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ABSTRACT 

The decay of a resonance into a final state containing two particles, 

the sum of whose mean masses exceeds that of the parent particle, is 

investigated. Alternative methods for calculating the transition rate 

are compared. Two specific decays, Yo(1518) - Yl(1385) r and 

A2 (1310) - B(1237)~, are studied numerically. 
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I. INTRODUCTION 

Recently, separate measurements of the transition rate for Yo(1518) -. 
- 

Yl(1385)x were performed by groups from Berkeley’ and the University of 

Massachusetts . 2 A noteworthy feature of this decay process is that the sum of 

the pion mass and the mean mass of Y,(1385) exceeds the mean mass of Yo(1518). 

Thus, the physical transition takes place only because of the finite resonance 

widths. 

The purpose of this communication is to comment upon certain questions3 

which arose in the course of the analysis of this system due to its somewhat 

delicate kinematics. Let us phrase the situation as follows. Suppose we are 

given the probability amplitude for Yo(1518) --, Yl (1385)~ and wish to calculate 

the transition rate. Clearly, in the course of integrating over phase space, some 

averaging over the baryon mass is called for. However, there is more than one 

way to proceed. One may either fix the initial baryon mass at its central value 

and average over the mass of the final baryon or alternatively, average over the 

masses of both initial and final baryons. What is the relation between the rates 

calculated these two ways? Can the difference ever be significant? Another 

type of question which can occur concerns the nature of the averaging variable. 

Is it more “natural” to use mass or squared mass, in the event that the ampli- 

tude depends only upon the latter? 

For any individual situation, one can, of course, use a computer to answer 

all the above questions numerically. However, an analytic treatment of the 

problem is more instructive in revealing the basic parameters occurring in 

the analysis, and in determining the way in which they interrelate to give the 

final result. 
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In the following, we shall define and then analyze a model appropriate for 

dealing with these questions. Two specific resonance decays, Yo(1518) - 

Yi(138Ga and A2(1310) - B(1237)~, will be studied numerically. Finally, we 

shall comment on theoretical aspects of these transitions. 

II. THE MODEL 

The physical situation under consideration here is that of an unstable particle 

of central mass ?Z R, width TR, decaying into a zero-width meson of mass 1-1 and 

a second unstable particle of mean mass M, width I’. The mass of each unstable 

particle is described in terms of some distribution function p, which for definite- 

ness, we shall take in the numerical part of our analysis as Lorentzian. For 

simplicity, we shall assume both unstable particles to have the same mass dis- 

tribution function. 4 
Thus we describe the mass spectrum of the parent and 

daughter resonances in terms of ,o(MR) and p(M) respectively. The effect of 

this assumption on our numerical work is expected to be slight. Let f(MR, M, ,u) 

represent the transition rate for the decay; the parent and daughter masses are 

MR and M, p respectively, and we work in the rest frame of the parent particle. 

If the resonances were narrow and if MR > > M + p, then the function f(MR, a,,) 

would accurately describe the transition rate. However, for the situation under 

investigation, we must instead consider a quantity like 

dM f(MR, M, r-l) P(M) 

< f(MR) > = J M-I’ 

I 

M&-G 
. 

dM p(M) 
M-r 

(1) 

We have arbitrarily decided4 to average all masses in this analysis over the range 

M-r 5 M < Z+r. This explains the lower limit in the integrals of Eq. (1). 
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The upper limit is a consequence of the bound M < MR - JJ arising from ,powers - 

of the decay momentum of final state particles which invariably appear in :transi- 
4 

tion rates. At this point, we are ready to define two alternative ways of calcu- 

lating the transition rate. Either we may simply fix the mass MR at its mean 

value MR, 

,<f> = < @%R) > 

or we may average over the variable MR, 

<<f>> = 
I 

5iR+rR 
dMR dMR) <f(MRb 

RR-rR 
. 

ZR+rR 
d”R d”R) 

ZR-rR 

Our task is to relate the two definitions of transition rate, << f > > and <f >. 

Let us begin by expanding <f(MR)> in powers of MR - RR, 

<f(MR) > = <f> + <f>(l)(MR - ER) f ; <f>(2) (MR -%iR,2 + *** 

where 

<f(M )> R MR 3XR’ 

(2) 

(3) 

(4) 

(5) 

At this point, it would be helpful to have a definite form for the mass distribu- 

tion function p . We have chosen to work with 

d”R) = 
1 

2 * 
rR (MR-aR)2 + 4 

(6) 

-4- 



Upon inserting Eq. (4) into Eq. (3) and using Eq. (6), we obtain5 

-<<f>> = <f> + ( 2 - tan-l2) r2 

8 tan-‘2 R 
<f>(2) +‘*’ . (7) 

The numerical factor in the second term of Eq. (7) is rather small, equaling 

about 0.1. Thus, given our assumptions, the difference between << f > > and 

< f > depends upon the function <f > w* We can obtain an expression for <f > (2) 

from Eqs. (l), (5), and (6), 

<f>(2) = I@) 2 -- 
N 2 

$+A M =z R R 

(8) 

where 

A =M+P-ER, 

and 

/ 

MR-p 
I@$,) = dM f(MR, M, P) P(M) . 

Xi-r 

(9) 

(11) 

The first and second derivatives of I with respect to MR are denoted by I(l) and 

G2). 

It should be noted that the quantities which appear in our analysis can be 

divided into two distinct numerical classes, large (RR and %) and small (p , I, 

and rR). For the calculation of f (2), it turns out that the most convenient 

parameterization is in terms of one large parameter, zR, and the three small 

ones I-L, I? and A. This is evidenced to some extent in Eqs. (8) and (10). 
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III. EXAMPLES 

In d’rder to proceed further, we must adopt a particular form for the transi- 

tion rate f(MR, M, p ). This step is not without ambiguity. 6 For example, con- 

sider the Y6(1518) - Y1(!385)a decay. In principle this reaction can proceed 

via S-wave and D-wave amplitudes. Given the kinematical situation, we may 

neglect the D-wave contribution. One way to calculate the transition rate is to 

start with a local field theory interaction, 

S(x) = JGg Tw(x) YE(x) 7qx) . (12) 

For the moment, we shall ignore internal symmetry considerations and assume 

that the parent mass exceeds the sum of the decay particle masses. We then 

find for the parent decay width 

2 
TR = g 

(E+M)q 

MR 
(13) 

where E , q, M are the energy, momentum, and mass of the decay baryon. 

Contrast Eq. (13) with the result obtained from the “barrier penetration factor” 

approach based on potential theory, 

(14) 

where M0 is a scale mass which allows g2 to be dimensionless. The difference 

between Eqs. (13), (1%) can be considerable when used to test the predictions of 

a symmetry scheme with reactions of widely varying kinematics. 6 Unfo r tuna tely , 

aside from pointing out the existence of this ambiguity in the choice of f(MR, M, p) , 

we have no suggestion for resolving it. For definiteness, we shall consider the 
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function 

- f(“R’ M,p) = -% 
MR ’ 

(15) 

essentially the barrier penetration formula. This approach appears to generally 

be employed in phenomenological analyses. 

It is important to explicitly display the mass dependence contained in Eq. 

(15)? 

f(“R’ M,P) = (MR+M+p) (MR- M’p) (MR+M+) 1 1’2,‘2M; 

(16) 

This must now be inserted into Eq. (11) and the differentiations indicated in Eq. 

(8) performed. An approximation which makes use of the inequality gR> > ~1, I’,A 

simplifies things considerably. First we make a change of variable in (ll), 

M -bz = - 

which facilitates differentiation of the 

the desired approximation. Equation 

M-p+MR (17) 

integrals in Eq. (8), as well as setting up 

(11) becomes 

MR-%-p+I’ 

dz PWR-Z-P) (Z@P +Z)) 

l/2 
l (18) 

0 

The function I and its first two derivatives are to be evaluated at MR =MR. Upon 

scaling all quantities in terms of I, and hereafter denoting I(%$) as 11, we obtain 

1 
l- J$ 

I1 = M I dz (z(z + $ )Y2 
. 

R 0 (z + $$+; 
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In calculating the derivatives I (1) and I(2) , it is consistent with our approxima- 

tion to keep only those terms of leading order in inverse powers of RR. This 
-n- 

gives 

(20) 

(2@3) 

and 

(1 + %)li2 
-213+814 , 

I 

where 

dz 
(z(z + * 9 u2 

I l- $ 

14 = dz 
(z + $7 (z (z + +$))1’2 

l 

0 tz + 

@la) 

PW 

Our main reason for exhibiting the somewhat lengthy expressions (19)-(21b) 

is that it is now clear how to characterize a given kinematical situation, even 

when higher powers of the momentum occur. The integrals II, * * ,I4 as well as 

the other factors in Eqs. (20), (21) are seen to be functions only of the parameters 

a/r and p/I’. Let us approximately simulate the Yo(1520) -L Yl(1385)n condi- 

tions by taking A/l? = 0, p/l? = 4. It is found that7 

<f,(2) = 1.39 , 
ZRr 
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I 

so Eq. (7) becomes 

2 - 
<<f >> rR = <f> f -14 - + l *’ . 

ERr 

An estimate of <f > comes from Eqs. (2), (lo), and (19), 

<f > r = 1.62 - 

Our final result is then 

<<f>> = 1.62 r [,,.087 (+y +**j . 
zR 

(22) 

(23) 

(24) 

Since rR- is. less than half as large as I? for the Yo(1518) - Yl(1385)r decay, we 

conclude that the difference between CC f > > and < f > is insignificant for this 

example in the context of our approximations. 

Another reason for presenting Eqs. (19)-(21b) is that with the entire calcu- 

lation displayed, we can better comment upon the use of squared mass instead 

of linear mass as an averaging variable. The motivation for using M2 stems 

from the fact that the transition rate (16) may be written as a function of gR 

and Iv?. Thus, one could conceive of using a distribution function in the vari- 

able M2 , such as 

P( )= 2 [ (Iv? - G2) + E2r2 
I 

-1 . (25) 

It is difficult to see how this could change our results qualitatively, although 

small quantitative effects are to be expected. In response to the’suggestion that 

squared mass is a more natural averaging variable, we can point out that the 

upper limit, MR -p , of Eq. (1) (and of most of the subsequent integrals) exhibits 
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a linear dependence upon MR. This can be readily obtained from Eq. (16), 

where for %xed MR and p, the lowest positive zero of the decay momentum as a 

function of M occurs for M = MR - p. In this sense, the apparent dependence 

of f(MR, M, p) upon M2 R and M 1s somewhat misleading, and it is our feeling .2 ’ 

that the linear mass is an entirely appropriate variable. 

We shall conclude this Section with discussion of a second numerical ex- 

ample, the mesonic decay A2(1310) - B(1237)~. Experimental evidence for 

this transition is not on as firm a footing as the Yo(1518) ---c Yl(1385)n decay. 

Several groups have observed a significant wr7r decay mode of the A2. 8 To the 

extent that a three body final state is expressible as a two body state in which 

one of the particles is itself a resonance, it is reasonable to expect at least 

part of the WTZ mode to arise from a B(1237)n composite. Recall that the B 

meson decays almost entirely into W?T. Moreover, although both Yo(1518) - 

yl (1385)x and A2 (1310) -L B(1237)~ share the property that finite‘width effects 

make both decays possible, these two reactions are rather different in their 

kinematics , thus providing an ins true tive contrast. 

Analogous to ~~(1518) ---L Yl(1385)~, the A2 - Bn transition can proceed 

through two partial waves, in this case P-wave and F-wave. Again, it is safe 

to ignore the effect of the higher partial wave. The notation is carried through 

to this case as expected, MR, FR representing the A2(1310) meson and M, I’ 

the B(1237) meson. Although our choice of transition rate f(MR,M) is afflicted 

with the same kind of ambiguity as mentioned earlier, we shall work with 

f t”Rf M, /.L) = L 
JR l 

(26) 

As before, we use Eq. (7) to relate << f > > to < f >, so most of the work lies in 

computing < f > (2). Equations (8)-(11) are still operative but there are modifications 
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in Eqs. (18)-(21b). However, the appearance of A/I’ and p/l? as parameters 

does n@ change. The A2 - Bn kinematics corresponds approximately to 

a/r = + and p/I’ = 1.0. This leads to the numerical result 

<f >(2’ = 0.84 3 

MR 

which together with 

<f> r3 = 0.41 - 

% 

gives finally 

<<f >> = 0.41 2 (,+o.,, (g-..+...) . (27) 

Since I’ and rR are comparable in this case, the difference between << f >> 

and < f > can be as large as 20T~. 

IV. CONCLUSION 

In an attempt to comment upon some questions of procedure which arose in 

a recent analysis of the Yo(1518) - Yl(1385)n transition,3 l we have examined 

a simple model which we feel contains the essential ingredients of the process. 

Simplifying assumptions, such as regarding resonance shape, were made to 

keep the mathematical complexity to a m.inimum. Our main purpose was to 

establish a relation between the transition rates << f > > and < f > , the formez 

corresponding to integration over both initial and final state baryon masses, 

the latter to integration over just the final state baryon mass, with the initial 

baryon mass being fixed at its central value, We found that < f > is the leading 

term in an expansion’ of <<f >i in powers of r,/r. Given our assumptions, 
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the first correction to <f > appeared to 2nd order. The parameters which 

turned oti to be most appropriate to our calculation were gR, I’, and the ratios 

rR/I, p/r, and A/I’, where A = %+p - gR. A numerical study of the 

Yo(1518) - Yl(1385)n system showed that the difference in approach studied 

here between the analyses of Ref. 1 and Ref. 2 cannot account for the (roughly) 

factor of two difference found for the branching ratio. However, for the 

A2(1310) - B(1237)~ decay, the difference between << f > > and <f > is signifi- 

cant, amounting to about 20% in our model, In our opinion, should the difference 

between << f > > and < f > be appreciable for a given transition, it is the former, 

<<f >> , which is the more appropriate to employ. 

The status of our theoretical understanding of the Jp = i baryons is not 

entirely clear. Conventionally, SU(3) symmetry has been used to characterize 

the lowest lying t baryons in terms of an octet and a singlet with mixing 

between Yo(1518) and Yo(1690), expressed in terms of an angle‘ 6. Uncertainty 

in the : z* baryon mass hinders an accurate determination of 8 in terms of a 1 

mass-matrix analysis. A conservative estimate is that I8 I 2 30’. Incidentally, 

the criterion cos 2 8 < 1 can be used to obtain an inequality for the 5:’ mass, 

ME*) 5 2 2 M(Y0(1690)) + ; M(Yl(1670)) -M(N*(1520)) 

or 

M(z*) 2 3370 - M(N*). (28) 

The current limits on the N* mass, 1510 5 M(N*) 5 1540, place upper bounds 
3- 

on the z* mass of 1860 and 1830 MeV, respectively. D-wave decays of the 2 
+ 

baryons into O- k meson-baryon final states have also been used to obtain an 

estimate of 8, yielding 8 z 25 0 10 , a value not inconsistent with the mass-matrix 

However, decays of the type i -* 
+ 

analysis. i O- have caused some consternation 
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among theorists because a much larger mixing angle is suggested. Perhaps 

the clezrest example of this is seen in the decay of Y,(1690) . Roughly speaking, 

a small mixing angle implies that I’ [Yo(1690) - Yl(1385) n] should be comparable 

to I’ [N*(1520) - A(1236)lr] . Instead, the former appears to be subtantially 

less than the latter. There is, however, considerable room for improvement in 

the quality of the data. 11 

Regarding theoretical efforts to explain this situation, the effort of Faiman 

and Plane” appears worthy of mention. Noting that the SU(6)w classification of 

Yo(1518) and Yo(1690) inoludes a third I = Y= 0 2 3 baryon, these authors expand 

the space in which mixing occurs from two to three dimensions. They find that 

the SU(3) wave function of Yo(1518) is practically undisturbed whereas that of 

Yo(1690) is modified in such a way as to suppress the Yl(1385)n decay mode. 

This seemingly successful resolution of the problem should be viewed with some 

caution, however, Part of the input to their mixing matrix involves a decay mode 

of Yo(1690), whose properties still appear in a state of flux. 10 Moreover, the 

only SU(3) breaking allowed in Ref. 11 is the effect of mixing. In view of the 

SU(3) breaking observed both in particle masses and decays of unmixed hadronic 

states, 13 this approach seems highly optimistic. Finally, the third i Y. 

baryon has yet to be observed experimentally. It would be worthwhile to search 

for the huge decay width predicted in Ref. 11 for the Yl(1385@ mode of this as 

yet unobserved baryon. 

Our final comments relate to the conjecture made in the previous Section 

that at least part of the A2 - W~T~T mode can be attributed to the decay chain 

A 2 ---, Bn - w,rrn.. We can use existing information on branching ratios to place 

an upper bound on the coupling strength associated with the A2 - Bn system. 
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We define a dimensionless coupling parameter G, 

P(x) = G cabc 2a AC”‘(x) B (x) a r (x) pb YC 

whose relation to the decay width is 

wg - B7r) = G2 
i% 

(29) 

(30) 

From Ref. 8 and 10, we have ‘(A2 - wnlr) / I’(A2 - all) r 0.1, with 

r (A2 - all) z 100. MeV. This implies the upper bound I’(A2 - Bn) 5 10 MeV. 

Inserting the phase space estimate Eq. (27) into Eq. (30), we obtain G2/ 4n 5 70. 

We do not suggest that the actual A2 - B7r coupling is this large, but rather con- 

clude that even a small part of the measured A2 - wrr rate can imply an appre- 

ciable A2 -. Bx coupling in view of the limited phase space. 
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