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Within the extended thermodynamics, we give a comparative study of critical heat engines for Gauss–
Bonnet and charged black holes in AdS in five dimensions, in the limit of large Gauss–Bonnet parameter 
α and charge q, respectively. We show that the approach of efficiency of heat engines to Carnot limit in 
Gauss–Bonnet black holes is higher(lower) than charged black holes when corresponding parameters are 
small(large).
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1. Introduction

Recently, the physics of charged black holes in AdS [1,2] in the 
neighbourhood of a second order phase transition has been formu-
lated in a novel way [3,4]. At this critical point, there is a scaling 
symmetry where the thermodynamic quantities scale with respect 
to charge q, i.e., Entropy S ∼ q2, Pressure p ∼ q−2, and Temper-
ature T ∼ q−1. Interestingly, it has been shown that geometry of 
black hole near the critical point yields a fully decoupled Rindler 
space–time in the double limit of nearing the horizon, while at the 
same time keep the charge of black hole large. These results might 
have profound implications for holographic constructions where 
Rindler space appears in the decoupling limit. This novel approach 
near the critical point might shed further light on holography in 
Rindler space–time. The physics of the geometry near the critical 
point itself is quite interesting from the gravity side.

Study of the critical region of black holes, has been facilitated 
by the existence of an extended thermodynamic description of 
charged black holes in AdS, which shows a phase structure that 
includes a line of first order phase transitions ending in a sec-
ond order transition point [1,5–8]. In this context, apart from the 
Hawking–Page transition (connecting black holes in AdS to large 
N gauge theories at finite temperature), Van der Waals transition 
has captured the attention recently. A holographic interpretation 
for the later transition was proposed in [9], where it is interpreted 
not as a thermodynamical transition but, instead, as a transition in 
the space of field theories (labeled by N, the number of colors in 
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the gauge theory). Thus, varying the cosmological constant in the 
bulk corresponds to perturbing the dual CFT, triggering a renormal-
ization group flow. This flow is captured in the bulk by Holographic 
heat engines with black holes as working substances [9]. Various 
aspects of this correspondence are being actively studied both from 
the gravity point of view as well as for potential applications to the 
dual gauge theory side [8–31]. Furthermore, a holographic heat en-
gine defined at this critical point has the special property that its 
efficiency approaches that of Carnot engine at finite power,1 as the 
charge parameter q → ∞ [3].

Intrigued by the above developments, in this note, we study 
holographic heat engines for Gauss–Bonnet (GB) black holes in 
AdS, whose phase structure closely resembles that of charged black 
holes, where the role of the charge parameter q is played by the 
GB parameter α. We analyze properties of heat engines at the crit-
ical point, following the methods proposed by Johnson in [3] and 
compare the efficiencies as a function of α and q. The motivations 
are as follows. Higher derivative curvature terms such as Gauss–
Bonnet terms occur in many occasions, such as in the semiclassical 
quantum gravity and in the effective low-energy effective action of 
superstring theories. In the latter case, according to the AdS/CFT 
correspondence [41,42], these terms can be viewed as the correc-
tions of large N expansion of boundary CFTs in the strong coupling 
limit. It is also known that such corrections have interesting conse-
quences to viscosity to entropy ratio [43]. In this spirit, corrections 
to the efficiency of heat engines (with charged black holes as work-
ing substances) coming from GB terms were considered in detail 

1 See [32–40], for recent discussions on approaching Carnot limit at finite power 
in thermodynamics and statistical mechanics literature.
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in [17]. It was noted that the efficiency of the engine depends on 
which parameters of the engine are held fixed as αG B is changed. 
It could increase or decrease, depending on the scheme used. Here, 
our interest is in the critical region.

Charge neutral AdS Schwarzschild black hole is not very useful 
as a heat engine as the specific heat at constant pressure is always 
negative for small black hole. However, in the case of charged AdS 
black holes (with or without the Gauss–Bonnet term) heat engines 
can be defined with holographically dual field interpretation. In the 
case of neutral black holes, the presence of a GB parameter, how-
ever, allows for phase transitions and PV criticality akin to charged 
black holes in AdS. This has been noted in [7,44], where it was 
pointed out that GB parameter mimics the charge. Based on the 
PV critical behavior it is possible to define a heat engine for charge 
neutral Gauss–Bonnet black holes as working substances. The key 
difference from [17], is that there the GB coupling was a param-
eter and the working substance was a charged black hole. In the 
present context, the equation of state one uses corresponds to neu-
tral GB black holes, which are themselves the working substances. 
We also compare, how the approach of efficiency of engines to the 
Carnot limit is in GB and charged black holes, coming from q as 
well as α [3]. This is important because, as compared to charged 
black holes, the parameter α takes care of the corresponding next 
to leading order corrections in the large N limit in the gauge the-
ory.

Consider the action for D-dimensional Einstein theory with a 
Gauss–Bonnet term and a cosmological constant � as [7,17,45]:

I = 1

16π

∫
dD x

√−g

×
[

R − 2� + αGB(Rγ δμν Rγ δμν − 4Rμν Rμν + R2)
]

, (1.1)

where the Gauss–Bonnet parameter αGB has dimensions of
(length)2 and the cosmological constant is

� = − (D − 1)(D − 2)

2l2
. (1.2)

The action admits a static black hole solution with the metric:

ds2 = −Y (r)dt2 + dr2

Y (r)
+ r2d�2

D−2 (1.3)

where

Y (r) = 1 + r2

2α

(
1 −

√
1 + 4αm

rD−1
− 4α

l2

)
. (1.4)

Here, d�2
D−2 is the metric on a round D − 2 sphere with vol-

ume ωD−2 and α = (D − 3)(D − 4)αGB. At r = r+ , is the largest 
positive real root of Y (r). The mass of the solution is given by [7,
17,45]:

M = (D − 2)ωD−2

16π
m . (1.5)

In order to have a well defined vacuum solution (with m = 0), for 
a given value of l (and hence �) α cannot be arbitrary [46], but 
in fact must be constrained by 0 ≤ 4α/l2 ≤ 1. For later use we can 
write this in terms of the pressure (using p = −�/8π ) as:

0 ≤ α ≤ α∗ , where α∗ = (D − 1)(D − 2)/64π p . (1.6)
The horizon radius r+ of the black hole is set by the largest 
root of Y (r+) = 0, which gives us an equation for M ,

M = (D − 2)ωD−2

16π

(
αrD−5+ + rD−3+ + 16π p

rD−1+
(D − 1)(D − 2)

)
,

(1.7)

where we have replaced l by p using p = −�/8π and equa-
tion (1.2). The temperature comes from the first derivative of Y
at the horizon, in the usual way:

T = Y ′(r+)

4π
= 1

4πr+(r2+ + 2α)

×
(

16π pr4+
(D − 2)

+ (D − 3)r2+ + (D − 5)α

)
. (1.8)

The function M defines our enthalpy H(p, S), from which the en-
tropy can be computed as:

S =
r+∫

0

1

T

∂M

∂r

∣∣∣∣
p

dr = ωD−2

4
rD−2+

(
1 + 2(D − 2)

(D − 4)

α

r2+

)
, (1.9)

and the thermodynamic volume is given by

V = ωD−2

(D − 1)
rD−1+ . (1.10)

Holographic heat engine can be defined for extracting mechanical 
work from heat energy via the pdV term present in the First Law 
of extended black hole thermodynamics [9], where, the working 
substance is a black hole solution of the gravity system. One starts 
by defining a cycle in state space where there is a net input heat 
flow Q H , a net output heat flow Q C , and a net output work W, 
such that Q H = W + Q C . The efficiency of such heat engines can 
be written in the usual way as η = W /Q H = 1 − Q C /Q H . Formal 
computation of efficiency proceeds via the evaluation of 

∫
C pdT

along those isobars, where C p is the specific heat at constant pres-
sure or through an exact formula by evaluating the mass at all four 
corners as [17,18,47]:

η = 1 − M3 − M4

M2 − M1
. (1.11)

In this note, we are interested in the case of neutral Gauss–Bonnet 
black holes as working substances for heat engines. Before pro-
ceeding to analyze the behavior of heat engines at criticality, we 
first present few computations of efficiency of heat engines in neu-
tral GB black holes. For black holes with charge and GB corrections, 
results were reported in [17], but, there the working substance 
was a charged black hole, which provides the equation of state. In 
the present case, the Gauss–Bonnet black hole itself is the work-
ing substance, giving a new equation of state (1.14) and a priori, it 
is not clear how the efficiency of the heat engine should behave, if 
the charge parameter is set to zero.

In D = 5, the expressions for Mass M and temperature T for 
GB black holes read as [7]:

M ≡ H = 3π

8

(
α + r2+ + 4π pr4+

3

)
, (1.12)

and

T = (2V )
1
4

(2π)
3
2

(√
V

π + α
√

2
)(

1 + 8p
√

2V

3

)
. (1.13)
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Fig. 1. In scheme 1, over the physical range of α constrained by the relation (1.6), (a) The lowest temperature of the engine TC vs α, and (b) The Carnot’s efficiency ηC vs α. 
(Here, we have chosen the values p1 = 5, p4 = 3, T1 = 50, and T2 = 60.)

Fig. 2. In scheme 1, over the physical range of α constrained by the relation (1.6), (a) The ratio η/ηC vs α, and (b) The ratio η/η0 vs α. (See the caption of Fig. 1 for parameter 
values.)
Fig. 3. The determination of the physical range of α using the relation (1.6), in 
scheme 2. (Here, we have chosen T2 ≡ T H = 60, V 2 = 33000, T4 ≡ TC = 30, 
V 4 = 15500, which give the upper bound on α as approximately 0.0119936.)

An equivalent expression to Eq. (1.13) is the equation of state 
p(V , T ):

p = 3

8

{
T
(
π

√
2

V

) 3
2
(√

V

π
+ α

√
2
)

− 1√
2V

}
. (1.14)

We note from Figs. 1, 2, 3 and 4 that in GB black holes, the behav-
ior of efficiency of heat engines is unaffected by the lack of charge 
parameter q and results are identical to those found in [17] where 
charged black holes were used as working substances.

2. Critical black holes and heat engines

Now, the critical region can be understood from the behaviour 
of the equation of state for different isotherms as seen from Fig. 5. 
For a given α, there exist a critical temperature Tcr , below which 
the equation of state exhibits the first order phase transition be-
tween the small and large black holes which is reminiscent of the 
liquid/gas phase transition of van der Waals fluid. At T = Tcr , first 
order phase transitions terminate in a second order critical point.

In particular, in the p–V plane, the point of inflection: ∂ p/∂V =
∂2 p/∂V 2 = 0 determines the critical point as [7]:

pcr = 1

48πα
, V cr = 18π2α2 , Tcr = 1

π
√

24α
,

where rcr = √
6α. (2.1)

Since for a given α, S and V are not independent, the specific 
heat in a isochoric process vanishes, whereas it is a non-vanishing 
quantity in an isobaric process [7,17], i.e.,

C V = 0 ; C p = 3π2

2

(
(8π pr2+ + 3)(r2+ + 2α)2r+

8π pr2+(r2+ + 6α) − 3r2+ + 6α

)
. (2.2)

We define the engine cycle as a rectangle in p–V plane (which 
is a natural choice when C V = 0 [9]), and then, equation (1.11)
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Fig. 4. In scheme 2, over the physical range of α constrained by the relation (1.6), (a) The ratio η/ηC vs α, and (b) The ratio η/η0 vs α. (See the caption of Fig. 3 for parameter 
values.)
Fig. 5. Sample isotherms for α = 2 obeying the constraint (1.6). The central (red) 
isotherm is for critical temperature Tcr , the gray colored isotherms are for T > Tcr

and the blue colored isotherms are for T < Tcr . The critical point is highlighted with 
red dot where the corner 3 of the engine cycle is placed. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

can be employed in computing the efficiency. It was stated in [36,
37] that, probing the engine containing the critical point (or even 
close to critical point) results in approaching the Carnot’s efficiency 
having the finite power. A working example of this feature was 
constructed in [3] in the context of charged-AdS black holes in the 
large charge limit. Following [3], we place the critical point at the 
corner 3 (see Fig. 5) and choose the boundaries of the cycle2 such 
that

p3 = p4 = pcr,

p1 = p2 = 3pcr/2,

V 2 = V 3 = V cr, and

V 1 = V 4 = V cr − V crL/α,

where L is a constant with dimensions of α. (2.3)

With this set up, the work done can be readily calculated simply 
as the area �p�V of the cycle given by W = pcr V crL/2α = 3π

16 L. 
This work is finite and independent of α, and the heat inflow Q H
is given by:

2 One can choose different boundaries and place the critical point at other cor-
ners, but we stick to the choice in [3] for later comparison.
Q H = M2 − M1

= 9π

16

(
L + 4α

(
1 −

√(
1 − L

α

)))
. (2.4)

Equation (2.4) above shows that as α increases, Q H decreases. 
Therefore the efficiency η increases with α. This result drives us to 
consider the limit of large α (similar to the limit of large charge q
in [3]). In fact, the engine is physical on raising α as pressures in 
the cycle obey the constraint (1.6), while temperature is positive 
at any α. However, large α affects the cycle to reduce its height 
(as �p ∼ α−1), while increases its width (as �V ∼ α), so that the 
work is finite at any α.

The large α expansion for inflow of heat Q H (Eq. (2.4)) reads 
as:

Q H = 27π

16
L + 9π

32

L2

α
+ 9π

64

L3

α2
+ 45π

512

L4

α3
+ 63π

1024

L5

α4

+ O
(
α−5

)
, (2.5)

whereas the efficiency η = W /Q H in the limit of large α is:

η = 1

9
− 1

54

L

α
− 1

162

L2

α2
− 25

7776

L3

α3
− 95

46656

L4

α4
+ O

(
α−5

)
.

(2.6)

The Carnot efficiency ηC , which is independent of working sub-
stance depends only on the lowest and highest temperatures be-
tween which the engine runs. Our engine has the highest tem-
perature T H at corner 2, while the lowest temperature TC is at 
corner 4. Plugging the chosen values for (p2, V 2) and (p4, V 4) into 
Eq. (1.13) gives T H as:

T H = 9

8π
√

24α
, (2.7)

while the large α expansion for TC is:

TC = 1

2π
√

6α
− L3

512
√

6πα7/2
−

√
3 L4

1024
√

2π α9/2

+ O
(
α−11/2

)
. (2.8)

These temperatures provide the Carnot’s efficiency at large α as:

ηC = 1 − TC = 1 + 1 L3

3
+ 1 L4

4
+ O

(
α−5

)
. (2.9)
T H 9 288 α 192 α
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Since, the GB parameter α seems to mimic the behavior of charge 
parameter q, we would now like to compare ours results with 
those of charged black holes in 5 dimensional AdS space–time.3

In this context, the expressions for temperature, entropy, thermo-
dynamic volume and mass (enthalpy) of the black hole are respec-
tively given by [4,6]:

T = 1

2π

(
1

r+
− q2

r5+
+ 8π p

3
r+

)
, (2.10)

S = π2

2
r3+ , (2.11)

V = π2

2
r4+ , (2.12)

M(S, p) = 3π

8

( 2S

π2

)−2
3

{( 2S

π2

) 4
3 + q2 + 16pS2

3π3

}
. (2.13)

The equation of state p(V , T ) can be obtained from the Eq. (2.10), 
as:

p = 3

8
√

2V

(
2
√

π T (2V )
1
4 − 1 + π2q2

2V

)
. (2.14)

This equation of state shows the small/large black hole phase tran-
sitions in p–V plane similar to 4-dimensional case, and there ex-
ists a first order phase transition line terminating at the second 
order critical point given by [6]:

pcr = 1

4
√

15πq
, V cr = 15

2
π2q2 , Tcr = 4

5π(15)
1
4
√

q
, (2.15)

where rcr = (15)
1
4
√

q and Scr = π2

2 (15q2)
3
4 . The specific heats at 

isochoric and isobaric process are [17]:

C V = 0 ; C p = 3π2

2
r3+

(
8π pr6+ + 3r4+ − 3q2

8π pr6+ − 3r4+ + 15q2

)
. (2.16)

Similar to the Gauss–Bonnet case, the rectangular cycle defined as

p3 = p4 = pcr,

p1 = p2 = 3pcr/2,

V 2 = V 3 = V cr,

and V 1 = V 4 = V cr − V crL/q, (2.17)

produces the finite work W = π
√

15
16 L at any q for the inflow of 

heat Q H :

Q H = M2 − M1

=
√

3

5
π

{
15L

(
2 +

√
1 − L

q

) − 32q
(
1 −

√
1 − L

q

)
16

√
1 − L

q

}
. (2.18)

Its large q expansion is:

Q H = 29π

16

√
3

5
L + 3π

16

√
3

5

L2

q
+

√
15π

64

L3

q2
+

√
15π

128

L4

q3

+ 21π

1024

√
3

5

L5

q4
+ O

(
q−5

)
, (2.19)

while the efficiency η = W /Q H at large q takes the form as:

3 For efficiency computations, particularly in D = 4, see [3].
η = 5

29
− 15

841

L

q
− 545

97556

L2

q2
− 13405

5658248

L3

q3
− 1418425

1312713536

L4

q4

+ O
(

q−5
)

. (2.20)

Our engine has the highest temperature T H at corner 2, while the 
lowest temperature TC is at corner 4. Plugging the chosen values 
for (p2, V 2) and (p4, V 4) into Eq. (2.10) gives

T H = 29

2π(15)
5
4
√

q
, (2.21)

while the large q expansion for TC is:

TC = 4

5π(15)
1
4

1

q1/2
− 1

96π(15)
1
4

L3

q7/2
− 29

1536π(15)
1
4

L4

q9/2

+ O
(

q−11/2
)

. (2.22)

These temperatures provide the Carnot’s efficiency as:

ηC = 1 − TC

T H
= 5

29
+ 5

464

L3

q3
+ 5

256

L4

q4
+ 393

14848

L5

q5

+ O
(

q−6
)

. (2.23)

From Figs. 6 and 7, we see that, in both the cases, η → ηC at 
large parameter values with finite work. In fact, η = ηC is possi-
ble only when the respective parameter (α or q, depending on the 
case) go towards ∞, while the power vanishes in this limit, accord-
ing to the universal trade off relation between power and efficiency 
given by [39,40]:

W

τ
≤ �̄

η(ηC − η)

TC
, (2.24)

where �̄ is a model dependent constant of the engine. The right 
hand side quantity in Eq. (2.24) (divided by �̄) has the large α
expansion for Gauss–Bonnet case as:

η(ηC − η)

TC
= 2π

81
√

6

L

α1/2
+ π

243
√

6

L2

α3/2
+ π

162
√

6

L3

α5/2

+ 1987π

279936
√

6

L4

α7/2
+ O

(
α−9/2

)
, (2.25)

whereas the large q expansion for charged black hole case is:

η(ηC − η)

TC
= 375π (15)

1
4

97556

L

q1/2
+ 9125π (15)

1
4

11316496

L2

q3/2

+ 3391875π (15)
1
4

1312713536

L3

q5/2
+ O

(
q−7/2

)
. (2.26)

The time τ taken to complete the cycle scales as τ ∼ α in the 
Gauss–Bonnet case, whereas τ ∼ q in the charged black hole case, 
based on the behaviour of critical pressures [3]. Therefore, ap-
proaching η to ηC at large parameter values is carried out at finite 
power in Gauss–Bonnet black holes, as well as in charged black 
holes.

3. Remarks

On comparison, Fig. 8 shows that the approach to Carnot’s effi-
ciency at finite power at large parameter values is faster in the case 
of charged black holes than in Gauss–Bonnet black holes. However, 
at smaller values of parameters, approach of η to ηC for the en-
gine in case of the latter dominates over the former. Let us also 
note that η and ηC converge to 5/29 for 5D charged black hole 



C. Bhamidipati, P.K. Yerra / Physics Letters B 772 (2017) 800–807 805
Fig. 6. The behaviour of (a) η, ηC and (b) the ratio η/ηC with α. (Here, L = 1 is used.)

Fig. 7. The behaviour of (a) η, ηC and (b) the ratio η/ηC with q. (Here, L = 1 is used.)

Fig. 8. A comparative plot of the ratio η/ηC between charged black hole (blue curve) and Gauss–Bonnet black hole (red curve) (we fix L = 1); (a) Full range of q and α and 
(b) Lower values of q and α. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Effective Potential for L = 0, α = 10, μ = 1.

and 1/9 for 5D Gauss–Bonnet black hole, while for the 4D charged 
black hole they converge to 3/19 [3]. The convergent point of η
and ηC for the engine defined as above, seem to follow the relation:

Convergent point of η and ηC = ρcr

2 + ρcr
, (3.1)

where ρcr is the critical ratio [6,7]:

ρcr =
{ 3/8, 4D charged black hole

5/12, 5D charged black hole
1/4, 5D Gauss–Bonnet black hole .

These features of heat engines at criticality for 5D GB black 
holes discussed in comparison to 5D charged black holes are 
counter intuitive and their holographic implications are worth un-
derstanding.

We can now take a closer look at the critical region by studying 
the metric function of Gauss–Bonnet black hole with critical values 
inserted, i.e.,

Ycr(r) = 1 + r2

2α

(
1 −

√
1 + 4α mcr

r4
− 4α

l2cr

)
, (3.2)

mcr = 16α, l2cr = 72α (3.3)

Following the idea of a coupled system leading to Carnot efficiency 
at criticality [3,36,37], it is worth studying the picture of α inter-
acting constituent objects. Consider, a particle of mass μ moving 
in the background of this critical black hole in the probe approxi-
mation. Following the methods in [4,48,49], the effective potential 
is seen to be

V eff(r) = √
Ycr(r)

√
μ2 + L2

r2
, (3.4)

where L is the angular momentum of the particle. This is plotted 
in Fig. 9 showing an attractive and binding behavior, though there 
is no local minimum (unlike the case of a probe charged parti-
cle [4]).

In fact, one can study the critical Gauss–Bonnet black hole in 
the double limit, where the parameter α is taken to be large while 
at the same time nearing the horizon. That is, one writes [4], r =
r+ +εσ and t = τ/ε , where, Y (r = r+) = 0 and Y ′(r = r+) = 4π Tcr. 
The near horizon limit is obtained by taking ε → 0 while at the 
same time taking the large α limit by holding ε

√
α fixed. The met-
ric in (1.3) goes over to ds2 = −(4π T̃cr) σdτ 2 + 1
(4π T̃cr)

dσ 2

σ + dR3. 
Here, T̃cr is Tcr in equation (2.1) with 

√
α replaced by ε

√
α. 

Also, � = 0 and since the S3 has infinite radius (rcr diverges at 
large α from Eq. (2.1)), the metric there is essentially flat dR3 =
dx2

1 + dx2
2 + dx2

3. Thus, this double limit results in a completely 
decoupled Rindler space–time with zero cosmological constant, ex-
actly analogous to the one uncovered for critical charged black 
holes in [4].
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