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Abstract The reconstruction of f(R)-gravity is showed by using an auxiliary
scalar field in the context of cosmological evolution, this development provides a
way to reconstruct the form of the function f(R) for a given evolution of the Hub-
ble parameter. In analogy, f(R)-gravity may be expressed by a perfect fluid with
an inhomogeneous equation of state (EoS) that depends on the Hubble parame-
ter and its derivatives. This mathematical equivalence that may confuse about the
origin of the mechanism that produces the current acceleration, and possibly the
whole evolution of the Hubble parameter, is shown here.
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1 Introduction

Ever since the accelerated nature of the dynamics of the Universe was discovered
in 1998 by the observations of SN Ia, a lot of theoretical descriptions have been
proposed such that the observational data is satisfied. They have established that
the EoS parameter w for the fluid that governs the Universe is close to —1. The
majority of these models are included in the so-called dark energy models, where
the origin of the dark energy is a scalar field or a perfect fluid with an inhomo-
geneous equation of state (EoS), which should be the responsible for the current
acceleration, and may be even on the whole expansion history of the Universe. On
the other hand, the modified f(R) theories of gravity avoid the need to introduce
dark energy, and may give an explanation about the origin of the current accel-
erated expansion and even on the expansion history of the Universe (for recent
reviews, see [1;2]).

D. Séez-Gomez Facultat de Ciencies, Campus UAB Institut de Ciencies de I’Espai ICE/CSIC-
IEEC Torre C5-Parell-2a pl 08193 Bellaterra (Barcelona), Spain saez@ieec.uab.es



2 D. Saez-Gémez

In this sense, the cosmic acceleration and the cosmological properties of metric
formulation f(R) theories have been studied in [3} 4 3} 65 (75 (8 [9% 1O} (115 [12; 13}
14511551165 11751185195 1205 121512251235 12451255 265 12775 128512951305 131513251335 1345 135]).
Recently the main focus has been improving a f(R)-theory that reproduces the
whole history of the Universe, including the early accelerated epoch (inflation) and
the late-time acceleration at the current epoch (see [365[37; 1381395 40]), where the
possible future singularities have been studied in the context of f(R)-gravity(see
[40]). It is important to remark that the main problem that this kind of theories
found at the beginning of its development was the local gravitational test; nowa-
days several viable models have been proposed, which pass the solar system tests
and reproduce the cosmological history (see [37} 385 139; 140; 1415 1425 143} 144 1455
40 147; 148} 149]]).

In the present paper, the reconstruction of f(R)-gravity is shown, to be possi-
ble in the cosmological context by using an auxiliary scalar field and then various
examples are given where the current accelerated expansion is reproduced and
also the whole history of the Universe. This kind of reconstruction is well done by
using an scalar field without kinetic term, which differs of the kind of quintessence
reconstruction models (see [50; I51]]) where the scalar field presented has a non-
zero kinetic term. Also it is investigated the analogy between the so-called dark
fluids, whose EoS is inhomogeneous and which have been proposed as candidate
of dark energy (see [52}[53; [54; 555 [56; [57]]), and the f(R)-theories, a reconstruc-
tion of such kind of theories is shown by using such type of perfect fluids.

The paper is organized in two sections, in the first one the reconstruction of
f(R)-gravity is obtained by using scalar—tensor theory. In the second section, the
analogy between the considerations of dark fluids with an EoS depending on the
Hubble parameter and its derivatives, and f(R)-gravity is considered.

2 Reconstruction of f(R)-gravity
In this section, it will be shown how f(R) theory may be reconstructed in such a

way that cosmological solutions can be obtained. Let us start with the action for
f(R)-gravity:

S= [ =g (f(R)+Ly). m

Here L,, denotes the lagrangian of some kind of matter. The field equations are
obtained by varying the action on gy, then they are given by:

1 K,
Ruv ' (R) = 3 8uvf (R) + g0 (R) = ViV f (R) = ST, @)
where Tér‘f) is the energy-momentum tensor for the matter that filled the Universe.

We assume a flat FRW metric:

3
ds* = —dt* +a*(1) Y dx;. 3)
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Then, if T,E'C') is a perfect fluid, the modified Friedmann equations for the Hubble
parameter H(¢) = %, take the form:

2
%f(R) —3(H?>+H)f'(R)+18f"(R)(H*H + HH) = %pm,
4)
2
SFR)~ GH 4 H)'(R) 0 (R) = ~ = pn,

where the Ricci scalar is given by R = 6(2H? + H). Hence, by the Eq. , any
cosmology may be reproduced for a given function f(R). Nevertheless, in general
it is very difficult to get an exact cosmological solution directly from (). It is a
very useful technique developed in [5;[36], where an auxiliary scalar field without
kinetic term is introduced, then the action is rewritten as follows:

s= [ de/=g (POR+0(9)). )

where the scalar field ¢ has no kinetic term. By variation on the metric tensor g,y
the field equation is obtained:

1 <
58uv (P(O)R+0(9)) +P(0)Ryy +8uyDP(9) = VuVyP(9) = S T0). (6)
The action (3)) gives an additional equation for the scalar field ¢, obtained directly
from the action by varying it with respect to ¢:

P'(¢)R+Q'(¢) =0, 7

here the primes denote derivatives respect ¢. This equation may be resolved with
the scalar field as a function of R, ¢ = ¢(R), and then, replacing this result in the
action (B)), the action () is recovered,

f(R)=P(¢(R))R+Q(9(R)). ®)

Hence, any cosmological model could be solved by the field equation (6), and then
by (7) and (8) the function f(R) is obtained. For the metric (3), the Friedmann
equations read:

dP() | np L P
3P 1 3H2P(9) + 50(0) - 2 — 0,

d*P(9) dP(¢) : 2

4H———~ + (4H +6H")P =0.

We redefine the scalar field such that it is chosen to be the time coordinate ¢ = t.
The perfect fluid defined by the energy-momentum tensor T;E'\’}) may be seen as a
sum of the different components (radiation, cold dark matter,...) which filled our
Universe and whose EoS is given by p,, = w;,,p,,, then by the energy momentum

conservation P, + 3H (14 wy,)pm = 0, it gives:

(€))
2

Pm = Pm0 €XP (—3(1 +wm)/dtH(t)) ) (10)
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Hence, taking into account the Egs. (9) and the Hubble parameter may be
calculated as a function of the scalar field ¢, H = g(¢). By combining the Eq. @),
the function Q(¢) is deleted, and it yields:

2
220 2g(0) 0 4 0)P(0)
+ (14 wy,)exp [—3(1+Wm)/d¢g(¢)] =0. (11)

By resolving this equation for a given function P(¢), a cosmological solution H (¢)
is found, and the function Q(¢) is obtained by means of the equation given by @):

0(9) = ~6(s(6)P(9) ~ 65(9) 2. (12)

If we neglect the contribution of matter, then the Eq. is a first order differ-
ential equation on g(¢), and it can be easily resolved. The solution found is the
following:

s [ P'(9)
= —4/P / dp———+kP(9), 13
where k is an integration constant. As an example to show this construction, let
us choose the following function that, as it is showed below, reproduce late-time
acceleration:

P(¢)=¢% wherea > 1. (14)
Then, by the result (13), the following solution is found:
o(a—1)1
—k¢*P 4 L~ 15
8(0) =k¢™"+— % (15)

where k is an integration constant. By the expression , the function Q(¢) is
given by:

ao+1)\ a2 o} (a—1)Qa+1) 4,0
= —6|(k¢)?+ (k+ ——FL )0 2 a2l
0(0) = -6 (o + (1+ “EET ) el
(16)
The function (15)) gives the following expression for the Hubble parameter:
ala—1)1
H(t) = k> 22—~ 17
2 * oa+2 t a7

This solution may reproduce a Universe that passes through two phases for a con-
veniently choice of «. For small times the Hubble and the acceleration parameter
take the expressions:

(18)
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whereif 2<a <1+ /3, the Universe is in a decelerated epoch for small times,
which may be interpreted as the radiation/matter dominated epochs. When ¢ is
large, the Hubble parameter takes the form:

H(t) = kt®/?. (19)
This clearly gives an accelerated expansion that coincides with the current expan-
sion that Universe experiences nowadays. Finally, the expression for f(R) is
calculated by means of (I4) and (I6), and by the expression of the Ricci scalar

R = 6(2g%(¢) +g(¢)), which is used to get ¢(R). For simplicity, we study the
case where a = 2, which gives:

R—2k+\/R(1—2k)
6= : . (20)

By inserting this expression into and (16), the function f(R) is obtained:

f(R)= [R—6(k(k+1)+5/2)]R2ki\2/m+const. 1)

Thus, with this expression for the function f(R), the current cosmic acceleration is
reproduced with the solution (I7). In general, as it is seen in the following exam-
ple, it is very difficult to reconstruct the function f(R) for the whole expansion his-
tory, and even more difficult for the kind of models that unify inflation and cosmic
acceleration, in this cases it is convenient to study the asymptotic behaviour of the
model, and then by resolving the equations, the expression for f(R) is obtained.
As a second example, one could try to reconstruct the whole Universe history,
from inflation to cosmic acceleration by the f(R)-gravity as is made in [36; 37;
38} [39]. In this case, we proceed in the inverse way than above, by suggesting a
function g(¢), and trying to reconstruct the expression f(R) by calculating P(¢)
and Q(¢) by means of Eq. @) We study an example suggested in [58]], where:

H H
¢ -9

g(9) (22)

For this function the Hubble parameter takes the form H(¢) = % + fl—j’t To recon-

struct the form of f(R) we have to resolve the Eq, . For simplicity we study
the asymptotically behaviour of H(¢) in such a way that allow us to resolve eas-
ily the Eq. for P(¢). Then, for small ¢ (¢t < t;), the Hubble and acceleration
parameters read:

H(f)~— =~=t
®) 2 a £

2 t to—t

H, i H (H] 2H, 2H, > 23)

As it is observed, for t close to zero, % > 0, so the Universe is in an accelerated
epoch during some time, which may be interpreted as the inflation epoch, and for
t > 1/2 (t < ty), the Universe enters in a decelerated phase, interpreted as the
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radiation/matter dominated epoch. The Eq. for P(¢), neglecting the matter
component, is given by:

P(9) HidP(9) 4H;

—P(¢)=0. 24
d¢2 ¢2 d¢ ¢3 (¢) (24)
The solution of (24)) is:
20k 120k 240k 120k
P(d) = ko4 + K93 -2 -1 25
(0 =ko ™4 G0k o e e s 09)

where k is an integration constant. The function Q(¢) given by , takes the
form:

H, —6 s 120k

=—6— |kH +6k¢™" — —

By using the expression for the Ricci scalar, the relation ¢ (R) ~ (12H?/ R)V/4 is
found, then, the function f(R) for small values of ¢ is approximately:

k0
FR) ~ S R
Hence, by the expression the early cosmological behaviour of the Universe
(23], where a first accelerated epoch (inflation) occurs and after it, a deceler-
ated phase comes (radiation/matter dominated epochs), is reproduced. Let us now
investigate the large values for 7 (¢ close to the Rip time #;). In this case the Hubble
and the acceleration parameters for the solution (22) take the form:

2(6) ~ Hy H(1) ~ Hy d Ho(Ho+1)

d -~ . 28
ts—¢ - ty—t an a (ts—1)? (28)
As it is observed, for large ¢ the solution (22) gives an accelerated epoch which
enters in a phantom phase (H > 0) and ends in a Big Rip singularity at t = #,. In
this case the equation for P(¢) reads:
d’P Hy dP 2H,
(24)) _ Mo dP(9)  2Ho _P(¢) =0. (29)
49> 4,9 do (1, 9)
The possible solutions of the Eq. (29) depend on the value of the constant Hy, as
it follows:

1. If Hy > 5426 or Hy < 5— 26, then the following solution for P(¢) is
found:

021, (26)

27)

P(9) =A(t,— ¢>a+ +B(ts — ¢)a,’

Ho+ 1=+ +/Hy(H 10 1
_ Ho+1+y 02( o+ 10) + . (30)

Then, through the expression (12), the function Q(¢) is calculated. In this
6Hy (2Hy+1)
(15—1)?
it takes large values, diverging at the Rip time ¢ = #,. The function f(R), for a

large R, takes the form:

where o

case, for r close to #,, the Ricci scalar takes the form R = , and hence

f(R) ~R'=%/2, (31)
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2. If5-2V6< Hy <5+ 24/6, the solution of is given by:

2
P(9) = (1,—¢) Vot [Acos <(ts —¢)ln HOJF;OHOI>

—H? +10H, — 1>] 32)

+Bsin <(ts —¢)In 3

Then, for this choice of the constant Hy, and by means of the Eq. the form
of the function f(R) is found:

f(R) ~ RHo+1)/4 {Acos (Rl/zln

—H?+10Hy — 1
1 Bsin <R—1/2 1n°+20°ﬂ . (33)

—H3+10H0—1>
2

Hence, the expressions and for f(R) reproduce the behaviour of the
Hubble parameter for large ¢ given in (28), where a phantom accelerated epoch
occurs, and the Universe ends in a Big Rip singularity for + = #,. As is shown,
this model is reproduced by for small + when the curvature R is large, and by
(3T) or (B3) when ¢ is large. For a proper choice of the power «, the solution for
large ¢ is given by (31)), which in combination with the solution for small ¢,
it looks like standard gravity f(R) ~ R for intermediate . On the other hand, for
negative powers in and in combination with (27), this takes a similar form
than the model suggested in [5], f(R) ~ R+ R?+ 1/R, which is known that passes
qualitatively most of the solar system tests. As this is an approximated form, it is
reasonable to think that this model follows from some non-linear gravity of the
sort Ref. [38], which may behave as R” for large R. The stability of this kind of
models (for a detailed discussion see [59]]), whose solutions are given by and
(33), is studied in Ref. [36], where the transition between epochs is well done,
and then, the viable cosmological evolution may be reproduced by these models.
The quantitative study of the transition between different cosmological epochs is
beyond of the purposes of this work.

Summing up it has been shown that any cosmology may be reproduced by
f(R)-gravity by using an auxiliary scalar field and resolving the Egs. and
to reconstruct such function of the Ricci scalar. To fix the free parameters
in the theory, it would be convenient to contrast the model with the observational
data as the supernova data by means of the evolution of the scale parameter which
is obtained in the models showed above.

3 F(R)-gravity and dark fluids

In this section the mathematical equivalence between f(R) theories, that could
reproduce a given cosmology as it was seen above, and the standard cosmology
with a dark fluid included whose EoS has inhomogeneous terms that depend on the
Hubble parameter and its derivatives, is investigated. Let us start with the modified
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Friedmann equations (4) written in the following form:

3H? = f,(lR) (;f(R) +VoVOf'(R) - Df/(R)) —3H,
(34

—3H>-2H =

1 1 .
Of' (R)— =f(R)—H
i (or@ - Srw-n).
where we have neglected the contributions of any other kind of matter. If we com-
pare Egs. with the standard Friedmann equations (3H> = x?p and —3H> —
2H = k?p), we may identify both right sides of Egs. with the energy and
pressure densities of a perfect fluid, in such a way that they are given by:

p =t | (5 R+ 907 @~ ®) - 3]

p= |t (Br @ - Jow) .

Then, Egs. (34) take the form of the usual Friedmann equations, where the param-
eter of the EoS for this dark fluid is defined by:

p 7ir (OF (R) = 3/ (R)) —H
w=Et=——— o - - (36)
P 7 (3/(R)+VoVOf'(R) —Of'(R)) —3H

(35)

And the corresponding EoS may be written as follows:

p=—p—4H - VoV (R). 37)

1
f'(R)
The Ricci scalar is a function given by R = 6(.2H2 + H), then f(R) is a function
on the Hubble parameter H and its derivative H. The inhomogeneous EoS for this
dark fluid takes the form of the kind of dark fluids studying in several works
(see [1525 15351544 1555 1565 157]]), and particularly the form of the EoS for dark fluids
investigated in [57], which is written as follows:

p=-p+g(H,HH...), where

g(H H,H..) = —4H +VoVo(Inf'(R)) + (Voln f'(R))(VoInf'(R)).
(38)

Then, as constructed in [S7], by combining the Friedmann equations, it yields the
following differential equation:

2
. K N
H—&—?g(H,H,H...):O. (39)
Hence, for a given cosmological model, the function g given in (38) may be seen
as a function of cosmic time ¢, and then by the time-dependence of the Ricci scalar,
the function g is rewritten in terms of R. Finally, the function f(R) is recovered
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by the expression (38). In this sense, Eq. combining with the expression
results in:
dx(r)
dt

+x(1)> =H(1), (40)

where x(1) = w. Eq. is a type of Riccati equation, that may be solved
by a given Hubble parameter. Hence, f(R)-gravity is constructed from standard
cosmology where a perfect fluid with an inhomogeneous EoS is included. To show
this, let us consider the following example:

H
H(t) :Hot—i-Tl, Hi,Hy > 0. 41)

This model reproduces a Universe that passes through two epochs, a first deceler-
ated phase and a second one accelerated that is identified with the current epoch.
To resolve (@0) for this example, and for simplicity, we study the asymptotic
behaviour of the model. Then, for small ¢, the Hubble parameter takes the form

H(t) ~ A1 and the form of the function f (R) is found by solving Eq. , to be:

t

R)~——R'"*242 42
where k(1 —k) = H, and A is an integration constant. Then, by the function (42)
the model (@I)) for small 7 is reproduced. The analog dark fluid that reproduces
this behaviour, may be found by inserting the function (42)) in the EoS for the fluid

given by (38), it yields:

1 o1 R k.
p~ p+KZ { 4H+R<k/2(1+k/2)R ZR)}, (43)
where R = 6(2H? + H). Then, a perfect fluid with an inhomogeneous EoS given
by (@3) reproduces the asymptotic behaviour for small 7 in an analog description to
f(R). Let us now explore the form of f(R) function and the EoS of the dark fluid
for large ¢, in this case H(r) ~ Hyt, and by resolving the Eq. , the expression
for f(R) is given by:

R 2
f(R) ~ exp\/HoR (2,/1_10—1_10> +A, (44)

where A is an integration constant. The alternative description in terms of a dark
fluid is shown trough its EoS, which is calculated as in the case above, by the

Eq. G8):
. R Hy R
74H+—H0R <1“/4R>TOR]’ (45)

which gives an EoS dependent on the Hubble parameter and higher derivatives
contained in the Ricci scalar R = 6(2H? + H). Hence, the example considered
is reproduced in f(R)-gravity, where its asymptotical behaviour is given by the

1
PN*PJFE
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functions calculated above and 44). And the same result may be reproduced
by a dark fluid whose EoS is given by the functions (@3) and @3])). Thus, as it is
showed, f(R)-gravity may be written as a dark fluid with particular dependence on
the Hubble parameter and its derivatives through its EoS (38)), so the same model
may be interpreted in several ways.

4 Discussions

f(R)-gravity theories may provide an alternative description of the current accel-
erated epoch of our Universe and even on the whole expansion history. As it is
pointed in several works (see [41;42; 143} 1445 145; 146 1475 148} 149]), one may con-
struct this kind of theories in accordance with the local test of gravity and with the
observational data, which provide that, at the current epoch, the effective param-
eter of the EoS is close to —1. The next step should be to compare the different
cosmological tests, as the supernovae luminosity distance or the positions of the
CMB peaks, with the F(R) models, but this is beyond of the purpose of this paper.
In other hand, we have shown two different ways of reconstruct the f(R)-gravity
in the context of cosmology, in the first one, an auxiliary scalar field is used, and
in the second one, the mathematical equivalence between f(R)-gravity and dark
fluids with inhomogeneous EoS shows that while the expansion history of the Uni-
verse may be interpreted as a perfect fluid whose EoS has dependence on the cos-
mological evolution, this effect may be caused by the modification of the classical
theory of gravity. However, there is not any complementary probe to distinguish
between both descriptions of the evolution of the Universe, and thus, such kind
of modified gravity is completely allowed. Hence, f(R)-gravity is an acceptable
solution to the cosmological problem, that may provide new interesting constraints
to look for.
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