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This paper gives the Lie transformation of order 3 for a dipole including quadrupole and sextupole 
components. From these the first and second order TRANSPORT coefficients are derived for a set of 
canonical variables. The paper shows which changes have to be made to the conventional TRANS- 
PORT formalism in order to use canonical variables. The transformations for drifts, homogeneous 
field dipoles, quadrupoles, and sextupoles can be found by putting the irrelevant coefficients to zero. 
When doing so, the results agree with the results found in earlier papers. The third-order Lie 
transformations for fringing fields in the hard-edge approximation are included. 

1. INTRODUCTION 

Lie transformations have been recommended334 for tracking charged particles. 
The transformation coefficients are listed in Ref. 3 for various magnetic elements. 
To complement the catalog, this paper gives the Lie coefficients of order 3 for a 
dipole including quadrupole and sextupole components. From these the first and 
second order TRANSPORT  coefficient^'.^ are derived for a set of canonical 
variables. The paper shows which changes have to be made to the conventional 
TRANSPORT formalism in order to use canonical variables. The transformations 
for drifts, homogeneous field dipoles, quadrupoles, and sextupoles can be found 
by putting the irrelevant coefficients to zero. When doing so, the results agree 
with the results found in earlier papers.',' 

Section 2 derives the fourth-order Hamiltonian for a combined-function dipole. 
Section 3 lists the definitions used. Section 4 presents the Lie transformation to 
order 3 for the body of a combined function dipole. Section 5 displays the 
corresponding TRANSPORT coefficients, and Section 6 compares these results to 
the original TRANSPORT.' Finally, Sections 7 and 8 present the TRANSPORT 
coefficients and the third-order Lie transformations for entrance and exit fringe 
fields in the hard-edge approximation. 

2. THE HAMILTONIAN TO ORDER 4 FOR A COMBINED FUNCTION 
DIPOLE 

This paper uses the conventions of the MAD program5 with the following 
canonical variables: 
x The local horizontal axis pointing to the left, 
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p, The horizontal canonical momentum, divided by the reference momentum p,, 
y The local vertical axis pointing up, 
py The vertical canonical momentum, divided by the reference momentum p,, 
T The velocity of light times the negative time difference: T = -cat, 
6 The positive energy difference, divided by the reference momentum times the 

velocity of light: 6 = 6E/(cpo), 
s The arc length along the reference orbit. 
Except for the signs adopted here for T and 6, Refs. 3 and 4 use the same 
variables. In the limit of fully relativistic particles (v = c, E = pc), the variables T 

and 6 used here agree with those used in  TRANSPORT.^,^ This means that T 

becomes the negative path length difference, while 6 becomes the fractional 
momentum error. The reference momentum p, must be a constant in order to 
keep the system canonical. 

The MAD program uses the following Taylor expansion for the field on the 
midplane (y = 0 )  

Note the factorials in the denominators which are not present in TRANSPORT. 
The meanings of the field coefficients are 
B, The dipole field, with a positive value in the positive y direction, i.e. a 

positive field bends a positively charged particle to the right. 
B,  The quadrupole strength= aB,/dx, with a positive value corresponding to 

horizontal focusing of a positively charged particle. 
B2 The sextupole strength = a2B,/dx2. 
B, The octupole strength = a3B,lax3. 

Using this expansion and the curvature h of the reference orbit, the longitudinal 
component of the vector potential to order 4 is 

Taking the curl of A, in curvilinear coordinates the field components can be 
computed as 
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It can be easily verified that the curl and divergence of the magnetic field are both 
zero to order 2. If we now introduce the particle charge e and the relativistic 
constants 6 = vlc, the relative velocity of the reference particle, and y = E/mc2, 
the relative mass of the reference particle, the Hamiltonian for a curved reference 
system can be written4 as 

Note the sign change for 2610 with respect to Ref. 4. In order to find the Lie 
transformation, we expand the Hamiltonian as a power series and separate the 
terms of equal orders: 

H =  H2+H3+H, 

Defining the rnultipole coefficients as 

where Bp is the magnetic rigidity and h = KO, the resulting homogeneous polyno- 
mials are 

H2 = + (hK,+ K , ) x ~ / ~ -  ~ ~ ~ ~ / 2  

+ [p;+ PC+ ( ~ / P Y ) ~ I / ~  - hx6/P 

H,  = + (K2+ 2hKl)x3/6 - (K2+ hKl)xy2/2 

+ (hx - SlP)[p;+ p:+ ( 6 / P ~ ) ~ l / 2  

H, = + (K3 + 3hK2)x4/24 - (K3 + 2 h ~ , ) x ' ~ ~ / 6  + ( K ,  + hK2- h 2 ~ , ) y 4 / 2 4  

- (hx - slP)[p?+ P;+ ( ~ / P Y ) ~ I ~ / ~ P  
+ [P :+  PC+ (6/Py)'I2/8 

3. DEFINITIONS 

In order to simplify numerical evaluations, the transformation equations are given 
in terms of a few simple integrals. Using the magnet length L, we define the 
focusing functions as 

c(k ,  L )  = cos ( k L )  = cosh ( ikL) 
L 

s(k, L )  = 6 c(k,  S )  ds =sin ( k l ) / k  = sinh (ikL)/ik 

d (k ,  ~ ) = j ~ - ~ ( k , s ) d s  o = [ l - c ( k ,  L ) ] / k 2  

L 

f ( k ,  L ) =  1 d(k ,  s )  ds = [ L - s ( k , L ) ] / k 2  
0 
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For the horizontal plane, we also use the definitions 

and for the vertical plane 
kc = -K,  

c, = c(k,, L )  
s, = s(k,, L). 

Finally, we use the integrals 

For k, = 0, k, = 0, or (k;- 4k: )  = 0 some of these integrals are indeterminate 
Formulas to evaluate these integrals are given in Appendix A. 

4. THE LIE TRANSFORMATION FOR A COMBINED-FUNCTION 
D P O L E  

In the following we refer to the phase-space vector 
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The linear transformation is given by 

Using this notation, the transfer matrix R for the body of the dipole is 

The third-order Lie Polynomial F, is found according to the method given in Ref. 
3. First we transform the Hamiltonian using 

V ( s )  = R ( s )  V"'. 

The transfer matrix R is written as a function of the arc length s. After this 
transformation, the polynomial H2 vanishes and the Hamiltonian becomes 

H = I-I,[R-l(s)V]+ H,[R-'(s)V]. 

In Ref. 3, it is shown that the third-order Lie Polynomial is 
L 

F, = - lo H3[R- ' ( s )V]  ds. 

We rewrite F3 in the form 

The coefficients of F, form a fully symmetric array. This implies that the 
coefficients must be completed by the symmetry condition 

F.. = F .  .=F. .  =F. . = F  - F  
gk 1k1 I I ~  ,kt kji - kij. 

The values of the Fijk are the partial derivatives of order 3 of the F3 polynomial. 
This is different from Ref. 3 where the Fijk are defined as the coefficients of the 
polynomial. In this paper they are thus larger by a factor 3! than in Ref. 3 if all 
three indices are equal. They are larger by a factor 2! if two indices are equal, and 
they are the same if all indices are different. The non-zero coefficients of F, are 
listed below. 
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Fl16 = - (h /6p)(K2+ 2hKl)(3Jl - 3s,d, + 2s:) + (h2/ /3)k2~:  

+ (1 /2P)Kl(L  - s,cx) 

F126 = + (h/6P)(K2+ 2 h ~ ~ ) d Z ( 1 +  2cx) + ( h 2 / ~ ) s ~ c ,  

+ (1/2P)K,s: 

FZz6= - (h/3P)(K2+ 2hKl)(sxd2+ ~ 2 ) - ( h ~ / 2 ~ ) [ J l +  ~,d,(l  + 2cX)I 

+ (1 /2P)(L  + sxc,) 

F166 = -(h2/3p2)(K2+ 2 h ~ ~ ) ( ~ , d : - 2 J 2 ) -  (h3/p2)s:  

- (h/P2)Kl(J,+ sxd,) - ( ~ I B ~ Y ~ ) ~ ,  
F266 = + (h2/3p2)(K2+ 2hKl)d2+ (h3/p2)s:d, 

- (hlp2)sz+ (hlP2y2)dx 

F666 = -(h3/P3)(K2+ 2hKl)J3-(h4/p3)(sxdCf J2)  

+ (3h2/2p3)(J1+ s,d,) + (3 /p3y2) (L  - h2J1) 

FI33 = + ~ K ~ K ~ ( ~ ? S , J ~  + cxJs) + (K2+ hK1)sX 

F134 = -K2(k:sxJs + ~ x ~ c )  

F14, = + ~ K , ( ~ $ s , J ~  + c,JS) - hs, 

F233 = + 2K1K2(cXJd - sxJs) - (K2 + hKl)d, 

F234 = - K2(cxJs - sxJc) 

F244 = 4- 2K2(cxJd - sxJs) + hd, 

F336 = + 2(h/@)K1K2(Jf + dxJs -sxJd) + (h/P)(K2+ hK1)Jl 

- (1 /2P)Kl(L  - syc,) 

F346= -(h/P)K2(Jd +dxJc - ~ x J s )  

- (1/2P)K1s: 

F446= +2(hlP)K2(Jf+dxJs -sxJd)-(h2/p)J1 

+ (1 /2P)(L  + sycy) 

5. THE TRANSPORT COEFFICIENTS FOR A COMBINED-FUNCTION 
DIPOLE 

From the third-order Lie transformation given above, the second-order TRANS- 
PORT coefficients can be derived using the cascade of  transformation^^,^ 

~ ( 2 )  = ~ ~ ( 1 1  

v'~' = [F3,  ~ ( ~ ' 1 ,  
This leads to the expressions for the TRANSPORT coefficients 
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In order to simplify notation, the elements of T have been defined here as a 
symmetric rectangular array. The elements of the T matrix whose second and 
third index are different have thus half the value of those listed in Ref. 1. Using 
the M A D  conventions, the second-order equations read 

The T array is now square rather than triangular. The non-zero coefficients are 
listed below. We refer to section 3 above for definitions. 

Till = - ( 1 / 6 ) ( ~ ~ + 2 h ~ ~ ) ( s :  + d,) - (h/2)k;s; 

TI12 = - (1/6)(Kz + 2hKl)sxdx + (h/2)sxcx 

T122 = - (1/6)(K2 + 2hKl)d: + (h/2)cXdx 

Tl16 = - (h/12/3)(K2+ 2hK1)(3sxJ1 - d:) + (h2/2p)s: 





LIE TRANSFORMATIONS 

6. COMPARISON WITH TRANSPORT 

From the Hamiltonian given in section 2, we find the canonical equations of 
motion 

dxlds = p x ( l  + hx - 8/P) (1) 

dylds = p,(l + hx - 610) (2) 

dpx/ds = - ( K ,  + hK,)x + h8lP 

- (K2+ 2 h ~ ~ ) x ~ / 2  + (K2+ h ~ ~ ) y ~ / 2  - h[p:+ p:+ (81/3y)~]/2 

dp,/ds = + Kly + (K2 + hK1)xy. 

By differentiation and substitution, we find the second-order equations 

Putting 0 = 1, l / y  = 0 and making the replacements 

Eqs. (3) and (4) become identical to those given in Ref. 1. 
The TRANSPORT coefficients listed in this paper may also be found directly as 

foliows: 

1. Find the initial conditions for the derivatives at the entrance using Eqs. (1) 
and (2): 

dxlds = p x ( l  + hx - S I P )  

2. Solve the second-order equations of motion (3) and (4) to step through the 
dipole using these initial conditions. 
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3. Convert the derivatives at the exit back to canonical momenta by inverting 
Eqs. (1) and (2) to second order: 

p, = (1 - hx + 616) dxlds 

p, = (1 - hx +SIP) dyjds 

This procedure reproduces the T matrix elements found above, but by 
different means. The particular choice of canonical variables in this paper adds the 
61p terms in Eqs. (1) and (2) as compared to Ref. 1. These terms, together with 
the relativistic limit, account for the entire difference of the results contained in 
this paper and those in Ref. 1. 

7. TRANSPORT COEFFICIENTS FOR HARD-EDGE FRINGING FIELDS 

Following the TRANSPORT conventions, we define the fringe field angles $, and 
4, as positive if they cause the outward normal of the pole face to be rotated 
away from the centre of curvature, i.e. if the fringing field causes an additional 
horizontally defocusing quadrupole. The pole face curvatures q1 and q2 are 
positive if the pole face is convex, i.e. if there is an additional negative sextupole 
effect in the fringing field. The first-order transfer matrix for an entrance or exit 
fringing field is then in the hard-edge approximation1 

The second-order coefficients must be modified with respect to Ref. 1 using Eqs. 
(1) and (2) of Section 6 when using canonical variables. This causes the coeffi- 
cients T2,, and T,,, to vanish. The non-zero coefficients for the entrance fringing 
field are 

TI,, = -(h/2) tan2 4, 
T133 = +(h/2) sec2 $, 

T211 = +(h/2)ql sec3 $ + K ,  tan $, 

T2,, = +(h/2) tan2 4, 
= -(h/2)q1 sec3 - K1 tan $, + (h2/2) tan $,(I +sec2 

T23, = -(h/2) tan2 4, 
T313 = +(h/2) tan2 

T413 = -(h/2)ql sec3 G1- K1 tan 

= -(h/2) tan2 $, 

T423 = -(h/2) see2 
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For the exit fringing field, the non-zero second-order coefficients are 

TI,, = +(h/2) tan2 $5 

TI33 = -(h/2) sec2 42 
T2,, = +(h/2)q2 sec3 Ilr2+ K, tan 11,,-(h2/2) tan3 4, 
TZl2 = -(h/2) tan2 11,2 

T233 = -(h/2)q2 sec3 41~-  K1 tan 4, - (h2/2) tan3 4, 
T234 = +(h/2) tan2 11,2 

T313 = -(h/2) tan2 11,2 

T4,3 = -(h/2)q2 sec3 rlr2- K1 tan 11,,+ (h2/2) tan 4, sec2 11,2 

T414 = +(h/2) tan2 4, 
T423 = +(h/2) sec2 11,2. 

Thus in both cases there is an effective sextupole with the strength 

S = -hq sec3 11, - 2K, tan 11, 

The terms of the T array without q or K, depend on the edge angle 11, and the 
curvature h only. 

8. LIE TRANSFORMATIONS FOR HARD-EDGE FRINGING FIELDS 

The Lie transformations for fringing fields are found by inversion of the formulas 
given in section 5. The linear transfer matrix is the same as in section 7. The third 
order Lie polynomial for the entrance fringing field has the non-zero coefficients 

Flll = + (h/6)ql sec3 4, + (K1/3) tan 11,, - (h2/3) tan3 11,, 

F,,, = +(h/6) tan2 4, 
FI33 = -(h/6)q1 sec3 $rl - (K1/3) tan 11,, + (h2/6) tan 4, 
F134 = - (h/6) tan2 

F233 = - (h/6) sec2 

For the exit fringing field, the polynomial has the non-zero coefficients 

Fill = + (h/6)q2 sec3 G2+ (Kl/3) tan $,+ (h2/6) tan3 11,2 

FIl2 = - (h/6) tan2 11,2 

FI33 = - (h/6)q2 sec3 42 + (K1/3) tan 4, + (h2/6) tan3 4, 
F,,, = + (h/6) tan2 11,, 

F233 = +(h/6) sec2 q!t2 
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APPENDIX A 

Evaluation of the Key Integrals 

The formulas below guarantee a relative error smaller than lop8 for all integrals, 
when evaluated to 12 significant digits. 

Consider the integrals J,, J2, and J3. For (kxL)2 < lop2 use the first three terms 
of the three Taylor series 

For ( k , ~ ) ~ >  use the formulas 

Now consider the four integrals J,, J,, Jd, and Jf. For max (kz, 4k;) < lop2 use 
the first three terms of the four Taylor series 
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with the coefficients 
n 

C, = ( ~ 1 ) ~  C (k2)n-m(4k:)m 
m =O 

Note that kz and k: cannot be negative at the same time. For k;  < 0  or k: < 0  use 

Jc =[c (2ky ,  L ) - c ( k X ,  L)ll(k2-4k:) 

Js =[s (2ky ,  L ) - s ( k X ,  L)Il(kZ-4k:) 

Jd = [d(2ky ,  L ) - d ( k x ,  LIIl(kz-4k:) 

Jf = [ f  (2ky,  L )  - f  (kx, LIll(k2- 4 k 3  

For kz>4k:>0 use 

J, = s  [ (k ,  + 2ky) /2 ,  LIs[(k ,  - 2ky) /2 ,  L l / 2  

Js ={s[ (kx  +2kY) /2 ,  L lc[ (k ,  - 2ky ) /2 ,  L l  

- c[(kx  + 2kY) /2 ,  L l s[ (kx  -2ky) /2 ,  L1)/4kxk, 

Jd = [d(2ky ,  L ) -  J,llk2 

Jf = [f (2ky,  L ) -  Jsllkz 

For 4k:> kz>0 use 




