≥ 3, let

am := 4(m−1)
m−2 , pm := 2m

m−2 and let C∞c (M) denote the set of compactly supported

smooth real valued functions on M. Then, the conformal Yamabe constant of (M, g)

is

Q(M, g) := inf
u∈C∞c (M),u 6≡0


∫
M

(
am|du|2 + u2 Scal(g)

)
dVg(∫

M |u|pmdVg
) 2
pm

 .

The sign of Q(M, g) is a conformal invariant. In particular, the following charac-

terization holds.

Proposition 3.4.2 ([166]). Let (M, g) be a compact Riemannian manifold of dimen-

sion m ≥ 3. Then, Q(M, g) is negative/zero/positive if and only if g is conformal to

a Riemannian metric of negative/zero/positive scalar curvature.

Moreover, it is possible to show the

Proposition 3.4.3 ([132]). Let (M, g) be a complete Riemannian manifold of non-

positive scalar curvature. If the volume of M is finite, then Q(M, g) ≤ 0.

We are now ready to prove the first result.

Theorem 3.4.4 ([71]). Let M be a seven-dimensional compact manifold endowed

with an Einstein locally conformal calibrated G2-structure ϕ. Then, Scal(gϕ) ≤ 0.

Moreover, if M is connected, Scal(gϕ) is either zero or negative.

Proof. Suppose that Scal(gϕ) > 0, then the Lee form θ ∈ Ω1(M) is exact. Indeed,

since dθ = 0, we can consider the de Rham class [θ] ∈ H1
dR(M) and take the harmonic

1-form α representing [θ], that is, θ = α + df , where ∆α = (dd∗ + d∗d)α = 0 and

f ∈ C∞(M). α has to vanish everywhere on M, since it is compact, oriented and

has positive Ricci curvature (cf. [24]). Then, θ = df . Let us consider ϕ̂ := efϕ, by

Lemma 3.3.6 and the discussion preceding it, we know that ϕ̂ is a closed G2-structure

on M with associated Riemannian metric gϕ̂ = e
2
3
fgϕ conformal to the metric gϕ of

positive scalar curvature. Consequently, the conformal Yamabe constant Q(M, gϕ̂)

is positive by Proposition 3.4.2. Since (M, gϕ̂) is compact, it has finite volume and

is complete. Moreover, it has nonpositive scalar curvature by Proposition 3.1.13.

Therefore, by Proposition 3.4.3, we have Q(M, gϕ̃) ≤ 0, which is in contrast with the

previous result.
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As a consequence, we obtain the

Corollary 3.4.5 ([71]). A seven-dimensional compact, homogeneous manifold M

cannot admit any invariant Einstein locally conformal calibrated G2-structure ϕ, un-

less the underlying metric gϕ is flat.

Proof. A homogeneous Einstein manifold with negative scalar curvature is noncom-

pact by [22, Thm. 7.56]. Thus, every seven-dimensional compact, homogeneous

manifold M with an invariant G2-structure ϕ whose associated metric is Einstein

has Scal(gϕ) ≥ 0. Combining this with the previous theorem, we have Scal(gϕ) = 0

and, in particular, gϕ is Ricci-flat. The statement then follows recalling that in the

homogeneous case Ricci-flatness implies flatness [6].

That being so, in the compact homogeneous case there are no invariant locally

conformal calibrated G2-structures whose underlying metric is Einstein non-flat. We

show now that this is not true in the noncompact case, providing an example of a

left-invariant Einstein (non-flat) locally conformal calibrated G2-structure on a seven-

dimensional solvmanifold. This tells us, in particular, that the aforementioned result

of [65] does not extend to the case of locally conformal calibrated G2-structures.

Example 3.4.6 ([71]). Consider the six-dimensional nilpotent Lie algebra

n28 = (0, 0, 0, 0, e13 − e24, e14 + e23)

endowed with the coupled SU(3)-structure

ω = e12 + e34 − e56, ψ+ = e136 − e145 − e235 − e246,

whose coupled constant is c = −1. As we observed in the proof of Theorem 2.4.12,

the inner product g =
∑6

k=1(ek)2 induced by (ω, ψ+) is a nilsoliton (cf. Section 1.4.4)

with Ricci operator

Rc(g) = −3I + 4 diag

(
1

2
,
1

2
,
1

2
,
1

2
, 1, 1

)
,

where D = diag
(

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
is a symmetric derivation of n28. By Lauret’s result

recalled in Proposition 1.4.15, the metric rank-one solvable extension s = n28 ⊕ Re7
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of n28 with structure equations(
1

2
e17,

1

2
e27,

1

2
e37,

1

2
e47, e13 − e24 + e57, e14 + e23 + e67, 0

)
is endowed with the Einstein inner product g+(e7)2. This is exactly the inner product

gϕ induced by the 3-form

ϕ = ω ∧ e7 + ψ+,

which defines a locally conformal calibrated G2-structure on s with Lee form θ = e7

by the second point of Proposition 3.3.20, as dψ+ = 2ψ+∧e7. A simple computation

shows that the non-vanishing intrinsic torsion forms of ϕ are

τ1 = −1

3
e7, τ2 = −

(
5

3
e12 +

5

3
e34 +

10

3
e56

)
.

Moreover, ϕ is not ∗-Einstein, since by direct computation with respect to the or-

thonormal basis (e1, . . . , e7), we get the following expression of the ∗-Ricci tensor

(cf. (3.9))

ρ∗ =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 22 0 0

0 0 0 0 0 22 0

0 0 0 0 0 0 −6


.

Summarizing, ϕ gives rise to a left-invariant Einstein (non-flat) locally conformal

calibrated G2-structure on the simply connected solvable Lie group S with Lie algebra

s, which is not unimodular (tr(ade7) 6= 0) and, so, does not admit any compact

quotient by [145, Lemma 6.2].

We can also give an example of noncompact homogeneous manifold admitting an

Einstein (non-flat) locally conformal parallel G2-structure.

Example 3.4.7 ([71]). The Einstein rank-one solvable extension of the Abelian Lie

algebra a = (0, 0, 0, 0, 0, 0) of dimension six is the solvable Lie algebra e with structure

equations (
ae17, ae27, ae37, ae47, ae57, ae67, 0

)
,
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where a is a nonzero real number. The inner product on e

g =
7∑

k=1

(ek)2

is Einstein with Ricci tensor given by Ric(g) = −6a2 g. The 3-form

ϕ = −e125 − e136 − e147 + e237 − e246 + e345 − e567

defines a G2-structure on e with G2-basis
(
−e1, e4, e2, e3, e5,−e6, e7

)
and such that

gϕ = g. From the expressions

dϕ = 3a
(
−e2467 + e3457 − e1257 − e1367

)
,

d ∗ϕ ϕ = 4a
(
e23567 + e12347 − e14567

)
,

it is immediate to see that τ1 = −ae7 and τ0 = 0, τ2 = 0, τ3 = 0. Then, the G2-

structure ϕ is locally conformal parallel.

Starting from a 6-manifold endowed with a suitable coupled SU(3)-structure in-

ducing an Einstein metric, it is possible to construct a noncompact manifold endowed

with a locally conformal calibrated G2-structure inducing a Ricci-flat metric. To our

knowledge, the next example is the first of this kind.

Example 3.4.8 ([70]). Let us consider the coupled Einstein SU(3)-structure (ω, ψ+)

obtained on the twistor space Z in Section 2.5.2. First of all, we rescale it in the

following way

ω̂ =
8

5
ω, ψ̂+ =

(
8

5

) 3
2

ψ+.

Then, by Lemma 2.4.5, the pair ω̂, ψ̂+ is a coupled SU(3)-structure with coupled

constant ĉ = −
√

10 and inducing the metric ĝ = 8
5 g. Consequently, since g is

Einstein with Einstein constant 48, we have Scal(ĝ) = 30 and Ric(ĝ) = 5 ĝ.

If we consider the G2-structure ϕ induced on the cone C(Z) by ω̂, ψ̂+, then the

metric gϕ = t2 ĝ + dt2 is Ricci-flat by Proposition 3.2.5. Moreover, by Proposition

3.3.8, the only non-identically vanishing intrinsic torsion forms of the G2-structure

are

τ1 =
3 +
√

10

3 t
dt, τ2 = −t w−2 .



3.4. Einstein locally conformal calibrated G2-structures 151

Therefore, the coupled Einstein SU(3)-structure ω̂, ψ̂+ induces a locally conformal

calibrated G2-structure on the cone C(Z) whose underlying metric is Ricci-flat.

Remark 3.4.9. It is worth observing here that calibrated G2-structures inducing a

Ricci-flat metric are actually parallel as a consequence of Proposition 3.1.13. The

previous example shows that a result of this kind is not true anymore for locally

conformal calibrated G2-structures.

Since the sine-cone over an m-dimensional Einstein manifold with Einstein con-

stant (m− 1) is still Einstein by Proposition 3.2.6, on the sine-cone over the coupled

Einstein manifold of the previous example there exists a G2-structure inducing an

Einstein metric. Its G2-type is described in the next example.

Example 3.4.10. Let ω̂, ψ̂+ be the coupled Einstein SU(3)-structure on Z consid-

ered in Example 3.4.8. Then, the Riemannian metric gϕ underlying the G2-structure

ϕ = sin2(t) ω̂ ∧ dt+ sin3(t) cos(t) ψ̂+ − sin4(t) ψ̂−

on the sine-cone SC(Z) is Einstein by Proposition 3.2.6.

A long but straightforward computation gives the following expressions for the

intrinsic torsion forms of the G2-structure ϕ induced on the sine-cone by a cou-

pled SU(3)-structure (ω, ψ+) with coupled constant c and possibly non-identically

vanishing w−2 :

τ0 =
8c+ 4

7
,

τ1 =
(

1− c

3

)
cot(t)dt,

τ2 = −sin(2t)

2
w−2 ,

τ3 =
c− 3

7

(
sin4(t)ψ− − sin3(t) cos(t)ψ+ +

4

3
sin2(t)dt ∧ ω

)
− sin2(t)dt ∧ w−2 .

It is possible to crosscheck this result computing dϕ and d ∗ϕ ϕ and comparing

them with the expression of the right-hand side of (3.8) when the differential forms

appearing there are those written above.

Thus, since in our case c = −
√

10 and w−2 6= 0, the sine-cone SC(Z) is endowed

with a G2-structure of type X1 ⊕X2 ⊕X3 ⊕X4 and inducing an Einstein metric.
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Moreover, observe that from the above expressions of the intrinsic torsion forms

we get that a nearly Kähler SU(3)-structure with w−1 = −2 induces a nearly parallel

G2-structure with τ0 = 4 on the sine-cone, recovering a result of [23].

3.5 A structure result

In Proposition 3.3.11, we proved that, given a compact, connected 6-manifold M

endowed with a coupled SU(3)-structure (ω, ψ+) preserved by a diffeomorphism ν

of M, there exists a locally conformal calibrated G2-structure ϕ̃ on the compact

mapping torus Mν of ν. Moreover, we observed that the Lee form of ϕ̃ is cη, where c

is the coupled constant of (ω, ψ+) and η is the characteristic 1-form of Mν , Lξϕ̃ = 0

and the vector field ξ is the gϕ̃-dual of η. In addition to this, we emphasize here also

that the fibers of the fibration π : Mν → S1 are compact 6-manifolds endowed with

a coupled SU(3)-structure.

A natural question arising from this result is whether it is possible to find a con-

verse and, more precisely, under which conditions a compact, connected 7-manifold

M endowed with a locally conformal calibrated G2-structure is fibered over S1 with

fibers endowed with a coupled SU(3)-structure. Our purpose in this section is to find

a solution to this problem.

Similar problems have been studied in literature before. For instance, in [13]

Banyaga showed that special types of exact locally conformal symplectic manifolds

are fibered over S1 with each fiber carrying a contact form. In this context, exact

means dθ-exact in the sense of the following

Definition 3.5.1. Let M be a manifold and consider a closed 1-form θ on it. A

differential form α ∈ Ωk(M) is said to be dθ-exact if there exists some β ∈ Ωk−1(M)

such that

α = dβ + θ ∧ β =: dθβ.

Examples of exact locally conformal symplectic structures are given by those

called of the first kind in Vaisman’s paper [176], where the author proved that a

manifold M2n endowed with such a structure is a 2-contact manifold and has a
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vertical two-dimensional foliation. Moreover, when this foliation is regular, he showed

that M2n is a T 2-principal bundle over a symplectic manifold.

More in general, by [12, Prop. 3.3], every compact manifold of dimension 2k + 2

admitting a generalized contact pair of type (k, 0), that is, a pair of 1-forms (α, β)

such that α∧(dα)k∧β is a volume form, dβ = 0 and (dα)k+1 = 0, fibers over the circle

with fiber a contact manifold and the monodromy acting by a contactomorphism.

Conversely, every mapping torus of a contactomorphism admits a generalized contact

pair of type (k, 0) and an induced locally conformal symplectic form. Note also that

a contact pair (α, β) of type (k, 0) gives rise to a locally conformal symplectic form

defined by dα+ α ∧ β.

In [133], Li proved that odd-dimensional co-symplectic and co-Kähler manifolds

can be characterized as mapping tori over symplectic and Kähler manifolds, respec-

tively.

Finally, a characterization of compact locally conformal parallel G2-manifolds as

fiber bundles over S1 with compact nearly Kähler fiber was obtained in [104] (see also

[177]). It was also shown there that for compact seven-dimensional locally conformal

parallel G2-manifolds (M,ϕ) with co-closed Lee form θ, the Lee flow preserves the

Gauduchon G2-structure, i.e., Lθ]ϕ = 0, where θ] is the dual of θ with respect to gϕ.

3.5.1 dθ-exact G2-structures

Some of the results just recalled suggest that having a G2-structure whose defining

3-form is exact in the sense of Definition 3.5.1 might be a good hypothesis for our

aim. This observation is strenghtened by the fact that every dθ-exact G2-structure

is locally conformal calibrated.

Proposition 3.5.2. Let M be a 7-manifold endowed with a G2-structure ϕ which is

dθ-exact for a certain closed 1-form θ on M. Then, ϕ is locally conformal calibrated

with Lee form θ.

Proof. We know that ϕ = dθβ = dβ + θ ∧ β for some β ∈ Ω2(M). Then,

dϕ = d(dβ + θ ∧ β) = dθ ∧ β − θ ∧ dβ = −θ ∧ ϕ

and the assertion is proved.
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We already encountered an example of dθ-exact G2-structure, namely that con-

structed on the mapping torus in the proof of Proposition 3.3.11 and recalled at the

beginning of this section. Indeed, it satisfies

ϕ̃ = ω̃ ∧ η + ψ̃+ = ω̃ ∧ η +
1

c
dω̃ = dcη

(
ω̃

c

)
.

Remark 3.5.3. Given a locally conformal calibrated G2-structure ϕ, we can consider

the class {
efϕ | f ∈ C∞(M)

}
of locally conformal calibrated G2-structures which are conformally equivalent to ϕ.

As dϕ = −θ ∧ ϕ, we have

d
(
efϕ

)
= (df − θ) ∧ efϕ

and ϕ is dθ-exact if and only if efϕ is d(θ−df)-exact. Thus, being dθ-exact is a

conformal property for locally conformal calibrated G2-structures.

It is a general fact that the R-linear map

dθ : Ωk(M)→ Ωk+1(M), dθβ = dβ + θ ∧ β,

satisfies the property dθ ◦ dθ = 0 when θ is a closed 1-form. Thus, {Ω·(M), dθ} is a

differential complex and gives rise to the cohomology groups

Hk
θ (M) = ker

[
dθ : Ωk(M)→ Ωk+1(M)

]/
Im
[
dθ : Ωk−1(M)→ Ωk(M)

]
,

which are conformal invariants of a locally conformal calibrated G2-manifold (M,ϕ)

with Lee form θ as a consequence of Remark 3.5.3. Moreover, when ϕ is locally

conformal calibrated with dϕ = −θ∧ϕ, it is immediate to check that dθϕ = 0. Then,

the obstruction for ϕ to be dθ-exact is represented by the group H3
θ (M), meaning

that ϕ is dθ-exact when H3
θ (M) = {0}, while it might not be dθ-exact otherwise.

Now, we look for conditions guaranteeing the dθ-exactness of a locally conformal

calibrated G2-structure with Lee form θ.

Recall that a vector field X on M is a conformal infinitesimal automorphism of

ϕ if an only if there exists a smooth function hX ∈ C∞(M) such that LXϕ = hXϕ.

If hX is identically zero, then X is an infinitesimal automorphism of ϕ. We start

proving the following
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Lemma 3.5.4 ([66]). Let (M,ϕ) be a locally conformal calibrated G2-manifold with

Lee form θ. A vector field X on M is a conformal infinitesimal automorphism of

ϕ if and only if there exists a smooth function fX ∈ C∞(M) such that dθσ = fXϕ,

where σ := ιXϕ. Moreover, if M is connected, fX is constant.

Proof. Let us compute the expression of the Lie derivative of ϕ with respect to X

LXϕ = d(ιXϕ) + ιX(dϕ)

= dσ + ιX(−θ ∧ ϕ)

= dσ − θ(X)ϕ+ θ ∧ (ιXϕ)

= dσ + θ ∧ σ − θ(X)ϕ

= dθσ − θ(X)ϕ,

where σ := ιXϕ. Therefore, X is a conformal infinitesimal automorphism of ϕ with

LXϕ = hXϕ if and only if dθσ = fXϕ, where fX is a smooth real valued function on

M such that fX = hX + θ(X).

Suppose now that M is connected and let X be a conformal infinitesimal auto-

morphism of ϕ. We have just shown that dθσ = fXϕ for some fX ∈ C∞(M). Using

the general property dθ ◦ dθ = 0, we have

0 = dθ(dθσ)

= dθ(fXϕ)

= d(fXϕ) + θ ∧ (fXϕ)

= dfX ∧ ϕ+ fXdϕ+ fX(θ ∧ ϕ)

= dfX ∧ ϕ+ fXdϕ− fXdϕ
= dfX ∧ ϕ.

By (3.5), we obtain dfX = 0 and from this the assertion follows.

Corollary 3.5.5. If X ∈ X(M) is a conformal infinitesimal automorphism of a

locally conformal calibrated G2-structure ϕ with fX a nonzero constant, then ϕ is

dθ-exact. Indeed,

ϕ =
1

fX
dθσ = dθ

(
σ

fX

)
.

Recall the integral identity shown in [135].
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Lemma 3.5.6 ([135]). Let M be a seven-dimensional compact manifold. Then, for

every G2-structure ϕ on M, every vector field X on M and f ∈ C∞(M), it holds∫
M
LXϕ ∧ ∗ϕfϕ = −3

∫
M
df ∧ ∗ϕX[. (3.21)

From (3.21) with f identically equal to 1 and X conformal infinitesimal automor-

phism of ϕ with LXϕ = hXϕ, we have∫
M
hXdVϕ = 0.

Thus, thinking at the proof of Lemma 3.5.4, we get∫
M
θ(X)dVϕ =

∫
M
fXdVϕ = fXVol(M),

which proves the following

Lemma 3.5.7. Let (M,ϕ) be a compact, connected locally conformal calibrated G2-

manifold with Lee form θ and let X ∈ X(M) be a conformal infinitesimal automor-

phism of ϕ. Then, the Riemannian integral of the function θ(X) over M is constant.

In conclusion, we can show a characterization for dθ-exact locally conformal cal-

ibrated G2-structures.

Proposition 3.5.8 ([66]). Let (M,ϕ) be a connected locally conformal calibrated G2-

manifold with non-vanishing Lee form θ. Let X = θ] be the gϕ-dual vector field of θ,

i.e., θ(·) = gϕ(X, ·), and define the 2-form σ := ιXϕ. Then, LXϕ = 0 if and only if

θ(X)ϕ = dθσ. Moreover, if LXϕ = 0, then θ(X) = |X|2 is a nonzero constant.

Proof. We have

LXϕ = d(ιXϕ) + ιXdϕ

= dσ + ιX(−θ ∧ ϕ)

= dσ − θ(X)ϕ+ θ ∧ σ.

Therefore, LXϕ = 0 if and only if θ(X)ϕ = dθσ.

If LXϕ = 0, from Lemma 3.5.4 we have that θ(X) = |X|2 is a nonzero con-

stant, since θ(X)ϕ = dθσ and X = θ], where the map ·] : Ω1(M) → X(M) is an

isomorphism.
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Remark 3.5.9. Notice that the locally conformal calibrated G2-structure on the

mapping torus studied in Proposition 3.3.11 satisfies the previous characterization.

It is then quite natural to presume that Lθ]ϕ = 0 with θ non-vanishing might be the

right hypothesis to find a solution to the problem we are studying.

The examples given at the end of Section 3.3.1 are useful to understand better

how restrictive is the situation described in the previous result. Indeed, they allow us

to conclude that locally conformal calibrated G2-structures satisfying the character-

ization of Proposition 3.5.8 constitute a subset of the set of dθ-exact G2-structures.

In detail:

Example 3.5.10. Consider the seven-dimensional Lie algebra introduced in Exam-

ple 3.3.18

s =
(
e37, e47,−e17,−e27, e14 + e23, e13 − e24, 0

)
.

It admits a locally conformal calibrated G2-structure defined by

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245,

and whose Lee form is θ = −e7. ϕ gives rise to an invariant locally conformal

calibrated G2-structure on the compact solvmanifold S/Γ, where S is the simply

connected solvable Lie group with Lie algebra s and Γ is the lattice (3.19). If X = −e7

denotes the gϕ-dual vector field of the Lee form θ = −e7, then it is easy to check

that LXϕ = 0 and ϕ = dθσ, where σ = iXϕ. Thus, S/Γ is an example of manifold

satisfying the results of Proposition 3.5.8.

Example 3.5.11. The seven-dimensional Lie algebra introduced in Example 3.3.19

q =
(
e37, e47, 2e17, 2e27, e14 + e23, e13 − e24, 0

)
is endowed with the locally conformal calibrated G2-structure

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245

with Lee form θ = −e7. If X = −e7 denotes the gϕ-dual vector field of θ, a simple

computation shows that LXϕ 6= 0 and, according to Proposition 3.5.8, ϕ 6= dθ(ιXϕ).

However, ϕ is dθ-exact. Indeed, ϕ = dθγ, where

γ =
5

7
e12 − 3

7
e14 +

3

7
e23 − 1

7
e34 − e56.
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3.5.2 The main theorem

Let us now consider a seven-dimensional compact, connected manifold M endowed

with a locally conformal calibrated G2-structure ϕ. We shall show that when the

Lee form θ is non-vanishing and Lθ]ϕ = 0, the manifold M is fibered over S1 and

each fiber is endowed with a coupled SU(3)-structure.

We begin recalling some known results which we will use in the proof. The first

one follows immediately from the discussion of Section 3.2.1.

Proposition 3.5.12 ([53]). Let V be a seven-dimensional real vector space endowed

with a G2-structure ϕ inducing the inner product gϕ. Moreover, let n ∈ V be a unit

vector with gϕ(n,n) = 1 and let W := 〈n〉⊥ denote the gϕ-orthogonal complement of

the subspace 〈n〉 ⊂ V . Then, the pair (ω, ψ+) defined by

ω = (ιnϕ) |W , ψ+ = ϕ |W

is an SU(3)-structure on W inducing the inner product g = gϕ |W .

A result due to Tischler [174] characterizes compact manifolds which are fibered

over the circle.

Theorem 3.5.13 ([174]). Let M be a compact manifold of dimension m. Then,

M is the total space of a fiber bundle over the circle if and only if there exists a

non-vanishing closed 1-form on it.

Proof. We give an idea of the proof focusing only on the results which are of interest

for us. The reader can refer to [174] for the details.

If π : M → S1 is a fiber bundle and t denotes the angle coordinate on S1, then

the pullback π∗(dt) defines a non-vanishing closed 1-form on M.

Conversely, let θ ∈ Ω1(M) be a non-vanishing closed 1-form on M. Since M is

compact, θ is not exact and its de Rham cohomology class [θ] ∈ H1
dR(M) is nonzero.

Let α1, . . . , αk be closed 1-forms on M defining a basis {[α1], . . . , [αk]} of H1
dR(M).

We can write

θ =

k∑
i=1

xiαi + dh
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for certain xi ∈ R and h ∈ C∞(M). S1 is an Eilenberg-Maclane space, as it has only

one non-trivial homotopy group, namely π1(S1) ∼= Z. In this case, there is a bijection

between the set of homotopy classes of maps from M into the circle and H1(M,Z),

i.e., the first singular cohomology group of M with coefficients in Z. Using this

fact and the de Rham isomorphisms of M and S1, it is possible to obtain k smooth

functions fi : M → S1, 1 ≤ i ≤ k, such that f∗i (dt) = αi + dhi, where hi ∈ C∞(M).

Then,

θ =

k∑
i=1

xif
∗
i (dt) +

k∑
i=1

xidhi + dh

and the last two summands can be absorbed in the first one, since for every smooth

function f : M → S1 and h ∈ C∞(M) it holds

f∗(dt) + dh = (f + Π ◦ h)∗ (dt),

where Π : R → S1 is the universal covering map and the addition in the right-hand

side of the identity is induced by the group structure on S1. Now, for an appropriate

choice of rational numbers ni
q , 1 ≤ i ≤ k, the quantity∣∣∣∣∣θ − 1

q

k∑
i=1

nif
∗
i (dt)

∣∣∣∣∣
can be made arbitrarily small, where the norm | · | is induced by some Riemannian

metric on M (cf. Remark 1.2.6). Consequently, the closed 1-form with integral

periods

θ̂ :=

k∑
i=1

nif
∗
i (dt)

is non-vanishing. Since ni ∈ Z, the smooth map f : M → S1 given by f =
∑k

i=1 nifi

is well-defined and satisfies f∗(dt) = θ̂. f is then a smooth submersion between the

compact manifold M and the connected manifold S1. Thus, by Ehresmann’s result

[62, Prop. p. 154], f is a fiber map whose fibers are compact and connected.

Now, we state some further lemmas which will be also useful in the proof of the

theorem.
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Lemma 3.5.14. Let (M, g) be a Riemannian manifold and consider two differential

forms α ∈ Ω1(M), κ ∈ Ω2(M). Then,

|α ∧ κ|2 = 3 |α|2|κ|2 − 6 |γ|2,

where | · | is the pointwise norm induced by g and γ ∈ Ω1(M) is defined locally as

γ = γidx
i, γi = grjαrκji. From this follows

|α ∧ κ|2 ≤ 3|α|2|κ|2.

When M is compact, with respect to the L2-norm ‖·‖ induced by the L2-inner product

of differential forms 〈α, β〉 =
∫
M α ∧ ∗β =

∫
M g(α, β) ∗ 1, we then have

‖α ∧ κ‖2 ≤ 3

∫
M
|α|2|κ|2 ∗ 1.

Proof. Using the conventions introduced in Section 1.1.1, in local coordinates we

have

(α ∧ κ)ijr = αiκjr − αjκir + αrκij .

We can now start with the computations:

|α ∧ κ|2 = (α ∧ κ)ijrg
iagjbgrc(α ∧ κ)abc

= 3αiκjrg
iagjbgrcαaκbc − 6αiκjrg

iagjbgrcαbκac

= 3(αig
iaαa)(κjrg

jbgrcκbc)− 6 (giaαiκac)g
cr(gbjαbκjr)

= 3 |α|2|κ|2 − 6 γcg
crγr

= 3 |α|2|κ|2 − 6 |γ|2.

For manifolds endowed with a G2-structure, we can prove the following

Lemma 3.5.15. Let M be a 7-manifold endowed with a G2-structure ϕ. Consider

a vector field X ∈ X(M) and define the 2-form σ := ιXϕ. Then,

|σ|2 = 3|X|2,

where | · | is the norm induced by gϕ.
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Proof. Using the identity ϕ ∧ (ιXϕ) = 2 ∗ϕ (ιXϕ) (see [111] for a proof), we have

|σ|2 ∗ϕ 1 = σ ∧ ∗ϕσ =
1

2
σ ∧ ϕ ∧ σ =

1

2
(ιXϕ) ∧ (ιXϕ) ∧ ϕ = 3|X|2 ∗ϕ 1.

Finally, we show the following result on vector spaces

Lemma 3.5.16. Let V be a real vector space of dimension m endowed with an inner

product g inducing the norm |v| = g(v, v)
1
2 , v ∈ V . Consider two vector subspaces

W1,W2 ⊂ V of dimension m− 1 defined as the g-orthogonal complement of two unit

vectors n1 and n2, respectively. If the angle between n1 and n2 is close to zero, then

the subspaces W1 and W2 thought as points in the Grassmannian Gr(m − 1, V ) are

close with respect to the distance induced by the operator norm

dGr(m−1,V )(W1,W2) =
∥∥prW1

− prW2

∥∥
op

= sup
v∈V, |v|=1

{
|prW1

v − prW2
v|
}
,

where prWi
: V → Wi is the projection prWi

v = v − g(v,ni)ni, i = 1, 2. Moreover,

there exists an invertible linear map a : V → V which is close to the identity with

respect to the operator norm and satisfies a |W1 : W1 →W2 .

Proof. By hypothesis, the angle between n1 and n2 is a certain ε > 0 which is close

to zero. Then,

g(n1,n2) = cos(ε),

since both n1 and n2 have unit norm. In particular, cos(ε) is close to one and sin(ε)

is close to zero.

Let (e1, . . . , em) be a g-orthonormal basis of V. Without loss of generality, we can

assume that

n1 = em, n2 = sin(ε)em−1 + cos(ε)em.

Let us now compute the distance dGr(m−1,V )(W1,W2). Consider a generic unit

vector v of V, we can write v = viei, where vi are m real numbers such that

|v|2 =
(
v1
)2

+ · · ·+ (vm)2 = 1.
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Now,

prW1
v = v − g(v,n1)n1 = v − g(v, em)em =

m−1∑
i=1

viei,

and

prW2
v = v − g(v,n2)n2 = v − (vm−1 sin(ε) + vm cos(ε))n2

=

m−2∑
i=1

viei + (vm−1 −B sin(ε))em−1 + (vm −B cos(ε))em,

where B := vm−1 sin(ε) + vm cos(ε). Thus,∣∣prW1
v − prW2

v
∣∣2 = |B sin(ε)em−1 − (vm −B cos(ε))em|2

= B2 sin2(ε) + (vm −B cos(ε))2

= B2 + (vm)2 − 2 vmB cos(ε)

= (vm−1)2 sin2(ε)− (vm)2 cos2(ε) + (vm)2

=
(
(vm−1)2 + (vm)2

)
sin2(ε)

≤ |v|2 sin2(ε) = sin2(ε).

Consequently, for every unit vector v of V, we get∣∣prW1
v − prW2

v
∣∣ ≤ sin(ε),

which clearly implies

dGr(m−1,V )(W1,W2) =
∥∥prW1

− prW2

∥∥
op
≤ sin(ε).

Since sin(ε) is close to zero, the first assertion is proved.

We have now to prove that there exists an invertible linear map a : V →
V which is close to the identity with respect to the operator norm and satisfies

a |W1 : W1 →W2 . Let us consider the vector space W1, if (w1, . . . , wm−1) is g-

orthonormal basis of it, then it is clear that (w1, . . . , wm−1,n1) is a g-orthonormal

basis of V. Notice that if we choose n1 = em as we did before, then, up to an orthog-

onal transformation, (w1, . . . , wm−1) is (e1, . . . , em−1). For i = 1, . . . ,m− 1, consider

the vectors of W2

zi := prW2
wi,
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they define a basis of W2. Moreover, since the vectors wi have unit norm, by the

computation above we have

|wi − zi| = |prW1
wi − prW2

wi| ≤ sin(ε),

that is, the vectors zi and wi are close for every i = 1, . . . ,m − 1. The invertible

linear map a : V → V is then defined by sending the basis (w1, . . . , wm−1,n1) to the

basis (z1, . . . , zm−1,n2) in the following way

a : wi 7→ zi, a : n1 7→ n2.

The proof that ‖a−I‖op is close to zero is obtained by computations similar to those

worked out previously.

We can now prove the main result of this section.

Theorem 3.5.17. Let M be a compact, connected seven-dimensional manifold en-

dowed with a locally conformal calibrated G2-structure ϕ with non-vanishing Lee form

θ and such that LXϕ = 0, where X is the gϕ-dual vector field of θ. Then

i) M is the total space of a fiber bundle over S1 and each fiber is endowed with a

coupled SU(3)-structure.

ii) M has a locally conformal calibrated G2-structure ϕ̂ such that its Lee form is a

1-form with integral periods.

Proof.

i) First of all, observe that the distribution ker(θ) is integrable, since the closed 1-

form θ is nowhere vanishing. Thus, it gives rise to a foliation Fθ. We shall prove

that the pair

ω :=
1

|X|
ιXϕ, ψ+ :=

1

|X|
dω

defines a coupled SU(3)-structure when restricted to each leaf of this foliation. To

do this, at each point of the leaves of Fθ we consider the tangent space and apply

Proposition 3.5.12.
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Under our hypothesis, we have a stable 3-form ϕ such that dϕ = −θ ∧ϕ, X = θ]

and θ(X)ϕ = dσ+θ∧σ, where σ := iXϕ and θ(X) = |X|2 is a nonzero constant (see

Proposition 3.5.8). Let L be a leaf of the foliation Fθ, then for every point p of L

TpL = ker(θp) = {Yp ∈ TpM | θp(Yp) = 0} ⊂ TpM

and, as θ(·) = gϕ(X, ·), it is clear that

ker(θ) = 〈X〉⊥.

Therefore, TpL = 〈Xp〉⊥ is a six-dimensional subspace of TpM with unit normal

Np :=
Xp
|X| . Since ϕp defines a G2-structure on the vector space TpM, by Proposition

3.5.12 we have that the pair

ω :=
(
iNpϕ

) ∣∣
TpL , ψ+ := ϕ

∣∣
TpL

defines an SU(3)-structure on TpL. Now,

(
iNpϕ

) ∣∣
TpL =

1

|X|
σp
∣∣
TpL

and for every choice of tangent vectors Up, Yp, Zp ∈ TpL we have

ϕp(Up, Yp, Zp) =
1

|X|2
(dσp + θp ∧ σp)(Up, Yp, Zp)

=
1

|X|2
(dσp)(Up, Yp, Zp),

since θp evaluated on any vector of TpL is zero. Consequently,

ϕp
∣∣
TpL =

1

|X|
dω.

Summarizing, the pair (ω, ψ+) defines a coupled SU(3)-structure with coupled con-

stant |X| when restricted to each leaf L of the foliation.

Let us now observe that M is the total space of a fiber bundle f : M → S1 by

Tischler’s result recalled in Theorem 3.5.13. In particular, there exist a closed 1-form

θ̂ ∈ Ω1(M) with integral periods and an integer q such that, by construction, qθ̂ can

be made arbitrarily close to θ with respect to the norm induced by gϕ.
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For every point p of M, we can then consider the fiber F of f containing p and

the leaf L of the foliation Fθ such that p ∈ L. The tangent space to the former at p

is defined by ker(qθ̂p), while the tangent space to the latter by ker(θp). Moreover, as

we did before, it is easy to check that TpF = 〈θ̂]p〉⊥, TpL = 〈θ]p〉⊥ and that the angle

between the vectors θ]p and θ̂]p is close to zero, since θ and qθ̂ can be made arbitrarily

close. Consequently, up to normalizing these two vectors, we can apply Lemma 3.5.16

and get that, for every point p of M, the tangent space to the fiber containing p is

close to the tangent space to the leaf through p, when they are thought as points in

the Grassmannian Gr(6, TpM) with the distance induced by the operator norm.

We can now show that the restriction of ω and ψ+ to the fibers of f defines a

coupled SU(3)-structure. Let F and L be defined as above, consider the exponential

map expp : TpM → M and the invertible linear map a : TpM → TpM which is

arbitrarily close to the identity map of TpM and satisfies a
∣∣
TpF : TpF → TpL . Since

(expp)∗p = IdTpM , there exist an open neighborhood U of the origin in TpM and an

open neighborhood V of p in M such that expp : U → V is a local diffeomorphism.

The composition

expp ◦ a ◦ exp−1
p : V → V,

restricted to the open set V∩F of F, defines a smooth map from an open neighborhood

of p in F to an open neighborhood of p in L which fixes p and whose differential

at p is close to the identity. Then, we can apply the inverse function theorem to

obtain a local diffeomorphism Υ from a neighborhood DF of p in the fiber F to

a neighborhood DL of p in the leaf L such that Υ(p) = p and Υ∗p is close to the

identity. Since (ω, ψ+) defines a coupled SU(3)-structure when restricted to the leaf

L, there exists an SU(3)-basis
(
e1, . . . , e6

)
of T ∗pL such that

ω = e12 + e34 + e56, ψ+ = e135 − e146 − e236 − e245.

Considering the basis
(
Υ∗e1, . . . ,Υ∗e6

)
of T ∗pF , we then have that (Υ∗(ω),Υ∗(ψ+))

defines a coupled SU(3)-structure on TpF .

ii) From Lemma 3.5.15, we know that

|σ|2 = 3 |X|2.
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Define the 3-form ϕ̂ := dσ + qθ̂ ∧ σ, it is a positive 3-form. Indeed, using Lemma

3.5.14 and the previous observation we have

|ϕ̂− ϕ|2 =
∣∣∣(qθ̂ − θ) ∧ σ∣∣∣2

≤ 3
∣∣∣qθ̂ − θ∣∣∣ |σ|2

= 9 |X|2
∣∣∣qθ̂ − θ∣∣∣2 .

Then

‖ϕ̂− ϕ‖2 =

∫
M
|ϕ̂− ϕ|2 ∗ϕ 1 ≤ 9|X|2

∫
M
|qθ̂ − θ|2 ∗ϕ 1 = 9|X|2

∥∥∥qθ̂ − θ∥∥∥2

and ‖ϕ̂− ϕ‖ is close to zero, since by construction
∣∣∣qθ̂ − θ∣∣∣ can be made arbitrarily

small. Therefore, ϕ̂ is stable, as it lies in an arbitrarily small neighborhood of the

stable form ϕ and being a stable form is an open condition. Since dϕ̂ = −qθ̂ ∧ ϕ̂,

the 3-form ϕ̂ defines a locally conformal calibrated G2-structure with Lee form qθ̂,

which is a 1-form with integral periods.

Remark 3.5.18. By Tischler’s theorem, we have that M is the mapping torus of a

diffeomorphism ν of a certain 6-manifold (see also [133]), but ν in general does not

preserve the coupled SU(3)-structure on the fiber.

The previous theorem applies for instance to the compact locally conformal cali-

brated G2-manifold (S/Γ, ϕ) obtained in Example 3.3.18, Indeed, the Lee form θ is

non-vanishing and Lθ]ϕ = 0, as we also observed in Example 3.5.10. Therefore, S/Γ

is fibered over S1 and each fiber is endowed with a coupled SU(3)-structure.
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Perspectives on flows

In this final chapter, we consider evolution equations (flows) of special geometric

structures. We begin with the study of a generalization of the Hitchin flow, then we

review the definition of geometric flows and related properties and, finally, we explain

some ideas which could be useful to study a currently open problem regarding the

existence of geometric flows evolving SU(3)-structures.

4.1 Generalized Hitchin flow

In Section 3.2.1, we reviewed how the Hitchin flow equations of a t-depending SU(3)-

structure (ω(t), ψ+(t)), t ∈ I ⊆ R, are obtained. Leaving aside the problem of

existence of solutions and using the notations fixed in that section, we may rewrite

the result in the following way

Proposition 4.1.1. An SU(3)-structure (ω(t), ψ+(t)) defined on a 6-manifold M and

depending on a real parameter t ∈ I ⊆ R can be evolved to a parallel G2-structure

on M × I defined by ϕ = ω ∧ dt+ ψ+ if and only if it is half-flat for each t and the

following evolution equations hold ∂
∂tψ+ = dω

∂
∂tω ∧ ω = −dψ−

. (4.1)

167
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Furthermore, since the half-flat condition

dψ+ = 0, dω ∧ ω = 0,

is preserved by the Hitchin flow equations, in Section 2.4.2 we restricted our attention

to special half-flat SU(3)-structures, observing that there are examples of solutions

of (4.1) belonging to the same subclass of W−1 ⊕W
−
2 ⊕W3 as long as they exist, but

that in general this need not to be true. Indeed, it is not possible to show that the

conditions defining a special half-flat SU(3)-structure (e.g. dω = c ψ+ in the coupled

case) are preserved by the evolution equations (4.1), as long as we do not know how

ω and ψ− evolve. We may then try to consider a suitable generalization of these

evolution equations and study the behaviour of a certain class of SU(3)-structures

with respect to it. First of all, we need to specify what does generalization mean in

this context. Let us consider a result of [68] which is explanatory for this aim.

Recall that an SU(3)-structure (ω, ψ+) is said to be nearly half-flat if its intrinsic

torsion belongs to W−1 ⊕W
+
1 ⊕W

−
2 ⊕W3. This is equivalent to the requirement

dψ+ = k ω2,

where k = w+
1 is a real constant which is zero if and only if the SU(3)-structure is

half-flat. In a similar way as in Proposition 4.1.1, it is possible to show that nearly

half-flat SU(3)-structures can be evolved to nearly parallel G2-structures. In detail

Proposition 4.1.2 ([68]). An SU(3)-structure (ω(t), ψ+(t)) defined on a 6-manifold

M and depending on a real parameter t ∈ I ⊆ R can be evolved to a nearly parallel

G2-structure on M × I defined by ϕ = ω ∧ dt+ ψ+ if and only if it is nearly half-flat

with dψ+ = k ω2 for each t and the following evolution equations hold ∂
∂tψ+ = dω − 2k ψ−

∂
∂tω ∧ ω = −dψ−

. (4.2)

Proof. Denoted by d7 the exterior derivative on M×I and by d the exterior derivative

on M, we have

d7ϕ = d7(ω ∧ dt+ ψ+) = dω ∧ dt+ dψ+ + dt ∧ ∂

∂t
ψ+

= dψ+ +

(
dω − ∂

∂t
ψ+

)
∧ dt
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and

d7 ∗ϕ ϕ = d7

(
1

2
ω2 + ψ− ∧ dt

)
=

1

2
dω2 +

(
∂

∂t
ω ∧ ω + dψ−

)
∧ dt.

Now, if ϕ is nearly parallel with dϕ = τ0 ∗ϕ ϕ and d ∗ϕ ϕ = 0, then (ω, ψ+) is nearly

half-flat for each t with dψ+ = 1
2τ0 ω

2 and it satisfies the evolution equations (4.2)

with k = 1
2τ0. Conversely, if the pair (ω, ψ+) satisfies the evolution equations (4.2),

then it is nearly half-flat for each t, as

∂

∂t

(
dψ+ − k ω2

)
= d

(
∂

∂t
ψ+

)
− 2k

∂

∂t
ω ∧ ω = 0,

and ϕ is nearly parallel with τ0 = 2k.

It is clear that the evolution equations (4.2) obtained in the last result are a

generalization of the Hitchin flow equations which arise when the G2-structure ϕ =

ω ∧ dt + ψ+ is non-integrable. In this sense, we may call generalized Hitchin flow

equations those obtained requiring that a t-dependent SU(3)-structure defined on a

6-manifold M can be evolved to a non-integrable G2-structure on M × I.

Remark 4.1.3. As shown in [165], a half-flat SU(3)-structure (ω, ψ+) has totally

skew-symmetric Nijenhuis tensor if and only if the pair (ω, ψ−) is nearly half-flat. The

SU(3)-structures which are contemporarily half-flat, nearly half-flat and have totally

skew-symmetric Nijenhuis tensor are precisely the double half-flat SU(3)-structures,

which can then be evolved both to parallel and nearly parallel G2-structures by the

previous results (see also [167]).

4.1.1 An example from physics

In this section, based on [70, Sect. 5.2], we consider a generalization of the Hitchin

flow equations introduced in [57] and we show that it can be used to define a system of

evolution equations for an SU(3)-structure which preserves the SU(3)-typeW−1 ⊕W
−
2

of coupled SU(3)-structures.

In the paper [57], a generalized Hitchin flow was used to study the moduli space

of manifolds endowed with an SU(3)-structure. The starting point to define the gen-

eralization is to consider the embedding of an SU(3)-structure into a noncompact

7-manifold with a G2-structure with torsion, i.e., having G2-type X1⊕X3⊕X4. This
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is motivated by the subject the authors are interested in, namely four-dimensional

domain wall solutions of heterotic string theory that preserve N = 1
2 supersymmetry

(see also [92] and refer to it and to [57] for more details on the objects coming from

supersymmetric string theory mentioned in this section). In this case, the internal

six-dimensional manifold is endowed with an SU(3)-structure and one can combine

it with the direction perpendicular to the domain wall in the four-dimensional non-

compact space-time to get a seven-dimensional noncompact manifold endowed with

a G2-structure. The physical setting provides further constraints on the intrinsic

torsion forms of the G2-structure, which we will recall in due course. One can then

study under which conditions a certain class of SU(3)-structures is preserved by this

generalized flow. In [57], this was done for instance for torsion-free, nearly Kähler,

half-flat and symplectic half-flat SU(3)-structures. We investigate here the case of

coupled SU(3)-structures.

Let M be a connected 6-manifold endowed with an SU(3)-structure (ω(t), ψ+(t))

depending on a real parameter t ∈ I ⊆ R. Following [57], on the 7-manifold M :=

M × I we consider the G2-structure defined by

ϕ = ntdt ∧ ω + <(FΨ),

where nt ∈ C∞(M) is nowhere zero and F is a nonzero complex valued smooth

function defined on I and having constant module 1 (see also Proposition 3.2.2).

Observe that the Riemannian metric defined by ϕ is

gϕ = g + n2
tdt

2,

where g = g(t) is the metric induced by (ω(t), ψ+(t)).

In the case of N = 1
2 domain wall solutions, the possibly non-identically vanishing

intrinsic torsion forms of the considered G2-structure are τ0, τ1, τ3. On the product

manifold M × I, τ1 and τ3 can be decomposed as

τ1 = τ1 + utdt,

τ3 = τ3 + dt ∧ κt,

where ut is a smooth function on M , τ1 is a 1-form on M , κt is a 2-form depending

on t and defined on M and τ3 is a 3-form on M . Moreover, the following constraints
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hold

ut =
1

2

∂

∂t
φ, τ1 =

1

2
dφ, d7τ0 = 0,

where φ denotes the ten-dimensional dilaton, d7 denotes the exterior derivative on

M and d denotes it on M .

A general argument similar to that used in the proof of Proposition 4.1.2 allows

one to write down the flow equations for the SU(3)-structure, namely the gener-

alized Hitchin flow equations associated with the considered embedding, and some

relations between the intrinsic torsion forms of the SU(3)-structure and those of the

G2-structure. In particular, it is possible to show that

w4 = 2 τ1.

Therefore, if we have an SU(3)-structure with identically vanishing intrinsic torsion

form w4, we get dφ = 2 τ1 = 0.

As in [57], we work in the gauge F = 1. In this case, the embedding of the

SU(3)-structure on M into the integrable G2-structure on M × I is given by

ϕ = ntdt ∧ ω + ψ+.

If we suppose that the SU(3)-structure is coupled for each t, i.e.,

dω(t) = c(t)ψ+(t),

dψ+(t) = 0,

dψ−(t) = −2
3c(t)(ω(t))2 − w−2 (t) ∧ ω(t),

(4.3)

where c : I → R is a nonzero smooth function such that w−1 (t) = −2
3c(t), then the

intrinsic torsion forms τ1 and τ3 take the following expressions

τ1 = utdt, τ3 = τ3 −
τ0

nt
dt ∧ ω.

Moreover, the 2-form ω(t) evolves as

∂

∂t
ω(t) = ftω(t) + ht, (4.4)

where

ft = 2ut − ntw−1 (t), (4.5)

ht = ntw
−
2 (t)− ∗(dnt ∧ ∗ψ+(t)). (4.6)
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It follows from a general argument involving the flow equations that

dft = 0,

and using one of the constraints recalled earlier, we get

dut =
1

2
d

(
∂

∂t
φ

)
=

1

2

∂

∂t
(dφ) = 0.

Taking the exterior derivative of both sides of (4.5), we then have

dnt = 0.

Thus, nt is actually a function of t and (4.6) becomes ht = ntw
−
2 .

Remark 4.1.4. With our convention, w−2 here is −w−2 in the paper [57].

The flow equations for ψ+(t) and ψ−(t) determined in [57] from the embedding

and the results of [117] reduce to the following in the coupled case

∂

∂t
ψ+(t) =

3

2
ftψ+(t)− 7

4
τ0ntψ−(t)− ntγ, (4.7)

∂

∂t
ψ−(t) =

7

4
τ0ntψ+(t) +

3

2
ftψ−(t) + ntJγ, (4.8)

where γ is the component of ∗τ3 ∈ Ω3(M) in
r

Ω2,1
0 (M)

z
.

We derive now all of the conditions that arise requiring these flow equations to

preserve the coupled condition. We may sometimes omit the t-dependence of the

forms for brevity.

First of all, suppose that for each t the coupled condition dω(t) = c(t)ψ+(t) holds.

Differentiating both sides with respect to t, we have

d

(
∂

∂t
ω

)
= ċψ+ + c

(
3

2
ftψ+ −

7

4
τ0ntψ− − ntγ

)
.

Moreover, taking the exterior derivative of both sides of (4.4), using dnt = 0 and the

hypothesis on the coupled condition, we obtain

d

(
∂

∂t
ω

)
= ftcψ+ + ntdw

−
2 .
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Comparing the two equations, it follows

ntdw
−
2 = ċψ+ +

1

2
cftψ+ −

7

4
cτ0ntψ− − cntγ.

Wedging both sides by ψ− and using the fact that γ ∧ψ− = 0, since γ ∈
r

Ω2,1
0 (M)

z
,

we get

ntdw
−
2 ∧ ψ− =

2

3
ċ ω3 +

1

3
cftω

3. (4.9)

Since for each t it holds dw−2 ∧ ψ− = −|w−2 |2 ω
3

6 (cf. Lemma 2.4.7), where the norm

is induced by g(t), equation (4.9) becomes

−nt|w−2 |
2ω

3

6
=

2

3
ċ ω3 +

1

3
cftω

3

and the following result is proved.

Proposition 4.1.5. Suppose that the generalized Hitchin flow preserves the coupled

condition dω(t) = c(t)ψ+(t). Then, the function c(t) must evolve in the following

way
∂

∂t
c(t) = −1

2
c(t)ft −

1

4
nt|w−2 (t)|2g(t).

Moreover, for each t, it must hold

dw−2 = −1

4
|w−2 |

2ψ+ −
7

4
cτ0ψ− − cγ.

In order to preserve the closedness of ψ+(t), we need

d

(
∂

∂t
ψ+

)
= 0.

Moreover, taking the exterior derivative of both sides of the flow equation (4.7) of

ψ+, we have

d

(
∂

∂t
ψ+

)
= −7

4
τ0ntdψ− − ntdγ.

Comparing the two equations, it follows

dγ = −7

4
τ0ntdψ−. (4.10)
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Observe now that dγ ∧ ω = 0, since γ is a primitive real form of type (2, 1) + (1, 2).

Therefore, wedging both sides of (4.10) by ω and recalling that dψ− ∧ ω = −2
3c ω

3,

we get

τ0ntc = 0,

and then τ0 = 0, since both c and nt cannot be zero. In particular, γ is closed and,

by [57, Prop. 2],

∗τ3 = γ.

We can summarize the results in the following

Proposition 4.1.6. If the closedness of ψ+ is preserved by the generalized Hitchin

flow, then the intrinsic torsion form τ0 vanishes identically and the 3-form γ is closed

and satisfies ∗γ = −τ3.

Let us now consider the expression of dψ− in (4.3) and differentiate it with respect

to t, having in mind the results already obtained:

d

(
∂

∂t
ψ−

)
=

(
−2

3
ċ− 4

3
cft

)
ω2 +

(
−4

3
cnt − ft

)
w−2 ∧ ω −

∂

∂t
w−2 ∧ ω − ntw

−
2 ∧ w

−
2 .

Taking the exterior derivative of both sides of the flow equation (4.8), we get

d

(
∂

∂t
ψ−

)
= −ftc ω2 − 3

2
ftw

−
2 ∧ ω + ntd(Jγ).

Comparing the two identities, we obtain that the evolution of w−2 must satisfy the

following equation

∂

∂t
w−2 ∧ ω =

1

6
nt|w−2 |

2ω2 +

(
−4

3
cnt +

1

2
ft

)
w−2 ∧ ω − ntw

−
2 ∧ w

−
2 − ntd(Jγ).

We also know that the following conditions deriving from the Bianchi identity

d7Ĥ = 0 must hold

dS = 0, (4.11)

dSt =
∂

∂t
S, (4.12)
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where Ĥ = dt∧ St + S is the component of the ten-dimensional flux along M. Using

the previous results, it follows from [57] that for a coupled SU(3)-structure

S = n−1
t utψ− + Jγ, St = 0.

From the identity (4.11), we then get

d(Jγ) = −n−1
t utdψ−. (4.13)

Observe that d(Jγ) ∧ ω = 0. Thus, if we wedge both sides of (4.13) by ω, we obtain

n−1
t utc = 0,

from which follows ut = 0 and, as a consequence, d(Jγ) = 0. The identity (4.12)

now reads
∂

∂t
(Jγ) = 0.

Summarizing, after imposing all of the conditions, we get that the only possibly

non-identically vanishing intrinsic torsion form of the G2-structure is τ3 = −∗ γ, the

3-form γ is closed and satisfies d(Jγ) = 0, ft = 2
3ntc(t) and the evolution equations

of the differential forms defining the coupled SU(3)-structure become

∂

∂t
ω(t) =

2

3
ntc(t)ω(t) + ntw

−
2 (t),

∂

∂t
ψ+(t) = ntc(t)ψ+(t)− ntγ,

∂

∂t
ψ−(t) = ntc(t)ψ−(t) + ntJγ.

Moreover, the intrinsic torsion forms of the coupled SU(3)-structure must evolve as

∂

∂t
c(t) = −1

3
nt(c(t))

2 − 1

4
nt|w−2 (t)|2g(t),

∂

∂t
w−2 (t) ∧ ω(t) =

1

6
nt|w−2 (t)|2g(t)(ω(t))2 − ntc(t)w−2 (t) ∧ ω(t)− nt(w−2 (t))2,

and for each t it must hold

dw−2 = −1

4
|w−2 |

2ψ+ − cγ.
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As a particular case, if we suppose that nt = 1 and γ = 0, then

ϕ = dt ∧ ω + ψ+

is a parallel G2-structure on M × I. Under these hypothesis, the evolution equations

of the differential forms ω(t), ψ+(t), ψ−(t) read

∂
∂tω(t) = 2

3c(t)ω(t) + w−2 (t),

∂
∂tψ+(t) = c(t)ψ+(t),

∂
∂tψ−(t) = c(t)ψ−(t),

(4.14)

the evolution equations of the intrinsic torsion forms of the coupled structure must

be

∂
∂tc(t) = −1

3(c(t))2 − 1
4 |w
−
2 (t)|2g(t),

∂
∂tw

−
2 (t) ∧ ω(t) = 1

6 |w
−
2 (t)|2g(t)(ω(t))2 − c(t)w−2 (t) ∧ ω(t)− (w−2 (t))2,

(4.15)

and for each t the 2-form w−2 has to satisfy the following identity

dw−2 = −1

4
|w−2 |

2ψ+, (4.16)

which is one of the conditions widely discussed in Section 2.4.3.

It is easy to check that a solution of these equations which is coupled for each

t is also a coupled solution of the Hitchin flow equations in the sense of Definition

2.4.16 and vice-versa. For instance, the coupled solution of the Hitchin flow on the

Lie algebra n28 obtained in the proof of Proposition 2.4.19 satisfies (4.14) and the

conditions (4.15), (4.16). In the general case, the presence of w−2 (t) in the flow

equations makes rather complicated any attempt to solve them. However, we can

show that a solution of them starting from a coupled SU(3)-structure stays coupled

as long as it exists.

Proposition 4.1.7. Let (ω(t), ψ+(t), c(t), w−2 (t)) be a solution of the equations (4.14),

(4.15), (4.16), with initial condition a coupled SU(3)-structure (ω(0), ψ+(0)) with

coupled constant c(0). Then, (ω(t), ψ+(t)) is a coupled SU(3)-structure as long as it

exists.
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Proof. Consider dω(t)− c(t)ψ+(t), differentiating it with respect to t and using the

hypothesis, we get (omitting the t-dependence for brevity)

∂

∂t
(dω − cψ+) = d

(
∂

∂t
ω

)
− ċψ+ − c

∂

∂t
ψ+

=
2

3
cdω + dw−2 +

1

3
c2ψ+ +

1

4
|w−2 |

2ψ+ − c2ψ+

=
2

3
c(dω − cψ+).

Thus, if we let β(t) := dω(t)−c(t)ψ+(t), we have that ∂
∂tβ(t) = 2

3c(t)β(t). Therefore,

β(t) = q(t)β(0), where q(t) = e
∫ t
0

2
3
c(s)ds. Moreover, β(0) = dω(0) − c(0)ψ+(0) =

0, since (ω(0), ψ+(0)) is coupled. Then, 0 = β(t) = dω(t) − c(t)ψ+(t) and, as a

consequence, dψ+(t) = 0.

4.2 Geometric flows

Geometric flows are partial differential equations describing the evolution of geomet-

ric structures on manifolds. We already encountered an example in the first chapter,

namely the Ricci flow
∂

∂t
g(t) = −2 Ric(g(t)),

where g(t) is a family of Riemannian metrics depending smoothly on a real parameter

t (cf. Section 1.4.3). Since the geometric structures we have considered so far can all

be defined by global sections of vector bundles over a manifold (possibly satisfying

certain compatibility conditions), we recall in this section how it is possible to de-

scribe the evolution of these objects and which hypothesis guarantee the (short-time)

existence and uniqueness of solutions of an initial value problem. For more details

on this topic, the reader may refer for instance to Aubin’s book [11].

Let π : E → M be a rank k vector bundle over a Riemannian manifold (M, g)

and let ∇ be a linear connection on E which is compatible with g.

Definition 4.2.1. A differential operator of order r acting on sections of E is an

operator L : Γ(E)→ Γ(E) such that for every u ∈ Γ(E) and p ∈M

L(u)(p) = F (p, u(p),∇u(p), . . . ,∇ru(p)) ∈ Ep.
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L is called smooth if the function F is smooth in its arguments. L is called linear if

it is linear in u and nonlinear otherwise. A smooth family of differential operators

Lt : Dom(Lt)→ Γ(E) depending on t ∈ [0, T ), where Dom(Lt) ⊆ Γ(E), is defined in

a similar way as before with the function F depending smoothly also on t.

If L is a linear differential operator of order r, in any local coordinate chart on

M inducing local coordinates (xi) = (x1, . . . , xm) and trivializing E, we can write

L =
∑
|α|=r

Lα1...αr(p)
∂r

∂xα1 · · · ∂xαr
+ lower order terms,

where the sum is over all of the possible multi-indices α = (α1, . . . , αr) of length

|α| = r, each Lα1...αr(p) belongs to End(Ep) and lower order terms gathers all of the

summands appearing in the local expression of L and involving derivatives of order

less or equal than r − 1.

Definition 4.2.2. The principal symbol of a linear differential operator L of order

r is a bundle map σ(L) : T ∗M × E → E defined for each p ∈M by

σ(L)p(ξp) =
∑
|α|=r

Lα1...αr(p)ξα1 · · · ξαr ∈ End(Ep),

where ξp ∈ T ∗pM is a nonzero covector having the expression ξjdx
j in local coordi-

nates on M.

It is possible to show that the previous definition does not depend on the coor-

dinates, thus it is well-posed. Moreover, it is also possible to give a coordinate-free

definition as follows

Proposition 4.2.3. Let f be a smooth, real valued function defined around a point

p of M and such that dfp = ξp ∈ T ∗pM. Then, the principal symbol of a linear

differential operator L : Γ(E)→ Γ(E) of order r is given for every u ∈ Γ(E) by

σ(L)p(ξp)u(p) = lim
s→∞

1

sr
e−sf(p)L(esfu)(p). (4.17)

Using (4.17), it is easy to show that given two differential operators L1, L2 such

that the composition L1 ◦ L2 is defined, then for every nonzero ξ ∈ T ∗M

σ(L1 ◦ L2)(ξ) = σ(L1)(ξ) ◦ σ(L2)(ξ). (4.18)
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Definition 4.2.4. Let E be a vector bundle over a Riemannian manifold (M, g) and

let L be a linear differential operator of order r acting on sections of E. L is said

to be elliptic if for each point p of M and each nonzero ξp ∈ T ∗pM the linear map

σ(L)p(ξp) is invertible.

When the order r is even, L is called strongly elliptic if there exists a real constant

C > 0 such that

g(σ(L)(ξ)u, u) ≥ C |ξ|r|u|2

for all nonzero ξ ∈ T ∗M and u ∈ Γ(E).

When a differential operator L is nonlinear, it is possible to define the lineariza-

tion of it at u ∈ Γ(E) in the direction of v ∈ Γ(E) as

L∗u(v) :=
d

ds

∣∣∣∣
s=0

L(u+ sv) = lim
s→0

L(u+ sv)− L(u)

s

and the principal symbol of L as the principal symbol of its linearization. A nonlinear

differential operator L is strongly elliptic at u ∈ Γ(E) if its linearization L∗u is

strongly elliptic in the sense of Definition 4.2.4.

Example 4.2.5. The Ricci tensor Ric(g) of a Riemannian manifold (M, g) can be

regarded as a second order nonlinear differential operator

Ric :Met(M)→ S2(M), Ric : g 7→ Ric(g),

where Met(M) ⊂ S2(M) denotes the space of Riemannian metrics on M. It is

possible to show that Ric is not elliptic, as its principal symbol has non-trivial kernel

(see [94]).

Let u be a smooth section of E depending smoothly on a real parameter t ∈ [0, T ),

we can see it as a smooth map u : M × [0, T ) → E such that u(p, t) = ut(p) ∈ Ep
for every point p of M. The evolution equation (flow equation) of u(·, t) in terms of a

smooth family of differential operators Lt is defined by

∂

∂t
u(·, t) = Lt(u(·, t))
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and is called strictly parabolic if Lt is a smooth family of strongly elliptic operators.

An initial value problem consists in considering a given section u0 ∈ Γ(E) and looking

for solutions of the system  ∂
∂tu(·, t) = Lt(u(·, t))

u(·, 0) = u0

. (4.19)

A sufficient condition guaranteeing short-time existence and uniqueness of solutions

of (4.19) is given in the next result (see for instance [11, Thm. 4.51] and the references

following it).

Theorem 4.2.6. Let π : E → M be a vector bundle over a compact Riemannian

manifold (M, g), let Lt : Dom(Lt)→ Γ(E) be a smooth family of differential operators

and let u0 ∈ Γ(E) be a smooth section of E. If L0 is strongly elliptic at u0, then

there exists a unique smooth solution of the system (4.19) defined on M × [0, ε) for

some ε > 0.

Remark 4.2.7. The previous result cannot be applied in the case of the Ricci flow,

as the operator Ric is not elliptic. This explains why it is necessary to use Nash-

Moser inverse function Theorem or to modify the flow equation in order to prove

short-time existence and uniqueness of solutions (see the discussion in Section 1.4.3).

When a special geometric structure is defined by one or more tensor fields, a

geometric flow of it consists in a set of evolution equations for (at least one of) the

defining tensors. Clearly, in this case the solution of an initial value problem has to

define the same kind of special geometric structure as long as it exists.

In the last decades, after the introduction of the Ricci flow in [94] and the de-

velopment of the Kähler-Ricci flow on complex manifolds (see [43, Ch. 2] and the

references therein for more informations), geometric flows have widely been consid-

ered in literature and it is arduous to provide an exhaustive list of references. For

instance, in [171] Streets and Tian introduced a geometric flow for the Riemannian

metric of a Hermitian manifold (M, g0, J0) such that the solution g(t) is compatible

with the complex structure J0 for each t and is moreover Kähler if (g0, J0) is Kähler.

The generalization of this flow in the almost Hermitian case was obtained by Vezzoni

in [178]. In [172], the same authors of [171] studied a family of flows evolving the
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fundamental form ω and the almost complex structure J of an almost Hermitian

manifold, generalizing the flow contained in their previous work. Moreover, they

defined a flow for almost Hermitian structures which preserves the almost Kähler

condition dω = 0. In the G2-case, examples of flows have been studied by Bryant

and Xu [30, 33], by Karigiannis [112] and by Kozhasov [120].

A currently open question is whether it is possible to define a geometric flow for

SU(n)-structures. The main problem in this context is to find a suitable system of

evolution equations for the tensors defining such a structure which has local existence

and uniqueness of solutions for a given initial data and preserves all of the compati-

bility conditions between the tensors. In what follows, we explain some ideas aiming

to provide a way to study this problem for SU(3)-structures. This is based on a joint

work-in-progress with A. Fino and L. Vezzoni [72].

4.3 A spinor flow

In this section, after reviewing the definition of spin structures on Riemannian man-

ifolds and the correspondence between spinor fields and SU(3)-structures in the six-

dimensional case, we study a geometric flow for spinors on 6-manifolds and discuss

related properties and consequences.

4.3.1 Spin structures on Riemannian manifolds

We summarize here the main definitions and properties concerning spin structures

on Riemannian manifolds. A detailed description and the proofs of the results can

be found for instance in [16, 76, 129].

Consider the Euclidean space (Rm, g) and let (e1, . . . , em) be a g-orthonormal

basis of it. The real Clifford algebra Cm of Rm with quadratic form −g(v, v), v ∈ Rm,
is an algebra over R multiplicatively generated by the basis vectors with the relations

ek · el = −el · ek, k 6= l,

ek · ek = −1,

where · denotes the product on Cm.
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The complexification Cc
m = Cm ⊗R C of the Clifford algebra Cm is isomorphic to

End(C2n) when m = 2n is even and to End(C2n) ⊕ End(C2n) when m = 2n + 1 is

odd.

Definition 4.3.1. The vector space ∆m := C2n , defined for m = 2n, 2n + 1, is the

vector space of complex m-spinors.

The group Spin(m) can be defined as a subgroup of Cm in the following way

Spin(m) := {v1 · . . . · v2k | vi ∈ Rm, |vi| = 1} ⊂ Cm ⊂ Cc
m.

For m ≥ 3, Spin(m) is the universal (double) covering of the group SO(m) and the

covering map is defined by

Ad : Spin(m)→ SO(m), Ad(ς)v = ς v ς−1,

for every ς ∈ Spin(m) and v ∈ Rm. In particular, Ad is surjective and ker(Ad) =

{±1}.
The spinor representation of Spin(m) on ∆m

ρ : Spin(m)→ GL(∆m)

is a faithful representation defined as the restriction to Spin(m) of the isomorphism

ρm : Cc
m → End(∆m) when m = 2n and of the composition of the isomorphism

ρm : Cc
m → End(∆m) ⊕ End(∆m) with the projection p1 onto the first factor when

m = 2n+ 1.

In the even-dimensional case m = 2n, the endomorphism

inρ(e1 · . . . · e2n) : ∆2n → ∆2n (4.20)

is an involution. Thus, it induces a decomposition ∆2n = ∆+
2n ⊕ ∆−2n, where ∆±2n

are the eigenspaces of complex dimension 2n−1 corresponding to the eigenvalues ±1.

Moreover, ∆±2n are irreducible representations of the group Spin(2n).

Since Rm ⊂ Cm, it is possible to introduce a multiplication of vectors and spinors

using the isomorphism ρm.
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Definition 4.3.2. The Clifford multiplication of vectors and spinors is the linear

map µ : Rm ×∆m → ∆m defined as follows

v · φ := µ(v, φ) =

ρm(v)φ, m = 2n

p1(ρm(v))φ, m = 2n+ 1
.

The Clifford multiplication µ is equivariant with respect to the action of Spin(m)

and for m = 2n it satisfies v · φ± ∈ ∆∓2n for every v ∈ R2n and φ± ∈ ∆±2n.

Finally, we recall the

Proposition 4.3.3. On the vector space ∆m there exists a positive definite Hermi-

tian product 〈·, ·〉 with the property

〈v · φ1, φ2〉 = −〈φ1, v · φ2〉,

for every v ∈ Rm, φ1, φ2 ∈ ∆m. With respect to this Hermitian product, the spinor

representation ρ becomes a unitary representation satisfying ρ : Spin(m)→ SU(∆m).

We can now introduce spin structures on Riemannian manifolds.

Definition 4.3.4. Let (M, g) be an oriented Riemannian manifold of dimension m

and let SO(M) denote the principal SO(m)-bundle overM. A spin structure on (M, g)

is a pair (Q,Θ), where Q is a Spin(m)-principal bundle over M and Θ : Q→ SO(M)

is a double covering of SO(M) for which the following diagram commutes

Q× Spin(m)
·−→ Q

πQ−→ MyΘ×Ad
yΘ

yId

SO(M)× SO(m)
·−→ SO(M)

πSO(M)−→ M

where the dots denote the right actions of Spin(m) and SO(m) on the corresponding

principal bundles. A Riemannian manifold with a spin structure is called Riemannian

spin manifold.

Remark 4.3.5. It is worth recalling here that a Riemannian manifold (M, g) is

orientable if and only if its first Stiefel-Whitney class w1(M) vanishes, while it admits
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a spin structure if and only if its second Stiefel-Whitney class w2(M) vanishes. Both

w1(M) and w2(M) are homotopy invariant, thus the existence of a spin structure on

an oriented Riemannian manifold depends only on its topology.

Using the spinor representation ρ, it is possible to define the complex vector

bundle

ΣM := Q×Spin(m) ∆m

over M with fiber ∆m, which is called the spinor bundle of (M, g). ΣM is endowed

with a complex scalar product 〈·, ·〉 defined from the Hermitian product on ∆m and

with a real scalar product (·, ·) := <〈·, ·〉. Moreover, when m = 2n it splits into the

direct sum of two subbundles ΣM = Σ+M ⊕ Σ−M , where

Σ±M := Q×Spin(2n) ∆±2n.

Definition 4.3.6. A smooth section φ ∈ Γ(ΣM) of ΣM is called (complex) spinor

field on M.

The Clifford multiplication on the fibers of the vector bundle π : ΣM →M gives

rise to a bundle map

µ : TM × ΣM → ΣM, µ(X,φ) = X · φ,

which satisfies the following properties

Proposition 4.3.7. For every X,Y ∈ X(M) and φ, φ1, φ2 ∈ Γ(ΣM) the following

results hold:

i) If φ is a spinor field without zeroes, then X · φ = 0 implies X = 0;

ii) X · Y · φ+ Y ·X · φ = −2 g(X,Y )φ;

iii) 〈X · φ1, φ2〉 = −〈φ1, X · φ2〉;

iv) (X · φ, Y · φ) = g(X,Y )|φ|2;

v) if m is even, µ : TM × Σ±M → Σ∓M .
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The Levi Civita connection ∇g on (M, g) induces a connection on the spinor

bundle, which we denote by ∇ : Γ(ΣM)→ Γ(T ∗M ⊗ΣM). The covariant derivative

associated with ∇ is called spinor derivative and has the following local expression

with respect to a local orthonormal frame (e1, . . . , em) for TM

∇Xφ = X(φ) +
1

2

∑
1≤k<l≤m

g(∇gXek, el) ek · el · φ.

Proposition 4.3.8. The spinor derivative satisfies the following properties for every

X,Y ∈ X(M) and φ, φ1, φ2 ∈ Γ(ΣM)

i) X〈φ1, φ2〉 = 〈∇Xφ1, φ2〉+ 〈φ1,∇Xφ2〉, i.e., ∇ is metric;

ii) ∇X(Y · φ) = ∇gXY · φ+ Y · ∇Xφ.

Using the Riemannian metric g to identify the tangent bundle TM with the

cotangent bundle T ∗M, we can see ∇ : Γ(ΣM)→ Γ(TM ⊗ΣM). It is then possible

to introduce the following differential operator

Definition 4.3.9. The Dirac operator of (M, g) is the first order linear differential

operator

D : Γ(ΣM)→ Γ(ΣM), D := µ ◦ ∇.

Its expression in terms of a local orthonormal frame (e1, . . . , em) for TM is

Dφ =
m∑
k=1

ek · ∇ekφ.

Proposition 4.3.10. Let D be the Dirac operator of a Riemannian manifold (M, g)

of dimension m. Then, for every f ∈ C∞(M) and φ ∈ Γ(ΣM) the following results

hold:

i) D(fφ) = fDφ+ grad(f) · φ;

ii) if m is even, D exchanges the positive and the negative part Σ+M and Σ−M of

ΣM ;

iii) D is elliptic with principal symbol σ(D)(ξ)φ = ξ] · φ.
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Proof. Points i) and ii) follow from the local expression of D and the properties of

the Clifford multiplication and of the spinor derivative. We prove here the assertion

iii) using the definition (4.17) for the principal symbol and the identity i). Let

p be a given point of M, consider a smooth function f defined around p and let

dfp = ξp ∈ T ∗pM. Then, for every φ ∈ Γ(ΣM) we have

σ(D)p(ξp)φ(p) = lim
s→∞

1

s
e−sf(p)D(esfφ)(p)

= lim
s→∞

1

s
e−sf(p)

(
esfDφ+ grad(esf ) · φ

)
(p)

= lim
s→∞

1

s
(Dφ)(p) + lim

s→∞

1

s
e−sf(p)

(
(desf )] · φ

)
(p)

=
(

(df)] · φ
)

(p)

= ξ]p · φ(p),

since grad(f)(p) = (df)](p) = ξ]p.

The square of the Dirac operator D2 : Γ(ΣM)→ Γ(ΣM) is a second order linear

differential operator. By [134], it satisfies the identity

D2 = ∆ΣM +
1

4
Scal(g),

where ∆ΣM : Γ(ΣM) → Γ(ΣM) is the Bochner-Laplace operator on spinors defined

in terms of any local orthonormal frame (e1, . . . , em) for TM by

∆ΣM = −
m∑
k=1

(∇ek∇ek + div(ek)∇ek) .

The operator −D2 is strongly elliptic. Indeed, using the property (4.18), point iii) of

Proposition 4.3.10 and point ii) of Proposition 4.3.7, we get that its principal symbol

is

σ(−D2)(ξ)φ = −σ(D)(ξ)(σ(D)(ξ)φ) = −ξ] · ξ] · φ = |ξ|2 φ.

Consequently, we have

〈σ(−D2)(ξ)φ, φ〉 = |ξ|2|φ|2.
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4.3.2 The spinors - SU(3)-structures correspondence

We already recalled at the end of Section 2.2.1 that on 6-manifolds there is a cor-

respondence between SU(3)-structures and real spinor fields of length one, which is

one-to-one up to a sign in the definition of the spinor field. Here, following in part

the notations of [2], we review how the differential forms defining an SU(3)-structure

can be obtained starting form a unit real spinor. The reader may refer also to [48,

Sect. 2.7].

In dimension six, the real Clifford algebra C6 is isomorphic to End(R8) and the

spinor representation is real and eight-dimensional. Denoted by ∆ := R8 the corre-

sponding vector space, we have

∆⊗R C = ∆6 = ∆+
6 ⊕∆−6 ,

and

∆ =
{
φ ∈ ∆6 | φ = φ

}
.

Consider the vector space R6 endowed with an inner product g and let (e1, . . . , e6)

be an orthonormal basis of it. One possible realization of the real representation of

C6 on ∆ is the following (cf. [18])

e1 = +E18 + E27 − E36 − E45, e2 = −E17 + E28 + E35 − E46,

e3 = −E16 + E25 − E38 + E47, e4 = −E15 − E26 − E37 − E48,

e5 = −E13 − E24 + E57 + E68, e6 = +E14 − E23 − E58 + E67,

(4.21)

where Ekl ∈ so(8) is the standard basis element mapping ek to el, el to −ek and the

remaining basis vectors to zero.

The space ∆ is endowed with the inner product (·, ·) and with a Spin(6)-invariant

endomorphism j : ∆ → ∆ defined by the element j := e1 · . . . · e6 ∈ C6. The latter

satisfies j2 = −Id∆, and anti-commutes with the Clifford multiplication by vectors

of R6, i.e., j(v · φ) = −v · j(φ). In particular, j is the Spin(6)-invariant complex

structure on ∆ realizing the well-known isomorphism Spin(6) ∼= SU(4).

Remark 4.3.11. Comparing j with (4.20), it follows that the spaces ∆±6 correspond

to the ±i-eigenspaces of the C-linear extension of j to ∆6 = ∆⊗R C.
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Fix a nonzero real spinor φ ∈ ∆ of length one, i.e., (φ, φ) = 1. With respect to

the scalar product (·, ·), there is an orthogonal decomposition of ∆ given by

∆ = Rφ⊕ Rj(φ)⊕
{
v · φ | v ∈ R6

}
. (4.22)

The endomorphism j preserves the subspace {v · φ | v ∈ R6} ∼= R6 and it is possible

to define an R-linear map J : R6 → R6 depending on φ in the following way

J(v) · φ = −j(v · φ).

J is well-defined by point i) of Proposition 4.3.7, it is a complex structure on R6,

as j2 = −Id∆, and it is g-orthogonal by point ii) of Proposition 4.3.7. Moreover, φ

induces a stable 3-form on R6 given for every v, w, z ∈ R6 by

ψ+(v, w, z) = −(v · w · z · φ, j(φ)),

and (g, J, ψ+) is an SU(3)-structure on R6. Its fundamental form is ω(v, w) =

g(J(v), w) and the corresponding complex (3, 0)-form Ψ has imaginary part

ψ−(v, w, z) = Jψ+(v, w, z) = −ψ+(Jv,w, z) = −(v · w · z · φ, φ).

Conversely, starting from an SU(3)-structure (ω, ψ+) it is possible to construct a

unit real spinor, which turns out to be unique up to a sign.

Remark 4.3.12. The previous definitions are consistent with our conventions fixed

in Chapter 2, but differ slightly from those given in [2]. In particular, J here is −Jφ
there, and the complex volume form there is ψφ + iψJφ with ψφ = ψ− and ψJφ = ψ+.

Consider now a Riemannian spin manifold (M, g) of dimension six with a real

spinor field φ of length one. The differential forms defining the SU(3)-structure

associated with φ are obtained from it as described before. Moreover, it follows

from decomposition (4.22) that there exist a unique 1-form η ∈ Ω1(M) and a unique

A ∈ Γ(T ∗M ⊗ TM) such that for every X ∈ X(M)

∇Xφ = η(X)j(φ) +A(X) · φ. (4.23)

The intrinsic torsion of the SU(3)-structure corresponding to φ is determined by η

and A and all of the classes of SU(3)-structures can be characterized using them.
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This was done for several classes in the recent paper [2], while some partial results

have been shown before. Let us recall some of them pointing out their relation with

(4.23).

The SU(3)-structure induced by φ is nearly Kähler (SU(3)-type W−1 ) if and only

if A = l Id, l ∈ R− {0}, and η = 0, that is, if and only if

∇Xφ = lX · φ.

Thus, φ is a real Killing spinor and the result of [93] is recovered. In this case, φ is

an eigenspinor of the Dirac operator with constant eigenfunction, indeed

Dφ =
6∑

k=1

ek · ∇ekφ = l
6∑

k=1

ek · ek · φ = −6 l φ.

When A is symmetric and η = 0, φ is called generalized Killing spinor (cf. [15]).

The corresponding SU(3)-structure is half-flat, as shown in [51], while it is coupled

if and only if A also commutes with J , as one can deduce from [2, Lemma 3.5].

Furthermore, the spinor defining a half-flat SU(3)-structure is an eigenspinor of D,

Dφ = f φ,

and from the general expression of Dφ given in [2] and [2, Lemma 3.11], we deduce

that f = 3
2 w
−
1 . From Lemma 2.3.10, we then have the following

Proposition 4.3.13. Let φ be a unit real spinor field defining a coupled SU(3)-

structure with coupled constant c on a connected Riemannian 6-manifold (M, g).

Then, Dφ = −c φ.

Remark 4.3.14. Given a real spinor φ, the general expression of Dφ has the form

Dφ =
3

2
w−1 φ+ β j(φ),

where β depends on the intrinsic torsion forms w+
1 , w4 and w5 (cf. [2]). In particular,

Dφ is still a real spinor.
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4.3.3 The (−D2)-flow

Due to the correspondence between real spinor fields and SU(3)-structures on a Rie-

mannian 6-manifold (M, g), instead of studying evolution equations for the differen-

tial forms ω and ψ+, we may look for flows evolving a spinor field. The advantage of

this approach is that we have to control only one object instead of two objects and

the compatibility conditions they have to satisfy. We describe here some preliminary

results of [72].

Let (M, g) be a compact Riemannian spin manifold and let φ(t) ∈ Γ(ΣM) be

a family of real spinor fields depending smoothly on a real parameter t. It is quite

natural to consider the evolution equation for φ(t) (see also [76, Ch. 4] for the four-

dimensional case)
∂

∂t
φ(t) = −D2φ(t),

which we may call the (−D2)-flow.

Definition 4.3.15. Let φ0 be a real spinor field of length one onM . A one-parameter

family of real spinor fields φ(t) ∈ Γ(ΣM) is a solution of the (−D2)-flow with initial

condition φ0 if  ∂
∂tφ(t) = −D2φ(t)

φ(0) = φ0

. (4.24)

Since −D2 is a strongly elliptic second order linear differential operator, the proof

of the following result is immediate

Theorem 4.3.16. Given a compact Riemannian spin manifold (M, g) and a real

spinor field of unit length φ0 ∈ Γ(ΣM), there exists a unique solution of the (−D2)-

flow defined on [0, ε) for a certain ε > 0.

Observe that, under the hypothesis of the previous theorem, the solution φ(t)

of (4.24) is non-vanishing for each t ∈ [0, ε), as φ(t) depends smoothly on t and

being non-vanishing is an open condition. When M is six-dimensional, we can then

normalize φ(t) using the metric (·, ·) and get an SU(3)-structure on M depending on

t. Therefore, the flow at the spinor level translates into a flow of SU(3)-structures on

M leaving the metric g fixed. Using the general identities relating the spinor field to
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J and ψ+, we should then be able to obtain the evolution equations of the tensors

defining the SU(3)-structure.

The main problem with (4.24) and this kind of approach is represented by the

following type of solutions

Definition 4.3.17. We say that a solution φ(t) of (4.24) is self-similar if there exists

a smooth non-vanishing function h : [0, ε)→ R such that

φ(t) = h(t)φ0.

In this case, the normalization of φ(t) is exactly φ0 and the corresponding SU(3)-

structure does not evolve.

Proposition 4.3.18. Suppose that φ0 is an eigenspinor of the Dirac operator D with

constant eigenfunction α, i.e., Dφ0 = αφ0 and α ∈ R. Then, the solution of (4.24)

starting from φ0 is still an eigenspinor of D with eigenfunction α.

Proof. Let φ(t) be the unique solution of the flow (4.24) starting from φ0 and consider

the spinor φ̂(t) = Dφ(t)− αφ(t) + φ(t). Observe that φ̂(0) = φ0 and

∂

∂t
φ̂(t) = D(−D2φ(t)) + αD2φ(t)−D2φ(t) = −D2(φ̂(t)),

as D does not depend on t. By the uniqueness of solutions of (4.24), we then get

Dφ(t) = αφ(t).

Corollary 4.3.19. If φ0 is an eigenspinor of the Dirac operator D with constant

eigenfunction α ∈ R, then the solution of (4.24) starting from φ0 is self-similar with

h(t) = e−α
2t.

Proof. We know that Dφ(t) = αφ(t), thus from the flow equation we obtain

∂

∂t
φ(t) = −α2φ(t)

and from this follows that

φ(t) = e−α
2tφ0.
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As a consequence of this result, on 6-manifolds solutions of (4.24) starting from

an eigenspinor φ0 of D with constant eigenfunction cannot be used to construct

a family of SU(3)-structures depending on t in the way previously described. In

particular, if φ0 induces a coupled SU(3)-structure, then we do not get a family of

SU(3)-structures depending on t and starting from the coupled SU(3)-structure by

Proposition 4.3.13.

We examine now some examples on six-dimensional real Lie algebras. First,

observe that if g is a six-dimensional metric Lie algebra with inner product g and

(e1, . . . , e6) is a g-orthonormal basis of g, then for a fixed spinor φ ∈ ∆ = R8, we

have

∇erφ =
1

2

∑
1≤k<l≤6

Γlrk ek · el · φ.

Moreover, the expression of the Christoffel symbols Γlrk on g with respect to the basis

(e1, . . . , e6) can be obtained from the identity

2g(∇XY,Z) = g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X).

It is

Γlrk =
1

2
gnl(csrkgsn + csnrgsk + csnkgsr),

where csrk are the structure constants of g with respect to the considered basis.

Example 4.3.20. Consider the Lie algebra n28 with structure equations

(0, 0, 0, 0, e14 + e23, e13 − e24)

with respect to a basis (e1, . . . , e6) of n∗28. Endow n28 with the inner product g for

which the dual basis (e1, . . . , e6) of (e1, . . . , e6) is orthonormal. The corresponding

Clifford algebra is multiplicatively generated by e1, . . . , e6 and we can choose the real

representation of it on ∆ = R8 described in (4.21). The spinor

φ0 =

(
1√
2
,

1√
2
, 0, 0, 0, 0, 0, 0

)T

∈ ∆,

where T denotes matrix transposition, is an eigenspinor of D with eigenfunction

α = 1. A simple computation shows that the SU(3)-structure on n28 associated with
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φ0 is the coupled SU(3)-structure we widely considered in the previous chapters,

namely

ω = e12 + e34 + e56, ψ+ = e135 − e146 − e236 − e245,

with coupled constant c = −1 = −α.

In this situation, we know that the solution of the (−D2)-flow starting from φ0

is self-similar. More precisely, it is

φ(t) = e−tφ0.

Remark 4.3.21. Observe that in the case of Lie algebras the flow equation in (4.24)

is a system of linear ODEs. Therefore, the solution starting from a given spinor

φ0 ∈ ∆ is

φ(t) = exp(−tD2)φ0,

where we have identified D2 with the matrix associated with it with respect to

the canonical basis of ∆ = R8. In particular, if φ0 is an eigenspinor of D with

eigenfunction α ∈ R, we obtain again that

φ(t) = exp(−tD2)φ0 =

+∞∑
k=0

1

k!
(−α2)ktkφ0 = e−α

2tφ0.

We conclude examining a non-trivial example and the behaviour of the solution.

Example 4.3.22. Consider the nilpotent Lie algebra n9 with structure equations(
0, 0, 0, e13, e14 + e23, e13 − e15 − e24

)
with respect to a basis (e1, . . . , e6) of n∗9, and endow it with the inner product g =∑6

k=1(ek)2. The spinor

φ0 =

(
1√
2
, 0, 0, 0,

1√
2
, 0, 0, 0

)T

∈ ∆

induces the following SU(3)-structure on n9

ω = −e15 + e34 + e26,

ψ+ = e124 − e136 − e235 + e456,

ψ− = −e123 − e146 − e245 − e356,
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and the corresponding almost complex structure is

J =



0 0 0 0 1 0

0 0 0 0 0 −1

0 0 0 −1 0 0

0 0 1 0 0 0

−1 0 0 0 0 0

0 1 0 0 0 0


.

It is easy to check that the only vanishing intrinsic torsion form of this SU(3)-

structure is w−1 and that φ0 is not an eigenspinor of the Dirac operator.

Let φ = (a1, a2, a3, a4, a5, a6, a7, a8)T ∈ ∆ be a generic real spinor, where ai =

ai(t) are real valued functions depending on t. Then,

D2φ =

(
a1, a2,

1

4
a3,

1

4
a4,

1

4
a5,

1

4
a6, 0, 0

)
and from the flow equation in (4.24) we obtain the following system of ODEs

d
dtak = ak, k = 1, 2,

d
dtak = 1

4ak, k = 3, 4, 5, 6,

d
dtak = 0, k = 7, 8.

The solution of the (−D2)-flow starting from φ0 is then

φ(t) =

(
1√
2

et, 0, 0, 0,
1√
2

e
t
4 , 0, 0, 0

)
,

it is defined for every t ∈ R and normalizing it, we get

Φ(t) =

 √
2et√

2 e2 t + 2 e
t
2

, 0, 0, 0,

√
2e

t
4√

2 e2 t + 2 e
t
2

, 0, 0, 0

 .

Φ(t) gives rise to a one-parameter family of SU(3)-structures on n9 inducing the inner
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product g for each t. We summarize the corresponding tensors here:

ω(t) =
e

3
2
t − 1

e
3
2
t + 1

(e12 + e56)− 2
e

3
4
t

e
3
2
t + 1

(e15 − e26) + e34,

ψ+(t) = 2
e

3
4
t

e
3
2
t + 1

(e124 + e456)− e136 − e235 +
e

3
2
t − 1

e
3
2
t + 1

(−e145 + e246),

ψ−(t) = −2
e

3
4
t

e
3
2
t + 1

(e123 + e356)− e146 − e245 +
e

3
2
t − 1

e
3
2
t + 1

(e135 − e236),

J(t) =



0 − e
3
2 t−1

e
3
2 t+1

0 0 2 e
3
4 t

e
3
2 t+1

0

e
3
2 t−1

e
3
2 t+1

0 0 0 0 −2 e
3
4 t

e
3
2 t+1

0 0 0 −1 0 0

0 0 1 0 0 0

−2 e
3
4 t

e
3
2 t+1

0 0 0 0 − e
3
2 t−1

e
3
2 t+1

0 2 e
3
4 t

e
3
2 t+1

0 0 e
3
2 t−1

e
3
2 t+1

0



.

Observe that for every t ∈ R we have

1

6
(ω(t))3 =

1

4
ψ+(t) ∧ ψ−(t) = e123456

and

λ(ψ+(t)) = −4
(
e123456

)⊗2
.

Moreover,

w−1 (t) = 0.

If we let t→ +∞, the limit solution is

ω∞ = −e12 + e34 − e56,

ψ∞+ = e145 − e136 − e235 − e246,

ψ∞− = −e135 − e146 − e245 + e236,

and its vanishing intrinsic torsion forms are w+
1 , w−1 , w+

2 , w4.
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SU(3)- and G2-manifolds. J. Geom. Phys., 98:535 – 555, 2015.
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[58] G. de Rham. Sur la reductibilité d’un espace de Riemann. Comment. Math.

Helv., 26:328–344, 1952.

[59] D. M. DeTurck. Deforming metrics in the direction of their Ricci tensors. J.

Differential Geom., 18(1):157–162, 1983.

[60] I. Dotti Miatello. Ricci curvature of left invariant metrics on solvable unimod-

ular Lie groups. Math. Z., 180(2):257–263, 1982.

[61] J. Eells and S. Salamon. Twistorial construction of harmonic maps of surfaces

into four-manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12(4):589–640,

1985.

[62] C. Ehresmann. Les connexions infinitésimales dans un espace fibré
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